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Abstract. The Malmquist productivity index (MPI) has gained popularity among studies 
on the dynamic change of productivity of decision-making units (DMUs). In practice, this 
index is frequently reported at aggregate levels (e.g., public and private firms) in the form 
of simple, equally weighted arithmetic or geometric means of individual MPIs. A number 
of studies emphasize that it is necessary to account for the relative importance of individual 
DMUs in the aggregations of indices in general and of the MPI in particular. Whereas more 
suitable aggregations of MPIs have been introduced in the literature, their statistical prop-
erties have not been revealed yet, preventing applied researchers from making essential 
statistical inferences, such as confidence intervals and hypothesis testing. In this paper, we 
fill this gap by developing a full asymptotic theory for an appealing aggregation of MPIs. 
On the basis of this, meaningful statistical inferences are proposed, their finite-sample per-
formances are verified via extensive Monte Carlo experiments, and the importance of the 
proposed theoretical developments is illustrated with an empirical application to real data.
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1. Introduction
The Malmquist productivity index (MPI), since its intro-
duction by Caves et al. (1982), has become one of the 
most widely used tools for analyzing the performance of 
decision-making units (DMUs) in terms of their produc-
tivity change over time. A large number of applications 
of the MPI has been deployed in a wide variety of areas, 
including agriculture, airlines, banking, electric utilities, 
healthcare, insurance companies, and public sectors, to 
mention just a few.1 Among the approaches to estimate 
MPI, data envelopment analysis (DEA) appears to be the 
most popular in the literature.2

In practice, apart from measuring the productivity 
change of a single DMU, there is also an essential need 
for analyzing productivity change at an aggregate level 
(e.g., firms grouped by ownership status, such as public 
and private). For instance, when studying performances 
of European and U.S. banking systems, Pastor et al. 
(1997) use the median, simple average, and weighted (by 
total assets) average of individual MPIs of banks in each 
country to make the cross-country comparison. Another 

example is Tortosa-Ausina et al. (2008), who examine 
productivity growth and the productive efficiency of 
Spanish savings banks over the period 1992–1998 and 
report both the simple arithmetic and geometric means 
of the MPIs of individual banks. When it comes to ag-
gregation of indices, it is also pointed out that simple 
averages (i.e., arithmetic and geometric means), which 
assign the same weight to each individual regardless of 
its relative economic significance (e.g., market share), 
might lead to very different conclusions in relation to the 
averages that account for economic weight (e.g., see 
Ylvinger 2000, Ebert and Welsch 2004).

Accounting for economic weights of DMUs based on 
their relative importance is also consistent with reality 
in which many industries are usually dominated by a 
few firms. For example, according to the U.S. Federal 
Reserve, in 2019, about 40% of the total domestic assets 
of 1,835 large commercial banks in the United States 
belonged to four large banks: JP Morgan Chase, Bank of 
America, Wells Fargo, and Citibank.3 Hence, the aggre-
gate functional forms and weights should be considered 
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carefully in order to achieve meaningful aggregations. 
This consideration also encompasses productivity and 
efficiency indices in general and the MPI in particular 
(e.g., see Färe and Zelenyuk 2003; Färe and Grosskopf 
2004; Zelenyuk 2006; ten Raa 2011; Wang et al. 2017; 
Walheer 2018, 2019).

Zelenyuk (2006) proposes two aggregations of MPIs 
that resemble the weighted harmonic-type and geomet-
ric means of efficiencies, accounting for the economic 
importance of individuals. Until now, their statistical 
properties have not been unveiled, preventing applied 
researchers from making well-grounded statistical infer-
ences, such as confidence intervals and hypothesis test-
ing, which are important in practice. Leveraging Kneip 
et al. (2015), Simar and Zelenyuk (2018), and Kneip et al. 
(2021) (hereafter KSW2015, SZ2018, and KSW2021, respec-
tively), we bridge this gap by developing a comprehensive 
asymptotic theory for the weighted harmonic-type mean 
aggregation of MPIs in two contexts: (i) individual effi-
ciency scores are observable, and (ii) individual efficiency 
scores are nonobservable and estimated via DEA relative 
to the conical hulls of the production technology sets. 
These new developments enable applied researchers to 
obtain meaningful statistical inferences on aggregate pro-
ductivity change measured by MPIs.4

It is important to note that the complexity of the used 
statistic implies that the traditional delta method, on which 
KSW2015, SZ2018, and KSW2021 are based, leaves the 
stochastic remainder of order Op(n�1=2), which does not 
provide sufficiently tight bounds in our context. Interest-
ingly, we find that utilizing the uniform version of the 
delta method helps in canceling out the Op(n�1=2) term, 
thus reducing the stochastic remainder to op(n�1=2). To 
the best of our knowledge, this approach is a novel one 
compared with the previous works of KSW2015, SZ2018, 
and KSW2021 and opens the path for deriving the asymp-
totic properties of a variety of sophisticated indices, such 
as the weighted geometric mean aggregation of MPIs and 
the Hicks–Moorsteen productivity index.

Finally, we also conduct Monte Carlo experiments to 
verify the performance of the newly developed statistical 
inferences in finite samples as well as illustrate it on real 
data.

2. Preliminaries
We denote inputs and outputs by column vectors x 2 Rp

+
and y 2 Rq

+, respectively. The production technology set 
at time t is defined as
Ψtà {(x,y)2Rp

+⇥Rq
+ : x can produce y at time t}, tà1,2,

(1) 
which is assumed to satisfy common regularity assump-
tions (see Appendix A for details).

To date, a number of efficiency measures have been 
proposed to evaluate the performance of a particular 

DMU relative to a production technology set, and the 
Farrell-type efficiency measures appear to be the most 
popular in the literature (Farrell 1957). They are also an 
important component in the decomposition of profit effi-
ciency (Färe et al. 2019). Apart from this, the hyperbolic 
efficiency measure (Färe et al. 1985) is also appealing as it 
seeks to decrease input quantities and increase output 
quantities simultaneously and equiproportionally. For-
mally, the efficiency of a DMU with an input–output 
combination z à (x, y) 2 Rp

+ ⇥ Rq
+ can be evaluated rela-

tive to the production technology set Ψt via these mea-
sures as follows: 

• Farrell-type output-oriented efficiency measure:

λ(z |Ψt) à λ(x, y |Ψt) à sup
λ

{λ : (x,λy) 2 Ψt}: (2) 

• Hyperbolic efficiency measure:

γ(z |Ψt) à γ(x, y |Ψt) à inf
γ

{γ > 0 : (γx,γ�1y) 2 Ψt}:

(3) 

By construction, for all z à (x, y) 2Ψt, we have λ(z |Ψt) �
1 and 0  γ(z |Ψt)  1. Now, we define the conical hull of 
the set Ψt as5

C(Ψt) à {(ax, ay) : (x, y) 2Ψt, a 2 R1
+}: (4) 

Obviously, Ψt ✓ C(Ψt). Conventionally, Ψt is said to 
exhibit globally constant returns to scale (CRS) if Ψt à
C(Ψt) and variable returns to scale (VRS) otherwise 
(which means Ψt might exhibit increasing, constant, or 
decreasing returns to scale in some local regions).

The conical Farrell-type output-oriented efficiency mea-
sure, denoted by λC, for a DMU with an input–output 
combination z à (x, y) 2 Rp

+ ⇥ Rq
+ is defined as

λC(z |Ψt) à λC(x, y |Ψt) à λ(x, y |C(Ψt))
à sup

λ
{λ : (x,λy) 2 C(Ψt)}, (5) 

and γC can also be defined in a way similar to λC.
Now suppose that the input–output combinations of 

the interested DMU observed in periods 1 and 2 are z1 2
Ψ1 and z2 2Ψ2, respectively; then, the output-oriented 
conical MPI, which measures the productivity change of 
this DMU from period 1 to 2, can be defined as

MO(z1, z2) à λC(z2 |Ψ1)
λC(z1 |Ψ1)

⇥ λC(z2 |Ψ2)
λC(z1 |Ψ2)

◆ �1=2

: (6) 

It is clear that MO(z1, z2) take values in (0,1). In particu-
lar, values in (1,1), {1}, and (0, 1) indicate that the pro-
ductivity of firm i has improved, remained constant, and 
deteriorated from period 1 to 2, respectively.6

Similar to KSW2021, here we emphasize the impor-
tance of measuring efficiency relative to the conical hulls 
of the production technology sets rather than the sets 
themselves. On the one hand, Grifell-Tatjé and Lovell 
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(1995) indicate that, under VRS, the MPI does not 
account for productivity change accurately because of 
a systematic bias. In addition, Ray and Desli (1997), 
when analyzing productivity changes of 17 Organi-
sation for Economic Co-operation and Development 
countries, noted that computing MPI for some countries 
under VRS might be infeasible. On the other hand, it 
might be too restrictive to impose CRS on the production 
technology as discussed in, for example, KSW2021. Inter-
estingly, using the conical hull of the production technol-
ogy set can solve this dilemma because measuring MPI 
relative to the conical hull is always feasible, and further-
more, this approach allows the true production technol-
ogy set to exhibit VRS rather than the more restricted 
CRS. Therefore, we focus on the conical Farrell-type 
output-oriented MPI in this paper, noting that similar 
results for the other orientations (e.g., input-oriented) can 
be developed analogously.

Now, consider a sample Xn à X 1
n [ X 2

n consisting of n 
DMUs observed in period 1 (i.e., X1

n) and period 2 (i.e., 
X 2

n). More precisely, for each t à 1, 2, X t
n à {Zt

i}
n
ià1, where 

Zt
i à (Xt

i , Yt
i), Xt

i and Yt
i are column vectors of inputs and 

outputs of DMU i (i à 1, : : : , n), respectively.
A common approach to aggregate individual MPIs is to 

use the equally weighted arithmetic or geometric mean, in 
which the latter seems to dominate the former because of 
the multiplicative essence of the MPI. These types of aggre-
gations treat individual DMUs equally and, hence, ignore 
their relative economic importance (e.g., market share), 
which motivates us to investigate the aggregate MPIs.

We assume that all DMUs in the same time period face 
common output prices (i.e., “law of one price”). The sta-
tistical theory developed here still applies to the context 
in which DMUs face different prices, and the assumption 
of the law of one price (or common equilibrium) is 
required to maintain the Koopmans-type theorem of 
aggregation upon which the theory of aggregate effi-
ciency and productivity are built.

Here, we develop statistical theory for the following 
aggregate MPI:

M à
Pn

ià1 β
2
i λC(Z2

i |Ψ1)
Pn

ià1 β
1
i λC(Z1

i |Ψ1)
⇥
Pn

ià1 β
2
i λC(Z2

i |Ψ2)
Pn

ià1 β
1
i λC(Z1

i |Ψ2)

 !�1=2

,

(7) 

where βt
i à

wtYt
i

wt
Pn

ià1Yt
i 
(i à 1, : : : , n) are economic weights 

and wt 2 Rq
++ are the row vector of output prices in the 

period t (t à 1, 2).7

3. DEA Estimators from the 
Statistical Viewpoint

The technology sets Ψ1 and Ψ2 as well as efficiency mea-
sures and indices are unobserved in reality and must be 
estimated from data, raising the need for respective 

statistical inferences. Among estimation methodologies to 
date, DEA has emerged as one of the most popular, 
attracting numerous theoretical and empirical attention.8
More specifically, DEA appears to be the most popular 
method to estimate MPI, especially since the seminal 
work of Färe et al. (1994). Prior to presenting the estima-
tion details and setting up a statistical model for the DEA- 
based MPI, we need additional Assumptions A.5–A.10 in 
Appendix A. These assumptions are output-oriented ana-
logues of the input-oriented assumptions 2.4–2.7, 3.1, and 
3.2 in KSW2021.

By virtue of these assumptions, the sample Xn can be 
viewed as a random set generated from Ψ1 and Ψ2. For 
t à 1, 2, Ψt and C(Ψt) can be estimated via DEA-type esti-
mators as follows:9

bΨt
n à
(

(x, y) 2 Rp
+ ⇥ Rq

+ : x≧
Xn

ià1
Xt

iζi, y≦
Xn

ià1
Yt

iζi,

Xn

ià1
ζi à 1,ζi 2 R1

+, ∀i à 1, : : : , n
)

, (8) 

C( bΨt
n) à

(

(x, y) 2 Rp
+ ⇥ Rq

+ : x≧
Xn

ià1
Xt

iζi, y

≦
Xn

ià1
Yt

iζi,ζi 2 R1
+, ∀i à 1, : : : , n

)

: (9) 

Substituting Ψt by bΨt
n in (2) and (5) gives the DEA-type 

estimators of the Farrell-type output-oriented efficiency 
measure and its conical hull version:

λ(z | bΨt
n) à λ(x, y | bΨt

n)

à sup
λ

�
λ : x≧

Xn

ià1
Xt

iζi,λy≦
Xn

ià1
Yt

iζi,

Xn

ià1
ζi à 1,ζi 2 R1

+, ∀i à 1, : : : , n
⌧

, 

λC(z | bΨt
n) à λC(x, y | bΨt

n)

à sup
λ

�
λ : x≧

Xn

ià1
Xt

iζi,λy≦
Xn

ià1
Yt

iζi,ζi 2 R1
+,

∀i à 1, : : : , n
⌧

, (10) 

respectively. Note that, because bΨt
n is, in turn, deter-

mined by X t
n, henceforward in this paper we use the 

notations λ(z |X t
n) and λC(z |X t

n) instead of λ(z | bΨt
n) and 

λC(z | bΨt
n), respectively, to emphasize the data set from 

which the estimators are computed.
The aforementioned aggregate MPI can be estimated 

via DEA as follows:

cM(Xn)à
Pn

ià1β
2
i λC(Z2

i |X 1
n)Pn

ià1β
1
i λC(Z1

i |X 1
n)
⇥
Pn

ià1 β
2
i λC(Z2

i |X 2
n)Pn

ià1 β
1
i λC(Z1

i |X 2
n)

 !�1=2

:

(11) 
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KSW2015 are the first to discover the asymptotic proper-
ties of the Farrell-type technical efficiency evaluated at 
random points. In addition, they propose important cen-
tral limit theorems for the arithmetic mean of the effi-
ciency of random samples, enabling researchers to make 
inference about the efficiency of groups of firms. Most 
recently, KSW2021 extend the work of KSW2015 to the 
dynamic context and provide the following result.
Lemma 1. Under Assumptions A.1–A.10, as n!1,

E
�
logγC(Zs

i |X t
n)� logγC(Zs

i |Ψt)
⇥
à eCstn�κ+Rn,κ, (12) 

E
�
[logγC(Zs

i |X t
n)� logγC(Zs

i |Ψt)]2⇥ào(n�κ), (13) 
|E([logγC(Zs

i |X t
n)�E(logγC(Zs

i |X t
n))]⇥

⇥ [logγC(Zs⇤
j |X t⇤

n )�E(logγC(Zs⇤
j |X t⇤

n ))]) | ào(n�1), (14) 

for all i, j 2 {1, : : : , n}, i ≠ j; s, t, s⇤, t⇤ 2 {1, 2}, where eCst is a 
constant, Rn,κ�is a remainder of order smaller than n�κ, and 
κ à 2=(p + q + 1) if the true technology Ψt exhibits VRS and 
κ à 2=(p + q) if the true technology Ψt exhibits CRS (i.e., if 
Ψt à C(Ψt)).

These results pave the way for statistical inference in a 
dynamic context. Particularly, KSW2021 derive asymp-
totic properties for DEA-based estimators of MPIs for 
individual DMUs as well as their geometric mean. Our 
goal is to generalize their results to the case in which 
researchers want to account for economic weights in the 
aggregation.

4. Asymptotic Properties When the True 
Efficiency Is Unknown

Consider the log version of M given by

log M à�1
2

"

log
 
Xn

ià1
β2

i λC(Z2
i |Ψ1)

!

+ log
 
Xn

ià1
β2

i λC(Z2
i |Ψ2)

!

� log
 
Xn

ià1
β1

i λC(Z1
i |Ψ1)

!

� log
 
Xn

ià1
β1

i λC(Z1
i |Ψ2)

!#

, (15) 

and to make our notation more concise, for i à 1, : : : , n, 
let

U1,i à λC(Z2
i |Ψ1)w2Y2

i , U2,i à λC(Z2
i |Ψ2)w2Y2

i ,
U3,i à λC(Z1

i |Ψ1)w1Y1
i , U4,i à λC(Z1

i |Ψ2)w1Y1
i ,

U5,i à w2Y2
i , U6,i à w1Y1

i : (16) 

Clearly, Us,i are scalar-valued random variables for all s à
1, 2, : : : , 6 and i à 1, : : : , n. Denote µs à E(Us,i) and bµs,n à

n�1Pn
ià1 Us,i (s à 1, : : : , 6). Similar to SZ2018, we have
Xn

ià1
β2

i λC(Z2
i |Ψ1) à

Xn

ià1

w2Y2
i

w2Pn
ià1 Y2

i
λC(Z2

i |Ψ1)

à
Pn

ià1λC(Z2
i |Ψ1)w2Y2

iPn
ià1 w2Y2

i

à
Pn

ià1 U1,iPn
ià1 U5,i

à
bµ1,n
bµ5,n

:

Analogously,
Xn

ià1
β2

i λC(Z2
i |Ψ2) à

bµ2,n
bµ5,n

,
Xn

ià1
β1

i λC(Z1
i |Ψ1) à

bµ3,n
bµ6,n

,

Xn

ià1
β1

i λC(Z1
i |Ψ2) à

bµ4,n
bµ6,n

:

Consequently, the aforementioned aggregation of MPIs 
can be expressed concisely as

log M à 1
2 (log bµ3,n + log bµ4,n � log bµ1,n � log bµ2,n)

+ log bµ5,n � log bµ6,n: (17) 

Therefore, log M is a point estimate of the following 
parameter:

ξ à 1
2 (logµ3 + logµ4� logµ1� logµ2) + logµ5� logµ6,

(18) 
whereas M is a point estimate of exp(ξ). Thus, hereafter, 
we write log M as bξn and develop an asymptotic theory 
for the statistical inference of the parameters of interest ξ.

A key stepping stone for developing the asymptotic 
properties of DEA-estimated aggregate MPIs is to first 
develop such results for an “ideal scenario” in which the 
true efficiency scores (λC(· |Ψ1) and λC(· |Ψ2)), which 
enter the aggregate MPIs in various ways, are known. In 
principle, this task is a standard application of the delta 
method although somewhat tedious because of the com-
plexity of the aggregate MPI formulae (e.g., relative to 
the aggregate efficiency in SZ2018). To the best of our 
knowledge, this step has not been accomplished before, 
and so this work is the first in the literature to do so. To 
save space, we present these developments of asymp-
totic theory in the ideal scenario in Appendix B. Mean-
while, in this section, we take those developments 
further by relaxing the assumption of knowledge of 
λC(· |Ψ1) and λC(· |Ψ2) and derive new central limit theo-
rems that allow researchers to make statistical inferences 
about aggregate MPIs based on feasible DEA-type esti-
mators. To do so, by analogy with the preceding defini-
tions, for i à 1, : : : , n, let

bU1,i à λC(Z2
i |X 1

n)w2Y2
i , bU2,i à λC(Z2

i |X 2
n)w2Y2

i ,
bU3,i à λC(Z1

i |X 1
n)w1Y1

i , bU4,i à λC(Z1
i |X 2

n)w1Y1
i , 
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where we recall that λC(: | :) is defined before in (10). 
Next, let

bbµs,n à n�1
Xn

ià1

bUs,i, s à 1, : : : , 4: (19) 

Because bbµs,n (s à 1, : : : , 4), bµ5,n and bµ6,n can be computed 
from the data, the estimators
bbξ n à log

⌘cM(Xn)
✓

à 1
2 (log bbµ3,n + log bbµ4,n � log bbµ1,n� log bbµ2,n) + log bµ5,n

� log bµ6,n 

are feasible. Hence, we develop an asymptotic theory for 
bbξ n in order to make feasible statistical inferences for the 
corresponding parameters of interest ξ�and exp(ξ).

To facilitate further discussion on asymptotic rates, let 
vn,κ�be a sequence of positive real numbers {vn,κ}1nà1 
defined by

vn,κ à
log n

n

◆  3
p+q+d

, (20) 

where, in general, κ�corresponds to the type of the esti-
mator deployed. Specifically, recall that, for DEA, κ à
2=(p + q + d) with dà1 when the true technology Ψt 

exhibits VRS and d à 0 when the true technology Ψt exhi-
bits CRS (i.e., if Ψt à C(Ψt)). For the sake of brevity, in 
this paper, we focus on d à 1 (as in KSW2021).

Theorem 1 establishes the basic asymptotic properties 
of moments of bUs,i for s à 1, : : : , 4 and i à 1, : : : , n, and its 
proof can be found in E-companion EC.1.10

Theorem 1. Under Assumptions A.1–A.10, there exist 
constants Cs 2 (0,1) such that, as n !1,

E( bUs,i�Us,i) à Csn�κ + O(vn,κ), (21) 
E
�
[ bUs,i�Us,i]2⇥ à o(n�κ), (22) 

|E
�
[ bUs,i�E( bUs,i)][ bUt,j�E( bUt,j)]

⇥
|à o(n�1), (23) 

for all i, j 2 {1, : : : , n}, i ≠ j; s, t 2 {1, : : : , 4}.
The following theorem develops Theorem 1 and pro-

vides essential tools for deriving the asymptotic proper-
ties of bµs,n (s à 1, : : : , 4) in later stages.
Theorem 2. Under Assumptions A.1–A.10, as n !1, 

i. E(cUs,i) à µs + Csn�κ + O(vn,κ), (24) 

ii. Cov(cUt,i,cUt⇤,i) à σtt⇤ + o(n�κ=2), (25) 
iii. Cov(cUs,i, Ur,i) à σsr + o(n�κ=2), (26) 

for all i 2 {1, : : : , n}, s, t, t⇤ 2 {1, : : : , 4}, r 2 {5, 6}; Cs are the 
same constants as in Theorem 1.

A proof of this theorem is relatively long and so is de-
ferred to E-companion EC.1, whereas here, it is important 

to note that this theorem is more comprehensive than 
lemma 1 of SZ2018 because it encompasses the asymptotic 
covariance of the two estimators containing efficiency 
scores (i.e., Cov( bUt,i, bUt⇤,i) in Theorem 2(ii)), which we 
solve by decomposing the covariance into four compo-
nents and examining the asymptotic behavior of each one 
separately.

To simplify further our notation, let eµs,n à E(bbµs,n) for 
s à 1, : : : , 4. In the next theorem, we establish important 
properties of bbµs,n and consistency of estimators of σst.11

Theorem 3. Under Assumptions A.1–A.10, as n !1, 
i. eµs,n à µs + Csn�κ + O(vn,κ), (27) 

ii. bbµs,n � eµs,n à bµs,n � µs + op(n�1=2), (28) 

iii. 
ÇÇÇ
n

p
(bbµs,n � eµs,n)!

d
N (0, σss), (29) 

iv. bbσst,nàn�1
Xn

ià1
( bUs,i� bbµs,n)( bUt,i� bbµt,n)!

p
σst, (30) 

v. bbσsr,n à n�1
Xn

ià1
(cUs,i � bbµs,n)(Ur,i � bµr,n)!

p
σsr, (31) 

vi. bσrr⇤,nàn�1
Xn

ià1
(Ur,i� bµr,n)(Ur⇤,i� bµr⇤,n)!

p
σrr⇤ (32) 

for s, t 2 {1, : : : , 4}, r, r⇤ 2 {5, 6}.
A proof of this theorem is also relatively long and so is 

deferred to E-companion EC.1. Meanwhile, it is impor-
tant to note that, compared with theorem 1 of SZ2018, 
Theorem 3 includes an additional result about the covari-
ance of random variables containing the efficiency scores 
(i.e., part (iv)). Theorem 3 helps us derive a consistent 
estimator of Vξ. Indeed, let bbVξ,n be the empirical version 
of Vξ, where µs is replaced by bbµs,n (s à 1, : : : , 4) and by 
bµs,n (s à 5, 6), σst is replaced by bbσst,n (s, t 2 {1, : : : , 4}), σsr 

is replaced by bbσsr,n (s 2 {1, : : : , 4}, r 2 {5, 6}), and σrr⇤ is 
replaced by bσrr⇤,n (r, r⇤ 2 {5, 6}). The consistency of bbVξ,n 
is established as follows.

Theorem 4. Under Assumptions A.1–A.10, as n !1,
bbVξ,n!

p
Vξ: (33) 

Proof of Theorem 4. This theorem follows from Theo-
rem 3, the fact that bbVξ,n is obtained by replacing unknown 
parameters in their formulas by the corresponding consis-
tent estimates, and the application of the continuous map-
ping theorem and Slutsky’s theorem. w

Theorem 3 also provides a foundation to derive new 
central limit theorems for our target estimator, bbξ n. It 
is worth noting that this task is not a trivial adaptation 
of previous work (KSW2015, SZ2018, and KSW2021) 
because of the complicated functional form of this esti-
mator. In particular, it involves the nonlinear operator 
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log (·) on DEA-based components, whereas the target 
estimators in earlier works (e.g., SZ2018) are linear with 
respect to the DEA-based components weighted by differ-
ent sets of weights. To circumvent this difficulty, we 
employ the uniform delta method (theorem 3.8 of Van der 
Vaart 2000), which we mention here as Lemma EC.1 in 
E-companion EC.2.12 Specifically, with the help of Lemma 
EC.1, we can study the asymptotic behavior of sequences ÇÇÇ

n
p �

log bbµs,n � log eµs,n
⇥

(s à 1, 2, 3, 4), where the centering 
vectors eµs,n are dependent on the sample size n as is the 
case in our complex statistic, and thereby we sufficiently 
reduce its stochastic remainder (see Remark 1 in Section 7
for further discussion). Leveraging this, we derive new 
central limit theorems (Theorems 5 and 6), which can then 
be used for a well-grounded statistical inference on aggre-
gate MPIs.

Theorem 5. Under Assumptions A.1–A.10, as n !1,
ÇÇÇ
n

p ⌘ bbξ n� ξ�Cξn�κ + O(vn,κ)
✓
!d N (0, Vξ), (34) 

where Cξ 2 R is a constant, O(vn,κ) à o(n�κ).
Because this and the next two theorems are the most 

important results of this paper and, to the best of our 
knowledge, their proofs are the most novel in the litera-
ture, we provide these proofs in the main text rather than 
in an appendix.

Proof of Theorem 5. For each s à 1, 2, 3, 4, from Theo-
rem 3(i), we have limn!1eµs,n à µs > 0. Hence, we can 
apply Lemma EC.1(i) to the result of Theorem 3(iii) 
and obtain

log bbµs,n à log eµs,n + 1
µs

(bbµs,n� eµs,n) + op(n�1=2)

à log (µs +Csn�κ +O(vn,κ)) +
bbµ s,n� eµs,n

µs
+ op(n�1=2)

à logµs +
1
µs

[Csn�κ +O(vn,κ)] +O([Csn�κ +O(vn,κ)]2)

+
bµs,n�µs + op(n�1=2)

µs
+ op(n�1=2)

à logµs +
Cs
µs

n�κ +O(vn,κ) +
bµs,n�µs
µs

+ op(n�1=2):

(35) 

In this expression, the third equality follows from 
the Taylor expansion and Theorem 3(ii), and the last 
equality follows from O([Csn�κ + O(vn,κ)]2) àO(n�2κ)
à o(vn,κ). Hereafter, we use this reasoning in subse-
quent proofs immediately to save space.

On the other hand, we can also apply Lemma EC.1(i) 
to 

ÇÇÇ
n

p
(bµs,n�µs)!

d
N (0,σss) and obtain

log bµs,n à logµs +
bµs,n�µs
µs

+ op(n�1=2): (36) 

Note that (36) is also valid for s à 5, 6 because µ5,µ6 > 0. 
From (35) and (36), we have

bbξ n à ξ+
1
2

C3
µ3

+ C4
µ4
�C1
µ1
�C2
µ2

◆ 
n�κ + O(vn,κ)

+ op(n�1=2) + bBξ,n, (37) 
bξn à ξ+ op(n�1=2) + bBξ,n, (38) 

where

bBξ,n à
bµ3,n�µ3

2µ3
+
bµ4,n�µ4

2µ4
�
bµ1,n �µ1

2µ1
�
bµ2,n�µ2

2µ2

+
bµ5,n�µ5
µ5

�
bµ6,n�µ6
µ6

: (39) 

It is worth clarifying here that using the standard delta 
method produces a looser evaluation that cannot be used 
to prove Theorem 5 because a component Op(n�1=2) re-
mains at the end. On the other hand, because of the uni-
form delta method (theorem 3.8 of Van der Vaart (2000), 
which we mention here as Lemma EC.1), we can extract 
the Op(n�1=2) component out (i.e., bBξ,n in (37) and (38)) 
so that this Op(n�1=2) component then cancels out when 
taking the difference between these two, and hence, we 
reduce the stochastic remainder to op(n�1=2), which then 
helps to prove Theorem 5. Indeed, subtracting (38) from 
(37) yields

bbξ n� bξn à Cξn�κ + O(vn,κ) + op(n�1=2), (40) 

where Cξ à 1
2

C3
µ3

+ C4
µ4
� C1

µ1
� C2

µ2

⌘ ✓
2 R is a constant.

Now, combining (B.6) from Appendix B with (40), 
we have the desired result. w

Theorem 5 has implications for the limiting distribu-
tion of the DEA-based estimator of ξ. In particular, bbξ n is 
a consistent estimator of ξ�with the leading bias term 
being Cξn�κ. Moreover, the asymptotic behavior of this 
bias when multiplied with the norming rate 

ÇÇÇ
n

p
is revealed 

as follows. 
• If κ > 1=2 (p + q à 2), the bias term in (34) vanishes 

asymptotically and can be ignored.
• If κ à 1=2 (p + q à 3), the bias term converges to an 

unknown constant, implying that Theorem 5 cannot be 
used immediately to make inferences about ξ.

• If κ < 1=2 (p + q à 4, 5, 6, : : : ), the bias term explodes 
to infinity as n increases, and again, Theorem 5 cannot 
be used directly to make inferences about the parame-
ter of interest.

As a consequence, there emerges a need to correct 
for the bias term in Theorem 5 in order to make infer-
ences when κ  1=2. In the spirit of KSW2015, SZ2018, 
and KSW2021, we find another norming rate different 
from 

ÇÇÇ
n

p
for the case κ  1=2. Specifically, let en denote 

the appropriately adjusted sample size that can be 
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determined as13

en :à enκ àmin{bn2κc, n}  n: (41) 

Now, consider the estimator bbξ ñ , which is the subsample 
version of bbξ n in the sense that the averages are taken 
over a random subsample X ⇤

ñ of size en, where X ⇤
ñ ⇢ Xn. 

Formally,

bbξ ñ à
1
2

"

log
P

{i:Z1
i 2X

⇤
ñ }λC(Z1

i |X 1
n)w1Y1

i

en

 !

+ log
P

{i:Z1
i 2X

⇤
ñ }λC(Z1

i |X 2
n)w1Y1

i

en

 !

� log
P

{i:Z2
i 2X

⇤
ñ }λC(Z2

i |X 1
n)w2Y2

i

en

 !

� log
P

{i:Z2
i 2X

⇤
ñ }λC(Z2

i |X 2
n)w2Y2

i

en

 !#

+ log
P

{i:Z2
i 2X

⇤
ñ }w

2Y2
i

en

 !

� log
P

{i:Z1
i 2X

⇤
ñ }w

1Y1
i

en

 !

:

(42) 

Similar to KSW2015, SZ2018, and KSW2021, note that, 
although the average in (42) is taken over the subsample 
X ⇤

ñ , the DEA efficiency scores are still estimated using all 
of the available observations in the original sample Xn. 
The asymptotics of this new estimator are revealed as 
follows.
Theorem 6. Under Assumptions A.1–A.10, when κ  1=2 
as n !1,

nκ
⌘ bbξ ñ � ξ�Cξn�κ + O(vn,κ)

✓
!d N (0, Vξ), (43) 

where Cξ�is the same constant as in Theorem 5 and O(vn,κ)
à o(n�κ).
Proof of Theorem 6. For convenience, we can assume 
that the observations in Xn are randomly sorted and X ⇤

ñ 
consists of the first en elements of the sorted sample. 
Before going into details of the proof, we establish some 
asymptotic properties similar to Theorem 3 as follows.

For s à 1, : : : , 4, let χs,ñ à bbµs,ñ � bµs,ñ , where bbµs,ñ à en�1 
Pñ

ià1
bUs,i and bµs,ñ à en�1Pñ

ià1 Us,i. Remember that DEA 
estimation in bUs,i here is the same as before, that is, using 
all observations in the original sample Xn. In addition, let 
eµs,ñ à E(bbµs,ñ). Then, by Theorem 1, we have

E(χs,ñ) à eµs,ñ �µs à en�1
X̃n

ià1
E( bUs,i�Us,i)

à Csn�κ + O(vn,κ), (44) 

and

Var(χs,ñ) à en�2
X̃n

ià1
Var( bUs,i�Us,i)

à en�2
X̃n

ià1
(E([ bUs,i�Us,i]2)� (E( bUs,i�Us,i))2)

à en�1(o(n�κ)� (Csn�κ + O(vn,κ))2)
à en�1o(n�κ), (45) 

where Cs is the same constant as in Theorem 3 (s à 1, : : : , 4).
Consequently, by Markov’s inequality, for any ✏ > 0, 

we have

Pr
⌘ ÇÇÇ
en

p
|χs,ñ �E(χs,ñ) | > ✏

✓
 E(en(χs,ñ �E(χs,ñ))2)

✏2

à
enVar(χs,ñ)

✏2 à o(n�κ)
✏2 , 

which implies that χs,ñ �E(χs,ñ) à op(en�1=2) or, equiva-
lently,

bbµs,ñ � eµs,ñ à bµs,ñ �µs + op(en�1=2), (46) 

and as a consequence,
ÇÇÇ
en

p ⌘
bbµs,ñ � eµs,ñ

✓
!d N (0,σss): (47) 

By virtue of (44), the equality can also be presented as
bbµ s,ñ � bµs,ñ à eµs,ñ � µs + op(en�1=2)

à Csn�κ + O(vn,κ) + op(en�1=2),
s à 1, : : : , 4: (48) 

Because κ  1=2, en à bn2κc  n and limn!1 nκÇÇÇ
en

p à limn!1
nκÇÇÇÇÇÇÇÇ
bn2κc

p à 1, it is sufficient to prove that
ÇÇÇ
en

p ⌘bbξ ñ�ξ�Cξn�κ+O(vn,κ)
✓
!d N (0,Vξ), as n!1:

(49) 

From (44), we have limñ!1eµs,ñ à µs > 0 for s à 1, 2, 3, 4. 
Thus, similar to the proof of Theorem 5, we can apply 
Lemma EC.1(i) to (47) and then use a Taylor expan-
sion to get the following result:

log bbµ s,ñ à logeµs,ñ + 1
µs

(bbµ s,ñ� eµs,ñ)+op(en�1=2)

à log(µs +Csn�κ+O(vn,κ))+
bµs,ñ�µs +op(en�1=2)

µs

+op(en�1=2)

à logµs +
1
µs

(Csn�κ+O(vn,κ))+O([Csn�κ+O(vn,κ)]2)

+
bµs,ñ�µs
µs

+op(en�1=2)

à logµs +
Cs
µs

n�κ+O(vn,κ)+
bµs,ñ�µs
µs

+op(en�1=2):

(50) 
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On the other hand, it can be deduced from (36) that

log bµs,ñ à logµs +
bµs,ñ � µs
µs

+ op(en�1=2): (51) 

Subtracting (51) from (50) yields

log bbµ s,ñ � log bµs,ñ à
Cs
µs

n�κ + O(vn,κ) + op(en�1=2)

(s à 1, 2, 3, 4): (52) 

Therefore, we obtain

bbξ ñ � bξñ à Cξn�κ + O(vn,κ) + op(en�1=2), (53) 

where Cξ à 1
2

C3
µ3

+ C4
µ4
� C1

µ1
� C2

µ2

⌘ ✓
is the same constant as in 

Theorem 5, and bξñ is the analogue of bξn but computed 
using the subsample X ⇤

ñ (note that there is no DEA esti-
mation in bξñ ). Clearly, this result, when combined with 
ÇÇÇ
en

p
(bξñ � ξ)!

d
N (0, Vξ) as en !1, leads to the desired 

result. w

Intuitively, and in a nutshell, Theorem 6 says that, 
when κ < 1=2, the bias term converges to a constant 
instead of exploding to infinity as was demonstrated in 
Theorem 5.14 Theorems 5 and 6 provide the foundation 
for a well-grounded statistical inference on aggregate 
MPIs. To implement them, we need suitable estimators 
of the bias, and we discuss these in the next section.

5. Generalized Jackknife Estimators for 
the Bias

In the spirit of KSW2015, SZ2018, and KSW2021, we con-
struct a jackknife-type bias estimator on the basis of split-
ting the original sample into two subsamples. The details 
are presented subsequently, and one may notice that the 
adaptation of the previous works in the related literature 
is nontrivial.

For each l à 1, : : : , L where L ⌧ n
bn=2c

◆ 
, split Xn ran-

domly into two subsamples X l,m1 and X l,m2 of sizes m1 à
bn=2c and m2 à n�m1, respectively. More precisely, 
Xn à X l,m1 [ X l,m2 , where, for each j à 1, 2, X l,mj à X 1

l,mj
[

X 2
l,mj 

consists of sets of the same mj DMUs observed in 
periods 1 and 2, that is, X 1

l,mj 
and X 2

l,mj
, respectively. 

Then, for each j à 1, 2, set
bbµl,1,mj

à m�1
j

X

{i:Z2
i 2X

2
l,mj

}
λC(Z2

i |X 1
l,mj

)w2Y2
i , (54) 

and similarly, define bbµl,s,mj 
(s à 2, 3, 4) as the analogues of 

bbµs,n in the same way as bbµl,1,mj
. Here, it is important to 

highlight that, unlike bbξ ñ , the efficiency scores in bbµl,s,mj 

are estimated by DEA using only observations in the 

corresponding subsample X l,mj . For j à 1, 2, we also 
define

bbξ l,mj à
1
2
⌘

log bbµ l,3,mj
+ log bbµ l,4,mj

� log bbµ l,1,mj
� log bbµ l,2,mj

✓

+ log bµ5,n� log bµ6,n: (55) 

In essence, bbξ l,mj is an analogue of bbξ n in the sense that 
components containing efficiency scores are evaluated 
over the subsample X l,mj , whereas the other components 
(i.e., bµ5,n and bµ6,n) are evaluated over the original full 
sample Xn. Now, let

bbξ
⇤

l,n à
1
2
⌘ bbξ l,m1 +

bbξ l,m2

✓
:

The generalized jackknife estimator of the bias associated 
with bbξ n is given by

bAξ,n,κ,L à L�1
XL

là1
(2κ� 1)�1

⌘ bbξ
⇤

l,n�
bbξ n

✓
:

The following theorem reveals an important asymptotic 
property of this bias estimator.

Theorem 7. Under Assumptions A.1–A.10, as n !1,

bAξ,n,κ,L à Cξn�κ + O(vn,κ) + op(n�1=2), (56) 

where Cξ�is the same constant as in Theorems 5 and 6, and 
O(vn,κ) à o(n�κ).
Proof of Theorem 7. If n is odd, m1

m2
à bn=2c
bn=2c+1 ! 1 as 

n !1. Thus, for simplicity, we can assume without 
affecting the asymptotical result of the theorem that n 
is even and m1 à m2 à n=2.

For each l à 1, : : : , L, s à 1, 2, 3, 4 and j à 1, 2, it follows 
by the same arguments in the proof of Theorem 5 that

bbξ l,mj à ξ+ Cξ(n=2)�κ + O(vn=2,κ) + bBξ,l,mj + op(n�1=2)

à ξ+ 2κCξn�κ + O(vn,κ) + bBξ,l,mj + op(n�1=2), (57) 

where bBξ,l,mj is the analogue of bBξ,n in the sense that com-
ponents involving efficiency scores are evaluated over 
the subsample X l,mj , whereas the other components (i.e., 
bµ5,n and bµ6,n) are evaluated over the full sample Xn. For-
mally,

bBξ,l,mj à
bµl,3,mj

�µ3

2µ3
+
bµl,4,mj

�µ4

2µ4
�
bµl,1,mj

�µ1

2µ1

�
bµl,2,mj

�µ2

2µ2
+
bµ5,n�µ5
µ5

�
bµ6,n �µ6
µ6

, 

where bµl,s,mj 
is the analogue of bµs,n but evaluated over the 

subsample X l,mj . Note that, in (57), we use the fact that 
op((n=2)�1=2) à op(n�1=2) and O(vn=2,κ) à O(vn,κ), which 
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is because of

lim
n!1

vn=2,κ
vn,κ

à lim
n!1

n
2
� ⇥� 3

p+q+1 log n
2

� ⇥ 3
p+q+1

n�
3

p+q+1(log n) 3
p+q+1

à lim
n!1

2
3

p+q+1 1� log 2
log n

◆  3
p+q+1

à 2
3

p+q+1: (58) 

Taking the average of (57) over j à 1, 2, we can come 
up with
bbξ
⇤

l,n à ξ + 2κCξn�κ + O(vn,κ) +
1
2 (bBξ,l,m1 + bBξ,l,m2)

+ op(n�1=2): (59) 

Subtracting (37) from this equality yields
bbξ
⇤

l,n �
bbξ n à (2κ � 1)Cξn�κ + O(vn,κ)

+ 1
2 (bBξ,l,m1 + bBξ,l,m2)� bBξ,n
� �

+ op(n�1=2)

à (2κ � 1)Cξn�κ + O(vn,κ) + op(n�1=2):
(60) 

In this expression, the second equality follows from 
1
2 (bBξ,l,m1 + bBξ,l,m2)� bBξ,n à 0, which is because, for s à 1, 
: : : , 6,

bµs,n �
1
2 (bµl,s,m1

+ bµl,s,m2
)

à 1
n
Xn

ià1
Us,i�

1
2

1
n=2

X

{i:Zt
i2X l,m1 }

Us,i +
1

n=2
X

{i:Zt
i2X l,m2 }

Us,i

0

@

1

A

à 1
n
Xn

ià1
Us,i�

1
n
Xn

ià1
Us,i à 0: (60) 

Finally, taking the average of (60) over l à 1, : : : , L 
leads to the desired result. w

It should be emphasized that, under Assumptions 
A.1–A.10, the variance of bAξ,n,κ,L is inversely propor-
tional to L2. Therefore, similar to Kneip et al. (2016), 
whereas Theorem 7 holds true even with L à 1, applied 
researchers might want to increase L (e.g., L à 100) to 
reduce the variance of this bias estimator and achieve 
more reliable bias corrections for a few particular sam-
ples in practice.15

6. Confidence Intervals
As discussed in Section 4, statistical inferences for ξ�can 
be obtained directly from Theorem 5 when κ > 1=2 (i.e., 
p + q à 2) by ignoring the bias because it disappears 
asymptotically when multiplied with the norming rate ÇÇÇ

n
p

. However, it might not be ideal to do so in practice 
because the bias might still be significant in small sam-
ples. In light of Theorem 7, we can account for this issue 
by estimating the leading term of the bias. The following 
theorem presents important results that pave the way for 

making inferences about the parameter of interest ξ�for 
all cases of κ.
Theorem 8. Under Assumptions A.1–A.10, as n!1 for 
κ � 1=2,

ÇÇÇ
n

p ⌘ bbξ n � ξ� bAξ,n,κ,L + O(vn,κ)
✓
!d N (0, Vξ), (62) 

and for 0 < κ < 1=2,

nκ
⌘ bbξ ñ � ξ� bAξ,n,κ,L + O(vn,κ)

✓
!d N (0, Vξ), (63) 

where κ à 2=(p + q + 1) and O(vn,κ) à o(n�κ).
This theorem follows from substituting the results 

from Theorem 7 into the corresponding ones in Theorem 
5, noting that 

ÇÇÇ
n

p
op(n�1=2) à op(1) and nκop(n�1=2) à op(1)

when κ < 1=2.
In light of Theorems 4 and 8 and Slutsky’s theorem, 

feasible confidence intervals for ξ�can now be derived 
straightforwardly with the note that O(vn,κ) in Theorem 8
can be ignored because 

ÇÇÇ
n

p
O(vn,κ) à

ÇÇÇ
n

p
o(n�κ) à o(1)

when κ � 1=2 and nκO(vn,κ) à nκo(n�κ) à o(1) when κ <
1=2. In particular, asymptotically correct 100(1� α)% sy-
mmetric confidence intervals for ξ�are given by

bbξ n� bAξ,n,κ,L 6Φ�1
1�α=2

ÇÇÇÇÇÇÇÇÇ
bbVξ,n

q
=n

� �
, (64) 

bbξ ñ � bAξ,n,κ,L 6Φ�1
1�α=2

ÇÇÇÇÇÇÇÇÇ
bbVξ,n

q
=nκ

� �
, (65) 

for κ � 1=2 (i.e., p + q à 2, 3) and κ < 1=2 (i.e., p + q à 4, 5, 
6, : : : ), respectively. Here, we recall en à min{bn2κc, n}, 
and Φ�1

1�α=2 is the (1� α=2)-quantile of the standard nor-
mal distribution.

7. Some Important Remarks
A few important clarifications regarding the theoretical 
results derived earlier are in order.

Remark 1. The theoretical developments in this paper 
are substantial (and nontrivial) generalizations of pre-
vious works, particularly SZ2018. The major difficulty 
here relative to SZ2018 is that the functional form 
of the aggregate MPIs (i.e., weighted harmonic-type 
mean) is much more complex than the form for the 
aggregate Farrell-type efficiency measures: the former 
includes nonlinear operators on DEA-based estimates 
entering the MPI via different components, each with 
a different weighting scheme. As such, arguments for 
deriving limiting distributions and bias corrections in 
SZ2018 cannot be trivially adapted to the aggregate 
MPIs. To overcome this complexity, we express the 
DEA-based estimators of ξ�as sums of (i) the underly-
ing parameter of interest, (ii) the bias term, (iii) a sto-
chastic term of an order smaller than n�1=2, and (iv) an 
expression that is linear with respect to DEA-based 
components (e.g., see Equations (37) and (59)). Then, 
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we deploy the uniform delta method (i.e., Lemma 
EC.1 or, equivalently, theorem 3.8 of Van der Vaart 
2000) to prove the asymptotic behavior of sequences ÇÇÇ

n
p

(log bbµs,n� log eµs,n) (s à 1, 2, 3, 4), where, unlike in 
standard cases, the centering vectors eµs,n are depen-
dent on the sample size n. It is also worth noting here 
again that the standard delta method produces a 
looser evaluation that cannot prove Theorem 5
because the stochastic remainder is Op(n�1=2). On the 
other hand, deploying the uniform delta method 
helps in canceling out the Op(n�1=2) term, thus reduc-
ing the stochastic remainder to op(n�1=2) as shown by 
Equation (40). Based on this, the task of deriving the 
limiting distributions (Theorems 5 and 6) and the jack-
knife bias correction can be carried out smoothly. To 
the best of our knowledge, this strategy of the proof is 
novel relative to the previous works in this area.

Remark 2. Similar to KSW2015, SZ2018, and KSW2021, 
although our theory suggests using two different confi-
dence intervals corresponding to κ � 1=2 and 0 < κ < 1=2, 
it is worth noting that the former is still valid for κ à 2=5 
(i.e., p + q à 4). Indeed, when κ à 2=5, we have

ÇÇÇ
n

p
O(vn,κ)à

ÇÇÇ
n

p
O logn

n

◆ 3=5
 !

àO (logn)3=5

n1=10

 !

à o(1),

(66) 

nκO(vn,κ)à n2=5O logn
n

◆ 3=5
 !

àO (logn)3=5

n1=5

 !

à o(1),

(67) 
and hence, the bias term O(vn,κ) disappears asymptoti-
cally with both norming rates 

ÇÇÇ
n

p
and nκ�in both confi-

dence intervals. However, one may notice from these 
equalities that nκO(vn,κ) converges to zero faster than ÇÇÇ

n
p

O(vn,κ), which fortifies the use of the confidence inter-
val with norming rate nκ�for κ à 2=5 < 1=2 as before. We 
also check and confirm this remark in our Monte Carlo 
experiments (E-companion EC.3.2).
Remark 3. As noted by KSW2015 and KSW2021, 
when 0 < κ < 1=2, one can obtain more informative 
confidence intervals by employing a recentering tech-
nique. To do so, one needs to replace the point estima-
tor using only en DMUs (i.e., bbξ ñ ) by its analogue 
evaluated over the full original sample (i.e., bbξ n). The 
recentered version of confidence interval (65) is as fol-
lows:

bbξ n� bAξ,n,κ,L 6Φ�1
1�α=2

ÇÇÇÇÇÇÇÇÇ
bbVξ,n

q
=nκ

� �
: (68) 

Similar to KSW2015 and KSW2021, this recentering 
technique helps average the center over all possible 
draws (without replacement) of subsamples of size en 
and, hence, eliminates the randomness as well as any 

deviation because of calculation on only a random 
subset of en DMUs. In fact, one can see, for example, 
that bbξ n is a better estimator of ξ�than bbξ ñ in terms of 
mean-square error. Moreover, the coverage of the 
recentered confidence interval converges to one as 
n !1, exhibiting greater coverage and having the 
same width as the respective origin whose coverage 
converges to 1� α�as n!1.16 This is confirmed by 
the Monte Carlo evidence in E-companion EC.3.2.

Remark 4. It is possible that the bias cancels out in cer-
tain situations, for example, Cξ à 1

2
C3
µ3

+ C4
µ4
� C1

µ1
� C2

µ2

⌘ ✓
à 0. 

As a result, statistical inferences using a naive application 
of the standard central limit theorem (i.e., using the confi-
dence interval (B.11)) with unobserved elements being 
replaced by their respective DEA estimates) might still be 
valid under these circumstances.

KSW2021 mentions the possibility of having no 
bias in the simple Malmquist indices and shows 
that, under very peculiar (and maybe unrealistic) 
assumptions on the data-generating process, this 
bias may be equal to zero (see KSW2021, theorems 
3.5 and 3.6 and remark 3.1). In particular, some nec-
essary (but not sufficient) conditions for the bias to 
cancel out are that (i) two samples are generated 
from identical data-generating processes or (ii) the 
joint density of input–output bundles in two time 
periods is symmetric.
Remark 5. We elaborate on Remark 4 and note that, 
even if the bias does not cancel out, in some peculiar 
cases, it might still be so tiny that its theoretical explo-
sion to infinity implied from Theorem 5 is not clearly 
observed in moderate sample sizes and low dimensions 
(i.e., the number of inputs and outputs). As such, the 
naive application of the standard central limit theorem 
might also perform fairly well in this context. For exam-
ple, in Theorem 5, if Cξ à 0:01 and κ à 1=3 (i.e., p + q 
à 5), then the leading bias term Cξn�κ�multiplied with 
the norming rate 

ÇÇÇ
n

p
is equal to 0.031, 0.046, 0.068 for 

nà1,000, 10, 000, 100, 000, respectively.
Remark 6. In addition to Remark 5, it can be seen that 
the coefficient of the leading bias term in this paper is 
obtained from subtracting symmetric terms. More 
precisely, in Cξ, the constant Cs (s à 1, 2, 3, 4) is normal-
ized by the respective population means µs (i.e., Cs

µs
). 

Thus, in practice, the chance that the bias coefficient 
Cξ�is close to zero (or even cancels out), making the 
whole bias negligible in moderate sample sizes and 
low dimensions, might be relatively higher than that 
for KSW2015, SZ2018, and KSW2021.

Because the magnitude of the bias is unknown in real-
ity, the naive application of the standard central limit 
theorems in dimensions greater than two (i.e., κ  1=2) is 
problematic as pointed out in Theorem 5. As such, the 
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use of the theoretically justified theorems appears to be a 
safer choice.
Remark 7. The evidence from extensive Monte Carlo 
experiments that we perform for various scenarios 
supports the developed asymptotic theory and the 
aforementioned Remarks 1–6 in particular, and is sum-
marized in Appendix EC.3.

8. Empirical Illustration
One of the most popular applications of DEA in general 
and the MPI in particular is analyzing the performance 
of countries relative to what is sometimes referred to as 
the estimated best practice world technology frontier. In 
fact, one of the first applications of MPI is also in this area 
from the seminal work of Färe et al. (1994), which, in 
turn, inspired many other studies in the literature. 
Among these studies are Kumar and Russell (2002) with 
a sample of 57 countries over the period 1965–1990 
extracted from the Penn World Tables (version 5.6) and 
Badunenko et al. (2008) with a sample of 84 countries 
over the period 1990–2000, and here, we consider these 
same 84 countries over the period 1990–2019 from Penn 
World Tables version 10.0 (PWT10).

Briefly, our aggregate measure of output is the output- 
side real GDP at chained purchasing power parity (PPP) 
rates (in millions 2017US$) (i.e., rgdpo in the PWT10), our 
aggregate measures of inputs (capital and labor) are cap-
ital stock at current PPPs (in millions 2017US$) and the 
number of persons engaged (in millions) (i.e., cn and emp 
in the PWT10, respectively).

The estimation results for PWT10 are presented in 
Table 1, in which we consider three groups over which 
to aggregate: (i) the entire sample, (ii) developed coun-
tries, and (iii) developing countries.17 For each group, we 
consider two approaches: (a) the weighted MPI frame-
work developed in this paper, that is, in which the 
weight of each country is accounted for in the averaging 
of the estimated indexes, and (b) when just the sample 
mean (i.e., equal weighting) of the estimated indexes is 
used. The first three rows of numbers in Table 1 present 
the former approach, whereas the last three rows of 
numbers present the latter approach. Also note that the 

first two columns of numbers in Table 1 present the esti-
mates before and after the bias correction, respectively, 
whereas the last two columns present the lower and 
upper bounds for the 95% confidence intervals (con-
structed around the bias-corrected estimates). The results 
largely speak for themselves, yet a few brief remarks are 
worth highlighting.

First, we see fairly substantial differences between the 
weighted and nonweighted approaches. Indeed, when 
we compare the bias-corrected estimates for the entire 
sample, the weighted approach yields an aggregate 
index of about 0.93 (i.e., implying 7% deterioration), 
whereas the nonweighted approach gives about 1.06 
(i.e., 6% growth), thus suggesting about 13% higher 
growth estimate. Interestingly, note that a much smaller 
difference is observed when comparing the estimates 
without the bias correction developed in this paper: 0.99 
versus 1.04.

Next, an interesting picture is also seen when focus-
ing on the subset of developed countries (nà 27). 
Indeed, note that, using the bias-corrected estimates, 
the weighted approach gives about 1.16, whereas the 
nonweighted approach gives 1.05. Meanwhile, the 
original estimates (before the bias correction) are about 
1.16 versus 1.13. That is, we see another illustration of 
the importance of deploying the bias correction for the 
MPIs: the bias-corrected estimate shows lower aggre-
gate growth of the group of developed countries when 
using the nonweighted averaging of MPI.

An interesting picture also arises when we focus on 
the subset of developing countries (nà 57). Indeed, 
here, when we compare the bias-corrected estimates, 
the nonweighted approach gives 1.18 (i.e., a growth of 
18%), whereas the weighted approach gives about 1.05 
(i.e., a growth of only 5%). Meanwhile, note that the 
difference is much smaller in absolute terms when no 
bias correction is deployed (1.11 versus 1.13), hence 
illustrating the importance of the bias correction. 
Moreover, we see that, in the nonweighted approach, 
the estimated confidence interval does not cover unity, 
whereas the estimated confidence interval for the 
weighted approach covers unity.

Table 1. Estimation Results and 95% Confidence Intervals for a Sample from PWT10 

exp
⌘bbξen

✓
exp

⌘bbξen � bAξ,n,κ,L
✓

Lower bound Upper bound

Entire sample 0.9850 0.9347 0.7961 1.0976
Developed 1.1570 1.1563 1.0266 1.3023
Developing 1.1297 1.0523 0.9542 1.1605

exp(bEñ (log(MO))) exp(bEñ (log(MO))� bBn,κ,L) Lower bound Upper bound
Entire sample 1.0388 1.0640 0.9658 1.1721
Developed 1.1284 1.0538 0.9769 1.1367
Developing 1.1114 1.1782 1.0202 1.3607

Note. Number of random splits L à 1,000; κ à 2=(p + q + 1) à 0:5; n à 27, 57, 84 for developed countries, developing countries, and entire sample, 
respectively.
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All in all, this empirical example illustrates the impor-
tance of considering the aggregation that accounts for an 
economic weight associated with an index in addition to 
the simple averaging (because the two approaches can 
imply very different conclusions and support different 
policy implications) as well as the importance of the 
use of the new central limit theorems (with bias correc-
tion) for estimating confidence intervals for the weighted 
MPIs.

9. Concluding Remarks
Whereas it is easy to see that accounting for economic 
weights of individuals in aggregations of indices makes 
sense and it may yield very different conclusions com-
pared with the equal-weight aggregations, its practical 
implementation still needs some statistical theory (for 
constructing confidence intervals and performing hy-
pothesis tests), which have never been done before. In 
this paper, we fill this gap by developing a comprehen-
sive set of asymptotic properties for the meaningful 
aggregation of MPIs, a weighted harmonic-type mean of 
individual efficiency scores. This provides operational 
researchers with the tools for constructing theoretically 
justified confidence intervals and statistical tests for the 
aggregate productivity indices. Our Monte Carlo evi-
dence confirms that the newly developed statistical in-
ferences perform well in finite samples similar to that in 
KSW2015, SZ2018, and KSW2021.

Our empirical application to real data also vividly 
illustrate the importance of considering the weighted 
(in addition to nonweighted) aggregation of productiv-
ity indexes, especially with the theoretically justified 
bias correction and confidence intervals developed in 
this paper. For example, the weighted approach gives 
substantially different estimates of aggregate growth 
(and corresponding conclusions) compared with the 
nonweighted approach before and after the bias correc-
tion as well as fairly different estimates of confidence 
intervals.

It is also worth noting that we contribute a new ap-
proach in this literature for deriving asymptotic proper-
ties for complex indices that are nonlinear with respect to 
their DEA-based components. This approach paves the 
way for deriving a similar theory for other sophisticated 
indices, such as the Hicks–Moorsteen productivity in-
dex, although this would be a study in itself because of 
the even greater complexity of this index. This paper also 
provides important statistical grounds for further theo-
retical developments. For instance, one may develop a 
test for equality of productivity change at the aggregate 
level, which is very useful in practice (e.g., comparing 
productivity change of industries of an economy or 
groups of countries over time). Another potential avenue 
for future research is to improve the performance of the 
developed statistical inferences in small finite samples 

by correcting for the bias in the estimator of variance. 
This is analogous to what Simar and Zelenyuk (2020) 
derive for the context of efficiency scores, yet it is likely 
to require considerable elaboration and efforts for the 
more complex context of MPIs as our developments sug-
gest, and so it is a subject in itself for future research 
endeavors.
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Appendix A. Regularity Assumptions
This appendix includes the regularity assumptions needed 
to develop statistical properties for the MPI.

First, for each t à 1, 2, Ψt is assumed to satisfy common 
regularity assumptions in production theory (see, e.g., 
Färe and Primont 1995, Sickles and Zelenyuk 2019, for 
details), and in particular, the following.

Assumption A.1. Ψt is closed and convex.

Assumption A.2 (No Free Lunch). (0, y) ∉Ψt ∀y � 0.

Assumption A.3 (Strong Disposability of Inputs and Out-
puts). If (x, y) 2Ψt, then (x⇤, y⇤) 2Ψt for x⇤≧x, y⇤≦y.

The next set of conditions are statistical in nature. The first 
is adapted from SZ2018 to ensure the key components of 
aggregate MPIs have (at least) the first two moments.

Assumption A.4. The first two moments of w1Y1
i and w2Y2

i 
are finite for all i à 1, : : : , n.

The next set is analogous to those in KSW2021 as 
assumptions 2.4–2.7, 3.1, and 3.2, which are presented for 
the Farrell-type input-oriented efficiency measure. Here, 
we give their analogues for the output-oriented efficiency 
measure, which, to the best of our knowledge, have not 
been presented in the literature before, and we thank the 
anonymous referee for the nudge to do so.

λ(z |Ψt) à λ(x, y |Ψt) à sup
λ

{λ : (x,λy) 2 Ψt}: (A.1) 

Assumption A.5. (i) The random vector (Xt
i , Yt

i) possesses a 
joint density f t with support Dt ⇢Ψt, and (ii) f t is continu-
ously differentiable on Dt.

Assumption A.6. (i) Dt⇤ ⇢Dt, where Dt⇤ à {(x,λ(x, y |Ψt)y) :
(x, y) 2Dt}, (ii) Dt⇤ is compact, and (iii) f t(x,λ(x, y |Ψt)y) > 0 
for all (x, y) 2Dt.
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Assumption A.7. λ(x, y |Ψt) is three times continuously dif-
ferentiable on Dt.

Assumption A.8 (Dt Is Almost Strictly Convex). For any 
(x, y), (ex,ey) 2Dt with x, y

kyk

⌘ ✓≠ ex, ỹ
kỹk

⌘ ✓
, the set {(x⇤, y⇤) : (x⇤, 

y⇤) à (1�α)(x, y) +α(ex,ey),α 2 (0, 1)} is a subset of the interior 
of Dt.

Prior to mentioning Assumptions A.9 and A.10, we 
need additional definitions (analogous to KSW2021):

Dt
norm à x

kxk , y
kyk

◆ 
: (x, y) 2 Dt

� ⌧
(A.2) 

and

egy a x
kxk

◆ 
à max

b>0
b : a x

kxk , b y
kyk

◆ 
2 Ψt

� ⌧
: (A.3) 

Then, there exists some αx,y
max > 0 such that

egy α
x,y
max

x
kxk

⌘ ✓

αx,y
max

àmax
a>0

egy a x
kxk

⌘ ✓

a : a x
kxk ,egy a x

kxk

◆ 
y
kyk

◆ 
2Ψt

8
<

:

9
=

;,

(A.4) 

where αx,y
max 2 R+ is necessarily uniquely defined if Ψt is 

strictly convex.

Assumption A.9. (i) The support Dt ⇢Ψt of f t is such that, for 
any x

kxk , y
kyk

⌘ ✓
2Dt

norm, we have αx,y
max

x
kxk ,egy

⌘
αx,y

max
x
kxk

✓
y
kyk

⌘ ✓
2Dt; 

(ii) there exists a δ > 0 such that, for any x
kxk , y

kyk

⌘ ✓
2Dt

norm, we 

also have [αx,y
max � δ] x

kxk ,egy [αx,y
max � δ] x

kxk

⌘ ✓
y
kyk

⌘ ✓
2Dt and 

⌘
[αx,y

max 

+δ] x
kxk ,egy [αx,y

max + δ] x
kxk

⌘ ✓
y
kyk

✓
2Dt; and (iii) there exists a cons-

tant 0 < M <1 such that kyk M ∀(x, y) 2Dt.

Assumption A.10. (i) For t 2 {1, 2}, there are independent 
and identically distributed (iid) observations (Xt

i , Yt
i), i à 1, : : : , nt 

such that Assumptions A.1–A.9 are satisfied with respect to the 
underlying densities f t with supports Dt; (ii) D1

norm àD2
norm; 

(iii) for some n min{n1, n2}, the observations ((X1
i , Y1

i ), 
(X2

i , Y2
i )), i à 1, : : : , n are iid and their joint distribution pos-

sesses a continuous density f12 with support D1 ⇥D2; (iv) for 
any i à 1, : : : , n1, (X1

i , Y1
i ) is independent of (X2

j , Y2
j ) for all j à

1, : : : , n2 with i ≠ j; (v) for any i à 1, : : : , n2, (X2
i , Y2

i ) is inde-
pendent of (X1

j , Y1
j ) for all j à 1, : : : , n1 with i ≠ j.

The meaning and importance of these assumptions is 
analogous to what is explained in fair detail in KSW2021, 
and hence, here we provide only a brief intuition for the last 
two assumptions that are the most technical, very important, 
and less common in the related literature. Assumption A.9
basically ensures that (i) the output-oriented distance to the 
frontier of the conical hull can be estimated consistently 
with the observed data, (ii) without running into a boundary 
problem, and (iii) its required moments exist. Meanwhile, 
Assumption A.10 regularizes the dynamic framework by 
guaranteeing that the DEA estimators of the output-oriented 
and hyperbolic distances to the frontier of the conical hull 

follow the asymptotic distributions analogous to those in 
theorems 3.1 and 3.2 of KSW2021 and ensures that the 
dynamic versions of these estimators are comparable as well 
as being asymptotically well-defined and possess the same 
convergence rates as the standard DEA estimators. It also 
requires that the observations are independent across differ-
ent DMUs (although note that a dependence of observations 
for the same DMU across time is allowed).

Appendix B. Asymptotic Theory When the True 
Efficiency Is Known

In this appendix, we develop central limit theorems in rela-
tion to M by assuming that the true efficiency, λC(· |Ψ1)
and λC(· |Ψ2), are known. Deriving asymptotic theory under 
this assumption is important because it enlightens the sta-
tistical essence of the aggregation form M and helps iden-
tify the underlying parameters that these estimators gauge. 
Moreover, the results derived here also provide a statistical 
grounding for the main sections of the paper in which we 
develop an asymptotic theory in the absence of the knowl-
edge of λC(· |Ψ1) and λC(· |Ψ2) as usually happens in real-
ity. Although we focus on the DEA estimator in this paper, 
the theory presented in this appendix is equally useful for 
alternative estimators, including stochastic frontier analyses 
(SFA).

Given the notation and definitions outlined in Section 4, 
consider iid random variables

Ti à [U1,i , U2,i, U3,i , U4,i , U5,i, U6,i]0 (i à 1, : : : , n) (B.1) 

and denote their means and variances by

µ à E(Ti) à [µ1,µ2,µ3,µ4,µ5,µ6]
0,Σ à Var(Ti) à [σjk]j,k2{1,2,3,4,5,6}:

(B.2) 

By the standard central limit theorem (see, e.g., Van der 
Vaart 2000), we have

ÇÇÇ
n

p
(bµn � µ)!

d
N (0,Σ): (B.3) 

Here, bµn à [bµ1,n , bµ2,n , bµ3,n , bµ4,n , bµ5,n , bµ6,n]
0.

Define the function φ : (0,1)6 ! R1 as

φ(η1,η2,η3,η4,η5,η6)

à 1
2 (logη3 + logη4 � logη1 � logη2) + logη5 � logη6:

(B.4) 

Then, under standard regularity conditions, we can apply 
the delta method (see, e.g., theorem 3.1 of Van der Vaart 
2000) to (B.3) and obtain

ÇÇÇ
n

p
(φ(bµn)� φ(µ))!

d
N (0, [rφ(µ)]0Σ[rφ(µ)]), (B.5) 

Or, equivalently,
ÇÇÇ
n

p
(bξn � ξ)!

d
N (0, Vξ), (B.6) 

where
Vξ à nVAR(bξn) à [rφ(µ)]0Σ[rφ(µ)], (B.7) 
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and rφ(·) is the column vector of the gradient of φ(·). For-
mally, rφ(µ) à @φ

@ηj
(µ)

h i
, where

@φ
@η1

(µ) à� 1
2µ1

, @φ
@η2

(µ) à� 1
2µ2

, @φ
@η3

(µ) à 1
2µ3

,

@φ
@η4

(µ) à 1
2µ4

, @φ
@η5

(µ) à 1
µ5

, @φ
@η6

(µ) à� 1
µ6
: (B.8) 

Evidently, U5,i and U6,i are observable for all i à 1, : : : , n. 
Under the assumption that the functions λC(· |Ψ1) and 
λC(· |Ψ2) are known, Us,i (s à 1, : : : , 4; i à 1, : : : , n) are also 
observable, and so is bξn. Let bVξ,n denote the empirical 
version of Vξ, where µs is replaced by bµs,n and σjk is 
replaced by bσjk,n with

bσjk,n à n�1
Xn

ià1
(Uj,i � bµj,n)(Uk,i � bµk,n), j, k à 1, 2, : : : , 6: (B.9) 

It is well-known that bµs,n!
p
µs and bσ jk,n!

p
σjk (s, j, k à 1, : : : , 6)

as n!1. Hence, by Slutsky’s theorem and the continuous 
mapping theorem (see, e.g., Van der Vaart 2000), we have 
bVξ,n!

p
Vξ. Combining these results with (B.6) and Slutsky’s 

theorem, we can obtain

ÇÇÇ
n

p bξn � ξÇÇÇÇÇÇÇÇÇ
bVξ,n

q

0

B@

1

CA!d N (0, 1), (B.10) 

which, in turn, can be used to make inferences about ξ. In 
particular, when the true efficiency is known, the asymptotic 
100(1�α)% symmetric confidence interval for ξ�is given by

bξn 6Φ�1
1�α=2

ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
bVξ,n=n

q� �
, (B.11) 

where Φ�1
1�α=2 is the (1�α=2)-quantile of the standard nor-

mal distribution.
Of course, in reality, λC(· |Ψ1) and λC(· |Ψ2) are unknown 

and need to be estimated. In general, one has to check whether 
the replacements of truth with any estimates (especially if they 
are biased) preserves the validity of such theorems. In the 
main text of the paper, we show that this is not the case for the 
DEA estimators because of a slow bias that needs to be cor-
rected, and hence, the new central limit theorems need to be 
derived, which is the goal of the paper. Although the deriva-
tion of these theorems is much more involved, the simpler the-
ory in this appendix is still novel and serves as a useful guide 
for such derivations as well as, potentially, for the derivations 
involving other estimators, such as SFA, etc.

Endnotes
1 For example, a Google Scholar web search found about 24,400 
results for “Malmquist productivity index” as of March 11, 2019, 
and 32,200 as of September 27, 2021.
2 For applications of the MPI, see, for example, Färe et al. (1994), 
Johnson and Ruggiero (2014), Brennan et al. (2014), and Simar and 
Wilson (2019) as well as an overview in Sickles and Zelenyuk (2019) 
and references therein.
3 See large commercial bank releases for March 31, 2019 (data file). 
Retrieved June 21, 2019, from https://www.federalreserve.gov/ 
releases/lbr/.

4 A similar theory can also be developed for other indices based on 
the methodology introduced in this paper.
5 For a related discussion, see Zelenyuk (2014), who call it a conical 
closure of Ψt and consider its scale-homothetic decompositions.
6 For practical reasons, we assume away the so-called singularity 
cases (Sickles and Zelenyuk 2019), in which the efficiency measures 
are either zero or 1, to make sure the MPI is well-defined.
7 This aggregation appears to be more appropriate than the conven-
tional arithmetic and geometric means as the weight βs

i represents 
the output share of DMU i in the period s and, hence, reflects its rel-
ative economic importance in the aggregate indices. As pointed out 
by Zelenyuk (2006), these weights are “not ad hoc but are derived 
from economic principles (agents’ optimization behavior)” and 
using M enables the group revenue analog of the MPI to be decom-
posed in the same way as for the individual revenue analog of the 
MPI. Empirical applications of the system of weights βs

i as well as 
the aggregation M can be found in a number of studies (e.g., 
Pilyavsky and Staat 2008, Gitto and Mancuso 2015) although the 
asymptotic theory for a well-grounded statistical analysis has not 
been developed yet, which is the goal of this study. (For more 
details of this measure, see Zelenyuk 2006).
8 Other popular approaches to measuring performance include 
SFA, including its nonparametric versions, as well as stochastic 
DEA (e.g., see Olesen and Petersen 2016, Parmeter and Zelenyuk 
2019 for recent reviews and references therein).
9 For a, b 2 Rm, “a≧b” or “b≦a” means a� b 2 Rm

+ , “a � b” or “b  a” 
means a� b 2 Rm

+ \{0m}, “a > b” or “b < a” means a� b 2 Rm
++.

10 Theorem 1 in this paper is an analogue of theorem 3.1 of 
KSW2015, corollary 1 of SZ2018, and theorem 3.4 of KSW2021.
11 Theorem 3 here is an analogue of theorem 4.1 of KSW2015 and 
theorem 1 of SZ2018 but encompasses an additional case (part (iv)), 
which corresponds to the covariance between random variables 
containing efficiency.
12 It is worth noting that the use of the uniform delta method has 
recently received attention in other areas of the econometrics literature 
(e.g., see Kasy 2019). Our use of this method is different and, to the best 
of our knowledge, is novel to the productivity literature and, perhaps, 
to the econometrics literature in general. In particular, Kasy (2019) 
focuses on conditions for the remainder to converge uniformly. Mean-
while, our paper focuses on the rates of convergence of the remainders.
13 Note that en depends on the original sample n and κ�(and κ�
depends on the type of the estimator), but to simplify the notation 
and avoid possible confusion, we drop κ�from the subscript. We 
thank the anonymous referee for encouraging this simplification.
14 Note that, when κ à 1=2, Theorems 5 and 6 are equivalent.
15 Following the literature, we set L à 10 in our Monte Carlo simula-
tions. A sensitivity check for different choices of L confirms the 
robustness of the results.
16 In other words, the recentered confidence intervals overcover 
when n is sufficiently large.
17 The definition of developed versus developing is similar to Hen-
derson and Zelenyuk (2007) except that here the group of develop-
ing countries is larger.
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Léopold Simar is an emeritus professor at the Institute of Statistics, 
Biostatistics and Actuarial Sciences of the Université Catholique de 
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