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Université catholique de Louvain, Louvain-la-Neuve, 1348,

Belgium.

Contributing authors: miltos.uclouvain.be;

Abstract

This paper is concerned with the structure and properties of boundary-
layer flow in a porous domain above a flat plate. The flow is generated
by an incoming uniform stream at the vertical boundary of the porous
domain and is maintained by an external pressure forcing. Herein we
provide the parametrization of the interphasial drag in terms of a Darcy-
Forchheimer law, derive the momentum boundary-layer equation and
elaborate on the profile of the free-stream velocity. The boundary-layer
equation is then solved numerically via the local similarity method and
via two local nonsimilarity methods at different levels of truncation.
The accuracy of these methods is compared via a series of numeri-
cal tests. For the problem in hand, the free-stream velocity decreases
monotonically to a terminal far-field value. Once this value is reached,
the velocity profile no longer evolves in the streamwise direction. The
computations further reveal that, for sufficiently small external forc-
ing, the boundary-layer thickness initially increases, reaches a peak and
then decreases towards its terminal value. This unusual overshoot is
attributed to the large variation of the rate of decrease of the free-
stream velocity. On the other hand, our computations predict that the
wall stress always decreases monotonically in the streamwise direction.
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1 Introduction

Boundary-layer theory constitutes a well established perturbation method for
obtaining approximate solutions to boundary-value problems in domains with
solid boundaries or interfaces. Thus far, it has been extensively applied in
such problems arising in fluid dynamics, heat transfer [1], and other branches
of mechanics. With regard to porous-media flows, it has been applied mostly
in thermal boundary layers in unbounded and bounded domains. Examples
of application are natural of forced convection over plates, flows around solid
bodies, forced convection in porous channels, natural convection in porous
enclosures, and many others. The literature on these topics is quite extensive;
for a detailed account, the interested reader is referred to [2] and references
therein.

The study of the hydrodynamic boundary layers in porous domains has also
been the topic of several studies in the past, mainly in the context of forced
convection over a plate. For example, Vafai & Tien [3] performed a numeri-
cal analysis of the hydrodynamic and thermal layers over a flat plate. For the
same problem, Vafai & Thiyagaraja [4] examined the structure of the bound-
ary layers on the basis of an asymptotic power-series in terms of the porosity.
However, in the studies [3, 4], the advective term of the momentum equation
had been neglected. The full boundary-layer momentum equation (including
the nonlinear advective term) was studied by Nakayama et al. [5] who provided
numerical solutions based on the local similarity solution method [6]. This
study was later extended by Hossain et al. [7] to flows over a wedge embed-
ded in a porous medium. More recently, boundary layers in forced convection
of Casson fluid, which is shear-thinning, over a plate embedded in a porous
medium have been analysed in [8–10] via the local nonsimilarity method.

However, in all of the afore-mentioned works it was assumed that the solid
body, flat plate or wedge, is embedded in the porous medium. In other words,
the porous medium covered the space not only above but also upstream of
the solid body. Accordingly, the free-stream velocity (i.e. the velocity outside
the boundary layer) is uniform, which amounts to a considerable reduction of
the complexity of the governing equations. Actually, in the study [7] of flow
over a wedge, the authors assumed a prescribed power-law profile of the free-
stream velocity, which reduces the complexity of the problem too. Moreover,
the Reynolds number in most of the earlier studies was rather low.

On the contrary, in the problem examined herein, it is assumed that the
porous medium covers only the quarter-plane above the flat plate and does not
extend to the space ahead of it. Accordingly, the free-stream velocity does not
remain constant but varies in the streamwise direction. The flow is assumed
to be maintained by an externally applied forcing which compensates for the
resistance of the solid matrix to the motion of fluid.

The flow problem examined herein is relevant to the aerodynamics of bodies
with porous surface coatings that can be used for purposes of drag reduction.
Another application is flow through emergent vegetation and canopies. An
important feature of the boundary-layer profiles in porous media is that they
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are nonsimilar. More specifically, due to the presence of a characteristic length-
scale related to the microstructure of the solid matrix of the porous medium,
the governing equations do not admit similarity solutions. This implies that
the boundary-layer momentum equation cannot be reduced to an ordinary
differential equation (ODE). This is also the case for the flow of interest. It
is important to clarify that herein we consider forced but isothermal flow, i.e.
in absence of thermal boundary layers. To the author’s knowledge, detailed
experimental data for this particular setup are currently unavailable.

The paper is structured as follows. In section 2, we present the mathemati-
cal formulation of the problem and the parametrization of the resistance from
the solid matrix, i.e. the interphasial drag. In section 3 we elaborate on the
ODE that governs the free-stream velocity and examine its variation along
the streamwise direction. Section 4 contains the derivation the boundary-layer
momentum equation in terms of the so-called Görtler transformation[1]. Next,
in section 5, we elaborate on the numerical procedures that we employed for the
numerical treatment of that equation; these are the local similarity and local
nonsimilarity solution methods mentioned above. Then, in section 6 we present
numerical results and analyze the structure and properties of the boundary
layers of interest. Finally, section 7 concludes.

2 Mathematical formulation

With regard to notation, symbols with a hat, ·̂, denote dimensional variables,
while symbols without a hat denote dimensionless variables. We consider a
porous medium of constant porosity φ that completely covers the quarter-plane
defined by x̂ > 0 and ŷ > 0. A solid flat and impermeable plate is located at
the boundary of the porous medium at ŷ = 0. We further consider an incoming
stream of fluid with uniform velocity û0 at x̂ = 0 parallel to the flat plate, as
shown in figure 1.

Fig. 1 Schematic representation of the physical problem.

In our study we employ the thermo-mechanical model of [11] for flows in
domains partially or fully covered by porous media. This model is based on a
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mixture-theoretic formalism according to which both the solid matrix and the
fluid phase are treated as two distinct, coexisting but immiscible thermody-
namic continua [12, 13]. Each phase is endowed with its own set of kinematic
and thermodynamic variables and balance laws. Then, the porosity φ is intro-
duced as a concentration variable that provides, at each point in space, the
volume density (or volume fraction) of the fluid. As such, it satisfies the
inequalities, 0 < φ ≤ 1. The axiomatic definition of the porosity as a density
function follows directly from the Radon-Nikodym theorem [14, 15].

Herein, the solid matrix of the porous medium is assumed to consist of non-
reacting and rigid fibers at rest; therefore its mass and momentum-balance
equations are trivially satisfied. Further, we are concerned with isothermal flow
and, therefore, the energy-balance equation for each phase are trivially satisfied
too. Then, for steady and constant-density flows, the mass and momentum-
balance equations of the fluid read, in dimensional form [16],

∇ · (ρ̂φû) = 0 , (1)

∇ · (ρ̂φûû) + φ∇p̂ = ∇ ·
(
µ̂φV̂ d

)
− δ̂û . (2)

In the above equations, ρ̂, p̂ and û = (û, v̂) denote the fluid density, dynamic
pressure and velocity vector respectively. In the present study, we assume that
the flow inside the porous medium is maintained by an externally applied
forcing, F̂ = (F̂ , 0). Therefore, the pressure gradient can be decomposed as
follows, ∇p̂ = −F̂ +∇p̂′. Also, µ̂ is the dynamic viscosity of the fluid and V̂ d

is twice the deviatoric part of the strain-rate tensor,

V̂ d = ∇û+ (∇û)
> − 2

3
(∇·û) I , (3)

with I being the identity matrix. Further, δ̂û represents the interphasial drag
force. The drag parameter δ̂ is a second-order tensor since the solid matrix is,
in general, an anisotropic medium. An existence and uniqueness theory for the
system (1)–(2) has been developed in [17].

In the present study, the fibers that comprise the solid matrix are assumed
to be identical circular cylinders of diameter d̂c. Further, these cylindrical ele-
ments are considered to be very long, thin and perpendicular to the flat plate.
This implies that the solid matrix is an orthotropic medium and, therefore, δ̂
is diagonal. Its diagonal components are denoted by δ̂11 and δ̂22 respectively.

The component δ̂11 is parameterized in the following manner. We consider
the expression for the average drag, f̂c, in the horizontal x direction per unit
length for a single cylindrical element of the solid matrix. The expression for
f̂c reads,

f̂c =
1

2
cDρ̂d̂c|û| û , (4)
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where cD is the bulk drag coefficient for cylinder arrays. In our study, we make
use of the following expression for cD [18, 19],

cD = 2

(
α0

Rec
+ α1

)
, (5)

where Rec = ρ̂d̂c|û|
µ̂ is the local cylinder-based Reynolds number. In the above

equation, α0 and α1 are constants that depend on the size of the cylindrical
elements and the porosity of the medium. The authors of

The authors of [20] presented correlations for these two parameters based
on curve-fitting of experimental data. For sufficiently small cylinders, these
correlations reduce to,

α0 ≈ 32 , α1 ≈ 0.5 + 3.2(1− φ) . (6)

Other more elaborate expressions for the drag coefficient are available too;
see, for example [18–21] and references therein. Nonetheless, in the present
study we have opted for the parametrization (5)-(6) due to its simplicity and
reasonable accuracy.

The average horizontal force per unit length exerted by the solid matrix is
equal to the product of f̂c and the number of cylinders per unit area, Nc,

Nc =
4(1− φ)

πd̂2
c

. (7)

By multiplying equations (4) and (7) and by setting the resulting expression

equal to δ̂11û, we arrive at the following expression for δ̂11,

δ̂11 =
128

π
(1− φ)

µ̂

d̂2
c

+
(
2(1− φ) + 12.8(1− φ)2

) ρ̂

πd̂c

|û| . (8)

The parametrization (8) for δ̂11 amounts to a Darcy-Forchheimmer law [2]
for the resistance of the solid matrix to fluid motion, in which the permeabil-
ity is expressed in terms of the porosity and the diameter of the cylindrical
elements d̂c. In boundary-layer flows, the momentum equation in the cross-
stream direction is automatically satisfied to the first order. Accordingly, the
parametrization of δ̂22 is out of the scope of the present study but the interested
reader is refer to [11].

For the problem in hand, d̂c and û0 are set as the reference length and veloc-
ity, respectively. Then, upon non-dimensionalization of the system of governing
equations (1)-(2) and by employing standard scaling arguments, we arrive at
the boundary-layer equations for flows in the porous medium of interest,

∂u

∂x
+
∂v

∂y
= 0 , (9)
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u
∂u

∂x
+ v

∂u

∂y
− F =

1

Re0

∂2u

∂y2
− (bu+ cu2) , (10)

with

b =
128

πRe0

1− φ
φ

, and c =
1

π

2(1− φ) + 12.8(1− φ)2

φ
. (11)

In deriving equations (9), (10) and (11) we have taken into account the fact
that the porosity φ is constant and that the flow evolves in the positive x
direction, i.e. u > 0. In the momentum equation (10), F is the only surviving
term of the pressure gradient ∇p̂ and represents the external pressure forcing
required to maintain the flow in the porous domain; accordingly F > 0. Herein
we assume that this forcing is constant. Further, in equation (10), Re0 is the
Reynolds number of the incoming stream based on the diameter of the elements
of the solid matrix,

Re0 =
ρ̂û0d̂c

µ̂
. (12)

It is worth noting that the difference between the system (9)–(10) and the
standard boundary-layer equations for pure-fluid domains is the presence of
the forcing term F and the interphasial drag −(bu+ cu2).

Finally, the boundary conditions for the system (9)–(10) read,

u(0, y) = 1 , v(0, y) = 0 , (13)

u(x, 0) = 0 , v(x, 0) = 0 . (14)

3 Free-stream velocity

Let ue denote the free-stream velocity in the porous medium, the velocity at
the free stream outside the boundary layer. In the free stream, the following
relations hold, v = 0 and ∂u

∂y = 0. Accordingly, the momentum equation (10)
in the free stream reduces to,

ue
due

dx
= F − (bue + cu2

e) , (15)

where F is a positive constant. For a given porosity φ and Reynolds number
Re0, the parameters b and c are constant. In this case, (15) becomes a Riccati
equation. For F < b+ c, integration of (15) between 0 and x yields [22],

2cx = ln

(
F − (b+ c)

F − (bue + cu2
e)

)
+

b√
∆

ln

(√
∆− C(b+ 2cue) + 2c(1− ue)√
∆− C(b+ 2cue)− 2c(1− ue)

)
,

(16)
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where ∆ = b2 + 4cF and C = b+2c√
∆

. For a given x, the above equation can

be solved numerically for ue(x) via an iterative root-finding procedure. Alter-
natively, equation (15) can be integrated numerically, e.g. via a Runge-Kutta
method.

According to (16), as x → ∞, the free-stream velocity ue converges to its
terminal value u∞,

u∞ =
−b+

√
∆

2c
< 1 . (17)

In other words, u∞ is the Darcy-Forchheimer velocity, i.e. the fluid velocity
for steady flow in porous media predicted by the Darcy-Forchheimer model.
Equation (16) implies that ue decreases monotonically from ue = 1 at x = 0 to
u∞ at x→∞. Also, according to (17) and for given φ and Re0, the terminal
free-stream velocity u∞ is uniquely determined on the basis of F and vice
versa. In the present study we have assumed that F < b + c so that the
velocities inside the porous medium are inferior to the velocity of the incoming
stream. A reasoning similar to the above holds if one assumes that F > b+ c,
in which case the free-stream velocity exceeds that of the incoming stream.

In general, the decrease of ue towards u∞ is rather slow, and it becomes
slower as Re0 increases. This can be directly observed in figure 2 which shows
plots of ue for two different porosities (φ = 0.95 and 0.90 respectively) and
four different Reynolds numbers Re0. In all of these cases, F is such that u∞ =
0.25 according to (17). From these plots we further infer that the decrease
rate of ue becomes substantially larger as the porosity gets smaller. This is
a direct consequence of the strong dependence of the interphasial drag on φ.
Nonetheless, in numerous applications of interest the porosity is quite high,
which translates to a slow decrease of ue even at moderate Re0. With regard
to the numerical integration of the system (9)–(10), this slow decrease of ue

implies that replacing it by its terminal value u∞ would result in considerable
numerical errors even at large distances from the edge of the flat plate.
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Fig. 2 Plots of the free-stream velocity ue for four different Reynolds numbers Re0 and
two different porosities φ. In the cases shown herein the forcing term F is such that terminal
free-stream velocity u∞ is 1/4 of the velocity of the incoming stream, i.e. is u∞ = 0.25. a)
φ = 0.95. b) φ = 0.90.
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It is worth adding that at sufficiently small Reynolds numbers, typically
Re0 / 3, the value of α1 becomes much smaller than that of the other term in
the expression (5) for the drag coefficient cD. Therefore, in this case, α1 can
be neglected and equation (15) reduces to,

ue
due

dx
= F − bue , (Re0 / 3). (18)

This is an Abel equation of the first kind [23] and its solution can be obtained
by quadrature,

ue = ù∞

(
1 +W

(
1

ù∞
exp

(
−bx+ k

ù∞

)))
. (19)

where W is the Lambert W function [24], and ù∞ = F
b is the new terminal

value of the free-stream velocity. In fact, ù∞ is equal to the Darcy velocity, i.e.
the velocity according to Darcy’s law for porous-media flows. Further, in (19)
k is a constant given by,

k = −(1− ù∞) + ù∞ ln (1− ù∞) . (20)

The asymptotic approximation of the Lambert W function W (z) for large

arguments z reads, W (z) ≈ ln z − ln(ln z) + ln(ln z)
ln z [24]. From this expression

we may infer that, at large x, ue converges to the terminal value ù∞ at a linear
rate.

It is noted that, at moderate and high porosities, the coefficient 1
Re0

of
the viscous-stress term in the full momentum equation is two to three orders
of magnitude smaller than the drag coefficient term b whose expression is
given in (11). In other words, the ratio of interphasial drag to viscous forces is
always high, regardless of the value of Re0. Accordingly, at moderate and high
porosities, the boundary-layer approximation is expected to be valid even at
small Reynolds numbers, in the sense that velocity gradients are confined to a
layer close to the solid wall.

4 Derivation of the boundary-layer equation
for porous media

Following standard procedures, we introduce the so-called Görtler transfor-
mation [1, 25], which amounts to the change of variables from (x, y) to (ξ, η)
with,

ξ :=

∫ x

0

ue(x̄) dx̄ , η := uey

√
Re0

2ξ
. (21)

Then we introduce the stream function Ψ so that the continuity equation (9)
is automatically satisfied, i.e. u = ∂Ψ

∂y and v = −∂Ψ
∂x . The stream function is
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thus written in the form,

Ψ =

√
2ξ

Re0
f(ξ, η) . (22)

We now introduce the following notation. Differentiation with respect to x or
η is denoted by the prime symbol, u′e = due

dx , f ′ = ∂f
∂η and so on and so forth.

Whereas differentiation with respect to ξ is denoted by ∂
∂ξ . Using this notation,

the velocity components are expressed as follows,

u = uef
′ , (23)

and

v = −
√

2ξ

Re0

(
ηu′e
ue
− ηue

2ξ

)
f ′ −

(
f√

2ξRe0

+

√
2ξ

Re0

∂f

∂ξ

)
ue . (24)

Substitution of equations (23) and (24) in the momentum equation (10) leads
to the boundary-layer momentum equation for the porous medium of interest,

(f ′′′ + ff ′′) + 2ξ

(
f ′′
∂f

∂ξ
− f ′ ∂f

′

∂ξ

)
+ β1

(
1− f ′2

)
+ β2 (1− f ′) = 0 , (25)

with

β1(ξ) =
2ξ (u′e + c)

u2
e

, β2(ξ) =
2ξb

u2
e

. (26)

On the basis of the coordinate transformation (21), the boundary conditions
(13) and (14) translate to the following conditions for f ,

f(ξ, 0) = 0 , f ′(ξ, 0) = 0 , f ′(ξ,∞) = 1 . (27)

It is noted that in (25), the contribution of the interphasial drag −(bu+cu2
e)

is represented in the terms involving β1 and β2. Actually, by setting b = 0 and
c = 0 in (26) (no interphasial drag) one recovers the momentum equation for
nonsimilar boundary layers in pure-fluid domains [1].

5 Solution method

The boundary-layer momentum equation for porous media (25) can be treated
numerically either via implicit finite-difference schemes, such as the Keller’s
box method [26, 27], or via suitable approximation methods that reduce it
to a system of ODEs. Such an approximation method is the Görtler series

expansion [1], that assumes a solution of the form f ≈
∑
n

ξngn(η). By inserting

this ansatz into (25) one obtains a system of coupled ODEs (one equation for
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each gn) that can be solved sequentially. This method has been successfully
applied when the function β1 can be expanded in a power series of ξ. Relevant
examples include flows over a curved plate and flows with an adverse pressure
gradient [1].

In the context of the present study, we tested a three-term expansion,
i.e. f ≈ g0(η) + ξg1(η) + ξ2g2(η), while using the full expression (26) for
β1. However, this approach did not result in numerically converged results.
More specifically, this expansion did not yield monotonic profiles even at
small Reynolds numbers Re0. This is attributed to the presence of the term
β2 (1− f ′) in (25) and, possibly, to complexities related to the representation
of ue and its derivative.

For this reason, in the present study we opted for the local nonsimilarity
solution method of Sparrow et al. [6]. The advantages of this approach are
conceptual simplicity and straightforward implementation. The authors of [6]
reported good agreement of the predictions of their approach with those of
finite-difference methods for various nonsimilar boundary layers in pure-fluid
domains, such as Howarth’s retarded flow, cylinder in cross flow and flat plate
with mass injection. Since its development, this approach has been successfully
employed for the computation of nonsimilar boundary layers, including those
in porous domains [7, 9, 10]. It is worth adding that, in their study of flow
over a wedge embedded in a porous domain, the authors of [7] reported good
agreement between the predictions of local nonsimilarity, finite difference and
series expansion methods.

Below we present the application of the local nonsimilarity approach in the
numerical integration of (25). The underlying idea of this method is that in
boundary-layer flows the velocity gradients in the cross-flow direction y are
typically larger than those in the flow direction x. It is therefore expected that
the derivatives of f with respect to η are considerably larger than those with
respect to ξ.

Accordingly, at the first level of truncation, one may neglect the terms
involving partial derivatives with respect to ξ in (25). This results in the so-
called local similarity model, referred to herein as LS,

f ′′′ + ff ′′ + β1

(
1− f ′2

)
+ β2 (1− f ′) = 0 , (28)

with boundary conditions given by (27). In this manner, however, a part of
the boundary-layer momentum equation is lost.

According to the local nonsimilarity method [6], and in order to alleviate
the error of the local similarity model (28), one defines,

g :=
∂f

∂ξ
, (29)
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and differentiates (25) with respect to ξ. This yields the equation,

g′′′ + fg′′ − 2 (β1 + 1) f ′g′ − β2g
′ + 3f ′′g +

dβ1

dξ

(
1− f ′2

)
+

dβ2

dξ
(1− f ′) + 2ξ

∂

∂ξ
(f ′′g − f ′g′) = 0 . (30)

Additionally, the boundary conditions (27) are also differentiated with respect
to ξ.

Then, at the second level of truncation, terms in (30) involving partial
derivatives with respect to ξ are neglected, while retaining the full boundary-
layer momentum equation (25) with g being treated as a new unknown
variable. This leads to the following local-nonsimilarity model, referred to
herein as LNS1,

f ′′′ + ff ′′ + 2ξ (f ′′g − f ′g′) + β1

(
1− f ′2

)
+ β2 (1− f ′) = 0 , (31)

g′′′ + fg′′ − 2 (β1 + 1) f ′g′ − β2g
′ + 3f ′′g +

dβ1

dξ

(
1− f ′2

)
+

dβ2

dξ
(1− f ′) = 0 , (32)

with boundary conditions,

f(ξ, 0) = g(ξ, 0) = 0 , f ′(ξ, 0) = g′(ξ, 0) = 0 , (33)

f ′(ξ,∞) = 1 , g′(ξ,∞) = 0 . (34)

In other words, LNS1 consists of the coupled system of ODEs (31)-(32) for the
vector of unknowns (f, g).

In order to improve the accuracy of the computations, one can introduce
a third level of truncation. To this end, one defines,

h :=
∂g

∂ξ
, (35)

and differentiates (30) with respect to ξ along with its boundary conditions.
This leads to a new equation involving f , g, h and their derivatives. Then,
in this new equation, partial derivatives with respect to ξ are neglected and
the resulting ODE is combined with the full equations (25) and (30). This
procedure results in an improved local nonsimilarity model, referred to herein
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as LNS2,

f ′′′ + ff ′′ + 2ξ (f ′′g − f ′g′) + β1

(
1− f ′2

)
+ β2 (1− f ′) = 0 , (36)

g′′′ + fg′′ − 2 (β1 + 1) f ′g′ − β2g
′ + 3f ′′g +

dβ1

dξ

(
1− f ′2

)
+

dβ2

dξ
(1− f ′)− 2ξ

(
g′

2 − gg′′ + f ′h′ − f ′′h
)

= 0 , (37)

h′′′ + fh′′ − 2 (β1 + 2)
(
g′

2
+ f ′h′

)
− β2h

′ − 5f ′′h+ 6gg′′

−4
dβ1

dξ
f ′g′ − 2

dβ2

dξ
g′ = 0 . (38)

with boundary conditions,

f(ξ, 0) = g(ξ, 0) = h(ξ, 0) = 0 , f ′(ξ, 0) = g′(ξ, 0) = h′(ξ, 0) = 0 , (39)

f ′(ξ,∞) = 1 , g′(ξ,∞) = h′(ξ,∞) = 0 . (40)

In other words, LNS2 consists of the coupled system of ODEs (36)-(38) for the
vector of unknowns (f, g, h).

By proceeding in this manner, one can derive a sequence of coupled ODEs
that are meant to approximate the boundary-layer momentum equation (25)
to an increasing degree of accuracy. Typically though, the solution method
based on the third level of truncation provides a satisfactory level of accuracy,
as shown in the examples of [6].

With regard to computational procedures, the local similarity model LS
(28) can be integrated numerically with standard algorithms for boundary-
value problems [28]. In our study, we successfully employed the simple shooting
method for values of ξ as high as ξ = 80.

On the other hand, the numerical integration of the local nonsimilarity
models LNS1 and LNS2, (31)–(32) and (36)-(37) respectively, requires a little
more care because simple shooting does not always yield converged results for
large values of ξ. One approach is to integrate these systems via a multiple-
shooting method [28] which is more robust than simple shooting. However, such
a method is cumbersome to implement, especially for highly nonlinear systems
such as (31)–(32) and (36)-(37), and computationally rather expensive.

For this reason we have opted for the approach proposed in [6] which is
simple to implement and quite efficient. According to it, one performs the
numerical integration of the system of interest from 0 to ηmax via simple shoot-
ing. Initially, ηmax is assigned a small value so that simple shooting can easily
yield a converged solution. Then, the value of ηmax is progressively increased
until the pre-assigned tolerances on the computation of the dependent variables
are met.
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Numerical tests that we conducted for ξ up to ξ = 80, showed that this
approach is indeed well adapted for the models LNS1 and LNS2, (31)–(32)
and (36)-(37) respectively. In the present study, for each ηmax, these systems
have been integrated from 0 to ηmax via a simple shooting method using the
l2 norm of the solution vector, (f, g) or (f, g, h), in the numerical-convergence
criterion. In our computations, convergence was assumed when the difference
between the norms of successive approximations became less than 10−5. During
each iteration step of the shooting method, the ODEs were solved via a 4th-
order Runge-Kutta scheme. According to our numerical tests, for Reynolds
numbers up to Re0 = 200, the value ηmax = 5 (or smaller) was a very good
approximation of η →∞, in the sense that the boundary conditions at η →∞
were satisfied at ηmax = 5 within the preassigned accuracy of the numerical
integration of the ODEs.

It is worth adding that an alternative approach for the numerical treatment
of nonsimilar boundary layers is the homotopy analysis method [29] which
yields a convergent series expansion of the sought-after solution. Nonetheless,
in the present study we have opted for the local nonsimilarity method of [6]
due to its simplicity and straightforward implementation.

6 Numerical results

In the framework of our study, we have computed numerical solutions of
(25), via the local similarity and local nonsimilarity methods, for a variety of
Reynolds numbers Re0 and porosities φ. A sample of the numerical results
that we obtained is presented below. Unless otherwise mentioned, the poros-
ity of the medium is set at φ = 0.95, the Reynolds number at Re0 = 50 and
the external forcing F to a value such that the terminal free-stream velocity
is u∞ = 0.25.

In figure 3 we present velocity profiles at different distances from the edge
of the flat plate, computed with the nonsimilarity method LNS2. According
to these plots, the velocity increases quite rapidly with y and reaches the free-
stream value ue within a few unit lengths above the flat plate. Further, at
a certain distance from the edge of the flat plate, x ≈ 30, the free-stream
velocity ue has almost converged to its terminal value u∞; see also figure 2a
for Re0 = 50. Beyond this distance, the profile of ue is stabilized and no longer
evolves with the streamwise distance x.

For comparison purposes, in Figure 4 we present plots of the velocity pro-
file at x = 10 computed with the three methods described above, namely,
the local similarity model LS (28) and the local nonsimilarity models LNS1
(31)–(32) and LNS2 (36)–(38). From this figure we can observe that the three
profiles are quite close to one another. The model with the lowest accuracy,
LS, provides a reasonable approximation of the velocity profile. Moreover, the
difference between the profiles computed with LNS1 and LNS2 is barely dis-
cernible. In Figure 4b, we show a zoom of the numerically computed profiles
in the interval 0.35 ≤ y ≤ 0.45, which is the region where these profiles differ
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Fig. 3 Velocity profiles at different distances from the edge of the flat plate. φ = 0.95,
Re0 = 50, and u∞ = 0.25.

the most. Therein we readily observe that the difference between the profiles
computed via LS and LNS1 is already small, whereas the difference between
the LNS1 and LNS2 profiles is still much smaller. This serves as an indication
that the sequence of nonsimilarity models proposed in [6] does in fact lead to
numerically converged solutions.
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Fig. 4 a) Velocity profiles at x = 10 (for φ = 0.95, Re0 = 50 and u∞ = 0.25) computed
with the local similarity method LS (28) and the local nonsimilarity models LNS1 (31)–(32)
and LNS2 (36)–(38). (b) Zoom of the profiles in the interval 0.30 ≤ y ≤ 0.45.

One quantity of particular interest is the shear stress at the wall τ̂w. For
flows in porous domains this is defined as

τ̂w = φµ̂

(
∂û

∂ŷ

)
ŷ=0

. (41)

We now insert (23) into (41) and carry out the differentiation with respect to
y by using the chain rule and the change of variables (21). In this manner, we
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obtain the following expression for τw, non-dimensionalized by ρ̂û2
0,

τw =
φu2

e√
2ξRe0

f ′′(ξ, 0) . (42)

Typically, the dimensional wall stress is cast in terms of the friction factor cf ,
τ̂w = 1

2cf ρ̂û
2
0. Therefore, the dimensionless wall stress given above is equal to

one half of the friction factor, τw = 1
2cf .

In figure 5 we provide plots of the profiles of τw computed with the local
similarity model LS and the local nonsimilarity models LNS1 and LNS2. We
can observe that τw decreases monotonically with the distance x from the edge
of the flat plate and eventually reaches an asymptotic value as the free-stream
velocity ue approaches its terminal value u∞. Evidently, this is due to the fact
that, in the far field, the velocity profile no longer varies with x. By comparing
the plots computed with the three solution methods we readily infer that the
local similarity approximation LS yields reasonably accurate results. The local
nonsimilarity model LNS1 yields mildly improved results with respect to those
obtained with LS. Whereas the results obtained with LNS1 and LNS2 are
practically identical.
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Fig. 5 Wall-stress profiles (for φ = 0.95, Re0 = 50 and u∞ = 0.25) computed with the
local similarity, LS, and the local nonsimilarity models LNS1 and LNS2.

We may therefore infer that in terms of numerical accuracy, ease of imple-
mentation and computational cost, the local nonsimilarity model NLS1 is the
most advantageous option for computing the boundary layers of interest.

Another interesting quantity is the boundary-layer thickness δ. This is
defined as the height (y coordinate) at which the streamwise velocity u reaches
99% of the value of the free-stream ue at this location. Plots of δ for four dif-
ferent cases are provided in figure 6. From this figure we infer that, overall, δ is
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quite thin and at the order of a few unit lengths, i.e. a few cylinder diameters.
Moreover, by comparing the profiles for the different cases shown therein, we
deduce that an increase of Re0 (higher incoming velocity) results in a decrease
of δ. Similarly, δ decreases as the forcing F (hence the terminal free-stream
velocity u∞) increases.
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Fig. 6 Profiles of the boundary-layer thickness δ for three different cases. In all cases, the
porosity is set at φ = 0.95.

An interesting feature is that, in certain cases, δ increases rapidly close
to the edge of the flat plate and then reaches a peak value at some distance
downstream. Beyond the location of this peak, δ decreases and converges to a
terminal value as ue → u∞. This trend has been observed when the terminal
free-stream velocity u∞ is small. For example, in figure 6 the overshoot of δ is
quite pronounced when u∞ = 0.25 but is barely discernible when u∞ = 0.5.
On the other hand, when u∞ = 0.80, δ increases monotonically and converges
to an asymptotic value far downstream.

Our computations further showed that the profile of the displacement thick-
ness follows the same trend as well, depending on the value of u∞. It is worth
adding that the peak and subsequent decrease of δ for small u∞ has been pre-
dicted by all solution methods, including the local similarity one LS. Therefore,
this peak is not related to terms of the momentum equation (25) involving
partial derivatives of f with respect to ξ.

In fact, the overshoot of δ is related to the change of sign of β1, cf. (25),
which in turn is controlled by u′e(x). More specifically, from (26) we deduce
that β1 changes sign when u′e = −c. Then, by substituting this value of u′e
in (15), we observe that the change of sign of β1 occurs when ue attains the
following critical value ucr,

ucr =
F

b
. (43)
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According to this equation, ucr increases as F increases. By virtue of (17),
this implies that ucr increases as u∞ increases. Further, from (17) and (43),
we readily deduce that ucr > u∞, whereas ucr can be either larger or smaller
to the velocity of the incoming stream.

When F hence u∞ are sufficiently small, then u∞ < ucr < 1, i.e. the critical
value is lower than the velocity of the incoming stream. Accordingly, at small
x, the free-stream velocity ue decreases rapidly and u′e takes large negative
values so that β1 is negative. But at a given distance, ue becomes equal to
ucr. This means that the magnitude of u′e has decreased to the point that β1

changes sign from positive to negative. This case corresponds to an overshoot
of the boundary layer thickness δ.

On the other hand, when F hence u∞ are large, then ucr > 1 > u∞. In this
case, the free-stream velocity ue remains smaller than the critical value ucr.
Then ue decreases slowly towards u∞ and the magnitude of u′e is kept small
so that β1 remains always positive. This case corresponds to a monotonically
increasing boundary-layer thickness δ.

The above analysis has been corroborated by our numerical computations.
In the particular example considered herein, φ = 0.95 and Re0 = 50, the
critical velocity ucr becomes equal to unity for u∞ = 0.615. Accordingly, for
u∞ < 0.615 there is an overshoot in δ, whereas for u∞ > 0.615 the thickness δ
increases monotonically. This can be readily confirmed from the plots of figure
6 according to which the profile of δ exhibits overshoots for u∞ = 0.25, 0.50
but is monotonic for u∞ = 0.80.

From the above discussion, it becomes evident that the overshoot of the
boundary-layer thickness is due to the interphasial drag; in other words, it is
a unique feature of porous media and is not encountered in equivalent flows in
pure-fluid domains.

7 Conclusions

In the present paper we have examined the structure of the boundary-layer
flow that is developed when a uniform stream of fluid enters a porous domain
located above a flat plate. The flow in the porous medium is maintained by a
constant external pressure forcing. Such boundary layers are nonsimilar, which
is explained by the presence of a characteristic length-scale, namely, the size of
the elements that comprise the solid matrix of the porous medium. In our study
the solid matrix is assumed to consist of identical and vertically aligned cylin-
drical elements. The drag force experienced by the cylindrical elements is given
in terms of a Darcy-Forchheimer law. The resulting momentum boundary-layer
equation is then solved using the local similarity and two local nonsimilarity
methods. The basic assumption of the local nonsimilarity approach is that the
solution varies sufficiently smoothly in the streamwise direction so that the
boundary-layer momentum equation (25) can be approximated by a sequence
of ODEs.
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According to our numerical tests, and for the boundary layers of interest,
the local similarity method gives fairly accurate results. The first local nonsim-
ilarity method, which is based on a second level of truncation of the momentum
equation, provides improved results. Whereas the second local nonsimilarity
method, which uses a third level of truncation, yields results that are almost
identical to those of the first one.

Our computations showed that the free-stream velocity ue decreases mono-
tonically towards a terminal value u∞. In general, the rate of decrease of the
free-stream velocity is significant near the edge of the flat plate but then it
becomes smaller further downstream. The decrease rate of ue attenuates when
the Reynolds number or the external pressure forcing F increase. Once ue

reaches its terminal value u∞, then the velocity profile stabilizes and ceases to
vary in the streamwise direction.

In general, the thickness of the layers is at the order of a few diameters
of the cylindrical elements of the solid matrix. An interesting feature is that
for sufficiently low terminal free-stream velocities, i.e small external pressure
forcing, the boundary-layer thickness exhibits an overshoot and then decreases
towards its terminal value. This is attributed to the large variation of the slope
of the free-stream velocity ue which results in the change of sign of a term in
the boundary-layer equation (25). On the other hand, the wall stress always
decreases monotonically in the streamwise direction.

Finally, it is worth adding that while in the numerical study presented
herein we assumed that the external forcing F is constant, one may envis-
age cases where F varies along the streamwise direction. In such cases, it is
expected that the local nonsimilarity approach will still be applicable, pro-
vided that F is varies sufficiently slowly so that the free-stream velocity, which
is linked with F via (15), varies slowly too.
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