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Introduction 1
This thesis combines concepts from the fields of extreme value theory (EVT) and
probabilistic graphical models. The broad scope is to study the tail behavior of
a random vector when the joint distribution represents a graphical model. Tail
behavior is formalized through perspectives typical in EVT, such as convergence of
the componentwise maxima, or of the peaks over a threshold, or through the one-
component regular variation property of the joint distribution. A graphical model
is a random vector, or its distribution, possessing a set of conditional independence
relations. It is called graphical because a graph (a structure with set of nodes and set
of edges) can be drawn to represent the conditional independence (or dependence)
relations of the joint distribution.

The thesis focuses on particular graphical models: those that can be represented
by a tree or a generalization of it. We do cover however both undirected and directed
graphs, although limiting ourselves to directed acyclic graphs (DAGs). Also, the thesis
studies two parametric classes: models parameterized by Hüsler–Reiss distributions
and linear structural equationmodels (SEMs). Hence the scope of the thesis in studying
extremes on graphical models is limited to:

■ graphical models with respect to trees or generalizations of a tree;

■ graphical models parameterized by Hüsler–Reiss distributions or linear SEMs.

There are two topics that dominate the thesis. The first one is related to the
extreme value limits of a graphical model, such as the domain of attraction, a Pareto
type limit and the behavior of a suitably scaled random vector, given that a high
threshold is exceeded by one of the elements. The latter type of limit has been studied
as earliest to my knowledge in Smith (1992) for Markov chains, followed by numerous
papers enriching the literature on the topic and providing large flexibility in models
and assumptions.

The second dominant topic of the thesis is rather new, in the sense that the
problem has not yet been discussed in the literature at all. This is what we called
the parameter identifiability problem. We study it in the context of the two particular
parameterizations mentioned above. In short, the problem consists of identifying all
parameters defining the joint distribution of the whole random vector from the joint
distribution of a particular subset of random variables from this vector. The relevance
of this problem is practical and this becomes clear in the first paper dedicated on the
Seine river in France.

To sum up, the whole thesis gravitates around two main problems:

■ extreme value limits of a graphical model, such as the domain of attraction, a
Pareto type limit and the behavior of a suitably scaled random vector, given
that a high threshold is exceeded by one of the elements,

■ identifiability of all parameters defining the complete joint distribution from a
particular marginal distribution.
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1.1. EXTREME VALUE THEORY

The first problem has been studied in different contexts in the extreme value literature
and our contribution is that we present other models and parameterizations whose
limits seem logical on the background of this literature. The second problem has not
been studied so far, so we hope that with the papers published and under review we
have clearly defined the problem, together with its theoretical and practical features.

To better clarify the two problems in the focus of the thesis we need some intro-
duction to extreme value theory and graphical models, limited to main notions and
concepts. This is done in the first three sections of the introduction. Next, a section is
dedicated to each of the chapters, summarizing the main results and contributions
to the literature. This is done in sufficient detail and generality at the same time so
that reading the preamble is supposed to suffice for evaluating the contribution and
relevance of the thesis.

In the preamble, if not otherwise explained, one can assume the following notation.
If at this point there are notions that are unfamiliar to the reader (s)he will find
definitely somewhere in the preamble a definition. In this introduction 𝑝 (𝑖, 𝑗) is a
unique shortest undirected path between nodes 𝑖 and 𝑗 , which contains a finite number
of edges, and −→𝑝 (𝑖, 𝑗) is a unique shortest directed path between nodes 𝑖 and 𝑗 , which
contains a finite number of edges.

1.1 Extreme value theory

The greatest flood in Paris, due to the river Seine, dates back to 1910 and it has been
estimated (OECD, 2018) that nowadays a flood of such rank would affect over five
million citizens and cause a damage between 3 and 30 billion euros. The water level
of the Seine in Paris during this flood rose to 8.6 meters on Paris-Austerlitz scale
according to Éditions OCDE (2014). How to estimate the return period of such an
event on the basis of hundred years of available data in which there is only one flood
of this magnitude? Even worse - consider the example in de Haan and Ferreira (2007)
according to which the Dutch dikes should be so high that the probability of a flood
in a given year is 10−4. How to compute the height of the dikes if there are hundred
years of data and hence not a single observation to give us an idea of the 10000-years
event? EVT provides a solid basis for extrapolation.

Applications of EVT are not limited to floods and hydrology. Other natural
hazards often modeled using EVT are earthquake magnitude (Pisarenko et al., 2014;
Beirlant et al., 2019) and wildfire severity (French et al., 2019). Financial and insurance
applications are countless (Resnick, 1997; Embrechts et al., 2013; Einmahl et al., 2018).
Other studies can be found in the field of traffic safety Orsini et al. (2019), drugs side
effects (Southworth, 2014), biology (Basnayake et al., 2019) and sport (Einmahl and
Smeets, 2011).

When considering several risks at the same time we would often observe that
values become more and more positively correlated at higher levels. This is what we
see in the data on water levels along the Seine, France. Figure 1.1 shows observations
on water levels of the Seine in Paris and Sens. More precisely, these are marginal
uniform transformations using the empirical cumulative distribution functions (cdfs).
Higher water levels in Paris tend to occur simultaneously with high water levels
in Sens. Meanwhile, it looks that intermediate levels are rather uncorrelated. This
phenomenon is known in EVT as extremal dependence. Many financial series exhibit
extremal dependence too (Einmahl et al., 2018).

In order to focus on the extremal (or tail) dependence it is customary to transform
the univariate margins. For a random variable 𝑋 with cdf 𝐹 (𝑥), a common choice is
to take 1/(1 − 𝐹 (𝑋 )). We require 𝐹 (𝑥) to be a continuous function. The transformed
variable 1/(1 − 𝐹 (𝑋 )) has a unit Pareto distribution with cdf 1 − 1/𝑥, 𝑥 ≥ 1.
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1.1. EXTREME VALUE THEORY
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Figure 1.1: Scatterplot of water levels of the Seine in Paris and Sens, data transformed
to a uniform scale.

Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a random vector for some index set 𝑉 , with joint cdf
𝐹 (𝑥), 𝑥 ∈ [1,∞)𝑉 and univariate unit Pareto margins. The following definition can
be consulted in one of the monographs on EVT such as de Haan and Ferreira (2007,
Chapter 6), Resnick (1987, Chapter 5) or Beirlant et al. (2004, Chapter 7).

Definition 1 (Domain of attraction) If there is a cdf𝐺 (𝑥), 𝑥 ∈ [0,∞)𝑉 \ {0}𝑉
such that, for 𝑛 = 1, 2, . . .

lim
𝑛→∞
[P(𝑋𝑣 ≤ 𝑛𝑥𝑣, 𝑣 ∈ 𝑉 )]𝑛 = lim

𝑛→∞
[𝐹 (𝑛𝑥)]𝑛 = 𝐺 (𝑥) (1.1)

for all continuity points of 𝐹 , we say that 𝐹 is in the domain of attraction of 𝐺 , also
noted by 𝐹 ∈ 𝐷 (𝐺) which is called simple extreme value distribution. ■

The class of extreme value distributions coincides with the class of max-stable
distributions. Both names can be used interchangeably. There are different ways
to express the form of the distribution 𝐺 . We will introduce the representation in
terms of the so called angular measure (de Haan and Ferreira, 2007, Theorem 6.1.14),
(Resnick, 1987, Proposition 5.11).

Definition 2 (Angular measure) Let 𝐺 be an extreme value distribution with
unit Fréchet margins, ith cdf 𝑥 ↦→ exp(−1/𝑥), 𝑥 > 0. Let ∥ · ∥ be some norm and A
the space given by

A = {𝑎 ∈ [0,∞)𝑉 \ {0}𝑉 : ∥𝑎∥ = 1}.

There exists a finite measure S such that

𝐺 (𝑥) = exp
(
−

∫
A

max
𝑣∈𝑉
(𝑎𝑣/𝑥𝑣)S(d𝑎)

)
with

∫
A 𝑎𝑣S(d𝑎) = 1 for every 𝑣 ∈ 𝑉 . ■

We have made use of the angular measure in Chapters 4 and 5 where we work
with max- or sum-linear models.
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1.2. GRAPHICAL MODELS

An equivalent way of assuming 𝐹 ∈ 𝐷 (𝐺) is to assume a Pareto type limiting
distribution.

Definition 3 (Multivariate Pareto Distribution (MPD)) The MPD is the
pointwise limit of

P
(
𝑋𝑣 ≤ 𝑡𝑥𝑣, 𝑣 ∈ 𝑉 | max

𝑣∈𝑉
𝑋𝑣 ≥ 𝑡

)
, 𝑡 →∞. (1.2)

If 𝐺 is a simple extreme value distribution, then the MPD is given by

P(𝑥) = ln𝐺 (min(𝑥𝑣, 1), 𝑣 ∈ 𝑉 ) − ln𝐺 (𝑥)
ln𝐺 (1, . . . , 1) , 𝑥 ∈ [0,∞)𝑉 \ {0}𝑉 . (1.3)

■
The MPD is closely related to the generalized MPD introduced in Rootzén and

Tajvidi (2006). The equivalence between the existence of the MPD as a limit of (1.2)
and the domain of attraction condition is established in Rootzén and Tajvidi (2006,
Theorem 2.2): i.e. a distribution 𝐺 exists such that (1.1) holds if and only if the limit
of (1.2) exists and is given by (1.3).

The MPD is at the core of the definition of an extremal graphical model introduced
in Engelke and Hitz (2020), a paper which has stirred much appreciation in the commu-
nity working on extremes and graphical models. This thesis does not make much use
of extremal graphical models, but there is one important contribution that our second
paper brings to the literature: in the context of Hüsler–Reiss parameterization we find
one model which in the limit is an extremal graphical model, thereby complementing
one of the theorems in Engelke and Hitz (2020).

The Hüsler–Reiss distribution is considered the EVT counterpart of the Gaus-
sian distribution. It has a somehow complicated expression and it will be intro-
duced in details both in Chapter 2 and in Chapter 3. If 𝑋 (1) , . . . , 𝑋 (𝑛) are iid copies
of a |𝑉 |-variate normal distribution, consider the scaled sample maxima 𝑀𝑣 (𝑛) =
(max𝑖=1,...,𝑛 𝑋

(𝑖 )
𝑣 − 𝑎𝑣 (𝑛))/𝑏𝑣 (𝑛) where 𝑎𝑣 (𝑛) and 𝑏𝑣 (𝑛) > 0 are some functions for

every 𝑣 ∈ 𝑉 . Further, suppose that the bivariate correlations 𝜌𝑖 𝑗 satisfy

lim
𝑛→∞
(1 − 𝜌𝑖 𝑗 (𝑛)) ln(𝑛) = 𝛿2

𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉 . (1.4)

The Hüsler–Reiss distribution arises as a limit of (𝑀𝑣 (𝑛), 𝑣 ∈ 𝑉 ) as 𝑛 → ∞ (Hüsler
and Reiss, 1989). The limit is a max-stable (extreme value) distribution with parameter
matrix 𝛿𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉 which describes the tail dependence of 𝑋 . The assumption on
the correlation coefficients in (1.4) is key: for constant correlations, 𝜌𝑖 𝑗 , the limit of
the scaled sample maxima is a vector with independent Gumbel variables. Hence
dependence of extreme values is achieved through (1.4).

The Hüsler–Reiss distribution has seen many applications. For instance Asadi
et al. (2015), Lee and Joe (2017) and Engelke and Hitz (2020) use it to estimate tail
dependence on river discharges or water flows. It appears in numerous studies
on spatial statistics through the Brown–Resnick process whose finite-dimensional
distribution is a Hüsler–Reiss distribution (Engelke et al., 2011, 2014; Einmahl et al.,
2018). A simpler analytical form of the distribution is provided in Huser and Davison
(2013) and Genton et al. (2011).

1.2 Graphical models

A graphical model is a pair of a random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) (or its distribution,
𝐹 ) and a graph G = (𝑉 , 𝐸), where 𝑉 is the set of nodes/vertices and 𝐸 ⊆ 𝑉 × 𝑉 is
a set of edges. An edge connects two nodes, thereby having the notation (𝑎, 𝑏) for
𝑎, 𝑏 ∈ 𝑉 . If two nodes are connected by an edge we say that the two nodes are adjacent.
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1.2. GRAPHICAL MODELS

𝑎 𝑏

𝑐 𝑑 𝑒

𝑓

Figure 1.2: An example of a graph - node set 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 } and edge set 𝐸 =

{(𝑎, 𝑏), (𝑏, 𝑎), . . . , (𝑏, 𝑒), (𝑒, 𝑏)}. Note that (𝑎, 𝑏) corresponds to an edge directed from 𝑎 to
𝑏. If the edge is undirected it means that both edges (𝑎, 𝑏) and (𝑏, 𝑎) are in 𝐸 ⊆ 𝑉 ×𝑉 .

The graph is an object from graph theory where typical problems are Euler paths,
Hamiltonial paths, connectivity, coloration, etc. (Bondy et al., 1976). An arbitrary
graph is illustrated in Figure 1.2.

This thesis makes use of trees, block graphs and DAGs whose skeleton (undirected
version) is a block graph. A tree is characterized by unique paths between two nodes,
no cycles and (minimal) separators between every two non-adjacent nodes being
single nodes. While trees are popular graphs, block graphs are less so. In this thesis a
block is a synonym to a complete graph, a graph where every two nodes are connected.
A block graph is a graph which can be obtained from a tree, replacing every edge by
a complete graph. Block graphs are generalizations of trees (Behtoei et al., 2010). The
block graph is acyclic up to blocks, there exist a unique shortest path between every
two nodes and the minimal separators are also singletons. To obtain a block graph in
Figure 1.2 we have to add at least an edge between nodes 𝑏, 𝑐 . If we direct the edges
such that every block is a DAG, then we call this directed graph a tree of transitive
tournaments, a ttt. The ttt is a DAG itself. So the three type of graphs that are used
in this thesis are all variations of trees - trees themselves, block graphs and trees ot
transitive tournaments.

In graphical models there is a random variable associated to every node and an
edge corresponds to conditional dependence between the two variables. While graph
theory dates back to the eighteenth century, graphical models are more recent. Earliest
references are the work of the American physician Josiah Gibbs in 1902 (Lauritzen,
1996) and the path analysis of the biometrician Sewall Wright (Wright, 1934; Pearl,
2000). Graphical modeling has shaped with the papers Lauritzen and Wermuth (1989)
and Edwards (1990). Many of the scholars commenting on these two papers (Hand
et al., 1990) recognized the important contribution to the analysis of mixed (discrete
and continuous) data, the significant progress in building a sound theoretical basis
for modeling random variables related by a set of conditional independence relations,
and the potential for applied research in areas such as biology, sociology, psychiatry
where data are naturally mixed.

Graphical models can be with respect to a directed or an undirected graph. A
directed edge from node 𝑎 to node 𝑏 means direct influence from 𝑋𝑎 to 𝑋𝑏 , while an
undirected edge between 𝑎, 𝑏 ∈ 𝑉 means that the influence can go in both directions.
In what follows we assume that the graph is without loops, i.e., there are no edges
that start and end at the same node.

In the context of undirected graphs there are two distinct Markov properties of
conditional independence (Lauritzen, 1996).

Definition 4 (Local Markov property) We say that the joint distribution of 𝑋
satisfies the local undirected Markov property with respect to a graph G if for every
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𝑎

𝑏 𝑐

Figure 1.3: A v-structure: node with disconnected parents. It is a special feature
of graphical models with respect to directed graphs. This is due to the fact that in
general, that is, for almost all distributions over the three variables 𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 , we have
𝑋𝑏 ⊥̸⊥ 𝑋𝑐 | 𝑋𝑎 .

two non-adjacent nodes 𝑣,𝑢 ∈ 𝑉 we have

𝑋𝑣 ⊥⊥ 𝑋𝑢 | 𝑋𝑉 \{𝑣,𝑢} . (1.5)

■
Definition 5 (Global Markov property) We say that the joint distribution of

𝑋 satisfies the global undirected Markov property with respect to a graph G if for
every three disjoint non-empty subsets 𝐴, 𝐵, 𝑆 ⊆ 𝑉 whenever 𝐴 is separated from 𝐵

by 𝑆 (all paths from 𝐴 to 𝐵 pass through 𝑆) we have

𝑋𝐴 ⊥⊥ 𝑋𝐵 | 𝑋𝑆 . (1.6)

■
When we talk about Markov trees, we assume that 𝑋 is a graphical model with

respect to a tree which satisfies the global Markov property. Markov trees have been
used as building elements in vine copulas and pair-copula constructions (Bedford and
Cooke, 2001, 2002; Aas et al., 2009). In this way multivariate dependence is modeled
with bivariate copulas and often few trees suffice to approximate the true distribution
(Lee and Joe, 2017). In extreme value context pair copula constructions are used in
Lee and Joe (2017) and Segers (2020b) and also in Chapter 2.

If𝑋 is a graphical model with respect to a DAG (𝑋 is called also Bayesian network),
then the distribution of 𝑋 satisfies at least the local directed Markov property. In
a direct graph we have pa(𝑣) ⊆ 𝑉 , the sets of parents of node 𝑣 ; desc(𝑣), the set
of descendants of 𝑣 and an(𝑣), the set of ancestors of 𝑣 . The capital letter in these
three notation, such as Pa(𝑣), will denote the set of elements in the corresponding set
including node 𝑣 , so Pa(𝑣) = pa(𝑣) ∪ {𝑣}.

Definition 6 (Local directed Markov property) We say that the joint distri-
bution of 𝑋 satisfies the local directed Markov property with respect to a DAG G if
for every node 𝑣 ∈ 𝑉

𝑋𝑣 ⊥⊥ 𝑋𝑉 \Desc(𝑣) | 𝑋pa(𝑣) . (1.7)

■
A peculiarity of graphical models with respect to directed graphs is a so called

v-structure (or immorality). This represents a node with two disconnected parents,
see Figure 1.3. The global property is meant to take into account the existence of
v-structures. The special feature is due to the fact that, for almost all distributions
over the three variables 𝑋𝑎, 𝑋𝑏, 𝑋𝑐 , we have 𝑋𝑏 ⊥̸⊥ 𝑋𝑐 | 𝑋𝑎 (Koller and Friedman, 2009,
Chapter 3). This can be compared to a graphical model with respect to the undirected
version of the same graph. Given that 𝑎 separates 𝑏 and 𝑐 , we have 𝑋𝑏 ⊥⊥ 𝑋𝑐 | 𝑋𝑎 .

A SEM is defined as follows: for every node 𝑣 ∈ 𝑉 we have

𝑋𝑣 = 𝑓 (𝑋pa(𝑣) , 𝜀𝑣),

where 𝑓 is some function, 𝜀𝑣 is independent of 𝑋pa(𝑣) and (𝜀𝑣, 𝑣 ∈ 𝑉 ) are independent
between each other. Gissibl and Klüppelberg (2018) introduce max-linear models
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with respect to a DAG. Being in the context of extreme values, we choose the noise
variables to be heavy tailed.

Definition 7 (Max-linear model) The random vector 𝑋 follows a max-linear
model on aDAGGwhen there exist 𝑐𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑉 , and (𝑍𝑣, 𝑣 ∈ 𝑉 ) independent
unit Fréchet variables, such that for every 𝑣 ∈ 𝑉 we have

𝑋𝑣 = max
(

max
𝑖∈pa(𝑣)

𝑐𝑖𝑣𝑋𝑖 , 𝑐𝑣𝑣𝑍𝑣

)
.

There exists a matrix 𝐵 = {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 such that we can write

𝑋𝑣 = max
𝑖∈An(𝑣)

𝑏𝑣𝑖𝑍𝑖 .

■
Max-linear models with respect to a DAG have been extensively studied in rela-

tion to the conditional independence relations that they possess (Klüppelberg and
Lauritzen, 2019; Améndola et al., 2022; Améndola et al., 2021), because it turns out
that these may differ significantly from classical independence results for Bayesian
networks. The distribution of a max-linear model is an extreme value distribution
with angular measure, S, as in Definition 2 being a discrete measure.

Instead of taking the maximum, we could consider the sum, giving raise to the
linear structural causal model appearing in Gnecco et al. (2021).

Definition 8 (Sum-linear model) The random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) follows
a sum-linear model on a DAG G when , there exist 𝑐𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 , and
𝑑𝑖𝑖 , 𝑖 ∈ 𝑉 , and 𝑍 = (𝑍𝑣, 𝑣 ∈ 𝑉 ) independent unit Fréchet variables, such that for every
𝑣 ∈ 𝑉 we have

𝑋𝑣 =
∑︁

𝑖∈pa(𝑣)
𝑐𝑖𝑣𝑋𝑖 + 𝑑𝑣𝑣𝑍𝑣 .

If we gather the coefficients 𝑐𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 in a |𝑉 | × |𝑉 | matrix 𝐶 and
𝑑𝑖𝑖 , 𝑖 ∈ 𝑉 in a diagonal matrix 𝐷 , the above model can be written in matrix-vector
form

𝑋 = 𝐶𝑋 + 𝐷𝑍 .
There exists a matrix 𝐵 = {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 such that we can write

𝑋 = 𝐵𝑍 .

■
The distribution of the sum-linear model with absolutely continuous independent

factors is absolutely continuous, but it belongs to the domain of attraction of an ex-
treme value distribution with discrete measure just as the max-linear model (Einmahl
et al., 2012, Lemma 6.1).

The SEM with respect to a DAG is a special type of a more general linear SEM
in which it is possible to have two variables influencing each other. For instance
consider two variables (𝑋1, 𝑋2) and the model

𝑋1 = 𝛼 + 𝛽𝑋2 + 𝜀1,

𝑋2 = 𝛼
′ + 𝛽 ′𝑋1 + 𝜀2,

with 𝜀1, 𝜀2 being two independent error terms. This model is frequently used in
economics where there is a feedback loop between (𝑋1, 𝑋2). The corresponding graph
is given in Figure 1.4. Each of the variables is once a response and once an explanatory
variable. The construction of such a model can be based on an expert knowledge
and in this case the causal interpretation stems from the expert belief of the relations
between the variables.

7
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𝑋1 𝑋2

𝜀1 𝜀2

Figure 1.4: A directed graph corresponding to a model with two endogenous variables
𝑋1, 𝑋2 and two latent variables 𝜀1, 𝜀2. For a given equation, a directed edge is drawn
from a variable on the right-hand side to the response variable.

Causality in SEMs is an assumption not a consequence, in the sense that if one
believes in certain causal relations within a set of random variables, one way to
estimate causal effects is by a set of structural equations. Another approach is based
on data to discover causal relations by estimating quantities that help us identify
the direction of the influence. This line of research is dominant in the literature on
max-/sum-linear models, such as Gnecco et al. (2021), Tran et al. (2021b), Klüppelberg
and Krali (2021), to name a few. SEMs represent one approach to causality. Others are
interventional analysis, Granger causality for time series, and state space modeling
(Shephard and Rambachan, 2020).

When analyzing multivariate data over time, structural equations and vector
autoregression (VAR) models are often considered as alternatives. If 𝑋𝑡 is a random
vector with 𝑑 elements, observed at time 𝑡 , the VAR model is given by

𝑋𝑡 = 𝐵𝑋𝑡−1 + 𝜀𝑡 ,

where 𝐵 is a matrix of coefficients and 𝜀𝑡 is a vector of errors at time 𝑡 . Now consider
the SEM according to which every element 𝑋𝑣,𝑡 for 𝑣 = 1, . . . , 𝑑 is given by

𝑋𝑣,𝑡 = 𝛼
𝑇𝑋−𝑣,𝑡 + 𝜖𝑣,𝑡 ,

where 𝑋−𝑣,𝑡 is a vector of all elements of 𝑋𝑡 excluding 𝑋𝑣,𝑡 and 𝜖𝑣,𝑡 is an independent
error term. The VAR model suggests time-lagged influence between the variables,
while the SEM implies contemporaneous interactions among them. Both models
are largely used in neuroscience to study brain connectivity (Chen et al., 2011; Shen
et al., 2019). To combine both lagged and contemporaneous effects researchers use
SVAR (structural vector autoregression) models which interpret the spatio-temporal
behavior observed in brain imaging data as a result of both instantaneous and time-
lagged interactions between brain regions. In another study on the Italian economy,
SEM and VAR are also viewed as complementary tools since the first one is shown to
outperform the second in long-term forecasting and the other way around in short
term forecasting (Boero, 1990). A comparison of SEM and VAR in microeconomics is
given in Manera (2006).

1.3 Extremes and graphical models

Two directions in which the literature on graphical models and extremes develops
fast and widely are max-linear Bayesian models and graph structure learning. Graph
learning aims to estimate the edges among fixed number of nodes from data using
extreme value analysis and metrics. Some references in this direction are Gissibl et al.
(2018), Klüppelberg and Krali (2021), Buck and Klüppelberg (2021), Gissibl et al. (2021),
Tran et al. (2021b), and Tran et al. (2021a). Graph discovery for other than max-linear
models are studied in Gnecco et al. (2021), Engelke and Hitz (2020) and Engelke and
Volgushev (2020).
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𝑎 𝑏

𝑐 𝑑 𝑒

𝑓

Figure 1.5: A tree on six nodes. The unique path 𝑝 (𝑎, 𝑓 ) is the set of edges
{(𝑎, 𝑑), (𝑑, 𝑏), (𝑏, 𝑓 )}.

A paper of significant influence to this thesis is Segers (2020b). It studies the limit
of

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 = 𝑡, 𝑡 →∞ (1.8)

if 𝑋 satisfies the global Markov property as in Definition 5 with respect to a tree and
if for every two adjacent nodes, 𝑎, 𝑏 ∈ 𝑉 , the corresponding bivariate distribution
satisfies the condition

lim
𝑡→∞
L(𝑋𝑏/𝑡 | 𝑋𝑎 = 𝑡) = 𝜈𝑏, (1.9)

for some probability measure 𝜈𝑏 . In particular, it is shown (Segers, 2020b, Theorem 1)
that the limiting variables factorize into independent increments along the unique
path from node 𝑢, the one at which the high threshold is exceeded, to any other node
𝑣 ∈ 𝑉 \ 𝑢.

As an example, consider the tree in Figure 1.5, and suppose the high threshold is ex-
ceeded at node𝑎. There are fivemutually independent variables𝑀𝑎𝑑 , 𝑀𝑑𝑐 , 𝑀𝑑𝑏, 𝑀𝑏𝑒 , 𝑀𝑏𝑓

which determine the limiting distribution of (1.8). We have

(𝑋𝑏/𝑡, . . . , 𝑋𝑓 /𝑡) | 𝑋𝑎 = 𝑡
𝑑−→ (𝐴𝑎𝑏, . . . , 𝐴𝑎𝑓 )

where 𝐴𝑎𝑏 = 𝑀𝑎𝑑𝑀𝑑𝑏 , 𝐴𝑎𝑐 = 𝑀𝑎𝑑𝑀𝑑𝑐 , and so on for the remaining three variables.
This result has been inspired from convergence of Markov chains treated in

Smith (1992), Yun (1998), Perfekt (1994), Segers (2007), and Janssen and Segers (2014).
More recent studies of Markov chains allowing for complex behavior of the chain
are presented in Papastathopoulos et al. (2017) and Papastathopoulos and Tawn
(2019). The analytical form of the limit of (1.8) for any random vector, not necessarily
possessing conditional independence relations, is given in Heffernan and Tawn (2004,
Section 8).

The result of Segers (2020b, Theorem 1) has been generalized to Markov fields
with respect to a block graph in Chapter 3. A posteriori, this is not unexpected as
block graphs are generalizations of trees.

A key result in extremes and graphical models is presented in Papastathopoulos
and Strokorb (2016) which says that an absolutely continuous extreme value (or max-
stable) distribution cannot possess non-trivial conditional independence relations. By
non-trivial we mean that the conditioning set cannot be an empty set. This means
that if the distribution𝐺 from Definition 1 is absolutely continuous, then𝐺 cannot be
a graphical model, unless the graph is either complete (all possible pairs are connected
between each other) or the opposite of complete - disconnected graph (no edges).

Given that 𝐺 cannot serve as a graphical model, Engelke and Hitz (2020) take the
MPD P from Definition 3 to define an extremal graphical model as follows.

Definition 9 (Extremal graphical model, (Engelke and Hitz, 2020)) Let
𝑌 have absolutely continuous distribution P. Define 𝑌 (𝑢 ) = 𝑌 | 𝑌𝑢 > 1. We say that

9



1.3. EXTREMES AND GRAPHICAL MODELS

𝑌 is an extremal graphical model with respect to G = (𝑉 , 𝐸) if for every 𝑢 ∈ 𝑉 , the
random vector 𝑌 (𝑢 ) satisfies the local Markov property from Definition 4. ■

An extremal graphical model is entirely defined in terms of the limiting distribu-
tion, P, but no relation is made to distributions in the domain of attraction of P or of
𝐺 . In Chapter 3, when we consider the Hüsler–Reiss distribution as a special case for
our model, we take the usual perspective in EVT and provide a model which is indeed
in the domain of attraction of a Hüsler–Reiss extremal graphical model. This fills the
gap in Theorem 3 in Engelke and Hitz (2020) by providing the parameter matrix of
the Hüsler–Reiss extremal graphical model.

Definition 10 (Hüsler–Reiss extremal graphical model, Engelke and Hitz
(2020)) A Hüsler–Reiss extremal graphical model is obtained when 𝐺 in the distribu-
tion P is a Hüsler–Reiss distribution. ■

Theorems 3 and 4 of Engelke and Hitz (2020) are dedicated to Hüsler–Reiss
extremal graphical models with respect to a block graph. This is the kind of graphs
that we use in Chapter 3. In Engelke and Hitz (2020) it is shown that if for every
block, say 𝐶 out of the set of all blocks C, the distribution of 𝑋𝐶 is parameterized by
a Hüsler–Reiss Pareto distribution P, then the distribution of the complete vector
𝑋 = (𝑋𝐶 ,𝐶 ∈ C) is a Hüsler–Reiss extremal graphical model. Missing however in
their results is the expression of the parameter matrix associated to this Hüsler–Reiss
extremal graphical model, i.e., the form of 𝛿𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉 from (1.4). In Chapter 3 we
arrive at this result somehow accidentally. In our setting 𝑋𝐶 is such that the limit
in (1.8) exists and it is the one that would arise if 𝑋𝐶 had Hüsler–Reiss distribution.
Actually this limit is shown to be the log-normal distribution (Engelke et al., 2014;
Segers, 2020b). Then we show that the Pareto distribution from Definition 2 of
𝑋 = (𝑋𝐶 ,𝐶 ∈ C) is a Hüsler–Reiss extremal graphical model. Given that we provide
the parameter matrix of the latter and according to Theorem 3 and 4 of Engelke and
Hitz (2020) this matrix must be unique, we concluded that the parameter matrix found,
must be the same as the one mentioned in Theorem 3 and 4 of Engelke and Hitz (2020).
Recent advances in the field of Hüsler–Reiss extremal graphical models is Hentschel
et al. (2022).

The studies onmax-linear Bayesian networks are numerous. We have contribution
to this literature too with the material from Chapter 4. We consider a DAG whose
skeleton (the graph obtained by removing the directions of the edges) is a block
graph. We called such a graph a tree of transitive tournaments (ttt). A complete graph
which is a DAG is known in graph theory as transitive tournament. The ttt combines
in a tree-like manner transitive tournaments and as a consequence it shares some
properties with block graphs or trees. For instance if there is a directed path between
two nodes, there is a unique shortest directed path. It is an acyclic graph too.

Max-linear models are quite special in what regards the conditional independence
relations that they may possess. A whole new terminology and theory is created
in Améndola et al. (2022) to establish conditional independence within max-linear
models. The main reason for the complexity of the max-linear models in comparison
with classical Bayesian networks is due to the criticality of paths or max-weighted
paths. We refer to Gissibl and Klüppelberg (2018), Améndola et al. (2022), Gissibl et al.
(2021) and Klüppelberg and Lauritzen (2019) for proper definition and examples.

The topics treated in Chapter 4 are new to the literature on max-linear models.
Assume (𝑋𝑣, 𝑣 ∈ 𝑉 ) is max-linear with respect to a ttt. We make use of Améndola
et al. (2022) in order to establish a condition for 𝑋 needed to satisfy the global Markov
property with respect to the skeleton of the ttt. This condition is necessary (and
sufficient) for the limit of

(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡

to factorize into independent increments, in line with the results for Markov trees
(Segers, 2020b) and Markov block graphs from Chapter 3.
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1.4. CHAPTER 2: INFERENCE ON MARKOV TREES AND THE IDENTIFIABILITY
PROBLEM

Next we summarize the main findings and the main contributions of each of the
chapters.

1.4 Chapter 2: Inference on Markov trees and the
identifiability problem

The paper (identical to the chapter), builds on Segers (2020b), with focus on the Hüsler–
Reiss parameterization and the identifiability criterion. The theory is supported by
an application on the Seine river in France.

The paper starts by introducing the random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) where each
random variable of 𝑋 is associated to a node of a tree, T = (𝑉 , 𝐸), and each of the
edges has a weight 𝜃 2

𝑖 𝑗 = 𝜃
2
𝑗𝑖 > 0 for (𝑖, 𝑗), ( 𝑗, 𝑖) ∈ 𝐸. We assume that𝑋 is in the domain

of attraction of a Hüsler–Reiss distribution with parameter matrix, say Λ = {𝜆2
𝑖 𝑗 }𝑖, 𝑗∈𝑉 .

We denote this distribution by 𝐻Λ. We assume that the element of the matrix, 𝜆2
𝑖 𝑗 for

every 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 , is proportional to the sum of the edge weights along the path
from node 𝑖 to node 𝑗 , 𝑝 (𝑖, 𝑗). Thus we have

𝜆2
𝑖 𝑗 ∝

∑︁
(𝑎,𝑏 ) ∈𝑝 (𝑖, 𝑗 )

𝜃 2
𝑎𝑏
.

To motivate the existence of 𝑋 and of 𝐻Λ, we create the following object: Markov
tree parameterized by bivariate Hüsler–Reiss copulas for every adjacent (neighboring)
nodes, 𝑖, 𝑗 ∈ 𝑉 , (𝑖, 𝑗) ∈ 𝐸, with tail dependence parameter 𝜃 2

𝑖 𝑗 = 𝜃
2
𝑗𝑖 . We called this

vector 𝑍 ∗ = (𝑍 ∗𝑣 , 𝑣 ∈ 𝑉 ). We show that 𝑍 ∗ belongs to the domain of attraction of 𝐻Λ.
Because 𝑋 and 𝑍 ∗ have the same domain of attraction, other asymptotic properties
that hold for 𝑍 ∗ are valid for 𝑋 too. For instance the following limit is shown to hold

L(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢) | 𝑋𝑢 > 𝑡
𝑑−→ N|𝑉 |−1 (𝜇𝑢 (Λ), Σ𝑢 (Λ)) , (1.10)

where N𝑑 is a 𝑑-variate Normal distribution. Recall that Λ depends on edge weights
𝜃 2
𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸 and hence themean vector and covariancematrix are linear combinations
of the edge weights along (shared) paths:

{𝜇𝑢}𝑣 ∝
∑︁

(𝑎,𝑏 ) ∈𝑝 (𝑢,𝑣)
𝜃 2
𝑎𝑏
, 𝑣 ∈ 𝑉 \ 𝑢,

{Σ𝑢}𝑖 𝑗 ∝
∑︁

(𝑎,𝑏 ) ∈𝑝 (𝑢,𝑖 )∩𝑝 (𝑢,𝑗 )
𝜃 2
𝑎𝑏
, 𝑖, 𝑗 ∈ 𝑉 \ 𝑢.

(1.11)

The proof of these results combines Segers (2020b, Theorem 1, Corollary 2, Example 3)
applied to the Markov tree 𝑍 ∗ and the fact that 𝑋 inherits limiting properties of 𝑍 ∗.

As inference on the distribution 𝐻Λ, we introduce three estimators inspired from
classical estimation principles - method of moment estimator (MME), composite
likelihood estimator (CLE) and estimator based on extremal coefficients (ECE). The first
two estimators are constructed on the basis of the result in (1.10). The MMEminimizes
the distance between Σ𝑢 and its sample estimate with respect to 𝜃 2

𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸. The
CLE uses the normal density. The MME borrows ideas from Engelke et al. (2014)
and the one based on extremal coefficients from Einmahl et al. (2018). An extremal
coefficient is a frequently used metric to measure tail dependence. For a subset 𝐽 ⊆ 𝑉 ,
the extremal coefficient of a set 𝐽 is given by

ℓ𝐽 = − ln𝐺 𝐽 (1, . . . , 1),

where 𝐺 𝐽 is the 𝐽 -marginal distribution of the extreme value distribution 𝐺 from
Definition 1.
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1.4. CHAPTER 2: INFERENCE ON MARKOV TREES AND THE IDENTIFIABILITY
PROBLEM

We apply these three estimators to real data of water levels measured on five
stations on the Seine, near Paris. The schematic representation of the Seine network
is shown in Figure 1.6. The nodes 2 and 5 correspond to locations where the water
level has not been measured, hence the variables 𝑋2, 𝑋5 are unobserved (latent). This
is where the parameter identifiability problem enters the picture.

We have to consider the distribution of the observable variables only. The set of
nodes with observed variables is denoted by𝑈 ⊂ 𝑉 . The subvector 𝑋𝑈 = (𝑋𝑣, 𝑣 ∈ 𝑈 )
is in the domain of attraction of the𝑈 -marginal distribution of 𝐻Λ.

Melun 52

Nemours

Sens

Paris

Meaux

𝜃1

𝜃2
𝜃3 𝜃4

𝜃5

𝜃6

Figure 1.6: The Seine network with the tail dependence parameters associated to each
edge of the tree.

According to Engelke and Hitz (2020, Example 7) the multivariate margins of
the Hüsler–Reiss distribution are from the same family. We only need to take Λ𝑈 =

{𝜆2
𝑖 𝑗 }𝑖, 𝑗∈𝑈 . Let 𝐻Λ𝑈

denote the𝑈 -marginal distribution of 𝐻Λ. Given that we consider
Λ𝑈 the question is whether it is still possible to identify all the parameters 𝜃𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸
from 𝐻Λ𝑈

. The answer says that every node with latent variable should have at least
three neighbors. This is a necessary and sufficient condition for the parameters’
identifiability. The criterion is satisfied in the Seine network, hence in principle we
are able to estimate all tail dependence parameters without having to modify the river
network in order to avoid nodes with latent variables.

The application on the Seine in Section 2.5 presents several results. We consider
confidence intervals on the parameters 𝜃 2

𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸 based on a bootstrap procedure
or on theoretical results from Einmahl et al. (2018). According to these, we see
that all parameters 𝜃 2

𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸 are different from zero. The goodness-of-fit of the
approximating distribution in (1.10) is evaluated by comparing parametric estimates
of the extremal coefficients with their non-parametric counterparts. As another check
on the goodness-of-fit we present also estimates of the Pickands dependence function
and bootstrapped confidence intervals as suggested in Kiriliouk et al. (2018). Finally
we use several tools to discuss the extremal dependence within the Seine network,
which appears rather strong, especially for flow-connected stations. Thanks to the
fact that we can identify all parameters 𝜃 2

𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸 even when𝑋2, 𝑋5 are unobserved,
we can compute extremal dependence between pairs of locations for which it would
otherwise be impossible.

To conclude, the paper provides a method to study extremal dependence on
rivers whose network is represented by a tree or it can be approximated by a tree. A
main novelty of the paper is in the parameter identifiability criterion, a topic that is
conceived in our paper for the first time. Another main novelty is the study of the
extremal dependence of Seine. The data has been collected by us and used for the
first time in this paper. To our knowledge this is the only study in the extreme value
literature dedicated to flood risk of Seine. Showing 𝑍 ∗ ∈ 𝐷 (𝐻Λ) is also not a trivial
result and it is the third main contribution to the literature.

Some novelties with minor importance are the following. The model for 𝑋 is
more general, it does not need to satisfy conditional independence relations. The
only assumption on 𝑋 is its domain of attraction of 𝐻Λ. Because of this, however,
it inherits limiting properties of 𝑍 ∗, which is more specific, involving assumptions
about Markovianity and a pair copula construction. The MME and the CLE, although
not new in the literature, contain “local” estimation approach. When there are latent
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𝑎 𝑏

𝑐 𝑑 𝑒

𝑓

Figure 1.7: An example of a block graph with three blocks {𝑎, 𝑏, 𝑐, 𝑑}, {𝑏, 𝑒}, and {𝑏, 𝑓 }.
Within a block all pairs must be connected.

variables, our estimators have to be modified with care to guarantee identifiability,
as explained in Section 2.7.4. The idea of “local” estimation was introduced with the
hope to reduce bias in the estimates. The simulations comparing the finite sample
properties of the three estimators in Section 2.7.5 also represent a minor merit of the
paper.

1.5 Chapter 3: Extreme value limits on Markov block graphs

The chapter is probabilistic in nature and it generalizes results from Segers (2020b)
and Chapter 2.

A block graph is represented in Figure 1.7. It is considered a generalization of a
tree (Le and Tuy, 2010): there is a unique shortest path between every pair of nodes
and there are no cycles outside a block. A Markov block graph or a Markov random
field with respect to a block graph is a random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) on the node set
of a block graph G = (𝑉 , 𝐸), which satisfies the global Markov property with respect
to G.

In Theorem 3.3.5 we generalize Segers (2020b, Theorem 1) for Markov block
graphs. We assume that for each block, with set of nodes 𝐶 ⊂ 𝑉 , and every 𝑢 ∈ 𝐶 we
have

lim
𝑡→∞
L{(𝑋𝑣/𝑡, 𝑣 ∈ 𝐶) | 𝑋𝑢 = 𝑡} = 𝜈𝐶,𝑢, (1.12)

for some probability measure 𝜈𝐶,𝑢 . This assumption is the analogue to (1.9) for Markov
trees. We also have an additional regularity condition which is common in literature
on Markov chains (Smith, 1992; Perfekt, 1994; Resnick and Zeber, 2013). According to
Theorem 3.3.5

{(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 \ 𝑢) | 𝑋𝑢 = 𝑡} 𝑑−→ (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢), 𝑡 →∞, (1.13)

where 𝐴𝑢𝑣 =
∏
(𝑎,𝑏 ) ∈𝑝 (𝑢,𝑣) 𝑀𝑎𝑏 . The notation 𝑝 (𝑢, 𝑣) is the unique shortest path

between nodes 𝑢 and 𝑣 as a set of edges. For every 𝑣 ∈ 𝑉 \ 𝑢 the random variables(
𝑀𝑎𝑏, (𝑎, 𝑏) ∈ 𝑝 (𝑢, 𝑣)

)
are independent between each other. For another node𝑤 ∈ 𝑉 \𝑢,

the shortest path 𝑝 (𝑢,𝑤) may share some of the edges with 𝑝 (𝑢, 𝑣). Then the variables
𝐴𝑢𝑤 and 𝐴𝑢𝑣 share the same variables𝑀𝑎𝑏 which belong to the shared edges. If there
are two edges in 𝑝 (𝑢, 𝑣) and 𝑝 (𝑢,𝑤), say (𝑖, 𝑗) and (𝑖′, 𝑗 ′), which belong to the same
block, then we have however𝑀𝑖 𝑗 and𝑀𝑖′ 𝑗 ′ dependent between each other.

The difference with respect to Theorem 1 in Segers (2020b) is that the factoriza-
tion of the limiting variables happens along the unique shortest paths, because in a
block graph, there may be more than one path between two nodes. We repeat for
completeness the example used in Chapter 3.

Example 11 (Limit of Markov block graph) Consider the following block
graph and a Markov field with respect to it, which satisfies the assumptions of
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1.5. CHAPTER 3: EXTREME VALUE LIMITS ON MARKOV BLOCK GRAPHS

Theorem 3.3.5. We assume therefore that for every block the random vector 𝑋𝐶 for
𝐶 ∈ C satisfies (1.12) and a regularity condition mentioned earlier.

0

1

2

3

6

4

5

7

𝑀21

𝑀
20

𝑀62

𝑀64

𝑀23
𝑀76

𝑀
65

Suppose that the high threshold is exceeded at node 7. The conclusion of Theorem 3.3.5
is that as 𝑡 →∞, we have(

𝑋𝑣/𝑡, 𝑣 ∈ {0, 1, . . . , 6} | 𝑋7 = 𝑡
) 𝑑−→

(
𝐴7𝑣, 𝑣 ∈ {0, 1, . . . , 6}

)
.

The limiting variables have the following structure:

𝐴7,{0,1,2} = (𝐴70, 𝐴71, 𝐴72) = 𝑀76𝑀62 (𝑀20, 𝑀21, 1),
𝐴7,{2,3} = (𝐴72, 𝐴73) = 𝑀76𝑀62 (1, 𝑀23),
𝐴7,{2,4,5,6} = (𝐴72, 𝐴74, 𝐴75, 𝐴76) = 𝑀76 (𝑀62, 𝑀64, 𝑀65, 1),
𝐴7,{6} = 𝐴76 = 𝑀76.

(1.14)

The limit vector (𝐴7𝑣)𝑣 is similar to the one of a Markov field with respect to the tree
formed by the unique shortest paths from node𝑢 = 7 to the other nodes. The variables
𝑀 are independent from each other if they are in different colors, and dependent
between each other if they are in the same color. ■

After this general result, we study the Hüsler–Reiss parameterization of the
Markov block graph.

Consider the limiting probability distribution in (1.12), 𝜈𝐶,𝑢 . If the random vector
𝑋𝐶 has a max-stable Hüsler–Reiss distribution with parameter matrix Δ𝐶 = {𝛿2

𝑖 𝑗 }, then
𝜈𝐶,𝑢 is a multivariate log-normal distribution. The elements of Δ𝐶 are given in (1.4)
with 𝑉 = 𝑉𝐶 , the vertices of the block 𝐶 . Thus, Δ𝐶 is symmetric, 𝛿2

𝑖 𝑗 = 𝛿
2
𝑗𝑖 > 0, with

zero diagonal. The parameters of the normal distribution associated to the log-normal
distribution are determined by the edge weights in the following way

{𝜇𝐶,𝑢}𝑣 ∝ 𝛿2
𝑢𝑣, 𝑣 ∈ 𝑉𝐶 ,

{Σ𝐶,𝑢}𝑖 𝑗 ∝ 𝛿2
𝑢𝑖 + 𝛿2

𝑢 𝑗 − 𝛿2
𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉𝐶 \ 𝑢.

(1.15)

However, instead of assuming that 𝑋𝐶 has max-stable Hüsler–Reiss distribution, the
subsequent analysis wouldn’t change if we assume that 𝑋𝐶 has any distribution, but
it satisfies (1.12) with 𝜈𝐶,𝑢 the log-normal distribution described above. In this way
we avoid to assume that the distribution of 𝑋𝐶 is itself max-stable. We make the same
assumption for 𝑋𝐶 for every 𝐶 ∈ C.

Let 𝑋 be the concatenation of all 𝑋𝐶 ,𝐶 ∈ C, described in the previous paragraph.
We assume that 𝑋 satisfies the global Markov property with respect to the block
graph. According to Theorem 3.3.5 the limit of 𝑋 = (𝑋𝐶 ,𝐶 ∈ C) in (1.13) involves
multiplication of log-normal variables. Consider again Example 11. The random
variables 𝑀76, (𝑀65, 𝑀62, 𝑀64), (𝑀20𝑀21) and 𝑀23 are (jointly) log-normal with the
parameters indicated in (1.15). If they are of different color, they are independent
between each other, and if they are of the same color, they are dependent. The
logarithm of (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \𝑢) has then amultivariate normal distribution. Its parameters
are described in terms of 𝜇𝐶 , Σ𝐶 in (1.15), and involve the unique shortest paths from
node 𝑢 to any other node 𝑣 ∈ 𝑉 \ 𝑢.
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1.5. CHAPTER 3: EXTREME VALUE LIMITS ON MARKOV BLOCK GRAPHS

We also show that 𝑋 = (𝑋𝐶 ,𝐶 ∈ C) belongs to the domain of attraction of a
Hüsler–Reiss distribution with parameter matrix 𝑃 (Δ𝐶 ,𝐶 ∈ C) = {𝑝𝑖 𝑗 } with

{𝑝𝑖 𝑗 } ∝
∑︁

(𝑎,𝑏 ) ∈𝑝 (𝑖, 𝑗 )
𝛿2
𝑎𝑏
, 𝑖, 𝑗 ∈ 𝑉 .

We note this distribution 𝐻𝑃 .
The model for𝑋 as just described is not to be confused with the extremal graphical

model parameterized by Hüsler–Reiss Pareto distributions in Engelke and Hitz (2020).
But there is a link between the two. The matrix 𝑃 (Δ𝐶 ,𝐶 ∈ C) is the explicit solution
of the matrix in Proposition 4 of Engelke and Hitz (2020).

In (1.3) when we take𝐺 = 𝐻𝑃 we would obtain a Hüsler–Reiss Pareto distribution.
This distribution turns out to be an extremal graphical model as in Definition 9 with
respect to the same graph G with respect to which the random vector 𝑋 was assumed
to be an ordinary graphical model.

We can conclude that the Pareto limit of a distribution parameterized blockwise
through Hüsler–Reiss distributions is equal to the distribution of a vector parameter-
ized blockwise by Hüsler–Reiss Pareto distributions.

What follows next is the parameters’ identifiability criterion. Recall that when
there are unobserved variables we are required to work with the |𝑈 |-variate distri-
bution 𝐻𝑃𝑈 with 𝑃𝑈 = {𝑝𝑖 𝑗 }𝑖, 𝑗∈𝑈 (𝑈 denotes the nodes with observed variables) to
identify all non-zero parameters in Δ𝐶 for all 𝐶 ∈ C. Not surprisingly the necessary
and sufficient criterion is that every node with latent variable takes part in at least
three blocks. Recall that the criterion for trees was that every node with latent variable
has at least three neighbors.

To summarize, the main findings in Chapter 3 are related to EV limits of a general
Markov block graph, and a Markov block graph parameterized through a family of
Hüsler–Reiss distributions.

The topic of EV limits for Markov chains has been in the literature for quite some
time (Smith, 1992; Segers, 2007; Papastathopoulos et al., 2017), and recently generalized
to Markov trees (Segers, 2020b). In the context of Hüsler–Reiss parameterization, the
link between an ordinary graphical model and an extremal graphical model is new and
to our knowledge, there are no similar results for other parameterization. Similarly
for the parameters’ identifiability criterion - the problem has been introduced in our
previous paper which focused onMarkov trees and Chapter 3 provides a generalization
to Markov block graphs.

The theory from Markov trees nicely generalizes to Markov block graphs, but
the practical applicability of the latter seems more difficult to see. In Chapter 2 we
have come up with at least one example - extreme water levels on a river network,
which is well suited to be modeled as a random vector associated to a tree. With
block graphs we could think of a block as a cluster. The variables within a block must
be continuous to be suitable for extreme value analysis and must share similarities
between each other. The variable that is shared by several clusters, or blocks, must
have other properties that makes it similar to the variables in the other cluster too. Of
course, the characteristics and similarities can be regarded as dominant, not simply
present or absent. Suppose for instance, Figure 1.8 represents four different portfolios
of assets. The variable at each node is the asset’s return. The portfolio “Pink” contains
assets {ℎ,𝑔, 𝑐}, that are predominantly exposed to risk(s) “Pink”. However asset 𝑐 also
has significant part of risk(s) “Orange” which characterize(s) the assets in portfolio
“Orange”, {𝑎, 𝑏, 𝑐, 𝑑}. Asset 𝑏 is judged to be very sensitive to risks “Orange”, “Gray”
and “Yellow”. However asset 𝑓 is mainly characterized by risk(s) “Gray”. As another
example we could consider a banking system. The variable at every edge could be the
inter bank lending rate of a certain bank. The cluster of {ℎ,𝑔, 𝑐} could represent the
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𝑎 𝑏

𝑑

𝑓

𝑒𝑐𝑔

ℎ

Figure 1.8: A graph representing links between four clusters - the “Pink”, “Orange”,
“Gray” and “Yellow” clusters. Variable 𝑐 is the link between the “Pink” and the “Orange”
cluster. An extreme event in the orange cluster has to propagate to the pink cluster
through the variable on node 𝑐.

banks of country “Pink” which do lend deposits between each other, but only bank 𝑐
trades with banks from country “Orange”. The banking systems of the four countries
are connected between each other through the banks 𝑏 and 𝑐 which are active on
more than one national market.

1.6 Chapter 4: Max-linear model on trees of transitive
tournaments

The focus of this chapter are themax-linear Bayesian networks fromDefinition 7. Here
and in Chapter 5 we consider a graph which we called a tree of transitive tournaments.
It represents a DAG, whose skeleton (non-directed version) is a block graph. The
idea is to study the same topics as in Chapters 2 and 3 but applied to a max-linear
Bayesian network with respect to a directed acyclic block graph. The chapter is also
purely probabilistic. We deal with the following main problems:

■ specify the parameter space of the edge weights 𝜃 = (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸);

■ give a necessary and sufficient condition for (𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 > 𝑡) to
have the familiar limit involving factorization in independent multiplicative
increments;

■ relate this to the Markovianity of the model with respect to the undirected
version of the ttt;

■ study the parameter identifiability criterion.

A transitive tournament, say 𝜏 = (𝑉𝜏 , 𝐸𝜏 ), is a complete graph which is a DAG: so
every pair of nodes 𝑖, 𝑗 ∈ 𝑉𝜏 is connected by a directed edge (𝑖, 𝑗) ∈ 𝐸𝜏 or ( 𝑗, 𝑖) ∈ 𝐸𝜏
in such a way that 𝜏 is acyclic. Recall also that as soon as we talk about directed
graphs we have parent node, pa(𝑣), Pa(𝑣) = pa(𝑣) ∪ {𝑣}; child nodes, more rarely
used notation ch(𝑣),Ch(𝑣) = ch(𝑣) ∪ {𝑣}; ancestors, an(𝑣),An(𝑣) = an(𝑣) ∪ {𝑣}; and
descendants, desc(𝑣),Desc(𝑣) = desc(𝑣) ∪ {𝑣}. In a transitive tournament on 𝑑 nodes,
there is one node with no parents (zero in-degree), one node with one parent, one
node with two parents and so on, until one node with 𝑑 − 1 in-degree or parents. The
equivalent statement is that there is one node with 𝑑 children (𝑑 out-degree), one node
with 𝑑 − 1 children and so on, until one node with no children at all. A ttt, T = (𝑉 , 𝐸),
combines several transitive tournaments in a tree-like manner. This means that two
transitive tournaments may have only one node in common and there cannot be a
non-directed cycle involving several tournaments. A ttt is illustrated in Figure 1.9.
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Figure 1.9: A ttt on four transitive tournaments, {0, 1, 2}, {2, 3}, {2, 4, 5, 6}, {6, 7}. Each
tournament is a DAG and the whole ttt is a DAG too. If we remove the directions, we
obtain a block graph. Hence there are no undirected cycles involving several tourna-
ments. If there is a directed path between two nodes, there is a unique shortest directed
path. Because the skeleton is a block graph, there is a unique shortest undirected path
between every pair of nodes.

A max-linear model as in Definition 7 is parameterized by edge weights (𝑐𝑖 𝑗 ≥
0, (𝑖, 𝑗) ∈ 𝐸) and parameters 𝑐𝑖𝑖 > 0, 𝑖 ∈ 𝑉 . The assumptions we make on the
parameter space are key to all the results. We have mentioned the notion of critical
path introduced already in Gissibl and Klüppelberg (2018) and present in all subsequent
literature related to max-linear models. Consider the paths from node 0 to 2 in
Figure 1.9: one path is 𝑝1 = {(0, 2)} and another is 𝑝2 = {(0, 1), (1, 2)}. Consider
the edge weights 𝑐01, 𝑐02, 𝑐12 and form the path products 𝑐02 and 𝑐01𝑐12. The critical
path is the one that has the highest path product, so either 𝑐02 or 𝑐01𝑐12. We make
the assumption that edge weights (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) are such that all shortest paths are
critical. In the example above this means that 𝑐01, 𝑐02, 𝑐12 are such that 𝑐02 > 𝑐01𝑐12. In
this way, we avoid that some edge weights are not represented in the distribution of
𝑋 . With the assumption of criticality for the parameter space of (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) the
matrix coefficients {𝑏𝑖 𝑗 }𝑖, 𝑗 ∈ 𝑉 can be expressed as

𝑏𝑖 𝑗 = 𝑐−→𝑝 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 , 𝑗 ∈ an(𝑖), (1.16)

where
𝑐−→
𝑝 ( 𝑗,𝑖 ) =

∏
(𝑎,𝑏 ) ∈−→𝑝 ( 𝑗,𝑖 )

𝑐𝑎𝑏 . (1.17)

and −→𝑝 ( 𝑗, 𝑖) denotes the unique shortest directed path between nodes 𝑗 and 𝑖 .
We show that in a ttt with unique source (node without parents in the whole ttt),

the limiting vector in

(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 > 𝑡) 𝑑−→ (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢), 𝑡 →∞ (1.18)

can be represented as a factorization of independent variables along the unique
shortest undirected path from 𝑢 to any other node in 𝑉 \ 𝑢. This is in analogy with
already seen results related to Markov trees and Markov block graphs in the previous
chapters. Also, we show that if the source is not unique, there is no 𝑢 ∈ 𝑉 such that a
factorization of (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) in independent variables is possible.

Example 12 (Factorization of a max-linear model) Suppose 𝑋 is a max-
linear model with respect to the following ttt with unique source at node 0. Let the
high threshold be exceeded at node 7, so 𝑢 = 7.
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The random vector (𝐴7𝑣, 𝑣 ∈ 𝑉 \ 7), as a limit of (𝑋𝑣/𝑋7, 𝑣 ∈ 𝑉 \ 7 | 𝑋7 > 𝑡) as 𝑡 →∞,
has the same form as the one in (1.14). The variables in the same color are dependent
between each other and the variables in different color are independent from each
other. In a max-linear model the increments have jointly discrete distribution. The
result follows from Segers (2020b, Example 1). The important message is that for
max-linear models the factorization for every 𝑢 ∈ 𝑉 happens if and only if the ttt has
a unique source. ■

What underlies this result is the fact that 𝑋 satisfies the global Markov property
with respect to the skeleton of the ttt if and only if there is a unique source. This is
our second major result in the paper.

The main challenge in this paper was the identifiability criterion in the context of
the max-linear model on a ttt with unique source.

In the case of a max-linear model with respect to a ttt the problem is the same
as the one in Chapters 2 and 3. Namely, suppose that there are nodes in the ttt
whose variables are unobserved. We have to work only with the distribution of 𝑋𝑈 ,
where 𝑈 is the set of nodes with observed variables. Earlier, we mentioned that the
distribution of a max-linear model is an extreme value distribution with discrete
angular measure (see Definition 2), say a measure S with atoms {𝑎𝑣}𝑣∈𝑉 and masses
{𝑚𝑣}𝑣∈𝑉 . The atoms and masses are defined in terms of the coefficients {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉
from Definition 7 and accordingly in terms of the edge weights (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸). The
distribution of the subvector𝑋𝑈 is in the same family, say a measure S𝑈 , but its atoms
and masses, say {𝛼𝑟 } and {𝜇𝑟 } respectively, are different than {𝑎𝑣}𝑣∈𝑉 and {𝑚𝑣}𝑣∈𝑉 ,
but still functions of {𝑏𝑖 𝑗 } and (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸). The problem is that S𝑈 might not
be bijection of (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) and hence two different sets of edge weights might
generate the same S𝑈 . The parameter identifiability problem consists of giving a
criterion such that edge weights (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) are uniquely identified from S𝑈 . A
pair of necessary and sufficient conditions in the case when the max-linear model is
with respect to a ttt with unique source is that

(i) every node with latent variable has at least two children and
(ii) every node with latent variable is the source of some tournament.

To illustrate the criterion, consider the graph in Example 12 with unique source at
node 0. The nodes that may contain a latent variable are 0 and 2. Nodes 1,3,4,6,7 have
only one child, and node 5 although having two children, is not the source of any
tournament.

The first contribution of the paper is the necessary and sufficient condition for
the factorization of the limiting distribution in (1.18). The second one links this
to Markovianity of the random vector with respect to the undirected version of
the graph. The third contribution is the necessary and sufficient criterion for the
parameter identifiability if we observe a subvector of the max-linear model 𝑋 . There
are many side results accompanying these three major statements.

The practical applications may look limited at first. We could think of rivers again
– the delta of a river or a portion of a river where the stream is such that the source is
unique. We could also use similar financial examples as in the previous section on
block graphs. A ttt represents interactions between clusters. Given that within every
tournament there is a degree ordering we can use an ordering according to some
criterion, thereby imposing some hierarchy within a cluster. Literature on extreme
value theory has seen many uncommon applications – such as in neurobiology, drugs
testing, road security, IT network traffic, material robustness and corrosion. An
appropriate application, although not straightforward to find, might exist and is a
topic of additional research.
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1.7 Chapter 5: Sum-linear models and their similarity with
max-linear models

This chapter gathers results on sum-linear models as in Definition 8. The topics
are familiar – factorization of the limiting variables into independent increments,
Markovianity with respect to the undirected graph and the parameter identifiability
criterion. It turns out that the two of the propositions for the sum-linear model are
identical to these of the max-linear model. Exception makes the Markovianity of the
sum-linear model, where we cannot provide the necessity part, but we conjecture it is
true. What regards the factorization into independent increments and the parameter
identifiability, we can use exactly the same statements of the two main propositions
discussed in the previous section, replacing the max-linear model with a sum-linear
model. However the proofs are different in many respects. In what follows we will
outline the differences and the similarities between the two models.

The first difference is in the parameter space for the edge weights 𝜃 = (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈
𝐸). Recall that we have a ttt, T = (𝑉 , 𝐸), with edge weights 𝜃 = (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸).
For a sum-linear model 𝑋 as in Definition 8 the notion of criticality applicable for
max-linear models does not play a role.

For a sum-linear model we show that the matrix 𝐵 is given by

𝑏𝑖 𝑗 = 𝑑 𝑗 𝑗
©«

∑︁
−→
𝑝 ∈𝜋 ( 𝑗,𝑖 )

𝑐−→
𝑝

ª®¬ , 𝑖 ≠ 𝑗, (1.19)

where 𝜋 ( 𝑗, 𝑖) is a set of all directed paths from 𝑗 to 𝑖 , −→𝑝 is an element of this set and
it is composed of edges, and 𝑐−→

𝑝
=

∏
(𝑎,𝑏 ) ∈−→𝑝 𝑐𝑎𝑏 .

The second difference with respect to the max-linear model is in the coefficients
{𝑏𝑖 𝑗 }: compare (1.19) with (1.16). In the max-linear model, as a consequence of the
criticality assumption that we make on all shortest paths, the edge weights along the
unique shortest directed path matter. In the sum-linear model, only the edge weights
along all directed paths are involved. This difference induces a different method in
the proof of the parameter identifiability criterion with relation to the one used for
max-linear models. Some of the proofs regarding the sum-linear model are possible
using classical matrix algebra, as opposed to using so called tropical algebra in the
case of a max-linear model.

A major similarity between the two models is that they are both in the domain
of attraction of a distribution of the same family (Einmahl et al., 2012, Lemma 6.1).
Therefore the angular measure of this extreme value distribution for both models is
of the same family too. We use this result to show that the limit in (1.18) when 𝑋 is
sum-linear is of the same form as when 𝑋 is max-linear. In particular, this distribution
is discrete and it is given by (Segers, 2020b, Example 1)∑︁

𝑖∈𝑉
𝑏𝑢𝑖𝛿 (𝑏𝑣𝑖/𝑏𝑢𝑖 ,𝑣∈𝑉 )

where {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 can be the coefficients of the max-linear or of the sum-linear model.
Because these however are different, the two probability measures are not the same,
but they do share the same form. In the case when the ttt is a tree, there is no difference
between the two models.

Another important result states that the summation term in (1.19) can be factorized
along the unique shortest directed path, which we will denote here by −→𝑝 ( 𝑗, 𝑖). Let
{𝑢 = 𝑣1, . . . , 𝑣𝑛 = 𝑣} be the set of nodes on the unique shortest directed path between
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a pair of nodes 𝑢, 𝑣 ∈ 𝑉 . Then we have

∑︁
−→
𝑝 ∈𝜋 (𝑢,𝑣)

𝑐−→
𝑝
=

𝑛−1∏
𝑖=1

©«
∑︁

−→
𝑝 ∈𝜋 (𝑣𝑖 ,𝑣𝑖+1 )

𝑐−→
𝑝

ª®¬ . (1.20)

Thanks to the two result above we obtain the factorization of the limit in (1.18)
on a ttt with unique source. In exactly the same way as for the max-linear model, the
limiting variables (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) from (1.18) factorize into independent variables
along the unique shortest undirected paths, if and only if the ttt has a unique source.
The proof is also similar to the proof of the analogous proposition for the max-linear
model. This is due to the fact that in view of (1.20) the coefficient 𝑏𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝑉 in both
models become products of terms along the unique shortest directed path from 𝑗 to 𝑖 .

The sum-linear model is also Markov with respect to the undirected version
of the ttt, provided the ttt has a unique source. However, since the distribution of
the sum-linear model is absolutely continuous we do not need the theory of condi-
tional independence in max-linear models, but use classical results from conditional
independence in directed graphs (Lauritzen, 1996; Koller and Friedman, 2009).

Recall the parameter identifiability problem – to identify uniquely all edge weights
(𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) from the distribution of a subvector 𝑋𝑈 which is again a sum-linear
model. We do not have an analytical expression of its distribution but we approach
the problem by studying the angular measure of the extreme value distribution to
which domain of attraction 𝑋𝑈 belongs, say S𝑈 . This angular measure is discrete by
Lemma 6.1 in Einmahl et al. (2012), and its masses {𝜇𝑟 } and atoms {𝛼𝑟 } are functions
of the coefficients {𝑏𝑖 𝑗 } and of the edge weights (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸). However, is S𝑈 a
bijection of (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸) ? The necessary and sufficient conditions are the same as
in (i) and (ii) in the section on max-linear models. In this way we may use some of
the tools from the proof of the parameter identifiability criterion for the max-linear
model. However, the different structure of {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 of the sum-linear model requires
a different approach mainly in the sufficiency part of the proof.

The main message of Chapter 5 is the striking similarity of both models and at
the same time, the difference in the proofs’ approaches. The sum- and the max-linear
models share exactly the same properties in regard to the nature of their tail behavior,
Markovianity with respect to the undirected graph and the parameter identifiability
criterion. This similarity is induced by the fact that the two models share the same
domain of attraction and by the factorization of the coefficients {𝑏𝑖 𝑗 } in (1.20). Thanks
to this last property, the coefficients {𝑏𝑖 𝑗 } of both models can be factorized along the
unique shortest directed paths. Differences in the proofs of these properties arise
from the different parameter space for (𝑐𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸). In the max-linear model, the
criticality of shortest paths was necessary to assure validity of results. We have also
different expressions of {𝑏𝑖 𝑗 } – in the max-linear model only edge weights on unique
shortest directed paths are involved, whereas in the sum-linear model, edge weights
along all possible paths take part. Also sum-linear models may use classical matrix
algebra and theory of conditional independence, as opposed to tropical algebra and
new separation concepts developed for max-linear models.

1.8 Chapter 6: R package gremes – Estimation of Tail
Dependence in Graphical Models

Packages related to extremes and graphical models are few in number. To my knowl-
edge there is the package graphicalExtremes on CRANwhich is based on Engelke
and Hitz (2020) and which presents tools for exact simulation and inference on Hüsler–
Reiss extremal graphical models. The package gremes is the second one with focus
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on graphical models and extremes. It is mainly dedicated to the models in Chapter 2,
hence Markov trees. It provides tools for estimation of the tail dependence parameters
in graphical models parameterized by family of Hüsler–Reiss distributions. The only
supported graphs are trees and block graphs. The estimation methods are variations of
method of moments (Engelke, Malinowski, Kabluchko, and Schlather, 2014; Asenova,
Mazo, and Segers, 2021), maximum likelihood (Asenova, Mazo, and Segers, 2021; En-
gelke and Hitz, 2020) and a method based on extremal coefficients (Einmahl, Kiriliouk,
and Segers, 2018).

There is a rich documentation accompanying the package: about fifteen vignettes
explain the main and additional functionalities. Estimators are theoretically motivated,
to a sufficient detail so that the user rarely needs to consult the referenced articles.
All notation and procedures used from the estimators are detailed. The use of each
estimator is demonstrated in a separate vignette. The website of the package www.
gremes.info presents more or less the content of the vignettes.

The package is developed in an object-oriented style. The classes are type S3.
There are two main types of objects.

■ An object containing the graph and the dataset is created using classes Network,
Tree, BlockGraph, and subclasses of these.

■ An object containing the graph and the edge weights is created with classes
HRMnetwork, HRMtree, HRMBG, and subclasses of these.

The first type of objects represents the non-parametric view on the problem -
all we know is the graph and the data. The second type of objects represents the
Hüsler–Reiss parametric model: every clique is parameterized by a Hüsler–Reiss
distribution with parameters - the edge weights within this clique. Hence all that
characterizes the parametric model is the graph and the edge weights.

Consider for instance the method extrCoeff which is written both for classes
Tree and HRMtree. If we pass an object of class Tree to the method extrCoeff,
the command will return non-parametric estimates of the extremal coefficients. If the
object passed is of class HRMtree, parametric extremal coefficients will be returned.

The main goal of the package is estimation, therefore the method estimate is
the key functionality of the tools provided in the package. Estimation in gremes
happens by using the method estimate on an object from one of the following
classes:

■ MME, MLE, MLE1, MLE2, EKS, EKS_part, EngHitz, MMEave, MLEave in which
case it estimates the edge weights on a tree.

■ HRMBG in which case it estimates the edge weights on a block graph.

Since most of the estimation methods apply to models with respect to trees we
present the theoretical motivation only for these estimators. Let 𝑇 = (𝑉 , 𝐸) be a tree
with node set𝑉 and edge set 𝐸. Consider a |𝑉 |-variate random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 )
for which it holds: 𝑋 satisfies the global Markov property with respect to the tree 𝑇 ;
every bivariate distribution between two adjacent variables uses a bivariate Hüsler–
Reiss copula with parameter 𝜃𝑖 𝑗 for some edge (𝑖, 𝑗) ∈ 𝐸; univariate margins are
standardized to the unit-Pareto distribution.

Based on different asymptotic results of 𝑋 , we can have different estimators of
the parameters 𝜃𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸, which we collect in a vector 𝜃 ∈ (0,∞)𝐸 .

(L1) Consider the log-differences conditional on a high threshold being exceeded at
a particular node

(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡, 𝑡 →∞.
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It can be shown that the limiting distribution of the vector above is multi-
variate Gaussian distribution with mean vector 𝜇𝑢 (𝜃 ) and covariance matrix
Σ𝑢 (𝜃 ) which depend on the edge weights and on the particular node 𝑢. This
is a result from Chapter 2 or also Asenova, Mazo, and Segers (2021) and ref-
erences therein. The method of moments type estimator and the compos-
ite likelihood estimator both aim at estimating Σ𝑢 and accordingly 𝜃 . The
estimators are implemented in methods estimate.MME, estimate.MLE,
estimate.MLE1 and estimate.MLE2.

(L2) Consider the limiting distribution of the scaled componentwise maxima if we
dispose of a random sample of size 𝑛 of 𝑋 , {𝑋𝑣,𝑖 }𝑖∈1,...,𝑛;𝑣∈𝑉(

1
𝑛

max
𝑖=1,...,𝑛

𝑋𝑣,𝑖 , 𝑣 ∈ 𝑉
)
, 𝑛 →∞.

The limit, shown in Chapter 2 or also Asenova, Mazo, and Segers (2021), is a
max-stable Hüsler–Reiss copula with unit Fréchet margins and with parameter
matrix Λ given by(

Λ(𝜃 )
)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) ∝
∑︁

(𝑎,𝑏 ) ∈𝑝 (𝑖, 𝑗 )
𝜃 2
(𝑎,𝑏 ) , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, (𝑎, 𝑏) ∈ 𝐸. (1.21)

The extremal coefficient estimator, introduced in Einmahl, Kiriliouk, and Segers
(2018) and used in Asenova, Mazo, and Segers (2021) is based on bi- and tri-
variate extremal coefficients derived from this max-stable distribution. The esti-
mator is implemented in methods estimate.EKS, estimate.EKS_part.

(L3) Consider the scaled random vector, given that the maximum exceeds a high
threshold:

(𝑋𝑣, 𝑣 ∈ 𝑉 )/𝑡 | max
𝑣∈𝑉

𝑋𝑣 > 𝑡, 𝑡 →∞.

The limit is a so called Hüsler-Reiss Pareto (Engelke and Hitz, 2020) distribution
with the same matrix Λ as in (6.1). Proof of this limit is provided in Asenova
and Segers (2021), see also Engelke and Hitz (2020). For Hüsler–Reiss Pareto
distributions with respect to trees, Engelke and Hitz (2020) presents a cliquewise
estimator which has been implemented in gremes and called ‘Engelke and
Hitz’ estimator. We have adapted it to make it suitable when there are latent
variables. More details are presented in Chapter 6. The estimator is implemented
in method estimate.EngHitz.

(L4) Consider the differences with respect to the mean of the log-transformed vari-
ables

(ln𝑋𝑣 − ln𝑋, 𝑣 ∈ 𝑉 ) | ln𝑋 > 𝑡, 𝑡 →∞,

where ln𝑋 = (1/|𝑉 |)∑𝑣∈𝑉 ln𝑋𝑣 . The limit of this vector is also a multivariate
Gaussian distribution with mean and covariance matrix, say Σ̄, that contain the
matrix Λ(𝜃 ) in (6.1). This asymptotic result is shown in an unpublished note
Segers (2019) and details are not provided here. The package offers method of
moments and maximum composite likelihood estimates, The estimators are
implemented in methods estimate.MMEave, estimate.MLEave.

Other functionalities present in the package are a method for simulating from
the exact distribution of a Markov tree, parameterized by bivariate Hüsler–Reiss
copulas; tools for post-estimation analysis, such as methods calculating parametric
or non-parametric stable tail dependence functions, extremal coefficients, and tail
dependence coefficients.
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Inference on extremal
dependence in the domain
of attraction of a
structured Hüsler–Reiss
distribution motivated by
a Markov tree with latent
variables

2

This chapter corresponds to an article prepared jointly with Johan Segers and Gildas
Mazo, carrying the same name as the chapter and published in the journal Extremes
in 2021.

2.1 Introduction

A major topic in multivariate extreme value theory is the modeling of tail dependence
between a finite number of variables. Informally, tail dependence represents the
degree of association between the extreme values of these variables. Probabilistic
graphical models (Lauritzen, 1996; Koller and Friedman, 2009; Wainwright et al., 2008),
are distributions which embody a set of conditional independence relations and have a
graph-based representation, according to which the nodes of the graph are associated
to the variables and the set of edges encode the conditional independence relations.
The intersection of the two fields, extreme value theory and probabilistic graphical
models, gives rise to the study of the tail behavior of graphical models.

Consider a river network where the interest is in extreme water levels or water
flow in relation to flood risks. Figure 2.1 illustrates part of the Seine network. The
graph fixed by the seven labeled nodes and the river channels between them can be a
base for building a model for extremal dependence between the water levels at these
sites.

Hydrological data are often used to fit models for multivariate extremes based
on graphs. Water flows of the Bavarian Danube are analyzed in Engelke and Hitz
(2020). Lee and Joe (2017) study water flows of the Fraser river, British Colombia.
Precipitation data in the Japanese archipelago is treated in Yu et al. (2016), where the
model is based on a spatial grid viewed as an ensemble of trees. Other extreme-value
models involving graphs appear in Einmahl et al. (2018) and Lee and Joe (2017), who
study financial data under different models. The first paper uses max-linear models
on a directed acyclic graph (DAG) (Gissibl and Klüppelberg, 2018), and the second one
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2.1. INTRODUCTION

a 1-factor model. Klüppelberg and Sönmez (2022) introduce an infinite max-linear
model to analyze the distribution of extreme opinions in a social network.

Relatively recently the relation between extreme value distributions and condi-
tional independence assumptions has been given theoretical relevance. The earliest
is the article of Gissibl and Klüppelberg (2018) introducing max-linear models as
structural equation models on a DAG, followed by the regularly varying Markov trees
in Segers (2020b) and the extremal graphical models in Engelke and Hitz (2020) based
on multivariate Pareto distributions. Earlier, Papastathopoulos and Strokorb (2016)
showed that for a max-stable random vector with positive and continuous density,
conditional independence implies unconditional independence, thereby concluding
that a broad class of max-stable distributions does not exhibit an interesting Markov
structure.

A key object of our paper is the multivariate Hüsler–Reiss distribution (Hüsler
and Reiss, 1989) with parameter matrix having a particular structure linked to a tree
as specified in Eq. (2.5). The structure is motivated by the fact that the max-domain
of attraction of the said Hüsler–Reiss distribution contains certain regularly varying
Markov trees. The latter property follows from results in Segers (2020b) and sets
our work apart from the extremal graphical models in Engelke and Hitz (2020), who
impose a non-standard conditional independence relation on the multivariate Pareto
distribution associated to a max-stable distribution, but without regard for the latter’s
max-domain of attraction. Still, it turns out that for trees, the structured Hüsler–Reiss
models in Engelke and Hitz (2020) and in our paper are the same, as explained in
Section 2.7.1. Another structured Hüsler–Reiss distribution based on trees is proposed
in Lee and Joe (2017). The form they propose is genuinely different from ours, however,
as explained in detail in Section 2.7.2.

We consider random samples from the distribution of a random vector 𝜉 =

(𝜉𝑣, 𝑣 ∈ 𝑉 ) with continuous margins whose variables are indexed by the node set
𝑉 = {1, . . . , 𝑑} of an undirected tree with edge set 𝐸. After marginal standardization to
the unit-Pareto distribution, we assume that the random vector is in the max-domain
of attraction of the tree-structured Hüsler–Reiss distribution described in the previous
paragraph. We emphasize that we do not assume that 𝜉 itself satisfies any conditional
independence relations with respect to the tree. The tree only comes into play via the
imposed structure on the parameter matrix of the max-stable Hüsler–Reiss distribu-
tion containing the distribution of the standardized version of 𝜉 in its max-domain of
attraction.

The main result and contribution of our paper is a criterion for identifiability of all
𝑑 − 1 parameters 𝜃𝑒 ∈ (0,∞) for 𝑒 ∈ 𝐸 of the tree-structured 𝑑-variate Hüsler–Reiss
distribution in case some of the 𝑑 variables are latent (unobservable). To illustrate
why the problem of latent variables is relevant, consider again the Seine network on
Figure 2.1. The red dots designate junctions of two river channels (conversely, in a river
delta, a channel could split into several ones). No measurement stations being present
there, we cannot observe the water levels at those locations. We propose to treat
those water levels as latent variables. The question is then whether it is still possible
to identify all 𝑑 − 1 parameters. The answer is a surprisingly simple identifiability
criterion: it is necessary and sufficient that all nodes indexing latent variables have
degree at least three. The important practical implication is that, provided the criterion
is met, the latent variables can be included in the model, reflecting the dependence
structure more accurately than when they would have been ignored.

Given a random sample from a distribution in the max-domain of attraction of
the tree-structured Hüsler–Reiss distribution, we propose three types of estimators
of the edge parameters: a first one called method of moments estimator (MME) is
based on the estimator proposed in Engelke et al. (2014), a second one is based on
the composite likelihood function (composite likelihood estimator or CLE) and the
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Figure 2.1: Seine network. The data is from the web-site of Copernicus Land Monitor-
ing Service: https://land.copernicus.eu/imagery-in-situ.

third one is essentially the pairwise extremal coefficient estimator (ECE) introduced
in Einmahl et al. (2018). All estimators proposed allow for the fact that some of the 𝑑
variables are latent, provided the identifiability criterion is met.

We illustrate the method by a detailed analysis of data on high water levels at
several locations of the Seine network. The network is represented schematically as a
tree with seven nodes indexing five observable variables and two latent ones. As the
identifiability criterion is met, we can estimate the six dependence parameters of the
tree-structured Hüsler–Reiss distribution, each parameter corresponding to an edge
in the tree. For the three proposed estimators we compute parameter estimates and
confidence intervals. We assess the goodness-of-fit by comparing the model output
with various non-parametric measures of tail dependence. Finally, we compare the
fitted tail dependence model incorporating latent variables with a model where the
latent variables are ignored.

The outline of the paper is as follows: Section 2.2 presents some general theory
and describes the model to which the identifiability criterion is applied. The latter is
the focus of Section 2.3. Section 2.4 introduces the three estimators, used for statistical
inference and Section 2.5 is dedicated to the study of high water levels on the Seine
network. Concluding remarks and perspectives for further research are discussed
in Section 3.5. The supplements’ section provides proofs that are not in the text, a
numerical comparison between our structured Hüsler–Reiss method and the one
of Lee and Joe (2017), clarification on the relationship between the different objects
in our paper and the objects in Engelke and Hitz (2020), some simulation results
which aim at comparing the different estimators, and details about some estimation
procedures and the data preprocessing.
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2.2. THE MODEL – DEFINITION AND PROPERTIES

2.2 The model – definition and properties

2.2.1 Preliminaries

Multivariate extremes. Let 𝑉 = {1, . . . , 𝑑} for some integer 𝑑 ≥ 2. A 𝑑-variate
max-stable distribution 𝐺 is called simple if its margins are unit-Fréchet, that is, a
random vector 𝑍 with distribution 𝐺 satisfies P(𝑍𝑣 ≤ 𝑥) = exp(−1/𝑥) for 𝑥 ∈ (0,∞)
and 𝑣 ∈ 𝑉 . Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a random vector with unit-Pareto margins, i.e.,
P(𝑋𝑣 ≤ 𝑥) = 1 − 1/𝑥 for 𝑥 ∈ [1,∞) and 𝑣 ∈ 𝑉 . Let 𝑋𝑖 = (𝑋𝑣,𝑖 , 𝑣 ∈ 𝑉 ) for 𝑖 = 1, . . . , 𝑛
be an independent random sample from the distribution of 𝑋 . We say that 𝑋 belongs
to the max-domain of attraction of the simple max-stable distribution 𝐺 , notation
𝑋 ∈ 𝐷 (𝐺), if

lim
𝑛→∞
P

(
max
𝑖=1,...,𝑛

𝑋𝑣,𝑖 ≤ 𝑛𝑧𝑣, 𝑣 ∈ 𝑉
)
= 𝐺 (𝑧), 𝑧 ∈ (0,∞)𝑑 .

For more background on max-stable distributions and their domains of attractions,
we refer to the reader to Resnick (1987, Chapter 5) and de Haan and Ferreira (2007,
Chapter 6).

Throughout the paper the stable tail dependence function (stdf) 𝑙 of𝐺 or𝑋 ∈ 𝐷 (𝐺)
will appear frequently. It is defined as

𝑙 (𝑥) = lim
𝑡→∞

𝑡
(
1 − P(𝑋𝑣 ≤ 𝑡/𝑥𝑣, 𝑣 ∈ 𝑉 )

)
= − ln𝐺 (1/𝑥𝑣, 𝑣 ∈ 𝑉 ), (2.1)

for 𝑥 ∈ [0,∞)𝑑 , with the obvious limit interpretation if 𝑥𝑣 = 0 for some 𝑣 ∈ 𝑉 . The stdf
is closely linked to the exponent function of a simple max-stable distribution in Coles
and Tawn (1991, Eq. (2.4)). It is introduced and studied in Huang (1992) and Drees and
Huang (1998); see also later literature in de Haan and Ferreira (2007, Chapter 6) and
Beirlant et al. (2004, Chapter 8). The stdf evaluated at 𝑥 𝐽 = (1{ 𝑗∈ 𝐽 }, 𝑗 ∈ 𝑉 ) is known
as an extremal coefficient, of which we make use in Sections 2.4 and 2.5.

One of the main objects in our paper is the multivariate Hüsler–Reiss distribution.
This absolutely continuous max-stable distribution was introduced in Hüsler and
Reiss (1989) and remains a popular parametric model in recent literature (Genton et al.,
2011; Huser and Davison, 2013; Asadi et al., 2015; Engelke et al., 2014; Einmahl et al.,
2018; Lee and Joe, 2017). It arises as the limiting distribution of partial maxima of a
triangular array of row-wise independent and identically distributed random vectors
from a multivariate normal distribution with correlation matrix 𝜌 (𝑛) depending on
the sample size 𝑛. In particular, assume that

lim
𝑛→∞

(
1 − 𝜌𝑖 𝑗 (𝑛)

)
ln𝑛 = 𝜆2

𝑖 𝑗 ∈ (0,∞)

for every pair of variables 𝑖, 𝑗 ∈ 𝑉 and let Λ = (𝜆2
𝑖 𝑗 )𝑖, 𝑗∈𝑉 denote this limiting matrix.

Note that 𝜆2
𝑖𝑖 = 0 for every 𝑖 ∈ 𝑉 . For every subset𝑊 ⊆ 𝑉 and any element 𝑢 ∈𝑊 let

Γ𝑊,𝑢 (Λ) be the square matrix of size |𝑊 | − 1 with elements(
Γ𝑊,𝑢 (Λ)

)
𝑖 𝑗
= 2(𝜆2

𝑖𝑢 + 𝜆2
𝑗𝑢 − 𝜆2

𝑖 𝑗 ), 𝑖, 𝑗 ∈𝑊 \ 𝑢. (2.2)

Nikoloulopoulos et al. (2009) and later Genton et al. (2011) and Huser and Davison
(2013) show that the cumulative distribution function (cdf) as deduced by Hüsler and
Reiss (1989) can be written as

𝐻Λ (𝑧) = exp

{
−

∑︁
𝑢∈𝑉

1
𝑧𝑢

Φ𝑑−1

(
ln
𝑧𝑣

𝑧𝑢
+ 2𝜆2

𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢; Γ𝑉 ,𝑢 (Λ)
)}
, (2.3)

where 𝑧 ∈ (0,∞)𝑑 , and Φ𝑝 ( · ; Σ) denotes the 𝑝-variate zero mean Gaussian cdf with
covariance matrix Σ. The distribution 𝐻Λ in (2.3) is a simple max-stable distribution.
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In particular, its margins are unit-Fréchet, whereas Hüsler and Reiss (1989) originally
proposed the distribution in terms of Gumbel margins.

Multivariate margins of the 𝑑-variate Hüsler–Reiss distribution are Hüsler–Reiss
distributions too. The corresponding parameter matrix is obtained by selecting the
appropriate rows and columns in the original parameter matrix (see, e.g., Engelke and
Hitz, 2020, Example 7). In particular, if 𝑋 ∈ 𝐷 (𝐻Λ) and if 𝑈 ⊆ 𝑉 is non-empty, the
stdf 𝑙𝑈 of 𝑋𝑈 = (𝑋𝑢, 𝑢 ∈ 𝑈 ) is

𝑙𝑈 (𝑥) =
∑︁
𝑢∈𝑈

𝑥𝑢 Φ |𝑈 \𝑢 |

(
ln
𝑥𝑢

𝑥𝑣
+ 2𝜆2

𝑢𝑣, 𝑣 ∈ 𝑈 \ 𝑢; Γ𝑈 ,𝑢 (Λ)
)
, 𝑥 ∈ [0,∞)𝑈 . (2.4)

Here wewrite𝑈 \𝑢 instead of𝑈 \{𝑢}. In case 𝑥𝑢 = 0 for some𝑢 ∈ 𝑈 , the corresponding
term in the sum in (2.4) vanishes.

Trees. We will need some notions from graph theory. A graph is a pair G = (𝑉 , 𝐸)
where𝑉 = {1, . . . , 𝑑} is the set of nodes or vertices and 𝐸 ⊆ {(𝑎, 𝑏) ∈ 𝑉 ×𝑉 : 𝑎 ≠ 𝑏} is
the set of edges. Edges will also be denoted by 𝑒 = (𝑎, 𝑏) ∈ 𝐸. The number of vertices
in a subset 𝑈 ⊆ 𝑉 will be denoted by |𝑈 |, while 𝑑 is reserved for |𝑉 | only. A graph is
undirected if (𝑎, 𝑏) ∈ 𝐸 is equivalent to (𝑏, 𝑎) ∈ 𝐸. A path (𝑢 ⇝ 𝑣) from node 𝑢 to
node 𝑣 is a collection {(𝑢0, 𝑢1), (𝑢1, 𝑢2), . . . , (𝑢𝑛−1, 𝑢𝑛)} of distinct, directed edges such
that 𝑢0 = 𝑢 and 𝑢𝑛 = 𝑣 . An undirected tree is an acyclic undirected graph T = (𝑉 , 𝐸)
such that for every pair of distinct nodes 𝑎 and 𝑏 there is a unique path (𝑎⇝ 𝑏).

2.2.2 Model definition

Let T = (𝑉 , 𝐸) be an undirected tree with node set 𝑉 = {1, . . . , 𝑑} and let 𝜉 = (𝜉𝑣, 𝑣 ∈
𝑉 ) be a random vector with joint cdf 𝐹 and continuous margins 𝐹𝑣 (𝑧) = P(𝜉𝑣 ≤ 𝑧)
for 𝑧 ∈ R and 𝑣 ∈ 𝑉 . Let the random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be defined as 𝑋𝑣 =

1/
(
1 − 𝐹𝑣 (𝜉𝑣)

)
for every 𝑣 ∈ 𝑉 . Because the functions 𝐹𝑣 for 𝑣 ∈ 𝑉 are continuous,

the marginal distributions of 𝑋 are unit-Pareto.
We assume that 𝑋 is in the max-domain of attraction of the Hüsler–Reiss distribu-

tion 𝐻Λ in (2.3) with Λ = (𝜆2
𝑖 𝑗 )𝑖, 𝑗∈𝑉 having the following structure linked to the tree

T : there exists a vector 𝜃 = (𝜃𝑒 )𝑒∈𝐸 of positive scalars with 𝜃𝑎𝑏 = 𝜃𝑏𝑎 and such that
Λ = Λ(𝜃 ) where(

Λ(𝜃 )
)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) =
1
4

∑︁
𝑒∈ (𝑖⇝𝑗 )

𝜃 2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 . (2.5)

The assumption can thus be written compactly as𝑋 ∈ 𝐷 (𝐻Λ(𝜃 ) ) for some 𝜃 ∈ (0,∞)𝐸 .
The motivation for the proposed structure is that𝐻Λ(𝜃 ) contains in its max-domain

of attraction a certain graphical model with respect to T as explained in Section 2.2.3.
Still, it is to be noted that, despite the structure of the parameter matrix, 𝐻Λ(𝜃 ) itself
does not and cannot satisfy any Markov properties with respect to the tree T : by
Papastathopoulos and Strokorb (2016), max-stable distributions with continuous joint
densities cannot possess any non-trivial conditional independence properties.

In the parametrization in (2.5) the extremal dependence in 𝜉 and in 𝑋 depends
on a vector 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸) of 𝑑 − 1 free parameters, indexed by the edges of the
tree. The main theme in this paper concerns inference on the parameter vector 𝜃 in
case some of the variables 𝜉𝑣 are latent (unobservable). The first question is whether
all edge parameters 𝜃𝑒 are still identifiable from (2.4) when Λ = Λ(𝜃 ) and when
𝑈 ⊊ 𝑉 contains the indices of variables that can still be observed. For the Seine
network in Figure 2.1, for instance, there are 𝑑 = 7 variables in total, of which two are
latent. A necessary and sufficient criterion for parameter identifiability is given in
Proposition 2.3.1 below. Provided the criterion is fulfilled, the second question is how
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to estimate the parameters. Three estimation methods are proposed in Section 2.4
and illustrated in Section 2.5.

Note that the random vector 𝜉 itself does not necessarily belong to the max-domain
of attraction of some max-stable distribution. The reason is that we do not impose that
the marginal distributions of 𝜉 are in the max-domain of attraction of some univariate
extreme value distributions. To focus on the tail dependence of 𝜉 , we standardize its
margins and formulate the assumption in terms of 𝑋 .

2.2.3 Motivation of the structured Hüsler–Reiss model

To motivate the structured Hüsler–Reiss parameter matrix Λ(𝜃 ) in (2.5), we construct
a graphical model 𝑍 ∗ that satisfies the global Markov property with respect to the
undirected tree T = (𝑉 , 𝐸) and such that 𝑍 ∗ ∈ 𝐷 (𝐻Λ(𝜃 ) ). Besides serving as a
motivation, the auxiliary model 𝑍 ∗ plays another important role: in view of Segers
(2020b, Theorem 2) we are able to project certain asymptotic properties that hold for
𝑍 ∗ to 𝑋 .

For disjoint subsets 𝐴, 𝐵,𝐶 of 𝑉 , the expression 𝐴 ⊥⊥T 𝐵 | 𝐶 means that 𝐶
separates 𝐴 from 𝐵 in T , also called graphical separation, i.e., all paths from 𝐴 to 𝐵
pass through at least one vertex in𝐶 . Let𝑍 ∗ be defined on a probability space (Ω,B, P).
Conditional independence of 𝑍 ∗

𝐴
and 𝑍 ∗

𝐵
given 𝑍 ∗

𝐶
will be denoted by 𝑍 ∗

𝐴
⊥⊥P 𝑍 ∗𝐵 | 𝑍 ∗𝐶 ;

here 𝑍 ∗
𝐴
= (𝑍 ∗𝑎 , 𝑎 ∈ 𝐴) and so on. If 𝑃 = P(𝑍 ∗ ∈ · ) is the law of 𝑍 ∗, we say that the

tree T is an independence map (I-map) of 𝑃 if for any disjoint subsets 𝐴, 𝐵,𝐶 of 𝑉 it
holds that

𝐴 ⊥⊥T 𝐵 | 𝐶 =⇒ 𝑍 ∗𝐴 ⊥⊥P 𝑍 ∗𝐵 | 𝑍 ∗𝐶 (2.6)

(Koller and Friedman, 2009). This assumption is equivalent to the assumption that 𝑍 ∗
obeys the global Markov property with respect to T (Lauritzen, 1996).

The law of the random vector 𝑍 ∗ = (𝑍 ∗𝑣 , 𝑣 ∈ 𝑉 ) is defined by the following two
assumptions:

(Z1) 𝑍 ∗ satisfies the global Markov property (2.6) with respect to the undirected tree
T = (𝑉 , 𝐸);

(Z2) every pair of variables (𝑍 ∗𝑎 , 𝑍 ∗𝑏 ) on adjacent nodes (𝑎, 𝑏) = 𝑒 ∈ 𝐸 has a bivariate
Hüsler–Reiss distribution with parameter 𝜃𝑒 ∈ (0,∞) and unit-Fréchet margins,
i.e., the special case of (2.4) with𝑈 = {𝑎, 𝑏} and 𝜆2

𝑎𝑏
= 𝜃 2

𝑒/4.

The law of 𝑍 ∗ is absolutely continuous and its joint density function factorizes in
terms of the bivariate Hüsler–Reiss densities along pairs of variables on adjacent
nodes through the Hammersley–Clifford theorem; see Section 2.7.5 where we describe
how to sample from 𝑍 ∗. Moreover, for 𝑒 = (𝑎, 𝑏) ∈ 𝐸 and if 𝑍 has distribution 𝐻Λ(𝜃 ) ,
the law of (𝑍 ∗𝑎 , 𝑍 ∗𝑏 ) is the same as the one of (𝑍𝑎, 𝑍𝑏). However, unless 𝑑 = 2, the law
of 𝑍 ∗ is itself not max-stable and thus not equal to the one of 𝑍 . One way to see this
is to note that by Papastathopoulos and Strokorb (2016), the law of 𝑍 cannot satisfy
the global Markov property with respect to T .

Let (𝑀𝑒 , 𝑒 ∈ 𝐸) be a random vector of independent lognormal random variables
with ln𝑀𝑒 ∼ N(−𝜃 2

𝑒/2, 𝜃 2
𝑒 ) for each 𝑒 ∈ 𝐸. In view Theorem 1 and Corollary 1 in

Segers (2020b), we have the convergence in distribution

(𝑍 ∗𝑣/𝑍 ∗𝑢, 𝑣 ∈ 𝑉 \ 𝑢) | 𝑍 ∗𝑢 > 𝑥
𝑑−→ (Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢)

=
(∏

𝑒∈ (𝑢⇝𝑣)𝑀𝑒 , 𝑣 ∈ 𝑉 \ 𝑢
)
, 𝑥 →∞,

(2.7)

for every 𝑢 ∈ 𝑉 . For every 𝑢 ∈ 𝑉 the vector (Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is called a tail tree. The
multiplicative structure in (2.7) goes back to the theory of extremes of Markov chains
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due to Smith (1992), Perfekt (1994), Yun (1998) and Segers (2007). Note that a chain
can be seen as a tree with a single branch.

The vector (lnΞ𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is a linear transformation of a Gaussian random
vector and is therefore itself Gaussian. Its mean vector 𝜇𝑉 ,𝑢 (𝜃 ) and its covariance
matrix Σ𝑉 ,𝑢 (𝜃 ) have elements

{𝜇𝑉 ,𝑢 (𝜃 )}𝑣 = −
1
2

∑︁
𝑒∈ (𝑢⇝𝑣)

𝜃 2
𝑒 , 𝑣 ∈ 𝑉 \ 𝑢, (2.8)

{Σ𝑉 ,𝑢 (𝜃 )}𝑖 𝑗 =
∑︁

𝑒∈ (𝑢⇝𝑖 )∩(𝑢⇝𝑗 )
𝜃 2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 \ 𝑢 . (2.9)

Hence for every 𝑢 ∈ 𝑉 and as 𝑥 →∞, we have the convergence in distribution

(ln𝑍 ∗𝑣 − ln𝑍 ∗𝑢, 𝑣 ∈ 𝑉 \ 𝑢) | 𝑍 ∗𝑢 > 𝑥
𝑑−→ (lnΞ𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢)
∼ N|𝑉 \𝑢 |

(
𝜇𝑉 ,𝑢 (𝜃 ), Σ𝑉 ,𝑢 (𝜃 )

)
,

(2.10)

whereN𝑝 is the 𝑝-variate normal distribution. By construction, Σ𝑉 ,𝑢 (𝜃 ) is a covariance
matrix and hence positive semi-definite for any 𝜃 ∈ (0,∞)𝑑−1; it is actually positive
definite since the vector (lnΞ𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is the result of an invertible linear
transformation applied to the vector (ln𝑀𝑒 , 𝑒 ∈ 𝐸) of independent and non-degenerate
normal random variables. The matrix Σ𝑉 ,𝑢 (𝜃 ) is moreover the same as the matrix
Γ𝑊,𝑢 (Λ) in (6.4) with𝑊 = 𝑉 and Λ = Λ(𝜃 ) in (2.5):

{
Σ𝑉 ,𝑢 (𝜃 )

}
𝑖 𝑗
=

∑︁
𝑒∈ (𝑢⇝𝑖 )∩(𝑢⇝𝑗 )

𝜃 2
𝑒 =

1
2
©«

∑︁
𝑒∈ (𝑢⇝𝑖 )

𝜃 2
𝑒 +

∑︁
𝑒∈ (𝑢⇝𝑗 )

𝜃 2
𝑒 −

∑︁
𝑒∈ (𝑖⇝𝑗 )

𝜃 2
𝑒

ª®¬
= 2(𝜆2

𝑖𝑢 + 𝜆2
𝑗𝑢 − 𝜆2

𝑖 𝑗 ) =
{
Γ𝑉 ,𝑢

(
Λ(𝜃 )

)}
𝑖 𝑗
, 𝑖, 𝑗 ∈ 𝑉 \ 𝑢. (2.11)

In the second equality it is needed to divide by two because the parameters on shared
edges are added twice. In addition, the Hüsler–Reiss parameters 𝜆2

𝑢𝑣 are proportional
to the means:

2𝜆2
𝑢𝑣 =

1
2

∑︁
𝑒∈ (𝑢⇝𝑣)

𝜃 2
𝑒 = −{𝜇𝑉 ,𝑢 (𝜃 )}𝑣 , 𝑣 ∈ 𝑉 \ 𝑢. (2.12)

Proposition 2.2.1. Let T = (𝑉 , 𝐸) be a tree. If the law of 𝑍 ∗ = (𝑍 ∗𝑣 , 𝑣 ∈ 𝑉 ) is given by
(Z1)–(Z2) above, then 𝑍 ∗ ∈ 𝐷 (𝐻Λ(𝜃 ) ) with Λ(𝜃 ) in (2.5).

The proof is given in Section 2.7.3 and relies on the properties of 𝑍 ∗ mentioned
above, in particular on (2.10). By constructing a graphical model with respect to T in
the max-domain of attraction of 𝐻Λ(Θ) , we have argued that the latter is a sensible
dependence model for extremes of graphical models on trees. Moreover, it follows that
any random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) with unit-Pareto margins and in the max-domain
of attraction of 𝐻Λ(𝜃 ) shares property (2.10) with 𝑍 ∗.

Corollary 2.2.2. Let T = (𝑉 , 𝐸) be a tree and let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) have unit-Pareto
margins and belong to 𝐷 (𝐻Λ(𝜃 ) ) with Λ(𝜃 ) as in (2.5) for a vector 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸) of
positive scalars. Then for every 𝑢 ∈ 𝑉 , we have as 𝑡 →∞

(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢) | 𝑋𝑢 > 𝑡
𝑑−→ N|𝑉 \𝑢 |

(
𝜇𝑉 ,𝑢 (𝜃 ), Σ𝑉 ,𝑢 (𝜃 )

)
. (2.13)

Proof. The max-domain of attraction condition 𝑋 ∈ 𝐷 (𝐻Λ(𝜃 ) ) is known to be equiva-
lent to convergence of the measures 𝑡 P(𝑋/𝑡 ∈ · ) as 𝑡 →∞ to the exponent measure
of 𝐻Λ(𝜃 ) (Resnick, 1987, Proposition 5.17). Such measure convergence is in turn
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equivalent to convergence in distribution of 𝑋/𝑋𝑢 | 𝑋𝑢 > 𝑡 as 𝑡 → ∞ for every
𝑢 ∈ 𝑉 to a limit that can be written in terms of the said exponent measure (Segers,
2020b, Theorem 2). But for 𝑋 replaced by 𝑍 ∗, the limiting conditional distribution was
found to be a certain multivariate lognormal distribution in (2.7). The equivalence
between (2.7) and (2.10) with 𝑍 ∗ replaced by 𝑋 is clear by the continuous mapping
theorem. □

The random vector𝑋 in Corollary 2.2.2 does not need to be a graphical model with
respect to T . The convergence in (2.13) appears in Engelke et al. (2014, Theorem 2)
for a general random vector with standardized margins and in the max-domain of
attraction of a Hüsler–Reiss distribution. With Corollary 2.2.2 we arrive at the same
result but through the properties of the auxiliary model 𝑍 ∗. The convergence in (2.13)
is used to build two estimators in the next section.

In Engelke and Hitz (2020), a notion of conditional independence different from
the classical one is introduced in the context of multivariate Pareto distributions.
When specialized to the Pareto distribution associated to a max-stable Hüsler–Reiss
distribution, it yields certain restrictions on the Hüsler–Reiss parameter matrix Λ. In
case the conditional independence relations are the ones induced by a tree through
graphical separation, the structure of the parameter matrix is the same as the one
in (2.5). We explain the connection in Section 2.7.1. Here we just emphasize that
in Engelke and Hitz (2020), no graphical model in the classical sense of the term
is constructed that belongs to the max-domain of attraction of 𝐻Λ(𝜃 ) . The way we
arrive at the structure of Λ(𝜃 ) via the graphical model 𝑍 ∗ in (Z1)–(Z2) is thus entirely
different from their approach.

Finally, quite another tree-induced structure of the Hüsler–Reiss parameter matrix
is proposed in Lee and Joe (2017). We provide a comparison in Section 2.7.2.

2.3 Latent variables and parameter identifiability

A typical application of our model arises in relation to quantities measured on river
networks that have a tree-like structure. It is natural to associate a node to an existing
measurement station or to locations where two river channels meet (junction) or
one channel splits (split) even if there is no measurement station there. Stations are
supposed to generate data for the quantity of interest, so for any node associated
to a station there is a corresponding variable. In practice, junctions/splits may lack
measurements, and this means that there are nodes in the tree with latent variables.
Nodes with latent variables are those labelled 2 and 5 in the Seine network in Figure 2.1.

A naive approach to the presence of latent variables would be to ignore them, that
is, to remove the corresponding nodes and all edges incident to them. This will yield
a disconnected graph, making it necessary to add edges in some arbitrary way so as
to obtain a tree again. In Figure 2.2 for instance, if node 2 is suppressed, there are
three possible ways to reconnect the remaining nodes and form a tree. Each implies a
different structured Hüsler–Reiss parameter matrix and thus a different dependence
model.

In this paper we do not modify the original tree but take the latent variables
into account. Let T = (𝑉 , 𝐸) be an undirected tree and consider the Hüsler–Reiss
distribution (2.3) with parameter matrix Λ = Λ(𝜃 ) in (2.5). When there are nodes
with latent variables, the question is whether it is still possible to identify the 𝑑 − 1
free edge parameters 𝜃𝑒 from the distribution of the subvector of observable variables
only. Let 𝑈 ⊆ 𝑉 denote the set of indices of the observable variables. On the one
hand, Eq. (2.13) implies

(ln𝑋𝑣 − ln𝑋𝑢)𝑣∈𝑈 \𝑢 | 𝑋𝑢 > 𝑡
𝑑−→ N|𝑈 \𝑢 |

(
𝜇𝑈 ,𝑢 (𝜃 ), Σ𝑈 ,𝑢 (𝜃 )

)
, 𝑡 →∞, (2.14)
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𝑋1 2

𝑋3

𝑋4

𝜃12

𝜃23

𝜃24

𝑋1

𝑋4

𝑋3

𝛽14

𝛽13

𝑋1

𝑋4

𝑋3

𝛽14

𝛽34 𝑋1

𝑋4

𝑋3𝛽13

𝛽34

Figure 2.2: The first tree from the left has four nodes where node 2 has a latent variable.
If node 2 is suppressed, there are three possible ways to reconnect the three remaining
nodes into a tree again.

with 𝜇𝑈 ,𝑢 (𝜃 ) and Σ𝑈 ,𝑢 (𝜃 ) as in (2.8) and (2.9) but with 𝑉 replaced by 𝑈 . On the
other hand, 𝜇𝑈 ,𝑢 (𝜃 ) and Σ𝑈 ,𝑢 (𝜃 ) together determine the stdf 𝑙𝑈 of the subvector 𝑋𝑈

in (2.4) through the identities (2.11) and (2.12). The question is thus whether the
parameter vector 𝜃 is still identifiable from the |𝑈 \ 𝑢 |-variate normal distributions
on the right-hand side of (2.14), where 𝑢 ranges over𝑈 .

Example. Let 𝑋 = (𝑋𝑎, 𝑋𝑏, 𝑋𝑐 ) have unit-Pareto margins and suppose that 𝑋 ∈
𝐷 (𝐻Λ(𝜃 ) ) where Λ(𝜃 ) is as in (2.5) with respect to the chain tree T with nodes
𝑉 = {𝑎, 𝑏, 𝑐} and edges between 𝑎 and 𝑏 and between 𝑏 and 𝑐 . Since a parameter is
linked to each (undirected) edge of the graph, the parameter vector is 𝜃 = (𝜃𝑎𝑏, 𝜃𝑏𝑐 ).
Suppose the variable 𝑋𝑏 is latent. By (2.14) we have

ln𝑋𝑐 − ln𝑋𝑎 | 𝑋𝑎 > 𝑡
𝑑−→ N

(
−(𝜃 2

𝑎𝑏
+ 𝜃 2

𝑏𝑐
)/2, (𝜃 2

𝑎𝑏
+ 𝜃 2

𝑏𝑐
)
)
, 𝑡 →∞.

It is clear that from the limiting normal distribution, we cannot identify 𝜃𝑎𝑏 and 𝜃𝑏𝑐 .
In this section it is shown that as long as all nodes with missing variables have

degree at least three, the parameters associated to the Hüsler–Reiss distribution of the
full vector are still identifiable and hence there is no need to change the tree. To this
end, note that by (2.8), (2.11) and (2.12) with 𝑉 replaced by 𝑈 ⊆ 𝑉 such that 𝑢 ∈ 𝑈 ,
the mean vectors 𝜇𝑈 ,𝑢 (𝜃 ) and covariance matrices Σ𝑈 ,𝑢 (𝜃 ) are determined completely
by the path sums

𝑝𝑎𝑏 =
∑︁

𝑒∈ (𝑎⇝𝑏 )
𝜃 2
𝑒 = 4𝜆2

𝑎𝑏
, 𝑎, 𝑏 ∈ 𝑈 , (2.15)

and that, vice versa, the values of these path sums are determined by the vectors
𝜇𝑈 ,𝑢 (𝜃 ) and the matrices Σ𝑈 ,𝑢 (𝜃 ). If we know the distribution of 𝑋𝑈 = (𝑋𝑢, 𝑢 ∈ 𝑈 ),
we can compute the values of these sums, and if we know these sums, we can compute
the stdf 𝑙𝑈 of 𝑋𝑈 . The question is thus whether or not the edge parameters 𝜃𝑒 are
identifiable from the values of the path sums 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑈 . According to the
following proposition, there is a surprisingly simple criterion to decide whether this
is the case or not.

Proposition 2.3.1. Let T = (𝑉 , 𝐸) be an undirected tree and let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) have
unit Pareto margins and be in the max-domain of attraction of the structured Hüsler–
Reiss distribution 𝐻Λ in (2.3) with parameter matrix Λ = Λ(𝜃 ) in (2.5). Let 𝑈 ⊆ 𝑉 be
the set of nodes corresponding to the observable variables. The parameter vector 𝜃 is
identifiable from 𝑋𝑈 = (𝑋𝑢, 𝑢 ∈ 𝑈 ) if and only if every node 𝑢 ∈ 𝑉 \𝑈 has degree at
least three.
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Proof. Necessity. Assume that the elements of the edge parameter 𝜃 ∈ (0,∞)𝑑−1 are
uniquely identifiable. Let 𝑈 = 𝑉 \𝑈 ≠ ∅ be the set of nodes with latent variables.
We need to show that every 𝑣 ∈ 𝑈 has degree 𝑑 (𝑣) at least 3. We will do this by
contraposition. As a tree is connected by definition, there cannot be a node of degree
zero.

First, assume there is 𝑣 ∈ 𝑈 such that 𝑑 (𝑣) = 1. The node 𝑣 must be a leaf node,
and in this case there is no path (𝑎⇝ 𝑏) with 𝑎, 𝑏 ∈ 𝑈 that passes by 𝑣 , and thus 𝜃 2

𝑢𝑣 ,
with 𝑢 the unique neighbor of 𝑣 , does never appear in the sum (2.15). Hence 𝜃𝑢𝑣 is
not identifiable, which is a contradiction to the assumption.

Second, assume there exists 𝑣 ∈ 𝑈 with𝑑 (𝑣) = 2. Then 𝑣 has exactly two neighbors,
𝑖 and 𝑗 , say. Every path sum 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑈 will contain either the sum of the squared
parameters, 𝜃 2

𝑖𝑣 + 𝜃 2
𝑗𝑣 , or neither of these. Hence, the individual edge parameters 𝜃𝑖𝑣

and 𝜃 𝑗 𝑣 are not identifiable, yielding a contradiction. (This generalizes the example
given before the statement of the proposition.)

Sufficiency. Assume that all nodes with latent variables are of degree three or
more. Let 𝑒 = (𝑢, 𝑣) ∈ 𝐸. We will find a linear combination of the path sums (2.15)
equal to 𝜃 2

𝑢𝑣 .
If 𝑢, 𝑣 ∈ 𝑈 , then the one-edge path sum 𝑝𝑢𝑣 = 𝜃

2
𝑢𝑣 already meets the condition.

Suppose that 𝑢 ∈ 𝑈 . By assumption, 𝑢 has at least two other neighbors besides
𝑣 , say 𝑤 and 𝑥 . If 𝑣 ∈ 𝑈 , then put 𝑣 = 𝑣 . Otherwise, start walking at 𝑣 away from 𝑢

until you encounter the first visible node, say 𝑣 ∈ 𝑈 . There must always be such a
node, since𝑉 is finite and since all leaves are observable by assumption. Similarly, let
�̂� ∈ 𝑈 and 𝑥 ∈ 𝑈 be the first visible nodes encountered when walking away from
𝑢 and starting in 𝑤 and 𝑥 , respectively. Note that 𝑣 , �̂� , and 𝑥 are all different since
otherwise the graph would contain a non-trivial cycle, which is not possible in the
case of a tree. We can thus observe the sums

𝑝𝑣�̂� = 𝑝𝑣𝑢 + 𝑝𝑢�̂� ,
𝑝𝑣𝑥 = 𝑝𝑣𝑢 + 𝑝𝑢𝑥 ,
𝑝�̂�𝑥 = 𝑝�̂�𝑢 + 𝑝𝑢𝑥 .

Since 𝑝𝑦𝑧 = 𝑝𝑧𝑦 for every 𝑦, 𝑧 ∈ 𝑉 , the previous identities constitute three linear
equations in three unknowns that can be solved explicitly, producing the values of
𝑝𝑢𝑣, 𝑝𝑢�̂�, 𝑝𝑢𝑥 . In particular, summing the first two equations, subtracting the third,
and dividing by two, we find

𝑝𝑢𝑣 =
1
2𝑝𝑣�̂� +

1
2𝑝𝑣𝑥 −

1
2𝑝�̂�𝑥 .

If 𝑣 ∈ 𝑈 , then 𝑣 = 𝑣 , and (𝑢 ⇝ 𝑣) = {𝑒}, so that the above equation shows how to
combine path sums in a linear way to extract 𝑝𝑢𝑣 = 𝜃 2

𝑒 .
If 𝑣 ∉ 𝑈 , then we can repeat the same procedure with 𝑢 replaced by 𝑣 . The result

is a formula expressing 𝑝𝑣𝑣 as a linear combination of three visible path sums. Now
since

𝜃 2
𝑒 = 𝑝𝑢𝑣 − 𝑝𝑣𝑣 ,

we have found a way to extract 𝜃 2
𝑒 by a linear combination of at most six visible path

sums. □

The proof of Proposition 2.3.1 consists in solving the equations (2.15) with 𝑝𝑎𝑏
as known and 𝜃 2

𝑒 as unknown. Clearly, this is a linear system of equations and the
question is thus whether the coefficient matrix defining the system has full column
rank. It is an open question how to write down this matrix, which contains only
zeroes and ones, in terms of the tree’s adjacency matrix in such a way that an algebraic
criterion on the latter matrix can be formulated.
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The identifiability criterion in Proposition 2.3.1 allows nodes with latent variables
to be adjacent and still counting in the computation of each other’s degree. Consider
for instance the following tree:

𝑋1

𝑋2𝑋3

𝑋4

56

𝜃15

𝜃25𝜃36

𝜃46
𝜃56

The variables at the adjacent nodes 5 and 6 are latent. Both nodes have degree three
and each of the five edge parameters 𝜃𝑒 can be solved from the path sums 𝑝𝑎𝑏 between
nodes 𝑎, 𝑏 ∈ {1, . . . , 4}.

The previous example may give the impression that for the identifiability criterion
to hold it is actually enough that all variables on leaf nodes are observable. Although
the latter property is indeed necessary, it is not sufficient, as illustrated by the example
before Proposition 2.3.1.

2.4 Estimation

Let T = (𝑉 , 𝐸) be an undirected tree with nodes𝑉 = {1, . . . , 𝑑} and let (𝜉𝑣,𝑖 , 𝑣 ∈ 𝑉 , 𝑖 =
1, . . . , 𝑛) be an independent random sample from the distribution of 𝜉 satisfying the
assumptions in Section 2.2.2. Further, let 𝑈 ⊆ 𝑉 be the set of indices of observable
variables and assume that every 𝑢 ∈ 𝑉 \ 𝑈 has degree at least three, so that, by
Proposition 2.3.1, the Hüsler–Reiss edge parameters 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸) in the definition
of Λ(𝜃 ) in (2.5) are identifiable from the distribution of the subvector 𝜉𝑈 = (𝜉𝑣, 𝑣 ∈ 𝑈 ).

We propose three methods for estimating the parameter vector 𝜃 . The first one,
called moment estimator (Section 2.4.1), builds upon the one introduced in Engelke
et al. (2014). The second estimator comes from the optimization of a composite
likelihood function (Section 2.4.2). The third estimator, finally, is based on bivariate
extremal coefficients (Section 2.4.3) and on the method in Einmahl et al. (2018). All
estimators are functions of the subvectors (𝜉𝑈 ,𝑖 ) = (𝜉𝑣,𝑖 , 𝑣 ∈ 𝑈 ) for 𝑖 = 1, . . . , 𝑛 only.

An important remark for this whole section is related to the fact that 𝑋 as intro-
duced in Section 2.2.2 should have unit Pareto margins, obtained after the transfor-
mation 𝑋𝑣 = 1/(1 − 𝐹𝑣 (𝜉𝑣)) where 𝐹𝑣 is the marginal distribution function of 𝜉𝑣 for
𝑣 ∈ 𝑉 . It is unrealistic to assume that the functions 𝐹𝑣 are known, so in practice we
use their empirical versions, 𝐹𝑣,𝑛 (𝑥) =

[ ∑𝑛
𝑖=1 1(𝜉𝑣,𝑖 ≤ 𝑥)

]
/(𝑛 + 1). The estimates of

the edge parameters will then be based upon the sample 𝑋1, . . . , 𝑋𝑛 with coordinates

𝑋𝑣,𝑖 =
1

1 − 𝐹𝑣,𝑛 (𝜉𝑣,𝑖 )
, 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛,

considered as a random sample from the distribution of 𝑋𝑈 = (𝑋𝑢, 𝑢 ∈ 𝑈 ).
A variable indexed by the double subscript𝑊, 𝑖 will denote the 𝑖-th observation

of variables on nodes belonging to the set𝑊 ⊆ 𝑈 : for instance 𝑋𝑊,𝑖 = (𝑋𝑣,𝑖 , 𝑣 ∈𝑊 ).
Such vectors are taken to be column vectors of length |𝑊 |. When𝑊 = 𝑈 we just
write 𝑋𝑖 .

2.4.1 Method of moments estimator

Engelke et al. (2014) introduce an estimator of the matrix Λ of the Hüsler–Reiss
distribution, based on sample counterparts of the matrices Γ𝑊,𝑢 (Λ) in (6.4). Relying
on (2.11) with 𝑉 replaced by𝑊 ⊆ 𝑈 , we will apply their method to the vector of
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observable variables and then add a least-squares step to extract the edge parameters
𝜃𝑒 .

As a starting point we take the result in (2.14) and as suggested by Engelke et al.
(2014) for given 𝑘 ∈ {1, . . . 𝑛} we obtain the log-differences

Δ𝑢𝑣,𝑖 = ln𝑋𝑣,𝑖 − ln𝑋𝑢,𝑖 , (2.16)

for 𝑢, 𝑣 ∈ 𝑈 and for 𝑖 ∈ 𝐼𝑢 = {𝑖 = 1, . . . , 𝑛 : 𝑋𝑢,𝑖 > 𝑛/𝑘}. The proposed estimators of
𝜇𝑈 ,𝑢 and Σ𝑈 ,𝑢 are respectively the sample mean vector

𝜇𝑈 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 , 𝑣 ∈ 𝑈 \ 𝑢)

and the sample covariance matrix

Σ̂𝑈 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 − 𝜇𝑈 ,𝑢, 𝑣 ∈ 𝑈 \ 𝑢) (Δ𝑢𝑣,𝑖 − 𝜇𝑈 ,𝑢, 𝑣 ∈ 𝑈 \ 𝑢)⊤ .

To estimate the vector of edge parameters 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸), we propose the least
squares estimator

𝜃MM
𝑛,𝑘

= arg min
𝜃 ∈ (0,∞)𝐸

∑︁
𝑢∈𝑈
∥Σ̂𝑈 ,𝑢 − Σ𝑈 ,𝑢 (𝜃 )∥2𝐹 . (2.17)

where ∥ · ∥𝐹 is the Frobenius norm. In this way, we take advantage of the empirical
covariance matrices Σ̂𝑈 ,𝑢 for each 𝑢 ∈ 𝑈 and thus of each exceedance set 𝐼𝑢 .

In (2.17), for each 𝑢 ∈ 𝑈 , we consider the covariance matrix of the log-differences
Δ𝑢𝑣,𝑖 for all 𝑣 ∈ 𝑈 \ 𝑢. However, if 𝑣 is far away from 𝑢 in the tree, then the extremal
dependence between 𝜉𝑢 and 𝜉𝑣 may be weak and the difference Δ𝑢𝑣,𝑖 may carry little
information. Therefore, we propose a modified estimator where, for each 𝑢 ∈ 𝑈 , we
limit the scope to a subset𝑊𝑢 ⊆ 𝑈 of observable variables indexed by nodes near 𝑢,
producing the estimator

𝜃MM
𝑛,𝑘

= arg min
𝜃 ∈ (0,∞)𝐸

∑︁
𝑢∈𝑈
∥Σ̂𝑊𝑢 ,𝑢 − Σ𝑊𝑢 ,𝑢 (𝜃 )∥2𝐹 . (2.18)

Besides being simpler to compute, the modified estimator (2.18) performed better than
the one in (2.17) in Monte Carlo experiments. One possible explanation is that by
excluding pairs with weak extremal dependence, the bias of the estimator diminishes.

When choosing the sets𝑊𝑢 , care needs to be taken that the parameter vector 𝜃 is
still identifiable from the collection of covariance matrices Σ𝑊𝑢 ,𝑢 (𝜃 ) for 𝑢 ∈ 𝑈 . The
set of path sums 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑈 in Proposition 2.3.1 is now reduced to the set of the
path sums 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈𝑊𝑢 and 𝑢 ∈ 𝑈 . Whether or not these are still sufficient to
identify 𝜃 needs to be checked on a case-by-case basis. This issue is illustrated in
Section 2.7.4.

2.4.2 Composite likelihood estimator

The composite likelihood estimator (CLE) is again based on the result in (2.14). This
time however we maximize a composite likelihood function with respect to the
parameter 𝜃 directly. The composite likelihood function consists of multiplication of
likelihoods which are defined on subtrees.

As for the method of moments estimator in Section 2.4.1, we consider for each 𝑢 ∈
𝑈 a set𝑊𝑢 ⊆ 𝑈 of nodes that are close to𝑢 in the tree, taking care to include sufficiently
many variables so that the edge parameters are still identifiable (Section 2.7.4). Recall
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the log-differences Δ𝑢𝑣,𝑖 in (3.19) and the exceedance set 𝐼𝑢 right below (3.19). Let
𝜙𝑝 ( · ; Σ) be the density function of the centered 𝑝-variate normal distribution with
covariance matrix Σ. The composite likelihood estimator 𝜃CLE

𝑛,𝑘
is the maximizer of the

composite likelihood

𝐿
(
𝜃 ; {Δ𝑢𝑣,𝑖 :𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢, 𝑢 ∈ 𝑈 }

)
=

∏
𝑢∈𝑈

∏
𝑖∈𝐼𝑢

𝜙 |𝑊𝑢\𝑢 |
(
(Δ𝑢𝑣,𝑖 )𝑣∈𝑊𝑢

− 𝜇𝑊𝑢 ,𝑢 (𝜃 ); Σ𝑊𝑢 ,𝑢 (𝜃 )
)
.

We aggregate the likelihoods of the different normal distributions for all𝑢 ∈ 𝑈 treating
the samples of log-differences as independent, although they are not. Results from
Monte Carlo simulation experiments (Section 2.7.5) show that the performance of the
CLE is comparable to the one of the moment estimator and the extremal coefficient
estimator.

Other estimation methods based on locally defined likelihoods are used by Engelke
and Hitz (2020) and Lee and Joe (2017). The method of Engelke and Hitz (2020)
estimates the parameters associated to each clique separately. For trees this means
that there are 𝑑 − 1 one-variate likelihood functions to optimize, a problem which
is doable even in trees with many nodes. A problem with this estimator is that it is
inapplicable if there are latent variables because there will always be an adjacent pair
of variables with one of them being an unobservable, and making it impossible to
estimate the corresponding edge parameter. The estimator of Lee and Joe (2017) is
based on pairwise likelihoods, which can be any pairs, not only adjacent pairs as in
the estimator of Engelke and Hitz (2020). It is obtained by optimizing the composite
likelihood which consists of multiplying the pairwise likelihoods. This estimator is
applicable when there are latent variables as long as all possible pairs between the
observed variables are included in the composite likelihood function. It is close in
spirit to the pairwise extremal coefficients estimator considered next.

2.4.3 Pairwise extremal coefficients estimator

The pairwise extremal coefficients estimator (ECE), defined for general tail dependence
models in Einmahl et al. (2018), is based on the bivariate stable tail dependence function
(stdf) in (2.4). It minimizes the weighted distance between a non-parametric estimate
and the fitted parametric stdf.

Let 𝑙 be the stdf in (2.1) and recall that the extremal coefficient associated to a
node set 𝐽 ⊆ 𝑉 is defined as

𝑙 (𝑥 𝐽 ) = 𝑙 𝐽 (1, . . . , 1) = lim
𝑡→∞

𝑡 P

(
max
𝑗∈ 𝐽

𝑋 𝑗 > 𝑡

)
, (2.19)

where 𝑥 𝐽 = (1{ 𝑗∈ 𝐽 }, 𝑗 ∈ 𝑉 ) and where 𝑙 𝐽 is the stdf of the subvector 𝑋 𝐽 . For the
Hüsler–Reiss distribution with parameter matrix Λ and for a pair of nodes 𝐽 = {𝑢, 𝑣},
the bivariate extremal coefficient is just 𝑙 𝐽 (1, 1) = 2Φ(𝜆𝑢𝑣), with Φ the standard normal
cdf. In case Λ = Λ(𝜃 ) in (2.5), the pairwise extremal coefficient depends on the path
sum 𝑝𝑢𝑣 =

∑
𝑒∈ (𝑢⇝𝑣) 𝜃

2
𝑒 via

𝑙 𝐽 (1, 1;𝜃 ) = 2Φ(√𝑝𝑢𝑣/2), 𝐽 = {𝑢, 𝑣}. (2.20)

The non-parametric estimator of the stdf dates back to Drees and Huang (1998)
and yields the following estimator for the extremal coefficient 𝑙 𝐽 (1, . . . , 1) for 𝐽 ⊆ 𝑉 :

𝑙 𝐽 ;𝑛,𝑘 (1, . . . , 1) =
1
𝑘

𝑛∑︁
𝑖=1
1

(
max
𝑗∈ 𝐽

𝑛𝐹 𝑗,𝑛 (𝜉 𝑗,𝑖 ) > 𝑛 + 1/2 − 𝑘
)
. (2.21)
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2.5. HIGH WATER LEVELS ON THE SEINE NETWORK

Let Q ⊆ {𝐽 ⊆ 𝑈 : |𝐽 | = 2} be a collection of pairs of nodes associated to observable
variables and put 𝑞 = |Q|, ensuring that 𝑞 ≥ |𝐸 | = 𝑑 − 1, the number of free edge
parameters. The pairwise extremal coefficients estimator (ECE) of 𝜃 is

𝜃ECE
𝑛,𝑘

= arg min
𝜃 ∈ (0,∞)𝐸

∑︁
𝐽 ∈Q

(
𝑙 𝐽 ;𝑛,𝑘 (1, 1) − 𝑙 𝐽 (1, 1;𝜃 )

)2
. (2.22)

If Q is the collection of all possible pairs of nodes in𝑈 , then the pairwise extremal
coefficients (2.20) give us access to all path sums 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑈 , and Proposition 2.3.1
guarantees we can identify 𝜃 . If, however, Q is a smaller set of pairs, then the
identifiability of 𝜃 from the resulting path sums needs to be checked on the case at
hand.

2.5 High water levels on the Seine network

We have chosen to present an application that allows us to demonstrate the identifiabil-
ity criterion outlined in Section 2.3. Datawere collected fromhttp://www.hydro.eaufrance.fr,
a web-site of the french Ministry of Ecology, Energy and Sustainable Development,
and span the period from January 1987 to April 2019 with gaps for some of the mea-
surement stations. The data represent water levels, in cm, at five locations on the
Seine river: Paris, Meaux, Melun, Nemours and Sens. The map on Figure 2.1 shows
part of the actual Seine network. The schematic representation of the graphical model
used in the estimation is shown in Figure 2.3. The tree has 𝑑 = 7 nodes, two of which
are associated to latent variables. Since both these nodes have degree equal to three,
Proposition 2.3.1 guarantees we can still identify all six edge parameters 𝜃1, . . . , 𝜃6.
For more information on the data set, some summary statistics and details on data
preprocessing, we refer to Section 2.7.6.

Melun 52

Nemours

Sens

Paris

Meaux

𝜃1

𝜃2
𝜃3 𝜃4

𝜃5

𝜃6

Figure 2.3: The Seine network with the tail dependence parameters associated to each
edge of the tree.

2.5.1 Estimates and confidence intervals

We used all three estimators in Section 2.4 to obtain estimates of the six parameters
of extremal dependence. For the pairwise extremal coefficient estimator (ECE) it is
possible to calculate standard errors thanks to the asymptotic distribution derived
in Einmahl et al. (2018, Theorem 2.2). Computational details for the standard errors
follow in Section 2.7.7. The distributions of the MME and CLE are not known so we
computed bootstrapped confidence intervals, known as basic bootstrap confidence
intervals (Davison and Hinkley, 1997, Chapter 2), by resampling from the data.

The EC estimates and their 95% confidence intervals are displayed in Figure 2.4
for two of the parameters, namely 𝜃1 and 𝜃4. The confidence intervals using the
MME and CLE are narrower as can be seen from Figure 2.5. The plots for 𝜃2, 𝜃5, 𝜃6 are
similar to the one for 𝜃1: the 95% confidence intervals never include zero, suggesting
that the extremal dependence between the corresponding variables is not perfect and
hence that the edges cannot be collapsed. In Section 2.3, we alluded to the possibility
of circumventing the issue of latent variables by suppressing nodes and redrawing
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Figure 2.4: Point estimates and confidence intervals for the pairwise ECE.

edges. The fact that the confidence intervals do not include zero indicate that doing
so would have produced a misleading picture of extremal dependence.

The plot of 𝜃3, similarly to the plot of 𝜃4, does contain a segment over 𝑘 where
the lower confidence bound reaches zero: for 𝜃4 this is approximately 𝑘 ∈ [260, 360],
while for 𝜃3 it is 𝑘 ∈ [90, 180]. Although the confidence intervals for 𝜃3 and 𝜃4 indicate
some instability of the estimated parameters, we believe that collapsing the edges
is not advisable, especially in networks with many more unobservable variables.
Moreover, the river distance, which is one of the important factors in tail dependence
(Asadi et al., 2015), is rather long between node 2 and Melun and between Melun and
node 5, so that there is no physical motivation for collapsing the corresponding edges.

For a point estimate per parameter we need to average out over a range of 𝑘 . The
chosen range per estimator and per parameter need not be the same. As a rule we
select a range around the beginning where the estimates start stabilizing around a
certain level, omitting the most volatile part for relatively small 𝑘 . Most of the time
we thus consider 𝑘 ∈ [100, 220]. In this way we end up with the point estimates
displayed for comparison in Figure 2.5.

Given the similarities between the MME and CLE, the estimates are pooled in an
average of the two for each parameter.

2.5.2 Considerations on the goodness-of-fit of the model

The Hüsler–Reiss family would not be an appropriate extremal dependence model if
some of the variables would exhibit asymptotic independence. As kindly suggested by
a Reviewer, we compared non-parametric estimates of multivariate tail dependence
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Figure 2.5: Parameters – estimates and confidence intervals. The confidence intervals
of the moment and composite likelihood estimators are bootstrapped, namely 𝜃 ∈
[2𝜃 − 𝑞∗0.975, 2𝜃 − 𝑞

∗
0.025], where 𝑞∗𝛼 is the 𝛼-quantile of the bootstrapped distribution of

𝜃 .

coefficients P(min𝑣∈𝑊 𝑋𝑣 > 𝑡 | 𝑋𝑢 > 𝑡) = 𝑡 P(min𝑣∈𝑊∪𝑢 𝑋𝑣 > 𝑡) for𝑊 ⊊ 𝑈 and
𝑢 ∈ 𝑈 \𝑊 at finite thresholds 𝑡 = 𝑛/𝑘 with their postulated limits as 𝑡 → ∞ based
on the fitted Hüsler–Reiss stdf. The results (not shown) supported the hypothesis of
asymptotic dependence for nearly all subvectors 𝑋𝑊∪𝑢 of variables.

To assess how well the model from Section 2.2.2 fits the data, we compare non-
parametric and model-based estimates of quantities describing extremal dependence,
such as pairwise and triple-wise extremal coefficients and the Pickands dependence
function. For 𝐽 ⊆ 𝑈 , recall the extremal coefficient 𝑙 𝐽 (1, . . . , 1) in (2.19) and its non-
parametric estimate 𝑙 𝐽 ;𝑛,𝑘 (1, . . . , 1) in (6.3.3), also called empirical extremal coefficient.
The extremal coefficient 𝑙 𝐽 (1, . . . , 1) is always between 1 and |𝐽 |, corresponding to
perfect extremal dependence and to extremal independence, respectively.

Figure 2.6 compares the model-based extremal coefficients obtained from (2.4)
by plugging in parameter estimates with the empirical counterparts for pairs and
triples 𝐽 ⊆ 𝑈 . At least visually the fit is quite good for both estimators considered,
which are the average of the CLE and MME on the one hand and the ECE on the other
hand. Note that the ECE in (6.3.3) is constructed explicitly to ensure that the model-
based pairwise extremal coefficients fit the empirical ones as closely as possible. It is
therefore only natural that the extremal coefficients based on the ECE fit the empirical
ones best. A more comprehensive comparison of the finite-sample performance of
MME, CLE and ECE is reported in a simulation study in Section 2.7.5.

It should be noted that it is impossible to compute empirical extremal coefficients
involving latent variables. Model-based estimates of such extremal coefficients can
still be computed however, thanks to the identifiability of the parameter vector 𝜃 .

As another visual check of the goodness-of-fit of the assumed model we consider
the bivariate Pickands dependence function, usually denoted by 𝐴(𝑤) for𝑤 ∈ [0, 1].
For the Hüsler–Reiss extreme-value distribution at the pair 𝐽 = {𝑢, 𝑣}, it is equal to

𝐴𝑢,𝑣 (𝑤 ;𝜃 ) = 𝑙 𝐽 (1 −𝑤,𝑤 ;𝜃 )

= (1 −𝑤) Φ
(

ln( 1−𝑤
𝑤
) + 1

2𝑝𝑢𝑣√
𝑝𝑢𝑣

)
+𝑤 Φ

(
ln( 𝑤

1−𝑤 ) +
1
2𝑝𝑢𝑣√

𝑝𝑢𝑣

)
,
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Figure 2.6: Non-parametric vs model-based extremal coefficients for pairs (left) and
triples (right).
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Figure 2.7: The empirical and model-based Pickands dependence function computed
using the pooled CL and MM estimates and the EC estimates. The dashed gray lines
show the lower limit max(𝑤, 1 −𝑤) of any Pickands dependence function 𝐴(𝑤).

with 𝑝𝑢𝑣 as in (2.15). Hence the model-based estimator of the function 𝐴𝑢,𝑣 (𝑤 ;𝜃 ) is
𝐴𝑢,𝑣 (𝑤 ;𝜃𝑛,𝑘 ) where 𝜃𝑛,𝑘 can be the average MME/CLE or the ECE.

The non-parametric counterpart of the Pickands dependence function is

𝐴𝑢,𝑣 (𝑤)

=
1
𝑘

𝑛∑︁
𝑖=1
1

{
𝑛𝐹𝑢,𝑛 (𝜉𝑢,𝑖 ) > 𝑛 − 𝑘 (1 −𝑤) +

1
2
or 𝑛𝐹𝑣,𝑛 (𝜉𝑣,𝑖 ) > 𝑛 − 𝑘𝑤 +

1
2

}
.

The model-based Pickands dependence function is compared to the empirical coun-
terpart in Figure 2.7. The plot is complemented with non-parametric 95% confidence
intervals for 𝐴(𝑤) computed by the bootstrap method introduced in Kiriliouk et al.
(2018, Section 5). The general idea of the method is to approximate the distribution
of
√
𝑘 (𝑙𝑛,𝑘 − 𝑙) by the distribution of

√
𝑘 (𝑙∗

𝑛,𝑘
− 𝑙𝛽

𝑛,𝑘
) where 𝑙∗

𝑛,𝑘
is the empirical stable

tail dependence function based on the ranks of a sample of size 𝑛 from the empirical
beta copula and 𝑙𝛽

𝑛,𝑘
is the stdf based on the empirical beta copula using the ranks of

the original sample (𝜉𝑣,𝑖 , 𝑣 ∈ 𝑈 ) for 𝑖 = 1, . . . , 𝑛. A detailed description of the derived
bootstrap confidence intervals is provided in Section 2.7.8.
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Figure 2.8: Scatterplots of uniform transformed data, 𝐹𝑣,𝑛 (𝜉𝑣,𝑖 ), 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛, for
two pairs of locations. Sens and Nemours (left) are not flow connected while Sens and
Paris (right) are flow connected. It can be seen from the Seine map in Figure 2.1 that
the river and Euclidean distance from Sens to Nemours is much smaller than the one
from Sens to Paris. However the tail dependence seems to be stronger for the second
pair of locations.

2.5.3 Flow-connectedness and tail dependence

In a study by Asadi et al. (2015) of data from the Danube, it was found that a key
factor for extremal dependence between two locations is whether or not they are flow
connected. Two locations are flow connected if one of them is downstream of the
other one. Flow connectedness often dominates river distance or Euclidean distance
in importance: variables on distant nodes that are flow connected might have stronger
tail dependence than variables on nodes that are nearby but not flow connected.

This effect is confirmed in our data too and is illustrated in Figure 2.8. The cities
of Sens and Nemours are not flow connected but the Euclidean and river distance
between them is smaller than the one between the flow connected cities of Sens and
Paris. Still, the tail dependence seems to be stronger for the flow connected pair of
locations.

Figure 2.9 illustrates the tail dependence in the Seine network through a heat
map of the pairwise extremal coefficients. Pairs which are flow connected are indeed
the ones with stronger tail dependence (smaller extremal coefficient). According to
both estimators the strongest tail dependence is to be found between Paris and the
locations at node 2, node 5 and Melun.

2.5.4 Suppressing latent variables

In Section 2.3 we alluded to the possibility of suppressing nodes with latent variables.
Here we illustrate that method and compare the results with those presented so far.
After removing nodes 2 and 5 from the Seine graph in Figure 2.3, there is no unique
way of reconnecting the remaining five nodes into a tree. Two possible structures
for the reduced Seine graph are presented in Figure 2.10. We opt for the right-hand
graph and refer to the model associated to that tree as model B. Model A will refer to
the one associated to the original graph in Figure 2.3.

In Figure 2.11, we compare the extremal coefficients induced by model B to the
empirical ones and to those induced by model A. The extremal coefficients resulting
from both models turn out to be rather close, the little black circles lying almost on
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Figure 2.9: Heat map of the extremal coefficients. The upper diagonal is computed
using the pooled MM and CL estimates and the lower diagonal uses the EC estimates.
The crosses denote flow connected nodes.

the diagonal in all four plots. The reason may be that the original tree is small and
that not many nodes have been suppressed, whereas in case of many latent variables,
the impact of suppressing them may be large. Furthermore, the results may depend
on the particular choice of the reduced tree: out of many possibilities two of which
shown in Figure 2.10 we selected the second one. A final shortcoming of the method
of suppressing nodes is that tail dependence cannot be calculated for random vectors
involving latent variables.

We conclude in Figure 2.12 with a depiction of pairwise upper tail dependence in
the Seine network. Shown are the complete and reduced trees with edges weighted
by the tail dependence coefficients, defined for a pair 𝐽 = {𝑢, 𝑣} ⊂ 𝑉 by

2
(
1 − ℓ𝐽 (1, 1;𝜃 )

)
(2.23)

in terms of the pairwise extremal coefficient in (2.20). In both trees, the strongest tail
dependence occurs along the path from Sens to Paris.

2.6 Conclusion

We have presented a statistical model suitable for studying extremal dependence
within a vector of random variables indexed by the nodes of a tree. The edges between
the nodes are meant to indicate links between variables arising from a physical
or conceptual network, although we do not impose any conditional independence
relations. The main assumption is that, upon marginal standardization, the data-
generating distribution is in the max-domain of attraction of a max-stable Hüsler–
Reiss distribution whose parameter matrix possesses a certain structure induced
by the tree: a free parameter is associated to each edge and each element of the
Hüsler–Reiss parameter matrix only depends on the sum of the edge parameters
along the path between the two corresponding nodes on the tree. We showed that the
max-domain of attraction of this tree-structured Hüsler–Reiss distribution contains
a specific distribution that, unlike the max-stable Hüsler–Reiss distribution or the
associated multivariate Pareto distribution, satisfies the global Markov property with
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Figure 2.10: Two different versions of the graph of the Seine network in Figure 2.3
if nodes with latent variables are suppressed and new edges are drawn between the
remaining nodes of the affected parts of the tree.

respect to the tree. This auxiliary model not only motivates the postulated structure, it
also allowed us to find extremal dependence properties of any distribution satisfying
our main assumption.

The central point and contribution of the paper is related to the identifiability
of the edge parameters in case some of the variables are latent (unobservable). This
situation occurs for instance in applications on river networks, when measurements
on certain locations are missing. We showed that the edge parameters are uniquely
identified by the distribution of the observable variables if and only if all nodes
indexing latent variables are of degree at least three. Thanks to this result it is possible
to quantify tail dependence even between latent variables. The characterization is
due to the special structure of the variogram matrix of the Hüsler–Reiss distribution
and may not be applicable to other max-stable distributions.

We fitted the model to water level data on the Seine network on a tree with seven
variables, two of which were latent. As the corresponding nodes both had degree
three, the six edge parameters were still identifiable and could be estimated based on
data from the five observable variables. Three different estimators were proposed
and implemented, based on the method of moments, on composite likelihood, and on
pairwise extremal coefficients. Comparisons of non-parametric and model-based tail
dependence quantities confirmed the adequacy of the fitted structured Hüsler–Reiss
distribution.

For comparison we estimated a model where the two nodes with latent variables
were suppressed and the edges between the affected parts of the networkwere redrawn
in an arbitrary way. Although for the Seine data this reduction did not have a big
impact on the fitted tail dependence model of the observable variables, we argued
why it is still recommendable to take latent variables into account, provided there is
now a sound way to do so.

An open question concerns parameter identifiability criteria in case of latent vari-
ables for Hüsler–Reiss distributions with parameter matrices structured in different
ways than in this paper. Even the structure itself may be partially unknown. Another
interesting direction for further research concerns extensions from the Hüsler–Reiss
family to other parametric families of max-stable distributions.
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Figure 2.11: Comparison of extremal coefficients under model A (latent variables in-
cluded) and model B (latent variables excluded). Top: combined MM and CL estimates;
bottom: EC estimates. Left: pairs; right: triples.
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Figure 2.12: The trees of the tail dependence coefficients in equation (2.23), using the
EC estimates for 𝜃 . Left: tree with nodes with latent variables; Right: reduced tree
without latent variables.
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2.7 Supplement

2.7.1 Relation to extremal graphical models in Engelke and Hitz (2020)

Engelke and Hitz (2020) introduce graphical models for extremes in terms of the
multivariate Pareto distribution associated to a simple max-stable distribution 𝐺 . We
briefly review their approach and compare it with ours in case 𝐺 is a Hüsler–Reiss
distribution. Let 𝑉 = {1, . . . , 𝑑} and let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a random vector with
unit-Pareto margins. The condition that 𝑋 ∈ 𝐷 (𝐺) is equivalent to

lim
𝑡→∞

(
P(𝑋𝑣 ≤ 𝑡𝑧𝑣, 𝑣 ∈ 𝑉 )

)𝑡
= 𝐺 (𝑧), 𝑧 ∈ (0,∞)𝑉 .

By a direct calculation, it follows that

lim
𝑡→∞
P
(
𝑋𝑣/𝑡 ≤ 𝑧𝑣, 𝑣 ∈ 𝑉

��� max
𝑣∈𝑉

𝑋𝑣 > 𝑡

)
=

ln𝐺
(
min(𝑧𝑣, 1), 𝑣 ∈ 𝑉

)
− ln𝐺 (𝑧)

ln𝐺 (1, . . . , 1) ,

(2.24)

for 𝑧 ∈ (0,∞)𝑉 , from which

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | max
𝑣∈𝑉

𝑋𝑣 > 𝑡
𝑑−→ 𝑌, 𝑡 →∞ (2.25)

where 𝑌 = (𝑌𝑣, 𝑣 ∈ 𝑉 ) is a random vector whose distribution function is equal to the
right-hand side in (3.6). The law of 𝑌 is a multivariate Pareto distribution, which,
upon a change in location, is a special case of the multivariate generalized Pareto
distributions arising in Rootzén and Tajvidi (2006) and Beirlant et al. (2004, Section 8.3)
as limit distributions of multivariate peaks over thresholds.

Assuming that 𝑌 is absolutely continuous, its support is equal to the L-shaped set
{𝑦 ∈ (0,∞)𝑉 : max𝑣∈𝑉 𝑌𝑣 > 1} or a subset thereof, making conditional independence
notions related to density factorizations ill-suited for 𝑌 . This is why Engelke and Hitz
(2020) study conditional independence relations for the random vector 𝑌𝑢 defined
in distribution as 𝑌 | 𝑌𝑢 > 1 for 𝑢 ∈ 𝑉 . According to Engelke and Hitz (2020,
Definition 2), the law of 𝑌 is defined to be an extremal graphical model with respect to
some graph G if for all 𝑢 ∈ 𝑉 , the law of 𝑌𝑢 satisfies the global Markov property with
respect to G. Note that 𝑌 itself is not required to satisfy the said Markov property.

The multivariate Pareto distribution derived through (3.6) from the Hüsler–Reiss
distribution 𝐺 = 𝐻Λ is referred to in Engelke and Hitz (2020) as the Hüsler–Reiss
Pareto distribution. In their article, the term Hüsler–Reiss graphical models is then
used for Hüsler–Reiss Pareto distributions that are extremal graphical models.

To show the relation with our approach, note that (2.25) implies that, for all 𝑢 ∈ 𝑉 ,
we have

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡
𝑑−→ 𝑌𝑢, 𝑡 →∞.

Recall the tail tree (Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 \𝑢) in (2.7) and put Ξ𝑢,𝑢 = 0. Equations (2.10) and (2.13)
in combinationwith Theorem 2 in Segers (2020b) and the continuousmapping theorem
imply that

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡
𝑑−→ (𝜁Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 ), 𝑡 →∞,

where 𝜁 is a unit-Pareto random variable, independent of the log-normal random
vector (Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 ). Comparing the two previous limit relations, we find that 𝑌𝑢 is
equal in distribution to (𝜁Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 ). The representation lnΞ𝑢,𝑣 =

∑
𝑒∈ (𝑢⇝𝑣) ln𝑀𝑒

as path sums starting from 𝑢 over independent Gaussian increments ln𝑀𝑒 along the
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edges implies that the Gaussian vector (lnΞ𝑢,𝑣, 𝑣 ∈ 𝑉 ) satisfies the global Markov
property with respect to T . Since 𝜁 is independent of (Ξ𝑢,𝑣, 𝑣 ∈ 𝑈 ) this Markov
property then also holds for (𝜁Ξ𝑢,𝑣, 𝑣 ∈ 𝑉 ) and thus also for𝑌𝑢 . But this means exactly
that the multivariate Pareto distribution associated to the Hüsler–Reiss distribution
with parameter matrix Λ(𝜃 ) in (2.5) is an extremal graphical model with respect to T .

By way of comparison, the random vector 𝑍 ∗ constructed via properties (Z1)–(Z2)
in Section 2.2.3 is not max-stable nor multivariate Pareto, but it satisfies the global
Markov property with respect to T and it belongs to 𝐷 (𝐻Λ(𝜃 ) ), motivating the chosen
structure of Λ(𝜃 ) in (2.5). In Section 2.2.2, our assumption on 𝜉 after transformation
to 𝑋 with unit-Pareto margins is that 𝑋 ∈ 𝐷 (𝐻Λ(𝜃 ) ). In this sense, we require that the
extremal dependence of 𝜉 is like the one of the graphical model 𝑍 ∗. Our approach is
thus different from the one in Engelke and Hitz (2020), who postulate a new definition
of extremal graphical models for multivariate Pareto vectors, but without regard for
the max-domain of attraction of the corresponding max-stable distributions. Still, for
graphical models with respect to trees, both methods arrive at the same structure for
the Hüsler–Reiss parameter matrix Λ(𝜃 ).

2.7.2 Comparison with the Lee–Joe structured Hüsler–Reiss model

Lee and Joe (2017) already proposed a way to bring structure to the parameter ma-
trix Λ = (𝜆2

𝑖 𝑗 )𝑑𝑖,𝑗=1 of a 𝑑-variate max-stable Hüsler–Reiss distribution. Recall that
Hüsler and Reiss (1989) studied the asymptotic distribution of the component-wise
maxima of a triangular array of row-wise independent and identically distributed
Gaussian random vectors, the 𝑛-th row having correlation matrix 𝜌 (𝑛). Assuming
(1 − 𝜌𝑖 𝑗 (𝑛)) ln(𝑛) → 𝜆2

𝑖 𝑗 as 𝑛 → ∞, they found the limit to be the distribution
bearing their name. Motivated by this property, Lee and Joe (2017) propose to set
𝜆2
𝑖 𝑗 = (1 − 𝜌𝑖 𝑗 )𝜈 where 𝜌 = (𝜌𝑖 𝑗 )𝑑𝑖,𝑗=1 is a structured correlation matrix and 𝜈 > 0 is a
free parameter. They then introduce the Hüsler–Reiss distributions that result from
imposing on 𝜌 the structure of a factor model or the one of a 𝑝-truncated vine. If
𝑝 = 1, the latter becomes a Markov tree and we can compare their model with ours.
In their case, a free correlation parameter 𝛼𝑒 ∈ (−1, 1) is associated to each edge
𝑒 ∈ 𝐸 of the tree on𝑉 = {1, . . . , 𝑑}. The correlation matrix 𝜌 of the resulting Gaussian
graphical model is

𝜌𝑖 𝑗 =
∏

𝑒∈ (𝑖⇝𝑗 )
𝛼𝑒 , 𝑖, 𝑗 ∈ 𝑉 .

The Lee–Joe model for the structured Hüsler–Reiss matrix ΛLJ derived from 𝜌 is
therefore

𝜆2
𝑖 𝑗 = (1 − 𝜌𝑖 𝑗 )𝜈 =

©«1 −
∏

𝑒∈ (𝑖⇝𝑗 )
𝛼𝑒

ª®¬𝜈, 𝑖, 𝑗 ∈ 𝑉 . (2.26)

The model in (2.26) is to be compared with the one in our Eq. (2.5). The former
has (𝑑 − 1) + 1 = 𝑑 free parameters, (𝛼𝑒 , 𝑒 ∈ 𝐸) and 𝜈 , whereas the latter has only
𝑑 − 1 free parameters (𝜃𝑒 , 𝑒 ∈ 𝐸). In Eq. (2.5), the Hüsler–Reiss parameters satisfy

𝜆2
𝑖 𝑗 =

∑︁
𝑒∈ (𝑖⇝𝑗 )

𝜆2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 ,

where we write 𝜆𝑒 = 𝜆𝑎𝑏 for 𝑒 = (𝑎, 𝑏) ∈ 𝐸. In contrast, the Lee–Joe parameter
matrix in Eq. (2.26) only satisfies this additivity relation asymptotically as 𝜈 → ∞.
For instance, on a tree with 𝑑 = 3 nodes and edges (1, 2) and (2, 3), i.e., a chain, their
and our models satisfy respectively

𝜆2
13 = 𝜆

2
12 + 𝜆2

23 − 𝜈−1𝜆2
12𝜆

2
23 for 𝜆2

𝑖 𝑗 as in Eq. (2.26),
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𝜆2
13 = 𝜆

2
12 + 𝜆2

23 for 𝜆2
𝑖 𝑗 as in Eq. (2.5).

Since the Lee–Joe parameter 𝜈 > 0 takes the role of ln(𝑛) in the Hüsler–Reiss limit
relation, we can think of it as being large. In this interpretation, our parametrization
becomes a limiting case of the one of Lee and Joe (2017).

Whereas the Lee–Joe parametrization is motivated from the limit result in Hüsler
and Reiss (1989) for row-wise maxima of Gaussian triangular arrays, ours is motivated
as the max-stable attractor of certain regularly varying Markov trees as in Segers
(2020b), the vector 𝑍 ∗ in Section 2.2.3 serving as example. A possible advantage of
our structure is that the resulting multivariate Pareto vector falls into the framework
of conditional independence for such vectors is an extremal graphical model as in
Engelke and Hitz (2020, Definition 2), as discussed in Section 2.7.1. In general, this is
not true for the multivariate Pareto vector induced by the Lee–Joe structure. For the
trivariate tree in the preceding paragraph, for instance, the criterion in Proposition 3
in Engelke and Hitz (2020) is easily checked to be verified for our matrix Λ but not
for the one of Lee and Joe (2017).

For the Seine data, we compare the fitted Lee–Joe tail dependence model with
ours. In order to avoid possible identifiability issues for the Lee–Joe parameters, we
suppress the nodes with latent variables and use the right-hand tree in Figure 2.10
for the 𝑑 = 5 observable ones, corresponding to the five locations in the dataset. The
estimation method of Lee and Joe (2017) is based on pairwise copulas and annual
maxima via composite likelihood. For year 𝑦 and for variable 𝑗 ∈ {1, . . . , 𝑑}, let
𝑚𝑦,𝑗 be the maximum of all observations for that variable and that year, insofar
available. These maxima are reported in Table 2.2 and their availability depends on
the variable, i.e., on the location. For Melun there are only 15 such annual maxima
in comparison to 33 for Nemours. For each variable 𝑗 , transform these maxima to
uniform margins 𝑢𝑦,𝑗 using the empirical cumulative distribution function based on
all available maxima for that variable. Note that for this transformation, Lee and Joe
(2017) rely on estimated generalized extreme value distributions instead. For variables
𝑖, 𝑗 ∈ {1, . . . , 𝑑}, let Y𝑖 𝑗 be the set of years 𝑦 for which annual maxima are available
for both variables. For the pair (Paris, Meaux) this is the period 1999–2019 while
for the pair (Paris, Nemours) this is 1990–2019. Let 𝑐 (𝑢, 𝑣 ; 𝜆2) denote the bivariate
Hüsler–Reiss copula density with parameter 𝜆2. Following Lee and Joe (2017), we
estimate the free parameters in Eq. (2.26) by maximizing a composite likelihood:
letting 𝜆2

𝑖 𝑗 (𝛼, 𝜈) denote the right-hand side in (2.26), the parameter estimates are

(𝛼, 𝜈) = arg max
𝛼∈ (−1,1)𝑑−1,𝜈∈ (0,∞)

𝑑∑︁
𝑖, 𝑗=1

∑︁
𝑦∈Y𝑖 𝑗

ln 𝑐
(
𝑢𝑖,𝑦, 𝑢 𝑗,𝑦 ; 𝜆2

𝑖 𝑗 (𝛼, 𝜈)
)
.

For the implementation, we relied on the R package CopulaModel (Krupskii, 2014).
Next, we compute bivariate extremal coefficients and compare them with the

non-parametric ones on the one hand and with those obtained using our own model
on the other hand. The points in Figure 2.13 being some distance away from the
diagonal, the two methods indeed seem to give somewhat different results. Moreover,
there is less concordance between the non-parametric estimates and the ones from
the Lee–Joe model than between the non-parametric ones and those resulting from
our model: compare the red crosses in Figure 2.13 with those in the left-hand plots in
Figure 2.11.

2.7.3 Proof of Proposition 2.2.1

We show that the stdf 𝑙 of 𝑍 ∗ is equal to 𝑙𝑈 in (2.4) with 𝑈 = 𝑉 and Λ = Λ(𝜃 ).
Since the margins of 𝑍 ∗ are unit-Fréchet, they are tail equivalent to the unit-Pareto
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Figure 2.13: Bivariate extremal coefficients comparison: using the modelling and
estimation method of Lee and Joe (2017, Section 4–5) and those proposed in this paper.

distribution, so that standardization to the unit-Pareto distribution is unnecessary. By
the inclusion–exclusion principle,

𝑙 (𝑥1, . . . , 𝑥𝑑 ) = lim
𝑡→∞

𝑡 P(𝑍 ∗1 > 𝑡/𝑥1 or . . . or 𝑍 ∗𝑑 > 𝑡/𝑥𝑑 )

=

𝑑∑︁
𝑖=1
(−1)𝑖−1

∑︁
𝑊 ⊆𝑉
|𝑊 |=𝑖

lim
𝑡→∞

𝑡 P(𝑍 ∗𝑣 > 𝑡/𝑥𝑣, 𝑣 ∈𝑊 ) (2.27)

for 𝑥 ∈ (0,∞)𝑑 . For any non-empty𝑊 ⊆ 𝑉 and any 𝑢 ∈ 𝑊 , it holds by (2.7) in
combination with Theorem 2 in Segers (2020b) that

lim
𝑡→∞

𝑡 P(𝑍 ∗𝑣 > 𝑡/𝑥𝑣, 𝑣 ∈𝑊 )

= lim
𝑡→∞

𝑡
1

𝑡/𝑥𝑢
P

(
𝑍 ∗𝑢
𝑡/𝑥𝑢

𝑍 ∗𝑣
𝑍 ∗𝑢

>
𝑥𝑢

𝑥𝑣
, 𝑣 ∈𝑊 \ 𝑢

���𝑍 ∗𝑢 >
𝑡

𝑥𝑢

)
= 𝑥𝑢 P(𝜁Ξ𝑢𝑣 > 𝑥𝑢/𝑥𝑣, 𝑣 ∈𝑊 \ 𝑢),

with 𝜁 a unit-Pareto variable independent of (Ξ𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢). Using the fact that 1/𝜁
is a uniform variable on [0, 1] and setting Ξ𝑢𝑢 = 1 we have

𝑥𝑢 P(𝜁Ξ𝑢𝑣 > 𝑥𝑢/𝑥𝑣, 𝑣 ∈𝑊 \ 𝑢)
= 𝑥𝑢 P

(
1/𝜁 < min{(𝑥𝑣/𝑥𝑢)Ξ𝑢𝑣, 𝑣 ∈𝑊 \ 𝑢}

)
= 𝑥𝑢 E[min{1, (𝑥𝑣/𝑥𝑢)Ξ𝑢𝑣, 𝑣 ∈𝑊 \ 𝑢}] = E[min{𝑥𝑣Ξ𝑢𝑣, 𝑣 ∈𝑊 }]

=

∫ 𝑥𝑢

0
P
(
𝑥𝑣Ξ𝑢𝑣 > 𝑦, 𝑣 ∈𝑊 \ 𝑢

)
d𝑦

=

∫ ∞

− ln𝑥𝑢
P
(
lnΞ𝑢𝑣 > (− ln𝑥𝑣) − 𝑧, 𝑣 ∈𝑊 \ 𝑢

)
exp(−𝑧) d𝑧

upon a change of variable 𝑦 = exp(−𝑧). Since (lnΞ𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is multivariate
normal with mean vector 𝜇𝑉 ,𝑢 (𝜃 ) and covariance matrix Σ𝑉 ,𝑢 (𝜃 ), we obtain from (2.27)
that the stdf of 𝑍 ∗ is equal to the expression − ln𝐻Λ(𝜃 ) (1/𝑥1, . . . , 1/𝑥𝑑 ), with 𝐻Λ the
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cumulative distribution function in Eqs. (3.5)–(3.6) in Hüsler and Reiss (1989), but with
unit-Fréchet margins rather than Gumbel ones. By Remark 2.5 in Nikoloulopoulos
et al. (2009), this stdf is equal to the one given in (2.4), as required.

2.7.4 Choice of node neighborhoods and parameter identifiability

The MM estimator in (2.18) and the CL estimator in Section 2.4.2 involve the choice
of subsets𝑊𝑢 ⊆ 𝑈 for 𝑢 ∈ 𝑈 . These sets or neighborhoods need to be chosen in such
a way that the parameter vector 𝜃 is still identifiable from the collection of covariance
matrices Σ𝑊𝑢 ,𝑢 (𝜃 ) for 𝑢 ∈ 𝑈 and thus from the path sums 𝑝𝑎,𝑏 for 𝑎, 𝑏 ∈𝑊𝑢 and 𝑢 ∈ 𝑈 .
Here we illustrate this issue with an example.

Consider the following structure on five nodes where all variables are observable
except for the one on node 2:

𝜉1 𝜉2 𝜉3 𝜉4

𝜉5

𝜃12 𝜃23 𝜃34

𝜃25

Clearly, the parameter vector 𝜃 = (𝜃12, 𝜃23, 𝜃34, 𝜃25) is identifiable from the distribution
of the observable variables because the criterion of Proposition 2.3.1 is satisfied: the
only node whose variable is latent has degree three.

First, consider the following subsets𝑊𝑢 for 𝑢 ∈ {1, 3, 4, 5}:

𝑊1 = {1, 5}, 𝑊3 = {3, 4}, 𝑊4 = {3, 4}, 𝑊5 = {1, 5}.

The four 1 × 1 covariance matrices Σ𝑊𝑢 ,𝑢 (𝜃 ) that correspond to these subsets are

Σ𝑊1,1 (𝜃 ) = 𝜃 2
12 + 𝜃 2

25 = 𝑝15, Σ𝑊4,4 (𝜃 ) = 𝜃 2
34 = 𝑝34,

Σ𝑊3,3 (𝜃 ) = 𝜃 2
34 = 𝑝34, Σ𝑊5,5 (𝜃 ) = 𝜃 2

12 + 𝜃 2
25 = 𝑝15.

We are not able to identify the parameter 𝜃 because the set of path sums {𝑝15, 𝑝34} is
too small: we have only two equations and four unknowns.

Second, consider instead the following node sets

𝑊1 = {1, 5, 3}, 𝑊3 = {1, 3, 4, 5}, 𝑊4 = {3, 4}, 𝑊5 = {1, 5}.

The four covariance matrices Σ𝑊𝑢 ,𝑢 (𝜃 ) are now

Σ𝑊1,1 (𝜃 ) =
[
𝜃 2

12 + 𝜃 2
25 𝜃 2

12
𝜃 2

12 𝜃 2
12 + 𝜃 2

23

]
=

[
𝑝15 𝑝12
𝑝12 𝑝13

]
,

Σ𝑊4,4 (𝜃 ) = 𝜃 2
34 = 𝑝34,

Σ𝑊3,3 (𝜃 ) =

𝜃 2

12 + 𝜃 2
23 0 𝜃 2

23
0 𝜃 2

34 0
𝜃 2

23 0 𝜃 2
23 + 𝜃 2

25

 =


𝑝13 0 𝑝23
0 𝑝34 0
𝑝23 0 𝑝35

 ,
Σ𝑊5,5 (𝜃 ) = 𝜃 2

12 + 𝜃 2
25 = 𝑝15.

Clearly, the four edge parameters are identifiable from these covariance matrices.

2.7.5 Finite-sample performance of the estimators

We assess the performance of the three estimators introduced in Section 2.4 by
numerical experiments involving Monte Carlo simulations.

Let 𝜉 ′ = (𝜉 ′𝑣, 𝑣 ∈ 𝑉 ) be a random vector with continuous joint probability density
function and satisfying the global Markov property, (2.6), with respect to the graph in
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𝜉 ′2𝜉 ′1
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𝜉 ′7

𝜉 ′3

𝜉 ′5

𝜉 ′4
0.30.1
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0.80.2

1.2

Figure 2.14: Tree used for the graphical model underlying the data-generating process
in the simulation study in Section 2.7.5. The value of the parameters are 𝜃12 = 0.1,
𝜃23 = 0.3, 𝜃34 = 0.8, 𝜃35 = 0.5, 𝜃16 = 0.2 and 𝜃17 = 1.2. Variables 𝜉 ′1 and 𝜉 ′3 are latent.

Figure 2.14. Let 𝑓𝑢 (𝑥𝑢) for any 𝑢 ∈ 𝑉 be the marginal density function of the variable
𝜉 ′𝑢 and let 𝑥 𝑗 ↦→ 𝑓𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣) be the conditional density function of 𝜉 ′𝑗 given 𝜉

′
𝑣 = 𝑥𝑣 .

For any 𝑢 ∈ 𝑉 the joint density function of 𝜉 ′ is

𝑓 (𝑥) = 𝑓𝑢 (𝑥𝑢)
∏
(𝑣,𝑗 ) ∈𝐸𝑢

𝑓𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣), (2.28)

with 𝐸𝑢 ⊆ 𝐸 the set of edges directed away from 𝑢, i.e., (𝑣, 𝑗) ∈ 𝐸𝑢 if and only if 𝑣 = 𝑢
or 𝑣 separates 𝑢 and 𝑗 . The joint density 𝑓 is determined by 𝑑 − 1 bivariate densities
𝑓𝑣 𝑗 . It would seem that the joint density 𝑓 depends on 𝑢, but this is not so, as can be
confirmed by writing out the bivariate conditional densities. We make two parametric
choices: the univariate margins 𝑓𝑢 are unit Fréchet densities, 𝑓𝑗 (𝑥 𝑗 ) = exp(−1/𝑥 𝑗 )/𝑥2

𝑗

for 𝑥 𝑗 ∈ (0,∞), and the bivariate margins for each pair of variables on adjacent
vertices 𝑗, 𝑣 are Hüsler–Reiss distributions with parameter 𝜃 𝑗𝑣 . Hence, 𝜉 ′ corresponds
to the vector 𝑍 ∗ in Section 2.2.3.

To generate an observation from the left hand-side of (6.5.1) above we use the
right hand-side of that equation, proceeding iteratively, walking along paths starting
from𝑢 using the conditional densities. An observation of 𝜉 ′𝑗 given 𝜉

′
𝑣 = 𝑥𝑣 is generated

via the inverse function of the cdf 𝑥 𝑗 ↦→ 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣), the conditional cdf of 𝜉 ′𝑗 given
𝜉 ′𝑣 = 𝑥𝑣 . To do so, the equation 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣) −𝑝 = 0 is solved numerically as a function
in 𝑥 𝑗 for fixed 𝑝 ∈ (0, 1). The choice of the Hüsler–Reiss bivariate distribution gives
the following expression for 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣):

Φ

(
𝜃 𝑗 𝑣

2
+ 1
𝜃 𝑗 𝑣

ln
𝑥 𝑗

𝑥𝑣

)
· exp

[
− 1
𝑥𝑣

{
Φ

(
𝜃 𝑗𝑣

2
+ 1
𝜃 𝑗𝑣

ln
𝑥 𝑗

𝑥𝑣

)
− 1

}
− 1
𝑥 𝑗

Φ

(
𝜃 𝑗 𝑣

2
+ 1
𝜃 𝑗 𝑣

ln
𝑥𝑣

𝑥 𝑗

)]
.

After generating all the variables (𝜉 ′𝑣)𝑣∈𝑉 in this way, independent standard normal
noise 𝜀 ∼ N𝑑 (0, 𝐼𝑑 ) is added. Although the distribution of 𝜉 = 𝜉 ′ + 𝜀 is not necessarily
a graphical model with respect to the graph in Figure 2.14, it is still in the max-domain
of attraction of a Hüsler–Reiss distribution with parametric matrix as in (2.5). Hence
the vector 𝜉 is still in the class of models under consideration in Section 2.2.2. The
data on nodes 1 and 3 are discarded and not used in the estimation so as to mimic
a model with two latent variables, 𝜉1 and 𝜉3; according to Proposition 2.3.1, the six
dependence parameters are still identifiable. In this way, we generate 200 samples
of size 𝑛 = 1000. The estimators are computed with threshold tuning parameter
𝑘 ∈ {25, 50, 100, 150, 200, 300}.

The bias, standard deviation and root mean squared errors of the three estimators
are shown in Figure 2.15 and Figure 2.16 for the six parameters. The MME and CLE
are computed with the sets𝑊𝑢 being𝑊2 = {2, 4, 5, 6, 7},𝑊4 = 𝑊5 = {2, 4, 5}, and
𝑊6 =𝑊7 = {2, 6, 7}. As is to be expected, the absolute value of the bias is increasing
with 𝑘 , while the standard deviation is decreasing and the mean squared error has
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a 𝑈 -shape and eventually increases with 𝑘 . The MME and CLE have very similar
properties. For larger values of the true parameter, e.g. 𝜃34 = 0.8 and 𝜃17 = 1.2, all the
three estimators perform in a comparable way. The ECE tends to have larger absolute
bias and standard deviation for smaller values of the true parameters.

2.7.6 Seine case study: data preprocessing

The data represent water level in centimeters at the five locations mentioned above
and were obtained from Banque Hydro, the web-site http://www.hydro.eaufrance.fr,
of the Ministry of Ecology, Energy and Sustainable Development of France providing
data on hydrological indicators across the country. The dataset encompasses the
period from January 1987 to April 2019 with gaps for some of the stations.

Two major floods in Paris make part of our dataset: the one in June 2016 when
the water level was measured at 6.01 m and the one at the end of January 2018 with
water levels slightly less than 6 m measured in Paris too. A flood of similar magnitude
to the ones in 2016 and 2018 occurred in 1982. By way of comparison, the biggest
reported1 flood in Paris is the one in 1910 when the level in Paris reached 8.6 m.

Table 2.1 shows the average and the maximum water level per station observed
in the complete dataset. The maxima of Paris, Meaux, Melun and Nemours occurred
either during the floods in June 2016 or the floods in January 2018, which can be seen
from Table 2.2 which displays the annual maxima at the five locations and the date of
occurrence.

Station Paris Meaux Melun Nemours Sens
Period 1 Jan 1990 – 1 Nov 1999 – 1 Oct 2005 – 16 Jan 1987 – 1 Jan 1990 –

9 Apr 2019 9 Apr 2019 9 Apr 2019 9 Apr 2019 9 Apr 2019
(#obs) (10,621) (6,287) (4,443) (10,154) (9,159)

Mean (cm) 139.11 275.85 296.61 210.07 133.46
Max (cm) 601.95 468.70 545.48 439.03 333.80

Table 2.1: Average and maximum water level per station in the whole dataset.

From Table 2.2 it can be observed that for many of the years the dates of maxima
occurrence identify a period of several consecutive days during which the extreme
event took place. For instance the maxima in 2007 occurred all in the period 4–8
March, which suggests that they make part of one extreme event. Similar examples
are the periods 25–31 Dec 2010, 4–12 Feb 2013, 2–4 June 2016, etc. For most of the
years this period spans between 3 and 7 days. We will take this into account when
forming independent events from the dataset. In particular we choose a window of 7
consecutive calendar days within which we believe the extreme event have propagated
through the seven locations. We have experimented with different length of that
window, namely 3 and 5 days event period, but we have found that the estimation
and analysis results are robust to that choice.

Figure 2.17 illustrates the water levels attained at the different locations during
selected years from Table 2.2. The maxima of Sens, Nemours and Meaux seem to be
relatively homogeneous compared to the maxima in Paris.

For all of the stations water level is recorded several times a day and we take the
daily average to form a dataset of daily observations. Accounting for the gaps in the
mentioned period (see Table 2.1 and Table 2.2) we end up with a dataset of 3408 daily
observations in the period from 1 October 2005 to 8 April 2019. The dataset represents
five time series each of length 3408. We consider two sources of non-stationarity:
seasonality and serial correlation.

1According to the report of the Organisation for Economic Co-operation and Development (OECD)
Preventing the flooding of the Seine in the Paris – Ile de France region - p.4.
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Figure 2.15: Bias (left), standard deviation (middle) and root mean squared error (right)
of the method of moment estimator (MME), composite likelihood estimator (CLE) and
pairwise extremal coefficient estimator (ECE) of the parameters 𝜃12 (top), 𝜃23 (middle),
and 𝜃34 (bottom) as a function of the threshold parameter 𝑘 . Model and settings as
described in Section 2.7.5.
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Figure 2.16: Bias (left), standard deviation (middle) and root mean squared error (right)
of the method of moment estimator (MME), composite likelihood estimator (CLE) and
pairwise extremal coefficient estimator (ECE) of the parameters 𝜃35 (top), 𝜃16 (middle),
and 𝜃17 (bottom) as a function of the threshold parameter 𝑘 . Model and settings as
described in Section 2.7.5.
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Year Paris Meaux Melun Nemours Sens
date cm date cm date cm date cm date cm

1987 n/a n/a n/a n/a n/a n/a 15/11 221 n/a n/a
1988 n/a n/a n/a n/a n/a n/a 13/02 247 n/a n/a
1989 n/a n/a n/a n/a n/a n/a 04/03 213 n/a n/a
1990 17/02 254 n/a n/a n/a n/a 03/07 217 18/02 183
1991 10/01 339 n/a n/a n/a n/a 23/04 212 04/01 175
1992 06/12 293 n/a n/a n/a n/a 15/01 218 06/12 170
1993 28/12 377 n/a n/a n/a n/a 26/09 217 26/12 184
1994 11/01 478 n/a n/a n/a n/a 19/10 253 09/01 260
1995 30/01 500 n/a n/a n/a n/a 21/03 277 28/01 259
1996 04/12 324 n/a n/a n/a n/a 03/12 219 04/12 194
1997 28/02 313 n/a n/a n/a n/a 03/07 214 n/a n/a
1998 02/05 358 n/a n/a n/a n/a 21/12 216 n/a n/a
1999 31/12 517 30/12 413 n/a n/a 30/12 252 31/12 259
2000 01/01 515 02/01 407 n/a n/a 07/06 233 01/01 239
2001 25/03 517 30/03 427 n/a n/a 16/03 260 17/03 334
2002 03/03 410 03/03 403 n/a n/a 01/01 272 01/01 200
2003 08/01 410 09/01 331 n/a n/a 05/01 253 06/01 182
2004 21/01 372 21/01 383 n/a n/a 16/01 230 20/01 205
2005 17/02 192 22/01 296 07/12 306 24/01 217 16/02 152
2006 14/03 340 08/10 333 13/03 357 11/03 219 12/03 223
2007 05/03 308 08/03 339 05/03 333 04/03 217 05/03 176
2008 29/03 301 01/01 250 23/03 342 15/04 219 23/03 167
2009 26/01 169 03/09 288 25/12 311 25/01 218 25/01 152
2010 28/12 387 31/12 355 27/12 390 25/12 230 26/12 220
2011 01/01 337 07/01 347 18/12 356 09/10 287 18/12 167
2012 09/01 330 23/12 308 09/01 353 05/01 220 08/01 186
2013 09/02 390 12/02 347 05/02 366 04/02 252 07/05 221
2014 03/03 273 13/12 295 16/02 321 02/03 226 15/02 157
2015 07/05 347 21/11 295 07/05 389 05/05 255 06/05 211
2016 03/06 602 03/06 329 03/06 545 02/06 439 04/06 235
2017 07/03 243 28/12 304 12/01 307 08/03 221 08/03 151
2018 29/01 586 02/02 469 28/01 488 24/01 264 26/01 288
2019 03/02 222 31/03 292 22/01 314 02/02 216 26/02 149

Table 2.2: Annual maxima for all stations. We highlighted some of the years where
there is a clear indication that the dates of the occurrence of the maxima at the
different locations form a period of several consecutive days. The maxima attained
during this period across stations can thus be considered as one extreme event. The
water level in centimeters is rounded to the nearest integer.
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Figure 2.17: Plot of maxima attained at each location during selected events from
Table 2.2.

The serial correlation can be due to closeness in time or presence of long term time
trend in the observations. We first apply a declustering procedure, similar to the one
in Asadi et al. (2015) in order to form a collection of supposedly independent events.
As a first step each of the series is transformed to ranks and the sum of the ranks is
computed for every day in the dataset. The day with the maximal rank is chosen, say
𝑑∗. A period of 2𝑟 + 1 consecutive days, centered around 𝑑∗ is considered and only
the observations falling in that period are selected to form the event. Within this
period the station-wise maximum is identified and the collection of the station-wise
maxima forms one event. Because there is some evidence that the time an extreme
event takes to propagate through the seven nodes in our model is about 3–7 days, we
choose 𝑟 = 3, hence we consider that one event lasts 7 days. In this way we obtain
717 observations of supposedly independent events. As it was mentioned the results
are robust to the choice of 𝑟 = {1, 2, 3}.

We test for seasonality and trends each of the series (each having 717 observations).
The season factor is significant across all series and the time trend is marginally
significant for some of the locations. We used a simple time series model to remove
these non-stationarities. The model is based on season indicators and a linear time
trend

𝑋𝑡 = 𝛽0 + 𝛽11spring𝑡 + 𝛽21summer𝑡 + 𝛽31winter𝑡 + 𝛼𝑡 + 𝜖𝑡 , (2.29)

where 𝜖𝑡 for 𝑡 = 1, 2, . . . is a stationary mean zero process. After fitting the model in
(2.29) to each of the five series through ordinary least squares we obtain the residuals
and use those in the estimation of the extremal dependence.

2.7.7 ECE-based confidence interval for the dependence parameters

Let 𝜃𝑛,𝑘 = 𝜃ECE
𝑛,𝑘

denote the pairwise extremal coefficient estimator in (6.3.3) and let
𝜃0 denote the true vector of parameters. By Einmahl et al. (2018, Theorem 2) with Ω
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equal to the identity matrix, the ECE is asymptotically normal,

√
𝑘 (𝜃𝑛,𝑘 − 𝜃0)

𝑑−→ N|𝐸 |
(
0, 𝑀 (𝜃0)

)
, 𝑛 →∞,

provided 𝑘 = 𝑘𝑛 → ∞ such that 𝑘/𝑛 → 0 fast enough (Einmahl et al., 2012, Theo-
rem 4.6). The asymptotic covariance matrix takes the form

𝑀 (𝜃0) = ( ¤𝐿⊤ ¤𝐿)−1 ¤𝐿⊤Σ𝐿
¤𝐿( ¤𝐿⊤ ¤𝐿)−1 .

The matrices ¤𝐿 and Σ𝐿 depend on 𝜃0 and are described below. For every 𝑘 and every
𝑒 ∈ 𝐸, an asymptotic 95% confidence interval for the edge parameter 𝜃0,𝑒 is given by

𝜃0,𝑒 ∈
[
𝜃𝑘,𝑛;𝑒 ± 1.96

√︃
{𝑀 (𝜃𝑘,𝑛)}𝑒𝑒/𝑘

]
.

First, recall that Q ⊆ {𝐽 ⊆ 𝑈 : |𝐽 | = 2} is the set of pairs on which the ECE is
based and put 𝑞 = |Q|. Define the R𝑞-valued map 𝐿(𝜃 ) =

(
𝑙 𝐽 (1, 1;𝜃 ), 𝐽 ∈ Q

)
and let

¤𝐿(𝜃 ) ∈ R𝑞×|𝐸 | be its matrix of partial derivatives. For a pair 𝐽 = {𝑢, 𝑣} and an edge
𝑒 = (𝑎, 𝑏), the partial derivative of 𝑙 𝐽 (1, 1;𝜃 ) with respect to 𝜃𝑒 is given by

𝜕𝑙 𝐽 (1, 1;𝜃 )
𝜕𝜃𝑒

=
𝜙

(√
𝑝𝑢𝑣/2

)
√
𝑝𝑢𝑣

𝜃𝑒1{𝑒∈ (𝑢⇝𝑣) },

where 𝑝𝑢𝑣 is the path sum as in (2.15) and 𝜙 denotes the standard normal density
function. The partial derivatives of 𝑙 𝐽 (1, 1;𝜃 ) with respect to 𝜃𝑒 for every 𝑒 ∈ 𝐸 form
a row of the matrix ¤𝐿(𝜃 ).

Second, Σ𝐿 (𝜃0) is the 𝑞 × 𝑞 covariance matrix of the asymptotic distribution of
the empirical stdf,{√

𝑘
(
𝑙 𝑗 ;𝑛,𝑘 (1, 1) − 𝑙 𝐽 (1, 1;𝜃0)

)}
𝑚=1,...,𝑞

𝑑−→ N𝑞 (0, Σ𝐿 (𝜃0)), 𝑛 →∞.

The elements of the matrix Σ𝐿 (𝜃0) are defined in terms of the stdf evaluated at
different coordinates and of the partial derivatives of the stdf 𝑙 (𝑥 ;𝜃 ) with respect to
the elements of 𝑥 . For details we refer to Einmahl et al. (2018, Section 2.5). Here we
note that the partial derivatives just mentioned are

𝜕𝑙 𝐽 (𝑥𝑢, 𝑥𝑣 ;𝜃 )
𝜕𝑥𝑢

����
(𝑥𝑢 ,𝑥𝑣 )=(1,1)

= Φ(√𝑝𝑢𝑣/2), 𝐽 = {𝑢, 𝑣}.

2.7.8 Bootstrap confidence interval for the Pickands dependence function

For assessing the goodness-of-fit of the proposed model (Section 2.5.2), we construct
non-parametric 95% confidence intervals for 𝐴(𝑤) = 𝑙 (1 −𝑤,𝑤) for 𝑤 ∈ [0, 1]. As
shown in Kiriliouk et al. (2018, Section 5) this can be achieved by resampling from the
empirical beta copula. For every fixed𝑤 ∈ [0, 1] we seek with 𝑎(𝑤) and 𝑏 (𝑤) such
that

P
(
𝑎(𝑤) ≤ 𝑙𝑛,𝑘 (1 −𝑤,𝑤) − 𝑙 (1 −𝑤,𝑤) ≤ 𝑏 (𝑤)

)
= 0.95 ,

where 𝑙𝑛,𝑘 is the non-parametric estimator of the stdf. For 𝑎(𝑤) and 𝑏 (𝑤) satisfying
the above expression, a point-wise confidence interval is given by

𝐴(𝑤) ∈
[
𝑙𝑛,𝑘 (1 −𝑤,𝑤) − 𝑏 (𝑤), 𝑙𝑛,𝑘 (1 −𝑤,𝑤) − 𝑎(𝑤)

]
. (2.30)

Let (𝑌 ∗𝑣,𝑖 )𝑣∈𝑈 , for 𝑖 = 1, . . . , 𝑛, be a random sample from the empirical beta copula
drawn according to steps A1–A4 of Kiriliouk et al. (2018, Section 5). Let the function
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𝑙
𝛽

𝑛,𝑘
be the empirical beta stdf based on the original data and let the function 𝑙∗

𝑛,𝑘
be

the non-parametric estimate of the stdf using the bootstrap sample.
We use the distribution of 𝑙∗

𝑛,𝑘
− 𝑙𝛽

𝑛,𝑘
conditionally on the data as an estimate of

the distribution of 𝑙𝑛,𝑘 − 𝑙 . Hence, we estimate 𝑎(𝑤) and 𝑏 (𝑤) by 𝑎∗ (𝑤) and 𝑏∗ (𝑤)
respectively defined implicitly by

0.95 = P∗
(
𝑎∗ (𝑤) ≤ 𝑙∗

𝑛,𝑘
(1 −𝑤,𝑤) − 𝑙𝛽

𝑛,𝑘
(1 −𝑤,𝑤) ≤ 𝑏∗ (𝑤)

)
= P∗

(
𝑎 + 𝑙𝛽

𝑛,𝑘
(1 −𝑤,𝑤) ≤ 𝑙∗

𝑛,𝑘
(1 −𝑤,𝑤) ≤ 𝑏 + 𝑙𝛽

𝑛,𝑘
(1 −𝑤,𝑤)

)
.

We further estimate the bootstrap distribution of 𝑙∗
𝑛,𝑘

by a Monte Carlo approxima-
tion obtained by 𝑁 = 1000 samples of size 𝑛 from the empirical beta copula. As a
consequence, the lower and upper bounds for 𝑙∗

𝑛,𝑘
(1 −𝑤,𝑤) above are equated to the

empirical 0.025- and 0.975-quantiles, respectively, yielding

𝑙∗0.025 (𝑤, 1 −𝑤) = 𝑎∗ (𝑤) + 𝑙
𝛽

𝑛,𝑘
(𝑤, 1 −𝑤),

𝑙∗0.975 (𝑤, 1 −𝑤) = 𝑏∗ (𝑤) + 𝑙
𝛽

𝑛,𝑘
(𝑤, 1 −𝑤) .

(2.31)

Replacing 𝑎(𝑤) and 𝑏 (𝑤) in (2.30) by 𝑎∗ (𝑤) and 𝑏∗ (𝑤) respectively as solved from
(2.31) yields the bootstrapped confidence interval for 𝐴(𝑤) shown in Figure 2.7.

58



Extremes of Markov
random fields on block
graphs: max-stable limits
and structured
Hüsler–Reiss distributions

3

This chapter corresponds to an article prepared with Johan Segers, carrying the same
name as the chapter and currently in the second round of revision for the journal
Extremes.

3.1 Introduction

Graphical models are statistical models for random vectors whose components are
associated to the nodes of a graph, and edges serve to encode conditional independence
relations. They bring structure to the web of dependence relations between the
variables. In the context of extreme value analysis, they permit for instance to model
the joint behavior of the whole random vector given that a specific component exceeds
a high threshold. This could concern a system of intertwined financial risks, one of
which is exposed to a large shock, or measurements of water heights along a river
network, when a high water level is known to have occurred at a given location. Each
time, the question is how such an alarming event affects conditional probabilities of
similarly high values occurring elsewhere.

A Markov random field is a random vector satisfying a set of conditional inde-
pendence relations with respect to a non-directed graph. For a max-stable random
vector with continuous and positive density, Papastathopoulos and Strokorb (2016)
showed that conditional independence implies unconditional independence. This
implies that an absolutely continuous max-stable distribution can satisfy the Markov
property with respect to a non-trivial graph only if variables on non-adjacent nodes
are actually independent. These models clearly differ from the max-linear graphical
models in Gissibl and Klüppelberg (2018) and Améndola et al. (2022) with respect
to directed acyclic graphs which have max-stable, but singular, distributions. In our
paper, conditional independence relations are induced by separation properties in
undirected graphs, not by parent-child relations in directed ones.

Markov random fields with continuous and positive densities have made their
way in extreme value analysis through the lens of multivariate Pareto distributions.
Multivariate generalized Pareto distributions arise as weak limits of the normalized
excesses over a threshold given the event that at least one variable exceeds a high
threshold (Rootzén and Tajvidi, 2006). For a random vector 𝑌 = (𝑌1, . . . , 𝑌𝑑 ) with a
multivariate Pareto distribution and a positive, continuous density, Engelke and Hitz
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(2020) study conditional independence for the vectors 𝑌 (𝑘 ) = (𝑌 | 𝑌𝑘 > 1). They
define 𝑌 as an extremal graphical model with respect to the graph for which 𝑌 (𝑘 ) is
an ordinary graphical model. In our paper we provide an example of a probabilistic
graphical model in the classical sense whose graph is shared with the corresponding
extremal graphical model.

We focus on Markov random fields with respect to connected block graphs, which
generalize trees, because one obtains a block graph if the edges of a tree are replaced
by complete subgraphs. Block graphs share some key properties with trees, such as
unique shortest paths, acyclicality outside cliques and unique minimal separators. We
study the limiting behavior of the normalized random field when a given variable
exceeds a high threshold and we show that the limit depends on the unique shortest
paths, a result familiar from Segers (2020b). As a prime example, we consider the case
where the random vectors induced by the graph’s cliques have limits determined by
Hüsler–Reiss distributions.

Our main result, Theorem 3.3.5, is inspired by the one about Markov random
fields on connected trees, or Markov trees in short, in Segers (2020b). Theorem 1
therein states that the limiting distribution of the scaled Markov tree given that a
high threshold is exceeded at a particular node is a vector composed of products of
independent multiplicative increments along the edges of the unique paths between
the nodes. Here we show a similar result for block graphs rather than trees. This
time, the products are with respect to the unique shortest path between pairs of
nodes. The increments over the edges are independent between blocks but possibly
dependent within blocks. The product structure of the limiting field originates from
the asymptotic theory for Markov chains with a high initial state, going back to Smith
(1992), Perfekt (1994), and Yun (1998). It is confirmed by many subsequent studies on
Markov chains such as Segers (2007), Janssen and Segers (2014), Papastathopoulos
et al. (2017) and Papastathopoulos and Tawn (2019).

The assumptions that underlie Theorem 3.3.5 are rather common in the literature.
The first one says that the distribution of the random vector indexed by nodes within
a block and scaled by the value of one of the variables, conditional on that variable
taking a high value, converges to a non-degenerate distribution. The assumption is
similar to the one in Heffernan and Tawn (2004) to model tail probabilities in case
of asymptotic independence. Our version of the assumption implies multivariate
regular variation of the clique vectors (Segers, 2020b, Theorem 2), making our model
suitable for asymptotically dependent random vectors. An in-depth analysis of more
refined forms of regular variation designed for modelling joint tails in case of asymp-
totic independence is given for instance in Heffernan and Resnick (2005, 2007), see
also Resnick (2002) and Hernandez-Campos et al. (2005). The topic of asymptotic
independence is investigated in Papastathopoulos et al. (2017) and Papastathopoulos
and Tawn (2019) for possibly higher-order Markov chains and in Strokorb (2020) for
extremal graphical models.

The second assumption in our Theorem 3.3.5 excludes processes which can become
extreme again after reaching non-extreme levels. Earlier literature based on such
regular behavior is Smith (1992), Perfekt (1994), Segers (2007), Janssen and Segers
(2014), and Resnick and Zeber (2013). A toy model violating this principle is given in
Segers (2007, Example 7.5). Markov chains exhibiting transitions from non-extreme
to extreme regions are studied extensively in Papastathopoulos et al. (2017) and
Papastathopoulos and Tawn (2019).

While the generalization of Markov trees to Markov fields on a larger class of
graphs in Theorem 3.3.5 is the first novelty of our paper, the second novelty concerns
the domain of attraction of the Hüsler–Reiss distribution in Section 3.4. For the study
of extremal graphical models, the Hüsler–Reiss distribution offers many advantages
akin to those of the Gaussian distribution for ordinary graphical models (Engelke and
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Hitz, 2020). In Section 3.4, we study the implications of our main result for a Markov
random field with respect to a block graph which has clique-wise limits based on
Hüsler–Reiss distributions, orMarkov block graph with Hüsler–Reiss limits in short. In
Proposition 3.4.2, we show that for the said Markov block graphs with Hüsler–Reiss
limits, the limiting distributions in Theorem 3.3.5 are all multivariate log-normal. In
Engelke et al. (2014), such log-normal limits were found to characterize the domain
of attraction of the Hüsler–Reiss max-stable distribution. Proposition 3.4.4 states that
the parameter matrix of the max-stable limit has an explicit and elegant path-sum
structure, as was found for Markov trees in Segers (2020b) and Asenova et al. (2021).
By Proposition 3.4.5, the associated multivariate Pareto distribution is an extremal
graphical model with respect to the same graph, complementing Proposition 4 in
Engelke and Hitz (2020). Finally, it is proved in Proposition 3.4.6 that all parameters
of the limiting structured Hüsler–Reiss max-stable distribution remain identifiable
even when some of the variables are latent, as long as these variables lie on nodes
belonging to least three different cliques. This generalizes a similar identifiability
claim for trees in Asenova et al. (2021).

Our contribution can be cast within the classical paradigm in extreme value anal-
ysis to model maxima and high threshold excesses by distribution families validated
by asymptotic theory. We find that probabilistic graphical models with respect to
block graphs are in the domain of attraction of max-stable distributions that enjoy a
particular structure induced by the graph and which for the Hüsler–Reiss family yield
multivariate Pareto distributions that are extremal graphical models as in Engelke and
Hitz (2020). Therefore, we believe that our results provide additional justification for
the practical use of such models in situations where the data-generating mechanism
can be described (approximately) as a graphical model on a block graph. The point is
important when choosing between models. Indeed, starting from component-wise
maxima of Gaussian vectors with structured correlation matrices, Lee and Joe (2017)
propose a different way of incorporating graphical or factor structures into Hüsler–
Reiss max-stable distributions; see Asenova, Mazo, and Segers (2021, Section A.2) for
a discussion.

In our perspective the graph is known and we are interested in the tail limits of
a random vector living on the nodes on that graph. This is suitable in applications
such as extremes on river networks, or any application where we agree a priori
on some graph. In Engelke and Volgushev (2020) the graph structure describing
the dependence of extremes is the object of interest and the method proposed is
nonparametric. A graph structure discovery based on Hüsler–Reiss Pareto models is
proposed in Engelke and Hitz (2020).

The outline of the paper is as follows. In the preliminary Section 3.2 we introduce
concepts and notation from graph theory, graphical models and extreme value analysis.
The main result about the convergence of the rescaled random field, conditional on
the event that a given variable exceeds a high threshold, is stated in Section 3.3.
Section 3.4 concerns a Markov block graph composed of clique-wise distributions
whose limits are determined by the Hüsler–Reiss family. The conclusion in Section 3.5
summarizes the main points and sketches some directions for further research. Proofs
are deferred to Section 3.6.

3.2 Preliminaries

3.2.1 Graph theory and Markov random fields

A graph G = (𝑉 , 𝐸) is a pair consisting of a finite, non-empty vertex (node) set 𝑉
and edge set 𝐸 ⊆ {(𝑎, 𝑏) ∈ 𝑉 ×𝑉 : 𝑎 ≠ 𝑏}. Often, we will write 𝑒 ∈ 𝐸 for a generic
edge. The graph G is said to be non-directed if for every pair of nodes 𝑎, 𝑏 we have
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Figure 3.1: An example of a block graph. There are four blocks or (maximal) cliques,
C =

{
{0, 1, 2}, {2, 3}, {2, 4, 5, 6}, {6, 7}

}
, as well as two minimal separators, S =

{
{2}, {6}

}
.

The unique shortest path from 7 to 0 has edge set (7⇝ 0) = {(7, 6), (6, 2), (2, 0)}.

(𝑎, 𝑏) ∈ 𝐸 if and only if (𝑏, 𝑎) ∈ 𝐸. A path from node 𝑎 to node 𝑏 is an ordered
sequence of vertices (𝑣1, . . . , 𝑣𝑛) with 𝑣1 = 𝑎 and 𝑣𝑛 = 𝑏 such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all
𝑖 = 1, . . . , 𝑛 − 1 and in which all nodes are distinct, except possibly for the first and
last nodes. A cycle is a path from a node to itself. Two distinct nodes are connected if
there exists a path from one node to the other. A graph is connected if every pair of
distinct nodes is connected. In this paper, we only consider connected, undirected
graphs.

An induced subgraph G𝐴 = (𝐴, 𝐸𝐴) is formed from the vertices in a subset 𝐴 of 𝑉
and all edges connecting them, 𝐸𝐴 = {(𝑎, 𝑏) ∈ 𝐸 : 𝑎, 𝑏 ∈ 𝐴}. A graph is complete if
every pair of distinct nodes is an edge. A set of nodes 𝐶 ⊆ 𝑉 is said to be a clique if
the induced subgraph G𝐶 = (𝐶, 𝐸𝐶 ) is complete; the latter graph will be called a clique
as well. A clique is maximal if it is not properly contained in larger one. Further on
we use the word ‘clique’ to mean maximal clique. The set of all (maximal) cliques of
G will be denoted by C.

A separator set 𝑆 ⊆ 𝑉 between two other vertex subsets 𝐴 and 𝐵 is such that
every path from a node in 𝐴 to a node in 𝐵 passes through at least one node in 𝑆 . A
separator set 𝑆 is minimal when there is no proper subset of 𝑆 which is a separator of
𝐴 and 𝐵 too.

In this paper we consider connected block graphs. A block is a maximal bicon-
nected component, i.e., a subgraph that will remain connected after the removal of a
single node. A block graph is a graph where every block is a clique; see Figure 3.1 for
an example. If the edge between nodes 2 and 6 were removed, the subgraph induced
by {2, 4, 5, 6} would still be a block, i.e., biconnected, but it would no longer be a clique,
and so the graph would no longer be a block graph. Block graphs are considered
natural generalizations of trees (Le and Tuy, 2010).

A path between two (distinct) nodes 𝑎 and 𝑏 is said to be shortest if no other
path between 𝑎 and 𝑏 contains less nodes. In block graphs, any two nodes 𝑎 and 𝑏
are connected by a unique shortest path (Behtoei et al., 2010, Theorem 1), i.e., any
other path connecting 𝑎 and 𝑏 contains strictly more nodes than the given path. If the
shortest path between 𝑎 and 𝑏 is the ordered node set (𝑣1, . . . , 𝑣𝑛), with 𝑣1 = 𝑎 and
𝑣𝑛 = 𝑏, then we define (𝑎⇝ 𝑏) as the set of edges

(𝑎⇝ 𝑏) = {(𝑣1, 𝑣2), . . . , (𝑣𝑛−1, 𝑣𝑛)}.

Another important property of block graphs is that cycles can only occur within
cliques, i.e., a path which is not contained in a single clique has two different endpoints.
Moreover, in a block graph, a minimal separator between two cliques is always a
single node. Two distinct cliques have at most one node in common. The set of
minimal clique separators will be denoted by S. In the block graph in Figure 3.1, the
collection of minimal clique separators is S = {{2}, {6}}.

Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a random vector which is indexed by the node set, 𝑉 , of a
graph G = (𝑉 , 𝐸). For non-empty𝑊 ⊆ 𝑉 , write 𝑋𝑊 = (𝑋𝑣, 𝑣 ∈𝑊 ). We say that 𝑋 is
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a Markov random field with respect to G if it satisfies the global Markov property,
that is, for all non-empty disjoint node sets 𝐴, 𝐵, 𝑆 ⊂ 𝑉 we have the implication

𝑆 is a separator of 𝐴 and 𝐵 in G =⇒ 𝑋𝐴 ⊥⊥ 𝑋𝐵 | 𝑋𝑆 ,

where the right-hand side means that 𝑋𝐴 and 𝑋𝐵 are independent conditionally on
𝑋𝑆 . In other words, conditional independence relations within 𝑋 are implied by
separation properties in G. An extensive treatment of conditional independence,
Markov properties and graphical models can be found in Lauritzen (1996).

Often we will use a double subscript to a random vector, e.g., 𝑋𝑢,𝐴 for 𝐴 ⊆ 𝑉 ,
which, if not indicated otherwise, will mean that it is a vector indexed by the elements
of 𝐴 and in some way related to a particular node 𝑢, not necessarily in 𝐴. For scalars,
the expressions 𝑥𝑢,𝑣 and 𝑥𝑢𝑣 will signify the same thing and if 𝑒 = (𝑢, 𝑣) is an edge
they can also be written as 𝑥𝑒 . In case of iterated subscripts, we will prefer the comma
notation, 𝑥𝑢1,𝑢2 .

For two non-empty sets 𝐴 and 𝐵, let 𝐵𝐴 denote the set of functions 𝑥 : 𝐴 → 𝐵.
Formally, we think of 𝑥 as a vector indexed by 𝐴 and with elements in 𝐵, as reflected
in the notation 𝑥 = (𝑥𝑎, 𝑎 ∈ 𝐴). We will apply this convention most often to subsets
𝐴 of the node set 𝑉 of a graph G and to subsets 𝐵 of the extended real line.

3.2.2 Max-stable and multivariate Pareto distributions

Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a random vector indexed by a finite, non-empty set 𝑉 and
with joint cumulative distribution function 𝐹 , the margins of which are continuous,
i.e., have no atoms. The interest in this paper is in tail dependence properties of 𝑋 . It
is convenient and does not entail a large loss of generality to assume that the margins
have been standardized to a common distribution, a convenient choice of which will
be either the unit-Pareto distribution, P(𝑋𝑣 > 𝑥) = 1/𝑥 for 𝑣 ∈ 𝑉 and 𝑥 ≥ 1, or the
unit-Fréchet distribution, P(𝑋𝑣 ≤ 𝑥) = exp(−1/𝑥) for 𝑣 ∈ 𝑉 and 𝑥 > 0. Assume that
𝐹 is in the max-domain attraction of a multivariate extreme-value distribution 𝐺 , i.e.,
for either of the two choices of the common marginal distribution we have

∀𝑧 ∈ (0,∞)𝑉 , lim
𝑛→∞

𝐹𝑛 (𝑛𝑧) = 𝐺 (𝑧), (3.1)

a condition which will be denoted by 𝐹 ∈ 𝐷 (𝐺). Let 𝑋 (𝑛) = (𝑋 (𝑛)𝑣 , 𝑣 ∈ 𝑉 ) for
𝑛 = 1, 2, . . . be a sequence of independent and identically distributed random vectors
with common distribution 𝐹 . Let 𝑀 (𝑛) =

(
𝑀
(𝑛)
𝑣 , 𝑣 ∈ 𝑉

)
with 𝑀 (𝑛)𝑣 = max𝑖=1,...,𝑛 𝑋

(𝑖 )
𝑣

be the vector of component-wise sample maxima. Equation (3.1) then means that

𝑀 (𝑛)/𝑛 𝑑−→ 𝐺, 𝑛 →∞, (3.2)

the arrow
𝑑−→ signifying convergence in distribution. The choice of the scaling

sequence 𝑛 in (3.1) and (3.2) is dictated by the marginal standardization and implies
that the margins of𝐺 are unit-Fréchet too, i.e., 𝐺 is a simple max-stable distribution.
The latter can be written as

𝐺 (𝑧) = exp
(
−𝜇

[{
𝑥 ∈ [0,∞)𝑉 : ∃𝑣 ∈ 𝑉 , 𝑥𝑣 > 𝑧𝑣

}])
, 𝑧 ∈ (0,∞]𝑉 , (3.3)

where the exponent measure 𝜇 is a non-negative Borel measure on the punctured
orthant [0,∞)𝑉 \ {0}, finite on subsets bounded away from the origin (de Haan and
Resnick, 1977; Resnick, 1987). The function ℓ : [0,∞)𝑑 → [0,∞) defined by

ℓ (𝑦) := − ln𝐺 (1/𝑦𝑣, 𝑣 ∈ 𝑉 ) = 𝜇
[{
𝑥 ∈ [0,∞)𝑉 : ∃𝑣 ∈ 𝑉 , 𝑥𝑣 > 1/𝑦𝑣

}]
(3.4)
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More background on multivariate extreme value analysis can be found for instance in
the monographs Resnick (1987), Beirlant et al. (2004) and de Haan and Ferreira (2007).

We can replace the integer 𝑛 in (3.1) by the real scalar 𝑡 > 0: the condition
𝐹 ∈ 𝐷 (𝐺) is equivalent to

∀𝑧 ∈ (0,∞)𝑉 , lim
𝑡→∞

𝐹 𝑡 (𝑡𝑧) = 𝐺 (𝑧). (3.5)

By a direct calculation starting from (3.5) it follows that

lim
𝑡→∞
P

(
∀𝑣 ∈ 𝑉 , 𝑋𝑣/𝑡 ≤ 𝑧𝑣

��� max
𝑣∈𝑉

𝑋𝑣 > 𝑡

)
=

ln𝐺
(
min(𝑧𝑣, 1), 𝑣 ∈ 𝑉

)
− ln𝐺 (𝑧)

ln𝐺 (1, . . . , 1) ,

(3.6)

for 𝑧 ∈ (0,∞)𝑉 , from which we deduce the weak convergence of conditional distribu-
tions (

𝑡−1𝑋
��� max
𝑣∈𝑉

𝑋𝑣 > 𝑡

)
𝑑−→ 𝑌, 𝑡 →∞, (3.7)

where 𝑌 = (𝑌𝑣, 𝑣 ∈ 𝑉 ) is a random vector whose cumulative distribution function is
equal to the right-hand side in (3.6). The law of 𝑌 is a multivariate Pareto distribution
and has support contained [0,∞)𝑉 \ [0, 1]𝑉 . Upon a change in location, it is a member
of the family of multivariate generalized Pareto distributions. The latter arise in
Rootzén and Tajvidi (2006) and Beirlant et al. (2004, Section 8.3) as limit laws of
multivariate peaks over threshold; see also Rootzén et al. (2018).

3.3 Tails of Markov random fields on block graphs

Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a non-negative Markov random field with respect to the
connected block graph G = (𝑉 , 𝐸), or Markov block graph in short. Suppose that at a
given node 𝑢 ∈ 𝑉 the variable 𝑋𝑢 exceeds a high threshold, say 𝑡 . This event can be
expected to affect conditional probabilities of the other variables 𝑋𝑣 too. Our main
result, Theorem 3.3.5, states that, starting out from 𝑢, every other variable 𝑋𝑣 feels the
impact of the shock at 𝑢 through a multiplication of increments on the edges forming
the unique shortest path from𝑢 to 𝑣 . The increments are independent between cliques
but possibly dependent within cliques.

After discussing the set-up and the assumptions in Section 3.3.1, we state and
illustrate the main result in Section 3.3.2. Consequences for multivariate regular
variation and max-domains of attraction are treated in Section 3.3.3, followed by a
focus in Section 3.3.4 on the special case where clique vectors are max-stable already.

3.3.1 Set-up

We will be making two assumptions on the conditional distribution of 𝑋 at high
levels. Assumption 3.3.1 is the main one, as it will determine the limit distribution in
Theorem 3.3.5 through the construction in Definition 3.3.2 below. For a set 𝐴 and an
element 𝑏 ∈ 𝐴, we write 𝐴 \ 𝑏 rather than 𝐴 \ {𝑏}.

Assumption 3.3.1. For every clique 𝐶 ∈ C and every node 𝑠 ∈ 𝐶 there exists a
probability distribution 𝜈𝐶,𝑠 on [0,∞)𝐶\𝑠 such that, as 𝑡 →∞, we have

L
(
𝑋𝑣

𝑡
, 𝑣 ∈ 𝐶 \ 𝑠

��� 𝑋𝑠 = 𝑡

)
𝑑−→ 𝜈𝐶,𝑠 .

In the special case that the distribution of the clique vector 𝑋𝐶 is max-stable, the
limit 𝜈𝐶,𝑠 can be calculated by means of Proposition 3.3.11 below.
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Definition 3.3.2 (Increments). Under Assumption 3.3.1, define, for fixed 𝑢 ∈ 𝑉 , the
following ( |𝑉 | − 1)-dimensional non-negative random vector 𝑍 :

(Z1) For each clique𝐶 , let 𝑠 be the separator node in𝐶 between 𝑢 and the nodes in𝐶 . If
𝑢 ∈ 𝐶 , then simply 𝑠 = 𝑢, whereas if 𝑢 ∉ 𝐶 , then 𝑠 is the unique node in 𝐶 such
that for every 𝑣 ∈ 𝐶 , any path from 𝑢 to 𝑣 passes through 𝑠 . Note that, for fixed
𝑢, the node 𝑠 is a function of 𝐶 , but we will suppress this dependence from the
notation.

(Z2) For each𝐶 , consider the limit distribution 𝜈𝐶,𝑠 of Assumption 3.3.1, with separator
node 𝑠 ∈ 𝐶 determined as in (Z1).

(Z3) Put 𝑍 := (𝑍𝑠,𝐶\𝑠 ,𝐶 ∈ C) where, for each 𝐶 ∈ C, the random vector 𝑍𝑠,𝐶\𝑠 =

(𝑍𝑠𝑣, 𝑣 ∈ 𝐶 \𝑠) has law 𝜈𝐶,𝑠 and where these |C| vectors are mutually independent
as 𝐶 varies.

The distribution of the random vector 𝑍 in Definition 3.3.2 depends on the source
node 𝑢, but this dependence is suppressed in the notation. The dimension of 𝑍 is
indeed equal to |𝑉 | − 1, since the sets 𝐶 \ 𝑠 form a partition of 𝑉 \ 𝑢 as 𝐶 varies in
C. In fact, in the double index in 𝑍𝑠𝑣 , every node 𝑣 ∈ 𝑉 \ 𝑢 appears exactly once; the
node 𝑠 is the one just before 𝑣 itself on the shortest path from 𝑢 to 𝑣 .

Example 3.3.3. Consider a Markov random field on the block graph in Figure 3.1.
Suppose that the variable exceeding a high threshold is the one at node 𝑢 = 7. For paths
departing at 𝑢, the separator nodes associated to the four cliques are as follows:

clique 𝐶 separator node 𝑠 ∈ 𝐶 node set 𝐶 \ 𝑠
{0, 1, 2} 2 {0, 1}
{2, 3} 2 {3}
{2, 4, 5, 6} 6 {2, 4, 5}
{6, 7} 7 {6}

Note that the union over the sets 𝐶 \ 𝑠 is equal to {0, 1, . . . , 6} = 𝑉 \ 𝑢. Assumption 3.3.1
requires certain joint conditional distributions to converge weakly: as 𝑡 →∞, we have(

𝑋0

𝑡
,
𝑋1

𝑡

��� 𝑋2 = 𝑡

)
𝑑−→ 𝜈 {0,1,2},2,

(
𝑋3

𝑡

��� 𝑋2 = 𝑡

)
𝑑−→ 𝜈 {2,3},2,(

𝑋2

𝑡
,
𝑋4

𝑡
,
𝑋5

𝑡

��� 𝑋6 = 𝑡

)
𝑑−→ 𝜈 {2,4,5,6},6,

(
𝑋6

𝑡

��� 𝑋7 = 𝑡

)
𝑑−→ 𝜈 {6,7},7.

The random vector 𝑍 in Definition 3.3.2, step (Z3), is a 7-dimensional random vector
whose joint distribution is equal to the product of the above four distributions:

𝑍 := (𝑍20, 𝑍21;𝑍23;𝑍62, 𝑍64, 𝑍65;𝑍76)
∼ 𝜈 {0,1,2},2 ⊗ 𝜈 {2,3},2 ⊗ 𝜈 {2,4,5,6},6 ⊗ 𝜈 {6,7},7.

(3.8)

We think of the random variable 𝑍𝑠𝑣 as being associated to the edge (𝑠, 𝑣) ∈ 𝐸:

0

1

2

3

6

4

5

7

𝑍 21

𝑍20
𝑍62

𝑍 64

𝑍23
𝑍76

𝑍65

65



3.3. TAILS OF MARKOV RANDOM FIELDS ON BLOCK GRAPHS

By construction, the random sub-vectors (𝑍20, 𝑍21), 𝑍23, (𝑍62, 𝑍64, 𝑍65) and 𝑍76 are
independent from each other and their marginal distributions are (𝑍20, 𝑍21) ∼ 𝜈 {0,1,2},2
and so on. Every node 𝑣 ∈ {0, 1, . . . , 6} appears exactly once as a second index of a
variable in 𝑍𝑠𝑣 in (3.8). For each such 𝑣 , the first index 𝑠 is the node right before 𝑣 on the
path from 𝑢 = 7 to 𝑣 .

In the same block graph, we could also suppose that the variable exceeding a high
threshold is the one on node 𝑢 = 4. The picture would then change as follows:
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Again, colour-coded sub-vectors corresponding to cliques are mutually independent. The
vectors (𝑍21, 𝑍21) and 𝑍23 are equal in distribution to those as when the starting node
was 𝑢 = 7, but the vectors (𝑍42, 𝑍45, 𝑍46) and 𝑍67 are new. In particular, 𝑍67 is not the
same as 𝑍76, having different indices of the conditioning variable in Assumption 3.3.1. ♦

If the univariate margins of 𝑋𝐶 are of Pareto-type, Assumption 3.3.1 implies that
the distribution of 𝑋𝐶 is regularly varying according to Segers (2020b, Corollary 1
and Theorem 2); see also Corollary 3.3.9 below. In case the components of 𝑋𝐶 are
asymptotically independent (Resnick, 1987), however, the limit measure 𝜈𝐶,𝑠 is degen-
erate at zero. This knowledge is unhelpful for studying extremes of near independent
data (Ledford and Tawn, 1996, 1997; Heffernan and Tawn, 2004) because it does not
allow for modeling, inference or extrapolation. To accommodate cases of asymp-
totic independence, a refinement of the assumptions would be necessary. This is not
pursued in the paper. A starting point would be the studies on Markov chains in
Papastathopoulos et al. (2017) and Papastathopoulos and Tawn (2019).

In Assumption 3.3.1, let 𝜈𝑣
𝐶,𝑠

denote the univariate marginal distribution corre-
sponding to node 𝑣 ∈ 𝐶 \ 𝑠 . Recall that S denotes the set of minimal separator nodes
between the cliques in the block graph.

Assumption 3.3.4. Let {𝑢, . . . , 𝑠} be the sequence of nodes of the unique shortest path
between two nodes 𝑢 ∈ 𝑉 and 𝑠 ∈ S. Let 𝐶 be any clique which contains 𝑠 , but no other
node of {𝑢, . . . , 𝑠}. If there is an edge (𝑎, 𝑏) on the path (𝑢 ⇝ 𝑠) such that 𝜈𝑏

𝐶′,𝑎 ({0}) > 0,
where𝐶′ is the (unique) clique containing the nodes 𝑎 and 𝑏, then for any 𝜂 > 0, we have

lim sup
𝛿↓0

lim sup
𝑡→∞

sup
𝑥𝑠 ∈[0,𝛿 ]

P (∃𝑣 ∈ 𝐶 \ 𝑠 : 𝑋𝑣/𝑡 > 𝜂 | 𝑋𝑠/𝑡 = 𝑥𝑠 ) = 0. (3.9)

Figure 3.2 illustrates the scope of Assumption 3.3.4. For the variables in clique 𝐶′,
Assumption 3.3.1 implies that as 𝑡 →∞,

L
(
𝑋𝑣

𝑡
, 𝑣 ∈ 𝐶′ \ 𝑎

��� 𝑋𝑎 = 𝑡

)
𝑑−→ 𝜈𝐶′,𝑎 .

The univariate margin 𝜈𝑏
𝐶′,𝑎 related to component 𝑏 ∈ 𝐶′ \ 𝑎 could have positive mass

at zero, which is the condition 𝜈𝑏
𝐶′,𝑎 ({0}) > 0 in Assumption 3.3.4. The condition

is similar to the one in Segers (2020b, page 860) for Markov trees and the one for
Markov chains in Papastathopoulos, Strokorb, Tawn, and Butler (2017, Section 4).
In Figure 3.2, consider the clique 𝐶 with nodes 𝑠, 𝑣1, 𝑣2. Relation (3.9) says that the
probability that at least one rescaled variable, 𝑋𝑣1/𝑡 or 𝑋𝑣2/𝑡 , exceeds a small but
positive value given that at the separator node, 𝑠 , the value is very small already, is
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𝑢 · · · 𝑎 𝑏 · · · 𝑠

𝑣1

𝑣2

. . .

𝐶′ 𝐶

Figure 3.2: The path from 𝑢 to 𝑠 contains edge (𝑎, 𝑏) which is part of clique𝐶′. The end
node 𝑠 belongs to clique 𝐶 which contains further nodes 𝑣1 and 𝑣2. Assumption 3.3.4
concerns the distribution of 𝑋𝑣𝑗 /𝑡 given 𝑋𝑠/𝑡 in case the 𝑏-th marginal of 𝜈𝐶′,𝑎 has
positive mass at zero, as explained below the assumption.

close to zero. In other words, in the limit all scaled variables must be smaller than
any arbitrary small value, 𝜂 > 0, given that the scaled variable 𝑋𝑠/𝑡 at the separator is
known to have a small value, i.e., 𝑥𝑠 ∈ [0, 𝛿] with 𝛿 ↓ 0. Predecessors of condition (3.9)
are found in earlier literature on Markov chains: Smith (1992, page 39) and Perfekt
(1994, page 537). Papastathopoulos et al. (2017) and Papastathopoulos and Tawn (2019)
provide limiting results for Markov chains of arbitrary order when the process is
allowed to switch between non-extreme and extreme states. Example 7.5 in Segers
(2007) provides a Markov chain that does not satisfy Assumption 3.3.4.

3.3.2 Main result

Theorem 3.3.5. Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a non-negative Markov random field with
respect to the connected block graph G = (𝑉 , 𝐸). Let Assumptions 3.3.1 and 3.3.4 be
satisfied. For a given 𝑢 ∈ 𝑉 , let 𝑍 be the random vector in Definition 3.3.2. Then as
𝑡 →∞, we have(

𝑋𝑣

𝑡
, 𝑣 ∈ 𝑉 \ 𝑢

��� 𝑋𝑢 = 𝑡

)
𝑑−→ (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) =: 𝐴𝑢,𝑉 \𝑢

where 𝐴𝑢𝑣 :=
∏

𝑒∈ (𝑢⇝𝑣)
𝑍𝑒 . (3.10)

Remark 3.3.6. If the block graph is a tree, Theorem 3.3.5 reduces to Theorem 1 in
Segers (2020b). In the more general case considered here, the increments 𝑍𝑒 can be
dependent within a block, although they are still independent between blocks. Note
that for a single variable 𝐴𝑢𝑣 , the increments 𝑍𝑒 appearing in (3.10) are independent,
even for a block graph that is not a tree. The difference between a tree and a more
general block graph thus manifests itself in the joint distribution of the random
variables 𝐴𝑢𝑣 for 𝑣 ∈ 𝑉 \ 𝑢.

Example 3.3.7. We continue with Example 3.3.3. Let the variable exceeding a high
threshold be the one on node 𝑢 = 7. The conclusion of Theorem 3.3.5 is that as 𝑡 →∞,
we have (

𝑋𝑣/𝑡, 𝑣 ∈ {0, 1, . . . , 6} | 𝑋7 = 𝑡
) 𝑑−→

(
𝐴7𝑣, 𝑣 ∈ {0, 1, . . . , 6}

)
,

where, in the notation of Example 3.3.3, the limiting variables have the following structure:

𝐴7,{0,1,2} = (𝐴70, 𝐴71, 𝐴72) = 𝑍76𝑍62 (𝑍20, 𝑍20, 1),
𝐴7,{2,3} = (𝐴72, 𝐴73) = 𝑍76𝑍62 (1, 𝑍23),
𝐴7,{2,4,5,6} = (𝐴72, 𝐴74, 𝐴75, 𝐴76) = 𝑍76 (𝑍62, 𝑍64, 𝑍65, 1),
𝐴7,{6} = 𝐴76 = 𝑍76.
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The limit vector (𝐴7𝑣)𝑣 is similar to the one of a Markov field with respect to the tree
formed by the unique shortest paths from node 𝑢 = 7 to the other nodes. The difference is
that within a block, the multiplicative increments need not be independent (Remark 3.3.6).
♦

Remark 3.3.8. A useful result that we will need further on is that the convergence
in (3.10) implies a self-scaling property of the Markov random field at high levels: as
𝑡 →∞, we have (

𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉 \ 𝑢
��� 𝑋𝑢 > 𝑡

)
𝑑−→ (𝐴𝑢,𝑣, 𝑣 ∈ 𝑉 \ 𝑢). (3.11)

The proof of (3.11) is the same as that of Corollary 1 in Segers (2020b).

3.3.3 Max-domains of attraction

In multivariate extreme value analysis, it is common to work with standardized mar-
gins, often the unit-Pareto or unit-Fréchet distribution. Both cases are covered in the
next corollary, which, in the terminology of Section 3.2.2, states that 𝑋 is multivariate
regularly varying and in the domain of attraction of a max-stable distribution 𝐺 with
exponent measure 𝜇 determined by the limits 𝐴𝑢𝑣 in (3.10). LetM0 denote the set of
Borel measures 𝜇 on [0,∞)𝑉 \ {0} such that 𝜇 (𝐵) is finite whenever the Borel set 𝐵
is contained in a set of the form {𝑥 ∈ [0,∞)𝑉 : max𝑣∈𝑉 𝑥𝑣 ≥ 𝜀} for some 𝜀 > 0. The
setM0 is equipped with the smallest topology that makes the evaluation mappings
𝜇 ↦→

∫
𝑓 d𝜇 continuous, where 𝑓 varies over the collection of real-valued, bounded,

continuous functions on [0,∞)𝑉 \ {0} that vanish in a neighbourhood of the origin.

Corollary 3.3.9. If, in addition to the assumptions in Theorem 3.3.5, we have 𝑡 P(𝑋𝑣 >

𝑡) → 1 as 𝑡 →∞ for all 𝑣 ∈ 𝑉 , then inM0 we have the convergence

𝑡 P(𝑡−1𝑋 ∈ · ) → 𝜇, 𝑡 →∞, (3.12)

with limit measure 𝜇 on [0,∞)𝑉 \ {0} determined by∫
𝑓 (𝑥) 1{𝑥𝑢 > 0} d𝜇 (𝑥) = E

[∫ ∞

0
𝑓 (𝑧𝐴𝑢)𝑧−2 d𝑧

]
(3.13)

for 𝑢 ∈ 𝑉 , Borel-measurable 𝑓 : [0,∞)𝑉 \ {0} → [0,∞], and𝐴𝑢 = (𝐴𝑢𝑣)𝑣∈𝑉 as in (3.10)
with additionally 𝐴𝑢𝑢 = 1. As a consequence, for 𝑥 ∈ (0,∞)𝑉 , we have

lim
𝑛→∞
[P(𝑋𝑣 ≤ 𝑛𝑥𝑣, 𝑣 ∈ 𝑉 )]𝑛 = 𝐺 (𝑥) = exp[−𝜇 ({𝑦 : ∃𝑣 ∈ 𝑉 ,𝑦𝑣 > 𝑥𝑣})] . (3.14)

The indicator 1{𝑥𝑢 > 0} in (3.13) can often be omitted, simplifying the formula
for 𝐺 .

Corollary 3.3.10. In Corollary 3.3.9, if 𝑢 ∈ 𝑉 is such that the increments 𝑍𝑒 satisfy
E[𝑍𝑒 ] = 1 for every 𝑒 ∈ (𝑢 ⇝ 𝑣) and every 𝑣 ∈ 𝑉 \ 𝑢, then 𝜇 ({𝑥 : 𝑥𝑢 = 0}) = 0 and we
actually have ∫

𝑓 (𝑥) d𝜇 (𝑥) = E
[∫ ∞

0
𝑓 (𝑧𝐴𝑢)𝑧−2 d𝑧

]
(3.15)

for Borel-measurable 𝑓 : [0,∞)𝑉 \ {0}. In particular, the stable tail dependence function
of the max-stable limit 𝐺 in (3.14) is then

ℓ (𝑥) = − log𝐺 (1/𝑥𝑣, 𝑣 ∈ 𝑉 ) = E
[
max

{
𝑥𝑣𝐴𝑢,𝑣, 𝑣 ∈ 𝑉

}]
, 𝑥 ∈ [0,∞)𝑉 . (3.16)

For 𝑒 = (𝑎, 𝑏), the condition E[𝑍𝑎𝑏] = 1 is equivalent to P(𝑍𝑏𝑎 > 0) = 1.

68



3.3. TAILS OF MARKOV RANDOM FIELDS ON BLOCK GRAPHS

Proof of Corollary 3.3.9. Thanks to Remark 3.3.8 above, themeasure convergence (3.12)
follows from Theorem 2 in Segers (2020b) . By a standard argument (Resnick,
1987, Proposition 5.17), the latter implies that 𝑡 P(∃𝑣 ∈ 𝑉 ,𝑋𝑣 > 𝑡𝑥𝑣) converges
to 𝜇 ({𝑦 : ∃𝑣 ∈ 𝑉 ,𝑦𝑣 > 𝑥𝑣}) for 𝑥 ∈ (0,∞)𝑉 , yielding (3.14). □

Proof of Corollary 3.3.10. The equivalence of E[𝑍𝑎𝑏] = 1 and P(𝑍𝑏𝑎 > 0) = 1 is a
consequence of Corollary 3 in Segers (2020b), while formula (3.15) follows from
Corollary 4 in the same source and the fact that E[𝐴𝑢𝑣] =

∏
𝑒∈ (𝑢⇝𝑣) E[𝑍𝑒 ] = 1 for

all 𝑣 ∈ 𝑉 \ 𝑢; note that the edges 𝑒 on a path (𝑢 ⇝ 𝑣) all belong to different blocks,
implying the independence of the increments 𝑍𝑒 . In combination with the identity
for 𝐺 in (3.14), setting 𝑓 to be the indicator function of the set {𝑦 : max𝑣∈𝑉 𝑥𝑣𝑦𝑣 > 1}
in (3.15) yields (3.16) via

− log𝐺 (1/𝑥𝑣, 𝑣 ∈ 𝑉 ) =
∫

𝑓 d𝜇 = E
[∫ ∞

0
1

{
max
𝑣∈𝑉

𝑥𝑣𝐴𝑢𝑣 > 𝑧
−1

}
𝑧−2 d𝑧

]
= E [max {𝑥𝑣𝐴𝑢𝑣, 𝑣 ∈ 𝑉 }] . □

3.3.4 Special case: max-stable clique vectors

The limit distribution in Theorem 3.3.5 is determined by the graph structure and
the clique-wise limit distributions 𝜈𝐶,𝑠 in Assumption 3.3.1 via Definition 3.3.2. The
next result provides those limits 𝜈𝐶,𝑠 in the special case that 𝑋𝐶 follows a max-stable
distribution. It is a reformulation of Example 8.4 in Heffernan and Tawn (2004) in
terms of the stable tail dependence function ℓ , allowing for the limit distribution
𝜈1 to have margins with positive mass at the origin; take for instance 𝑑 = 2 and
ℓ (𝑥1, 𝑥2) = 𝑥1 + 𝑥2. Since the result is not related to graphical models, we cast it in
terms of a random vector (𝑋1, . . . , 𝑋𝑑 ).

Proposition 3.3.11. Let 𝑋 = (𝑋1, . . . , 𝑋𝑑 ) have a max-stable distribution 𝐺 with unit-
Fréchet margins and stable tail dependence function ℓ . If ℓ has a continuous first-order
partial derivative ¤ℓ1 with respect to its first argument, then(

𝑋 𝑗

𝑡
, 𝑗 ∈ {2, . . . , 𝑑}

��� 𝑋1 = 𝑡

)
𝑑−→ 𝜈1, 𝑡 →∞,

where 𝜈1 is a probability distribution with support contained in [0,∞)𝑑 and determined
by

∀𝑥 ∈ (0,∞)𝑑−1, 𝜈1 ( [0, 𝑥]) = ¤ℓ1 (1, 1/𝑥2, . . . , 1/𝑥𝑑 ). (3.17)

The following example will play a key role in the next section. It provides the
form of the probability measure 𝜈1 in the special case the clique vectors 𝑋𝐶 follow a
max-stable Hüsler–Reiss distribution.

Example 3.3.12. Suppose𝑋 = (𝑋1, . . . , 𝑋𝑑 ) follows a max-stable Hüsler–Reiss distribu-
tion with unit-Fréchet margins and parameter matrix Δ = {𝛿2

𝑖 𝑗 }; see Section 3.4.1 below
for a more detailed description. The corresponding stable tail dependence function ℓ has
a continuous first-order partial derivatives, so that 𝑋/𝑡 | 𝑋1 = 𝑡 converges weakly to
some distribution 𝜈1 determined by ℓ via (3.17). By Remark 3.3.8, the limit must be the
same as the one of (𝑋/𝑋1 | 𝑋1 > 𝑡) as 𝑡 → ∞. But Theorem 2 in Engelke et al. (2014)
states that, as 𝑡 →∞,(

ln𝑋 𝑗 − ln𝑋1, 𝑗 = 2, . . . , 𝑑 | 𝑋1 > 𝑡
) 𝑑−→ N𝑑−1

(
𝜇1 (Δ),Ψ1 (Δ)

)
,

for a mean vector 𝜇1 = −2(𝛿2
1𝑖 , 𝑖 = 2, . . . , 𝑑) and covariance matrix

(Ψ1)𝑖 𝑗 = 2(𝛿2
1𝑖 + 𝛿2

1𝑗 − 𝛿2
𝑖 𝑗 ), 𝑖, 𝑗 = 2, . . . , 𝑑 .
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Hence 𝑋/𝑋1 | 𝑋1 > 𝑡 and 𝑋/𝑋1 | 𝑋1 = 𝑡 converge to a multivariate log-normal
distribution with the same parameters, 𝜇1 (Δ) and Ψ1 (Δ). The limit is confirmed in
Segers (2020b, Example 4) when 𝑋 has only two elements. ♦

3.4 Cliques in the Hüsler–Reiss domain of attraction

We will apply Theorem 3.3.5 to a Markov random field 𝑋 with respect to a block
graph G = (𝑉 , 𝐸) such that for every (maximal) clique 𝐶 ∈ C, the sub-vector 𝑋𝐶 =

(𝑋𝑣, 𝑣 ∈ 𝐶) satisfies Assumption 3.3.1 with 𝜈𝐶,𝑠 being the one as in Example 3.3.12,
i.e., a multivariate log-normal distribution with mean 𝜇𝐶,𝑠 (Δ𝐶 ) and covariance matrix
Ψ𝐶,𝑠 (Δ𝐶 ).

In Proposition 3.4.2, we find that the limit random vector 𝐴𝑢 in Theorem 3.3.5 is
multivariate log-normal with mean vector and covariance matrix related to the graph
structure. Moreover, 𝑋 is in the max-domain of attraction of a max-stable Hüsler–
Reiss whose parameter matrix can be derived in a simple way from the matrices
Δ𝐶 (Proposition 3.4.4). Further, the associated multivariate Pareto distribution is an
extremal graphical model in the sense of Engelke and Hitz (2020) and this with respect
to the same block graph G (Proposition 3.4.5). The elegant form of the parameter
matrix makes this family a suitable candidate for modelling extremes of asymptotically
dependent distributions; see also the discussion in Strokorb (2020) to Engelke and
Hitz (2020) on the issue of extremal independence and disconnected graphs. Finally,
we show that the parameters of the limiting max-stable Hüsler–Reiss distribution are
still identifiable in case some variables are latent, and this if and only if every node
with a latent variable belongs to at least three different cliques (Proposition 3.4.6).

3.4.1 Max-stable Hüsler–Reiss distribution

The max-stable Hüsler–Reiss distribution arises as the limiting distribution of normal-
ized component-wise sample maxima of a triangular array of row-wise independent
and identically distributed Gaussian random vectors with correlation matrix that
depends on the sample size (Hüsler and Reiss, 1989). The Gaussian distribution is in
the max-domain of attraction of the Gumbel distribution, but here we transform the
margins to the unit-Fréchet distribution. Let Φ denote the standard normal cumulative
distribution function. Recall from (3.4) the stdf ℓ of a general max-stable distribution
𝐺 .

The stdf of the bivariate Hüsler–Reiss distribution with parameter 𝛿 ∈ (0,∞) is

ℓ𝛿 (𝑥,𝑦) = 𝑥 Φ
(
𝛿 + ln(𝑥/𝑦)

2𝛿

)
+ 𝑦 Φ

(
𝛿 + ln(𝑦/𝑥)

2𝛿

)
, (𝑥,𝑦) ∈ (0,∞)2, (3.18)

with obvious limits as 𝑥 → 0 or 𝑦 → 0. The boundary cases 𝛿 → ∞ and 𝛿 →
0 correspond to independence, ℓ∞ (𝑥,𝑦) = 𝑥 + 𝑦, and co-monotonicity, ℓ0 (𝑥,𝑦) =
max(𝑥,𝑦), respectively. The limit distribution in Proposition 3.3.11 can be calculated
explicitly and is equal to the one of the log-normal random variable exp{2𝛿 (𝑍 − 𝛿)},
with 𝑍 a standard normal random variable (Segers, 2020b, Example 4).

To introduce the multivariate Hüsler–Reiss distribution, we follow the expo-
sition in Engelke et al. (2014). Let 𝑊 be a finite set with at least two elements
and let 𝜌 (1), 𝜌 (2), . . . be a sequence of𝑊 -variate correlation matrices, i.e., 𝜌 (𝑛) =
(𝜌𝑖 𝑗 (𝑛))𝑖, 𝑗∈𝑊 . Assume the limit matrix Δ = (𝛿2

𝑖 𝑗 )𝑖, 𝑗∈𝑊 – denoted by Λ in the cited
article – exists:

lim
𝑛→∞

(
1 − 𝜌𝑖 𝑗 (𝑛)

)
ln(𝑛) = 𝛿2

𝑖 𝑗 , 𝑖, 𝑗 ∈𝑊 . (3.19)

Obviously, the matrix Δ ∈ [0,∞)𝑊 ×𝑊 is symmetric and has zero diagonal. Suppose
further that Δ is conditionally negative definite, i.e., we have 𝑎⊤Δ𝑎 < 0 for every
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non-zero vector 𝑎 ∈ R𝑊 such that
∑

𝑗∈𝑊 𝑎 𝑗 = 0. [Note that the weak inequality
𝑎⊤Δ𝑎 ≤ 0 automatically holds for such 𝑎 and for the limit Δ in (3.19).] For 𝐽 ⊆ 𝑊
with |𝐽 | ≥ 2 and for 𝑠 ∈ 𝐽 let Ψ𝐽 ,𝑠 be the positive definite, |𝐽 \ 𝑠 |-square symmetric
matrix with elements(

Ψ𝐽 ,𝑠 (Δ)
)
𝑖, 𝑗

= 2(𝛿2
𝑠𝑖 + 𝛿2

𝑠 𝑗 − 𝛿2
𝑖 𝑗 ), 𝑖, 𝑗 ∈ 𝐽 \ 𝑠 . (3.20)

The |𝑊 |-variate Hüsler–Reiss max-stable distribution with unit-Fréchet margins and
parameter matrix Δ is

𝐻Δ (𝑥) = exp

|𝑊 |∑︁
𝑗=1
(−1) 𝑗

∑︁
𝐽 ⊆𝑊 : | 𝐽 |=𝑗

ℎΔ,𝐽 (𝑥 𝐽 )
 , 𝑥 ∈ (0,∞)𝑊 , (3.21)

with ℎΔ,𝐽 (𝑥 𝐽 ) = 1/𝑥𝑤 if 𝐽 = {𝑤}, while, if |𝐽 | ≥ 2,

ℎΔ,𝐽 (𝑥 𝐽 ) =
∫ ∞

ln(𝑥𝑠 )
P

[
∀𝑤 ∈ 𝐽 \ 𝑠, 𝑌𝑠𝑤 > ln(𝑥𝑤) − 𝑧 + 2𝛿2

𝑠𝑤

]
𝑒−𝑧 d𝑧

where 𝑠 can be any element of 𝐽 and where 𝑌𝑠 = (𝑌𝑠𝑤,𝑤 ∈ 𝐽 \ 𝑠) is a multivariate
normal random vector with zero mean vector and covariance matrix Ψ𝐽 ,𝑠 (Δ) in (3.20).

A shorter expression for 𝐻Δ is given in Nikoloulopoulos et al. (2009, Remark 2.5),
later confirmed as the finite-dimensional distributions of max-stable Gaussian and
Brown-Resnick processes in Genton et al. (2011) and Huser and Davison (2013) re-
spectively:

𝐻Δ (𝑥) = exp

{
−

∑︁
𝑠∈𝑊

1
𝑥𝑠

Φ |𝑊 |−1
(
2𝛿2

𝑣𝑠 + ln(𝑥𝑣/𝑥𝑠 ), 𝑣 ∈𝑊 \ 𝑠;Ψ𝑊,𝑠 (Δ)
)}
,

for 𝑥 ∈ (0,∞)𝑊 , and Φ𝑑 ( · ; Σ) the 𝑑-variate normal cdf with covariance matrix Σ. The
stdf is thus

ℓΔ (𝑦) =
∑︁
𝑠∈𝑊

𝑦𝑠 Φ |𝑊 |−1
(
2𝛿2

𝑣𝑠 + ln(𝑦𝑠/𝑦𝑣), 𝑣 ∈𝑊 \ 𝑠;Ψ𝑊,𝑠 (Δ)
)
.

for 𝑦 ∈ (0,∞)𝑊 . If |𝑊 | = 2 and if the off-diagonal element of Δ is 𝛿2 ∈ (0,∞), say,
we have Ψ𝑊,𝑠 (Δ) = 4𝛿2 = (2𝛿)2 and the stdf ℓΔ indeed simplifies to ℓ𝛿 in (3.18).

3.4.2 Hüsler–Reiss limits and extremal graphical models

Recall from Example 3.3.12 that for a max-stable Hüsler–Reiss vector𝑋 = (𝑋1, . . . , 𝑋𝑑 ),
the limit of 𝑋/𝑡 given 𝑋1 = 𝑡 as 𝑡 →∞ is multivariate log-normal. Now we take that
limit as starting point for the tails of the clique vectors of a Markov random field on a
block graph.

Assumption 3.4.1 (Markov block graph with clique-wise Hüsler–Reiss limits). Let
𝑋 be a Markov random field with respect to the (connected) block graph G = (𝑉 , 𝐸)
with (maximal) cliques C. Suppose the margins of 𝑋 satisfy 𝑡 P(𝑋𝑣 > 𝑡) → 1 as
𝑡 → ∞ for all 𝑣 ∈ 𝑉 . For every clique 𝐶 ∈ C, let Δ𝐶 = (𝛿2

𝑖 𝑗 )𝑖, 𝑗∈𝐶 be the parameter
matrix of a |𝐶 |-variate max-stable Hüsler–Reiss distribution, i.e., Δ𝐶 ∈ [0,∞)𝐶×𝐶 is
symmetric, conditionally negative definite, and has zero diagonal. For every 𝐶 ∈ C let
𝑋𝐶 satisfy Assumption 3.3.1 where 𝜈𝐶,𝑢 is the limit in Example 3.3.12, i.e., a |𝐶 \𝑢 |-variate
log-normal distribution with mean vector

𝜇𝐶,𝑢 = −2(𝛿2
𝑢𝑖 , 𝑖 ∈ 𝐶 \ 𝑢)

and covariance matrix

(Ψ𝐶,𝑢)𝑖 𝑗 = 2(𝛿2
𝑢𝑖 + 𝛿2

𝑢 𝑗 − 𝛿2
𝑖 𝑗 ), 𝑖, 𝑗 ∈ 𝐶 \ 𝑢.
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𝛿2
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Figure 3.3: The random vector 𝑋 is six-variate and it is Markov with respect to the
graphwhich contains three cliques,𝐶1 = {1, 2},𝐶2 = {2, 3, 4} and𝐶3 = {4, 5, 6}. According
to Example 3.3.12 for 𝐶1 we have a limiting probability measure 𝜈𝐶1,· which depends
only on the parameter 𝛿12; for 𝐶2 we have 𝜈𝐶2,· which depends only on the parameters
𝛿2

23, 𝛿
2
24, 𝛿

2
34 and for 𝐶3 we have 𝜈𝐶3,· which depends only on the parameters 𝛿2

45, 𝛿
2
46, 𝛿

2
56.

Because for any𝑢 ∈ 𝐶 the random vector𝑋𝐶 satisfies the limit in Assumption 3.3.1
by Corollary 1 and Theorem 2 in Segers (2020b) it follows that it is in the max-stable
domain of attraction of a Hüsler–Reiss distribution with parameter matrix Δ𝐶 .

We apply Theorem 3.3.5 to study the limit of 𝑋/𝑡 | 𝑋𝑢 = 𝑡 for some 𝑢 ∈ 𝑉 , i.e., the
conditional distribution of the field given that it is large at a particular node. Write
Δ = (Δ𝐶 ,𝐶 ∈ C) and consider the matrix 𝑃 (Δ) =

(
𝑝𝑖 𝑗 (Δ)

)
𝑖, 𝑗∈𝑉 of path sums

𝑝𝑖 𝑗 (Δ) :=
∑︁

𝑒∈ (𝑖⇝𝑗 )
𝛿2
𝑒 , (3.22)

where (𝑖 ⇝ 𝑗) is the collection of edges on the unique shortest path from 𝑖 to 𝑗 and
where 𝛿2

𝑒 is to be read off from the matrix Δ𝐶 for the unique clique 𝐶 containing the
two nodes connected by 𝑒 ; by convention, 𝑝𝑖𝑖 (Δ) = 0 for all 𝑖 ∈ 𝑉 , being the sum over
the empty set (𝑖 ⇝ 𝑖) = ∅. Let N𝑟 (𝜇, Σ) denote the 𝑟 -variate normal distribution
with mean vector 𝜇 and covariance matrix Σ.

Proposition 3.4.2 (Logarithm of the limiting field). Under Assumption 3.4.1, we have,
for each 𝑢 ∈ 𝑉 and as 𝑡 →∞,(

ln(𝑋𝑣/𝑡), 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 = 𝑡
) 𝑑−→ N|𝑉 \𝑢 |

(
𝜇𝑢 (Δ), Σ𝑢 (Δ)

)
with mean vector and covariance matrix written in terms of 𝑝𝑖 𝑗 = 𝑝𝑖 𝑗 (Δ) in (3.22) by(

𝜇𝑢 (Δ)
)
𝑖
= −2𝑝𝑢𝑖 , 𝑖 ∈ 𝑉 \ 𝑢, (3.23)(

Σ𝑢 (Δ)
)
𝑖, 𝑗

= 2(𝑝𝑢𝑖 + 𝑝𝑢 𝑗 − 𝑝𝑖 𝑗 ), 𝑖, 𝑗 ∈ 𝑉 \ 𝑢, (3.24)

and in particular (Σ𝑢 (Δ))𝑖,𝑖 = 4𝑝𝑢𝑖 for 𝑖 ∈ 𝑉 \ 𝑢. The matrix Σ𝑢 (Δ) is positive definite
and the matrix 𝑃 (Δ) is conditionally negative definite.

Example 3.4.3. Consider a Markov field with respect to the block graph in Figure 3.3.
The graph has three cliques, to which correspond three Hüsler–Reiss limits with parameter
matrices respectively

Δ1 =

[
0 𝛿2

12
0

]
, Δ2 =


0 𝛿2

23 𝛿2
24

0 𝛿2
34
0

 , Δ3 =


0 𝛿2

45 𝛿2
46

0 𝛿2
56
0

 .
If a high threshold is exceeded at node 𝑢 = 1, the limiting 5-variate normal distribution
in Proposition 3.4.2 has means (𝜇1 (Δ))𝑖 and variances (Σ1 (Δ))𝑖𝑖 proportional to the
path sums 𝑝1𝑖 =

∑
𝑒∈ (1⇝𝑖 ) 𝛿

2
𝑒 for 𝑖 ∈ {2, . . . , 5}, while the off-diagonal entries of the

covariance matrix are given by(
Σ1 (Δ)

)
2, 𝑗 = 4𝛿2

12, 𝑗 ∈ {3, . . . , 6},
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(
Σ1 (Δ)

)
3, 𝑗 = 4

(
𝛿2

12 + 1
2 (𝛿

2
23 + 𝛿2

24 − 𝛿2
34)

)
, 𝑗 ∈ {4, 5, 6},(

Σ1 (Δ)
)

4, 𝑗 = 4(𝛿2
12 + 𝛿2

24), 𝑗 ∈ {5, 6},(
Σ1 (Δ)

)
5,6 = 4

(
𝛿2

12 + 𝛿2
24 + 1

2 (𝛿
2
45 + 𝛿2

46 − 𝛿2
56)

)
.

The dependence within blocks is visible in the covariances at entries (3, 𝑗) for 𝑗 ∈ {4, 5, 6}
and the one at entry (5, 6). ♦

The exact distribution of the Markov field with clique-wise Hüsler–Reiss limits in
Assumption 3.4.1 is in the max-domain of attraction of such a distribution.

Proposition 3.4.4 (Max-domain of attraction). The Markov random field 𝑋 in As-
sumption 3.4.1 is in the max-domain of attraction of the Hüsler–Reiss max-stable dis-
tribution (3.21) with unit-Fréchet margins and parameter matrix 𝑃 (Δ) in (3.22), that
is,

lim
𝑛→∞

(
P (∀𝑣 ∈ 𝑉 : 𝑋𝑣 ≤ 𝑛𝑥𝑣)

)𝑛
= 𝐻𝑃 (Δ) (𝑥), 𝑥 ∈ (0,∞)𝑉 .

Recall from Section 3.2.2 that because𝑋 in Proposition 3.4.4 belongs to the domain
of attraction of the max-stable distribution 𝐻𝑃 (Δ) , the asymptotic distribution of the
vector of high-threshold excesses is a multivariate Pareto distribution determined
by 𝐻𝑃 (Δ) via (3.6). The latter is the distribution of the random vector 𝑌 in the next
proposition and is called a Hüsler–Reiss Pareto distribution in Engelke and Hitz (2020).
The distribution of 𝑌 turns out to be an extremal graphical model in the sense of
Engelke and Hitz (2020, Definitions 1 and 2). We recall this notion here. Let 𝑌 be a
multivariate Pareto random vector in (3.7) and for 𝑢 ∈ 𝑉 , let 𝑌 (𝑢 ) be a random vector
equal in distribution to𝑌 | 𝑌𝑢 > 1. Then𝑌 is an extremal graphical model with respect
to a graph G = (𝑉 , 𝐸) if we have conditional independence 𝑌 (𝑢 )

𝑖
⊥⊥ 𝑌 (𝑢 )

𝑗
| 𝑌 (𝑢 )

𝑉 \{𝑢,𝑖, 𝑗 }
for all 𝑖, 𝑗 ∈ 𝑉 \ 𝑢 such that (𝑖, 𝑗) ∉ 𝐸.

Proposition 3.4.5 (Attraction to extremal graphical model). The Markov block graph
𝑋 in Assumption 3.4.1 satisfies the weak convergence relation (3.7) with 𝑌 distributed
as in (3.6) for 𝐺 = 𝐻𝑃 (Δ) , the limit in Proposition 3.4.4. This 𝑌 is an extremal graphical
model with respect to G in the sense of Engelke and Hitz (2020, Definition 2).

Proposition 3.4.5 leads to the elegant result that the graphical model 𝑋 obtained
by endowing every clique 𝐶 of a block graph G by a limit based on the Hüsler–Reiss
max-stable distribution with parameter matrix Δ𝐶 is in the Pareto domain of attraction
of a Hüsler–Reiss Pareto random vector 𝑌 which is itself an extremal graphical model
with respect to the same graph G and with, on every clique 𝐶 , a Hüsler–Reiss Pareto
distribution with the same parameter matrix Δ𝐶 . In other words, the Pareto limit
of a graphical model constructed clique-wise by distributions with Hüsler–Reiss
limits is an extremal graphical model constructed clique-wise by Hüsler–Reiss Pareto
distributions.

Proposition 3.4.5 also sheds new light on Proposition 4 in Engelke and Hitz (2020),
where the existence and uniqueness of a Hüsler–Reiss extremal graphical model was
established given the Hüsler–Reiss distributions on the cliques of a block graph. In
our construction, the solution is explicit and turns out to have the simple and elegant
form in terms of the path sums 𝑝𝑖 𝑗 (Δ) in (3.22).

3.4.3 Latent variables and parameter identifiability

In Asenova, Mazo, and Segers (2021) a criterion was presented for checking whether
the parameters of the Hüsler–Reiss distribution are identifiable if for some of the
nodes 𝑣 ∈ 𝑉 the variables 𝑋𝑣 are unobservable (latent). The issue was illustrated for
river networks when the water level or another variable of interest is not observed at
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1

2 3

4
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6 7

Figure 3.4: A block graph with three cliques. In the first clique with node set 𝐶1 =

{1, 2, 3} the parameters are 𝛿2
12, 𝛿

2
13, 𝛿

2
23, in the second clique𝐶1 = {3, 4, 5} the parameters

are 𝛿2
34, 𝛿

2
35, 𝛿

2
45, and in the third clique𝐶1 = {3, 6, 7} the parameters are 𝛿2

36, 𝛿
2
37, 𝛿

2
67. These

nine parameters determine the Hüsler–Reiss parameter matrix 𝑃 (Δ) in (3.22). The
nine parameters and thus the entire matrix 𝑃 (Δ) is identifiable from the submatrix
𝑃 (Δ)𝑈 with 𝑈 = 𝑉 \𝑈 for 𝑈 = {3} because node 3 belongs to three different cliques
(Proposition 3.4.6 and Example 3.4.7).

some splits or junctions. For trees, a necessary and sufficient identifiability criterion
was that every node with a latent variable should have degree at least three.

For block graphs, a similar condition turns out to hold. The degree of a node
𝑣 ∈ 𝑉 , i.e., the number of neighbours, is now replaced by its clique degree, notation
cd(𝑣), defined as the number of cliques containing that node.

Let the setting be the same as in Proposition 3.4.4 and let 𝐻𝑃 (Δ) (𝑥) be the |𝑉 |-
variate max-stable Hüsler–Reiss distribution with parameter matrix 𝑃 (Δ) in (3.22). Let
the (non-empty) set of nodes with observable variables be𝑈 ⊂ 𝑉 , so that𝑈 = 𝑉 \𝑈
is the set of nodes with latent variables. As the max-stable Hüsler–Reiss family
is stable under taking marginals (Engelke and Hitz, 2020, Example 7), the vector
𝑋𝑈 = (𝑋𝑣, 𝑣 ∈ 𝑈 ) is in the max-domain of attraction of the |𝑈 |-variate max-stable
Hüsler–Reiss distribution with parameter matrix 𝑃 (Δ)𝑈 = (𝑝𝑖 𝑗 (Δ))𝑖, 𝑗∈𝑈 . If𝑈 is non-
empty,𝑈 is a proper subset of 𝑉 , and the question is whether we can reconstruct the
whole matrix 𝑃 (Δ) given only the sub-matrix 𝑃 (Δ)𝑈 and the graph G. Note that the
entries in 𝑃 (Δ)𝑈 are the path sums between nodes carrying observable variables only.
The question is whether we can find the other path sums too, that is, those between
nodes one or two of which carry latent variables.

Proposition 3.4.6 (Identifiability). Given the block graph G = (𝑉 , 𝐸) and node sets
𝑈 ⊂ 𝑉 and𝑈 = 𝑉 \𝑈 , the Hüsler–Reiss parameter matrix 𝑃 (Δ) in (3.22) is identifiable
from the restricted matrix 𝑃 (Δ)𝑈 = (𝑝𝑖 𝑗 (Δ))𝑖, 𝑗∈𝑈 if and only if cd(𝑣) ≥ 3 for every
𝑣 ∈ 𝑈 .

Example 3.4.7. Consider the block graph G = (𝑉 , 𝐸) in Figure 3.4 with 𝑉 = {1, . . . , 7}
and 𝑈 = {3}. Therefore 𝑈 = 𝑉 \ {3}. Node 𝑣 = 3 belongs to three different cliques
and thus has clique degree cd(𝑣) = 3. By Proposition 3.4.6, all edge parameters 𝛿2

𝑒

for 𝑒 ∈ 𝐸 can be identified from the path sums 𝑝𝑖 𝑗 for 𝑖, 𝑗 ∈ 𝑈 . Indeed, for the edges
𝑒 = (𝑎, 𝑏) ∈ {(1, 2), (4, 5), (6, 7)} this follows from the identity 𝛿2

𝑒 = 𝑝𝑎𝑏 , while for the
edges 𝛿2

𝑖,3 for 𝑖 ≠ 3 this follows from a calculation such as

𝛿2
13 =

1
2
(𝑝14 + 𝑝16 − 𝑝46) .

If, however, node 𝑣 = 1 would not belong to 𝑈 , then the edge parameters 𝛿2
12 and 𝛿

2
13

would not be identifiable from the path sums 𝑝𝑖 𝑗 for 𝑖, 𝑗 ∈ 𝑉 \ {1}, since none of these
paths contains edges (1, 2) or (1, 3).
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3.5 Conclusion

We have studied the tails of suitably normalized random vectors which satisfy the
globalMarkov propertywith respect to a block graph. Block graphs are generalizations
of trees and this explains why the results presented here are closely related to the
ones in Segers (2020b) and Asenova, Mazo, and Segers (2021). The common feature is
the existence of a unique shortest path between each pair of nodes. This property is
key for our results, although it is not sufficient in itself to explain the multiplicative
random walk structure of the limiting field. The latter property is also due to the
singleton nature of the minimal clique separators, a property which is no longer
present for more general decomposable graphs. Still, an essential difference between
tails of Markov fields with respect to trees on the one hand and more general block
graphs on the other hand is that in the latter case, the increments of the random walk
in the tail field are dependent within cliques. The regularity assumptions needed for
the limit to hold imply multivariate regular variation and thus the model in question
is suitable for asymptotically dependent variables.

We have then focused on a particular random field with respect to a block graph,
namely one for which the distribution on each clique satisfies a tail condition based
on a Hüsler–Reiss distribution. We have shown that the logarithm of the limiting
field is a normal random vector with mean and covariance matrix that depend on the
sums of the edge weights along the unique shortest paths between pairs of nodes. The
same structural pattern emerges in the parameter matrix of the max-stable Hüsler–
Reiss distribution to which the Markov field is attracted. The relation between the
original Markov field as an ordinary graphical model on the one hand and Hüsler–
Reiss extremal graphical models as in Engelke and Hitz (2020) on the other hand was
highlighted. Due to the path sum structure of the parameter matrix, all edge weights
remain identifiable even when variables associated to nodes with clique degree at
least three are latent.

An interesting problem would be to identify a minimal requirement on a graph
that leads to the multiplicative structure of the tail field of a Markov field that we found
for block graphs. Another question is which structure replaces the multiplicative
random walk form for more general graphs, for instance decomposable graphs, and
what this means for specific parametric families. Another research direction could be
the study of the tails of the Markov field under assumptions related to hidden regular
variation and/or allowing for transitions from non-extreme to extreme regions.

3.6 Supplement

3.6.1 Proof of Theorem 3.3.5

The proof follows the lines of the one of Theorem 1 in Segers (2020b). To show (3.10)
it is sufficient to show that for a real bounded Lipschitz function 𝑓 , for any fixed𝑢 ∈ 𝑉
it holds that

lim
𝑡→∞
E[𝑓 (𝑋𝑉 \𝑢/𝑡) | 𝑋𝑢 = 𝑡] = E[𝑓 (𝐴𝑢,𝑉 \𝑢)], (3.25)

(van der Vaart, 1998, Lemma 2.2). Without loss of generality, we assume that 0 ≤
𝑓 (𝑥) ≤ 1 and |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∑

𝑗 |𝑥 𝑗 − 𝑦 𝑗 | for some constant 𝐿 > 0.
We proceed by induction on the number of cliques,𝑚. When there is only one

clique (𝑚 = 1) the convergence happens by Assumption 3.3.1 with 𝑠 = 𝑢: the distribu-
tion of 𝐴𝑢,𝑉 \𝑢 is equal to 𝜈𝐶,𝑠 in the assumption, with 𝐶 = 𝑉 and 𝑢 = 𝑠 .

Assume that there are at least two cliques,𝑚 ≥ 2. Let the numbering of the cliques
be such that the last clique, 𝐶𝑚 , is connected to the subgraph induced by

⋃𝑚−1
𝑖=1 𝐶𝑖

only through one node, which is the minimal separator between𝐶𝑚 and
⋃𝑚−1

𝑖=1 𝐶𝑖 . Let
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𝑠 ∈ S denote this node and introduce the set

𝐶1:𝑚−1 = (𝐶1 ∪ · · · ∪𝐶𝑚−1) \ 𝑢.

Note that {𝑠} = (𝐶1 ∪ · · · ∪𝐶𝑚−1) ∩𝐶𝑚 . We need to make a distinction between two
cases: 𝑠 = 𝑢 or 𝑠 ≠ 𝑢. The case 𝑠 = 𝑢 is the easier one, since then 𝑋𝐶𝑚\𝑢 and 𝑋𝐶1:𝑚−1

are conditionally independent given 𝑋𝑢 whereas the shortest paths from 𝑢 to nodes
in𝐶𝑚 \𝑢 just consist of single edges, avoiding𝐶1:𝑚−1 altogether. So we only consider
the case 𝑠 ≠ 𝑢 henceforth. In that case, paths from 𝑢 to nodes in𝐶𝑚 \ 𝑠 pass through 𝑠
and possibly other nodes in 𝐶1:𝑚−1.

The induction hypothesis is that as 𝑡 →∞, we have

(𝑋𝐶1:𝑚−1/𝑡) | 𝑋𝑢 = 𝑡
𝑑−→ 𝐴𝑢,𝐶1:𝑚−1 , (3.26)

or also that for every continuous and bounded function ℎ : R𝐶1:𝑚−1
+ → R, we have

lim
𝑡→∞
E

[
ℎ(𝑋𝐶1:𝑚−1/𝑡) | 𝑋𝑢 = 𝑡

]
= E[ℎ(𝐴𝑢,𝐶1:𝑚−1 )] . (3.27)

To prove the convergence in (3.25) we start with the following inequality: for 𝛿 > 0,���E[𝑓 (𝑋𝑉 \𝑢/𝑡) | 𝑋𝑢 = 𝑡] − E[𝑓 (𝐴𝑢,𝑉 \𝑢)]
���

≤
���E [

𝑓 (𝑋𝑉 \𝑢/𝑡)1(𝑋𝑠/𝑡 ≥ 𝛿) | 𝑋𝑢 = 𝑡
]
− E

[
𝑓 (𝐴𝑢,𝑉 \𝑢)1(𝐴𝑢𝑠 ≥ 𝛿)

] ��� (3.28)

+
���E [

𝑓 (𝑋𝑉 \𝑢/𝑡)1(𝑋𝑠/𝑡 < 𝛿) | 𝑋𝑢 = 𝑡
]
− E

[
𝑓 (𝐴𝑢,𝑉 \𝑢)1(𝐴𝑢𝑠 < 𝛿)

] ���. (3.29)

We let 𝛿 > 0 be a continuity point of 𝐴𝑢𝑠 . Later on, we will take 𝛿 arbitrarily close to
zero, which we can do, since the number of atoms of 𝐴𝑢𝑠 is at most countable.

Analysis of (3.28). We first deal with (3.28). The first expectation is equal to∫
[0,∞)𝑉 \𝑢

𝑓 (𝑥/𝑡) 1(𝑥𝑠/𝑡 ≥ 𝛿) P(𝑋𝑉 \𝑢 ∈ d𝑥 | 𝑋𝑢 = 𝑡) .

Because of the global Markov property, 𝑋𝐶𝑚\𝑠 is conditionally independent of the
variables in the set 𝐶1:𝑚−1 given 𝑋𝑠 . As a consequence, the conditional distribution of
𝑋𝐶𝑚\𝑠 given 𝑋𝐶1:𝑚−1 is the same as the one of 𝑋𝐶𝑚\𝑠 given 𝑋𝑠 . Hence we can write the
integral as ∫

[0,∞)𝐶1:𝑚−1
E

[
𝑓

(
𝑥/𝑡, 𝑋𝐶𝑚\𝑠/𝑡

)
| 𝑋𝑠 = 𝑥𝑠

]
1(𝑥𝑠/𝑡 ≥ 𝛿) P(𝑋𝐶1:𝑚−1 ∈ d𝑥 | 𝑋𝑢 = 𝑡).

After the change of variables 𝑥/𝑡 = 𝑦, the integral becomes∫
[0,∞)𝐶1:𝑚−1

E
[
𝑓

(
𝑦,𝑋𝐶𝑚\𝑠/𝑡

) ���𝑋𝑠 = 𝑡𝑦𝑠

]
1(𝑦𝑠 ≥ 𝛿) P

(
𝑋𝐶1:𝑚−1/𝑡 ∈ d𝑦 | 𝑋𝑢 = 𝑡

)
.

(3.30)

Define the functions 𝑔𝑡 and 𝑔 on [0,∞)𝐶1:𝑚−1 by

𝑔𝑡 (𝑦) := E
[
𝑓

(
𝑦,𝑋𝐶𝑚\𝑠/𝑡

) ���𝑋𝑠 = 𝑡𝑦𝑠

]
1(𝑦𝑠 ≥ 𝛿),

𝑔(𝑦) := E
[
𝑓

(
𝑦,𝑦𝑠𝑍𝑠,𝐶𝑚\𝑠

) ]
1(𝑦𝑠 ≥ 𝛿).
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Consider points 𝑦 (𝑡) and 𝑦 in [0,∞)𝐶1:𝑚−1 such that lim𝑡→∞ 𝑦 (𝑡) = 𝑦 and such that
𝑦𝑠 ≠ 𝛿 . We need to show that

lim
𝑡→∞

𝑔𝑡 (𝑦 (𝑡)) = 𝑔(𝑦). (3.31)

If 𝑦𝑠 < 𝛿 , this is clear since 𝑦𝑠 (𝑡) < 𝛿 for all large 𝑡 and hence the indicators will be
zero. So suppose 𝑦𝑠 > 𝛿 and thus also 𝑦𝑠 (𝑡) > 𝛿 for all large 𝑡 , meaning that both
indicators are (eventually) equal to one. By Assumption 3.3.1, we have

𝑋𝐶𝑚\𝑠/𝑡 | 𝑋𝑠 = 𝑡𝑦𝑠 (𝑡)
𝑑−→ 𝑦𝑠𝑍𝑠,𝐶𝑚\𝑠 , 𝑡 →∞.

Since 𝑓 is continuous, also

𝑓
(
𝑦 (𝑡), 𝑋𝐶𝑚\𝑠/𝑡

) ���𝑋𝑠 = 𝑡𝑦𝑠 (𝑡)
𝑑−→ 𝑓

(
𝑦,𝑦𝑠𝑍𝑠,𝐶𝑚\𝑠

)
, 𝑡 →∞.

As the range of 𝑓 is contained in [0, 1], the bounded convergence theorem implies
that we can take expectations in the previous equation and conclude (3.31).

By the induction hypothesis (3.26) and Theorem 18.11 in van der Vaart (1998), the
continuous convergence in (3.31) implies

𝑔𝑡

(
𝑋𝐶1:𝑚−1

𝑡

) ���𝑋𝑢 = 𝑡
𝑑−→ 𝑔(𝐴𝐶1:𝑚−1 ), 𝑡 →∞;

note that by the choice of 𝛿 , the discontinuity set of 𝑔 receives zero probability in the
limit. As 𝑔𝑡 and 𝑔 are bounded (since 𝑓 is bounded), we can take expectations and find

lim
𝑡→∞
E

[
𝑔𝑡

(
𝑋𝐶1:𝑚−1

𝑡

) ���𝑋𝑢 = 𝑡

]
= E[𝑔(𝐴𝐶1:𝑚−1 )] . (3.32)

The expectation on the left-hand side of (3.32) is the integral in (3.30) while the
right-hand side of (3.32) is equal to

E[𝑓 (𝐴𝑢,𝐶1:𝑚−1 , 𝐴𝑢𝑠𝑍𝑠,𝐶𝑚\𝑠 )1(𝐴𝑢𝑠 ≥ 𝛿)] = E[𝑓 (𝐴𝑢,𝑉 \𝑢) 1(𝐴𝑢𝑠 ≥ 𝛿)] .

Thus we have shown that (3.28) converges to 0 as 𝑡 →∞, for any continuity point 𝛿
of 𝐴𝑢𝑠 .

Analysis of (3.29). As 𝑓 is a function with range [0, 1] we have

0 ≤ E[𝑓 (𝑋𝑉 \𝑢/𝑡)1(𝑋𝑠/𝑡 < 𝛿) | 𝑋𝑢 = 𝑡] ≤ P[𝑋𝑠/𝑡 < 𝛿 | 𝑋𝑢 = 𝑡]

as well as
0 ≤ E[𝑓 (𝐴𝑢,𝑉 \𝑢)1(𝐴𝑢𝑠 < 𝛿)] ≤ P[𝐴𝑢𝑠 < 𝛿] .

By the triangle inequality and the two inequalities above, (3.29) is bounded from
above by

P[𝑋𝑠/𝑡 < 𝛿 | 𝑋𝑢 = 𝑡] + P[𝐴𝑢𝑠 < 𝛿] . (3.33)

By the induction hypothesis

lim
𝑡→∞
P[𝑋𝑠/𝑡 < 𝛿 | 𝑋𝑢 = 𝑡] = P[𝐴𝑢𝑠 < 𝛿],

and (3.33) converges to 2P[𝐴𝑢𝑠 < 𝛿], which goes to 0 as 𝛿 ↓ 0 in case P(𝐴𝑢𝑠 = 0) = 0.
Suppose P(𝐴𝑢𝑠 = 0) > 0. In this step we will need Assumption 3.3.4. By the

induction hypothesis, we have 𝐴𝑢𝑠 =
∏
(𝑎,𝑏 ) ∈ (𝑢⇝𝑠 ) 𝑍𝑎𝑏 and the variables 𝑍𝑎𝑏 are

independent. Hence

P(𝐴𝑢𝑠 = 0) = P
(

min
(𝑎,𝑏 ) ∈ (𝑢⇝𝑠 )

𝑍𝑎𝑏 = 0
)
= 1 −

∏
(𝑎,𝑏 ) ∈ (𝑢⇝𝑠 )

P(𝑍𝑎𝑏 > 0).
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If for any (𝑎, 𝑏) ∈ (𝑢 ⇝ 𝑠) we have P(𝑍𝑎𝑏 = 0) > 0 then 𝑃 (𝑍𝑎𝑏 > 0) < 1 and hence
P(𝐴𝑢𝑠 = 0) > 0. Therefore the assumption applies when the marginal distribution
𝜈𝑏
𝐶,𝑎
({0}) is positive.
Then by adding and subtracting terms and using the triangle inequality, we have

the following upper bound for the term in (3.29):���E [
𝑓

(
𝑋𝐶1:𝑚−1

𝑡
,
𝑋𝐶𝑚\𝑠
𝑡

)
1

(
𝑋𝑠

𝑡
< 𝛿

) ���𝑋𝑢 = 𝑡

]
− E

[
𝑓

(
𝑋𝐶1:𝑚−1

𝑡
, 0

)
1

(
𝑋𝑠

𝑡
< 𝛿

) ���𝑋𝑢 = 𝑡

] ��� (3.34)

+
��E [

𝑓 (𝐴𝑢,𝐶1:𝑚−1 , 𝐴𝑢,𝐶𝑚\𝑠 )1(𝐴𝑢,𝑠 < 𝛿)
]
− E

[
𝑓 (𝐴𝑢,𝐶1:𝑚−1 , 0)1(𝐴𝑢,𝑠 < 𝛿)

] �� (3.35)

+
���E [

𝑓

(
𝑋𝐶1:𝑚−1

𝑡
, 0

)
1

(
𝑋𝑠

𝑡
< 𝛿

) ���𝑋𝑢 = 𝑡

]
− E

[
𝑓 (𝐴𝑢,𝐶1:𝑚−1 , 0)1(𝐴𝑢,𝑠 < 𝛿)

] ���. (3.36)

We treat each of the three terms in turn.
Equation (3.36) converges to 0 by the induction hypothesis; note again that the

set of discontinuities of the integrand receives zero probability in the limit.
Next we look at expression (3.34). From the assumptions of 𝑓 , namely that it

ranges in [0, 1] and that |𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∥𝑥 − 𝑦∥1 for some constant 𝐿 > 0, where
∥𝑧∥1 =

∑
𝑗 |𝑧 𝑗 | for a Euclidean vector 𝑧, the term in (3.34) is bounded by

E

[����𝑓 (
𝑋𝐶1:𝑚−1

𝑡
,
𝑋𝐶𝑚\𝑠
𝑡

)
− 𝑓

(
𝑋𝐶1:𝑚−1

𝑡
, 0

)����1 (
𝑋𝑠

𝑡
< 𝛿

) �����𝑋𝑢 = 𝑡

]
≤ E

[
1 (𝑋𝑠/𝑡 < 𝛿)min

(
1, 𝐿∥𝑋𝐶𝑚\𝑠/𝑡 ∥1

)
| 𝑋𝑢 = 𝑡

]
.

We need to show that the upper bound converges to 0 as 𝑡 →∞. Because the variables
in 𝐶𝑚 \ 𝑠 are independent of 𝑋𝑢 conditionally on 𝑋𝑠 , the previous integral is equal to∫

[0,𝛿 ]
E

[
min

(
1, 𝐿∥𝑋𝐶𝑚\𝑠/𝑡 ∥1

)
| 𝑋𝑠/𝑡 = 𝑥𝑠

]
P (𝑋𝑠/𝑡 ∈ d𝑥𝑠 | 𝑋𝑢 = 𝑡) . (3.37)

For 𝜂 > 0, the inner expectation is equal to

E
[
min

(
1, 𝐿∥𝑋𝐶𝑚\𝑠/𝑡 ∥1

)
1 {∀𝑣 ∈ 𝐶𝑚 \ 𝑠 : 𝑋𝑣/𝑡 ≤ 𝜂} | 𝑋𝑠/𝑡 = 𝑥𝑠

]
(3.38)

+ E
[
min

(
1, 𝐿∥𝑋𝐶𝑚\𝑠/𝑡 ∥1

)
1 {∃𝑣 ∈ 𝐶𝑚 \ 𝑠 : 𝑋𝑣/𝑡 > 𝜂} | 𝑋𝑠/𝑡 = 𝑥𝑠

]
. (3.39)

The integrand in (3.38) is either zero because of the indicator function or, if the
indicator is one, it is bounded by 𝐿 |𝐶𝑚 \ 𝑠 | 𝜂. The expression in (3.39) is clearly
smaller than or equal to

P (∃𝑣 ∈ 𝐶𝑚 \ 𝑠 : 𝑋𝑣/𝑡 > 𝜂 | 𝑋𝑠/𝑡 = 𝑥𝑠 ) .

Going back to the integral in (3.37) we can thus bound it by∫
[0,𝛿 ]

[
𝐿 |𝐶𝑚 \ 𝑠 | 𝜂+P (∃𝑣 ∈ 𝐶𝑚 \ 𝑠 : 𝑋𝑣/𝑡 > 𝜂 | 𝑋𝑠/𝑡 = 𝑥𝑠 )

]
P (𝑋𝑠/𝑡 ∈ d𝑥𝑠 | 𝑋𝑢 = 𝑡) .

(3.40)

Consider the supremum of the probability in the integrand over the values 𝑥𝑠 ∈ [0, 𝛿]
to bound the integral further. Hence (3.40) is smaller than or equal to

𝐿 |𝐶𝑚 \ 𝑠 | 𝜂 + sup
𝑥𝑠 ∈[0,𝛿 ]

P (∃𝑣 ∈ 𝐶𝑚 \ 𝑠 : 𝑋𝑣/𝑡 > 𝜂 | 𝑋𝑠/𝑡 = 𝑥𝑠 ) .
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Using Assumption 3.3.4 and the fact that 𝜂 can be chosen arbitrarily small we conclude
that (3.34) converges to 0 as 𝑡 → ∞. Note that in case P(𝑋𝑖 = 0) = 0 for any 𝑖 ∈ 𝑉
the supremum above may exclude zero, so that the supremum can be restricted to all
𝑥𝑠 ∈ (0, 𝛿]. However if P(𝑋𝑖 = 0) > 0 for some 𝑖 ∈ 𝑉 we need the supremum to be
over all values in the closed interval [0, 𝛿].

Finally we look at the term in (3.35). As 𝑓 has range contained in [0, 1] and is
Lipschitz continuous, the expression in (3.35) is smaller than or equal to

E
[
1(𝐴𝑢𝑠 < 𝛿)min

(
1, 𝐿

∑
𝑣∈𝐶𝑚\𝑠 𝐴𝑢𝑣

)]
. (3.41)

From (𝐴𝑢𝑣, 𝑣 ∈ 𝐶𝑚 \ 𝑠) = 𝐴𝑢,𝐶𝑚\𝑠 = 𝐴𝑢𝑠𝑍𝑠,𝐶𝑚\𝑠 we can write (3.41) as

E
[
1(𝐴𝑢𝑠 < 𝛿)min

(
1, 𝐿𝐴𝑢𝑠

∑
𝑣∈𝐶𝑚\𝑠 𝑍𝑠𝑣

)]
.

The random variable inside the expectation is bounded by 1 for any value of 𝛿 > 0
and it converges to 0 as 𝛿 ↓ 0. By the bounded convergence theorem, the expectation
in (3.41) converges to 0 as 𝛿 ↓ 0. □

3.6.2 Proof of Proposition 3.3.11

The quantile function of the unit-Fréchet distribution is 𝑢 ↦→ −1/ln(𝑢) for 0 < 𝑢 < 1.
In view of Sklar’s theorem and the identity (3.4), the copula, 𝐾 , of 𝐺 is

𝐾 (𝑢) = 𝐺 (−1/ln𝑢1, . . . ,−1/ln𝑢𝑑 ) = exp
(
−ℓ (− ln𝑢1, . . . ,− ln𝑢𝑑 )

)
.

for 𝑢 ∈ (0, 1)𝑑 . It follows that the partial derivative ¤𝐾1 of 𝐾 with respect to its first
argument exists, is continuous on (0, 1)2 and is given by

¤𝐾1 (𝑢) =
𝐾 (𝑢)
𝑢1
¤ℓ1 (− ln𝑢1, . . . ,− ln𝑢𝑑 ),

for 𝑢 ∈ (0, 1)𝑑 . The stdf is homogeneous: for 𝑡 > 0 and 𝑥 ∈ (0,∞)𝑑 , we have

ℓ (𝑡𝑥1, . . . , 𝑡𝑥𝑑 ) = 𝑡 ℓ (𝑥1, . . . , 𝑥𝑑 ).

Taking the partial derivative with respect to 𝑥1 on both sides and simplifying yields
the identity

¤ℓ1 (𝑡𝑥1, . . . , 𝑡𝑥𝑑 ) = ¤ℓ1 (𝑥1, . . . , 𝑥𝑑 ).

Let 𝐹 (𝑥) = exp(−1/𝑥), for 𝑥 > 0, denote the unit-Fréchet cumulative distribution
function. Note that − ln 𝐹 (𝑥) = 1/𝑥 for 𝑥 > 0. For 𝑡 > 0 and 𝑥 = (𝑥2, . . . , 𝑥𝑑 ) ∈
(0,∞)𝑑−1, we find

P(∀𝑗 ≥ 2, 𝑋 𝑗 ≤ 𝑡𝑥 𝑗 | 𝑋1 = 𝑡) = ¤𝐾1
(
𝐹 (𝑡), 𝐹 (𝑡𝑥2), . . . , 𝐹 (𝑡𝑥𝑑 )

)
=
𝐾

(
𝐹 (𝑡), 𝐹 (𝑡𝑥2), . . . , 𝐹 (𝑡𝑥𝑑 )

)
𝐹 (𝑡)

¤ℓ1 (1/𝑡, 1/(𝑡𝑥2), . . . , 1/(𝑡𝑥𝑑 ))

=
𝐾

(
𝐹 (𝑡), 𝐹 (𝑡𝑥2), . . . , 𝐹 (𝑡𝑥𝑑 )

)
𝐹 (𝑡)

¤ℓ1 (1, 1/𝑥2, . . . , 1/𝑥𝑑 ).

As 𝑡 →∞, the first factor on the right-hand side tends to one, whence

lim
𝑡→∞
P(∀𝑗 ≥ 2, 𝑋 𝑗 ≤ 𝑡𝑥 𝑗 | 𝑋1 = 𝑡) = ¤ℓ1 (1, 1/𝑥2, . . . , 1/𝑥𝑑 ).

To show that the right-hand side of the previous equation is indeed the cumulative
distribution function of a (𝑑 − 1)-variate probability measure on Euclidean space, it is
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sufficient to show that, for every 𝑗 ∈ {2, . . . , 𝑑}, the family of conditional distributions
(𝑋 𝑗/𝑡 | 𝑋1 = 𝑡) as 𝑡 ranges over [𝑡0,∞) for some large 𝑡0 > 0 is uniformly tight.
Indeed, the family of joint conditional distributions ((𝑋2, . . . , 𝑋𝑑 )/𝑡 | 𝑋1 = 𝑡) for 𝑡 ∈
[𝑡0,∞) is then uniformly tight as well, and by Prohorov’s theorem (van der Vaart,
1998, Theorem 2.4), we can find a sequence 𝑡𝑛 →∞ such that the joint conditional
distributions (𝑋/𝑡𝑛 | 𝑋1 = 𝑡𝑛) converge weakly as 𝑛 → ∞, the limiting cumulative
distribution function then necessarily being equal to the one stated above. It suffices
to consider the case 𝑑 = 𝑗 = 2. By the first part of the proof above,

lim
𝑡→∞
P(𝑋2/𝑡 > 𝑥2 | 𝑋1 = 𝑡) = 1 − ¤ℓ1 (1, 1/𝑥2).

Since ℓ : [0,∞)2 → [0,∞) is convex, the functions 𝑦1 ↦→ ℓ (𝑦1, 𝑦2) depend contin-
uously on the parameter 𝑦2 ≥ 0. Since they are also convex, Attouch’s theorem
(Rockafellar and Wets, 1998, Theorem 12.35) implies that their derivatives depend
continuously in 𝑦2 as well, at least in continuity points 𝑦1. But since ℓ (𝑦1, 0) = 𝑦1,
we find that ¤ℓ1 (1, 1/𝑥2) → ¤ℓ1 (1, 0) = 1 as 𝑥2 → ∞. For any 𝜖 > 0, we can thus find
𝑥2 (𝜖) > 0 such that 1 − ¤ℓ1 (1, 1/𝑥2 (𝜖)) < 𝜖/2 and then we can find 𝑡 (𝜖) > 0 such that
P(𝑋2/𝑡 > 𝑥2 (𝜖) | 𝑋1 = 𝑡) < 𝜖/2 + 1 − ¤ℓ1 (1, 1/𝑥2 (𝜖)) < 𝜖 for all 𝑡 > 𝑡 (𝜖). The uniform
tightness follows. □

3.6.3 Proof of Proposition 3.4.2

By Assumption 3.4.1, the random vector 𝑋 satisfies Assumption 3.3.1 and it is Markov
with respect to the graph G. Assumption 3.3.4 is void (i.e., there is nothing to check),
since, for each edge (𝑖, 𝑗) ∈ 𝐸, the limiting distribution of 𝑋 𝑗/𝑡 | 𝑋𝑖 = 𝑡 as 𝑡 → ∞
is log-normal by Segers (2020b, Example 4) and Example 3.3.12 here and therefore
does not have an atom at zero. We can thus apply Theorem 3.3.5 to conclude that
(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 = 𝑡) converges weakly as 𝑡 → ∞. By the continuous mapping
theorem, the same then holds true for (ln(𝑋𝑣/𝑡), 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 = 𝑡). It remains to
calculate the limit distribution.

Calculating the limit in Theorem 3.3.5. By example 3.3.12 we have, as 𝑡 →∞,(
ln𝑋𝑣 − ln𝑋𝑠 , 𝑣 ∈ 𝐶 \ 𝑠 | 𝑋𝑠 > 𝑡

) 𝑑−→ N|𝐶\𝑠 |
(
𝜇𝐶,𝑠 (Δ𝐶 ),Ψ𝐶,𝑠 (Δ𝐶 )

)
, (3.42)

where the mean vector is(
𝜇𝐶,𝑠 (Δ)

)
𝑣
= −2𝛿2

𝑠𝑣, 𝑣 ∈ 𝐶 \ 𝑠, (3.43)

and the covariance matrix Ψ𝐶,𝑠 (Δ) is as in (3.20). It follows that if the random vector
𝑍𝑠,𝐶\𝑠 has law 𝜈𝐶,𝑠 , then the distribution of (ln𝑍𝑠𝑣, 𝑣 ∈ 𝐶 \ 𝑠) is equal to the limit
in (3.42). In particular, 𝜈𝐶,𝑠 is multivariate log-normal.

For fixed 𝑢 ∈ 𝑉 , we will identify the limit 𝐴𝑢,𝑉 \𝑢 in Theorem 3.3.5. Let 𝑍 =

(𝑍𝑠,𝐶\𝑠 ,𝐶 ∈ C) with 𝑍𝑠,𝐶 = (𝑍𝑠𝑣, 𝑣 ∈ 𝐶 \ 𝑠) be the random vector constructed in
Definition 3.3.2 by concatenating independent log-normal random vectors with dis-
tributions 𝜈𝐶,𝑠 . In this concatenation, recall that 𝑠 ∈ 𝐶 and that either 𝑠 is equal to
𝑢 or 𝑠 separates 𝑢 and 𝐶 \ 𝑠 . We can write 𝑍 = (𝑍𝑒 , 𝑒 ∈ 𝐸𝑢) where the 𝐸𝑢 is the set
of edges 𝑒 ∈ 𝐸 that point away from 𝑢: for 𝑒 = (𝑠, 𝑣) ∈ 𝐸𝑢 , either 𝑠 is equal to 𝑢 or 𝑠
separates 𝑢 and 𝑣 . By construction, the distribution of 𝑍 is multivariate log-normal
too. By (3.43), we have E[ln𝑍𝑒 ] = −2𝛿2

𝑒 where 𝑒 = (𝑠, 𝑣) ∈ 𝐸𝑢 . The covariance matrix
of (ln𝑍𝑒 , 𝑒 ∈ 𝐸𝑢) has a block structure: for edges 𝑒, 𝑓 ∈ 𝐸𝑢 , the variables ln𝑍𝑒 and
ln𝑍 𝑓 are uncorrelated (and thus independent) if 𝑒 and 𝑓 belong to different cliques,
while if they belong to the same clique, i.e., if 𝑒 = (𝑠, 𝑖) and 𝑓 = (𝑠, 𝑗) with 𝑖, 𝑗, 𝑠 ∈ 𝐶
for some 𝐶 ∈ C, then, by (3.20), we have

C
(
ln𝑍𝑒 , ln𝑍 𝑓

)
= 2(𝛿2

𝑠𝑖 + 𝛿2
𝑠 𝑗 − 𝛿2

𝑖 𝑗 ) (3.44)

80



3.6. SUPPLEMENT

By Theorem 3.3.5, we can express the limit 𝐴𝑢,𝑉 \𝑢 of (𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 = 𝑡) as
𝑡 →∞ in terms of 𝑍 : we have

ln𝐴𝑢𝑣 = ln ©«
∏

𝑒∈ (𝑢⇝𝑣)
𝑍𝑒

ª®¬ =
∑︁

𝑒∈ (𝑢⇝𝑣)
ln𝑍𝑒 , 𝑣 ∈ 𝑉 \ 𝑢. (3.45)

The distribution of (ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is thus multivariate Gaussian, being the one of
a linear transformation of the multivariate Gaussian random vector (ln𝑍𝑒 , 𝑒 ∈ 𝐸𝑢).
The expectation of ln𝐴𝑢𝑣 is readily obtained from (3.45):

E[ln𝐴𝑢𝑣] =
∑︁

𝑒∈ (𝑢⇝𝑣)
E[ln𝑍𝑒 ] =

∑︁
𝑒∈ (𝑢⇝𝑣)

(−2𝛿2
𝑒 ) = −2𝑝𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢,

which coincides with the element 𝑣 of the vector 𝜇𝑢 (Δ) in (3.23). It remains to show
that the covariance matrix of (ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is Σ𝑢 (Δ) in (3.24).

Calculating Σ𝑢 (Δ). Let 𝑖, 𝑗 ∈ 𝑉 \ 𝑢. By (3.45) and the bilinearity of the covariance
operator, we have

C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
=

∑︁
𝑒∈ (𝑢⇝𝑖 )

∑︁
𝑓 ∈ (𝑢⇝𝑗 )

C
(
ln𝑍𝑒 , ln𝑍 𝑓

)
.

Each of the paths (𝑢 ⇝ 𝑖) and (𝑢 ⇝ 𝑗) has at most a single edge in a given clique
𝐶 ∈ C; otherwise, they would not be the shortest paths from 𝑢 to 𝑖 and 𝑗 , respectively.
Let the node 𝑎 ∈ 𝑉 be such that (𝑢 ⇝ 𝑖) ∩ (𝑢 ⇝ 𝑗) = (𝑢 ⇝ 𝑎). It could be that 𝑎 = 𝑢,
in which case the intersection is empty. Now we need to consider three cases.

(1) If 𝑎 = 𝑖 , i.e., if 𝑖 lies on the path from 𝑢 to 𝑗 , then the random variables ln𝑍 𝑓

for 𝑓 ∈ (𝑖 ⇝ 𝑗) are uncorrelated with the variables ln𝑍𝑒 for 𝑒 ∈ (𝑢 ⇝ 𝑖).
By (3.44), the covariance becomes

C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
=

∑︁
𝑒∈ (𝑢⇝𝑖 )

V (ln𝑍𝑒 )

=
∑︁

𝑒∈ (𝑢⇝𝑖 )
4𝛿2

𝑒 = 4𝑝𝑢𝑖 = 2
(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 − 𝑝𝑖 𝑗

)
,

since 𝑝𝑢𝑖 + 𝑝𝑖 𝑗 = 𝑝𝑢 𝑗 , the path from 𝑢 to 𝑗 passing by 𝑖 . This case includes the
one where 𝑖 = 𝑗 , since then (𝑖 ⇝ 𝑗) is empty and thus 𝑝𝑖 𝑗 = 0.

(2) If 𝑎 = 𝑗 , the argument is the same as in the previous case.

(3) Suppose 𝑎 is different from both 𝑖 and 𝑗 . Let 𝑒𝑎 and 𝑓𝑎 be the first edges of the
paths (𝑎 ⇝ 𝑖) and (𝑎 ⇝ 𝑗), respectively. These two edges may or may not
belong to the same clique. All other edges on (𝑎⇝ 𝑖) and (𝑎⇝ 𝑗), however,
must belong to different cliques. It follows that

C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
=

∑︁
𝑒∈ (𝑢⇝𝑎)

V (ln𝑍𝑒 ) + C
(
ln𝑍𝑒𝑎 , ln𝑍 𝑓𝑎

)
= 4𝑝𝑢𝑎 + C

(
ln𝑍𝑒𝑎 , ln𝑍 𝑓𝑎

)
.

Now we need to distinguish between two further sub-cases.

(3.a) Suppose 𝑒𝑎 and 𝑓𝑎 do not belong to the same clique. Then the covariance
between ln𝑍𝑒𝑎 and ln𝑍 𝑓𝑎 is zero, so that

C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
= 4𝑝𝑢𝑎 = 2

(
(𝑝𝑢𝑖 − 𝑝𝑎𝑖 ) +

(
𝑝𝑢 𝑗 − 𝑝𝑎𝑗

) )
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𝑎

𝑘

𝑙

· · ·

· · ·

· · ·

𝑖

𝑗

𝑢

𝐶

𝑒𝑎

𝑓𝑎

Figure 3.5: Calculation of C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
in the proof of Proposition 3.4.2. The paths

from 𝑢 to 𝑖 and from 𝑢 to 𝑗 have the path from 𝑢 to 𝑎 in common. On these two paths,
the edges right after node 𝑎 are 𝑒𝑎 = (𝑎, 𝑘) and 𝑓𝑎 = (𝑎, 𝑙), respectively. The picture
considers the case (3.b) where the three nodes 𝑎, 𝑘, 𝑙 belong to the same clique, say 𝐶.

= 2
(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 −

(
𝑝𝑎𝑖 + 𝑝𝑎𝑗

) )
= 2

(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 − 𝑝𝑖 𝑗

)
,

since the shortest path between 𝑖 and 𝑗 passes through 𝑎.

(3.a) Suppose 𝑒𝑎 and 𝑓𝑎 belong to the same clique; see Figure 3.5. Writing
𝑒𝑎 = (𝑎, 𝑘) and 𝑓𝑎 = (𝑎, 𝑙), we find, in view of (3.44),

C
(
ln𝐴𝑢𝑖 , ln𝐴𝑢 𝑗

)
= 4𝑝𝑢𝑎 + 2

(
𝛿2
𝑎𝑘
+ 𝛿2

𝑎𝑙
− 𝛿2

𝑘𝑙

)
= 2

( (
𝑝𝑢𝑎 + 𝛿2

𝑎𝑘

)
+

(
𝑝𝑢𝑎 + 𝛿2

𝑎𝑙

)
− 𝛿2

𝑘𝑙

)
= 2

(
𝑝𝑢𝑘 + 𝑝𝑢𝑙 − 𝛿2

𝑘𝑙

)
= 2

(
(𝑝𝑢𝑖 − 𝑝𝑘𝑖 ) +

(
𝑝𝑢 𝑗 − 𝑝𝑙 𝑗

)
− 𝛿2

𝑘𝑙

)
= 2

(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 −

(
𝑝𝑘𝑖 + 𝑝𝑙 𝑗 + 𝛿2

𝑘𝑙

) )
= 2

(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 − 𝑝𝑖 𝑗

)
,

since the shortest path between 𝑖 and 𝑗 passes by 𝑘 and 𝑙 .

We conclude that the covariance matrix of (ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \𝑢) is indeed Σ𝑢 (Δ) in (3.24).

Positive definiteness of Σ𝑢 (Δ). Being a covariance matrix, Σ𝑢 (Δ) is positive semi-
definite. We need to show it is invertible. The linear transformation in (3.45) can be
inverted to give

ln𝑍𝑒 = ln𝐴𝑢𝑏 − ln𝐴𝑢𝑎

for an edge 𝑒 = (𝑎, 𝑏) in 𝐸𝑢 ; note that either 𝑎 = 𝑢, in which case 𝐴𝑢𝑎 = 1 and thus
ln𝐴𝑢𝑎 = 0, or 𝑎 lies on the path from 𝑢 to 𝑏. Also, each edge 𝑒 ∈ 𝐸𝑢 is uniquely
identified by its endpoint 𝑣 in 𝑉 \ 𝑢; let 𝑒 (𝑣) be the unique edge in 𝐸𝑢 with endpoint
𝑣 . It follows that, as column vectors, the random vectors (ln𝑍𝑒 (𝑣) , 𝑣 ∈ 𝑉 \ 𝑢) and
(ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) are related by

(ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) = 𝑀𝑢

(
ln𝑍𝑒 (𝑣) , 𝑣 ∈ 𝑉 \ 𝑢

)
,

where𝑀𝑢 is a ( |𝑉 | − 1) × (|𝑉 | − 1) matrix indexed by (𝑣,𝑤) ∈ (𝑉 \𝑢)2 whose inverse
is

(𝑀−1
𝑢 )𝑣𝑤 =


1 if𝑤 = 𝑣 ,
−1 if (𝑤, 𝑣) ∈ 𝐸𝑢 ,

0 otherwise.
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The covariance matrix of (ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is thus
Σ𝑢 (Δ) = 𝑀𝑢 Σ

𝑍
𝑢 (Δ)𝑀⊤𝑢

where Σ𝑍𝑢 (Δ) is the (block-diagonal) covariance matrix of (ln𝑍𝑒 (𝑣) , 𝑣 ∈ 𝑉 \ 𝑢). The
blocks in Σ𝑍𝑢 are given by (3.44) and are positive definite and thus invertible by the
assumption that each parameter matrix Δ𝐶 is conditionally negative definite. As
a consequence, Σ𝑍𝑢 (Δ) is invertible too. Writing Θ𝑍

𝑢 (Δ) =
(
Σ𝑍𝑢 (Δ)

)−1, we find that
Σ𝑢 (Δ) is invertible as well with inverse

Θ𝑢 (Δ) = (𝑀−1
𝑢 )⊤ Θ𝑍

𝑢 (Δ)𝑀−1
𝑢 . (3.46)

𝑃 (Δ) is conditionally negative definite. Clearly, 𝑃 (Δ) is symmetric and has zero
diagonal. For any non-zero vector 𝑎 ∈ R𝑉 , we have, since Σ𝑢 (Δ) is positive definite,

0 < 𝑎⊤Σ𝑢 (Δ)𝑎

= 2
∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉

𝑎𝑖
(
𝑝𝑢𝑖 + 𝑝𝑢 𝑗 − 𝑝𝑖 𝑗

)
𝑎 𝑗

= 2
∑︁
𝑖∈𝑉

𝑎𝑖𝑝𝑢𝑖

∑︁
𝑗∈𝑉

𝑎 𝑗 + 2
∑︁
𝑖∈𝑉

𝑎𝑖

∑︁
𝑗∈𝑉

𝑝𝑢 𝑗 − 2
∑︁
𝑖∈𝑉

∑︁
𝑗∈𝑉

𝑎𝑖𝑝𝑖 𝑗𝑢 𝑗 .

If
∑

𝑖∈𝑉 𝑎𝑖 = 0, the first two terms on the right-hand side vanish. The last term is
−2𝑎⊤𝑃 (Δ)𝑎. We conclude that 𝑃 (Δ) is conditionally negative definite, as required. □

3.6.4 Proof of Proposition 3.4.4

Let 𝐻𝑃 (Δ) be the |𝑉 |-variate max-stable Hüsler–Reiss distribution in (3.21) with pa-
rameter matrix 𝑃 (Δ) in (3.22). From (3.16) we have

− ln𝐻𝑃 (Δ) (𝑥𝑣, 𝑣 ∈ 𝑉 ) = ℓ (1/𝑥𝑣, 𝑣 ∈ 𝑉 ) = E
[
max
𝑣∈𝑉

𝑥−1
𝑣 𝐴𝑢𝑣

]
.

By the maximum–minimums identity, we have

E

[
max
𝑣∈𝑉

𝑥−1
𝑣 𝐴𝑢𝑣

]
=

|𝑉 |∑︁
𝑖=1
(−1)𝑖−1

∑︁
𝑊 ⊆𝑉 : |𝑊 |=𝑖

E

[
min
𝑣∈𝑉

𝑥−1
𝑣 𝐴𝑢𝑣

]
If𝑊 is a singleton,𝑊 = {𝑢}, then the expectation is simply 𝑥−1

𝑢 , whereas if𝑊 has
more than one element, we write the expectation as the integral of the tail probability:

E

[
min
𝑣∈𝑊

𝑥−1
𝑣 𝐴𝑢𝑣

]
=

∫ ∞

0
P

[
∀𝑣 ∈𝑊 : 𝑥−1

𝑣 𝐴𝑢𝑣 > 𝑦
]

d𝑦

=

∫ 𝑥−1
𝑢

0
P [∀𝑣 ∈𝑊 \ 𝑢 : 𝐴𝑢𝑣 > 𝑥𝑣𝑦] d𝑦

=

∫ ∞

ln𝑥𝑢
P [∀𝑣 ∈𝑊 \ 𝑢 : ln𝐴𝑢𝑣 > ln(𝑥𝑣) − 𝑧] 𝑒−𝑧 d𝑧.

If𝑊 = {𝑢}, we interpret the probability inside the integral as equal to one, so that the
integral formula is valid for any non-empty𝑊 ⊆ 𝑉 . Combining things, we find that

− ln𝐻𝑃 (Δ) (𝑥𝑣, 𝑣 ∈ 𝑉 )

=

|𝑉 |∑︁
𝑖=1
(−1)𝑖−1

∑︁
𝑊 ⊆𝑉 : |𝑊 |=𝑖

∫ ∞

ln𝑥𝑢
P [∀𝑣 ∈𝑊 \ 𝑢 : ln𝐴𝑢𝑣 > ln(𝑥𝑣) − 𝑧] 𝑒−𝑧 d𝑧.

Recall that the distribution of (ln𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is multivariate normal with mean
vector 𝜇𝑢 (Δ) and covariance matrix Σ𝑢 (Δ) in (3.23) and (3.24), respectively, hence the
expression of 𝐻𝑃 (Δ) in (3.21). □
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3.6.5 Proof of Proposition 3.4.5

By Proposition 3.4.4, the Markov field 𝑋 in Assumption 3.4.1 satisfies (3.5) with 𝐹 its
joint cumulative distribution function and 𝐺 = 𝐻𝑃 (Δ) . It follows that (3.7) holds too,
yielding the weak convergence of high-threshold excesses to a Pareto random vector
𝑌 with distribution given in (3.6). It remains to show that 𝑌 is an extremal graphical
model with respect to the given graph G in the sense of Definition 2 in Engelke and
Hitz (2020).

Proposition 3.4.2 implies

(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 > 𝑡) 𝑑−→ N|𝑉 \𝑢 |
(
𝜇𝑢 (Δ), Σ𝑢 (Δ)

)
as 𝑡 → ∞. The latter is the distribution of (ln𝑌𝑣 − ln𝑌𝑢, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑌𝑢 > 1) for the
multivariate Pareto random vector𝑌 in (3.7) associated to the max-stable Hüsler–Reiss
distribution with parameter matrix 𝑃 (Δ).

To show that 𝑌 is an extremal graphical model with respect to the given block
graph G, we apply the criterion in Proposition 3 in Engelke and Hitz (2020). Let
Θ𝑢 (Δ) = (Σ𝑢 (Δ))−1 be the precision matrix of the covariance matrix Σ𝑢 (Δ) in (3.24);
see (3.46). For 𝑖, 𝑗 ∈ 𝑉 such that 𝑖 and 𝑗 are not connected, i.e., (𝑖, 𝑗) is not an edge,
we need to show that there is 𝑢 ∈ 𝑉 \ {𝑖, 𝑗} such that(

Θ𝑢 (Δ)
)
𝑖 𝑗
= 0.

Indeed, according to the cited proposition, the latter identity implies that

𝑌𝑖 ⊥e 𝑌𝑗 | 𝑌\{𝑖, 𝑗 },

the relation ⊥e being defined in Definition 1 in Engelke and Hitz (2020), and thus that
𝑌 is an extremal graphical model with respect to G.

For two distinct and non-connected nodes 𝑖, 𝑗 ∈ 𝑉 , let 𝑢 ∈ 𝑉 \ {𝑖, 𝑗}. We will show
that (Θ𝑢 (Δ))𝑖 𝑗 = 0. We have(

Θ𝑢 (Δ)
)
𝑖 𝑗
=

∑︁
𝑎∈𝑉 \𝑢

∑︁
𝑏∈𝑉 \𝑢

(
(𝑀−1

𝑢 )⊤
)
𝑖𝑎

(
Θ𝑍
𝑢 (Δ)

)
𝑎𝑏

(
𝑀−1

𝑢

)
𝑏 𝑗

=
∑︁

𝑎∈𝑉 \𝑢

∑︁
𝑏∈𝑉 \𝑢

(
𝑀−1

𝑢

)
𝑎𝑖

(
Θ𝑍
𝑢 (Δ)

)
𝑎𝑏

(
𝑀−1

𝑢

)
𝑏 𝑗
.

Now,
(
𝑀−1

𝑢

)
𝑎𝑖
and

(
𝑀−1

𝑢

)
𝑏 𝑗

are non-zero only if 𝑎 = 𝑖 or (𝑖, 𝑎) ∈ 𝐸𝑢 together with
𝑏 = 𝑗 or ( 𝑗, 𝑏) ∈ 𝐸𝑢 . In neither case can 𝑎 and 𝑏 belong to the same clique, because
otherwise we would have found a cycle connecting the nodes 𝑢, 𝑖, 𝑎, 𝑏, 𝑗 . But if 𝑎 and 𝑏
belong to different cliques, then so do the edges 𝑒 (𝑎) and 𝑒 (𝑏) in 𝐸𝑢 with endpoints 𝑎
and 𝑏, and thus

(
Θ𝑍
𝑢 (Δ)

)
𝑎𝑏

= 0, since Σ𝑍𝑢 (Δ) and thus Θ𝑍
𝑢 (Δ) are block-diagonal. □

3.6.6 Proof of Proposition 3.4.6

Necessity. Let 𝑣 ∈ 𝑈 have clique degree cd(𝑣) at most two. We show that the full
path sum matrix 𝑃 (Δ) is not uniquely determined by the restricted path sum matrix
𝑃 (Δ)𝑈 and the graph G. There are two cases: cd(𝑣) = 1 and cd(𝑣) = 2.

Suppose first that cd(𝑣) = 1. Then 𝑣 belongs only to a single clique, say 𝐶 ∈ C.
For any 𝑖, 𝑗 ∈ 𝑈 , the shortest path (𝑖 ⇝ 𝑗) does not pass through 𝑣 . Hence the edge
weights 𝛿2

𝑣𝑤 for𝑤 ∈ 𝐶 \ 𝑣 do not show up in any path sum 𝑝𝑖 𝑗 appearing in 𝑃 (Δ)𝑈 . It
follows that these edge weights can be chosen freely (subject to specifying a valid
Hüsler–Reiss parameter matrix on 𝐶) without affecting 𝑃 (Δ)𝑈 .

Suppose next that cd(𝑣) = 2. Without loss of generality, assume 𝑈 = 𝑉 \ 𝑣 ; this
only enlarges the number of visible path sums with respect to the initial problem.
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We will show that the path sum sub-matrix (𝑝𝑎𝑏 (Δ))𝑎,𝑏∈𝑉 \𝑣 does not determine the
complete path sum matrix 𝑃 (Δ).

By assumption, 𝑣 is included in two different cliques. Let the set of nodes from
one of them, excluding 𝑣 , be 𝐼 and let the set of nodes from the other one, excluding
𝑣 , be 𝐽 . The sets 𝐼 and 𝐽 are non-empty and disjoint. We will show that the edge
parameters 𝛿2

𝑣𝑖 for 𝑖 ∈ 𝐼 and 𝛿2
𝑣 𝑗 for 𝑗 ∈ 𝐽 are not uniquely determined by the path

sums 𝑝𝑎𝑏 for 𝑎, 𝑏 ∈ 𝑉 \ {𝑣}.

■ On the one hand, if the path (𝑎 ⇝ 𝑏) does not pass by 𝑣 , then the path sum
𝑝𝑎𝑏 does not contain any of the edge parameters 𝛿2

𝑣𝑖 or 𝛿
2
𝑣 𝑗 as a summand.

■ On the other hand, if the path (𝑎⇝ 𝑏) passes through 𝑣 , then for some 𝑖 ∈ 𝐼
and 𝑗 ∈ 𝐽 determined by 𝑎 and 𝑏 the path sum 𝑝𝑎𝑏 contains the sum 𝛿2

𝑣𝑖 + 𝛿2
𝑣 𝑗

as a summand. However, sums of the latter form do not change if we decrease
each 𝛿2

𝑣𝑖 (𝑖 ∈ 𝐼 ) by some small quantity, say 𝜂 > 0, and simultaneously increase
each 𝛿2

𝑣 𝑗 ( 𝑗 ∈ 𝐽 ) by the same quantity, yielding (𝛿2
𝑣𝑖 − 𝜂) + (𝛿2

𝑣 𝑗 + 𝜂) = 𝛿2
𝑣𝑖 + 𝛿2

𝑣 𝑗 .

Sufficiency. Let every node in𝑈 have clique degree at least three. Let 𝑎 ∈ 𝑈 and let
𝛿2
𝑎𝑏

be the parameter attached to the edge (𝑎, 𝑏) ∈ 𝐸, with 𝑏 ∈ 𝑉 \ 𝑎. We will show
that we can solve 𝛿2

𝑎𝑏
from the observable path sums 𝑝𝑖 𝑗 for 𝑖, 𝑗 ∈ 𝑈 .

By assumption there are at least three cliques that are connected to 𝑎, say 𝐼 , 𝐽 ,
and 𝑌 . Without loss of generality, assume 𝑏 ∈ 𝐼 . If 𝑏 ∈ 𝑈 set 𝚤 := 𝑏, while if 𝑏 ∈ 𝑈
walk away from 𝑏 up to the first node 𝚤 in𝑈 and this along the unique shortest path
between 𝑏 and 𝚤; note that (𝑎, 𝑏) ∈ (𝑎⇝ 𝚤). Apply a similar procedure to the cliques
𝐽 and 𝑌 : choose a node 𝑗 ∈ 𝐽 \ 𝑎 (respectively 𝑦 ∈ 𝑌 \ 𝑎) and if 𝑗 ∈ 𝑈 (𝑦 ∈ 𝑈 ) set
𝚥 := 𝑗 (𝑦 := 𝑦), while if 𝑗 ∈ 𝑈 (respectively 𝑦 ∈ 𝑈 ) take the first node 𝚥 (𝑦) such that
(𝑎, 𝑗) ∈ (𝑎⇝ 𝚥) [(𝑎,𝑦) ∈ (𝑎⇝ 𝑦)]. Because the nodes 𝚤, 𝚥 and𝑦 belong to𝑈 , the path
sums 𝑝𝚤 𝚥 , 𝑝𝚤𝑦 , and 𝑝𝑦𝚥 are given. By construction, node 𝑎 lies on the unique shortest
paths between the nodes 𝚤, 𝚥 and 𝑦; see also Behtoei et al. (2010, Theorem 1(b)). It
follows that

𝑝𝚤 𝚥 = 𝑝𝑎𝚤 + 𝑝𝑎𝚥,
𝑝𝚤𝑦 = 𝑝𝑎𝚤 + 𝑝𝑎𝑦,
𝑝𝑦𝚥 = 𝑝𝑎𝚥 + 𝑝𝑎𝑦 .

These are three equations in three unknowns, which can be solved to give, among
others, 𝑝𝑎𝚤 = 1

2 (𝑝𝚤𝑦 + 𝑝𝚤 𝚥 − 𝑝𝑦𝚥). Now we distinguish between two cases, 𝑏 ∈ 𝑈 and
𝑏 ∈ 𝑈 .

■ If 𝑏 ∈ 𝑈 then 𝚤 = 𝑏 and we have written 𝛿2
𝑎𝑏

= 𝑝𝑎𝚤 in terms of the given path
sums.

■ If 𝑏 ∈ 𝑈 we repeat the same procedure as above but starting from node 𝑏.
We keep the node 𝚤, but the nodes 𝚥 and 𝑦 may be different from those when
starting from 𝑎. After having written 𝑝𝑏𝚤 in terms of observable path sums, we
can compute 𝛿2

𝑎𝑏
= 𝑝𝑎𝚤 − 𝑝𝑏𝚤 . □
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Max-linear graphical
models with heavy-tailed
factors on trees of
transitive tournaments

4
This chapter corresponds to an article prepared with Johan Segers, carrying the same
name as the chapter and submitted to Applied Probability Journals in September 2022.

4.1 Introduction

Dependence in multivariate linear factor models is determined by a collection of
independent random variables, called factors, which are shared by the modelled
variables. In extreme value analysis there are the max-linear and the additive factor
models with heavy-tailed factors. In Einmahl et al. (2012), it is shown that both have
the same max-domain of attraction.

In Gissibl and Klüppelberg (2018), a link is made between such factor models
and probabilistic graphical models via a max-linear recursively defined structural
equation model on a directed acyclic graph (DAG). Each node carries a variable
defined as a weighted maximum of its parent variables and an independent factor.
This leads to a representation of the graphical model as a (max-)factor model as in
Einmahl et al. (2012), the factors relevant for a given variable being limited to the
set of its ancestors. More recent is the linear causally structured model in Gnecco
et al. (2021): each variable is the weighted sum of the variables on all its parent nodes
plus an independent factor. This leads to a representation where a single variable is a
weighted sum of all its ancestral factors.

In this paper, we study a type of graph that, to the best of our knowledge, is not
yet known and which we gave a name that reflects its most important properties: a
tree of transitive tournaments (ttt), denoted by T . A tournament is a graph obtained
by directing a complete graph, while a tournament is said to be transitive if it has no
directed cycles. The name reflects the interpretation of such a graph as a competition
where every node is a player and a directed edge points from the winner to the
loser. Some examples are hierarchical relations between members of animal and bird
societies, brand preferences, and votes between two alternative policies (Harary and
Moser, 1966). A ttt links up several such transitive tournaments in a tree-like structure.
It is acyclic by construction. If there is a directed path from one node to another one,
there is a unique shortest such path. Moreover, between any pair of nodes, there is a
unique shortest undirected path.

In this paper, we study max-linear graphical models with respect to a ttt as defined
in (4.2) below. In particular, for a max-linear random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) with
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node set 𝑉 , we study the limit in distribution

(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 \ 𝑢 | 𝑋𝑢 > 𝑡) 𝑑−→ (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ), 𝑡 →∞. (4.1)

It is not hard to show that the limit distribution in (4.1) is discrete (Segers, 2020b,
Example 1). We show that if the ttt has a unique node without parents, a so-called
source node, the joint distribution of (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) is determined by products of
independent multiplicative increments along the unique shortest undirected paths
between the node 𝑢 at which the high threshold is exceeded on the one hand and the
rest of the nodes on the other hand. Such behaviour is analogous to that of Markov
random fields on block graphs in Asenova and Segers (2021) and of Markov trees in
Segers (2020b, Theorem 1). In turn, these results go back to the extensive literature
on the additive or multiplicative structure of extremes for Markov chains (e.g. Smith,
1992; Yun, 1998; Segers, 2007; Janssen and Segers, 2014; Resnick and Zeber, 2013).

An underlying reason for the factorization into independent increments is the
fact that a max-linear graphical model with respect to a ttt is a Markov random
field with respect to the undirected graph associated to the original, directed graph
when the ttt has a unique source. A ttt with unique source has no v-structures, that
is, no nodes with non-adjacent parents. Both properties, the factorization of the
limiting variables and the Markovianity with respect to the undirected graph, are
lost if the graph contains v-structures. To show this, we rely on recent theory of
conditional independence in max-linear Bayesian networks based on the notion of
∗-connectedness (Améndola et al., 2021; Améndola et al., 2022). This theory diverges
from classical results on conditional independence in Bayesian networks based on
the notion of d-separation (Lauritzen, 1996; Koller and Friedman, 2009).

In our paper the graph is given. A significant line of research in the context of
extremal dependence is graph discovery. Given observations on a number of variables
represented as nodes in a graph, the task is to estimate the edges. For Bayesian
networks we can also talk about causality discovery because directed edges show
the direction of influence. A first attempt to identify the DAG in the context of max-
linear models is Gissibl et al. (2018), followed by several papers focusing on this topic:
Klüppelberg and Krali (2021), Buck and Klüppelberg (2021), Gissibl et al. (2021), Tran
et al. (2021a) and Tran et al. (2021b). The problems related to identifiability of the true
graph and to the estimation of the edge weights are discussed in Klüppelberg and
Lauritzen (2019). Gnecco et al. (2021) study a new metric called causal tail coefficient
which is shown to reveal the structure of a linear causal recursive model with heavy-
tailed noise. Graph discovery for non-directed graphs is studied in Engelke and Hitz
(2020), Engelke and Volgushev (2020) and Hu et al. (2022).

Inspired from practice, and more specifically river network applications (Asenova
et al., 2021), we study a different identifiability problem. If the structure of the
graph is known, it may happen that on some nodes the variables are latent, i.e.,
unobserved. The identifiability problem in this case is whether two different parameter
vectors can still generate the same distribution of the observable part of the model.
If this is possible then we cannot uniquely identify all tail dependence parameters
that characterize the full distribution. Similarly to Asenova and Segers (2021), the
identifiability criterion involves properties of the nodes with latent variables. The
criterion is specific for a ttt with unique source and is easy to check. Our identifiability
problem resembles the “method of path coefficients” of Sewall Wright which uses a
system of equations involving correlations to solve for the edge coefficients (Wright,
1934).

The novelty of the paper lies in several directions. First, a new class of graphs is
introduced, called a tree of transitive tournaments (ttt), which is the directed acyclic
analogue of a block graph. It can be seen as a generalization of a directed tree, where
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edges are replaced by transitive tournaments. Second, we show that a max-linear
graphical model over a ttt with unique source exhibits properties known for other
graphical models, namely Markov trees (Segers, 2020b) and Markov block graphs
(Asenova and Segers, 2021). In particular, when the ttt has a unique source, the model
is Markov with respect to the skeleton of the graph. This property underlies the
factorization of the tail limit into independent increments along the unique shortest
trails. Finally, we study a problem of identifiability of the edge weights from the
angular measure both when all variables are observed and also when some of them
are latent.

The structure of the paper is as follows. In Section 4.2 we introduce the ttt,
the max-linear model, and its angular measure, which plays a key role in almost
all proofs. In Section 4.3 we discuss the limiting distribution of (4.1) and give four
equivalent characterizations of a max-linear graphical model with respect to a ttt with
unique source. The identifiability problem is covered in Section 4.4. The discussion
summarizes the main points of the paper. The appendices contain some additional
lemmas and the proofs that are not presented in the main text.

4.2 Notions and definitions

4.2.1 Tree of transitive tournaments

Let T = (𝑉 , 𝐸) be a directed acyclic graph (DAG) with finite vertex (node) set 𝑉 and
edge set 𝐸 ⊂ 𝑉 × 𝑉 . An edge 𝑒 := (𝑢, 𝑣) ∈ 𝐸 is directed meaning (𝑢, 𝑣) ≠ (𝑣,𝑢);
it is outgoing with respect to the parent node 𝑢 and incoming with respect to the
child node 𝑣 . The graph T excludes loops, i.e., edges of the form (𝑢,𝑢), and as T
is directed, we cannot have both (𝑢, 𝑣) ∈ 𝐸 and (𝑣,𝑢) ∈ 𝐸. Two nodes 𝑢 and 𝑣 are
adjacent if (𝑢, 𝑣) or (𝑣,𝑢) is an edge. A cycle is a sequence of edges 𝑒1, . . . , 𝑒𝑛 with
𝑒𝑘 = (𝑢𝑘 , 𝑢𝑘+1) and𝑢1 = 𝑢𝑛+1 for some nodes𝑢1, . . . , 𝑢𝑛 . The property that T is acyclic
means that it does not contain any cycle. The graph T is assumed connected, i.e., for
any two distinct nodes 𝑢 and 𝑣 we can find nodes 𝑢1 = 𝑢,𝑢2, . . . , 𝑢𝑛+1 = 𝑣 such that
𝑢𝑘 and 𝑢𝑘+1 are adjacent for every 𝑘 = 1, . . . , 𝑛; we call the associated edge sequence
an undirected path or a trail between 𝑢 and 𝑣 . If all edges are directed in the same
sense, i.e., (𝑢𝑘 , 𝑢𝑘+1) ∈ 𝐸 for all 𝑘 = 1, . . . , 𝑛, we talk about a (directed) path from the
ancestor 𝑢 to the descendant 𝑣 .

A graph, directed or not, is complete if there is an edge between any pair of
distinct nodes. A subgraph of a graph is biconnected if the removal of any of its nodes
will not disconnect the subgraph. A maximal biconnected subgraph, also known
as a biconnected component, is a subgraph that cannot be extended by adding one
adjacent node without violating this principle.

A directed complete graph is called a tournament. A tournament 𝜏 = (𝑉𝜏 , 𝐸𝜏 )
is transitive if (𝑢, 𝑣), (𝑣,𝑤) ∈ 𝐸𝜏 implies (𝑢,𝑤) ∈ 𝐸𝜏 . A transitive tournament is
necessarily acyclic. The graph-theoretic properties of transitive tournaments are
studied in Harary and Moser (1966). The property most used here is that the set of
out-degrees of the 𝑑 nodes of a transitive tournament is {𝑑−1, 𝑑−2, . . . , 0}; the in- and
out-degrees of a node are the numbers of incoming and outgoing edges, respectively.

A subgraph of a graph is a maximal transitive tournament if it is not properly
contained in another subgraph which is also a transitive tournament. The set of
maximal transitive tournaments that are subgraphs of a DAG T will be denoted by
T. For brevity we will just write tournament when we mean a maximal transitive
tournament and denote it by 𝜏 .

A block graph is an undirected graph where every maximal biconnected subgraph
is a complete graph (Le and Tuy, 2010). Let 𝑇 denote the non-directed version of T ,
also called the skeleton of T . It shares the same node set as T , and for every edge
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Figure 4.1: A tree of four maximal transitive tournaments: 𝜏1, 𝜏2, 𝜏3, and 𝜏4. The
skeleton graph is the same, but with arrow heads removed. Node 3 is a separator
node between tournaments 𝜏1, 𝜏2 and 𝜏3, while node 7 is a separator node between
tournaments 𝜏3 and 𝜏4. Nodes 1, 4 and 8 are source nodes, i.e., have no parents. The
subgraph with node set {1, 3, 4} is a v-structure: node 3 has non-adjacent parents 1
and 4. Other v-structures within the ttt are the subgraphs with node sets {3, 7, 8} and
{5, 7, 8}. Between any pair of distinct nodes there is a unique shortest trail; for instance,
nodes 4 and 8 are connected by the trail passing through nodes 3 and 7. There is no
undirected cycle encompassing several tournaments.

(𝑢, 𝑣) in the original graph T , the reverse edge (𝑣,𝑢) is added to form the edge set of
the skeleton graph 𝑇 , after which each pair of edges {(𝑢, 𝑣), (𝑣,𝑢)} is identified with
the undirected edge {𝑢, 𝑣} of 𝑇 .

Definition 4.2.1 (Tree of transitive tournaments (ttt)). A tree of transitive tournaments
is a connected directed acyclic graph whose skeleton is a block graph.

A tree of transitive tournaments (ttt) is illustrated in Figure 4.1. A ttt is acyclic:
each tournament is acyclic andwe cannot find a cycle passing by different tournaments
either. This is why we call such a graph a tree of transitive tournaments.

A ttt enjoys three key properties. They all follow from the link with block graphs,
whose characteristics can be found in Le and Tuy (2010).

(P1) two or more maximal transitive tournaments may have only one node in com-
mon, referred to as a separator node;

(P2) there is no undirected cycle that passes through nodes in different maximal
transitive tournaments;

(P3) there is a unique shortest trail (undirected path) between every pair of nodes.

Similarly to block graphs (Le and Tuy, 2010) a ttt can be seen as a tree whose edges
are replaced by transitive tournaments.

Recall that a path is directed by convention, so when we need non-directed paths
this will be indicated explicitly. Between a pair of nodes there may be several paths.
The set of all paths between two nodes 𝑢, 𝑣 ∈ 𝑉 is denoted by 𝜋 (𝑢, 𝑣). An element, say
𝑝 , of 𝜋 (𝑢, 𝑣) is a collection of edges, {(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛)} for a path that
involves the non-repeating nodes {𝑣1 = 𝑢, 𝑣2, . . . , 𝑣𝑛−1, 𝑣𝑛 = 𝑣}. Note that 𝜋 (𝑢,𝑢) = ∅
in an acyclic graph. In a ttt, if there is at least one path between distinct nodes 𝑢 and
𝑣 , there is a unique shortest path (see Lemma 4.6.1-1) between them, which we denote
by 𝑝 (𝑢, 𝑣), and which belongs to 𝜋 (𝑢, 𝑣). We also set 𝑝 (𝑢,𝑢) = ∅ by convention.

A source is a node without parents. If a DAG has a unique source, this node is an
ancestor of every other node. This property follows from the following reasoning: let
𝑢0 denote the unique source node of the DAG, and let 𝑣 be any other node different
from 𝑢0. Then 𝑣 must have a parent, say 𝑢. If 𝑢 = 𝑢0, we are done. Otherwise, replace
𝑣 by 𝑢 and restart. Since the graph is finite and has no cycles, this chain must stop at
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Figure 4.2: A tree of four maximal transitive tournaments. The skeleton graph is the
same as the one in Fig. 4.1, but the graph here has a single source, on node 4. We see
that there are no v-structures anymore in the graph.

some moment at a node without parents. But this node is necessarily equal to 𝑢0 by
assumption.

A key object in the paper is a ttt with unique source. In Lemma 4.6.1-2 it is shown
that in this case there are no nodes with parents that are not adjacent or ‘married’,
also known as a v-structure (Koller and Friedman, 2009). There are three v-structures
in Fig. 4.1: one on nodes 1, 3, 4, one on 3, 7, 8 and another on 5, 7, 8. The main results
in this paper are based on a ttt without v-structures. According to Lemma 4.6.1, there
are no v-structures in a ttt with unique source. This is illustrated in Fig. 4.2. Other
properties of a ttt with unique source are stated in Section 4.6.1.

Considered on its own, every tournament in a ttt has a unique source; this is due
to the ordering of the out-degrees due to Harary and Moser (1966) mentioned earlier.
When we talk about a source node, we will always state if we refer to the whole graph
or with respect to a particular tournament.

4.2.2 Max-linear structural equation model on a ttt

In a general directed graph (𝑉 , 𝐸), let pa(𝑣) ∈ 𝑉 denote the set of parents of 𝑣 ∈ 𝑉
and put Pa(𝑣) = pa(𝑣) ∪ {𝑣}. In a similar way let an(𝑣), desc(𝑣), and ch(𝑣) denote the
sets of ancestors, descendants, and children, respectively, excluding 𝑣 , while An(𝑣),
Desc(𝑣), and Ch(𝑣) denote the same sets but including 𝑣 . To each edge 𝑒 = (𝑖, 𝑗) ∈ 𝐸
we associate a weight 𝑐𝑒 = 𝑐𝑖 𝑗 ∈ [0,∞). The product of the edge parameters over a
directed path 𝑝 = {𝑒1, . . . , 𝑒𝑚} is denoted by

𝑐𝑝 =

𝑚∏
𝑟=1

𝑐𝑒𝑟 .

When the product is over the unique shortest path from 𝑢 to 𝑣 , we write 𝑐𝑝 (𝑢,𝑣) . The
product over the empty set being one by convention, we have 𝑐𝑝 (𝑖,𝑖 ) = 1.

Let (𝑍𝑖 , 𝑖 ∈ 𝑉 ) be a vector of independent unit-Fréchet random variables, i.e.,
P(𝑍𝑖 ≤ 𝑧) = exp(−1/𝑧) for 𝑧 > 0. In the spirit of (Gissibl and Klüppelberg, 2018), a
recursive max-linear model on a ttt, T , is defined by

𝑋𝑣 =
∨

𝑖∈pa(𝑣)
𝑐𝑖𝑣𝑋𝑖 ∨ 𝑐𝑣𝑣𝑍𝑣, 𝑣 ∈ 𝑉 . (4.2)

where the parameters 𝑐𝑒 , for 𝑒 ∈ 𝐸, and 𝑐𝑣𝑣 , for 𝑣 ∈ 𝑉 , are positive. We interpret this
constraint as follows: if 𝑐𝑖 𝑗 = 0, the variable 𝑋 𝑗 cannot be influenced by 𝑋𝑖 through
edge (𝑖, 𝑗), and the edge could be removed from the graph. If 𝑐𝑣𝑣 = 0, the factor
variable 𝑍𝑣 does not influence 𝑋𝑣 . We don’t want to deal with such border cases, so
we assume that all parameters in the model definition (4.2) are positive. According to
Gissibl and Klüppelberg (2018, Theorem 2.2) the expression in (4.2) is equal also to

𝑋𝑣 =
∨
𝑖∈𝑉

𝑏𝑣𝑖𝑍𝑖 , (4.3)
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with

𝑏𝑣𝑖 =


0 if 𝑖 ∉ An(𝑣),
𝑐𝑣𝑣 if 𝑖 = 𝑣 ,
𝑐𝑖𝑖 max𝑝∈𝜋 (𝑖,𝑣) 𝑐𝑝 if 𝑖 ∈ an(𝑣).

(4.4)

The cumulative distribution function (cdf) of𝑋𝑣 is given byP(𝑋𝑣 ≤ 𝑥) = exp(−∑
𝑖∈𝑉 𝑏𝑣𝑖/𝑥)

for 𝑥 > 0. We assume that (𝑋𝑣, 𝑣 ∈ 𝑉 ) are unit-Fréchet, yielding the constraint∑︁
𝑖∈𝑉

𝑏𝑣𝑖 =
∑︁

𝑖∈An(𝑣)
𝑏𝑣𝑖 = 1, ∀𝑣 ∈ 𝑉 , (4.5)

since 𝑏𝑣𝑖 = 0 whenever 𝑖 ∉ An(𝑣). It is thus necessary and sufficient to have

𝑐𝑣𝑣 = 1 −
∑︁

𝑖∈an(𝑣)
𝑐𝑖𝑖 max

𝑝∈𝜋 (𝑖,𝑣)
𝑐𝑝 , (4.6)

with 𝑐𝑣𝑣 = 1 if an(𝑣) = ∅. By (4.6), the coefficients 𝑐𝑣𝑣 for 𝑣 ∈ 𝑉 are determined
recursively by the edge weights 𝑐𝑒 for 𝑒 ∈ 𝐸. If 𝑐𝑖𝑣 ≥ 1 for some (𝑖, 𝑣) ∈ 𝐸, then
(4.2) implies that 𝑋𝑣 ≥ 𝑋𝑖 ∨ 𝑐𝑣𝑣𝑍𝑣 , and the constraint that 𝑋𝑖 and 𝑋𝑣 are unit-Fréchet
distributed implies that 𝑐𝑣𝑣 = 0, a case we want to exclude, as explained above. This is
why we impose 0 < 𝑐𝑒 < 1 for all 𝑒 ∈ 𝐸 from the start, yielding the parameter space

Θ̊ =
{
𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) ∈ (0, 1)𝐸 : ∀𝑣 ∈ 𝑉 , 𝑐𝑣𝑣 > 0

}
. (4.7)

The notion of criticality is important formax-linear structural equationmodels. We
refer to Gissibl and Klüppelberg (2018), Améndola, Klüppelberg, Lauritzen, and Tran
(2022), Gissibl, Klüppelberg, and Lauritzen (2021) and Klüppelberg and Lauritzen (2019)
for examples where different conditional independence relations arise depending on
which path is critical, or for illustrations in the context of graph learning. According
to Gissibl and Klüppelberg (2018, Definition 3.1), a path 𝑝 ∈ 𝜋 (𝑖, 𝑣) is max-weighted
under 𝜃 ∈ Θ if it realizes the maximum max𝑝′∈𝜋 (𝑖,𝑣) 𝑐𝑝′ , where 𝑝′ is any path in 𝜋 (𝑖, 𝑣).
In Améndola et al. (2022) the term critical is preferred.

If there is a (directed) path between two nodes, there is a unique shortest (directed)
path between them (Lemma 4.6.1-1). This is crucial for our parametric model. We
define the critical parameter space Θ∗ ⊂ (0, 1)𝐸 as the set of parameters 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸),
such that for every 𝑣 ∈ 𝑉 and every 𝑖 ∈ an(𝑣), the unique shortest directed path from
𝑖 to 𝑣 is the only critical path. Therefore we have 𝑐𝑝 (𝑖,𝑣) > 𝑐𝑝 , with strict inequality
for any 𝑝 ∈ 𝜋 (𝑖, 𝑣) different from 𝑝 (𝑖, 𝑣). Formally,

Θ∗ =
{
𝜃 ∈ (0, 1)𝐸 : ∀𝑣 ∈ 𝑉 , ∀𝑖 ∈ an(𝑣),∀𝑝 ∈ 𝜋 (𝑖, 𝑣) \ {𝑝 (𝑖, 𝑣)},

𝑐𝑝 (𝑖,𝑣) > 𝑐𝑝
}
.

Next, we consider the intersection of the two spaces as an appropriate parameter
space for our max-linear structural equation model:

Θ̊∗ = Θ̊ ∩ Θ∗ . (4.8)

For 𝜃 ∈ Θ̊∗, every element of the max-linear coefficient matrix 𝐵𝜃 = (𝑏𝑣𝑖 )𝑣,𝑖∈𝑉 can be
rewritten using an edge weight product over the unique shortest path 𝑝 (𝑖, 𝑣) via

𝑏𝑣𝑖 =


0 if 𝑖 ∉ An(𝑣),
𝑐𝑣𝑣 if 𝑖 = 𝑣 ,
𝑐𝑖𝑖𝑐𝑝 (𝑖,𝑣) if 𝑖 ∈ an(𝑣),

and 𝑐𝑣𝑣 = 1 −
∑︁

𝑖∈an(𝑣)
𝑐𝑖𝑖𝑐𝑝 (𝑖,𝑣) . (4.9)

Also, note that 𝑏𝑖𝑖 = 𝑐𝑖𝑖 , leading to the frequently used expression

𝑏𝑣𝑖 = 𝑐𝑝 (𝑖,𝑣)𝑏𝑖𝑖 , 𝑖 ∈ an(𝑣).

Now, all elements are in place to describe our main object of interest.
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Assumption 4.2.1 (Max-linear structural equation model on a ttt). The random vector
𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) has the max-linear representation in (4.3) and (4.9) with respect to the
ttt T = (𝑉 , 𝐸) (Definition 4.2.1) where (𝑍𝑣, 𝑣 ∈ 𝑉 ) is a vector of independent unit-Fréchet
random variables and the edge weight vector 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) belongs to Θ̊∗ in (4.8).

The following identity for nodes with a unique parent will be useful:

pa(𝑣) = {𝑖} =⇒ 𝑏𝑣𝑣 = 1 − 𝑐𝑖𝑣 . (4.10)

Indeed, if 𝑖 is the only parent of 𝑣 , then 𝑋𝑣 = 𝑐𝑖𝑣𝑋𝑖 ∨ 𝑐𝑣𝑣𝑍𝑣 by (4.2). The variables
𝑋𝑣, 𝑋𝑖 , 𝑍𝑣 are unit-Fréchet distributed and𝑋𝑖 is independent of𝑍𝑣 , since𝑋𝑖 is a function
of (𝑍𝑢, 𝑢 ∈ An(𝑖)) and 𝑣 ∉ An(𝑖). Hence 𝑐𝑖𝑣 +𝑐𝑣𝑣 = 1, and because 𝑐𝑣𝑣 = 𝑏𝑣𝑣 , Eq. (4.10)
follows.

A notational convention: in case of double subscripts, we may also write 𝑥𝑖1,𝑖2
instead of 𝑥𝑖1𝑖2 .

4.2.3 The angular measure

Let 𝑋 follow a max-linear model with parameter vector 𝜃 as in Assumption 4.2.1. The
joint distribution 𝑃𝜃 of 𝑋 on [0,∞)𝑉 is max-stable and has unit-Fréchet margins. It is
determined by

𝑃𝜃 ( [0, 𝑧]) = P(𝑋 ≤ 𝑧) = exp (−𝑙𝜃 ((1/𝑧𝑣)𝑣∈𝑉 )) , 𝑧 ∈ (0,∞]𝑉 ,

where the stable tail dependence function (stdf) 𝑙𝜃 : [0,∞)𝑉 → [0,∞) is

𝑙𝜃 (𝑥) =
∑︁
𝑖∈𝑉

max
𝑣∈𝑉
(𝑏𝑣𝑖𝑥𝑣) (4.11)

for 𝑥 = (𝑥𝑣)𝑣∈𝑉 ∈ [0,∞)𝑉 (Einmahl et al., 2012).
Let𝐻𝜃 be the angular measure on the unit simplexΔ𝑉 = {𝑎 ∈ [0, 1]𝑉 :

∑
𝑣∈𝑉 𝑎

(𝑣) =
1} corresponding to the stdf 𝑙𝜃 . The link between the stdf and the angular measure is
detailed in de Haan and Ferreira (2007) for the bivariate case and in Resnick (1987,
Chapter 5) and Beirlant et al. (2004, Chapters 7–8) for higher dimensions: we have

𝑙𝜃 (𝑥) =
∫
Δ𝑉

max
𝑣∈𝑉
(𝑎 (𝑣)𝑥𝑣) d𝐻𝜃 (𝑎).

In view of the expression of 𝑙𝜃 in (4.11), the angular measure is discrete and satisfies

𝐻𝜃 =
∑︁
𝑖∈𝑉

𝑚𝑖𝛿𝑎𝑖 , (4.12)

with masses𝑚𝑖 =
∑

𝑣∈𝑉 𝑏𝑣𝑖 and atoms 𝑎𝑖 = (𝑏𝑣𝑖/𝑚𝑖 )𝑣∈𝑉 ∈ Δ𝑉 for 𝑖 ∈ 𝑉 (Einmahl,
Krajina, and Segers, 2012, page 1779). The notation 𝛿𝑥 refers to a unit point mass at 𝑥 .

If 𝑋 follows a max-linear model, the angular measure of 𝑋 is identifiable from its
distribution 𝑃𝜃 via the limit relation

𝑡 P

(
1
∥𝑋 ∥1

𝑋 ∈ · , ∥𝑋 ∥1 > 𝑡

)
𝑤−→ 𝐻𝜃 ( · ), 𝑡 →∞,

where ∥𝑥 ∥1 =
∑

𝑖 |𝑥𝑖 | for a vector 𝑥 in Euclidean space, while the arrow
𝑤−→ denotes

weak convergence of finite Borel measures, in this case on Δ𝑉 .
When we discuss latent variables and identifiability in Section 4.4, we have to

deal with the angular measure of a subvector of 𝑋 , say 𝑋𝑈 = (𝑋𝑣)𝑣∈𝑈 , for non-empty
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𝑈 ⊂ 𝑉 . Its stdf 𝑙𝜃,𝑈 arises from 𝑙𝜃 by setting 𝑥𝑣 = 0 for all 𝑣 ∉ 𝑈 : for 𝑥 ∈ [0,∞)𝑈 we
have

𝑙𝜃,𝑈 (𝑥) =
∑︁
𝑖∈𝑉

max
𝑣∈𝑈
(𝑏𝑣𝑖𝑥𝑣) =

∫
Δ𝑈

max
𝑣∈𝑈
(𝑎 (𝑣)𝑥𝑣) d𝐻𝜃,𝑈 (𝑎).

The distribution of 𝑋𝑈 is max-linear too, so that its angular measure 𝐻𝜃,𝑈 on Δ𝑈 has
a similar form as the one of 𝑋 :

𝐻𝜃,𝑈 =
∑︁
𝑖∈𝑉

𝑚𝑖,𝑈 𝛿𝑎𝑖,𝑈 , (4.13)

with masses𝑚𝑖,𝑈 =
∑

𝑣∈𝑈 𝑏𝑣𝑖 and atoms 𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑈 ∈ Δ𝑈 for 𝑖 ∈ 𝑉 .

4.3 Conditional tail limit and the ttt with unique source

Here we study the limit distribution of(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉
��� 𝑋𝑢 > 𝑡

)
, 𝑡 →∞, (4.14)

when 𝑋 is a max-linear model with respect to a ttt T = (𝑉 , 𝐸) as in Assumption 4.2.1.
In particular, we are interested to know whether the elements of the limiting vector
of (4.14) can be factorized into products of independent increments, similarly to other
models with this property as in Segers (2020a) and Asenova and Segers (2021). In
Proposition 4.3.1 below, we show that the limit variables factorize according to the
unique shortest trails under the condition that the ttt has a unique source (node
without parents). Moreover, by Proposition 4.3.2, the latter criterion is necessary and
sufficient for 𝑋 to satisfy the global Markov property with respect to the skeleton
graph associated to T , i.e., the undirected counterpart of T .

According to property (P3), any pair of distinct nodes in a ttt is connected by a
unique shortest trail. Let 𝑡 (𝑢, 𝑣) denote the set of edges along the unique shortest
trail between two distinct nodes 𝑢 and 𝑣 . Suppose the node sequence associated
to the trail 𝑡 (𝑢, 𝑣) is {𝑢 = 𝑣1, . . . , 𝑣 = 𝑣𝑛}. Note that in the trail 𝑡 (𝑢, 𝑣), the actual
directions of the edges in the graph are preserved. In contrast, consider 𝑡𝑢 (𝑢, 𝑣) =
{(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛)}, i.e., the set of edges incident to the same set of nodes,
{𝑢 = 𝑣1, . . . , 𝑣 = 𝑣𝑛}, but directed from 𝑢 to 𝑣 , irrespective of their original directions.
If for instance the graph of 𝑡 (𝑢, 𝑣) is given by

𝑢 𝑣2 𝑣𝑛−1 𝑣

then the graph of 𝑡𝑢 (𝑢, 𝑣) is given by

𝑢 𝑣2 𝑣𝑛−1 𝑣

For a given node 𝑢 ∈ 𝑉 , let 𝐸𝑢 be the set of all edges in such unique shortest paths
directed away from 𝑢, that is,

𝐸𝑢 =
⋃

𝑣∈𝑉 \𝑢
𝑡𝑢 (𝑢, 𝑣) . (4.15)

Recall from Section 4.2 that T denotes the set of tournaments within the ttt T . For
fixed 𝑢 ∈ 𝑉 there is for every tournament 𝜏 = (𝑉𝜏 , 𝐸𝜏 ) ∈ T a node, say 𝑤𝑢,𝜏 , which
is the unique node in 𝑉𝜏 such that the trail 𝑡 (𝑢,𝑤𝑢,𝜏 ) is the shortest one among all
trails between 𝑢 and a node 𝑣 in 𝑉𝜏 . As an example, consider Figure 4.3: starting from
node 𝑢 = 8, the closest node from the node set 𝑉𝜏1 = {1, 2, 3} is 3, hence 𝑤8,𝜏1 = 3.
With these definitions we are ready to state the condition under which the limiting
variables factorize into independent increments.
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1:𝐴81

2:𝐴82

3:𝐴83

4:𝐴84

7:𝐴87

5:𝐴85

6:𝐴86

8

𝑀31

𝑀73

𝑀75

𝑀76

𝑀32

𝑀34 𝑀87

Figure 4.3: A ttt on four tournaments: 𝜏1 on node set {1, 2, 3}, 𝜏2 on {3, 4}, 𝜏3 on {3, 5, 6, 7}
and 𝜏4 on {8, 7}. The variable exceeding a high threshold is at node 8. The set 𝐸𝑢 is
composed of the coloured edges which do not necessarily have the same directions
in the original graph. On the nodes we have 𝐴(8) = (𝐴8𝑖 , 𝑖 = 1, . . . , 7) and on the edges
we have the multiplicative increments (𝑀𝑒 , 𝑒 ∈ 𝐸𝑢 ). Increments in different colours
are mutually independent, while those in the same color are dependent according to
Lemma 4.6.3.

Proposition 4.3.1 (Factorization in max-linear model). Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) follow a
max-linear model as in Assumption 4.2.1. Fix 𝑢 ∈ 𝑉 . Let 𝐸𝑢 be as in (4.15) and
let (𝑀𝑒 , 𝑒 ∈ 𝐸𝑢) be a random vector composed of mutually independent subvectors
𝑀 (𝑢,𝜏 ) =

(
𝑀𝑤𝑢,𝜏 , 𝑗 : 𝑗 ∈ 𝑉𝜏 , (𝑤𝑢,𝜏 , 𝑗) ∈ 𝐸𝑢

)
, one for every transitive tournament 𝜏 ∈ T,

and with marginal distribution as in Lemma 4.6.3.
The following statements are equivalent:

(i) T has a unique source.

(ii) For every 𝑢 ∈ 𝑉 , we have, as 𝑡 →∞, the weak convergence

L(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡) 𝑑−→ L(𝐴 (𝑢 ) ) = L(𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) (4.16)

with
𝐴𝑢𝑣 =

∏
𝑒∈𝑡𝑢 (𝑢,𝑣)

𝑀𝑒 , 𝑣 ∈ 𝑉 . (4.17)

(iii) There exists 𝑢 ∈ 𝑉 such that the limit in (4.16) and (4.17) holds.

According to Proposition 4.3.1, the factorization property (4.17) holds either for
all nodes or for no node at all, a necessary and sufficient condition being that the ttt
has a unique source. The principle of (4.17) is illustrated in Figure 4.3 for 𝑢 = 8. The
limit 𝐴 (𝑢 ) = (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 \ 𝑢) is given by

𝐴87 = 𝑀87, 𝐴83 = 𝑀87𝑀73, 𝐴82 = 𝑀87𝑀73𝑀32,

𝐴86 = 𝑀87𝑀76, 𝐴81 = 𝑀87𝑀73𝑀31,

𝐴85 = 𝑀87𝑀75, 𝐴84 = 𝑀87𝑀73𝑀34,

where𝑀 (8,𝜏4 ) = 𝑀87,𝑀 (8,𝜏3 ) = (𝑀76, 𝑀73, 𝑀75),𝑀 (8,𝜏2 ) = 𝑀34 and𝑀 (8,𝜏1 ) = (𝑀31, 𝑀32)
are independent sub-vectors by construction.

What underlies the link between the factorization of the limiting variables from
Proposition 4.3.1 on the one hand and the uniqueness of the source of the ttt on the
other hand is the Markovianity of𝑋 with respect to the skeleton graph𝑇 . The Markov
property states that for any three non-empty and disjoint sets 𝐴, 𝐵,𝐶 ⊂ 𝑉 such that
in the graph𝑇 the nodes in𝐴 are separated from the nodes in 𝐵 by the nodes in𝐶 , the
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vector 𝑋𝐴 = (𝑋𝑣, 𝑣 ∈ 𝐴) is conditionally independent from 𝑋𝐵 given 𝑋𝐶 (Lauritzen,
1996). Another equivalence condition can be added to the list in Proposition 4.3.1.

Proposition 4.3.2. Let 𝑋 follow a max-linear model with respect to the ttt T as in
Assumption 4.2.1. Then𝑋 satisfies the global Markov property with respect to the skeleton
graph 𝑇 if and only if T has a unique source.

The proof of Proposition 4.3.2 is based on notions and results from Améndola et al.
(2022) which provides an extensive study of conditional independence properties of
max-linear models. In particular, the notion of ∗-connecting path between two nodes
in a DAG is introduced, a notion which is similar to the one of an active path (Koller
and Friedman, 2009, Definition 3.6) between two nodes.

4.4 Latent variables and parameter identifiability

In practice, it is possible that on some of the nodes, the variables of interest are not
observed (latent). Examples from the literature are water heights on certain locations
on the river networks of the Danube in Asadi et al. (2015) and the Seine in Asenova
et al. (2021). We look at the problem of recovering all parameters of the distribution
of the complete vector, based on the distribution of the observed variables only. If this
is possible, we can study the parametric model as if all variables were observed: in
particular, we are able to compute measures of tail dependence for sets including the
unobserved variables. The latter is important as it may be the only possible way to
quantify tail dependence, because non-parametric estimates are not available when
dealing with unobserved variables.

Consider for instance the network in Figure 4.4. The max-linear model on T =

(𝑉 , 𝐸) has eight variables and eleven parameters 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸). By Proposition 4.4.2
below, the parameter 𝜃 ∈ Θ̊∗ can be uniquely identified in case 𝑋1, 𝑋3, 𝑋7 are not
observed on the basis of the joint distribution of the remaining five variables, 𝑋𝑈 =

(𝑋2, 𝑋4, 𝑋5, 𝑋6, 𝑋8).
The problem of parameter identifiability will be formalized on the level of the

angular measure 𝐻𝜃 and is presented in detail in the next two subsections.

4.4.1 Graph-induced characteristics of the angular measure

In this subsection, we argue that the condition 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) ∈ Θ̊∗ guarantees
that all edge weights in 𝜃 are uniquely identifiable from the angular measure 𝐻𝜃 of
𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) and thus from the distribution 𝑃𝜃 of 𝑋 . Recall from (4.12) that 𝐻𝜃 is
discrete with atoms 𝑎𝑖 = (𝑎𝑣𝑖 )𝑣∈𝑉 ∈ Δ𝑉 and masses𝑚𝑖 > 0.

Thanks to the assumption 𝜃 ∈ Θ̊∗, we have

𝑎𝑣𝑖 > 0 ⇐⇒ 𝑏𝑣𝑖 > 0 ⇐⇒ 𝑖 ∈ An(𝑣) ⇐⇒ 𝑣 ∈ Desc(𝑖). (4.18)

For any DAG, all nodes have a different set of descendants, i.e.,

∀𝑖, 𝑗 ∈ 𝑉 : 𝑖 ≠ 𝑗 =⇒ Desc(𝑖) ≠ Desc( 𝑗). (4.19)

Indeed, if 𝑖 ≠ 𝑗 and Desc(𝑖) ⊆ Desc( 𝑗), then 𝑖 ∈ desc( 𝑗) and hence 𝑗 ∉ desc(𝑖), so
that Desc( 𝑗) ⊈ Desc(𝑖).

Lemma 4.4.1. Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) follow a max-linear model as in Assumption 4.2.1, with
parameter vector 𝜃 ∈ Θ̊∗ and induced coefficient matrix (𝑏𝑣𝑖 )𝑖,𝑣∈𝑉 . Let 𝐻𝜃 =

∑
𝑖∈𝑉 𝑚𝑖𝛿𝑎𝑖

in (4.12) be its angular measure. Then

(1) 𝑚𝑖 > 0 for all 𝑖 ∈ 𝑉 ;
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(2) for any atom𝑎𝑖 = (𝑎𝑣𝑖 )𝑣∈𝑉 , we have𝑎𝑣𝑖 > 0 if and only if 𝑣 ∈ Desc(𝑖). Specifically,
all |𝑉 | vectors 𝑎𝑖 are different and every atom can be matched uniquely to a node
in 𝑉 ;

(3) for each edge (𝑖, 𝑣) ∈ 𝐸, we have 𝑐𝑖𝑣 = 𝑏𝑣𝑖/𝑏𝑖𝑖 = 𝑎𝑣𝑖/𝑎𝑖𝑖 .

In particular, 𝜃 ∈ Θ̊∗ is identifiable from 𝐻𝜃 and thus from 𝑃𝜃 , i.e., for 𝜃1 ≠ 𝜃2 ∈ Θ̊∗ we
have 𝐻𝜃1 ≠ 𝐻𝜃2 and thus 𝑃𝜃1 ≠ 𝑃𝜃2 .

In Lemma 4.4.1, if the edge (𝑖, 𝑣) is not critical, then there is another path, say 𝑝′,
from 𝑖 to 𝑣 with path product 𝑐𝑝′ ≥ 𝑐𝑖𝑣 , and then we can further lower the value of 𝑐𝑖𝑣
without changing the coefficients in (4.4), because they involve 𝑐𝑝′ rather than 𝑐𝑖𝑣 , thus
yielding the same measure 𝐻𝜃 . This shows that without the criticality assumption,
some edge weights may not be identifiable from 𝐻𝜃 .

Example 4.4.1 (Unique zero patterns.). In dimension 𝑑 = 3, consider an angular
measure given by the following atoms and masses:

𝜔1 =
1

2.2
(0.8, 1, 0.4), 𝜇1 = 2.2, 𝜔2 =

1
0.5
(0, 0, 0.5), 𝜇2 = 0.5,

𝜔3 =
1

0.3
(0.2, 0, 0.1), 𝜇3 = 0.3.

Consider the vectors 𝛽 𝑗 = 𝜇 𝑗𝜔 𝑗 for 𝑗 ∈ {1, 2, 3}. By Lemma 4.4.1, the unordered collection
{𝛽1, 𝛽2, 𝛽3} = {(0.8, 1, 0.4)⊤, (0, 0, 0.5)⊤, (0.2, 0, 0.1)⊤} permits to recover the values of
the coefficients in the max-linear model

𝑋1 = 𝑐11𝑍 ∨ 𝑐21𝑐22𝑌, 𝑋2 = 𝑐22𝑌, 𝑋3 = 𝑐13𝑐11𝑍 ∨ 𝑐13𝑐21𝑐22𝑌 ∨ 𝑐33𝑇 .

with (known) edge set 𝐸 = {(2, 1), (1, 3)}, and this due the presence of zeroes in the
vectors. For the current example, argue as follows. The angularmeasure𝐻𝜃 of (𝑋1, 𝑋2, 𝑋3)
has three atoms: atom 𝑎𝑍 = 𝑏𝑍 /𝑚𝑍 with 𝑏𝑍 = (𝑐11, 0, 𝑐13𝑐11)⊤, atom 𝑎𝑌 = 𝑏𝑌 /𝑚𝑌

with 𝑏𝑌 = (𝑐21𝑐22, 𝑐22, 𝑐13𝑐21𝑐22)⊤, and atom 𝑎𝑇 = 𝑏𝑇 /𝑚𝑇 with 𝑏𝑇 = (0, 0, 𝑐33)⊤. As
unordered sets, {𝛽1, 𝛽2, 𝛽3} and {𝑏𝑍 , 𝑏𝑌 , 𝑏𝑇 } are equal, but the question is which vector
𝛽 𝑗 corresponds to which vector 𝑏∗. From an inspection of the zero entries of the vectors, it
is easily seen that the only possibility to identify the three coefficient vectors 𝛽1, 𝛽2, 𝛽3
with the vectors 𝑏𝑍 , 𝑏𝑌 , 𝑏𝑇 of the angular measure 𝐻𝜃 is

𝛽1 = (0.8, 1, 0.4) = (𝑐21𝑐22, 𝑐22, 𝑐13𝑐21𝑐22) = 𝑏𝑌 ,
𝛽2 = (0, 0, 0.5) = (0, 0, 𝑐33) = 𝑏𝑇 ,
𝛽3 = (0.2, 0, 0.1) = (𝑐11, 0, 𝑐13𝑐11) = 𝑏𝑍 .

Solving the equations yields (𝑐11, 𝑐21, 𝑐22, 𝑐13, 𝑐33) = (0.2, 0.8, 1, 0.5, 0.5).

4.4.2 Identifiability issues with the angular measure of a subvector

When we deal with latent variables, we know the distribution of the observable
variables only, 𝑋𝑈 = (𝑋𝑣, 𝑣 ∈ 𝑈 ) for non-empty 𝑈 ⊂ 𝑉 . The angular measure, say
𝐻𝜃,𝑈 , of 𝑋𝑈 in (4.13) is discrete and takes the form

𝐻𝜃,𝑈 =

𝑠∑︁
𝑟=1

𝜇𝑟𝛿𝜔𝑟
, (4.20)

with masses 𝜇𝑟 > 0 and 𝑠 distinct atoms 𝜔𝑟 ∈ Δ𝑈 . Combining (4.13) and (4.20), we
should have

𝑠∑︁
𝑟=1

𝜇𝑟𝛿𝜔𝑟
=

∑︁
𝑖∈𝑉

𝑚𝑖,𝑈 𝛿𝑎𝑖,𝑈 , (4.21)
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which means that, as sets, we should have {𝜔1, . . . , 𝜔𝑠 } = {𝑎𝑖,𝑈 : 𝑖 ∈ 𝑉 }. In contrast
to the situation in Lemma 4.4.1, the subvectors 𝑎𝑖,𝑈 for 𝑖 ∈ 𝑉 are not necessarily all
different. Any atom 𝜔𝑟 of 𝐻𝜃,𝑈 is of the form 𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑈 for one or possibly
several indices 𝑖 ∈ 𝑉 . For 𝑟 = 1, . . . , 𝑠 and 𝑖 ∈ 𝑉 such that 𝜔𝑟 = 𝑎𝑖,𝑈 , we know from
(4.18) that

{𝑣 ∈ 𝑈 : 𝜔𝑟,𝑣 > 0} = Desc(𝑖) ∩𝑈 . (4.22)

The (unordered) collection of vectors {(𝑏𝑣𝑖 )𝑣∈𝑈 : 𝑖 ∈ 𝑉 } will be denoted by B𝜃,𝑈 .
With unobservable variables, there are several issues with the angular measure

and its expression on the right hand-side of (4.21).

■ Zero masses. We have𝑚𝑖,𝑈 =
∑

𝑣∈𝑈 𝑏𝑣𝑖 , so that if all components of (𝑏𝑣𝑖 )𝑣∈𝑈
are zero, then𝑚𝑖,𝑈 = 0. This happens when Desc(𝑖) ∩𝑈 = ∅. In this case, we
have 𝑠 < |𝑉 |, i.e., 𝐻𝜃,𝑈 has less atoms than 𝐻𝜃 .

■ Equal atoms. We may have 𝑎𝑖,𝑈 = 𝑎 𝑗,𝑈 for some indices 𝑖, 𝑗 ∈ 𝑉 and 𝑖 ≠ 𝑗 . In
this case, the terms 𝑖 and 𝑗 in (4.13) are to be aggregated and again, 𝐻𝜃,𝑈 has
less than |𝑉 | atoms, 𝑠 < |𝑉 |. This happens when the vectors (𝑏𝑣𝑖 , 𝑣 ∈ 𝑈 ) and
(𝑏𝑣 𝑗 , 𝑣 ∈ 𝑈 ) are proportional for some distinct 𝑖, 𝑗 ∈ 𝑉 .

■ Zeroes on the same positions. Amore subtle problem occurs when for two distinct
vectors 𝑏, 𝑏′ ∈ B𝜃,𝑈 , the supports {𝑣 ∈ 𝑈 : 𝑏𝑣 > 0} and {𝑣 ∈ 𝑈 : 𝑏′𝑣 > 0}
are equal. Such a situation arises when two distinct nodes 𝑖, 𝑗 ∈ 𝑉 satisfy
Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 . The latter equality is only possible in the presence
of latent variables and is to be contrasted with property (4.19) when all variables
are observable.

4.4.3 Identifiability criterion

For a max-linear model with respect to a ttt T = (𝑉 , 𝐸) with unique source, we need
conditions that ensure that the minimal representation of the angular measure of
𝑋𝑈 is the one in (4.13). Consider the following two conditions for the set of nodes
𝑈 = 𝑉 \𝑈 carrying latent variables:

(I1) any 𝑢 ∈ 𝑈 has at least two children;

(I2) any 𝑢 ∈ 𝑈 is the source of some tournament in T .

Proposition 4.4.2. Let𝑋 follow a max-linear model as in Assumption 4.2.1 with respect
to a ttt T = (𝑉 , 𝐸) with unique source. For a non-empty node set 𝑈 ⊂ 𝑉 , the parameter
𝜃 ∈ Θ̊∗ is uniquely identifiable from the distribution of (𝑋𝑣, 𝑣 ∈ 𝑈 ) if and only if
conditions (I1) and (I2) are satisfied.

Figure 4.4 illustrates the identifiability criterion.

4.5 Discussion

In this paper we have considered a Bayesian max-linear network over a special type
of graph which we called a tree of transitive tournaments (ttt). It is a graph which
collects in an acyclic manner transitive tournaments which are themselves complete
DAGs. The max-linear model is defined on a particular parameter space which ensures
that the impact from one variable to another takes place along the shortest path, a
consideration that has been defined in the literature as the path’s criticality. It turns
out that a ttt with unique source leads to a graph without v-structures, or nodes with
non-adjacent parents. The limit of the scaled random vector, conditional on the event
that a high threshold is exceeded at a particular node, is shown to be factorizable in
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Figure 4.4: In the following ttt, the nodes that are allowed to contain a latent variable
while the edge parameters remain identifiable are 1, 3, 7. These are the only nodes
where each of them satisfies both (I1) and (I2). For instance, if node 2 has unobserved
variables, the parameters attached to edges (1, 2), (3, 2) are not identifiable. This is
because the edge weights 𝑐12, 𝑐32 take part only in products over paths ending at 2.
But if 2 ∈ 𝑈 these coefficients disappear from the atoms of the angular measure
𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 , 𝑣 ∈ 𝑈 ) and accordingly from the collection of vectors B𝜃,𝑈 .

independent multiplicative increments if and only if the ttt has a unique source. This
result is analogous to that for Markov trees in Segers (2020b) and for Markov random
fields on undirected block graph in Asenova and Segers (2021). The property that the
Bayesian max-linear model on a ttt with unique source shares with these two other
models is that it satisfies the global Markov property with respect to the undirected
counterpart or skeleton graph of the ttt.

Upon appropriate modifications, we expect the results presented in this paper to
hold equally for the linear additive causal model introduced in Gnecco et al. (2021).
One of the reasons is that the max-domain of attraction of a linear model with
heavy-tailed factors is the same as that of a max-linear one (Einmahl et al., 2012).
However, the relation between the edge weights 𝜃 = (𝑐𝑒 )𝑒∈𝐸 and the coefficient matrix
𝐵𝜃 = (𝑏𝑖 𝑗 )𝑖, 𝑗∈𝑉 is different between the max-linear and additive linear versions, and
this may ask for different approaches in showing the same properties for the additive
version.

4.6 Supplement

4.6.1 Trees of transitive tournaments

Recall that in a directed acyclic graph, a v-structure refers to a node with parents that
are not adjacent, see Figure 4.1.

Lemma 4.6.1 (Properties I). Let T be a tree of transitive tournaments as in Defini-
tion 4.2.1. We have the following statements:

1. If there is a path between two nodes, then there is a unique shortest path between
them.

2. The ttt T has a unique source if and only if it possesses no v-structures.
3. If T has a unique source, then for any two nodes 𝑖 ≠ 𝑗 , the sets Desc(𝑖) and

Desc( 𝑗) are either disjoint or one contains the other, that is, 𝑖 is an ancestor of 𝑗
or vice versa.

Proof. 1. Let 𝑎, 𝑏 ∈ 𝑉 . If 𝑎 and 𝑏 share the same tournament, they must be connected
by an arrow, which is then the unique shortest path between them, since all other
possible paths have length larger than one.

Let 𝑎, 𝑏 be nonadjacent. If there is a unique directed path between 𝑎 and 𝑏 then this
is the unique shortest path. Suppose now there are two shortest paths: 𝑝1, 𝑝2 ∈ 𝜋 (𝑎, 𝑏).
Let the path 𝑝1 be along the vertices {𝑣1 = 𝑎, 𝑣2, . . . , 𝑣𝑛 = 𝑏} and the path 𝑝2 on along
the vertices {𝑢1 = 𝑎,𝑢2, . . . , 𝑢𝑛 = 𝑏}.
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We will proceed by contradiction. Assume 𝑣2 ≠ 𝑢2. If 𝑣2 and 𝑢2 belong to two
different tournaments, then there exists a non-directed cycle through nodes in different
tournaments, namely {𝑎, 𝑣2, . . . , 𝑏, . . . , 𝑢2, 𝑎}. But this is impossible by property (P2) of
a ttt. Hence, 𝑣2 and𝑢2 must belong to the same tournament, say 𝜏𝑎 , because 𝑎 is part of
the same tournament too. Now consider 𝑢3 and 𝑣3. Then either 𝑢3 = 𝑣3 or they share a
tournament, say 𝜏3, because otherwise there exists a non-directed cycle through nodes
in different tournaments. Since (𝑣2, 𝑣3) ∈ 𝐸 and (𝑢2, 𝑢3) ∈ 𝐸 and by the assumption
that 𝑣2 ≠ 𝑢2, all four nodes {𝑎, 𝑣2, 𝑢2, 𝑣3 = 𝑢3} or all five nodes {𝑎, 𝑣2, 𝑢2, 𝑣3, 𝑢3} belong
to 𝜏𝑎 . This is because by property (P1), two tournaments can share only one node,
hence it is impossible to have 𝜏3 ∩ 𝜏𝑎 = {𝑣2, 𝑢2}. Because all four or five nodes belong
to the same tournaments and since (𝑎, 𝑣2), (𝑣2, 𝑣3), (𝑎,𝑢2), (𝑢2, 𝑢3) ∈ 𝐸 we must have
(𝑎, 𝑣3) ∈ 𝐸 and (𝑎,𝑢3) ∈ 𝐸 to avoid inter-tournament undirected cycles. Hence the
paths {𝑎 = 𝑣1, 𝑣3, . . . , 𝑣𝑛 = 𝑏} and {𝑢1 = 𝑎,𝑢3, . . . , 𝑢𝑛 = 𝑏} are shorter than 𝑝1 and 𝑝2,
a contradiction. Hence we must have 𝑣2 = 𝑢2.

We apply the same strategy to the nodes 𝑣3, 𝑢3 and 𝑣4, 𝑢4 to find that 𝑣3 = 𝑢3.
Proceeding recursively, we conclude that 𝑝1 = 𝑝2.

2. First we show that if the ttt has a unique source, there cannot be a v-structure.
We proceed by contraposition. Assume that there is a node, 𝑣 , with parents in two
different tournaments 𝜏𝑎 and 𝜏𝑏 . Let 𝑎 and 𝑏 be the sources of 𝜏𝑎 and 𝜏𝑏 respectively
(Harary and Moser, 1966, Corollary 5a). Note that we definitely have 𝑣 ≠ 𝑎 and 𝑣 ≠ 𝑏.
From node 𝑣 go to node 𝑎. If 𝑎 doesn’t have a parent from another tournament we
have found one node with zero in-degree with respect to the whole graph. If 𝑎 has
parent(s) from another tournament, say 𝜏 ′𝑎 , then go to the node that within 𝜏 ′𝑎 has
in-degree zero, say node 𝑎′. Keep on going until you find a node with in-degree zero
within the whole graph—such a node must exist because the graph is finite. Repeat
the same for 𝜏𝑏 , yielding two different nodes having zero in-degree with respect to
whole graph. These nodes must be different because of the definition of T : since we
have started in two different tournaments 𝜏𝑎 and 𝜏𝑏 we cannot end up in the same
node, or otherwise there would be a non-directed cycle passing through 𝑣 and that
node. Hence we have found two nodes with zero in-degree, hence T does not have a
unique source node.

Next we show that if T has two or more source nodes, 𝑢 and 𝑣 , then there
is a v-structure. Because 𝑢 and 𝑣 are sources they have in-degree zero, so that
they cannot belong to the same tournament, and thus they belong to two different
tournaments. Consider the unique shortest trail between 𝑢, 𝑣 on a sequence of nodes
{𝑢 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 = 𝑣}. Such a trail exists as, by definition of a ttt, the skeleton of T is
a block graph and the fact that in a block graph there is a unique shortest path between
every two nodes (Behtoei et al., 2010, Theorem 1). For every two consecutive nodes
in the shortest path, 𝑣𝑖 , 𝑣𝑖+1, we have either (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 or (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸. Because 𝑢
and 𝑣 are sources of T , we have (𝑢, 𝑣2) ∈ 𝐸 and (𝑣, 𝑣𝑛−1) ∈ 𝐸. Note that 𝑛 ≥ 3, since
𝑢 and 𝑣 cannot be adjacent. We need three nodes 𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑖+2 such that (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸
and (𝑣𝑖+2, 𝑣𝑖+1) ∈ 𝐸. If 𝑛 = 3, then the triple (𝑢, 𝑣2, 𝑣) already fulfils the requirement. If
𝑛 ≥ 4, then continue from 𝑣2 as follows. Let 𝑖 = max{ 𝑗 = 1, . . . , 𝑛 − 2 : (𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸};
then (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 and (𝑣𝑖+2, 𝑣𝑖+1) ∈ 𝐸, as required. Because this is the shortest trail, 𝑣𝑖
and 𝑣𝑖+2 cannot belong to the same tournament, since otherwise there would exist a
shorter trail passing only through 𝑣𝑖 and 𝑣𝑖+2.

3. Suppose that 𝑣 ∈ Desc(𝑖) ∩ Desc( 𝑗) but also both 𝑖 ∉ an( 𝑗) and 𝑗 ∉ an(𝑖); in
particular, 𝑖 and 𝑗 do not belong to the same tournament. Consider the paths 𝑝 (𝑖, 𝑣)
and 𝑝 ( 𝑗, 𝑣). Along each path, continue walking upwards considering successive
parents. Since the graph is finite, this walk must end for both paths to a node without
parents. By assumption, this must be the same unique source node of the ttt, say 𝑢0.
We will thus have found two different paths from 𝑢0 to 𝑣 , one passing via 𝑖 and the
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other one via 𝑗 . However, as 𝑖 and 𝑗 do not belong to the same tournament, this is in
contradiction to property (P2) of a ttt. □

Lemma 4.6.2 (Properties II). Consider a ttt T = (𝑉 , 𝐸) as in Definition 4.2.1 with
unique source.

1. If {𝑣1, 𝑣2, . . . , 𝑣𝑛} is the node sequence of a unique shortest path between nodes
𝑣1 and 𝑣𝑛 , then all nodes except for possibly 𝑣1 and 𝑣𝑛 are the source node of the
tournament shared with the next node in the sequence.

2. Between any two distinct nodes 𝑢, 𝑣 in T the unique shortest trail between them is
either 𝑝 (𝑢, 𝑣) or 𝑝 (𝑣,𝑢) or there exists a node𝑤 ∈ 𝑉 \ {𝑢, 𝑣} such that the trail is
composed of the two shortest paths 𝑝 (𝑤,𝑢) and 𝑝 (𝑤, 𝑣).

Proof. 1. Suppose that there is a node 𝑣𝑟 , for 𝑟 ∈ {2, . . . , 𝑛−1}, which is not the source
node in the tournament shared with 𝑣𝑟+1, say 𝜏 . Let 𝑣 be a parent of 𝑣𝑟 in 𝜏 . Note that
𝑣 must be a parent of 𝑣𝑟+1 too, because of the out-degree ordering in a tournament.
Because 𝑣𝑟−1 is a parent of 𝑣𝑟 too, both 𝑣𝑟−1 and 𝑣 must belong to 𝜏 , since otherwise
𝑣𝑟 would have parents from different tournaments, which is impossible according
to Lemma 4.6.1-2. Hence 𝑣𝑟−1, 𝑣𝑟 , 𝑣, 𝑣𝑟+1 all belong to the same tournament, i.e., to 𝜏 .
Necessarily 𝑣𝑟−1 is a parent of 𝑣𝑟+1, because otherwise there would be a directed cycle
{𝑣𝑟−1, 𝑣𝑟 , 𝑣𝑟+1, 𝑣𝑟−1}. But then {𝑣1, . . . , 𝑣𝑟−1, 𝑣𝑟+1, . . . , 𝑣𝑛} is a shorter path between 𝑣1
and 𝑣𝑛 , in contradiction to the hypothesis.

2. Let the shortest trail between 𝑢 and 𝑣 be the one along the node sequence
{𝑣1 = 𝑢, . . . , 𝑣𝑛 = 𝑣}. It is sufficient to show that there cannot exist a node 𝑣𝑟 for
𝑟 ∈ {2, . . . , 𝑛 − 1} such that (𝑣𝑟−1, 𝑣𝑟 ) ∈ 𝐸 and (𝑣𝑟+1, 𝑣𝑟 ) ∈ 𝐸. Suppose indeed that the
converse were true, i.e., there exists 𝑟 ∈ {2, . . . , 𝑛 − 1} such that both 𝑣𝑟−1 and 𝑣𝑟+1 are
parents of 𝑣𝑟 . Then 𝑣𝑟−1 and 𝑣𝑟+1 must be adjacent because v-structures are excluded
by statement 2 of Lemma 4.6.1. But then {𝑣1, . . . , 𝑣𝑟−1, 𝑣𝑟+1, . . . , 𝑣𝑛} is a shorter trail
between 𝑢 and 𝑣 , yielding a contradiction. □

4.6.2 Proofs and additional results for Section 4.3

Lemma 4.6.3. Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) follow a max-linear model as in Assumption 4.2.1. Let
𝜏 ∈ T be a transitive tournament on nodes 𝑉𝜏 . Then for 𝑢 ∈ 𝑉𝜏 , we have

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉𝜏
��� 𝑋𝑢 > 𝑡

)
𝑑−→ L(𝑀 (𝑢,𝜏 ) ) = L(𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 )

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑢)

,𝑣∈𝑉𝜏
} . (4.23)

The vector 𝑀 (𝑢,𝜏 ) = (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) has dependent variables and the distribution of a
single element is as follows.

1. The distribution of𝑀𝑢𝑣 when (𝑢, 𝑣) ∈ 𝐸.
(a) If 𝑢 is the source node of 𝜏 , the distribution is given by L(𝑀𝑢𝑣) = 𝛿{𝑐𝑢𝑣 } .
(b) If 𝑢 is not the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑢)

} .
2. The distribution of𝑀𝑢𝑣 when (𝑣,𝑢) ∈ 𝐸.

(a) If 𝑣 is the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) = 𝑐𝑣𝑢𝛿{1/𝑐𝑣𝑢 } + (1 − 𝑐𝑣𝑢)𝛿{0} .

(b) If 𝑣 is not the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) =
∑︁

𝑗∈An(𝑣)
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗𝛿{0} .
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Proof. From Segers (2020b, Example 1) we have the limit∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿{
𝑏𝑣𝑗

𝑏𝑢 𝑗
,𝑣∈𝑉𝜏

} .
Adapting this representation to a model where we have 𝑏𝑢 𝑗 = 0 for 𝑗 ∉ An(𝑢) and
𝑏𝑖 𝑗 = 𝑐𝑝 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 for 𝑗 ∈ An(𝑖) we obtain∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑣)𝑏𝑗 𝑗
𝑐𝑝 ( 𝑗,𝑢)𝑏𝑗 𝑗

,𝑣∈𝑉𝜏
} .

Recall that 𝑐𝑝 (𝑖,𝑖 ) = 1 and 𝑐𝑝 (𝑖, 𝑗 ) = 0 if 𝑖 ∉ An( 𝑗).
Next we show that (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) are mutually dependent. When 𝑢 is the source

of 𝜏 then for every 𝑗 ∈ An(𝑢) the atom(
𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑢 )
, 𝑣 ∈ 𝑉𝜏

)
=

(
𝑐𝑝 ( 𝑗,𝑢 )𝑐𝑢𝑣

𝑐𝑝 ( 𝑗,𝑢 )
, 𝑣 ∈ 𝑉𝜏

)
= (1; 𝑐𝑢𝑣, 𝑣 ∈ 𝑉𝜏 \ 𝑢)

gets probability
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1. Hence (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) are at the same time perfectly
dependent and independent.

For 𝑢 which is not the source node the general idea is to take a collection of
coordinates with joint probability zero, and positive product of the marginal probabil-
ities, thus showing that the joint probability does not equal the product of marginal
probabilities for selected possible value of the random vector.

Let for brevity 𝑉𝜏 = {1, 2, . . . ,𝑚}: the nodes are labelled according to their order
of out-degrees within 𝜏 : the source node of 𝜏 has𝑚 − 1 (largest) out-degree and is
labelled by 1, the node with out-degree𝑚 − 2 is labelled as 2, etc.

Consider 𝑢 being the node 2. We have, thanks to the no-cycle property within a
tournament An(2) = An(1) ∪ {2}. For all 𝑗 ∈ An(1) we have(

𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,2)
, 𝑣 = 1, . . . ,𝑚

)
=

(
1
𝑐12

; 1;
𝑐𝑝 ( 𝑗,1)𝑐1𝑣

𝑐𝑝 ( 𝑗,1)𝑐12
, 𝑣 = 3, . . . ,𝑚

)
, (4.24)

which is an atom of (𝑀2𝑣, 𝑣 = 1, . . . ,𝑚) withmass
∑

𝑗∈An(1) 𝑏2𝑗 . This means that for the
marginal distribution of𝑀21 we have the probability P(𝑀21 = 1/𝑐12) ≥

∑
𝑗∈An(1) 𝑏2𝑗 .

For 𝑗 = 2 we have an atom (0, 1, 𝑐23, . . . , 𝑐2𝑚) with mass 𝑏22. This means that for
the marginal probabilities of (𝑀23, . . . , 𝑀2𝑚) we have P(𝑀2𝑣 = 𝑐2𝑣) ≥ 𝑏22 for all
𝑣 = 3, . . . ,𝑚. Take a vector of coordinates (1/𝑐12, 1, 𝑐23, . . . , 𝑐2𝑚). Note that this
vector cannot be the same as the one in (4.24). For any 𝑣 = 3, . . . ,𝑚 we cannot have
𝑐1𝑣/𝑐12 = 𝑐2𝑣 because of the criticality assumption, according to which 𝑐1𝑣 > 𝑐12𝑐2𝑣
for any 𝑣 = 3, . . . ,𝑚. The joint probability of this vector of coordinates is

P(𝑀21 = 1/𝑐12, 𝑀22 = 1, 𝑀23 = 𝑐23, . . . , 𝑀2𝑚 = 𝑐2𝑚) = 0.

However the product of marginal probabilities is positive:

P(𝑀21 = 1/𝑐12) P(𝑀22 = 1)
𝑚∏
𝑣=3
P(𝑀2𝑣 = 𝑐2𝑣) ≥

∑︁
𝑗∈An(1)

𝑏2𝑗 × 𝑏𝑚−1
22 > 0.

Now let 𝑢 ≥ 3. Take the vector of coordinates in (4.23) corresponding to 𝑗 = 1
which is equal to (1/𝑐1𝑢, 𝑐12/𝑐1𝑢, . . . , 𝑐1𝑚/𝑐1𝑢) and has probability at least𝑏𝑢1. Consider
also the vector of coordinates for 𝑗 = 𝑢 which is (0, . . . , 0, 1; 𝑐𝑢𝑣, 𝑣 = 𝑢 + 1, . . . ,𝑚)
with mass at least 𝑏𝑢𝑢 . Replace the first coordinate by 1/𝑐1𝑢 . The vector obtained in
this way has joint probability zero. For every 𝑗 ∈ pa(𝑢) we have 𝑏𝑣 𝑗/𝑏𝑢 𝑗 = 0 when 𝑣
is not child of 𝑗 or equivalently, given the order in the node labelling, when 𝑣 < 𝑗 .
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So for fixed 𝑢 ≥ 3, for 𝑗 = 1 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) has no zeros. For
𝑗 = 2 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) has one zero, namely (0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 2, . . . ,𝑚),
for 𝑗 = 3 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) has two zeros, namely (0, 0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 =

3, . . . ,𝑚) and so on until 𝑗 = 𝑢 with the corresponding vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) =
(0, . . . , 0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 𝑢, . . . ,𝑚). By replacing the first coordinate by a non-zero value
in this vector we get an impossible value for the random vector (𝑀𝑢𝑣, 𝑣 = 1, . . . ,𝑚)
or a value with probability zero. Considering the univariate marginal distributions
of (𝑀𝑢𝑣, 𝑣 = 1, . . . ,𝑚) we obtain for the product of marginal probabilities a positive
value:

P(𝑀𝑢1 = 1/𝑐1𝑢)
[
𝑢−1∏
𝑣=2
P(𝑀𝑢𝑣 = 0)

]
P(𝑀𝑢𝑢 = 1)

𝑚∏
𝑣=𝑢+1

P(𝑀𝑢𝑣 = 𝑐𝑢𝑣)

≥ 𝑏𝑢1 × 𝑏𝑚−1
𝑢𝑢 .

This shows that for any 𝑢 ∈ 𝑉𝜏 the vector (𝑀𝑢1, . . . , 𝑀𝑢𝑚) has jointly dependent
elements.

Next we show the distribution of a single element𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 \ 𝑢.
1. Consider first when 𝑢 is the source node in 𝜏 . Since (𝑢, 𝑣) ∈ 𝐸, we have

An(𝑢) ⊂ An(𝑣) and thus An(𝑣) ∩An(𝑢) = An(𝑢). We have 𝑏𝑣 𝑗 > 0, 𝑗 ∈ An(𝑢), hence
zero is not a possible value of𝑀𝑢𝑣 . For 𝑗 ∈ An(𝑢)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑢 )𝑐𝑢𝑣𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
= 𝑐𝑢𝑣,

and since
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1 we obtain the desired result under 1.(a).
When𝑢 is not the source node in 𝜏 not all shortest paths to 𝑣 pass through𝑢 hence

for 𝑗 ∈ An(𝑢) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑢 )
> 0

with mass 𝑏𝑢 𝑗 . Hence the result in 1.(b). Note that zero is not possible value as we
still have An(𝑢) ⊂ An(𝑣). Also 𝑐𝑝 (𝑢,𝑢 ) = 1 by convention.

2. Let us have now (𝑣,𝑢) ∈ 𝐸. In this case An(𝑢) \ An(𝑣) is not empty because it
contains at least the node 𝑢, so zero is a possible value of𝑀𝑢𝑣 . We need to distinguish
only the zero atoms from the non-zero ones. When 𝑣 is a source node in 𝜏 , we have,
for 𝑗 ∈ An(𝑣)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑣)𝑐𝑣𝑢
=

1
𝑐𝑣𝑢

> 0,

which is an atom with probability∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑣)
𝑐𝑝 ( 𝑗,𝑣)𝑐𝑣𝑢𝑏 𝑗 𝑗

= 𝑐𝑣𝑢

∑︁
𝑗∈An(𝑣)

𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗 = 𝑐𝑣𝑢
∑︁

𝑗∈An(𝑣)
𝑏𝑣 𝑗 = 𝑐𝑣𝑢 .

The probability of the zero atom is∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 = 1 − 𝑐𝑣𝑢 .

This shows 2.(a).
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When 𝑣 is not a source node of 𝜏 we have for 𝑗 ∈ An(𝑣)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑢 )
> 0,

an atom with mass 𝑏𝑢 𝑗 and zero atom with probability
∑

𝑗∈An(𝑢 )\An(𝑣) 𝑏𝑢 𝑗 . This
shows 2.(b). □

Remark. From the results in Lemma 4.6.3 we see that a multiplicative increment
does not have a degenerate distribution at zero, so that a product of several such
multiplicative increments cannot be degenerate at zero either. This is an important
observation that we will use in further proofs.

Lemma 4.6.4. Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) follow a max-linear model as in Assumption 4.2.1.Let T
have a unique source. For any 𝑢 ∈ 𝑉 we have

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉
��� 𝑋𝑢 > 𝑡

)
𝑑−→ L(𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) =

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗𝛿
{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑢)

,𝑣∈𝑉
} . (4.25)

The distribution of the random variable 𝐴𝑢𝑣 depends on the three types of possible trails
according to Lemma 4.6.2-2. In what follows we assume (𝑢, 𝑣) ∉ 𝐸. For the case (𝑢, 𝑣) ∈ 𝐸
see Lemma 4.6.3.

1. Distribution of 𝐴𝑢𝑣 on a path {𝑢 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣 = 𝑣𝑛} with 𝑢, 𝑟 ∈ 𝜏 , one of the
tournaments of T .
(a) If 𝑢 is a source node in 𝜏 then L(𝐴𝑢𝑣) = 𝛿{𝑐𝑝 (𝑢,𝑣) } .
(b) If 𝑢 is not a source node in 𝜏 we have

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑟 )
𝑐𝑝 ( 𝑗,𝑢)

𝑐𝑝 (𝑟,𝑣)

} .
2. Distribution of 𝐴𝑢𝑣 on a path {𝑣 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑢 = 𝑣𝑛} with 𝑣, 𝑟 ∈ 𝜏 .

(a) If 𝑣 is a source node in 𝜏 then

L(𝐴𝑢𝑣) = 𝑐𝑝 (𝑣,𝑢 )𝛿{
1

𝑐𝑝 (𝑣,𝑢)

} + (1 − 𝑐𝑝 (𝑣,𝑢 ) )𝛿{0} .
(b) If 𝑣 is not a source node in 𝜏 then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑣)
𝑐𝑝 (𝑟,𝑢 )𝑏𝑟 𝑗𝛿{

𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗𝛿{0} .

3. The distribution of 𝐴𝑢𝑣 on a trail composed of two paths 𝑝 (𝑟,𝑢) and 𝑝 (𝑟, 𝑣). Let
the trail be on nodes {𝑢, . . . ,𝑚, 𝑟, 𝑛, . . . , 𝑣}. Let also 𝜏𝑚, 𝜏𝑛 be two tournaments
with 𝑟,𝑚 ∈ 𝜏𝑚 and 𝑟, 𝑛 ∈ 𝜏𝑛 .
(a) If 𝑟 is source in both 𝜏𝑚 and 𝜏𝑛 , then

L(𝐴𝑢𝑣) = 𝑐𝑝 (𝑟,𝑢 )𝛿{
𝑐𝑝 (𝑟,𝑣)
𝑐𝑝 (𝑟,𝑢)

} + (1 − 𝑐𝑝 (𝑟,𝑢 ) )𝛿{0} .
(b) If 𝑟 is source in 𝜏𝑚 , but not in 𝜏𝑛 , then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑟 )
𝑐𝑝 (𝑟,𝑢 )𝑏𝑟 𝑗𝛿{

𝑐𝑝 ( 𝑗,𝑛)𝑐𝑝 (𝑛,𝑣)
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑟 )

𝑏𝑢 𝑗𝛿{0} .

(c) If 𝑟 is source in 𝜏𝑛 , but not in 𝜏𝑚 , then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑟 )
𝑐𝑝 (𝑚,𝑢 )𝑏𝑚𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑣)
𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑟 )

𝑏𝑢 𝑗𝛿{0} .
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Proof. We have already seen that from Segers (2020b, Example 1) we have the limit

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡

)
𝑑−→

∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿{
𝑏𝑣𝑗

𝑏𝑢 𝑗
,𝑣∈𝑉

} .
Adapting this representation to a model where we have 𝑏𝑢 𝑗 = 0 for 𝑗 ∉ An(𝑢) and
𝑏𝑖 𝑗 = 𝑐𝑝 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 for 𝑗 ∈ An(𝑖) we obtain∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑢)

,𝑣∈𝑉
} .

Recall that 𝑐𝑝 (𝑖,𝑖 ) = 1 and 𝑐𝑝 (𝑖, 𝑗 ) = 0 if 𝑖 ∉ An( 𝑗). For a single 𝑣 ∈ 𝑉 \ 𝑢 we have the
marginal distribution

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{

𝑏𝑣𝑗

𝑏𝑢 𝑗

} . (4.26)

The distribution of 𝐴𝑢𝑣 depends deterministically on properties of the ttt. When
T has a unique source, according to Lemma 4.6.2-2 there are three possible shortest
trails between two nodes. In addition we have also the property under Lemma 4.6.2-1.
We look at the different distributions of 𝐴𝑢𝑣 that arise due to these two properties of
the ttt.

First we deal with 1.(a). Since An(𝑢) ⊂ An(𝑣) all atoms in (5.31) are positive
and zero is not a possible value of 𝐴𝑢𝑣 . All paths from An(𝑢) to 𝑣 pass through 𝑢
because𝑢 is source in 𝜏 and because by property (P2) of a ttt no cycle involving several
tournaments is allowed. The case is illustrated by the graph below.

𝑢 𝑟 · · · 𝑣

𝜏

Hence for all 𝑗 ∈ An(𝑢) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑢 )𝑐𝑝 (𝑢,𝑣)

𝑐𝑝 ( 𝑗,𝑢 )
= 𝑐𝑝 (𝑢,𝑣) > 0,

with mass
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1.
Next we show 1.(b). Because An(𝑢) ⊂ An(𝑣), zero is not possible value of 𝐴𝑢𝑣 .

Not all shortest paths from An(𝑢) to 𝑣 pass through 𝑢 because 𝑢 is not source in 𝜏 .
However all paths from An(𝑢) to 𝑣 pass through 𝑟 , as shown in the picture. Paths
from An(𝑢) to 𝑣 other than these passing through 𝑢 or 𝑟 are impossible because of
the property (P2) of a ttt.

𝑢 𝑟 · · · 𝑣

· · ·𝜏

We have for 𝑗 ∈ An(𝑢)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑟 )

𝑐𝑝 ( 𝑗,𝑢 )
𝑐𝑝 (𝑟,𝑣) > 0,

with mass 𝑏𝑢 𝑗 , hence the expression in 1.(b).
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Next we show 2.(a). When the directed path is from 𝑣 to 𝑢 the set An(𝑢) \ An(𝑣)
contains at least 𝑢 hence we have 𝑏𝑣 𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ An(𝑣). This means
that zero is a possible value of 𝐴𝑢𝑣 . All shortest paths from 𝑗 ∈ An(𝑣) to 𝑢 pass
through 𝑣 as 𝑣 is source in 𝜏 . Otherwise, there would be cycle encompassing multiple
tournaments, which is not allowed under property (P2) of a ttt.

𝑣 𝑟 · · · 𝑢

𝜏

For 𝑗 ∈ An(𝑣) the non-zero atom is given by

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑣)𝑐𝑝 (𝑣,𝑢 )
=

1
𝑐𝑝 (𝑣,𝑢 )

> 0, 𝑗 ∈ An(𝑣),

with mass ∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑣)
𝑐𝑝 ( 𝑗,𝑣)𝑐𝑝 (𝑣,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝑝 (𝑣,𝑢 )

∑︁
𝑗∈An(𝑣)

𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

= 𝑐𝑝 (𝑣,𝑢 )
∑︁

𝑗∈An(𝑣)
𝑏𝑣 𝑗 = 𝑐𝑝 (𝑣,𝑢 ) .

For the zero atom we have probability∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 = 1 − 𝑐𝑝 (𝑣,𝑢 ) .

This shows 2.(a).
To show 2.(b) we note that when 𝑣 is not a source node of 𝜏 not all shortest paths

from 𝑗 ∈ An(𝑣) to 𝑢 pass through 𝑣 . However all paths from 𝑗 ∈ An(𝑣) to 𝑢 pass
through 𝑟 , as it can be seen from the figure here.

𝑣 𝑟 · · · 𝑢

· · ·𝜏

Hence for 𝑗 ∈ An(𝑣) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝑝 ( 𝑗,𝑣)

𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )
> 0,

which is an atom with mass 𝑏𝑢 𝑗 = 𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝑝 (𝑟,𝑢 )𝑏𝑟 𝑗 . The zero atom
comes from the fact that 𝑏𝑣 𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ An(𝑣), and it has probabil-
ity

∑
𝑗∈An(𝑢 )\An(𝑣) 𝑏𝑢 𝑗 . This shows the distribution under 2.(b).

By Lemma 4.6.2-1 the node 𝑟 , as part of the paths 𝑝 (𝑟,𝑢) is allowed not be a source
node in 𝜏𝑚 . Similarly considering the path 𝑝 (𝑟, 𝑣). However when we combine 𝑝 (𝑟,𝑢)
and 𝑝 (𝑟, 𝑣) in one trail 𝑡 (𝑢, 𝑣) the node 𝑟 should be a source in at least one of 𝜏𝑚 and
𝜏𝑛 . If 𝑟 is not source of both 𝜏𝑚 and 𝜏𝑛 then there would be indeed a v-structure.
However, Lemma 4.6.1-2 excludes v-structures when T has a unique source, hence
node 𝑟 should be source in at least one tournament, 𝜏𝑚 and/or 𝜏𝑛 .

To show 3.(a) we note that all paths from 𝑗 ∈ An(𝑟 ) to 𝑢 and to 𝑣 pass through 𝑟 ,
as 𝑟 is source in both 𝜏𝑛 and 𝜏𝑚 . The case is depicted in the following picture.
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𝑟 𝑛 · · · 𝑣𝑚· · ·𝑢

𝜏𝑛𝜏𝑚

Also we have 𝑏𝑣 𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ An(𝑟 ). For 𝑗 ∈ An(𝑟 ) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 (𝑟,𝑣)

𝑐𝑝 (𝑟,𝑢 )
> 0,

with probability∑︁
𝑗∈An(𝑟 )

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑟 )
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝑝 (𝑟,𝑢 )

∑︁
𝑗∈An(𝑟 )

𝑐𝑝 ( 𝑗,𝑟 )𝑏 𝑗 𝑗

= 𝑐𝑝 (𝑟,𝑢 )
∑︁

𝑗∈An(𝑟 )
𝑏𝑟 𝑗 = 𝑐𝑝 (𝑟,𝑢 ) .

The probability of the zero atom is∑︁
𝑗∈An(𝑢 )\An(𝑟 )

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑟 )

𝑏𝑢 𝑗 = 1 − 𝑐𝑝 (𝑟,𝑢 ) .

Next we show 3.(b). Because 𝑟 is not a source in 𝜏𝑛 not all paths from An(𝑟 ) to 𝑣 pass
through 𝑟 , but they do all pass through 𝑛. Also all paths from An(𝑟 ) to 𝑢 pass through
𝑟 because 𝑟 is source in 𝜏𝑚 .

𝑟 𝑛 · · · 𝑣

· · ·

𝑚· · ·𝑢

𝜏𝑛

Hence for 𝑗 ∈ An(𝑟 )

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑛)𝑐𝑝 (𝑛,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑛)𝑐𝑝 (𝑛,𝑣)

𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )
> 0,

which is an atom with mass 𝑏𝑢 𝑗 = 𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗 = 𝑏𝑟 𝑗𝑐𝑝 (𝑟,𝑢 ) . The zero atom has
probability equal to

∑
𝑗∈An(𝑢 )\An(𝑟 ) 𝑏𝑢 𝑗 .

Next we show 3.(c). When 𝑟 is source in 𝜏𝑛 it means that all paths from An(𝑟 )
to 𝑣 pass through 𝑟 . Because 𝑟 is not source in 𝜏𝑚 not all paths from An(𝑟 ) to 𝑢 pass
through 𝑟 , but they do all pass through𝑚.

𝑟 𝑛 · · · 𝑣𝑚· · ·𝑢

· · ·𝜏𝑚

For 𝑗 ∈ An(𝑟 ) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑣)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑣)

𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 )
> 0,

which is an atomwithmass𝑏𝑢 𝑗 = 𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 )𝑏 𝑗 𝑗 = 𝑏𝑚𝑗𝑐𝑝 (𝑚,𝑢 ) . The zero atom comes
from 𝑏𝑢 𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ An(𝑟 ). It gets probability ∑

𝑗∈An(𝑢 )\An(𝑟 ) 𝑏𝑢 𝑗 . □
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Proof of Proposition 4.3.1

Proof. First we prove that (i) implies (ii). Assume T has a unique source. We have
to prove that for any 𝑢 ∈ 𝑉 an element from the limiting vector in (4.16) is given by
(4.17).

In Lemma 4.6.4 we have seen a number of cases for the distribution of 𝐴𝑢𝑣 de-
pending on deterministic properties of the trail between 𝑢 and 𝑣 . Below we consider
each of these cases again.

Case 1. Let the unique shortest trail between 𝑢 and 𝑣 be a path on node sequence
{𝑢 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣𝑛 = 𝑣}. Let 𝜏 be the tournament containing 𝑢, 𝑟 .

Case 1.(a). – Let 𝑢 be source in 𝜏 . From Lemma 4.6.4-1.(a) we have 𝑃 (𝐴𝑢𝑣 =

𝑐𝑝 (𝑢,𝑣) ) = 1. Consider the variables (𝑀𝑒 , 𝑒 ∈ 𝑝 (𝑢, 𝑣)) which are by construction
independent between each other because they belong to different tournaments. Note
that in this case all nodes 𝑣1, . . . , 𝑣𝑛−1 are source nodes in the tournament containing
that node and the next one in the sequence. This follows from Lemma 4.6.2-1. Then
according to Lemma 4.6.3 1.(a) for every𝑀𝑒 , 𝑒 ∈ 𝑝 (𝑢, 𝑣) we have P(𝑀𝑒 = 𝑐𝑒 ) = 1 and
hence

P
©«

∏
𝑒∈𝑝 (𝑢,𝑣)

𝑀𝑒 = 𝑐𝑝 (𝑢,𝑣)
ª®¬ =

∏
𝑒∈𝑝 (𝑢,𝑣)

P(𝑀𝑒 = 𝑐𝑒 ) = 1,

which shows 𝐴𝑢𝑣 =
∏

𝑒∈𝑝 (𝑢,𝑣) 𝑀𝑒 .

Case 1.(b). – If 𝑢 is not the source in 𝜏 , the distribution of𝑀𝑢𝑟 is as in Lemma 4.6.3-
1.(b). As in the case 1.(a) all nodes 𝑟 = 𝑣2, 𝑣3, . . . , 𝑣𝑛−1 are source nodes in the
tournament containing that node and the next one in the sequence. The vari-
ables 𝑀𝑒 , 𝑒 ∈ 𝑝 (𝑟, 𝑣) are degenerate at 𝑐𝑒 . As the case 1.(a) above the variables
(𝑀𝑒 , 𝑒 ∈ 𝑝 (𝑢, 𝑣)) are by construction independent between each other because they
are indexed by edges which belong to different tournaments. Then we have

L ©«
∏

𝑒∈𝑝 (𝑢,𝑣)
𝑀𝑒

ª®¬ = L ©«𝑀𝑢𝑟

∏
𝑒∈𝑝 (𝑟,𝑣)

𝑀𝑒
ª®¬ =

©«
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑟 )
𝑐𝑝 ( 𝑗,𝑢)

}ª®¬ ⊗ 𝛿{𝑐𝑝 (𝑟,𝑣) }
=

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗𝛿
{
𝑐𝑝 ( 𝑗,𝑟 )
𝑐𝑝 ( 𝑗,𝑢)

𝑐𝑝 (𝑟,𝑣)

} . (4.27)

The sign ⊗ denotes multiplication between two discrete probability measures, say 𝜇
and 𝜈 of two independent variables, say 𝜉1, 𝜉2 respectively. For two possible values
𝑎1, 𝑎2 of 𝜉1, 𝜉2 respectively we have 𝜇 ({𝑎1})𝜈 ({𝑎1}) as a measure of the event {𝜉1𝜉2 =

𝑎1𝑎2} = {𝜉1 = 𝑎1, 𝜉2 = 𝑎2}. The last one expression in (4.27) is the distribution of 𝐴𝑢𝑣

in Lemma 4.6.4-1.(b).

Case 2. Let the unique shortest trail between 𝑢 and 𝑣 be a path from 𝑣 to 𝑢 on the
node sequence {𝑣 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣𝑛 = 𝑢}. Let 𝜏 be the tournament containing 𝑣, 𝑟 .

Case 2.(a). – Let 𝑣 be source in 𝜏 . Consider the random variables 𝑀𝑣𝑖+1,𝑣𝑖 , 𝑖 =

1, . . . , 𝑛 − 1 whose distributions are as in Lemma 4.6.3-2.(a). Since this is the unique
shortest trail from 𝑣 to 𝑢, all edges on it belong to different tournaments and the
vector (𝑀𝑣𝑖+1,𝑣𝑖 , 𝑖 = 1, . . . , 𝑛 − 1) contains independent variables by definition. Then

P
( 𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 =
1

𝑐𝑝 (𝑣,𝑢 )

)
=

𝑛−1∏
𝑖=1
P

(
𝑀𝑣𝑖+1,𝑣𝑖 =

1
𝑐𝑣𝑖 ,𝑣𝑖+1

)
=

𝑛−1∏
𝑖=1

𝑐𝑣𝑖 ,𝑣𝑖+1 = 𝑐𝑝 (𝑣,𝑢 ) . (4.28)
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For the zero atom we have

P

(
𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0

)
= 1 −

𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0)

= 1 −
𝑛−1∏
𝑖=1
P

(
𝑀𝑣𝑖+1,𝑣𝑖 =

1
𝑐𝑣𝑖 ,𝑣𝑖+1

)
= 1 − 𝑐𝑝 (𝑣,𝑢 ) .

(4.29)

The expressions in (4.28) and (4.29) represent indeed the distribution of 𝐴𝑢𝑣 in
Lemma 4.6.4-2.(a).

Case 2.(b). – If 𝑣 is not the source in 𝜏 , consider a random variable 𝑀𝑟 𝑣 with
distribution as in Lemma 4.6.3-2.(b) and a random variable 𝐴𝑢𝑟 constructed as in 2.(a)
here above, i.e., as the product

∏𝑛−1
𝑖=2 𝑀𝑣𝑖+1,𝑣𝑖 . By construction𝑀𝑟 𝑣 is independent from

𝐴𝑢𝑟 with the same argument as above. We have

L(𝐴𝑢𝑟𝑀𝑟 𝑣) =
©«𝑐𝑝 (𝑟,𝑢 )𝛿{

1
𝑐𝑝 (𝑟,𝑢)

} + (1 − 𝑐𝑝 (𝑟,𝑢 ) )𝛿{0}ª®¬
⊗ ©«

∑︁
𝑗∈An(𝑣)

𝑏𝑟 𝑗𝛿
{
𝑐𝑝 ( 𝑗,𝑣)
𝑐𝑝 ( 𝑗,𝑟 )

} + ∑︁
𝑗∈An(𝑟 )\An(𝑣)

𝑏𝑟 𝑗𝛿{0}
ª®¬

which gives non-zero atoms 𝑐𝑝 ( 𝑗,𝑣)/(𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 ) ), 𝑗 ∈ An(𝑣)withmasses𝑏𝑟 𝑗𝑐𝑝 (𝑟,𝑢 ) , 𝑗 ∈
An(𝑣). To show the probability of the zero atom, consider

P(𝐴𝑢𝑟𝑀𝑟 𝑣 = 0) = 1 − P(𝐴𝑢𝑟 > 0) · P(𝑀𝑟 𝑣 > 0)

= 1 − 𝑐𝑝 (𝑟,𝑢 )
∑︁

𝑗∈An(𝑣)
𝑏𝑟 𝑗 =

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗 −
∑︁

𝑗∈An(𝑣)
𝑐𝑝 ( 𝑗,𝑟 )𝑏 𝑗 𝑗𝑐𝑝 (𝑟,𝑢 )

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )\An(𝑣)
𝑏𝑢 𝑗 ,

which is what we need to confirm 𝐴𝑢𝑣 = 𝐴𝑢𝑟𝑀𝑟 𝑣 where 𝐴𝑢𝑣 is as in Lemma 4.6.4-2.(b).

Case 3. In the three cases that follow let the unique shortest trail from 𝑢 to 𝑣 be
given by two paths 𝑝 (𝑟,𝑢) and 𝑝 (𝑟, 𝑣). Let the trail be on nodes {𝑢, . . . ,𝑚, 𝑟, 𝑛, . . . , 𝑣}.
Let also 𝜏𝑚, 𝜏𝑛 be two tournaments with 𝑟,𝑚 ∈ 𝜏𝑚 and 𝑟, 𝑛 ∈ 𝜏𝑛 .

Case 3.(a). – Let 𝑟 be source in both 𝜏𝑚 and 𝜏𝑛 . Consider random variables 𝐴𝑟 𝑣

as in Lemma 4.6.4-1.(a) and 𝐴𝑢𝑟 as in Lemma 4.6.4-2.(a). Above we have shown in
cases 1.(a) and 2.(a) that 𝐴𝑟 𝑣 and 𝐴𝑢𝑟 are factorizable in independent multiplicative
increments. By construction 𝐴𝑟 𝑣 and 𝐴𝑢𝑟 are independent from each other, because
the multiplicative increments are independent. We have

P
(
𝐴𝑢𝑟𝐴𝑟 𝑣 =

𝑐𝑝 (𝑟,𝑣)

𝑐𝑝 (𝑟,𝑢 )

)
= P

(
𝐴𝑢𝑟 =

1
𝑐𝑝 (𝑟,𝑢 )

)
P(𝐴𝑟 𝑣 = 𝑐𝑝 (𝑟,𝑣) ) = 𝑐𝑝 (𝑟,𝑢 ) .

For the probability of the zero atom we have

P(𝐴𝑢𝑟𝐴𝑟 𝑣 = 0) = 𝑃 (𝐴𝑢𝑟 = 0) = (1 − 𝑐𝑝 (𝑟,𝑢 ) ).

The two displays above represent indeed the distribution of𝐴𝑢𝑣 in Lemma 4.6.4-3.(a).
Case 3.(b). – Let 𝑟 be source in 𝜏𝑚 , but not source in 𝜏𝑛 . Consider three random

variables 𝐴𝑢𝑟 , 𝑀𝑟𝑛, 𝐴𝑛𝑣 with distributions as in Lemma 4.6.4-2.(a), Lemma 4.6.3-1.(b)
and Lemma 4.6.4-1.(a) respectively. For 𝐴𝑢𝑟 and 𝐴𝑛𝑣 we have shown in cases 2.(a)
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and 1.(a) in this proof that they are factorizable in independent multiplicative in-
crements. By construction𝑀𝑟𝑛 is independent from the increments in 𝐴𝑢𝑟 and 𝐴𝑛𝑣 .
Then

L(𝐴𝑢𝑟𝑀𝑟𝑛𝐴𝑛𝑣)

=
©«𝑐𝑝 (𝑟,𝑢 )𝛿{

1
𝑐𝑝 (𝑟,𝑢)

} + (1 − 𝑐𝑝 (𝑟,𝑢 ) )𝛿{0}ª®¬ ⊗ ©«
∑︁

𝑗∈An(𝑟 )
𝑏𝑟 𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑛)
𝑐𝑝 ( 𝑗,𝑟 )

}ª®¬ ⊗ 𝛿{𝑐𝑝 (𝑛,𝑣) }
=

∑︁
𝑗∈An(𝑟 )

𝑏𝑟 𝑗𝑐𝑝 (𝑟,𝑢 )𝛿{
𝑐𝑝 ( 𝑗,𝑛)𝑐𝑝 (𝑛,𝑣)
𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢)

} + (1 − 𝑐𝑝 (𝑟,𝑢 ) )𝛿{0} .
Note that ∑︁

𝑗∈An(𝑢 )\An(𝑟 )
𝑏𝑢 𝑗 =

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗 −
∑︁

𝑗∈An(𝑟 )
𝑏𝑢 𝑗 = 1 −

∑︁
𝑗∈An(𝑟 )

𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑢 )𝑏 𝑗 𝑗

= 1 − 𝑐𝑝 (𝑟,𝑢 )
∑︁

𝑗∈An(𝑟 )
𝑏𝑟 𝑗 = 1 − 𝑐𝑝 (𝑟,𝑢 ) .

This shows that the distribution of𝐴𝑢𝑟𝑀𝑟𝑛𝐴𝑛𝑣 is the one of𝐴𝑢𝑣 in Lemma 4.6.4-3.(b).
Case 3.(c). – Let 𝑟 be source in 𝜏𝑛 , but not in 𝜏𝑚 . Consider variables 𝐴𝑢𝑚, 𝑀𝑚𝑟 , 𝐴𝑟 𝑣

with distributions as in Lemma 4.6.4-2.(a), Lemma 4.6.3-2.(b) and Lemma 4.6.4-1.(a)
respectively. The variables 𝐴𝑢𝑚 and 𝐴𝑟 𝑣 have been shown to factorize in independent
increments in cases 2.(a) and 1.(a) of this proof respectively, hence they are independent
from each other too. By construction𝑀𝑚𝑟 is independent from 𝐴𝑢𝑚 and 𝐴𝑟 𝑣 . Then
we have

L(𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣) = ©«𝑐𝑝 (𝑚,𝑢 )𝛿{
1

𝑐𝑝 (𝑚,𝑢)

} + (1 − 𝑐𝑝 (𝑚,𝑢 ) )𝛿{0}
ª®¬

⊗ ©«
∑︁

𝑗∈An(𝑟 )
𝑏𝑚𝑗𝛿

{
𝑐𝑝 ( 𝑗,𝑟 )
𝑐𝑝 ( 𝑗,𝑚)

} + ∑︁
𝑗∈An(𝑚)\An(𝑟 )

𝑏𝑚𝑗𝛿{0}
ª®¬ ⊗ 𝛿{𝑐𝑝 (𝑟,𝑣) } .

The non-zero atoms are 𝑐𝑝 ( 𝑗,𝑟 )𝑐𝑝 (𝑟,𝑣)/(𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 ) ) for 𝑗 ∈ An(𝑟 ) with masses
𝑐𝑝 (𝑚,𝑢 )𝑏𝑚𝑗 = 𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 )𝑏 𝑗 𝑗 = 𝑏𝑢 𝑗 for 𝑗 ∈ An(𝑟 ). The probability of the zero atom
is given by

P(𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣 = 0) = 1 − P(𝐴𝑢𝑚 > 0) P(𝑀𝑚𝑟 > 0)

= 1 − 𝑐𝑝 (𝑚,𝑢 )
∑︁

𝑗∈An(𝑟 )
𝑏𝑚𝑗

= 1 −
∑︁

𝑗∈An(𝑟 )
𝑐𝑝 ( 𝑗,𝑚)𝑐𝑝 (𝑚,𝑢 )𝑏 𝑗 𝑗

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑟 )

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )\An(𝑟 )
𝑏𝑢 𝑗 .

Hence the distribution of 𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣 is the one of 𝐴𝑢𝑣 in Lemma 4.6.4-3.(c). This
completes the proof that the statement in (i) implies (ii).

The statement in (iii) holds trivially from (ii).
Next we prove that (iii) implies (i) by contraposition: we assume that T has at

least two sources and we will show that it is not possible to obtain the factorization
in (4.17). If T has at least two sources, then by Lemma 4.6.1-2 there is at least one
v-structure, say on nodes 1, 2, 3 and involving edges (1, 3), (2, 3) ∈ 𝐸. Consider the
nodes 1, 2. For every 𝑢 ∈ 𝑉 we have two possibilities:
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3

1 2𝑢 𝑣𝑛−1 𝑣2

(a) When the v-structure belongs to only one of the two trails 𝑡 (𝑢, 1) or 𝑡 (𝑢, 2) .

3

1 2

𝑢 𝑣𝑛−1 𝑣2

(b) When each node of the v-structure belongs to one of the two trails 𝑡 (𝑢, 1) and 𝑡 (𝑢, 2) .

Figure 4.5: The two possible configurations of the trails 𝑡 (𝑢, 1) and 𝑡 (𝑢, 2) when nodes
1, 2, 3 form a v-structure.

(a) the v-structure belongs to only one of the trails 𝑡 (𝑢, 1) and 𝑡 (𝑢, 2): w.l.o.g.
(1, 3), (2, 3) ∈ 𝑡 (𝑢, 2) and (1, 3), (2, 3) ∉ 𝑡 (𝑢, 1);

(b) each trail 𝑡 (𝑢, 1) and 𝑡 (𝑢, 2) contains one edge of the v-structure: w.l.o.g. (1, 3) ∈
𝑡 (𝑢, 1) and (2, 3) ∈ 𝑡 (𝑢, 2).

If 𝑢 ∈ {1, 2}, then we are in case 1, while if 𝑢 = 3, we are in case 2. If 𝑢 ∉ {1, 2, 3}, then
node 3 must belong to at least one of the two trails 𝑡 (𝑢, 1) or 𝑡 (𝑢, 2), because otherwise
the skeleton graph would have a cycle connecting nodes 𝑢, 1, 2, 3 and passing through
more than one block. The latter is impossible according to property (P2). The two
possibilities are illustrated in Figure 4.5.

Case 3.(c-i). Consider first the case when, w.l.o.g., the v-structure belongs to
𝑡 (𝑢, 2) but not to 𝑡 (𝑢, 1), see Figure 4.5(a). Let the trail from 1 to 𝑢 be on nodes
{𝑣1 = 1, 𝑣2, . . . , 𝑣𝑛 = 𝑢}. We can have any direction on the edges of 𝑡 (1, 𝑢). Recall the
distribution of 𝐴𝑢2:

L(𝐴𝑢2) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{𝑏2𝑗 /𝑏𝑢𝑗 } .

We have 𝑏2𝑗 = 0 for all 𝑗 ∉ An(2). We claim that An(𝑢) ∩ An(2) = ∅. According
to property (P2) of a ttt, T does not contain an undirected cycle involving several
tournaments. This means that it is impossible to find a node from which there leave
paths to 𝑢 and to 2. Also it is not possible to find a path passing through 3 and going
to 2, because otherwise there would be either an undirected cycle involving several
tournaments, or a cycle within a tournament. Both are impossible for a ttt. This
leads to the conclusion that 𝐴𝑢2 is degenerate at zero. Now we look at the variables
(𝑀𝑣𝑖+1,𝑣𝑖 , 𝑖 = 𝑛 − 1, . . . , 1;𝑀13, 𝑀32) which we take by construction to be independent
as they belong to different tournaments. Each of them is one of the variables in
Lemma 4.6.3, and none of these is degenerate at zero. Hence their product cannot be
degenerate at zero too.

Case 3.(c-ii). Next we consider the second case, when w.l.o.g. (1, 3) ∈ 𝑡 (𝑢, 1)
and (2, 3) ∈ 𝑡 (𝑢, 2), see Figure 4.5(b). Let the trail from node 3 to 𝑢 be on nodes
{𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛 = 𝑢}. First we consider the case when we have at least one
𝑖 = 1, . . . , 𝑛 − 1 for which (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸, i.e., we have at least one edge with direction
from 𝑢 to 3. Because 𝑡 (𝑢, 3) is a shortest trail, the edges incident to the nodes on the
trail belong to different tournaments. The distribution of (𝐴𝑢1, 𝐴𝑢2) is given by

L(𝐴𝑢1, 𝐴𝑢2) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{

𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

},
where 𝑏1𝑗 = 0 and 𝑏2𝑗 = 0 if 𝑗 ∉ An(1) and 𝑗 ∉ An(2) respectively. When for
some 𝑖 = 1, . . . , 𝑛 − 1 we have (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸 then necessarily An(1) ∩ An(𝑢) = ∅
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and An(2) ∩ An(𝑢) = ∅. There cannot be a path from An(1) or An(2) to any of
the nodes {𝑣2, . . . , 𝑣𝑛 = 𝑢}, because otherwise there would be a cycle involving
several tournaments in contradiction to the definition of a ttt. Because of the edge
(𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸 all nodes in An(1) ∪ An(2) are not ancestors of 𝑢. And also because
of the edges (1, 3), (2, 3) ∈ 𝐸 all nodes in An(𝑢) cannot be ancestors of nodes 1 or 2.
Thus when for some 𝑖 = 1, . . . , 𝑛 − 1 there is a directed edge (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸 we have
L(𝐴𝑢1, 𝐴𝑢2) = 𝛿{0,0} . We have found a node 𝑣 ∈ 𝑉 such that 𝐴𝑢𝑣 = 0 almost surely,
but then the factorisation (4.16)–(4.17) cannot hold, because these never degenerate
at zero.

Now let the trail from node 3 to 𝑢 be actually a path. Let also nodes 1 and 2
be sources with respect to the tournaments shared with node 3, say 1, 3 ∈ 𝑉𝜏1 and
2, 3 ∈ 𝑉𝜏2 . It is always possible to choose 1 and 2 in such a way they are the sources
of 𝜏1 and 𝜏2. This is because node 3 obviously is not a source in 𝜏1 and 𝜏2, so the
sources of these must point to 3. We can decompose An(𝑢) into three disjoint sets,
An(1),An(2) and the rest, An(𝑢) \ {An(1) ∪An(2)}. For the distribution of (𝐴𝑢1, 𝐴𝑢2)
we have

L(𝐴𝑢1, 𝐴𝑢2) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{

𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

}
=

∑︁
𝑗∈An(1)

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

} + ∑︁
𝑗∈An(2)

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

}
+

∑︁
𝑗∈An(𝑢 )\{An(1)∪An(2) }

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

} .
For the atoms in the first summation we have

𝑏1𝑗

𝑏𝑢 𝑗
=
𝑐𝑝 ( 𝑗,1)𝑏 𝑗 𝑗

𝑐𝑝 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝑝 ( 𝑗,1)

𝑐𝑝 ( 𝑗,1)𝑐13𝑐𝑝 (3,𝑢 )
=

1
𝑐13𝑐𝑝 (3,𝑢 )

and 𝑏2𝑗/𝑏𝑢 𝑗 = 0 as 𝑏2𝑗 = 0 for all 𝑗 ∈ An(1). Hence we have an atom that does not
depend on 𝑗 ∈ An(1), i.e.,

(
1/(𝑐13𝑐𝑝 (3,𝑢 ) ), 0

)
and its mass is∑︁

𝑗∈An(1)
𝑏𝑢 𝑗 =

∑︁
𝑗∈An(1)

𝑐𝑝 ( 𝑗,1)𝑐13𝑐𝑝 (3,𝑢 )𝑏 𝑗 𝑗 = 𝑐13𝑐𝑝 (3,𝑢 ) = 𝑐𝑝 (1,𝑢 ) .

In a similar way, from the second summation in the last display we have an atom(
0, 1/(𝑐23𝑐𝑝 (3,𝑢 ) )

)
with mass 𝑐23𝑐𝑝 (3,𝑢 ) = 𝑐𝑝 (2,𝑢 ) . In the third summation term the atom

is (0, 0) as 𝑏1𝑗 = 𝑏2𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ {An(1) ∪ An(2)} and its mass is 1 −
𝑐13𝑐𝑝 (3,𝑢 )−𝑐23𝑐𝑝 (3,𝑢 ) = 1−𝑐𝑝 (3,𝑢 ) (𝑐13+𝑐23). Consider now themultiplicative increments
(𝑀31;𝑀32, 𝑀𝑣𝑖+1,𝑣𝑖 𝑖 = 1, . . . , 𝑛 − 1) which are mutually independent since they belong
to different tournaments. Because node 1 is a source node in the tournament 𝜏1 the
distribution of𝑀31 is 𝑐13𝛿{1/𝑐13 } + (1−𝑐13)𝛿{0} by Lemma 4.6.3-2.(a). Similarly for𝑀32.
We have

P

(
𝑀31

𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0, 𝑀32

𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0

)
= 1 −

𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0)

+ P(𝑀31 = 0) P(𝑀32 = 0)

−
(
1 −

𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0)

)
P(𝑀31 = 0) P(𝑀32 = 0).

(4.30)

After some rearranging of the expression above we obtain

1 −
𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0) (𝑐13 + 𝑐23 − 𝑐13𝑐23). (4.31)
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There are two further sub-cases: either all nodes 𝑣1, . . . , 𝑣𝑛−1 are source nodes
with respect to the tournament involving the next node in the sequence, or not.
In the first sub-case, namely when all nodes in {𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛−1} are source
nodes with respect to the tournament involving the next node in the sequence, then
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0) = 𝑐𝑣𝑖 ,𝑣𝑖+1 for 𝑖 = 1, . . . , 𝑛 − 1. This means that the probability in (4.31)
and accordingly in (4.30) equals 1 − 𝑐𝑝 (3,𝑢 ) (𝑐13 + 𝑐23 − 𝑐13𝑐23), which is different than
P(𝐴𝑢1 = 0, 𝐴𝑢2 = 0) = 1 − 𝑐𝑝 (3,𝑢 ) (𝑐13 + 𝑐23). In the second sub-case, i.e., if at least
one node from {𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛−1} is not source with respect to the tournament
involving the next node in the sequence then the possible values for𝑀31

∏𝑛−1
𝑖=1 𝑀𝑣𝑖+1,𝑣𝑖

are not only {0, 1/𝑐𝑝 (1,𝑢 ) }, which are the only possible values of 𝐴𝑢1 as we showed in
the previous paragraph. Let 𝑖 ∈ {1, . . . , 𝑛 − 1} be such that node 𝑣𝑖 is not the source
node in the tournament shared with 𝑣𝑖+1, say 𝜏𝑖 . This is depicted in the following
graph:

3

1 2

𝑢 𝑣𝑖+1 𝑣𝑖

𝑠𝜏𝑖

Recall the distribution of𝑀𝑣𝑖+1,𝑣𝑖 from Lemma 4.6.3-2.(b):

L(𝑀𝑣𝑖+1,𝑣𝑖 ) =
∑︁

𝑗∈An(𝑣𝑖 )
𝑏𝑣𝑖+1, 𝑗𝛿{𝑏𝑣𝑖 ,𝑗 /𝑏𝑣𝑖+1, 𝑗 } +

∑︁
𝑗∈An(𝑣𝑖+1 )\An(𝑣𝑖 )

𝛿{0} .

Take for instance a node, say 𝑠 , a parent of 𝑣𝑖 and accordingly in An(𝑣𝑖 ). Then

𝑏𝑣𝑖 ,𝑠

𝑏𝑣𝑖+1,𝑠
=
𝑐𝑠𝑣𝑖

𝑐𝑠𝑣𝑖+1

is a possible value of𝑀𝑣𝑖+1,𝑣𝑖 with positive probability, namely at least 𝑏𝑣𝑖+1,𝑠 . Another
possible positive value is for 𝑗 = 𝑣𝑖 ∈ An(𝑣𝑖 ), namely

𝑏𝑣𝑖 ,𝑣𝑖

𝑏𝑣𝑖+1,𝑣𝑖
=

1
𝑐𝑣𝑖 ,𝑣𝑖+1

with probability at least 𝑏𝑣𝑖+1,𝑣𝑖 . The criticality assumption on edge weights guarantees
𝑐𝑠𝑣𝑖
𝑐𝑠𝑣𝑖+1

≠ 1/𝑐𝑣𝑖 ,𝑣𝑣+1 . This means that the product 𝑀31
∏𝑛−1

𝑖=1 𝑀𝑣𝑖+1,𝑣𝑖 has at least two
different positive values - one involving 𝑐𝑠𝑣𝑖

𝑐𝑠𝑣𝑖+1
and another 1/𝑐𝑣𝑖 ,𝑣𝑖+1 . However 𝐴𝑢1 has

only one possible positive value. □

Proof of Proposition 4.3.2

Proof. Sufficiency. Assume T has a unique source. We need to show that, for any
disjoint and nonempty sets 𝐴, 𝐵, 𝑆 , we have 𝑋𝐴 ⊥⊥ 𝑋𝐵 | 𝑋𝑆 , whenever 𝑆 is a separator
of 𝐴 and 𝐵 in the skeleton 𝑇 of T . We would like to use Theorem 5.15 in Améndola
et al. (2022), by which we need to show 𝐴 ⊥∗ 𝐵 | 𝑆 in D∗

𝑆
, that is, there are no ∗-

connecting paths between any pair of nodes in 𝐴 and 𝐵 in the conditional reachability
DAG D∗

𝑆
. We will explain these notions further.

Let 𝐴, 𝐵, 𝑆 ⊂ 𝑉 be nonempty disjoint node sets, such that 𝑆 is a separator of 𝐴 and
𝐵 in the skeleton𝑇 . Consider Figure 4.6. According to Definition 5.4 of Améndola et al.
(2022), a ∗-connecting path between 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 is one of the five configurations
therein. Our goal is to show that for 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 it is impossible to find a
∗-connecting path in a certain graph D∗

𝑆
, which is not T , neither 𝑇 , but constructed

under particular rules given in Améndola et al. (2022, Definition 5.1).
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𝑎

𝑏

𝑎′

𝑏 𝑎

𝑎 𝑏

𝑠

𝑎′ 𝑏

𝑠𝑎

𝑎′ 𝑏′

𝑠𝑎 𝑏

Figure 4.6: According to Definition 5.4 of Améndola et al. (2022), a ∗-connected path
between 𝑎 and 𝑏 relative to 𝑆 is one of the five configurations above. In the last three
graphs we have 𝑠 ∈ 𝑆 .

According to this definition, the conditional reachability graph D∗
𝑆
is on the same

vertex set, 𝑉 . Between two nodes 𝑖 and 𝑗 in 𝑉 there is an edge (𝑖, 𝑗) in D∗
𝑆
if and only

if there is a directed path from 𝑖 to 𝑗 in T such that no node on that path belongs to
𝑆 , except possibly for 𝑖 and 𝑗 themselves.

Consider Figure 4.6. We need to show that in the conditional reachability graph
D∗

𝑆
, there is no ∗-connecting path between a node 𝑎 ∈ 𝐴 and a node 𝑏 ∈ 𝐵.
To obtain the first configuration in D∗

𝑆
, there must be, in the skeleton 𝑇 , nodes

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that no node on the path from 𝑎 to 𝑏 passes through 𝑆 . But this
is impossible, because we assumed that 𝑆 is a separator of 𝐴 and 𝐵 in 𝑇 . Similarly for
the second configuration.

For the other three configurations in Figure 4.6 consider Figure 4.7.
In Figure 4.7, the left-hand and right-hand trails in the original graph T are the

only possible one that give rise to the middle path in Figure 4.6 with respect to the
graph D∗

𝑆
: both the left-hand and right-hand graphs in Figure 4.7 show existing trails

between 𝑎 and 𝑏 in T , trails composed of a directed path from 𝑎 to 𝑠 , and a directed
path from 𝑏 to 𝑠 . The only node on these trails which belongs to 𝑆 is 𝑠 . Hence in D∗

𝑆

we put a directed edge from 𝑎 to 𝑠 and from 𝑏 to 𝑠 . This gives the third ∗-connecting
path in Figure 4.6. But this configuration cannot occur, for the following reason. On
the left-hand trail in Figure 4.7, the separator node 𝑠 has parents 𝑢𝑟 and 𝑣𝑞 in different
tournaments. This leads to a v-structure between the nodes 𝑢𝑟 , 𝑠, 𝑣𝑞 , in contradiction
to Lemma 4.6.1-2 and the hypothesis that T has a unique source.

On the right-hand trail in Figure 4.7, the node 𝑠 shares a tournament with its
parents 𝑢𝑟 and 𝑣𝑞 , but only 𝑠 belongs to 𝑆 ; on the trail

{𝑎 = 𝑢1, 𝑢2, . . . , 𝑢𝑟 , 𝑣𝑞, . . . , 𝑣2, 𝑣1 = 𝑏}

none of the nodes are in 𝑆 . In 𝑇 , this means that there is a path between 𝐴 and 𝐵 that
does not pass through 𝑆 . This is in contradiction to the assumption that 𝑆 separates 𝐴
and 𝐵 in 𝑇 .

To show that the fourth type of ∗-connecting path in Figure 4.6 cannot occur, we
can use the reasoning used for the third one by setting 𝑎 = 𝑎′ in Figure 4.7. Then either
𝑠 has parents from two different tournaments or there is a non-directed path from 𝑎′ to
𝑏 which does not pass through 𝑆 . The first case is excluded by Lemma 4.6.1-2 and the
assumption that T has a unique source, and the second one by the assumption that 𝑆
is a separator of𝐴 and 𝐵 in𝑇 . The impossibility of the fifth ∗-connected configuration
follows analogously.

Necessity. We will show that if T has multiple source nodes, there is a triple of
disjoint, non-empty sets 𝐴, 𝐵, 𝑆 ⊂ 𝑉 such that 𝑆 is a separator of 𝐴 and 𝐵 in 𝑇 , but
𝑋𝐴 and 𝑋𝐵 are conditionally dependent given 𝑋𝑆 . In case T has at least two sources,
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𝑎
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𝑠

𝑣𝑞
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𝑏

𝑎

𝑠

𝑏

𝑎
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𝑠
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𝑣2

𝑏

Figure 4.7: The left and right trails in the original graph T are the only possible trails
that give rise to the middle path in the graph D∗

𝑆
.

we have at least one v-structure in T by Lemma 4.6.1-2. Take a triple of nodes in a
v-structure, say 𝑢, 𝑣,𝑤 , with 𝑢 and𝑤 being parents of 𝑣 . Then node 𝑣 separates nodes
𝑢 and𝑤 in 𝑇 , i.e., 𝑆 = {𝑣} is a separator of 𝐴 = {𝑢} and 𝐵 = {𝑤} in 𝑇 . All references
below are from Améndola et al. (2022).

To show 𝑋𝑢 ⊥̸⊥ 𝑋𝑤 | 𝑋𝑣 we will use Theorem 6.18 (Context free completeness) of
Améndola et al. (2022). We need to show that there is an effective ∗-connecting path
in the critical DAG D∗

𝑆
(𝜃 ) between nodes 𝑢 and𝑤 as in their Definitions 5.2 and 6.5.

The subgraph on nodes𝑢, 𝑣,𝑤 ofD∗
𝑆
(𝜃 ) is a v-structure, 𝑢 −→ 𝑣 ←− 𝑤 , according

to the definition ofD∗
𝑆
(𝜃 ). According to Definition 6.4, the |𝑆 | × |𝑆 | substitution matrix

of (𝑢, 𝑣) ∈ 𝐸 relative to 𝑆 = {𝑣} is zero, because 𝑆 is a singleton and by definition all
diagonal entries of the substitution matrix are zero, i.e., Ξ𝑣𝑢

𝑆
= 0. Similarly, Ξ𝑣𝑤

𝑆
= 0.

Because the edges (𝑢, 𝑣), (𝑤, 𝑣) form a ∗-connecting path between 𝑢,𝑤 in D∗
𝑆
(𝜃 ), the

substitution matrix of this path relative to 𝑆 , say Ξ𝑆 , is zero too:

Ξ𝑆 = max(Ξ𝑣𝑢
𝑆 ,Ξ

𝑣𝑤
𝑆 ) = 0.

To find out if the edges (𝑢, 𝑣), (𝑤, 𝑣) form an effective ∗-connecting path between
𝑢,𝑤 , we need to compute the tropical eigenvalue of max(Γ𝑆𝑆 ,Ξ𝑆 ) where Γ is as in
Equation (2.3) in Améndola et al. (2022) and Γ𝑆𝑆 is the 𝑣𝑣-element of Γ, i.e., {Γ}𝑣𝑣 .
Because {Γ}𝑖 𝑗 > 0 if and only if there is a directed path from 𝑗 to 𝑖 , we have Γ𝑆𝑆 =

{Γ}𝑣𝑣 = 0 and so
max(Γ𝑆𝑆 ,Ξ𝑆 ) = 0.

The tropical eigenvalue (Améndola et al., 2022, Equation (2.7)) of the above matrix
is trivially equal to zero and thus smaller than one. By Definition 6.5 in the cited
reference, there is indeed an effective ∗-connecting path between 𝑢,𝑤 in D∗

𝑆
(𝜃 ). In

view of their Theorem 6.18, we conclude 𝑋𝑢 ⊥̸⊥ 𝑋𝑤 | 𝑋𝑣 .
□

4.6.3 Proofs and additional results for Section 4.4

Proof of Lemma 4.4.1. The point masses satisfy𝑚𝑖 > 0 for all 𝑖 ∈ 𝑉 because we have
𝑚𝑖 = 0 if and only if 𝑐𝑖𝑖 = 0. However 𝑐𝑖𝑖 = 0 is impossible in view of the definition in
(4.6). Therefore we cannot have undefined atoms, which would happen when𝑚𝑖 = 0.
This shows (i).

Next we show (ii). To see why 𝑎𝑖 ≠ 𝑎 𝑗 for 𝑖 ≠ 𝑗 , let 𝑖, 𝑣 ∈ 𝑉 and recall 𝑏𝑣𝑖 in (4.9).
From the line below (4.12), recall that we also have 𝑏𝑣𝑖 =𝑚𝑖𝑎𝑣𝑖 for 𝑖, 𝑣 ∈ 𝑉 . Thanks to
the assumption 𝜃 ∈ Θ̊∗, we have (4.18). We also have for any DAG (4.19).

The combination of the last two equations implies that in (4.12), all vectors 𝑎𝑖
for 𝑖 ∈ 𝑉 are different and thus that 𝐻𝜃 has |𝑉 | distinct atoms. Also, for every node
𝑖 ∈ 𝑉 , we can find out which of the |𝑉 | atoms of 𝐻𝜃 is 𝑎𝑖 because it is the unique
one that satisfies Desc(𝑖) = {𝑣 ∈ 𝑉 : 𝑎𝑣𝑖 > 0}. Note that similarly, among the |𝑉 |
vectors in the set B𝜃 = {(𝑏𝑣 𝑗 )𝑣∈𝑉 : 𝑗 ∈ 𝑉 }, the vector 𝑏𝑖 is the unique one such that
Desc(𝑖) = {𝑣 ∈ 𝑉 : 𝑏𝑣𝑖 > 0}.
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𝑢
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𝑣3
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𝑠

𝜏1 𝜏2

Figure 4.8: A unique path on nodes {𝑢 = 𝑣1, 𝑣2, 𝑣3, . . . , 𝑠 = 𝑣𝑛} under Lemma 4.6.3.1. Each
of the nodes 𝑢, 𝑣2, . . . , 𝑣𝑛−1 belongs to 𝑈 . Each of the nodes 𝑣2, . . . , 𝑣𝑛−1, 𝑠 has a unique
parent. The node 𝑢 ∈ 𝑈 may have parents as illustrated here, but then there is at least
one tournament with respect to which it is a source node, e.g., 𝜏1. Let 𝑣2 be the node
with unique parent 𝑢 in 𝜏1. When 𝑣2 belongs to𝑈 , it must participate in at least one
another tournament, say 𝜏2. In 𝜏2 the node with unique parent 𝑣2 is 𝑣3. In this principle
the path continues until we find a node in𝑈 , which is 𝑣𝑛 = 𝑠 in this case.

Finally consider (iii). By the criticality assumption, every edge is critical, because
it is the shortest path between any pair of adjacent nodes. Since (𝑖, 𝑣) ∈ 𝐸 is critical,
we have 𝑏𝑣𝑖 = 𝑏𝑖𝑖𝑐𝑖𝑣 and thus 𝑐𝑖𝑣 = 𝑏𝑣𝑖/𝑏𝑖𝑖 = 𝑎𝑣𝑖/𝑎𝑖𝑖 .

In summary, the angular measure 𝐻𝜃 possesses |𝑉 | distinct atoms that can be
uniquely matched to the nodes. As a consequence, we can reconstruct the matrix
(𝑏𝑣𝑖 )𝑖,𝑣∈𝑉 . Thanks to (iii), this matrix allows us to recover all edge weights 𝑐𝑣𝑖 . □

Lemma 4.6.3.1. Let T = (𝑉 , 𝐸) be a ttt as in Definition 4.2.1 and let T have a unique
source, 𝑢0. Let𝑈 ⊂ 𝑉 be non-empty and suppose that𝑈 = 𝑉 \𝑈 satisfies conditions (I1)
and (I2). For every 𝑢 ∈ 𝑈 there exists 𝑠 ∈ desc(𝑢) ∩𝑈 such that 𝜋 (𝑢, 𝑠) is a singleton
and the unique path 𝑝 from 𝑢 to 𝑠 satisfies the following two properties:

1. all nodes on 𝑝 except for 𝑠 are in𝑈 ;
2. all nodes on 𝑝 except possibly for 𝑢 have only one parent.

As a consequence, any path with destination 𝑠 must either start in one of the nodes of 𝑝
or contain 𝑝 as a sub-path.

Proof. Let 𝑢 ∈ 𝑈 and suppose 𝑢 has no parents, so 𝑢 = 𝑢0. Take a node whose unique
parent is 𝑢, say 𝑣2. By Harary and Moser (1966, Corollary 5.a) such a node exists in
every tournament in which 𝑢 takes part. If 𝑣2 ∈ 𝑈 then 𝑠 = 𝑣2 and we are done. If
𝑣2 ∈ 𝑈 then by (I2) 𝑣2 must be a source of at least one another tournament. In each of
these, there is a node whose only parent is 𝑣2. Take such a node, say 𝑣3. If 𝑣3 ∈ 𝑈 then
𝑣3 = 𝑠 and we are done; otherwise continue in the same way until we find a node
which is in𝑈 . Because the graph is finite and because of condition (I2) such a node
must exist. It is clear that the path constructed in this way has the stated properties.

Next suppose that 𝑢 belongs to 𝑈 and that 𝑢 has at least one parent. By (I2) it
must be a source of at least one tournament In each of these tournaments there is a
node with single parent 𝑢. Take one of them, say 𝑣2, and if 𝑣2 ∈ 𝑈 then we are done,
otherwise repeat the same procedure as above until we find a node which is in 𝑈 .
Because the graph is finite and because of condition (I2) such a node must exist. It is
clear that the path constructed in this way has the stated properties too. □

Lemma 4.6.3.2. Let T = (𝑉 , 𝐸) be a ttt as in Definition 4.2.1 and let T have a unique
source, 𝑢0. Let𝑈 ⊂ 𝑉 be non-empty and suppose that𝑈 = 𝑉 \𝑈 satisfies conditions (I1)
and (I2). Let 𝑖, 𝑗 ∈ 𝑉 be two distinct nodes. Upon switching the roles of 𝑖 and 𝑗 if needed,
the equality Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 implies the following properties:

1. 𝑖 ∈ 𝑈 ;
2. desc(𝑖) = Desc( 𝑗);
3. {𝑖} = pa( 𝑗);
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4. there exists 𝑢 ∈ 𝑉 such that 𝑖, 𝑗 ∈ pa(𝑢);
5. for 𝑘 ∈ 𝑉 \ {𝑖, 𝑗}, the set Desc(𝑘) ∩𝑈 is different from Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑉 ;
6. |Desc(𝑖) ∩𝑈 | = |Desc( 𝑗) ∩𝑈 | ≥ 2.

Proof. 1. Note first that Desc(𝑖) ∩𝑈 cannot be empty, for otherwise, we would have
Desc(𝑖) ⊆ 𝑈 , but this is impossible, since Desc(𝑖) contains at least one leaf node (a
node without children), in contradiction to (I1).

Since Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 and since this set is non-empty, the intersection
Desc(𝑖) ∩ Desc( 𝑗) is not empty too. In relation to Lemma 4.6.1-3 this means either
Desc(𝑖) ⊆ Desc( 𝑗) or Desc( 𝑗) ⊆ Desc(𝑖). In the remainder of the proof, we suppose
Desc( 𝑗) ⊆ Desc(𝑖). Then we must have 𝑖 ∉ Desc( 𝑗), since otherwise also Desc(𝑖) ⊆
Desc( 𝑗) and thus Desc(𝑖) = Desc( 𝑗), which is impossible since 𝑖 and 𝑗 are distinct;
see (4.19). From Desc( 𝑗) ⊆ Desc(𝑖) and Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 it follows that

Desc(𝑖) \ Desc( 𝑗) ⊆ 𝑈 .

Because 𝑖 ∉ Desc( 𝑗) we get 𝑖 ∈ 𝑈 .
2–4. First we show that all elements in Desc(𝑖) \ Desc( 𝑗) are ancestors of 𝑗 .

Let 𝑣 ∈ Desc(𝑖) \ Desc( 𝑗). Because 𝑗 and 𝑣 are two different nodes, Lemma 4.6.1-3
implies that one of three cases must occur: Desc(𝑣) ⊂ Desc( 𝑗); Desc( 𝑗) ⊂ Desc(𝑣);
or Desc( 𝑗) ∩ Desc(𝑣) = ∅. The first case, Desc(𝑣) ⊂ Desc( 𝑗), is impossible, since
𝑣 ∉ Desc( 𝑗). The third case, Desc( 𝑗) ∩ Desc(𝑣) = ∅, is impossible too, since it would
imply that Desc(𝑣) ⊆ Desc(𝑖) \ Desc( 𝑗) ⊆ 𝑈 , but this cannot happen since Desc(𝑣)
contains at least one leaf node while 𝑈 does not contain any. Only the second case,
Desc( 𝑗) ⊂ Desc(𝑣), remains. As a consequence, 𝑣 is an ancestor of 𝑗 , and so all nodes
of Desc(𝑖) \ Desc( 𝑗) are ancestors of 𝑗 . By the proof of point 1, we get

Desc(𝑖) \ Desc( 𝑗) ⊆ an( 𝑗) ∩𝑈 . (4.32)

Let again 𝑣 ∈ Desc(𝑖) \ Desc( 𝑗). We show that there exists a unique path from 𝑣

to 𝑗 and that 𝑗 has only a single parent. Since 𝑣 ∈ 𝑈 , there exists, by Lemma 4.6.3.1, a
node 𝑠 (𝑣) ∈ 𝑈 such that there is only directed path 𝑝 (𝑣, 𝑠 (𝑣)) from 𝑣 to 𝑠 (𝑣); moreover,
this path satisfies properties 1 and 2 of the statement. Necessarily,

𝑠 (𝑣) ∈ Desc(𝑣) ∩𝑈 ⊆ Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 .

As 𝑠 (𝑣) is a descendant of 𝑗 while 𝑗 is a descendant of 𝑣 , the path 𝑝 (𝑣, 𝑠 (𝑣)) passes by
𝑗 . As a consequence, there is a unique path 𝑝 (𝑣, 𝑗) from 𝑣 to 𝑗 ; otherwise, there would
be more than one path from 𝑣 to 𝑠 (𝑣). Moreover, by Lemma 4.6.3.1-2, all nodes on the
path 𝑝 (𝑣, 𝑠 (𝑣)), except possibly for 𝑣 , have only one parent. In particular, 𝑗 has only
one parent.

Take again any 𝑣 ∈ Desc(𝑖) \ Desc( 𝑗). By (I1), 𝑣 has at least two children. They
cannot both be ancestors of 𝑗 , since then there would be two paths from 𝑣 to 𝑗 , in
contradiction to the previous paragraph. Let 𝑢 be a child of 𝑣 that is not an ancestor
of 𝑗 ; then 𝑢 ∈ Desc( 𝑗) because of (4.32). This means there are two paths from 𝑣 to 𝑢:
the edge (𝑣,𝑢) and a path passing through 𝑗 . These paths must belong to the same
tournament, as the skeleton of T is a block graph. But then 𝑣 and 𝑗 are adjacent,
and thus 𝑣 , which we already knew to be an ancestor of 𝑗 , is actually a parent of
𝑗 . But 𝑗 has only one parent, and so the set Desc(𝑖) \ Desc( 𝑗) must be a singleton.
As this set obviously contains node 𝑖 , we get 𝑣 = 𝑖 and thus Desc(𝑖) \ Desc( 𝑗) =
pa( 𝑗) = {𝑖}. Since Desc(𝑖) = {𝑖} ∪ desc(𝑖) and Desc( 𝑗) ⊂ Desc(𝑖), it follows that
desc(𝑖) = Desc( 𝑗) = Desc(𝑖) \ {𝑖}.

5. Let 𝑘 ∈ 𝑉 \ {𝑖, 𝑗} be such that Desc(𝑘) ∩ 𝑈 = Desc(𝑖) ∩ 𝑈 = Desc( 𝑗) ∩ 𝑈 .
By point 3 we have {𝑖} = pa( 𝑗). From Desc(𝑘) ∩ 𝑈 = Desc(𝑖) ∩ 𝑈 we can have
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either {𝑘} = pa(𝑖) or {𝑖} = pa(𝑘), while from Desc(𝑘) ∩𝑈 = Desc( 𝑗) ∩𝑈 we have
either {𝑘} = pa( 𝑗) or { 𝑗} = pa(𝑘). Because already {𝑖} = pa( 𝑗), we cannot also have
{𝑘} = pa( 𝑗), whence we must have { 𝑗} = pa(𝑘). But then {𝑖} = pa(𝑘) is impossible,
so that necessarily {𝑘} = pa(𝑖). From {𝑖} = pa( 𝑗), { 𝑗} = pa(𝑘), and {𝑘} = pa(𝑖) we
get a cycle between the three nodes 𝑖, 𝑗, 𝑘 which is a contradiction to the definition of
a DAG.

6. We already know that Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 . We need to show that this
set contains at least two elements. Consider the triple {𝑖, 𝑗, 𝑢} from point 4 that forms
a triangle with directed edges (𝑖, 𝑗), (𝑖, 𝑢), and ( 𝑗, 𝑢). By point 1 we have also 𝑖 ∈ 𝑈 .
There are four cases, according to whether 𝑗 and 𝑢 belong to𝑈 or not.
■ If 𝑗, 𝑢 ∈ 𝑈 , they are two distinct elements of Desc( 𝑗) ∩𝑈 .
■ If 𝑗 ∈ 𝑈 but 𝑢 ∈ 𝑈 , then take 𝑟 ∈ Desc(𝑢) ∩𝑈 [which is non-empty by (I1): all
leaf nodes in Desc(𝑢) are in𝑈 ], and note that 𝑗 and 𝑟 are two distinct elements
in Desc( 𝑗) ∩𝑈 .

■ If 𝑗 ∈ 𝑈 and 𝑢 ∈ 𝑈 , then, as in Lemma 4.6.3.1, let 𝑠 ∈ 𝑈 be such that there is
unique path 𝑝 ( 𝑗, 𝑠) from 𝑗 to 𝑠 , this path satisfying properties 1-2 in the same
lemma. Then 𝑢 does not belong to that path (since 𝑢 ∈ 𝑈 and 𝑢 has at least
two parents, 𝑖 and 𝑗 ), so that 𝑠 is different from 𝑢, and both are members of
Desc( 𝑗) ∩𝑈 .

■ If 𝑗, 𝑢 ∈ 𝑈 , then we can find by Lemma 4.6.3.1 nodes 𝑠 ∈ desc( 𝑗) ∩ 𝑈 and
𝑟 ∈ desc(𝑢) ∩𝑈 with paths 𝑝 ( 𝑗, 𝑠) and 𝑝 (𝑢, 𝑟 ) which satisfy the characteristics
in this lemma. Nodes 𝑠, 𝑟 clearly belong to Desc( 𝑗) ∩ 𝑈 . Moreover, they are
distinct: node 𝑢, having at least two parents, cannot belong to the unique path
𝑝 ( 𝑗, 𝑠) between 𝑗 and 𝑠 , while by construction, there is a directed path from 𝑗

to 𝑟 that passes along 𝑢. □

Lemma 4.6.3.3. Let 𝑋 be a max-linear model with respect to a ttt with unique source.
The coefficient 𝑏𝑣𝑣 depends only on the edge weights of the tournament shared by node
𝑣 ∈ 𝑉 and its parents, and it is given by

𝑏𝑣𝑣 = 1 +
∑︁

𝑢∈pa(𝑣)

∑︁
𝑝∈𝜋 (𝑢,𝑣)

(−1) |𝑝 |𝑐𝑝 . (4.33)

Proof. Consider the node 𝑣 . If 𝑣 has no parents we have an(𝑣) = ∅ and by (4.6) we
have 𝑏𝑣𝑣 = 1. If 𝑣 has at least one parent then there is a tournament which contains
the parents, say, 𝜏 = (𝑉𝜏 , 𝐸𝜏 ). Let the nodes in 𝜏 be labelled according to their in-/out-
degree ordering in 𝜏 : the node with |𝑉𝜏 | − 1 children in 𝜏 (the source of 𝜏 ) has index 1,
the node with |𝑉𝜏 | − 2 children in 𝜏 has index 2, and so on. We can partition the set
an(𝑣) into An(1) and pa(𝑣) \ {1}. For 𝑖 ∈ An(1) the shortest path from 𝑖 to 𝑣 passes
necessarily through 1, so 𝑏𝑣𝑖 = 𝑐𝑝 (𝑖,1)𝑐1𝑣𝑏𝑖𝑖 . Then we have by (4.4) and (4.6)

𝑏𝑣𝑣 = 1 −
∑︁

𝑖∈an(𝑣)
𝑏𝑣𝑖 = 1 −

∑︁
𝑖∈An(1)

𝑐𝑝 (𝑖,1)𝑐1𝑣𝑏𝑖𝑖 −
∑︁

𝑖∈pa(𝑣)\1
𝑏𝑣𝑖

= 1 − 𝑐1𝑣 −
∑︁

𝑖∈pa(𝑣)\1
𝑐𝑖𝑣𝑏𝑖𝑖 .

(4.34)

Let 𝐶 = {𝑐𝑖 𝑗 }𝑖, 𝑗∈𝑉𝜏 ,𝑖< 𝑗 be the matrix of edge weights within 𝜏 : it is lower trian-
gular and has zero diagonal. Let 𝐼𝑚 denote the 𝑚 ×𝑚 identity matrix, write 𝒃 =

(1, 𝑏22, . . . , 𝑏 |𝑉𝜏 |, |𝑉𝜏 | )⊤ (a column vector) and let 1 |𝑉𝜏 | be a column vector of ones of
length |𝑉𝜏 |. Consider the system of linear equations

(𝐼 |𝑉𝜏 | +𝐶) 𝒃 = 1 |𝑉𝜏 | . (4.35)
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For 𝑣 ≥ 2 the expression in (4.34) is equivalent to the 𝑣-th equation in (4.35). A
solution for 𝒃 is

𝒃 = (𝐼 |𝑉𝜏 | +𝐶)−11 |𝑉𝜏 | =
(
𝐼 |𝑉𝜏 | − (−𝐶)

)−1 1 |𝑉𝜏 | .

From the equality(
𝐼 |𝑉𝜏 | + (−𝐶) + (−𝐶)2 + · · · + (−𝐶)𝑘

) (
𝐼 |𝑉𝜏 | − (−𝐶)

)
= 𝐼 |𝑉𝜏 | − (−𝐶)𝑘+1

and the fact that for |𝑉𝜏 |-square lower triangular matrix with zero diagonal powers of
𝑘 ≥ |𝑉𝜏 | are zero matrices we obtain(

𝐼 |𝑉𝜏 | + (−𝐶) + (−𝐶)2 + · · · + (−𝐶) |𝑉𝜏 |−1) = (
𝐼 |𝑉𝜏 | − (−𝐶)

)−1
.

If the matrix on the left is denoted by 𝐾 we have as solution 𝒃 = 𝐾1 |𝑉𝜏 | . For all
𝑏𝑣𝑣, 𝑣 ≥ 2, it can be shown that (4.33) equals the 𝑣𝑣-th element of this solution for 𝒃 .
For 𝑏11 consider the corresponding solution when the tournament 𝜏 is the one which
node 1 shares with its parents. If node 1 has no parents in the ttt, then we have the
solution 𝑏11 = 1 which is indeed the case. □

Lemma 4.6.3.4. Let 𝑋 follow a max-linear model as in Assumption 4.2.1 with respect
to a ttt T consisting of a single tournament 𝜏 = (𝑉 , 𝐸). If the node 𝑣 ∈ 𝑉 has at least
one parent, then the parameter vector 𝜃 = (𝑐𝑒 )𝑒∈𝐸 ∈ Θ̊∗ is not identifiable from the
distribution of 𝑋𝑉 \𝑣 . Specifically, there exists 𝜃 ′ = (𝑐′𝑒 )𝑒∈𝐸 ∈ Θ̊∗ such that 𝜃 ′ ≠ 𝜃 and
the distribution of 𝑋𝑉 \𝑣 is the same under 𝜃 ′ as under 𝜃 .

Proof. Let 𝑛 = |𝑉 | denote the number of nodes. For convenience, rename the nodes
to 𝑉 = {1, . . . , 𝑛} in the ordering induced by the DAG, i.e., node 𝑖 has 𝑖 − 1 parents,
for 𝑖 ∈ 𝑉 . The number of edges is |𝐸 | = 𝑛(𝑛 − 1)/2 =:𝑚, and the parameter set Θ̊∗ is
an open subset of R𝐸 . The distribution of 𝑋 is max-linear and is given by

𝑋 𝑗 =

𝑗∨
𝑖=1

𝑏 𝑗𝑖𝑍𝑖 , 𝑗 ∈ 𝑉 , (4.36)

where 𝑏11 = 1, 𝑏 𝑗 𝑗 = 1 −∑𝑗−1
𝑖=1 𝑏 𝑗𝑖 for 𝑗 ∈ 𝑉 \ 1, and where the𝑚 coefficients 𝑏 = (𝑏 𝑗𝑖 :

1 ≤ 𝑖 < 𝑗 ≤ 𝑛) are determined by the edge parameters 𝜃 = (𝑐𝑖 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛).
Discarding the variable𝑋𝑣 for some 𝑣 ∈ 𝑉 \1 yields the vector𝑋𝑉 \𝑣 , the distribution

of which is determined by the𝑚 − (𝑣 − 1) coefficients (𝑏 𝑗𝑖 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑗 ≠ 𝑣). For
convenience, identify R𝐸 with R𝑚 . Let 𝜋 : R𝑚 → R𝑚−𝑣+1 be the projection that sends
𝑥 = (𝑥𝑖 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚) to 𝜋 (𝑥) = (𝑥𝑖 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑣), i.e., the effect of 𝜋 is
to leave out the coordinates (𝑖, 𝑣) with 𝑖 = 1, . . . , 𝑣 − 1. By (4.36) with 𝑗 = 𝑣 removed,
the distribution of 𝑋𝑉 \𝑣 is determined by 𝜋 (𝑏).

The max-linear coefficients 𝑏 are a function of the edge parameters 𝜃 . Formally,
there exists a map 𝑓 : Θ̊∗ → R𝑚 such that

𝑏 = 𝑓 (𝜃 ).

The function 𝑓 can be reconstructed from (4.9) with 𝑝 (𝑖, 𝑗) = (𝑖, 𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.
Clearly, 𝑓 is continuous. Since the parameter 𝜃 is identifiable from the distribution
of 𝑋 (Lemma 4.4.1), the function 𝑓 is also injective, i.e., 𝜃 ≠ 𝜃 ′ implies 𝑓 (𝜃 ) ≠ 𝑓 (𝜃 ′).
By the Invariance of Domain Theorem (see, e.g. Kulpa, 1998), the image 𝑓 (Θ̊∗) is
therefore an open subset of R𝑚 . But then, for any coefficient vector 𝑏 ∈ 𝑓 (Θ̊∗), there
exists another coefficient vector 𝑏′ ∈ 𝑓 (Θ̊∗) such that 𝑏′ ≠ 𝑏 but still 𝑏 𝑗𝑖 = 𝑏′𝑗𝑖 for all
1 ≤ 𝑖 < 𝑗 ≤ 𝑛 and 𝑗 ≠ 𝑣 — in other words, such that 𝜋 (𝑏) = 𝜋 (𝑏′). Since 𝑓 is injective,
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the vectors 𝑏 and 𝑏′ originate from different edge parameter vectors 𝜃 = 𝑓 −1 (𝑏) and
𝜃 ′ = 𝑓 −1 (𝑏′) in Θ̊∗. But

𝜋 (𝑓 (𝜃 )) = 𝜋 (𝑏) = 𝜋 (𝑏′) = 𝜋 (𝑓 (𝜃 ′)),

so that the edge weight vectors 𝜃 and 𝜃 ′ induce the same distribution of 𝑋𝑉 \𝑣 . We
conclude that the parameter 𝜃 is not identifiable from the distribution of 𝑋𝑉 \𝑣 . □

Proof of Proposition 4.4.2 When reading the proof, the following perspective may
help. Recall the notation in equations (4.13) and (4.20). The knowledge of the (simple
max-stable) distribution of 𝑋𝑈 implies the knowledge of its angular measure 𝐻𝑈 and
thus of the unordered collection of pairs of atoms and masses (𝜔𝑟 , 𝜇𝑟 ) for 𝑟 = 1, . . . , 𝑠 .
The vector 𝑋𝑈 can itself be represented as a max-linear model with 𝑠 independent
factors and coefficient vectors 𝛽𝑟 = 𝜇𝑟𝜔𝑟 for 𝑟 = 1, . . . , 𝑠 . We first need to ensure that
we can match those vectors 𝛽𝑟 in a unique way to the max-linear coefficient vectors
(𝑏𝑣𝑖 )𝑣∈𝑈 for 𝑖 ∈ 𝑉 ; note that the coordinates 𝑣 of those vectors are restricted to 𝑈 .
Next, from the latter vectors, we need to recover the edge coefficients 𝜃 = (𝑐𝑒 )𝑒∈𝐸 .

Proof of sufficiency (if) part of Proposition 4.4.2. We assume (I1) and (I2). In the first
step of the proof we show that the angular measure of 𝑋𝑈 in (4.20) is composed
of |𝑉 | distinct atoms and that we can associate every atom in {𝜔𝑟 : 𝑟 = 1, . . . , |𝑉 |}
to some node 𝑣 ∈ 𝑉 and accordingly be able to associate it to one of the atoms
𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑈 for 𝑖 ∈ 𝑉 . For this, we focus on the nature of the atoms {𝑎𝑖,𝑈 },
given the conditions (I1) and (I2). As a consequence, the max-linear coefficient matrix
𝑏𝑈 ×𝑉 = (𝑏𝑣𝑖 )𝑣∈𝑈 ,𝑖∈𝑉 can be recovered from the distribution of 𝑋𝑈 . In Step 2, we show
how to recover from this matrix the edge parameters 𝜃 = (𝑐𝑒 )𝑒∈𝐸 .
Step 1. Recall the representation𝐻𝑈 =

∑
𝑖∈𝑉 𝑚𝑖,𝑈 𝛿𝑎𝑖,𝑈 in (4.13) of the angular measure

of 𝑋𝑈 . We shall show that all |𝑉 | masses𝑚𝑖,𝑈 are positive and that all |𝑉 | atoms 𝑎𝑖,𝑈
are distinct. Moreover, we will show how to match the atoms to the nodes, that is,
given an atom 𝜔 ∈ {𝜔𝑟 : 𝑟 = 1, . . . , |𝑉 |} how to identify the node 𝑖 ∈ 𝑉 such that
𝜔 = 𝑎𝑖,𝑈 .

All |𝑉 | vectors {𝑎𝑖,𝑈 } have positive masses {𝑚𝑖,𝑈 }. Recall𝑚𝑖,𝑈 =
∑

𝑣∈𝑈 𝑏𝑣𝑖 and recall
from (4.18) that 𝑏𝑣𝑖 > 0 if and only if 𝑣 ∈ Desc(𝑖). It follows that 𝑚𝑖,𝑈 = 0 if and
only if Desc(𝑖) ∩𝑈 = ∅ or, in other words, Desc(𝑖) ⊆ 𝑈 . But this is impossible since
Desc(𝑖) contains at least one leaf node, that is, a node without children, and such a
node belongs to𝑈 by (I1). We conclude that𝑚𝑖,𝑈 > 0 for all 𝑖 ∈ 𝑉 .
All |𝑉 | vectors {𝑎𝑖,𝑈 } are distinct. By (4.22) it follows that whenever for two different
nodes 𝑖, 𝑗 ∈ 𝑉 we have Desc(𝑖) ∩ 𝑈 ≠ Desc( 𝑗) ∩ 𝑈 then we can find two atoms,
say 𝜔 ′ and 𝜔 ′′, within the set {𝜔𝑟 } such that 𝜔 ′ = 𝑎𝑖,𝑈 and 𝜔 ′′ = 𝑎 𝑗,𝑈 . Because
Desc(𝑖) ∩𝑈 ≠ Desc( 𝑗) ∩𝑈 then necessarily 𝑎𝑖,𝑈 ≠ 𝑎 𝑗,𝑈 . Suppose however for two
different nodes 𝑖, 𝑗 ∈ 𝑉 we have 𝑎𝑖,𝑈 = 𝑎 𝑗,𝑈 . This means that for the 𝑢-th and 𝑗-th
elements of these vectors we have

𝑎𝑖,𝑢;𝑈 = 𝑎 𝑗,𝑢;𝑈 ⇐⇒
𝑏𝑢𝑖

𝑚𝑖

=
𝑏𝑢 𝑗

𝑚 𝑗

and 𝑎𝑖, 𝑗 ;𝑈 = 𝑎 𝑗, 𝑗 ;𝑈 ⇐⇒
𝑏 𝑗𝑖

𝑚𝑖

=
𝑏 𝑗 𝑗

𝑚 𝑗

Considering the ratios above, we should also have

𝑎𝑖,𝑢;𝑈

𝑎𝑖, 𝑗 ;𝑈
=
𝑎 𝑗,𝑢;𝑈

𝑎 𝑗, 𝑗 ;𝑈
⇐⇒ 𝑏𝑢𝑖

𝑏 𝑗𝑖
=
𝑏𝑢 𝑗

𝑏 𝑗 𝑗
. (4.37)

Because 𝑎𝑖,𝑈 = 𝑎 𝑗,𝑈 necessarily Desc(𝑖)∩𝑈 = Desc( 𝑗)∩𝑈 . By Lemma 4.6.3.2 there
exists a node𝑢 such that one of the edge sets {(𝑖, 𝑗), (𝑖, 𝑢), ( 𝑗, 𝑢)} or {( 𝑗, 𝑖), (𝑖, 𝑢), ( 𝑗, 𝑢)}
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is contained in 𝐸. Without loss of generality, suppose this holds for the first triple. Also,
by Lemma 4.6.3.2 there cannot be another node 𝑘 with Desc(𝑘) ∩𝑈 = Desc(𝑖) ∩𝑈 =

Desc( 𝑗) ∩𝑈 .
Suppose first 𝑗, 𝑢 ∈ 𝑈 . From the identities

𝑏 𝑗𝑖 = 𝑐𝑖 𝑗𝑏𝑖𝑖 , 𝑏𝑢𝑖 = 𝑐𝑖𝑢𝑏𝑖𝑖 , 𝑏𝑢 𝑗 = 𝑐 𝑗𝑢𝑏 𝑗 𝑗 , (4.38)

and the criticality requirement
𝑐𝑖𝑢 > 𝑐𝑖 𝑗𝑐 𝑗𝑢

we have
𝑏𝑢𝑖

𝑏 𝑗𝑖
>
𝑏𝑢 𝑗

𝑏 𝑗 𝑗
. (4.39)

This inequality shows that (4.37) cannot happen, hence we cannot have 𝑎𝑖,𝑈 = 𝑎 𝑗,𝑈 .
This means that all |𝑉 | atoms are distinct.

Next suppose 𝑗, 𝑢 ∈ 𝑈 . By Lemma 4.6.3.1, there exist nodes 𝑗 ′, 𝑢′ ∈ 𝑈 such that
𝑗 ′ ∈ desc( 𝑗) and 𝑢′ ∈ desc(𝑢) and the paths 𝑝 ( 𝑗, 𝑗 ′) and 𝑝 (𝑢,𝑢′) satisfy the properties
in the said lemma. Because all nodes on the path 𝑝 ( 𝑗, 𝑗 ′) except possibly for 𝑗 have a
unique parent, the path 𝑝 ( 𝑗, 𝑗 ′) cannot pass through 𝑢 (which has parents 𝑖 and 𝑗 ),
and thus 𝑗 ′ ≠ 𝑢′. As 𝑖 is a parent of 𝑗 , the shortest (and in fact the only) path from 𝑖 to
𝑗 ′ is the one that concatenates the edge (𝑖, 𝑗) with 𝑝 ( 𝑗, 𝑗 ′) (Lemma 4.6.3.1). It follows
that

𝑏 𝑗 ′𝑖 = 𝑐𝑝 ( 𝑗, 𝑗 ′ )𝑐𝑖 𝑗𝑏𝑖𝑖 and 𝑏 𝑗 ′ 𝑗 = 𝑐𝑝 ( 𝑗, 𝑗 ′ )𝑏 𝑗 𝑗 . (4.40)

By a similar argument, the path that concatenates the edge (𝑖, 𝑢) with the path 𝑝 (𝑢,𝑢′)
is the unique shortest path from 𝑖 to 𝑢′, while the path that concatenates ( 𝑗, 𝑢) with
𝑝 (𝑢,𝑢′) is the unique shortest path from 𝑗 to 𝑢′. It follows that

𝑏𝑢′𝑖 = 𝑐𝑝 (𝑢,𝑢′ )𝑐𝑖𝑢𝑏𝑖𝑖 and 𝑏𝑢′ 𝑗 = 𝑐𝑝 (𝑢,𝑢′ )𝑐 𝑗𝑢𝑏 𝑗 𝑗 . (4.41)

Combining these equalities, 𝑐𝑖𝑢 > 𝑐𝑖 𝑗𝑐 𝑗𝑢 implies that we should have

𝑏𝑢′𝑖

𝑏𝑢′ 𝑗
>
𝑏 𝑗 ′𝑖

𝑏 𝑗 ′ 𝑗
. (4.42)

However from 𝑎𝑖,𝑈 = 𝑎 𝑗,𝑈 we have for the 𝑢′-th and 𝑗 ′-th elements of these vectors

𝑎𝑖,𝑢′ ;𝑈 = 𝑎 𝑗,𝑢′ ;𝑈 ⇐⇒
𝑏𝑢′𝑖

𝑚𝑖

=
𝑏𝑢′ 𝑗

𝑚 𝑗

and

𝑎𝑖, 𝑗 ′ ;𝑈 = 𝑎 𝑗, 𝑗 ′ ;𝑈 ⇐⇒
𝑏 𝑗 ′𝑖

𝑚𝑖

=
𝑏 𝑗 ′ 𝑗

𝑚 𝑗

.

Considering the ratios above, we should also have

𝑎𝑖,𝑢′ ;𝑈

𝑎𝑖, 𝑗 ′ ;𝑈
=
𝑎 𝑗,𝑢′ ;𝑈

𝑎 𝑗, 𝑗 ′ ;𝑈
⇐⇒ 𝑏𝑢′𝑖

𝑏𝑢′ 𝑗
=
𝑏 𝑗 ′𝑖

𝑏 𝑗 ′ 𝑗
. (4.43)

Because of (4.42) the equalities in (4.43) cannot happen, hence we cannot have 𝑎𝑖,𝑈 =

𝑎 𝑗,𝑈 .
The analysis of the cases ( 𝑗, 𝑠) ∈ 𝑈 ×𝑈 and ( 𝑗, 𝑠) ∈ 𝑈 ×𝑈 is similar. This shows

that all |𝑉 | vectors 𝑎𝑖,𝑈 for 𝑖 ∈ 𝑉 are different and because of (4.21), all vectors 𝜔𝑟 for
𝑟 ∈ {1, . . . , |𝑉 |} are different too.
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Distinguishing all atoms 𝑎𝑖,𝑈 with zeroes on the same positions. For two different nodes
𝑖, 𝑗 ∈ 𝑉 , the atoms 𝑎𝑖,𝑈 and 𝑎 𝑗,𝑈 have the same supports {𝑣 ∈ 𝑈 : 𝑎𝑣𝑖 > 0} = {𝑣 ∈ 𝑈 :
𝑎𝑣 𝑗 > 0} when Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 . By Lemma 4.6.3.2-5 there cannot be any
other node 𝑘 ∈ 𝑉 \ {𝑖, 𝑗} with the same descendants in𝑈 . In the representation

𝐻𝜃,𝑈 =
∑︁
𝑡 ∈𝑉

𝑚𝑡,𝑈 𝛿𝑎𝑡,𝑈 =

|𝑉 |∑︁
𝑟=1

𝜇𝑟𝛿𝜔𝑟

there are thus exactly two atoms, 𝜔 and 𝜔 ′, say, with the same indices of non-zero
coordinates as 𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑉 and 𝑎 𝑗,𝑈 = (𝑏𝑣 𝑗/𝑚 𝑗,𝑈 )𝑣∈𝑉 . The question is then
how to know whether 𝜔 = 𝑎𝑖,𝑈 and 𝜔 ′ = 𝑎 𝑗,𝑈 or vice versa, 𝜔 = 𝑎 𝑗,𝑈 and 𝜔 ′ = 𝑎𝑖,𝑈 .
Let 𝜇 and 𝜇′ be the masses of 𝜔 and 𝜔 ′, respectively, and consider the vectors 𝛽 = 𝜇𝜔

and 𝛽 ′ = 𝜇′𝜔 ′. An equivalent question is then how to identify 𝛽 and 𝛽 ′ with the two
max-linear coefficient vectors (𝑏𝑣𝑖 )𝑣∈𝑈 and (𝑏𝑣 𝑗 )𝑣∈𝑈 .

By Lemma 4.6.3.2-2 to 4, we can suppose that 𝑖 is the unique parent of 𝑗 and
that 𝑖 and 𝑗 have a common child 𝑢. The analysis is now to be split up into different
cases, according to whether 𝑗 and 𝑢 belong to𝑈 or not. Recall that 𝑏𝑣𝑖 = 𝑐𝑝 (𝑖,𝑣)𝑏𝑖𝑖 and
𝑏𝑣 𝑗 = 𝑐𝑝 ( 𝑗,𝑣)𝑏 𝑗 𝑗 for 𝑣 ∈ Desc( 𝑗) ⊂ Desc(𝑖).

Suppose first that 𝑗, 𝑢 ∈ 𝑈 . From (4.38) we deduce (4.39) thanks to the criticality
assumption. In order to make the correct assignment of the two vectors 𝛽 = (𝛽𝑣)𝑣∈𝑈
and 𝛽 ′ = (𝛽 ′𝑣)𝑣∈𝑈 to the nodes 𝑖 and 𝑗 , we need to check the inequality (4.39). If
𝛽𝑢/𝛽 𝑗 > 𝛽 ′𝑢/𝛽 ′𝑗 then we assign the vector 𝛽 to the node 𝑖 and the vector 𝛽 ′ to the node
𝑗 . If the equality is reversed, we do the assignment the other way around.

Next suppose that 𝑗, 𝑢 ∈ 𝑈 . According to Lemma 4.6.3.1, there exist nodes 𝑗 ′, 𝑢′ ∈
𝑈 so that there is a unique path from 𝑗 to 𝑗 ′ and from 𝑢 to 𝑢′. By Lemma 4.6.3.1, the
paths from 𝑖 to 𝑢′ and 𝑗 ′ and from 𝑗 to 𝑗 to 𝑢′ are

𝑝 (𝑖, 𝑢′) = {(𝑖, 𝑢)} ∪ 𝑝 (𝑢,𝑢′),
𝑝 (𝑖, 𝑗 ′) = {(𝑖, 𝑗)} ∪ 𝑝 ( 𝑗, 𝑗 ′),
𝑝 ( 𝑗, 𝑢′) = {( 𝑗, 𝑢)} ∪ 𝑝 (𝑢,𝑢′).

We have the same identities in (4.40) and (4.41) which, together with the criticality
assumption, lead to the inequality (4.42). In order to make the correct assignment of
the two vectors 𝛽 = (𝛽𝑣)𝑣∈𝑈 and 𝛽 ′ = (𝛽 ′𝑣)𝑣∈𝑈 we do as above for the case 𝑗, 𝑢 ∈ 𝑈 .

For the cases ( 𝑗, 𝑢) ∈ 𝑈 ×𝑈 and ( 𝑗, 𝑢) ∈ 𝑈 ×𝑈 , we combine methods from the
cases ( 𝑗, 𝑢) ∈ 𝑈 ×𝑈 and ( 𝑗, 𝑢) ∈ 𝑈 ×𝑈 .

With this we finish the proof that we can learn the structure of every atom
{𝜔𝑟 : 𝑟 = 1, . . . , |𝑉 |}, i.e., for every 𝑟 = 1, . . . , |𝑉 | we can identify the unique node
𝑖 ∈ 𝑉 such that 𝜔𝑟 = 𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑈 . This means that we can also match every
element 𝛽 in the collection of vectors {𝛽𝑟 : 𝑟 = 1, . . . , |𝑉 |} to the correct node 𝑖 ∈ 𝑉
such that 𝛽 = (𝑏𝑣𝑖 )𝑣∈𝑈 .

Step 2. In the previous step, we have shown that the distribution of 𝑋𝑈 (together with
the knowledge of the graph structure) determines the max-linear coefficient matrix
𝑏𝑈 ×𝑉 = (𝑏𝑣𝑖 )𝑣∈𝑈 ,𝑖∈𝑉 . Here, we show that this matrix suffices to reconstruct the vector
of edge coefficients 𝜃 = (𝑐𝑒 )𝑒∈𝐸 .

If 𝑣 is a child of 𝑖 , then 𝑝 (𝑖, 𝑣) = {(𝑖, 𝑣)} and thus 𝑏𝑣𝑖 = 𝑐𝑖𝑣𝑏𝑖𝑖 . If both 𝑖 and 𝑣 belong
to𝑈 , then, clearly, we can identify 𝑐𝑖𝑣 = 𝑏𝑣𝑖/𝑏𝑖𝑖 .

Let 𝑖 ∈ 𝑈 with child 𝑣 ∈ ch(𝑖) ∩𝑈 . By Lemma 4.6.3.1 there exists a node 𝑣 ′ ∈ 𝑈
such that there is a unique path from 𝑣 to 𝑣 ′. Rewrite 𝑣 = 𝑣1 and 𝑣 ′ = 𝑣𝑛 and consider
the node set {𝑣1, 𝑣2, . . . , 𝑣𝑛} on that unique path. Using the fact that if a node ℓ has a
single parent 𝑘 , then 𝑏ℓℓ = 1 − 𝑐𝑘ℓ (see (4.10)), we find the following identities for the
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max-linear coefficients 𝑏𝑣𝑛, 𝑗 for 𝑗 ∈ {𝑣𝑛, . . . , 𝑣2, 𝑖}:

𝑏𝑣𝑛,𝑣𝑛 = 1 − 𝑐𝑣𝑛−1,𝑣𝑛 ,

𝑏𝑣𝑛,𝑣𝑛−1 = 𝑐𝑝 (𝑣𝑛−1,𝑣𝑛 )𝑏𝑣𝑛−1,𝑣𝑛−1 = 𝑐𝑣𝑛−1,𝑣𝑛

(
1 − 𝑐𝑣𝑛−2,𝑣𝑛−1

)
,

...

𝑏𝑣𝑛,𝑣2 = 𝑐𝑝 (𝑣2,𝑣𝑛 )𝑏𝑣2,𝑣2 = 𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑛−1,𝑣𝑛

(
1 − 𝑐𝑣1,𝑣2

)
,

𝑏𝑣𝑛,𝑖 = 𝑐𝑝 (𝑖,𝑣𝑛 )𝑏𝑖𝑖 = 𝑐𝑖,𝑣1𝑐𝑣1,𝑣2𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑛−1,𝑣𝑛𝑏𝑖𝑖 .

(4.44)

From the first equation we identify 𝑐𝑣𝑛−1,𝑣𝑛 , from the second 𝑐𝑣𝑛−2,𝑣𝑛−1 and so on until
we identify 𝑐𝑣1,𝑣2 from the penultimate equation. From the last equation we can
identify 𝑐𝑖,𝑣1 because 𝑏𝑖𝑖 is available from 𝑏𝑈 ×𝑉 in view of 𝑖 ∈ 𝑈 .

The next step of the proof is to extract the edge parameters between a node with
latent variable and its children.

Let 𝑖 ∈ 𝑈 . We will show that we can identify all edge weights 𝑐𝑖 𝑗 for 𝑗 ∈ ch(𝑖).
Because 𝑖 belongs to 𝑈 , it should have at least two children, say 𝑣 and 𝑣 . Take 𝑣
to be a node whose only parent is 𝑖 . Note that we can always find such a node by
Lemma 4.6.3.1. Let us first assume 𝑣, 𝑣 ∈ 𝑈 . Because 𝑣 has only one parent, we
have 𝑏𝑣𝑣 = 1 − 𝑐𝑖𝑣 and thus 𝑐𝑖𝑣 = 1 − 𝑏𝑣𝑣 . We also know 𝑏𝑣𝑖 = 𝑐𝑖𝑣𝑏𝑖𝑖 and from here
𝑏𝑖𝑖 = 𝑏𝑣𝑖/𝑐𝑖𝑣 = 𝑏𝑣𝑖/(1 − 𝑏𝑣𝑣). From 𝑏𝑣𝑖 = 𝑐𝑖𝑣𝑏𝑖𝑖 we deduce 𝑐𝑖𝑣 = 𝑏𝑣𝑖 (1 − 𝑏𝑣𝑣)/𝑏𝑣𝑖 .
Hence we have identified all the edge parameters related to children of 𝑖 which are
observable, provided 𝑖 has two or more children in𝑈 .

Next assume that both 𝑣, 𝑣 ∈ 𝑈 . By Lemma 4.6.3.1, there exists a node 𝑣 ′ ∈
desc(𝑣) ∩𝑈 such that there is a unique path from 𝑣 to 𝑣 ′ and which has the properties
in the cited statement. Let the sequence of nodes along which the path passes be
denoted by {𝑣1 = 𝑣, 𝑣2, . . . , 𝑣𝑛 = 𝑣 ′}. Using again that for a node ℓ with single
parent 𝑘 , 𝑏ℓℓ = 1 − 𝑐𝑘ℓ (see (4.10)), we find the same identities as in (4.44) for the
max-linear coefficients 𝑏𝑣𝑛, 𝑗 for 𝑗 ∈ {𝑣𝑛, . . . , 𝑣2}. From the first equation we obtain
𝑐𝑣𝑛−1,𝑣𝑛 = 1 − 𝑏𝑣𝑛,𝑣𝑛 , from the second equation 𝑐𝑣𝑛−2,𝑣𝑛−1 = 1 − 𝑏𝑣𝑛,𝑣𝑛−1/(1 − 𝑏𝑣𝑛,𝑣𝑛 )
and so on until we obtain 𝑐𝑣1,𝑣2 from the penultimate equation in (4.44). Because we
assumed pa(𝑣1) = {𝑖} we have 𝑏𝑣1,𝑣1 = 1 − 𝑐𝑖,𝑣1 and thus

𝑏𝑣𝑛,𝑣1 = 𝑐𝑝 (𝑣1,𝑣𝑛 )𝑏𝑣1,𝑣1 = 𝑐𝑣1,𝑣2𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑛−1,𝑣𝑛

(
1 − 𝑐𝑖,𝑣1

)
,

from where we identify 𝑐𝑖,𝑣1 . Since 𝑣𝑛 ∈ 𝑈 , all coefficients 𝑏𝑣𝑛, 𝑗 for 𝑗 ∈ 𝑉 are contained
in the max-linear coefficient matrix 𝑏𝑈 ×𝑉 . The procedure just described thus allows
us to compute all edge coefficients 𝑐𝑖,𝑣1 , 𝑐𝑣1,𝑣2 , . . . , 𝑐𝑣𝑛−1,𝑣𝑛 .

Because the path 𝑝 (𝑣1, 𝑣𝑛) satisfies the properties in Lemma 4.6.3.1, and in view
of the same lemma, plus the fact that the only parent of 𝑣1 = 𝑣 is 𝑖 , it follows that the
path {(𝑖, 𝑣1)} ∪ 𝑝 (𝑣1, 𝑣𝑛) is the unique path between 𝑖 and 𝑣𝑛 . Hence we have also

𝑏𝑣𝑛,𝑖 = 𝑐𝑝 (𝑖,𝑣𝑛 )𝑏𝑖𝑖 = 𝑐𝑖,𝑣1𝑐𝑣1,𝑣2𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑛−1,𝑣𝑛𝑏𝑖𝑖 . (4.45)

As 𝑣𝑛 ∈ 𝑈 , the value of 𝑏𝑣𝑛,𝑖 is known from 𝑏𝑈 ×𝑉 . The edge coefficients on the
right-hand side were expressed in terms of 𝑏𝑈 ×𝑉 in the previous paragraph. From
there, we obtain the value of 𝑏𝑖𝑖 , which will be used next.

Now consider the node 𝑣 , renamed to 𝑣1, which was an arbitrary child of 𝑖 . For
𝑣 = 𝑣1 too, we can find a node 𝑣𝑚 ∈ 𝑈 and a sequence of nodes {𝑣2, . . . , 𝑣𝑚} according
to Lemma 4.6.3.1 satisfying the properties stated there. For all 𝑟 ∈ {2, . . . ,𝑚}, the
node 𝑣𝑟 has a unique parent, 𝑣𝑟−1. We have the following equalities, using again by
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𝑏ℓℓ = 1 − 𝑐𝑘ℓ for a node ℓ with unique parent 𝑘

𝑏𝑣𝑚,𝑣𝑚 = 1 − 𝑐𝑣𝑚−1,𝑣𝑚 ,

𝑏𝑣𝑚,𝑣𝑚−1 = 𝑐𝑝 (𝑣𝑚−1,𝑣𝑚 )𝑏𝑣𝑚−1,𝑣𝑚−1 = 𝑐𝑣𝑚−1,𝑣𝑚

(
1 − 𝑐𝑣𝑚−2,𝑣𝑚−1

)
,

...

𝑏𝑣𝑚,𝑣2 = 𝑐𝑝 (𝑣2,𝑣𝑚 )𝑏𝑣2,𝑣2 = 𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑚−1,𝑣𝑚

(
1 − 𝑐𝑣1,𝑣2

)
,

𝑏𝑣𝑚,𝑖 = 𝑐𝑝 (𝑖,𝑣𝑚 )𝑏𝑖𝑖 = 𝑐𝑖,𝑣1𝑐𝑣1,𝑣2𝑐𝑣2,𝑣3 · · · 𝑐𝑣𝑚−1,𝑣𝑚𝑏𝑖𝑖 .

In the last equality we used that the path {(𝑖, 𝑣1)} ∪ 𝑝 (𝑣1, 𝑣𝑚) is the unique shortest
one between 𝑖 and 𝑣𝑚 , because of Lemma 4.6.3.1 and because 𝑝 (𝑣1, 𝑣𝑚) satisfies the
properties 1-2 of the same lemma. Since 𝑣𝑚 ∈ 𝑈 , the values of the left-hand sides in
the previous equations are contained in the given matrix 𝑏𝑈 ×𝑉 . From the first equality
we obtain 𝑐𝑣𝑚−1,𝑣𝑚 , from the second one 𝑐𝑣𝑚−2,𝑣𝑚−1 and so on until we identify 𝑐𝑣1,𝑣2

from the penultimate equality, i.e., all edge parameters linked to 𝑝 (𝑣1, 𝑣𝑚). In the last
equation above we replace 𝑏𝑖𝑖 with the expression derived from (4.45) and we obtain
the parameter 𝑐𝑖,𝑣1 .

If some of the children of 𝑖 are in𝑈 and some others are in𝑈 , we apply a combi-
nation of the techniques used in the two cases described above – when two children
are in𝑈 or when two children are in𝑈 . This concludes the proof of the sufficiency
(if) part. □

Proof of necessity (only if) part in Proposition 4.4.2. Let 𝑈 ⊂ 𝑉 be such that at least
one of the two conditions (I1) and (I2) is not satisfied and let 𝜃 = (𝑐𝑒 )𝑒∈𝐸 ∈ Θ̊∗. We
will show that there exists another parameter 𝜃 ′ = (𝑐′𝑒 )𝑒∈𝐸 ∈ Θ̊∗ such that 𝜃 ′ ≠ 𝜃 but
the distribution of 𝑋𝑉 \𝑢 under 𝜃 ′ is the same as the one under 𝜃 .

We consider two cases: case (1) (I2) does not hold, i.e., there exists 𝑢 ∈ 𝑈 which
is not the source of any tournament in T ; case (2) (I2) holds but not (I1), i.e., every
𝑢 ∈ 𝑈 is the source of some tournament in T but there exists 𝑢 ∈ 𝑈 with less than
two children.
Case (1): there exists 𝑢 ∈ 𝑈 which is not the source of any tournament in T . Then 𝑢
belongs to only a single tournament, say 𝜏 = (𝑉𝜏 , 𝐸𝜏 ); indeed, a node that belongs
to two different tournaments must be the source of at least one of them, because
otherwise it would have parents from two different tournaments, yielding a forbidden
v-structure.

Let𝑋𝑉𝜏 be a max-linear model restricted to a single tournament, 𝜏 . The coefficients
associated to 𝑋𝑉𝜏 , denote by 𝑏𝜏𝑣𝑖 for 𝑣, 𝑖 ∈ 𝑉𝜏 , are determined by the weights of the
edges 𝑒 ∈ 𝐸𝜏 . By Lemma 4.6.3.4, we can modify the edge weights 𝑐𝑒 for 𝑒 ∈ 𝐸𝜏 in
such a way that the max-linear coefficients 𝑏𝜏

𝑣𝑖
for 𝑣 ∈ 𝑉𝜏 \ 𝑢 and 𝑖 ∈ 𝑉𝜏 remain

unaffected. Let 𝑐𝑒 for 𝑒 ∈ 𝐸𝜏 denote such a modified vector of edge weights. Define
𝜃 ′ = (𝑐′𝑒 )𝑒∈𝐸 ∈ Θ̊∗ by

𝑐′𝑒 =

{
𝑐𝑒 if 𝑒 ∈ 𝐸𝜏 ,
𝑐𝑒 if 𝑒 ∈ 𝐸 \ 𝐸𝜏 .

Then 𝜃 ′ ∈ Θ̊∗ too: indeed, 𝑐′𝑖𝑖 > 0 for all 𝑖 ∈ 𝑉 by assumption on 𝜃 and the fact the
vector (𝑐𝑒 : 𝑒 ∈ 𝐸𝜏 ) satisfies 𝑐𝑖𝑖 > 0 for 𝑖 ∈ 𝑉𝜏 . By construction, the distribution of
𝑋𝑉𝜏 \𝑢 is the same under 𝜃 ′ as under 𝜃 .

We show that the distribution of 𝑋𝑉 \𝑢 under 𝜃 ′ is the same as the one under 𝜃 .
We proceed by induction on the number of tournaments.

If T consists of a single tournament, then T = 𝜏 and there is nothing more to
show.
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So suppose T consists of𝑚 ≥ 2 tournaments. The skeleton graph of T is a block
graph and thus a decomposable graph. By the running intersection property, we can
order the tournaments 𝜏1, . . . , 𝜏𝑚 with node sets 𝑉1, . . . ,𝑉𝑚 in such a way that 𝜏1 = 𝜏 ,
the tournament containing 𝑢, and such that 𝑉𝑚 ∩ (𝑉1 ∪ . . . ∪𝑉𝑚−1) is a a singleton,
say {𝑠}. Then 𝑠 ≠ 𝑢 since 𝑢 belongs to only a single tournament.

Write𝑊 = 𝑉1 ∪ . . . ∪𝑉𝑚−1 \ 𝑢. The joint distribution of 𝑋𝑉 \𝑢 can be factorized
into two parts: first, the distribution of 𝑋𝑊 and second, the conditional distribution
of 𝑋𝑉𝑚\𝑠 given 𝑋𝑊 . It is sufficient to show that both parts remain the same when 𝜃 is
replaced by 𝜃 ′.

■ By the induction hypothesis, the distribution of 𝑋𝑊 is the same under 𝜃 ′ as
under 𝜃 .

■ By the global Markov property (Proposition 4.3.2), the conditional distribution
of 𝑋𝑉𝑚\𝑠 given 𝑋𝑊 is the same as the conditional distribution of 𝑋𝑉𝑚\𝑠 given
𝑋𝑠 . But the latter is determined by the joint distribution of 𝑋𝑉𝑚 , which, in
turn, only depends on the weights of the edges 𝑒 in 𝜏𝑚 . By construction, these
edge weights are the same under 𝜃 as under 𝜃 ′. It follows that the conditional
distribution of 𝑋𝑉𝑚\𝑢 given 𝑋𝑊 is the same under 𝜃 ′ as under 𝜃 .

We conclude that the distribution of 𝑋𝑉 \𝑢 is the same under 𝜃 ′ as under 𝜃 . Since
𝜃 ≠ 𝜃 ′, the parameter is not identifiable.

Case (2): any 𝑢 ∈ 𝑈 is the source of some tournament in T but there exists 𝑢 ∈ 𝑈 with
less than two children. Any𝑢 ∈ 𝑈 must have at least one child (a node without children
cannot be the source of a tournament). But then there exists 𝑢 ∈ 𝑈 with exactly one
child: ch(𝑢) = {𝑤}. The tournament of which 𝑢 is the source can only consist of
the nodes 𝑢 and𝑤 and the edge (𝑢,𝑤). Now there are two subcases, depending on
whether 𝑢 has any parents or not.

Case (2).a: 𝑢 has no parents. Then 𝑢 is the source node of T with a single child𝑤 .
Removing the node 𝑢 yields the ttt T\𝑢 := (𝑉 \ 𝑢, 𝐸 \ {(𝑢,𝑤)}) with single source𝑤 .
The random vector 𝑋𝑉 \𝑢 follows the recursive max-linear model (4.2) with respect
to T\𝑢 . Its distribution is determined by the coefficients 𝑐𝑒 for 𝑒 ∈ 𝐸 \ {(𝑢,𝑤)}. The
value of 𝑐𝑢𝑤 can thus be chosen arbitrarily in (0, 1) without affecting the distribution
of 𝑋𝑉 \𝑢 .

Case (2).b: 𝑢 has parents. Any ancestor of𝑤 different from 𝑢 must be an ancestor
of 𝑢 too, since otherwise there would be a v-structure at𝑤 ; therefore,

An(𝑤) = an(𝑢) ∪ {𝑢,𝑤}.

Let 𝜆 > 0 and close enough to 1 (as specified below). Define 𝜃 ′ = (𝑐′𝑒 )𝑒∈𝐸 by modifying
the weights of edges adjacent to 𝑢: specifically,

𝑐′𝑗𝑢 = 𝜆𝑐 𝑗𝑢, 𝑗 ∈ pa(𝑢);
𝑐′𝑢𝑤 = 𝜆−1𝑐𝑢𝑤 ;
𝑐′𝑒 = 𝑐𝑒 , 𝑒 ∈ 𝐸 \ [{( 𝑗, 𝑢) : 𝑗 ∈ pa(𝑢)} ∪ {(𝑢,𝑤)}] .

In words, 𝜃 ′ coincides with 𝜃 for edges 𝑒 that do not involve 𝑢, and 𝜃 ′ = 𝜃 if and only
if 𝜆 = 1. Since the parameter space Θ̊∗ is open, 𝜃 ′ belongs to Θ̊∗ for 𝜆 sufficiently
close to 1. We claim that the distribution of 𝑋𝑉 \𝑢 is invariant under 𝜆. Hence, for 𝜆
different from but sufficiently close to 1, we have found a parameter 𝜃 ′ ≠ 𝜃 producing
the same distribution of 𝑋𝑉 \𝑢 as 𝜃 .

Under 𝜃 ′, the random vector 𝑋𝑉 \𝑢 follows the max-linear model

𝑋𝑣 =
∨

𝑖∈An(𝑣)
𝑏′𝑣𝑖𝑍𝑖 , 𝑣 ∈ 𝑉 \ 𝑢,
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where (𝑍𝑖 )𝑖∈𝑉 is a vector of independent unit-Fréchet random variables and where
the coefficients 𝑏′𝑣𝑖 are given by equations (4.4), (5.9) and (4.6) with 𝑐𝑒 replaced by 𝑐′𝑒 .

First, suppose 𝑣 ∈ 𝑉 \ 𝑢 is not a descendant of 𝑢. Then for any 𝑖 ∈ An(𝑣), the
coefficient 𝑏′𝑣𝑖 is a function of edge weights 𝑐′𝑒 for edges 𝑒 ∈ 𝐸 different from (𝑢,𝑤)
and from ( 𝑗, 𝑢) for 𝑗 ∈ pa(𝑢). It follows that 𝑐′𝑒 = 𝑐𝑒 for such edges and thus 𝑏′𝑣𝑖 = 𝑏𝑣𝑖
for 𝑣 ∈ 𝑉 \ Desc(𝑢) and 𝑖 ∈ An(𝑣).

Second, suppose 𝑣 ∈ desc(𝑢). Then necessarily 𝑣 ∈ Desc(𝑤) too and for any
𝑖 ∈ An(𝑢), the path 𝑝 (𝑖, 𝑣) passes by (or arrives in)𝑤 . Furthermore, any ancestor of 𝑣
not in An(𝑤) is a descendant of𝑤 :

An(𝑣) = an(𝑢) ∪ {𝑢,𝑤} ∪ [desc(𝑤) ∩ An(𝑣)] . (4.46)

It follows that

𝑋𝑣 =
∨

𝑖∈an(𝑢 )
𝑏′𝑣𝑖𝑍𝑖 ∨

(
𝑏′𝑣𝑢𝑍𝑢 ∨ 𝑏′𝑣𝑤𝑍𝑤

)
∨

∨
𝑖∈desc(𝑤 )∩An(𝑣)

𝑏′𝑣𝑖𝑍𝑖 ,

where the last term on the right-hand side is to be omitted if 𝑣 = 𝑤 . We treat each of
the three terms on the right-hand side separately.

■ For 𝑖 ∈ an(𝑢), we have

𝑏′𝑣𝑖 = 𝑐
′
𝑖𝑖𝑐
′
𝑝 (𝑖,𝑣) = 𝑐

′
𝑖𝑖𝑐
′
𝑝 (𝑖,𝑢 )𝑐

′
𝑢𝑤𝑐

′
𝑝 (𝑤,𝑣)

where 𝑐′
𝑝 (𝑤,𝑣) = 1 if 𝑣 = 𝑤 . The coefficients 𝑐′𝑖𝑖 and 𝑐

′
𝑝 (𝑤,𝑣) only involve weights

𝑐′𝑒 for edges 𝑒 ∈ 𝐸 different from (𝑢,𝑤) and ( 𝑗, 𝑢) for 𝑗 ∈ pa(𝑢); it follows that
𝑐′𝑖𝑖 = 𝑐𝑖𝑖 and 𝑐

′
𝑝 (𝑤,𝑣) = 𝑐𝑝 (𝑤,𝑣) . Further, given 𝑖 ∈ an(𝑢) there exists 𝑗 ∈ pa(𝑢)

such that 𝑝 (𝑖, 𝑢) passes by 𝑗 right before reaching 𝑢 (with 𝑖 = 𝑗 if 𝑖 ∈ pa(𝑢)),
and then

𝑐′
𝑝 (𝑖,𝑢 )𝑐

′
𝑢𝑤 = 𝑐′

𝑝 (𝑖, 𝑗 )𝑐
′
𝑗𝑢𝑐
′
𝑢𝑤 = 𝑐′

𝑝 (𝑖, 𝑗 ) (𝜆𝑐 𝑗𝑢) (𝜆
−1𝑐𝑢𝑤).

Since 𝑝 (𝑖, 𝑗) does not involve edges meeting 𝑢, we find that 𝑐′
𝑝 (𝑖, 𝑗 ) = 𝑐𝑝 (𝑖, 𝑗 ) , so

that the above expression does not depend on 𝜆. We conclude that 𝑏′𝑣𝑖 = 𝑏𝑣𝑖 for
𝑖 ∈ an(𝑢).

■ If 𝑣 ∈ desc(𝑤) and 𝑖 ∈ desc(𝑤) ∩ An(𝑣), the coefficient 𝑏′𝑣𝑖 is

𝑏′𝑣𝑖 = 𝑐
′
𝑖𝑖𝑐
′
𝑝 (𝑖,𝑣) .

The path 𝑝 (𝑖, 𝑣) does not involve edges touching 𝑢, so 𝑐𝑝 (𝑖,𝑣) ′ = 𝑐𝑝 (𝑖,𝑣) . By
Lemma 4.6.3.3, the coefficient 𝑐′𝑖𝑖 = 𝑏

′
𝑖𝑖 is a function of the edge weights 𝑐′𝑒 for

edges 𝑒 in the tournament shared by 𝑖 and its parents. Since 𝑖 ∈ desc(𝑤) and
since𝑤 is the only child of 𝑢, none of these edges touches 𝑢, and thus 𝑐′𝑒 = 𝑐𝑒
for all such edges. It follows that 𝑐′𝑖𝑖 = 𝑐𝑖𝑖 too. We conclude that 𝑏′𝑣𝑖 = 𝑏𝑣𝑖 for
𝑣 ∈ desc(𝑤) and 𝑖 ∈ desc(𝑤) ∩ An(𝑣).

■ The random variable 𝑏′𝑣𝑢𝑍𝑢 ∨ 𝑏′𝑣𝑤𝑍𝑤 is independent of all other variables 𝑍𝑖
for 𝑖 ∈ 𝑉 \ {𝑢,𝑤} and its distribution is equal to (𝑏′𝑣𝑢 + 𝑏′𝑣𝑤)𝑍 for 𝑍 a unit-
Fréchet variable. We will show that 𝑏′𝑣𝑢 + 𝑏′𝑣𝑤 does not depend on 𝜆. Since
1 =

∑
𝑖∈An(𝑣) 𝑏

′
𝑣𝑖 , the partition (4.46) yields

𝑏′𝑣𝑢 + 𝑏′𝑣𝑤 = 1 −
∑︁

𝑖∈an(𝑢 )
𝑏′𝑣𝑖 −

∑︁
𝑖∈desc(𝑤 )∩An(𝑣)

𝑏′𝑣𝑖 .

(The last sum on the right-hand side is zero if 𝑣 is not a descendant of 𝑤 .) In
the two previous bullet points, we have already shown that the coefficients 𝑏′𝑣𝑖
for 𝑖 in an(𝑢) or desc(𝑤) ∩ An(𝑣) do not depend on 𝜆. By the stated identity,
the sum 𝑏′𝑣𝑢 + 𝑏′𝑣𝑤 then does not depend on 𝜆 either.
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We have thus shown that if 𝑈 does not satisfy (I1)–(I2), then we can find 𝑢 ∈ 𝑈
such that the distribution of 𝑋𝑉 \𝑢 is the same under 𝜃 ′ as under 𝜃 . As 𝜃 ′ ≠ 𝜃 by
construction, this means that the parameter 𝜃 is not identifiable from the distribution
of 𝑋𝑉 \𝑢 . But as 𝑈 = 𝑉 \ 𝑈 ⊆ 𝑉 \ {𝑢}, the parameter 𝜃 is not identifiable from the
distribution of 𝑋𝑈 either. This confirms the necessity of (I1)–(I2) for the identifiability
of 𝜃 from the distribution of 𝑋𝑈 . □
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Sum-linear graphical
models with heavy tailed
factors on trees of
transitive tournaments

5
5.1 Introduction

Here we discuss some properties of a linear recursive structural equation model (SEM),
which we call sum-linear model in analogy to the max-linear which is much more
popular in the extreme value literature. Recall the notation for a directed acyclic
graph (DAG) G with a node set 𝑉 and edge set 𝐸, and a random vector with elements
associated to every node of the graph, 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ). A SEM is defined as

𝑋𝑣 = 𝑓 (𝑋pa(𝑣) , 𝜀𝑣), 𝑣 ∈ 𝑉 , (5.1)

where (𝜀𝑣, 𝑣 ∈ 𝑉 ) is a vector of independent noise variables and 𝑓 is some function.
Such a model on a directed acyclic graph is interpreted as defining causal relations
between parent variables and their children (Spirtes et al., 1993; Kiiveri et al., 1984;
Spirtes, 1994).

The max-linear Bayesian models are introduced in Gissibl and Klüppelberg (2018)
and since then, they are the focus of a large part of the literature on graphical models
and extremes. They are a special type of linear recursive SEM as their conditional
independence relations differ significantly with respect to a classical SEM (Klüppelberg
and Lauritzen, 2019).

The sum-linear Bayesian models appear for the first time in the extreme value
context in Gnecco et al. (2021). Subsequent literature on topics of causality between
extremes involving these models is Pasche et al. (2021), Zhao et al. (2021), and Bud-
hathoki et al. (2022). For instance, Budhathoki et al. (2022) talk about finding root
causes for extreme values on a known DAG by quantifying the contribution of each
noise variable. Zhao et al. (2021) instead, interpret causal learning as a problem of
learning the structure of the DAG from a dataset.

From an extreme value perspective, the two models have been studied in Einmahl
et al. (2012) where it is shown that they are in the domain of attraction of the same
class of extreme value distributions with discrete angular measure. Here we study the
same properties that have been studied in Chapter 4 on max-linear models. We show
thus, that what regards sum- or max-linear models on a tree of transitive tournaments,
they both share the same probabilistic characteristics. This is not surprising in view
of the results of Einmahl et al. (2012) mentioned above. However there are some
obvious differences between the two models, such as the parameterization and the
conditional independence relations.

First we present the sum-linear model, its parameterization and some algebraic
properties that render it so similar to the max-linear model with critical shortest paths.
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Next we study the markovianity of the model and the factorization of the limiting
vector of the conditional tails. There is a section on parameter identifiability where
we show that the necessary and sufficient condition is identical to the one for the
max-linear model. We conclude outlining the main differences and similarities of the
two models.

5.2 Model definition

In a similar way to Gnecco et al. (2021) we assume that 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑣) is a sum-linear
SEM with respect to a ttt, the latter as in Definition 4.2.1 in Chapter 4. Recall that for
a directed edge (𝑣, 𝑖) ∈ 𝐸 we have an edge weight 𝑐𝑣𝑖 , and for every node 𝑣 ∈ 𝑉 we
have a node coefficient 𝑑𝑣𝑣 . An element of 𝑋 is given by

𝑋𝑣 =
∑︁

𝑖∈pa(𝑣)
𝑐𝑖𝑣𝑋𝑖 + 𝑑𝑣𝑣𝑍𝑣, 𝑣 ∈ 𝑉 , (5.2)

where (𝑍𝑖 , 𝑖 ∈ 𝑉 ) is a vector of independent unit-Fréchet random variables. We define
𝜋 (𝑖, 𝑗) as the set of all directed paths from node 𝑖 to node 𝑗 . An element of 𝜋 (𝑖, 𝑗) is a
directed path, say 𝑝 , from 𝑖 to 𝑗 , which represents a set of edges. If the path 𝑝 passes
through nodes {𝑖 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 = 𝑗} then 𝑝 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛−1, 𝑣𝑛)}. We
keep the notation 𝑝 (𝑖, 𝑗) for the unique shortest directed path between nodes 𝑖, 𝑗 . As in
Chapter 4, we have the product of edge weights along some directed path 𝑝 ∈ 𝜋 (𝑖, 𝑗)

𝑐𝑝 =
∏
(𝑎,𝑏 ) ∈𝑝

𝑐𝑎𝑏 .

Let 𝑐𝜋 (𝑖, 𝑗 ) be the sum of all such path products, i.e.,

𝑐𝜋 (𝑢,𝑣) :=
∑︁

𝑝∈𝜋 (𝑢,𝑣)
𝑐𝑝 , (5.3)

with the convention 𝑐𝜋 (𝑖,𝑖 ) = 1.
To ensure each path has a positive share in 𝑐𝜋 (𝑖, 𝑗 ) we assume positive edge weights,

i.e. 𝜃 := (𝑐𝑒 , 𝑒 ∈ 𝐸) > 0. Then for given pair of nodes 𝑖, 𝑗 , every path product is positive:
𝑐𝑝 > 0 for all 𝑝 ∈ 𝜋 (𝑖, 𝑗) thus 𝑐𝜋 (𝑖, 𝑗 ) > 0 too. This assumption avoids cases such as
𝑐𝑝 = 0 or even 𝑐𝜋 (𝑖, 𝑗 ) = 0. The case 𝑐𝑝 = 0 would be interpreted that influence from 𝑖

cannot go to 𝑗 through path 𝑝 , and if 𝑐𝜋 (𝑖, 𝑗 ) = 0, then no influence can go from 𝑖 to 𝑗 at
all, although there are directed paths between them. Let 𝐶 be the weighted adjacency
matrix of the ttt T , defined as {𝐶} 𝑗𝑖 = 𝑐𝑖 𝑗 if (𝑖, 𝑗) ∈ 𝐸 and zero otherwise. The matrix
𝐶 is square |𝑉 | × |𝑉 | and the diagonal elements are zero. Let 𝐷 = {𝐷}𝑖 𝑗 = 𝑑𝑖 𝑗 be a
diagonal matrix with the node coefficients {𝑑𝑣𝑣} from (5.2) on the diagonal. Hence
the sum-linear model 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) with heavy tailed errors 𝑍 = (𝑍𝑣, 𝑣 ∈ 𝑉 ) is
given as

𝑋 = 𝐶𝑋 + 𝐷𝑍 . (5.4)
According to Remark 2.3 in Gissibl and Klüppelberg (2018) the node labeling on T
can be such that if 𝑖 ∈ pa( 𝑗), then 𝑖 < 𝑗 and then the matrix 𝐶 , for which we have
{𝐶} 𝑗𝑖 = 𝑐𝑖 𝑗 , is lower triangular with zeros on the main diagonal.

Lemma 5.2.1. Let 𝑋 be as in (5.4) with 𝐶 a lower diagonal matrix of edge weights.
Then

𝑋 = 𝐵𝑍, (5.5)
or also 𝑋𝑣 =

∑
𝑖∈𝑉 𝑏𝑣𝑖𝑍𝑖 for every 𝑣 ∈ 𝑉 with

𝑏𝑣𝑖 =


0 if 𝑖 ∉ An(𝑣),
𝑑𝑣𝑣 if 𝑖 = 𝑣 ,
𝑑𝑖𝑖𝑐𝜋 (𝑖,𝑣) if 𝑖 ∈ an(𝑣),

(5.6)
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for every 𝑣 ∈ 𝑉 .

Proof. From (5.4) we have (𝐼 |𝑉 | −𝐶)𝑋 = 𝐷𝑍 and hence 𝑋 = (𝐼 |𝑉 | −𝐶)−1𝐷𝑍 as 𝐼 |𝑉 |
is an identity matrix of size |𝑉 | and 𝐼 |𝑉 | −𝐶 as a lower diagonal matrix is invertible.
From the equality (

𝐼 |𝑉 | +𝐶 +𝐶2 + · · · +𝐶𝑘
) (
𝐼 |𝑉 | −𝐶

)
= 𝐼 |𝑉 | −𝐶𝑘+1

and the fact that, for |𝑉 |-square lower triangular matrix with zero diagonal, powers
of 𝑘 ≥ |𝑉 |, 𝑘 = 0, 1, 2, . . . are zero matrices, we obtain(

𝐼 |𝑉 | −𝐶
)−1

=
(
𝐼 |𝑉 | +𝐶 +𝐶2 + · · · +𝐶 |𝑉 |−1) .

Then we have

𝐵 =
(
𝐼 |𝑉 | −𝐶

)−1
𝐷 =

(
𝐼 |𝑉 | +𝐶 +𝐶2 + · · · +𝐶 |𝑉 |−1)𝐷 (5.7)

Since 𝐶 is a weighted adjacency matrix, an element {𝐶𝑘 }𝑖 𝑗 represents the sum of the
path products along all paths from 𝑗 to 𝑖 of length 𝑘 , i.e.,

{𝐶𝑘 }𝑖 𝑗 =
∑︁

𝑝∈𝜋 ( 𝑗,𝑖 ), |𝑝 |=𝑘
𝑐𝑝 . (5.8)

Because𝐶 is lower diagonal with zero diagonal and 𝐷 is diagonal, the matrix 𝐵 is also
lower diagonal with {𝑑𝑣𝑣} on the main diagonal. This shows the second statement in
(5.6). For 𝑣 > 𝑖 we have

𝑏𝑣𝑖 = ({𝐶}𝑣𝑖 + · · · + {𝐶 |𝑉 |−1}𝑣𝑖 )𝑑𝑖𝑖

The interpretation of {𝐶𝑘 }𝑣𝑖 in (5.8) means that the sum in the parenthesis of the
above equation is 𝑐𝜋 (𝑖,𝑣) and this shows the third statement in (5.6). From the equation
above it follows that if an(𝑣) is empty then the sum is zero as all terms {𝐶𝑘 }𝑣𝑖 are
zero too. This shows the first statement of (5.6). □

We will refer sometimes to 𝐵 as the coefficient matrix of the sum-linear model.
We require 𝑑𝑖𝑖 = 𝑏𝑖𝑖 for all 𝑖 ∈ 𝑉 to be also positive meaning that the noise variable on
node 𝑖 has positive influence on 𝑋𝑖 too. The result in (5.5) and (5.6) is the one given
in Gnecco et al. (2021, Equation 5).

Next we impose the following standardization on the row sums of the matrix 𝐵:∑︁
𝑖∈𝑉

𝑏𝑣𝑖 =
∑︁

𝑖∈An(𝑣)
𝑏𝑣𝑖 = 1, ∀𝑣 ∈ 𝑉 . (5.9)

If the ancestor set is empty, the sum is zero and 𝑏𝑣𝑣 = 1. The constraint in (5.9) means
that 𝑋𝑣 is in the domain of attraction of the unit-Fréchet distribution. This is because
the ratio of the tail probabilities of the sum and the maximum exceeding 𝑥 tends to 1
(Einmahl, Krajina, and Segers, 2012, Page 15):

lim
𝑥→∞

P (∑𝑖∈𝑉 𝑏𝑣𝑖𝑍𝑖 > 𝑥)
P (max𝑖∈𝑉 𝑏𝑣𝑖𝑍𝑖 > 𝑥)

= 1.

Using matrix algebra we can state the condition in (5.9) as

𝐵1 |𝑉 | = 1 |𝑉 | , (5.10)

with 1 |𝑉 | being a vector of ones of length |𝑉 |.
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The constraints of positive edge weights, 𝑐𝑒 > 0,∀𝑒 ∈ 𝐸; positive node weights,
𝑐𝑣𝑣 > 0,∀𝑣 ∈ 𝑉 and (5.9) lead to the following parameter space for 𝜃

Θ̊Σ :=
{
𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) ∈ (0, 1)𝐸 : ∀𝑣 ∈ 𝑉 , 𝑐𝑣𝑣 > 0

}
. (5.11)

This is the same definition as the one of Θ̊ in (4.7) but the spaces are different as the
coefficients 𝑐𝑣𝑣, 𝑣 ∈ 𝑉 , have different definitions for max- and sum-linear models.
We will write 𝐵𝜃 for the matrix in (5.5) to emphasize the dependence on the edge
parameters.

Definition 5.2.1 (Sum-linear recursive structural equation model on a ttt). Let 𝑋 =

(𝑋𝑣, 𝑣 ∈ 𝑉 ) be a sum-linear recursive SEM with respect to a ttt, T . The random vector
𝑋 has a representation as in (5.5), with unit Fréchet independent factors {𝑍𝑣}; matrix
𝐵 := 𝐵𝜃 given by (5.6) and satisfying (5.10); and 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) ∈ Θ̊Σ in (5.11).

The distribution of 𝑋 is in the max-domain of attraction of the same class of
extreme value distributions as the max-linear model (Einmahl, Krajina, and Segers,
2012). Hence the extreme value distribution, the stdf, and the angular measure are
the same up to the coefficients {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 . A brief overview of the relations between
these objects is given in Section 4.2.3 in Chapter 4. For completeness we repeat the
angular measure of 𝑋 , given by

𝐻𝜃 =
∑︁
𝑖∈𝑉

𝑚𝑖𝛿𝑎𝑖 ,

where𝑚𝑖 =
∑

𝑣∈𝑉 𝑏𝑣𝑖 is the mass of an atom

𝑎𝑖 =
1
𝑚𝑖

(𝑏𝑣𝑖 , 𝑣 ∈ 𝑉 ). (5.12)

5.3 Algebraic properties of the model coefficients

There are two key properties of the sum-linear model that make it very close to the
max-linear model at least in the studied framework — Bayesian networks on trees
of transitive tournaments. The first one relates to factorization of 𝑐𝜋 (𝑖, 𝑗 ) along the
unique shortest path and the second one relates to the limiting tail distribution. Here
we state the first property.

Lemma 5.3.1. Let𝑋 be sum-linear model as in Definition 5.2.1. Let {𝑢 = 𝑣1, . . . , 𝑣𝑛 = 𝑣}
be the set of nodes on the unique shortest directed path between a pair of nodes 𝑢, 𝑣 ∈ 𝑉 .
Then we have

𝑐𝜋 (𝑢,𝑣) =
𝑛−1∏
𝑖=1

𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) . (5.13)

Proof. We proceed by induction on the number of nodes in the unique shortest path
𝑝 (𝑢, 𝑣). If there are two nodes in the path, thesemust be adjacent, hence equation (5.13)
is trivially satisfied. Let there be 𝑛 nodes in the unique shortest path, i.e., {𝑣1 =

𝑢, . . . , 𝑣𝑛 = 𝑣}, and we assume that (5.13) holds. We add one more node to obtain the
unique shortest path on 𝑛 + 1 nodes {𝑢 = 𝑣1, . . . , 𝑣𝑛, 𝑣𝑛+1 = 𝑣}. We aim to show

𝑐𝜋 (𝑢,𝑣) =
𝑛∏
𝑖=1

𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) . (5.14)

Consider the two sets 𝜋 (𝑣1, 𝑣𝑛) and 𝜋 (𝑣𝑛, 𝑣𝑛+1), and union of them, denoted by
𝜋 (𝑣1, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1). An element of this new set is 𝑝𝑖 ∪ 𝑝 𝑗 for 𝑝𝑖 ∈ 𝜋 (𝑢, 𝑣𝑛) and
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𝑝 𝑗 ∈ 𝜋 (𝑣𝑛, 𝑣𝑛+1):

𝜋 (𝑣1, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1) =


𝑝1
...

𝑝𝑚

 ⊗

𝑝1
...

𝑝𝑘

 =


𝑝1 ∪ 𝑝1 · · · 𝑝1 ∪ 𝑝𝑘

... · · ·
...

𝑝𝑚 ∪ 𝑝1 · · · 𝑝𝑚 ∪ 𝑝𝑘

 (5.15)

The aim is to show

𝜋 (𝑢, 𝑣𝑛+1) = 𝜋 (𝑢, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1). (5.16)

Since every path from the set on the right hand-side of (5.16) is a path from 𝑢 to
𝑣 = 𝑣𝑛+1 we have 𝜋 (𝑢, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1) ⊂ 𝜋 (𝑢, 𝑣𝑛+1). By definition, all paths in
𝜋 (𝑢, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1) pass through 𝑣𝑛 . But by Lemma 5.8.1, every path 𝑝 ∈ 𝜋 (𝑢, 𝑣𝑛+1)
contains the nodes on the shortest path, in particular it contains 𝑣𝑛 . Thus we have
𝜋 (𝑢, 𝑣𝑛+1) ⊂ 𝜋 (𝑢, 𝑣𝑛) ⊗ 𝜋 (𝑣𝑛, 𝑣𝑛+1). So we showed (5.16). Then we have

𝑐𝜋 (𝑢,𝑣𝑛+1 ) =
∑︁

𝑝∈𝜋 (𝑢,𝑣𝑛+1 )
𝑐𝑝 =

∑︁
𝑝∈𝜋 (𝑢,𝑣𝑛 )⊗𝜋 (𝑣𝑛,𝑣𝑛+1 )

𝑐𝑝 =
∑︁

𝑝𝑖 ∈𝜋 (𝑢,𝑣𝑛 )

∑︁
𝑝 𝑗 ∈𝜋 (𝑣𝑛,𝑣𝑛+1 )

𝑐𝑝𝑖𝑐𝑝 𝑗

=
©«

∑︁
𝑝𝑖 ∈𝜋 (𝑢,𝑣𝑛 )

𝑐𝑝𝑖
ª®¬ ©«

∑︁
𝑝 𝑗 ∈𝜋 (𝑣𝑛,𝑣𝑛+1 )

𝑐𝑝 𝑗

ª®¬ = 𝑐𝜋 (𝑢,𝑣𝑛 )𝑐𝜋 (𝑣𝑛,𝑣𝑛+1 ) .

The third equality can be understood in the light of (5.15). After that, the equalities
follow from rearranging and the definition of 𝑐𝜋 (𝑖, 𝑗 ) . Together with the induction
hypothesis we obtain (5.14). □

Remark. This creates the link with the coefficients {𝑏𝑖 𝑗 > 0} for the max-linear model
in the previous chapter. In the max-linear context, 𝑐𝑝 (𝑢,𝑣) is the product of the edge
weights along the unique shortest path 𝑝 (𝑢, 𝑣). Because of the criticality assumption
we have 𝑏𝑖 𝑗 = 𝑐𝑝 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 . For the sum-linear model, we have 𝑏𝑖 𝑗 = 𝑐𝜋 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 , but the
term 𝑐𝜋 ( 𝑗,𝑖 ) is factorizable along the unique shortest path 𝑝 ( 𝑗, 𝑖).

We also have due to the constraint in (5.10) the following result according to
which the coefficient 𝑏𝑣𝑣 = 𝑑𝑣𝑣 in (5.6), case 𝑖 = 𝑣 , involves only the weights on edges
incident to parents of 𝑣 .

Lemma 5.3.2. Let 𝑋 be sum-linear model as in Definition 5.2.1. We have

𝑏𝑣𝑣 = 1 −
∑︁

𝑢∈pa(𝑣)
𝑐𝑢𝑣, 𝑣 ∈ 𝑉 . (5.17)

Proof. From the constraint in (5.10) and the form of 𝐵 in (5.7) we get

(𝐼 |𝑉 | −𝐶)−1𝐷1 |𝑉 | = 1 |𝑉 | .

Multiplying both sides of the equation by (𝐼 |𝑉 | − 𝐶) we get 𝐷1 |𝑉 | = (𝐼 |𝑉 | − 𝐶)1 |𝑉 | .
The left hand-side represents a vector of the coefficients {𝑏𝑣𝑣} = {𝑑𝑣𝑣} and the right
hand-side is a vector where every element is given by (5.17). □

5.4 Markovianity with respect to the skeleton of T

In Proposition 4.3.2 we have given a necessary and sufficient condition for the max-
linear model to factorize with respect to the skeleton of the ttt, T . The necessity has
been proven using the theory on completeness of entirely new concept of separation
based on so called ∗-connecting paths. Completeness of graph separation criteria has
not been established so far in general. All we know is that if two sets are not separated
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by a third one in the graph, be it a non-directed or a directed one, for a set of probability
measures of measure zero the variables on the two sets are independent conditionally
on the variables in the separator set (Koller and Friedman, 2009, Theorem 3.5 and 4.3).

We give only a sufficient condition under which the sum-linear model satisfies
the global Markov property with respect to the undirected graph of T . We believe
this one of the underlying causes for the factorization of the tail limiting distribution
into independent variables along the unique shortest undirected paths in T .

To show markovianity for a max-linear model it was necessary to use the theory
of conditional independence developed recently in Améndola et al. (2022). In this
respect the sum-linear graphical model is considerably closer to the classical theory
of conditional independence as in Lauritzen (1996) or Koller and Friedman (2009,
Chapters 3-4). This is due to the fact that the sum-linear model has positive and
continuous probability density.

Lemma 5.4.1 (Continuous density function). Let 𝑋 be a sum-linear model as in
Definition 5.2.1. The probability density function is continuous over (𝑥𝑣, 𝑣 ∈ 𝑉 ) ∈
(0,∞)𝑉 .
Proof. From (5.5) we have 𝑓𝑋 (𝑥) = 𝑓𝑍 (𝐵−1𝑥) det(𝐵−1) which is a continuous function
as 𝑍 = (𝑍𝑣, 𝑣 ∈ 𝑉 ) is jointly independent and hence 𝑓𝑍 is the product of unit Fréchet
probability density functions. Also 𝐵 from (5.7) is invertible as it is given by the
product of two invertible matrices. □

Some notions from traditional conditional independence follow next.
Let 𝑃 be a probability distribution with positive and continuous density with

respect to a measure on the product space ×𝑣∈𝑉X𝑣 where X𝑣 ⊆ R is the range of
values of 𝑋𝑣 . The distribution 𝑃 satisfies the local directed Markov property (Koller
and Friedman, 2009, Definition 3.1) with respect to T if for every 𝑣 ∈ 𝑉 we have

𝑋𝑣 ⊥⊥ 𝑋𝑉 \Desc(𝑣) | 𝑋pa(𝑣) . (5.18)

According to Koller and Friedman (2009, Theorem 3.1) if 𝑃 as the probability distribu-
tion of 𝑋 contains the conditional independence relations arising from (5.18), then 𝑃
factorizes according to T by satisfying the equation

𝑓𝑉 (𝑥𝑣, 𝑣 ∈ 𝑉 ) =
∏
𝑣∈𝑉

𝑓𝑣 |pa(𝑣) (𝑥𝑣 | 𝑥pa(𝑣) ), (5.19)

where 𝑓𝑉 is the density function associated to the probability measure 𝑃 and 𝑓𝑣 |pa(𝑣)
are conditional marginal density functions.

Theorem 1.4.1 in Pearl (2000) states that every SEM as in (5.1) with respect to a
DAG and with jointly independent errors {𝜖𝑣} satisfies the conditional independence
relations in (5.18). Hence our sum-linear model too.

We recall the global Markov property for non-directed graphs. If for any 𝐴, 𝐵, 𝑆
which are non-empty and disjoint subsets of the node set 𝑉 , we have that 𝑆 separates
𝐴 and 𝐵 in the graph, then 𝑋𝐴 is conditionally independent from 𝑋𝐵 given 𝑋𝑆 .

The so called moralized graph of T , denoted by T𝑚 , is obtained by connecting
every pair of parents with common child and removing directions (Lauritzen, 1996,
Section 2.1.1). The skeleton (non-directed version) of T is denoted by 𝑇 . A ttt T with
unique source has the property T𝑚 = 𝑇 (see Lemma 5.8.1). However for a ttt with
at least two sources, the two graphs are different. Then by Lemma 4.6.1 there is at
least one v-structure. Hence the moral graph has edges between the parents of every
v-structure.

Finally, Lemma 3.21 in Lauritzen (1996) says that if a distribution factorizes ac-
cording to a DAG, then it satisfies the global Markov property with respect to the
moral graph.

The following proposition follows from the three theorems cited above.
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Proposition 5.4.1 (Markovianity). Let 𝑋 be a sum-linear model as in Definition 5.2.1.
The random vector 𝑋 satisfies the global Markov property with respect to the skeleton, 𝑇 ,
if T has a unique source.

Proof. First suppose T has a unique source. Then by Lemma 5.8.1 we have T𝑚 =

𝑇 . The claim follows from Pearl (2000, Theorem 1.4.1), Koller and Friedman (2009,
Theorem 3.1) and Lauritzen (1996, Theorem 3.21). □

For a sum-linear model with innovations {𝑍𝑣} that have finite variances necessity
can be shown too. However, in our case these are unit Fréchet variables. It would be
not surprising if the necessity can be shown using the method employed in Améndola
et al. (2022, Section 6).

5.5 Characterization of the tail limit

We are interested in the limit distribution of the tails of a sum-linear model as a high
threshold is exceeded at a particular node. In this section we will present a necessary
and sufficient condition for this limit to be composed of independent multiplicative
increments along the unique shortest trail (undirected path) between two variables.
This behavior is observed for Markov trees (Segers, 2020b), Markov block graphs
(Asenova and Segers, 2021) and Markov max-linear Bayesian ttt as in Chapter 4.

We have presented the factorizable structure of 𝑐𝜋 (𝑢,𝑣) in Lemma 5.3.1 as one of
the two key properties that render the sum-linear model very similar to the max-linear
one. The other one refers to the limit of the vector, scaled by a particular variable
given that this variable exceeds a high threshold.

Proposition 5.5.1. Let 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) be sum-linear recursive SEM on some index
set 𝑉 . For every 𝑢 ∈ 𝑉 , as 𝑡 →∞

L(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡) 𝑑−→ L(𝐴 (𝑢 ) ) = L(𝐴𝑢𝑣, 𝑣 ∈ 𝑉 )

=
∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿 (𝑏𝑣 𝑗 /𝑏𝑢𝑗 ,𝑣∈𝑉 ) .
(5.20)

Proof. Let 𝐹𝑋 be the joint multivariate distribution function of the sum-linear model
𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ). By Einmahl et al. (2012, Lemma 6.1) we know that 𝐹𝑋 is in the
max-domain of attraction of a distribution𝐺 , written also 𝐹𝑋 ∈ 𝐷 (𝐺). The condition
𝐹𝑋 ∈ 𝐷 (𝐺) implies by Rootzén and Tajvidi (2006, Theorem 2.2(i)) and Beirlant et al.
(2004, Section 8.3) that there is a random vector, 𝑌 , with distribution given by

ln𝐺 (min(1, 𝑥𝑣), 𝑣 ∈ 𝑉 ) − ln𝐺 (𝑥)
ln𝐺 (1, . . . , 1) , 𝑥 ∈ (0,∞]𝑉 ,

such that the following convergence in distribution holds

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | max
𝑣∈𝑉

𝑋𝑣 > 𝑡
𝑑−→ 𝑌 . (5.21)

The convergence in (5.21) implies that for every 𝑢 ∈ 𝑉 there is a random vector
𝑌 (𝑢 ) := (𝑌𝑣, 𝑣 ∈ 𝑉 ) | 𝑌𝑢 > 1 such that

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡
𝑑−→ (𝑌𝑣, 𝑣 ∈ 𝑉 ) | 𝑌𝑢 > 1 =: 𝑌 (𝑢 ) .

By Segers (2020b, Theorem 2.a,c)) the convergence above is equivalent to

(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡
𝑑−→ (𝜉𝑢𝑣, 𝑣 ∈ 𝑉 ), (5.22)
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for some 𝜉𝑢 = (𝜉𝑢𝑣, 𝑣 ∈ 𝑉 ) such that 𝑌 (𝑢 ) = 𝜁 𝜉𝑢 with 𝜁 being unit Pareto and
independent of 𝜉𝑢 . If 𝑋 ′ is a max-linear with parameter matrix {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 , from Segers
(2020b, Example 3) we have

(𝑋 ′𝑣/𝑋 ′𝑢, 𝑣 ∈ 𝑉 ) | 𝑋 ′𝑢 > 𝑡 → (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) ∼
∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿 (𝑏𝑣 𝑗 /𝑏𝑢𝑗 ,𝑣∈𝑉 ) . (5.23)

Because 𝑋 ′ as max-linear and 𝑋 as sum-linear models belong to the same domain of
attraction, the one of the distribution 𝐺 ,we must have that the two limits in (5.22)
and (5.23) are the same, hence 𝜉𝑢 = (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ). □

Remark. The convergence of the distribution in (5.20) holds for any sum-linear model
with representation as in (5.5), not necessarily a graphical model.

A unique shortest trail (undirected path) exists for every pair of nodes according
to property (P3) of a ttt discussed in Section 4.2. Recall the definitions from Section 4.3
for 𝑡 (𝑢, 𝑣), 𝑡𝑢 (𝑢, 𝑣), the set of edges 𝐸𝑢 from (4.15), and the node𝑤𝑢,𝜏 for fixed 𝑢 and
every 𝜏 ∈ T. The following proposition says that the limit of (𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) is based on
the joint distribution of a vector of random edge weights (𝑀𝑒 , 𝑒 ∈ 𝐸𝑢). The following
proposition is the counterpart of Proposition 4.3.1 from the previous chapter for
sum-linear models.

Proposition 5.5.2 (Factorization of the tail limit). Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) be a sum-linear
model as in Definition 5.2.1. Fix 𝑢 ∈ 𝑉 . Let 𝐸𝑢 be as in (4.15) and let (𝑀𝑒 , 𝑒 ∈ 𝐸𝑢) be a
random vector composed of independent subvectors𝑀 (𝑢,𝜏 ) =

(
𝑀𝑤𝑢,𝜏 , 𝑗 : 𝑗 ∈ 𝑉𝜏 , (𝑤𝑢,𝜏 , 𝑗) ∈

𝐸𝑢
)
for every transitive tournament 𝜏 ∈ T. Let𝑀 (𝑢,𝜏 ) , 𝜏 ∈ T, have the marginal limiting

distribution as in Lemma 5.8.2 and be mutually independent.
The following statements are equivalent:

(i) T has a unique source.
(ii) For every 𝑢 ∈ 𝑉 , we have, as 𝑡 →∞, the weak convergence

L(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡) 𝑑−→ L(𝐴 (𝑢 ) ) = L(𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) (5.24)

with
𝐴𝑢𝑣 =

∏
𝑒∈𝑡𝑢 (𝑢,𝑣)

𝑀𝑒 , 𝑣 ∈ 𝑉 . (5.25)

(iii) There exists 𝑢 ∈ 𝑉 such that the limit in (5.24) and (5.25) holds.

5.6 Unobserved variables and the identifiability criterion

Consider again the case when some of 𝑋𝑣, 𝑣 ∈ 𝑉 are unobserved. The set of nodes
with observed variables is 𝑈 and the set with non-observed ones 𝑈 . The angular
measure of the subvector (𝑋𝑣, 𝑣 ∈ 𝑈 ) is 𝐻𝜃,𝑈 and is given by

𝐻𝜃,𝑈 =

𝑠∑︁
𝑟=1

𝜇𝑟𝛿 (𝜔𝑣𝑟 ,𝑣∈𝑈 ) (5.26)

for a collection of atoms {𝜔𝑟 }𝑠𝑟=1 = {(𝜔𝑣𝑟 , 𝑣 ∈ 𝑈 )}𝑠𝑟=1 and their masses {𝜇𝑟 }𝑠𝑟=1. An
atom𝜔𝑟 is equal to (𝛽𝑣𝑟 , 𝑣 ∈ 𝑈 )/𝜇𝑟 where (𝛽𝑣𝑟 , 𝑣 ∈ 𝑈 ) is a vector of coefficients whose
value is related to the one of the vectors {(𝑏𝑣𝑖 , 𝑣 ∈ 𝑈 )}.

When there are unobserved variables, it is possible that two different edge parame-
ter vectors 𝜃1, 𝜃2 ∈ Θ̊Σ induce the same distribution of (𝑋𝑣, 𝑣 ∈ 𝑈 ) and accordingly the
same angular measure𝐻𝜃,𝑈 . We call this the identifiability problem due to unobserved
variables and it turns out that a criterion for identifiability can be provided for a ttt
with unique source.

We first need to assure ourselves that there is no identifiability problem in the
distribution of the complete vector.
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Lemma 5.6.1 (Parameter identifiability ). Let 𝑋 be a sum-linear model as in Defini-
tion 5.2.1 with respect to a ttt, T . Then for the angular measure 𝐻𝜃 we have
(i) 𝑚𝑖 > 0 for all 𝑖 ∈ 𝑉 ;
(ii) for any atom 𝑎𝑖 = (𝑎𝑣𝑖 )𝑣∈𝑉 , we have 𝑎𝑣𝑖 > 0 if and only if 𝑣 ∈ Desc(𝑖). Specifically,

all |𝑉 | vectors 𝑎𝑖 are different;
(iii) for 𝜃1 ≠ 𝜃2 ∈ Θ̊Σ we have 𝐻𝜃1 ≠ 𝐻𝜃2 .

Proof. When there are no latent variables we have for every node 𝑗 ∈ 𝑉 , 𝑚 𝑗 =∑
𝑖∈Desc( 𝑗 ) 𝑏𝑖 𝑗 > 0 and Desc( 𝑗) contains at least the node 𝑗 for which we have 𝑏 𝑗 𝑗 > 0

by the assumptions on the parameter space Θ̊Σ. This shows that we have |𝑉 | well
defined atoms and their respective positive masses.

Also, we cannot have 𝑎𝑖 = 𝑎 𝑗 . The argument is the same as in Lemma 4.4.1
which is about identifiability of the parameters in the max-linear model. This is
because 𝑏𝑣𝑖 > 0 for all 𝑣 ∈ Desc(𝑖), and respectively 𝑏𝑣 𝑗 > 0 for all 𝑣 ∈ Desc( 𝑗).
Since Desc(𝑖) ≠ Desc( 𝑗) for every 𝑖 ≠ 𝑗 ∈ 𝑉 , the vectors 𝑎𝑖 , 𝑎 𝑗 have different zero
patterns so all |𝑉 | atoms are distinct from each other and the coefficient vectors
{(𝑏𝑣𝑖 , 𝑣 ∈ 𝑉 )}𝑖=1,..., |𝑉 | can be uniquely associated to a node of the graph and hence to
an expressions in terms of (𝑐𝑒 , 𝑒 ∈ 𝐸) according to (5.7). This shows (ii).

Given that we can reconstruct the matrix 𝐵 from the set of atoms {𝑎𝑖 } and masses
{𝑚𝑖 } we can solve from (5.7) for𝐶 . This will prove the third statement. Since we have

𝐵 = (𝐼 |𝑉 | −𝐶)−1𝐷 = (𝐼 |𝑉 | −𝐶)−1 diag(𝐵),

with diag(𝐵) being a diagonal matrix with main diagonal the elements {𝑏𝑣𝑣}𝑣∈𝑉 .
Then

𝐶 = (diag(𝐵) − 𝐵)𝐵−1.

Note that 𝐵 is invertible because from (5.7) it is given by the product of two invertible
matrices. □

When there are latent variables the first two points in the lemma above may not
hold for the angular measure 𝐻𝜃,𝑈 . This is a consequence of the fact that it is possible
to have Desc(𝑖) ∩𝑈 = ∅ for some 𝑖 ∈ 𝑉 or Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 for 𝑖 ≠ 𝑗 ∈ 𝑉 .

Recall the conditions of identifiability for the max-linear model:

(I1) any 𝑢 ∈ 𝑈 has at least two children,

(I2) any 𝑢 ∈ 𝑈 is the source of some tournament in T .

Exactly the same conditions hold for the sum-linear model too.

Proposition 5.6.1 (Parameters’ identifiability in case of latent variables). Let 𝑋 be a
sum-linear model as in Definition 5.2.1 and let T = (𝑉 , 𝐸) be a ttt with single source.
Let 𝑈 be the set of nodes whose variables are unobserved. The parameter 𝜃 is uniquely
identifiable from the distribution of (𝑋𝑢 : 𝑢 ∈ 𝑈 ) if and only if conditions (I1) and (I2)
are satisfied.

5.7 Conclusion

We have dedicated the present chapter on the sum-linear model, and have shown that
the properties of interest are exactly identical to those of the max-linear model under
some constraints on the parameter spaces.

In particular, the condition for markovianity with respect to the skeleton and the
parameter identifiability criterion are the same for both models. Factorization of the
tail limits is possible for both models under the same condition. The differences are
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in the parameter space for 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) and the map 𝜃 ↦→ {𝑏𝑖 𝑗 }𝑖, 𝑗 ∈ 𝑉 . However
the common feature is that {𝑏𝑖 𝑗 } factorize into terms, each of which contains only
the edge weights within a certain tournament. Note however that this one depends
on the graph, the ttt is a special graph with tree-like structure.

We can hope that the similarities between the two models might be the case for
other properties known for the max-linear model, but not studied on the sum-linear
model, or the other way around. For instance graph structure learning methods under
the constraint that the graph is a tree of transitive tournaments with unique source
might be the same for both models. This is hypothesis for further research because
the different parameter spaces and coefficients {𝑏𝑖 𝑗 }𝑖, 𝑗∈𝑉 can be important factors.
Although not as popular as the max-linear models in extreme value literature the
sum-linear Bayesian networks are used in several papers so far, such as Budhathoki
et al. (2022), Zhao et al. (2021), and Pasche et al. (2021).

5.8 Supplement

5.8.1 Additional properties of a ttt

Lemma 5.8.1. Let T = (𝑉 , 𝐸) be a ttt as in Definition 4.2.1.
1. Let T have a unique source. The skeleton of T , 𝑇 , is the same as the moral graph
T𝑚 , hence T𝑚 = 𝑇 .

2. Let T have a unique source. Let 𝐴, 𝐵, 𝑆 ⊂ 𝑉 be nonempty, disjoint subsets.
Separation of 𝐴 and 𝐵 by 𝑆 in the skeleton 𝑇 of T implies that 𝐴 and 𝐵 are
d-separated by 𝑆 in T ,i.e.

𝐴 ⊥𝑇 𝐵 | 𝑆 =⇒ d-sepT (𝐴, 𝐵 | 𝑆).

3. Every path 𝑝 ∈ 𝜋 (𝑎, 𝑏) contains the unique shortest path, 𝑝 (𝑎, 𝑏).

Proof. 1. We need to show that in the graph 𝑇 we don’t need to add anymore edges
between two nodes with common child in T and hence considering the skeleton of
T is enough to obtain T𝑚 . Consider two nodes, 𝑎, 𝑏 with common child in T . Since
there may not be v-structures by Lemma 4.6.1, the parents and the child must belong
to the same tournament, then they are connected.

2. Assume that for nonempty disjoint sets 𝐴, 𝐵, 𝑆 ⊂ 𝑉 , the sets 𝐴 and 𝐵 are sep-
arated in 𝑇 by 𝑆 . Then all non-directed paths from 𝐴 to 𝐵 pass through 𝑆 . Hence 𝑆
must contain at least one separator node for every path from 𝐴 to 𝐵. According to
Lemma 4.6.1-2, none of the nodes may have parents from different tournaments. This
means that all paths from 𝐴 to 𝐵 are not active according to Definition 3.6 of Koller
and Friedman (2009) and hence that 𝐴 and 𝐵 are d-separated given 𝑆 in T according
to Definition 3.7 of the same book.

3. Let the unique shortest path be on the following node sequence {𝑎 = 𝑣1, . . . , 𝑣𝑛 =

𝑏}. For a triple of consecutive nodes on this path 𝑣𝑖−1, 𝑣𝑖 , 𝑣𝑖+1 we must have that 𝑣𝑖−1
and 𝑣𝑖+1 belong to different tournaments as otherwise there will be an edge between
the two and hence a shorter path– a contradiction to the assumption that the shortest
path involves 𝑣𝑖 .

Let there be a path 𝑝 ∈ 𝜋 (𝑎, 𝑏) for which a certain node from the unique short-
est path, say 𝑣𝑟 , does not belong to 𝑝 . Instead, let the path 𝑝 pass through nodes
{𝑣𝑟−1, . . . , 𝑢, . . . , 𝑣𝑟+1}.

The nodes 𝑣𝑟 , 𝑢 must belong to the same tournament, as otherwise there is a non di-
rected cycle involving several tournaments, i.e., on the set of nodes {𝑎, . . . , 𝑣𝑟 , . . . , 𝑏}∪
{𝑏, . . . , 𝑢, . . . , 𝑎}, but this is impossible according to property (P2). If 𝑢 is in the
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same tournament as 𝑣𝑟 it can be either in the tournament determined by the edge
(𝑣𝑟−1, 𝑣𝑟 ) ∈ 𝐸, say 𝜏𝑟−1, or in a tournament determined by the edge (𝑣𝑟 , 𝑣𝑟+1) ∈ 𝐸, say
𝜏𝑟+1.

Assume 𝑢 belongs to 𝜏𝑟−1. The only possible way for 𝑢 to have a directed path
going to 𝑣𝑟+1 without violating properties (P1) and (P2) of a ttt is that this path passes
through 𝑣𝑟 , hence every path from 𝑎 to 𝑏 containing 𝑢 passes through 𝑣𝑟 too. Similarly
if 𝑢 belong to 𝜏𝑟+1: the only possible way for 𝑢 to have a directed path coming from
𝑣𝑟−1 without violating properties (P1) and (P2) of a ttt is that this path passes through
𝑣𝑟 . □

5.8.2 Proofs for section 5.5

Lemma 5.8.2. Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) be sum-linear graphical model as in Definition 5.2.1. Let
𝜏 be a given transitive tournament on nodes 𝑉𝜏 . Then for 𝑢 ∈ 𝑉𝜏

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉𝜏 | 𝑋𝑢 > 𝑡

)
𝑑−→ L(𝑀 (𝑢,𝜏 ) ) = L(𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 )

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢)

,𝑣∈𝑉𝜏
} . (5.27)

The vector 𝑀 (𝑢,𝜏 ) = (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) has dependent variables and the distribution of a
single element is as follows.

1. The distribution of𝑀𝑢𝑣 when (𝑢, 𝑣) ∈ 𝐸.
(a) If 𝑢 is the source node of 𝜏 , the distribution is given by L(𝑀𝑢𝑣) = 𝛿{𝑐𝜋 (𝑢,𝑣) } .
(b) If 𝑢 is not the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢)

} .
2. The distribution of𝑀𝑢𝑣 when (𝑣,𝑢) ∈ 𝐸.

(a) If 𝑣 is the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) = 𝑐𝜋 (𝑣,𝑢 )𝛿{1/𝑐𝜋 (𝑣,𝑢) } + (1 − 𝑐𝜋 (𝑣,𝑢 ) )𝛿{0} .

(b) If 𝑣 is not the source node of 𝜏 , the distribution is given by

L(𝑀𝑢𝑣) =
∑︁

𝑗∈An(𝑣)
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗𝛿{0} .

Proof. The proof largely follows the one to the corresponding lemma in the chapter
on max-linear models. The only difference is the in products over unique shortest
path: in the max-linear model 𝑐𝑝 (𝑖, 𝑗 ) is replaced by the sum over all path products,
𝑐𝜋 (𝑖, 𝑗 ) in the sum-linear model. Also, an edge coefficient in the role of a path product
over the unique shortest path between two adjacent nodes, 𝑐𝑖 𝑗 , in the max-linear
model, is replaced by the sum over all paths, 𝑐𝜋 (𝑖, 𝑗 ) . We elaborate the full proof, but
details that are common for both sum- and max-linear models, might be omitted and
we refer to Lemma 4.6.3.

From Proposition 5.5.1 we have the limit

L(𝑀 (𝑢,𝜏 ) ) =
∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿{
𝑏𝑣𝑗

𝑏𝑢 𝑗
,𝑣∈𝑉𝜏

} .
Adapting this representation to exclude𝑏𝑢 𝑗 = 0 for 𝑗 ∉ An(𝑢) and using𝑏𝑖 𝑗 = 𝑐𝜋 ( 𝑗,𝑖 )𝑏 𝑗 𝑗
for 𝑗 ∈ An(𝑖) we obtain ∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑣)𝑏𝑗 𝑗
𝑐𝜋 ( 𝑗,𝑢)𝑏𝑗 𝑗

,𝑣∈𝑉𝜏
} . (5.28)
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Recall that by definition 𝑐𝜋 (𝑖,𝑖 ) = 1 and 𝑐𝜋 (𝑖, 𝑗 ) = 0 if 𝑖 ∉ An( 𝑗). In what follows
Lemma 5.3.1 will be used all the time.

Next we show that (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) are mutually dependent. When 𝑢 is the source
of 𝜏 then for all 𝑗 ∈ An(𝑢) the atom(

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢 )

, 𝑣 ∈ 𝑉𝜏
)
=

(
𝑐𝜋 ( 𝑗,𝑢 )𝑐𝜋 (𝑢,𝑣)
𝑐𝜋 ( 𝑗,𝑢 )

, 𝑣 ∈ 𝑉𝜏
)
= (1; 𝑐𝜋 (𝑢,𝑣) , 𝑣 ∈ 𝑉𝜏 \ 𝑢)

gets probability
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1. Hence (𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 ) are at the same time perfectly
dependent and independent.

Assume 𝑢 is not the source node. Let for brevity 𝑉𝜏 = {1, 2, . . . ,𝑚}: the nodes
are labeled according to their order of out-degrees within 𝜏 : the source node of 𝜏
has𝑚 − 1 (largest) out-degree and is labeled by 1, the node with out-degree𝑚 − 2 is
labeled as 2, etc. Note that for two nodes 𝑖, 𝑖 + 1 ∈ 𝑉𝜏 we have 𝑐𝜋 (𝑖,𝑖+1) = 𝑐𝑖,𝑖+1, because
there is only one path from 𝑖 to 𝑖 + 1, namely (𝑖, 𝑖 + 1) ∈ 𝐸𝜏 .

Consider 𝑢 being the node 2. We have, thanks to the no-cycle property within a
tournament An(2) = An(1) ∪ {2}. For all 𝑗 ∈ An(1) we have(

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,2)

, 𝑣 = 1, . . . ,𝑚
)
=

(
𝑐𝜋 ( 𝑗,1)
𝑐𝜋 ( 𝑗,1)𝑐12

; 1;
𝑐𝜋 ( 𝑗,1)𝑐𝜋 (1,𝑣)
𝑐𝜋 ( 𝑗,1)𝑐12

, 𝑣 = 3, . . . ,𝑚
)
, (5.29)

which is an atom of (𝑀2𝑣, 𝑣 = 1, . . . ,𝑚) with mass
∑

𝑗∈An(1) 𝑏2𝑗 . This means that for
the marginal distribution of 𝑀21 we have P(𝑀21 = 1/𝑐12) ≥

∑
𝑗∈An(1) 𝑏2𝑗 . For 𝑗 = 2

we have an atom (0, 1, 𝑐𝜋 (2,3) , . . . , 𝑐𝜋 (2,𝑚) ) with mass 𝑏22. This means that for the
marginal probabilities of the variables (𝑀23, . . . , 𝑀2𝑚) we have P(𝑀2𝑣 = 𝑐𝜋 (2,𝑣) ) ≥ 𝑏22,
for all 𝑣 = 3, . . . ,𝑚. Take a vector of the following coordinates

(1/𝑐12, 1, 𝑐23, 𝑐𝜋 (2,4) , . . . , 𝑐𝜋 (2,𝑚) ).

Note that this vector cannot be the same as the one in (5.29). For 𝑣 = 3 we cannot have
𝑐23 = 𝑐𝜋 (1,3)/𝑐12 = (𝑐13 + 𝑐12𝑐23)/𝑐12, because this would require 𝑐13 = 0. However,
edge weights must be all positive by assumption. The joint probability of the vector
of coordinates (1/𝑐12, 1, 𝑐23, 𝑐𝜋 (2,4) , . . . , 𝑐𝜋 (2,𝑚) ) is

P(𝑀21 = 1/𝑐12, 𝑀22 = 1, 𝑀23 = 𝑐23, 𝑀24 = 𝑐𝜋 (2,4) , . . . , 𝑀2𝑚 = 𝑐𝜋 (2,𝑚) ) = 0.

However the product of marginal probabilities is positive:

P(𝑀21 = 1/𝑐12) P(𝑀22 = 1)
𝑚∏
𝑣=3
P(𝑀2𝑣 = 𝑐𝜋 (2,𝑣) ) ≥

∑︁
𝑗∈An(1)

𝑏2𝑗 × 𝑏𝑚−1
22 > 0.

Now let 𝑢 ≥ 3. Take the vector of coordinates in (5.28) corresponding to 𝑗 = 1
which is equal to (1, 𝑐12, 𝑐𝜋 (1,3) , . . . , 𝑐𝜋 (1,𝑚) )/𝑐𝜋 (1,𝑢 ) and has probability at least 𝑏𝑢1.
Consider also the vector of coordinates for 𝑗 = 𝑢 which is (0, . . . , 0, 1; 𝑐𝜋 (𝑢,𝑣) , 𝑣 =

𝑢 + 1, . . . ,𝑚) with mass at least 𝑏𝑢𝑢 . Replace the first coordinate by 1/𝑐𝜋 (1,𝑢 ) . The
vector obtained in this way has joint probability zero. For every 𝑗 ∈ pa(𝑢) we have
𝑏𝑣 𝑗/𝑏𝑢 𝑗 = 0 when 𝑣 is not child of 𝑗 or equivalently, given the order in the node
labeling, when 𝑣 < 𝑗 . So for fixed 𝑢 ≥ 3, for 𝑗 = 1 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚)
has no zeros. For 𝑗 = 2 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) has one zero, namely
(0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 2, . . . ,𝑚), for 𝑗 = 3 the vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) has two zeros,
namely (0, 0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 3, . . . ,𝑚) and so on until 𝑗 = 𝑢 with the corresponding
vector (𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 1, . . . ,𝑚) = (0, . . . , 0;𝑏𝑣 𝑗/𝑏𝑢 𝑗 , 𝑣 = 𝑢, . . . ,𝑚). By replacing the first
coordinate by a non-zero value in this vector we get an impossible value for the
random vector (𝑀𝑢𝑣, 𝑣 = 1, . . . ,𝑚) or a value with probability zero. Considering the
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univariate marginal distributions of (𝑀𝑢𝑣, 𝑣 = 1, . . . ,𝑚) we obtain for the product of
marginal probabilities a positive value, namely:

P(𝑀𝑢1 = 1/𝑐𝜋 (1,𝑢 ) )
[
𝑢−1∏
𝑣=2
P(𝑀𝑢𝑣 = 0)

]
P(𝑀𝑢𝑢 = 1)

𝑚∏
𝑣=𝑢+1

P(𝑀𝑢𝑣 = 𝑐𝜋 (𝑢,𝑣) )

≥ 𝑏𝑢1 × 𝑏𝑚−1
𝑢𝑢 > 0

This shows that for any 𝑢 ∈ 𝑉𝜏 the vector (𝑀𝑢1, . . . , 𝑀𝑢𝑚) has jointly dependent
elements.

Next we show the distribution of a single element𝑀𝑢𝑣, 𝑣 ∈ 𝑉𝜏 \ 𝑢.
1. Consider first when 𝑢 is the source node in 𝜏 . The same reasoning holds as in

the corresponding lemma for the max-linear model. Hence for 𝑗 ∈ An(𝑢)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑢 )𝑐𝜋 (𝑢,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
= 𝑐𝜋 (𝑢,𝑣) ,

and since
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1 we obtain the desired result under 1.(a).
When𝑢 is not the source node in 𝜏 not all shortest paths to 𝑣 pass through𝑢 hence

for 𝑗 ∈ An(𝑢) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢 )

> 0,

with mass 𝑏𝑢 𝑗 . Hence the result in 1.(b). Note that zero is not possible value as we
still have An(𝑢) ⊂ An(𝑣). Also 𝑐𝜋 (𝑢,𝑢 ) = 1 by convention.

2. Let us have now (𝑣,𝑢) ∈ 𝐸. When 𝑣 is a source node in 𝜏 , we have, for 𝑗 ∈ An(𝑣)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑣)𝑐𝜋 (𝑣,𝑢 )

=
1

𝑐𝜋 (𝑣,𝑢 )
> 0,

which is an atom with probability∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑣)
𝑐𝜋 ( 𝑗,𝑣)𝑐𝜋 (𝑣,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝜋 (𝑣,𝑢 )

∑︁
𝑗∈An(𝑣)

𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

= 𝑐𝜋 (𝑣,𝑢 )
∑︁

𝑗∈An(𝑣)
𝑏𝑣 𝑗 = 𝑐𝜋 (𝑣,𝑢 ) .

The probability of the zero atom is∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 = 1 − 𝑐𝜋 (𝑣,𝑢 ) .

This shows 2.(a).
When 𝑣 is not a source node of 𝜏 we have for 𝑗 ∈ An(𝑣)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢 )

> 0,

an atom with mass 𝑏𝑢 𝑗 and zero atom with probability
∑

𝑗∈An(𝑢 )\An(𝑣) 𝑏𝑢 𝑗 . This
shows 2.(b). □

Lemma 5.8.3. Let (𝑋𝑣, 𝑣 ∈ 𝑉 ) be sum-linear graphical model as in Definition 5.2.1. Let
T have unique source. For any 𝑢 ∈ 𝑉 we have

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡

)
𝑑−→ L(𝐴𝑢𝑣, 𝑣 ∈ 𝑉 ) =

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗𝛿
{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢)

,𝑣∈𝑉
} . (5.30)
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The distribution of𝐴𝑢𝑣 depends on the three types of possible trails according to Lemma 4.6.2-
2. In what follows we assume that 𝑢, 𝑣 are not adjacent. For the case (𝑢, 𝑣) ∈ 𝐸 see
Lemma 5.8.2.

1. Distribution of 𝐴𝑢𝑣 on a path {𝑢 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣 = 𝑣𝑛} with 𝑢, 𝑟 ∈ 𝜏 , one of the
tournaments of T .
(a) If 𝑢 is a source node in 𝜏 then L(𝐴𝑢𝑣) = 𝛿{𝑐𝜋 (𝑢,𝑣) } .
(b) If 𝑢 is not a source node in 𝜏 we have

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑟 )
𝑐𝜋 ( 𝑗,𝑢)

𝑐𝜋 (𝑟,𝑣)

} .
2. Distribution of 𝐴𝑢𝑣 on a path {𝑣 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑢 = 𝑣𝑛} with 𝑣, 𝑟 ∈ 𝜏 .

(a) If 𝑣 is a source node in 𝜏 then

L(𝐴𝑢𝑣) = 𝑐𝜋 (𝑣,𝑢 )𝛿{
1

𝑐𝜋 (𝑣,𝑢)

} + (1 − 𝑐𝜋 (𝑣,𝑢 ) )𝛿{0} .
(b) If 𝑣 is not a source node in 𝜏 then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑣)
𝑐𝜋 (𝑟,𝑢 )𝑏𝑟 𝑗𝛿{

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗𝛿{0} .

3. The distribution of 𝐴𝑢𝑣 on a trail composed of two paths 𝑝 (𝑟,𝑢) and 𝑝 (𝑟, 𝑣). Let
the trail be on nodes {𝑢, . . . ,𝑚, 𝑟, 𝑛, . . . , 𝑣}. Let also 𝜏𝑚, 𝜏𝑛 be two tournaments
with 𝑟,𝑚 ∈ 𝜏𝑚 and 𝑟, 𝑛 ∈ 𝜏𝑛 .
(a) If 𝑟 is source in both 𝜏𝑚 and 𝜏𝑛 , then

L(𝐴𝑢𝑣) = 𝑐𝜋 (𝑟,𝑢 )𝛿{
𝑐𝜋 (𝑟,𝑣)
𝑐𝜋 (𝑟,𝑢)

} + (1 − 𝑐𝜋 (𝑟,𝑢 ) )𝛿{0} .
(b) If 𝑟 is source in 𝜏𝑚 , but not in 𝜏𝑛 , then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑟 )
𝑐𝜋 (𝑟,𝑢 )𝑏𝑟 𝑗𝛿{

𝑐𝜋 ( 𝑗,𝑛)𝑐𝜋 (𝑛,𝑣)
𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑟 )

𝑏𝑢 𝑗𝛿{0} .

(c) If 𝑟 is source in 𝜏𝑛 , but not in 𝜏𝑚 , then

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑟 )
𝑐𝜋 (𝑚,𝑢 )𝑏𝑚𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑣)
𝑐𝜋 ( 𝑗,𝑚)𝑐𝜋 (𝑚,𝑢)

} + ∑︁
𝑗∈An(𝑢 )\An(𝑟 )

𝑏𝑢 𝑗𝛿{0} .

Proof. Again, the proof is the same as the one for the max-linear model of Lemma 4.6.4.
Because of Lemma 5.3.1 we only need to change 𝑐𝑝 (𝑖, 𝑗 ) by 𝑐𝜋 (𝑖, 𝑗 ) . We, however,
elaborate only the first four cases, omitting details that refer to properties of the
graph and that can be found in Lemma 4.6.4. We repeat some of the pictures from
Lemma 4.6.4 for the ease of the reader.

From Proposition 5.5.1 we have the limit

L
(
𝑋𝑣

𝑋𝑢

, 𝑣 ∈ 𝑉 | 𝑋𝑢 > 𝑡

)
𝑑−→

∑︁
𝑗∈𝑉

𝑏𝑢 𝑗𝛿{
𝑏𝑣𝑗

𝑏𝑢 𝑗
,𝑣∈𝑉

} .
Adapting this representation to eliminate non defined atoms with zero probabilities
when 𝑏𝑢 𝑗 = 0, 𝑗 ∉ An(𝑢), and using 𝑏𝑖 𝑗 = 𝑐𝜋 ( 𝑗,𝑖 )𝑏 𝑗 𝑗 for 𝑗 ∈ An(𝑖) we obtain∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑢)

,𝑣∈𝑉
} .
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Recall that 𝑐𝜋 (𝑖,𝑖 ) = 1 and 𝑐𝜋 (𝑖, 𝑗 ) = 0 if 𝑖 ∉ An( 𝑗). For a single 𝑣 ∈ 𝑉 \ 𝑢 we have the
marginal distribution

L(𝐴𝑢𝑣) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{

𝑏𝑣𝑗

𝑏𝑢 𝑗

} . (5.31)

As for the max-linear model the distribution of 𝐴𝑢𝑣 depends in a deterministic
way on properties of the ttt which are stated in Lemma 4.6.2.

First we deal with 1.(a). The case is illustrated by the graph below. All paths from
An(𝑢) to 𝑣 pass through 𝑢 because 𝑢 is source in 𝜏 .

𝑢 𝑟 · · · 𝑣

𝜏

Hence for all 𝑗 ∈ An(𝑢) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝜋 ( 𝑗,𝑢 )𝑐𝜋 (𝑢,𝑣)
𝑐𝜋 ( 𝑗,𝑢 )

= 𝑐𝜋 (𝑢,𝑣) > 0,

with mass
∑

𝑗∈An(𝑢 ) 𝑏𝑢 𝑗 = 1.
Next we show 1.(b). The unique shortest path from 𝑗 ∈ An(𝑢) to 𝑣 pass through 𝑟 ,

hence according to Lemma 5.3.1 𝑐𝜋 ( 𝑗,𝑣) = 𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑣) .

𝑢 𝑟 · · · 𝑣

· · ·𝜏

We have for 𝑗 ∈ An(𝑢)

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=
𝑐𝜋 ( 𝑗,𝑟 )
𝑐𝜋 ( 𝑗,𝑢 )

𝑐𝜋 (𝑟,𝑣) > 0,

with mass 𝑏𝑢 𝑗 , hence the expression in 1.(b).
Next we show 2.(a). When the directed path is from 𝑣 to 𝑢 zero is a possible value

of 𝐴𝑢𝑣 . All shortest paths from 𝑗 ∈ An(𝑣) to 𝑢 pass through 𝑣 as 𝑣 is source in 𝜏 .

𝑣 𝑟 · · · 𝑢

𝜏

For 𝑗 ∈ An(𝑣) the non-zero atom is given by

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑣)𝑐𝜋 (𝑣,𝑢 )

=
1

𝑐𝜋 (𝑣,𝑢 )
> 0, 𝑗 ∈ An(𝑣),

with mass ∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑣)
𝑐𝜋 ( 𝑗,𝑣)𝑐𝜋 (𝑣,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝜋 (𝑣,𝑢 )

∑︁
𝑗∈An(𝑣)

𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

= 𝑐𝜋 (𝑣,𝑢 )
∑︁

𝑗∈An(𝑣)
𝑏𝑣 𝑗 = 𝑐𝜋 (𝑣,𝑢 ) .
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For the zero atom we have probability∑︁
𝑗∈An(𝑢 )\An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 = 1 − 𝑐𝜋 (𝑣,𝑢 ) .

This shows 2.(a).
To show 2.(b) we note that the unique shortest path from 𝑗 ∈ An(𝑣) to 𝑢 pass

through 𝑟 , hence by Lemma 5.3.1 𝑐𝜋 ( 𝑗,𝑢 ) = 𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 ) .

𝑣 𝑟 · · · 𝑢

· · ·𝜏

Hence for 𝑗 ∈ An(𝑣) we have

𝑏𝑣 𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,𝑣)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 )

> 0,

which is an atom with mass 𝑏𝑢 𝑗 = 𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝜋 (𝑟,𝑢 )𝑏𝑟 𝑗 . The zero atom
comes from the fact that 𝑏𝑣 𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ An(𝑣), and it has probability∑

𝑗∈An(𝑢 )\An(𝑣) 𝑏𝑢 𝑗 . This shows the distribution under 2.(b).
For the distributions in cases 3.(a)-(c) we refer to Lemma 4.6.4 where we replace

𝑐𝑝 (𝑖, 𝑗 ) by 𝑐𝜋 (𝑖, 𝑗 ) as we did in the four cases above. Again this is possible thanks to
Lemma 5.3.1. □

Proof of Proposition 5.5.2

Proof. First we prove that (i) implies (ii). As in the proofs of the previous two lemmas
the proof laregely utilizes the corresponding proof for the max-linear model. We
present the complete proof.

Assume T has a unique source. We have to prove that for any 𝑢 ∈ 𝑉 an element
from the limiting vector in (5.24) is given by (5.25).

In Lemma 5.8.3 we have seen seven possible cases for the distribution of 𝐴𝑢𝑣

depending on deterministic properties of the trail between𝑢 and 𝑣 . Below we consider
each of these seven cases again.

1. Let the unique shortest trail between 𝑢 and 𝑣 be a path on node sequence
{𝑢 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣𝑛 = 𝑣}. Let 𝜏 be the tournament containing 𝑢, 𝑟 .

Case 1.(a) Let 𝑢 be source in 𝜏 . From Lemma 5.8.3-1.(a) we have 𝑃 (𝐴𝑢𝑣 = 𝑐𝜋 (𝑢,𝑣) ) =
1. Consider the variables (𝑀𝑒 , 𝑒 ∈ 𝑝 (𝑢, 𝑣)) which are by construction independent
between each other because they belong to different tournaments. Note that in this
case all nodes 𝑣1, . . . , 𝑣𝑛−1 are source nodes in the tournament containing that node
and the next one in the sequence. This follows from Lemma 4.6.2-1. Then according
to Lemma 5.8.2 1.(a) for every 𝑀𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝑝 (𝑢, 𝑣) we have P(𝑀𝑖 𝑗 = 𝑐𝜋 (𝑖, 𝑗 ) ) = 1 and
hence

P
( ∏
(𝑖, 𝑗 ) ∈𝑝 (𝑢,𝑣)

𝑀𝑖 𝑗 = 𝑐𝜋 (𝑢,𝑣)
)
=

∏
(𝑖, 𝑗 ) ∈𝑝 (𝑢,𝑣)

P(𝑀𝑖 𝑗 = 𝑐𝜋 (𝑖, 𝑗 ) ) = 1,

which shows 𝐴𝑢𝑣 =
∏
(𝑖, 𝑗 ) ∈𝑝 (𝑢,𝑣) 𝑀𝑖 𝑗 .

Case 1.(b). If 𝑢 is not the source in 𝜏 , the distribution of𝑀𝑢𝑟 is as in Lemma 5.8.2-
1.(b). As in the case 1.(a) all nodes 𝑟 = 𝑣2, 𝑣3, . . . , 𝑣𝑛−1 are source nodes in the
tournament containing that node and the next one in the sequence. The variables
𝑀𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝑝 (𝑟, 𝑣) are degenerate at 𝑐𝜋 (𝑖, 𝑗 ) , hence their product is degenerate at∏
(𝑖, 𝑗 ) ∈𝑝 (𝑟,𝑣) 𝑐𝜋 (𝑖, 𝑗 ) , which by Lemma 5.3.1 equals 𝑐𝜋 (𝑟,𝑣) . As the case 1.(a) above the

variables (𝑀𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝑝 (𝑢, 𝑣)) are by construction independent between each other
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because they are indexed by edges which belong to different tournaments. Then we
have

L
( ∏
(𝑖, 𝑗 ) ∈𝑝 (𝑢,𝑣)

𝑀𝑖 𝑗

)
= L

(
𝑀𝑢𝑟

∏
(𝑖, 𝑗 ) ∈𝑝 (𝑟,𝑣)

𝑀𝑖 𝑗

)
=

©«
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑟 )
𝑐𝜋 ( 𝑗,𝑢)

}ª®¬ ⊗ 𝛿{𝑐𝜋 (𝑟,𝑣) } =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑟 )
𝑐𝜋 ( 𝑗,𝑢)

𝑐𝜋 (𝑟,𝑣)

} . (5.32)

The sign ⊗ has the same meaning as in the proof of the corresponding proposition
for the max-linear model. The last one expression in (5.32) is the distribution of 𝐴𝑢𝑣

in Lemma 5.8.3-1.(b).
2. Let the unique shortest trail between 𝑢 and 𝑣 be a path from 𝑣 to 𝑢 on the node

sequence {𝑣 = 𝑣1, 𝑟 = 𝑣2, . . . , 𝑣𝑛 = 𝑢}. Let 𝜏 be the tournament containing 𝑣, 𝑟 .
Case 2.(a). Let 𝑣 be source in 𝜏 . Consider the random variables 𝑀𝑣𝑖+1,𝑣𝑖 for 𝑖 =

1, . . . , 𝑛 − 1 whose distributions are as in Lemma 5.8.2-2.(a). Since this is the unique
shortest trail from 𝑣 to 𝑢, all edges on it belong to different tournaments and the
vector (𝑀𝑣𝑖+1,𝑣𝑖 , 𝑖 = 1, . . . , 𝑛 − 1) contains independent variables by definition. Then

P
( 𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 =
1

𝑐𝜋 (𝑣,𝑢 )

)
=

𝑛−1∏
𝑖=1
P

(
𝑀𝑣𝑖+1,𝑣𝑖 =

1
𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 )

)
=

𝑛−1∏
𝑖=1

𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) = 𝑐𝜋 (𝑣,𝑢 ) .

(5.33)

In the second and last equality we used Lemma 5.3.1 according to which 𝑐𝜋 (𝑣,𝑢 ) =∏𝑛−1
𝑖=1 𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) . For the zero atom we have

P
( 𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0
)
= 1 −

𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0)

= 1 −
𝑛−1∏
𝑖=1
P

(
𝑀𝑣𝑖+1,𝑣𝑖 =

1
𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 )

)
= 1 − 𝑐𝜋 (𝑣,𝑢 ) .

(5.34)

The expressions in (5.33) and (5.34) represent indeed the distribution of 𝐴𝑢𝑣 in
Lemma 5.8.3-2.(a).

Case 2.(b). If 𝑣 is not source in 𝜏 consider a random variable𝑀𝑟 𝑣 with distribution
as in Lemma 5.8.2-2.(b) and a random variable 𝐴𝑢𝑟 constructed as in case 2.(a) here
above, i.e., as the product

∏𝑛−1
𝑖=2 𝑀𝑣𝑖+1,𝑣𝑖 . By construction𝑀𝑟 𝑣 is independent from 𝐴𝑢𝑟

with the same argument as above. We have

L(𝐴𝑢𝑟𝑀𝑟 𝑣) = ©«𝑐𝜋 (𝑟,𝑢 )𝛿{
1

𝑐𝜋 (𝑟,𝑢)

} + (1 − 𝑐𝜋 (𝑟,𝑢 ) )𝛿{0}ª®¬
⊗ ©«

∑︁
𝑗∈An(𝑣)

𝑏𝑟 𝑗𝛿
{
𝑐𝜋 ( 𝑗,𝑣)
𝑐𝜋 ( 𝑗,𝑟 )

} + ∑︁
𝑗∈An(𝑟 )\An(𝑣)

𝑏𝑟 𝑗𝛿{0}
ª®¬ ,

which gives non-zero atoms 𝑐𝜋 ( 𝑗,𝑣)/(𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 ) ), 𝑗 ∈ An(𝑣)withmasses𝑏𝑟 𝑗𝑐𝜋 (𝑟,𝑢 ) , 𝑗 ∈
An(𝑣). To show the probability of the zero atom, consider

P(𝐴𝑢𝑟𝑀𝑟 𝑣 = 0) = 1 − P(𝐴𝑢𝑟 > 0) P(𝑀𝑟 𝑣 > 0) = 1 − 𝑐𝜋 (𝑟,𝑢 )
∑︁

𝑗∈An(𝑣)
𝑏𝑟 𝑗

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑐𝜋 ( 𝑗,𝑟 )𝑏 𝑗 𝑗𝑐𝜋 (𝑟,𝑢 )
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=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑣)

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )\An(𝑣)
𝑏𝑢 𝑗 ,

which is what we need to confirm 𝐴𝑢𝑣 = 𝐴𝑢𝑟𝑀𝑟 𝑣 where 𝐴𝑢𝑣 is as in Lemma 5.8.3-2.(b).
3. In the three cases that follow let the unique shortest trail from 𝑢 to 𝑣 be given

by two paths 𝑝 (𝑟,𝑢) and 𝑝 (𝑟, 𝑣). Let the trail be on nodes {𝑢, . . . ,𝑚, 𝑟, 𝑛, . . . , 𝑣}. Let
also 𝜏𝑚, 𝜏𝑛 be two tournaments with 𝑟,𝑚 ∈ 𝜏𝑚 and 𝑟, 𝑛 ∈ 𝜏𝑛 .

Case 3.(a) Let 𝑟 be source in both 𝜏𝑚 and 𝜏𝑛 . Consider random variables 𝐴𝑟 𝑣 as in
Lemma 5.8.3-1.(a) and𝐴𝑢𝑟 as in Lemma 5.8.3-2.(a). In the present proof we have shown
in cases 1.(a) and 2.(a) that 𝐴𝑟 𝑣 and 𝐴𝑢𝑟 are factorizable in independent multiplicative
increments. By construction, 𝐴𝑟 𝑣 and 𝐴𝑢𝑟 are independent from each other, because
the multiplicative increments are independent. We have

P
(
𝐴𝑢𝑟𝐴𝑟 𝑣 =

𝑐𝜋 (𝑟,𝑣)
𝑐𝜋 (𝑟,𝑢 )

)
= P

(
𝐴𝑢𝑟 =

1
𝑐𝜋 (𝑟,𝑢 )

)
P(𝐴𝑟 𝑣 = 𝑐𝜋 (𝑟,𝑣) ) = 𝑐𝜋 (𝑟,𝑢 ) .

For the probability of the zero atom we have

P(𝐴𝑢𝑟𝐴𝑟 𝑣 = 0) = 𝑃 (𝐴𝑢𝑟 = 0) = (1 − 𝑐𝜋 (𝑟,𝑢 ) ).

The two displays above represent indeed the distribution of 𝐴𝑢𝑣 in Lemma 5.8.3-3.(a).
Case 3.(b) Let 𝑟 be source in 𝜏𝑚 , but not source in 𝜏𝑛 . Consider three random vari-

ables 𝐴𝑢𝑟 , 𝑀𝑟𝑛, 𝐴𝑛𝑣 with distributions as in Lemma 5.8.3-2.(a), Lemma 5.8.2-1.(b) and
Lemma 5.8.3-1.(a) respectively. For𝐴𝑢𝑟 and 𝐴𝑛𝑣 we have shown in cases 2.(a) and 1.(a)
in this proof that they are factorizable in independent multiplicative increments. By
construction𝑀𝑟𝑛 is independent from the increments in 𝐴𝑢𝑟 and 𝐴𝑛𝑣 . Then

L(𝐴𝑢𝑟𝑀𝑟𝑛𝐴𝑛𝑣) =
©«𝑐𝜋 (𝑟,𝑢 )𝛿{

1
𝑐𝜋 (𝑟,𝑢)

} + (1 − 𝑐𝜋 (𝑟,𝑢 ) )𝛿{0}ª®¬
⊗ ©«

∑︁
𝑗∈An(𝑟 )

𝑏𝑟 𝑗𝛿
{
𝑐𝜋 ( 𝑗,𝑛)
𝑐𝜋 ( 𝑗,𝑟 )

}ª®¬ ⊗ 𝛿{𝑐𝜋 (𝑛,𝑣) }
=

∑︁
𝑗∈An(𝑟 )

𝑏𝑟 𝑗𝑐𝜋 (𝑟,𝑢 )𝛿{
𝑐𝜋 ( 𝑗,𝑛)𝑐𝜋 (𝑛,𝑣)
𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢)

} + (1 − 𝑐𝜋 (𝑟,𝑢 ) )𝛿{0} .
Note that ∑︁

𝑗∈An(𝑢 )\An(𝑟 )
𝑏𝑢 𝑗 =

∑︁
𝑗∈An(𝑢 )

𝑏𝑢 𝑗 −
∑︁

𝑗∈An(𝑟 )
𝑏𝑢 𝑗 = 1 −

∑︁
𝑗∈An(𝑟 )

𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 )𝑏 𝑗 𝑗

= 1 − 𝑐𝜋 (𝑟,𝑢 )
∑︁

𝑗∈An(𝑟 )
𝑏𝑟 𝑗 = 1 − 𝑐𝜋 (𝑟,𝑢 ) .

In the second equality above we used 𝑐𝜋 ( 𝑗,𝑢 ) = 𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑢 ) for 𝑗 ∈ An(𝑟 ) according
to Lemma 5.3.1, because the unique shortest path from 𝑗 ∈ An(𝑟 ) to 𝑢 passes through
𝑟 because 𝑟 is source of 𝜏𝑚 . This shows that the distribution of 𝐴𝑢𝑟𝑀𝑟𝑛𝐴𝑛𝑣 is the one
of 𝐴𝑢𝑣 in Lemma 5.8.3-3.(b).

Case 3.(c) Let 𝑟 be source in 𝜏𝑛 , but not in 𝜏𝑚 . Consider variables 𝐴𝑢𝑚 ,𝑀𝑚𝑟 ,and
𝐴𝑟 𝑣 with distributions as in Lemma 5.8.3-2.(a), Lemma 5.8.2-2.(b) and Lemma 5.8.3-1.(a)
respectively. The variables 𝐴𝑢𝑚 and 𝐴𝑟 𝑣 have been shown to factorize in independent
increments in cases 2.(a) and 1.(a) of this proof respectively, hence they are independent
from each other too. By construction𝑀𝑚𝑟 is independent from 𝐴𝑢𝑚 and 𝐴𝑟 𝑣 . Then
we have

L(𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣) = ©«𝑐𝜋 (𝑚,𝑢 )𝛿{
1

𝑐𝜋 (𝑚,𝑢)

} + (1 − 𝑐𝜋 (𝑚,𝑢 ) )𝛿{0}
ª®¬
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⊗ ©«
∑︁

𝑗∈An(𝑟 )
𝑏𝑚𝑗𝛿

{
𝑐𝜋 ( 𝑗,𝑟 )
𝑐𝜋 ( 𝑗,𝑚)

} + ∑︁
𝑗∈An(𝑚)\An(𝑟 )

𝑏𝑚𝑗𝛿{0}
ª®¬ ⊗ 𝛿{𝑐𝜋 (𝑟,𝑣) } .

The non-zero atoms are 𝑐𝜋 ( 𝑗,𝑟 )𝑐𝜋 (𝑟,𝑣)/(𝑐𝜋 ( 𝑗,𝑚)𝑐𝜋 (𝑚,𝑢 ) ) for 𝑗 ∈ An(𝑟 ) with masses
𝑐𝜋 (𝑚,𝑢 )𝑏𝑚𝑗 = 𝑐𝜋 ( 𝑗,𝑚)𝑐𝜋 (𝑚,𝑢 )𝑏 𝑗 𝑗 By Lemma 5.3.1 since the unique shortest path from
𝑗 ∈ An(𝑟 ) to node 𝑢 passes through node𝑚 we have 𝑐𝜋 ( 𝑗,𝑚)𝑐𝜋 (𝑚,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗 =
𝑏𝑢 𝑗 . The probability of the zero atom is given by

P(𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣 = 0) = 1 − P(𝐴𝑢𝑚 > 0) P(𝑀𝑚𝑟 > 0)

= 1 − 𝑐𝜋 (𝑚,𝑢 )
∑︁

𝑗∈An(𝑟 )
𝑏𝑚𝑗 = 1 −

∑︁
𝑗∈An(𝑟 )

𝑐𝜋 ( 𝑗,𝑚)𝑐𝜋 (𝑚,𝑢 )𝑏 𝑗 𝑗

=
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗 −

∑︁
𝑗∈An(𝑟 )

𝑏𝑢 𝑗 =
∑︁

𝑗∈An(𝑢 )\An(𝑟 )
𝑏𝑢 𝑗 .

Hence the distribution of 𝐴𝑢𝑚𝑀𝑚𝑟𝐴𝑟 𝑣 is the one of 𝐴𝑢𝑣 in Lemma 5.8.3-3.(c). This
completes the proof that the statement in (i) implies (ii).

The statement in (iii) holds trivially from (ii).
Next we prove that (iii) implies (i) by contraposition: we assume that T has at

least two sources and we will show that it is not possible to obtain the factorization
in (5.25). Consider again as in the proof of Proposition 4.3.1 for the max-linear model
the v-structure on nodes 1, 2, 3 and the two trails 𝑡 (𝑢, 1) and 𝑡 (𝑢, 2).

First we take the case when, w.l.o.g., the v-structure belongs to 𝑡 (𝑢, 2) but not
to 𝑡 (𝑢, 1). Let the trail from 1 to 𝑢 be on nodes {𝑣1 = 1, 𝑣2, . . . , 𝑣𝑛 = 𝑢}. With the
same arguments as for the max-linear model we conclude that 𝐴𝑢2 is degenerate at
zero. As for the variables (𝑀𝑣𝑖+1,𝑣𝑖 , 𝑖 = 𝑛 − 1, . . . , 1;𝑀13, 𝑀32) which by construction
are independent as they belong to different tournaments and distributed according to
Lemma 5.8.2, we see that none of these is degenerate at zero. Hence their product
cannot be degenerate at zero too.

Next we consider the second case, when w.l.o.g. (1, 3) ∈ 𝑡 (𝑢, 1) and (2, 3) ∈ 𝑡 (𝑢, 2).
Let the trail from node 3 to 𝑢 be on nodes {𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛 = 𝑢}. First we consider
the case when we have at least one 𝑖 = 1, . . . , 𝑛 − 1 for which (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸, i.e., we
have at least one edge with direction from 𝑢 to 3. For the same reasons as in the
proof for the max-linear model we conclude L(𝐴𝑢1, 𝐴𝑢2) = 𝛿{0,0} . But then again the
factorisation (5.24)–(5.25) cannot hold, as according to Lemma 5.8.2 the increments
are never degenerate at zero.

Now let the trail from node 3 to 𝑢 be actually a path. Let also nodes 1 and 2
be sources with respect to the tournaments shared with node 3, say 1, 3 ∈ 𝑉𝜏1 and
2, 3 ∈ 𝑉𝜏2 . It is always possible to choose 1 and 2 in such a way they are the sources
of 𝜏1 and 𝜏2. This is because node 3 obviously is not a source in 𝜏1 and 𝜏2, so the
sources of these must point to 3. We can decompose An(𝑢) into three disjoint sets,
An(1),An(2) and the rest, An(𝑢) \ {An(1) ∪An(2)}. For the distribution of (𝐴𝑢1, 𝐴𝑢2)
we have

L(𝐴𝑢1, 𝐴𝑢2) =
∑︁

𝑗∈An(𝑢 )
𝑏𝑢 𝑗𝛿{

𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

}
=

∑︁
𝑗∈An(1)

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

} + ∑︁
𝑗∈An(2)

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

}
+

∑︁
𝑗∈An(𝑢 )\{An(1)∪An(2) }

𝑏𝑢 𝑗𝛿{
𝑏1𝑗
𝑏𝑢 𝑗

,
𝑏2𝑗
𝑏𝑢 𝑗

} .
For the atoms in the first summation we have

𝑏1𝑗

𝑏𝑢 𝑗
=
𝑐𝜋 ( 𝑗,1)𝑏 𝑗 𝑗

𝑐𝜋 ( 𝑗,𝑢 )𝑏 𝑗 𝑗
=

𝑐𝜋 ( 𝑗,1)
𝑐𝜋 ( 𝑗,1)𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 )

=
1

𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 )

147



5.8. SUPPLEMENT

and 𝑏2𝑗/𝑏𝑢 𝑗 = 0 as 𝑏2𝑗 = 0 for all 𝑗 ∈ An(1). Hence we have an atom that does not
depend on 𝑗 ∈ An(1), i.e.,

(
1/(𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 ) ), 0

)
and its mass is∑︁

𝑗∈An(1)
𝑏𝑢 𝑗 =

∑︁
𝑗∈An(1)

𝑐𝜋 ( 𝑗,1)𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 )𝑏 𝑗 𝑗 = 𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 ) = 𝑐𝜋 (1,𝑢 ) .

In a similar way, from the second summation in the last display we have an atom(
0, 1/(𝑐𝜋 (2,3)𝑐𝜋 (3,𝑢 ) )

)
with mass 𝑐𝜋 (2,3)𝑐𝜋 (3,𝑢 ) = 𝑐𝜋 (2,𝑢 ) . In the third summation term

the atom is (0, 0) as 𝑏1𝑗 = 𝑏2𝑗 = 0 for all 𝑗 ∈ An(𝑢) \ {An(1) ∪ An(2)} and its
mass is 1 − 𝑐𝜋 (1,3)𝑐𝜋 (3,𝑢 ) − 𝑐𝜋 (2,3)𝑐𝜋 (3,𝑢 ) = 1 − 𝑐𝜋 (3,𝑢 ) (𝑐𝜋 (1,3) + 𝑐𝜋 (2,3) ). Consider now
the multiplicative increments (𝑀31;𝑀32, 𝑀𝑣𝑖+1,𝑣𝑖 𝑖 = 1, . . . , 𝑛 − 1) which are mutually
independent since they belong to different tournaments. Because node 1 is a source
node in the tournament 𝜏1 the distribution of𝑀31 is 𝑐𝜋 (1,3)𝛿{1/𝑐𝜋 (1,3) } + (1−𝑐𝜋 (1,3) )𝛿{0}
by Lemma 5.8.2-2.(a). Similarly for𝑀32. Similarly to (4.30) for the max-linear model
in the previous chapter

P

(
𝑀31

𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0, 𝑀32

𝑛−1∏
𝑖=1

𝑀𝑣𝑖+1,𝑣𝑖 = 0

)
= 1 −

𝑛−1∏
𝑖=1
P(𝑀𝑣𝑖+1,𝑣𝑖 > 0) (𝑐13 + 𝑐23 − 𝑐13𝑐23).

(5.35)

When all nodes in {𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛−1} are source nodes with respect to the
tournament involving the next node in the sequence, then P(𝑀𝑣𝑖+1,𝑣𝑖 > 0) = 𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 )
for 𝑖 = 1, . . . , 𝑛 − 1, and the probability in (5.35) equals 1 − 𝑐𝜋 (3,𝑢 ) (𝑐𝜋 (1,3) + 𝑐𝜋 (2,3) −
𝑐𝜋 (1,3)𝑐𝜋 (2,3) ), which is different than P(𝐴𝑢1 = 0, 𝐴𝑢2 = 0) = 1−𝑐𝜋 (3,𝑢 ) (𝑐𝜋 (1,3) +𝑐𝜋 (2,3) ).
In the second sub-case, i.e., if at least one node from {𝑣1 = 3, 𝑣2, . . . , 𝑣𝑛−1} is not source
with respect to the tournament involving the next node in the sequence then the
possible values for 𝑀31

∏𝑛−1
𝑖=1 𝑀𝑣𝑖+1,𝑣𝑖 are not only {0, 1/𝑐𝜋 (1,𝑢 ) }, which are the only

possible values of 𝐴𝑢1 as we showed in the previous paragraph. Let 𝑖 ∈ {1, . . . , 𝑛 − 1}
be such that node 𝑣𝑖 is not the source node in the tournament shared with 𝑣𝑖+1, say 𝜏𝑖 .
Recall the distribution of𝑀𝑣𝑖+1,𝑣𝑖 from Lemma 5.8.2-2.(b):

L(𝑀𝑣𝑖+1,𝑣𝑖 ) =
∑︁

𝑗∈An(𝑣𝑖 )
𝑏𝑣𝑖+1, 𝑗𝛿{𝑏𝑣𝑖 ,𝑗 /𝑏𝑣𝑖+1, 𝑗 } +

∑︁
𝑗∈An(𝑣𝑖+1 )\An(𝑣𝑖 )

𝛿{0} .

Take for instance a node, say 𝑠 , such that it is the only parent of 𝑣𝑖 in the tournament
𝜏𝑖 . Then

𝑏𝑣𝑖 ,𝑠

𝑏𝑣𝑖+1,𝑠
=

𝑐𝑠𝑣𝑖𝑏𝑠𝑠

𝑐𝜋 (𝑠,𝑣𝑖+1 )𝑏𝑠𝑠

is a possible value of𝑀𝑣𝑖+1,𝑣𝑖 with positive probability, namely at least 𝑏𝑣𝑖+1,𝑠 . Another
possible positive value is for 𝑗 = 𝑣𝑖 ∈ An(𝑣𝑖 ), namely

𝑏𝑣𝑖 ,𝑣𝑖

𝑏𝑣𝑖+1,𝑣𝑖
=

1
𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 )

with probability at least 𝑏𝑣𝑖+1,𝑣𝑖 . Note that we can not have
𝑐𝑠𝑣𝑖

𝑐𝜋 (𝑠,𝑣𝑖+1 )
=

1
𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 )

. (5.36)

If 𝑐𝜋 (𝑠,𝑣𝑖+1 ) = 𝑐𝑠𝑣𝑖+1 + 𝑐𝑠𝑣𝑖𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) + 𝑥 for some 𝑥 > 0 which is a sum of path products
then (5.36) means that we have 𝑐𝑠𝑣𝑖+1 = −𝑥 < 0, which is impossible given the
parameter space Θ̊Σ. This means that the product𝑀31

∏𝑛−1
𝑖=1 𝑀𝑣𝑖+1,𝑣𝑖 has at least two

different positive values - one involving 𝑐𝑠𝑣𝑖
𝑐𝜋 (𝑠,𝑣𝑖+1 )

and another 1/𝑐𝜋 (𝑣𝑖 ,𝑣𝑖+1 ) . However
𝐴𝑢1 has only one possible positive value. This completes the proof that (iii) implies
(i). □
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5.8.3 Proofs for section 5.6

Lemma 5.8.4 (Identifiability on a tournament). Let 𝑋 be a sum-linear model as in
Definition 5.2.1 with respect to a single transitive tournament, i.e., T = 𝜏 = (𝑉 , 𝐸). If a
node 𝑣 ∈ 𝑈 has at least one parent then we can find two different 𝜃, 𝜃 ′ ∈ Θ̊Σ for which
𝐻𝜃,𝑈 = 𝐻𝜃 ′,𝑈 .

Proof. The proof is the same as for Lemma 4.6.3.4, because the map 𝑓 : Θ̊Σ → R |𝑉 |× |𝑉 |
given by 𝑏 = 𝑓 (𝜃 ) is continuous and by Lemma 5.6.1 is injective too. □

Proof for Proposition 5.6.1

Proof. First we prove the sufficiency (if) part. We assume (I1) and (I2). We follow the
same steps as in the proof for the max-linear model: the first one is to show that 𝐻𝜃,𝑈

has |𝑉 | distinct atoms {𝜔𝑟 } that can be uniquely matched to the atoms {𝑎𝑖 }𝑖∈𝑉 . The
second step is to show how to extract the parameter vector 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) from the
atoms {𝑎𝑖 }𝑖∈𝑉 and their masses {𝑚𝑖 }𝑖∈𝑉 .
Step 1. A mass𝑚𝑖,𝑈 can equal zero if Desc(𝑖) ∩𝑈 = ∅. The last expression means that
all descendants of and including 𝑖 are unobserved. But since the graph is finite, 𝑖 must
have at least one descendant without any children. However, a node in 𝑈 without
children is excluded by (I1). This means that all |𝑉 | atoms are well defined and have
positive masses.

Next we look at the possibility to have two atoms 𝑎𝑖,𝑈 and 𝑎 𝑗,𝑈 with the same
zero coordinates, i.e. {𝑣 ∈ 𝑈 : 𝑏𝑣𝑖 > 0} = {𝑣 ∈ 𝑈 : 𝑏𝑣 𝑗 > 0}. This happens when for
𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 it holds Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 . By Lemma 4.6.3.2-5 there cannot be
any other node 𝑘 ∈ 𝑉 \ {𝑖, 𝑗} with the same descendants in𝑈 . In the representation

𝐻𝜃,𝑈 =
∑︁
𝑣∈𝑉

𝑚𝑣,𝑈 𝛿𝑎𝑣,𝑈 =

𝑠∑︁
𝑟=1

𝜇𝑟𝛿𝜔𝑟

there are thus two exactly two atoms,𝜔 and𝜔 ′, say, with the same indices of non-zero
coordinates as 𝑎𝑖,𝑈 = (𝑏𝑣𝑖/𝑚𝑖,𝑈 )𝑣∈𝑉 and 𝑎 𝑗,𝑈 = (𝑏𝑣 𝑗/𝑚 𝑗,𝑈 )𝑣∈𝑉 . The question is then
how to know whether 𝜔 = 𝑎𝑖,𝑈 and 𝜔 ′ = 𝑎 𝑗,𝑈 or vice versa, 𝜔 = 𝑎 𝑗,𝑈 and 𝜔 ′ = 𝑎𝑖,𝑈 .
Let 𝜇 and 𝜇′ be the masses of 𝜔 and 𝜔 ′, respectively, and consider the vectors 𝛽 = 𝜇𝜔

and 𝛽 ′ = 𝜇′𝜔 ′. An equivalent question is then how to match 𝛽 and 𝛽 ′ to the two
max-linear coefficient vectors (𝑏𝑣𝑖 )𝑣∈𝑈 and (𝑏𝑣 𝑗 )𝑣∈𝑈 .

We have nodes 𝑖, 𝑗 such that Desc(𝑖) ∩𝑈 = Desc( 𝑗) ∩𝑈 . By Lemma 4.6.3.2-2 we
have established that in this case there is a node𝑢 such that the triple of nodes {𝑖, 𝑗, 𝑢}
forms a triangle with edge set {(𝑖, 𝑗), (𝑖, 𝑢), ( 𝑗, 𝑢)} ⊂ 𝐸 or {( 𝑗, 𝑖), (𝑖, 𝑢), ( 𝑗, 𝑢)} ⊂ 𝐸. We
assume it is {(𝑖, 𝑗), (𝑖, 𝑢), ( 𝑗, 𝑢)} ⊂ 𝐸. We have to choose the node 𝑢 such that {𝑖, 𝑗}
are the only parents of 𝑢. In this way the expression of 𝑏𝑢𝑖 is determined of only two
paths {𝑖, 𝑢} and {𝑖, 𝑗, 𝑢}. Hence choose 𝑢 such that pa(𝑢) = {𝑖, 𝑗}. This is possible
because 𝑢 can not have parents from other tournaments than the one determined by
the triangle 𝑖, 𝑗, 𝑢, say 𝜏 . Also take 𝑢 such that 𝑗 has one out-degree more than 𝑢.

We know that the vector which is associated to node 𝑖 equals 𝑏𝑣𝑖 = 𝑏𝑖𝑖𝑐𝜋 (𝑖,𝑣) for all
𝑣 ∈ 𝑈 . The vector associated to node 𝑗 equals 𝑏𝑣 𝑗 = 𝑏 𝑗 𝑗𝑐𝜋 ( 𝑗,𝑣) for all 𝑣 ∈ 𝑈 . If 𝑗, 𝑢 ∈ 𝑈
we have for 𝑣 = 𝑢

𝑏𝑢𝑖 = (𝑐𝑖𝑢 + 𝑐𝑖 𝑗𝑐 𝑗𝑢)𝑏𝑖𝑖 , 𝑏𝑢 𝑗 = 𝑐 𝑗𝑢𝑏 𝑗 𝑗 ,

and for 𝑣 = 𝑗

𝑏 𝑗𝑖 = 𝑐𝑖 𝑗𝑏𝑖𝑖 , 𝑏 𝑗 𝑗 = 𝑏 𝑗 𝑗 .
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We should have 𝑐𝑖𝑢 > 0 hence

𝑐𝑖𝑢 =
𝑏𝑢𝑖

𝑏𝑖𝑖
− 𝑐𝑖 𝑗𝑐 𝑗𝑢 =

𝑏𝑢𝑖

𝑏𝑖𝑖
−
𝑏 𝑗𝑖

𝑏𝑖𝑖

𝑏𝑢 𝑗

𝑏 𝑗 𝑗
> 0 =⇒ 𝑏𝑢𝑖

𝑏 𝑗𝑖
>
𝑏𝑢 𝑗

𝑏 𝑗 𝑗
.

Note that 𝑏𝑖𝑖 = 𝑐𝑖𝑖 > 0 hence we don’t change the sign of the inequality.
In order to make the correct assignment of two vectors 𝛽 = (𝛽𝑣)𝑣∈𝑈 and 𝛽 ′ =

(𝛽 ′𝑣)𝑣∈𝑈 we need to check the inequality above. If we have 𝛽𝑢/𝛽 𝑗 > 𝛽 ′𝑢/𝛽 ′𝑗 we assign
the vector 𝛽 to node 𝑖 and 𝛽 ′ to node 𝑗 . If we have 𝛽 ′𝑢/𝛽 ′𝑗 > 𝛽𝑢/𝛽 𝑗 we assign 𝛽 ′ to
node 𝑖 and 𝛽 to node 𝑗 .

When 𝑗, 𝑢 ∈ 𝑈 we need to use by Lemma 4.6.3.1 the unique paths from 𝑗, 𝑢 to some
nodes 𝑗 ′, 𝑢′ ∈ 𝑈 respectively. Because these are unique paths we have 𝑐𝜋 ( 𝑗, 𝑗 ′ ) = 𝑐𝑝 ( 𝑗, 𝑗 ′ )
where 𝑝 ( 𝑗, 𝑗 ′) is the set of edges along the unique shortest path between nodes 𝑗, 𝑗 ′,
and 𝑐𝑝 ( 𝑗, 𝑗 ′ ) =

∏
𝑒∈𝑝 ( 𝑗, 𝑗 ′ ) 𝑐𝑒 is as in the chapter on max-linear models. For 𝑣 = 𝑢′

𝑏𝑢′𝑖 = (𝑐𝑖𝑢 + 𝑐𝑖 𝑗𝑐 𝑗𝑢)𝑐𝑝 (𝑢,𝑢′ )𝑏𝑖𝑖 , 𝑏𝑢′ 𝑗 = 𝑐 𝑗𝑢𝑐𝑝 (𝑢,𝑢′ )𝑏 𝑗 𝑗 ,

and for 𝑣 = 𝑗 ′

𝑏 𝑗 ′𝑖 = 𝑐𝑖 𝑗𝑐𝑝 ( 𝑗, 𝑗 ′ )𝑏𝑖𝑖 , 𝑏 𝑗 ′ 𝑗 = 𝑐𝑝 ( 𝑗, 𝑗 ′ )𝑏 𝑗 𝑗 .

Then for 𝑐𝑖𝑢 > 0 we should have the inequality 𝑏𝑢′𝑖/𝑏 𝑗 ′𝑖 > 𝑏𝑢′ 𝑗/𝑏 𝑗 ′ 𝑗 . We make the
assignment as above. This shows that each of the collections {𝜔𝑟 } and {𝑎𝑖,𝑈 } has |𝑉 |
distinct atoms and each element in {𝜔𝑟 } can be matched uniquely to an element of
{𝑎𝑖,𝑈 }.

When 𝑗 ∈ 𝑈 ,𝑢 ∈ 𝑈 or 𝑗 ∈ 𝑈 ,𝑢 ∈ 𝑈 we combine the two methods described above.
Step 2. When there are latent variables, and conditions (I1) and (I2) are satisfied, the
available coefficients, as shown in step 1 above, are {𝑏𝑖 𝑗 }𝑖∈𝑈 ,𝑗∈𝑉 .

Let 𝑣 ∈ 𝑈 and let𝐾 = {𝑘𝑖 } be a (sub)set of children of 𝑣 within a given tournament,
𝜏 , such that 𝑣 has one out-degree more than 𝑘1, the node 𝑘1 has one out-degree more
than 𝑘2 and so on. We will show that we can identify all the edge weights on the
sub-tournament induced by the node set 𝐾 ∪ {𝑣}, say, K . Note that K is a transitive
tournament itself where 𝑣 is the source node and it satisfies Harary and Moser (1966,
Corollary 5a).

We will proceed by induction on the number of nodes in 𝐾 .
Case 2.A) First we will assume 𝐾 ∈ 𝑈 . The initial step is to identify all parameters in
K if 𝐾 = {𝑖, 𝑗}, i.e. |𝐾 | = 2. So 𝑖, 𝑗 are children of 𝑣 in K and they are selected such
that (up to interchanging 𝑖 and 𝑗 ) 𝑣 has one out-degree more than 𝑖 and 𝑖 one degree
more than 𝑗 . This means that we have (𝑣, 𝑖), (𝑣, 𝑗), (𝑖, 𝑗) ∈ 𝐸 and that 𝜋 (𝑣, 𝑖) = {(𝑣, 𝑖)}
and 𝜋 (𝑖, 𝑗) = {(𝑖, 𝑗)}.

If 𝑣 has no parents in 𝜏 we have 𝑏𝑖𝑖 = 1 − 𝑐𝑣𝑖 and we hane 𝑐𝑣𝑖 = 1 − 𝑏𝑖𝑖 . If 𝑣 has
parents in 𝜏 then it must take part in at least one more tournament according to (I2).
Consider the node 𝑢 in one of these tournaments such that 𝜋 (𝑣,𝑢) = {(𝑣,𝑢)}. If 𝑢 ∈ 𝑈
we have 𝑏𝑢𝑢 = 1 − 𝑐𝑣𝑢 , then 𝑐𝑣𝑢 = 1 − 𝑏𝑢𝑢 and then from 𝑏𝑢𝑣 = 𝑐𝑣𝑢𝑏𝑣𝑣 we obtain 𝑏𝑣𝑣 =
𝑏𝑢𝑣/(1−𝑏𝑢𝑢).If𝑢 ∈ 𝑈 then there exists a node𝑢′ ∈ 𝑈 which according to Lemma 4.6.3.1
has a unique directed path from 𝑢, say {𝑢 = 𝑢1, . . . , 𝑢𝑛 = 𝑢′}. By the same lemma,
every node in {𝑢2, . . . , 𝑢𝑛 = 𝑢′} has a unique parent, which is the previous node in the
sequence, so by Lemma 5.3.2 we have 𝑏𝑢𝑟 ,𝑢𝑟 = 1 − 𝑐𝑢𝑟−1,𝑢𝑟 . Therefore we can obtain
all the parameters 𝑐𝑢𝑟−1,𝑢𝑟 , 𝑟 = 𝑛, . . . , 2 using the expressions 𝑏𝑢′,𝑢𝑟 = 𝑐𝑝 (𝑢𝑟 ,𝑢′ )𝑏𝑢𝑟 ,𝑢𝑟 =

𝑐𝑝 (𝑢𝑟 ,𝑢′ ) (1−𝑐𝑢𝑟−1,𝑢𝑟 ), 𝑟 = 𝑛, . . . , 2. Next, from𝑏𝑢𝑛,𝑢1 = 𝑐𝑝 (𝑢1,𝑢𝑛 )𝑏𝑢1,𝑢1 = 𝑐𝑝 (𝑢1,𝑢𝑛 ) (1−𝑐𝑣,𝑢)
we obtain the value of 𝑐𝑣,𝑢 and from 𝑏𝑢𝑛,𝑣 = 𝑐𝑝 (𝑣,𝑢𝑛 )𝑏𝑣𝑣 we obtain the value of 𝑏𝑣𝑣 .
Once we have 𝑏𝑣𝑣 from 𝑏𝑖𝑣 = 𝑐𝑣𝑖𝑏𝑣𝑣 we compute the value of 𝑐𝑣𝑖 .

Remember that the scope is to be able to compute all weights on edges (𝑣, 𝑖), (𝑣, 𝑗),
and (𝑖, 𝑗). Next, take 𝑏 𝑗𝑖 = 𝑐𝑖 𝑗𝑏𝑖𝑖 from which we obtain 𝑐𝑖 𝑗 because 𝑖 ∈ 𝑈 means that
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we know 𝑏𝑖𝑖 . Then 𝑏 𝑗 𝑣 = (𝑐𝑣 𝑗 + 𝑐𝑣𝑖𝑐𝑖 𝑗 )𝑏𝑣𝑣 because there are only two directed paths
from 𝑣 to 𝑗 , one direct and one passing through node 𝑖 . Given that we identified
𝑐𝑣𝑖 , 𝑐𝑖 𝑗 and 𝑏𝑣𝑣 we obtain tha value 𝑐𝑣 𝑗 from 𝑏 𝑗 𝑣 . This completes the initial step of the
induction.

The induction assumption is that for |𝐾 | = 𝑛 − 1, in the tournament induced by
the nodes 𝐾 ∪ 𝑣 , all edge parameters have been obtained.

So let’s add one more node, say 𝑧, to the tournament induced by the 𝑛 − 1 children
of 𝑣 and 𝑣 itself. We link 𝑧 to the nodes in 𝐾 ∪ 𝑣 by edges (𝑘, 𝑧), 𝑘 ∈ 𝐾 ∪ 𝑣 . We assume
𝑧 ∈ 𝑈 . The graph induced by 𝐾 ∪ 𝑣 ∪ 𝑧 is a tournament satisfying Harary and Moser
(1966, Corollary 5a).

Let the node 𝑦 be such that 𝜋 (𝑦, 𝑧) = {(𝑦, 𝑧)}. Then because 𝑦 ∈ 𝐾 ⊂ 𝑈 we know
the value of 𝑏𝑦𝑦 , and 𝑏𝑧𝑦 = 𝑐𝑦𝑧𝑏𝑦𝑦 and we obtain the value 𝑐𝑦𝑧 .

Then consider the node, say, 𝑥 which is such that 𝜋 (𝑥,𝑦) = {(𝑥,𝑦)}. From
node 𝑥 there are two paths to 𝑧, one (𝑥, 𝑧) and the other {(𝑥,𝑦), (𝑦, 𝑧)}. Hence
𝑏𝑧𝑥 = (𝑐𝑥𝑧 + 𝑐𝑥𝑦𝑐𝑦𝑧)𝑏𝑥𝑥 which allows us to identify 𝑐𝑥𝑧 , because we have found 𝑐𝑦𝑧 ,
the coefficient 𝑐𝑥𝑦 is obtained by the induction hypothesis, and𝑏𝑥𝑥 is available because
𝑥 ∈ 𝐾 ⊂ 𝑈 by assumption.

Next consider node𝑤 ∈ 𝐾 such that 𝜋 (𝑤, 𝑥) = {(𝑤, 𝑥)}. The directed paths from
𝑤 to 𝑧 are (𝑤, 𝑧) and those going through nodes {𝑤, 𝑥, 𝑧}, {𝑤,𝑦, 𝑧}, and {𝑤, 𝑥,𝑦, 𝑧}.
Hence we have 𝑏𝑧𝑤 = (𝑐𝑤𝑧 + 𝑐𝑤𝑥𝑐𝑥𝑧 + 𝑐𝑤𝑦𝑐𝑦𝑧 + 𝑐𝑤𝑥𝑐𝑥𝑦𝑐𝑦𝑧)𝑏𝑤𝑤 . The parameters
𝑐𝑥𝑦, 𝑐𝑤𝑥 , 𝑐𝑤𝑦 are available because of the induction assumption and the parameters
𝑐𝑥𝑧, 𝑐𝑦𝑧 have just been computed. The coefficient 𝑏𝑤𝑤 is available because of the
assumption𝑤 ∈ 𝐾 ⊂ 𝑈 . Then we can obtain the value 𝑐𝑤𝑧 . In this way we continue
to identify each of the remaining edge coefficients (𝑖, 𝑧), 𝑖 ∈ 𝐾 \ {𝑤, 𝑥,𝑦} until we
identify 𝑐𝑣𝑧 . Note that to identify 𝑏𝑣𝑣 we proceed as for the initial step of the induction.

Case 2.B) Now assume 𝐾 ∪ 𝑧 ⊂ 𝑈 . The difference with respect to the previous case
is that now the coefficients 𝑏𝑖𝑖 , 𝑖 ∈ 𝐾 are not available. But to identify these we use
the unique paths that the nodes in𝑈 have to nodes in𝑈 according to Lemma 4.6.3.1.
Details follow.

First we will show the initial induction step, i.e., when 𝐾 = {𝑖1, 𝑗1}. We take 𝑖1
such that 𝑣 has one out-degree more than 𝑖1, node 𝑗1 has one out-degree more than
𝑖1. This means that we have (𝑣, 𝑖1), (𝑣, 𝑗1), (𝑖1, 𝑗1) ∈ 𝐸 and that 𝜋 (𝑣, 𝑖1) = {(𝑣, 𝑖1)} and
𝜋 (𝑖1, 𝑗1) = {(𝑖1, 𝑗1)}.

By Lemma 4.6.3.1 we can find nodes 𝑖𝑛, 𝑗𝑚 ∈ 𝑈 such that the paths (𝑖1, . . . , 𝑖𝑛)
and ( 𝑗1, . . . , 𝑗𝑚) satisfy the properties therein. Then we can compute all coefficients
(𝑐𝑖𝑟−1,𝑖𝑟 , 𝑟 = 𝑛, . . . , 2) from 𝑏𝑖𝑛,𝑖𝑟 = 𝑐𝑝 (𝑖𝑟 ,𝑖𝑛 )𝑏𝑖𝑟 ,𝑖𝑟 = 𝑐𝑝 (𝑖𝑟 ,𝑖𝑛 ) (1 − 𝑐𝑖𝑟−1,𝑖𝑟 ), which means
that we obtain the values of all coefficients on the path product 𝑐𝑝 (𝑖1,𝑖𝑛 ) . From 𝑏𝑖𝑛,𝑖1 =

𝑐𝑝 (𝑖1,𝑖𝑛 )𝑏𝑖1,𝑖1 we obtain the value 𝑏𝑖1,𝑖1 . Note that if 𝑣 has no parents in 𝜏 , then 𝑖1
has no other parents than 𝑣 and then 𝑏𝑖1,𝑖1 = 1 − 𝑐𝑣𝑖1 . This means that we compute
𝑐𝑣𝑖1 = 1 − 𝑏𝑖1,𝑖1 . If 𝑣 has parents in 𝜏 we make the same reasoning as in the case 2.A)
above which shows that we are able to compute the value 𝑏𝑣𝑣 . Then because 𝜋 (𝑣, 𝑖1) =
{(𝑣, 𝑖1)} and 𝜋 (𝑖1, 𝑖𝑛) = {𝑝 (𝑖1, 𝑖𝑛)} we have 𝑏𝑖𝑛,𝑣 = 𝑐𝑣𝑖1𝑐𝑝 (𝑖1,𝑖𝑛 )𝑏𝑣𝑣 and from here we
compute the value of 𝑐𝑣𝑖1 .

Next we compute the parameters (𝑐 𝑗𝑟−1, 𝑗𝑟 , 𝑟 =𝑚, . . . , 2) from

𝑏 𝑗𝑚, 𝑗𝑟 = 𝑐𝑝 ( 𝑗𝑟 , 𝑗𝑚 )𝑏 𝑗𝑟 , 𝑗𝑟 = 𝑐𝑝 ( 𝑗𝑟 , 𝑗𝑚 ) (1 − 𝑐 𝑗𝑟−1, 𝑗𝑟 ).

Because for the path sets we have 𝜋 (𝑖1, 𝑗1) = {(𝑖1, 𝑗1)} and 𝜋 ( 𝑗1, 𝑗𝑚) = {𝑝 ( 𝑗1, 𝑗𝑚)},
and the fact that 𝑗2 cannot have other parent than 𝑗1 according to Lemma 4.6.3.1
in the previous chapter we have 𝑏 𝑗𝑚,𝑖1 = 𝑐𝜋 (𝑖1, 𝑗𝑚 )𝑏𝑖1,𝑖1 = 𝑐𝑖1, 𝑗1𝑐𝑝 ( 𝑗1, 𝑗𝑚 )𝑏𝑖1,𝑖1 and from
here we obtain the value 𝑐𝑖1, 𝑗1 . Note that from the previous paragraph we have
obtained 𝑏𝑖1,𝑖1 . Then because there are two paths from 𝑣 to 𝑗1, we have 𝑏 𝑗𝑚,𝑣 =

(𝑐𝑣 𝑗1 + 𝑐𝑣𝑖1𝑐𝑖1, 𝑗1 )𝑐𝑝 ( 𝑗1, 𝑗𝑚 )𝑏𝑣𝑣 and the only unknown parameter is 𝑐𝑣,𝑗1 , hence we are

151



5.8. SUPPLEMENT

able to express it in terms of the other known parameters in the equation. In this way
we showed how to compute the values of 𝑐𝑣𝑖1 , 𝑐𝑣 𝑗1 , 𝑐𝑖1, 𝑗1 . This completes the initial
induction step.

The induction assumption is that for |𝐾 | = 𝑛 − 1, in the tournament induced by
the nodes 𝐾 ∪ 𝑣 , all edge parameters are computed.

Again, we add a node 𝑧1 ∈ 𝑈 to 𝐾 such that the graph K contains 𝑛 nodes, those
in 𝐾 and 𝑧1. We connect 𝑧1 to all other nodes by an arc toward 𝑧1. We have to show
that we can identify 𝑐𝑎𝑧1 , 𝑎 ∈ 𝐾 ∪ 𝑣 . By Lemma 4.6.3.1 we can find node 𝑧𝑛 ∈ 𝑈 such
that the path (𝑧1, . . . , 𝑧𝑛) satisfy the properties therein. We compute the parameters
(𝑐𝑧𝑟−1,𝑧𝑟 , 𝑟 = 𝑛, . . . , 2) from 𝑏𝑧𝑛,𝑧𝑟 = 𝑐𝑝 (𝑧𝑟 ,𝑧𝑛 )𝑏𝑧𝑟 ,𝑧𝑟 = 𝑐𝑝 (𝑧𝑟 ,𝑧𝑛 ) (1 − 𝑐𝑧𝑟−1,𝑧𝑟 ) which means
that we know the product 𝑐𝑝 (𝑧1,𝑧𝑛 ) . Then from 𝑏𝑧𝑛,𝑧1 = 𝑐𝑝 (𝑧1,𝑧𝑛 )𝑏𝑧1,𝑧1 we obtain the
coefficient 𝑏𝑧1,𝑧1 .

Let 𝑦1, 𝑥1,𝑤1 ∈ 𝐾 ⊂ 𝑈 be children of 𝑣 such that 𝜋 (𝑦1, 𝑧1) = {(𝑦1, 𝑧1)}, 𝜋 (𝑥1, 𝑦1) =
{(𝑥1, 𝑦1)} and 𝜋 (𝑤1, 𝑦1) = {(𝑤1, 𝑦1)}. For each of the nodes 𝑦1, 𝑥1,𝑤1 we have by
Lemma 4.6.3.1 nodes 𝑦𝑞, 𝑥𝑚,𝑤𝑙 ∈ 𝑈 such that there are unique paths 𝑝 (𝑦1, 𝑦𝑞),
𝑝 (𝑥1, 𝑥𝑚), and 𝑝 (𝑤1,𝑤𝑙 ). Similarly as for the unique path 𝑝 (𝑧1, 𝑧𝑛) we are able to
compute the path products 𝑐𝑝 (𝑦1,𝑦𝑞 ) , 𝑐𝑝 (𝑥1,𝑥𝑚 ) , 𝑐𝑝 (𝑤1,𝑤𝑙 ) and the coefficients 𝑏𝑦1,𝑦1 ,
𝑏𝑥1,𝑥1 , 𝑏𝑤1,𝑤1 .

Because there is a unique path from 𝑦1 to 𝑧𝑛 and it passes through 𝑧1 we have
𝑏𝑧𝑛,𝑦1 = 𝑐𝑦1,𝑧1𝑐𝑝 (𝑧1,𝑧𝑛 )𝑏𝑦1,𝑦1 where the only unknown is 𝑐𝑦1,𝑧1 , so we are able to obtain
its value from this equation. Because there are two paths from 𝑥1 to 𝑧1, one direct
and one going through 𝑦1, we have 𝑏𝑧𝑛,𝑥1 = (𝑐𝑥1,𝑧1 + 𝑐𝑥1,𝑦1𝑐𝑦1,𝑧1 )𝑐𝑝 (𝑧1,𝑧𝑛 )𝑏𝑥1,𝑥1 where
𝑐𝑥1,𝑦1 is known by the induction hypothesis and 𝑐𝑦1,𝑧1 , 𝑐𝑝 (𝑧1,𝑧𝑛 ) , 𝑏𝑥1,𝑥1 have been found
previously. Thenwe obtain the value of 𝑐𝑥1,𝑧1 . We continue in the sameway backwards
until we identify 𝑐𝑣𝑧1 . Note that to identify 𝑏𝑣𝑣 we can proceed as in the initial step of
the induction. Below we show this once again for completeness.

For the last coefficient we need the value of 𝑏𝑣𝑣 . If 𝑣 has no parents in 𝜏 consider
the following. Let 𝑖1 ∈ 𝑈 be its child such that pa(𝑖1) = {𝑣}. Because 𝑖1 ∈ 𝑈 , we have
according to Lemma 4.6.3.1 a node 𝑖𝑟 ∈ 𝑈 with {𝑝 (𝑖1, 𝑖𝑟 )} = 𝜋 (𝑖1, 𝑖𝑟 ). We can identify
all edge weights (𝑐𝑖1𝑖2 , 𝑐𝑖2𝑖3 , . . . , 𝑐𝑖𝑟−1,𝑖𝑟 ) from 𝑏𝑖𝑟 𝑖2 , . . . , 𝑏𝑖𝑟 𝑖𝑟 . Note that 𝑏𝑖1𝑖1 = 1 − 𝑐𝑣𝑖1
hence from 𝑏𝑖𝑟 𝑖1 = 𝑐𝑝 (𝑖1,𝑖𝑟 )𝑏𝑖1𝑖1 we obtain the value of 𝑐𝑣𝑖1 . From 𝑏𝑖𝑟 𝑣 = 𝑐𝑣𝑖1𝑐𝑝 (𝑖1,𝑖𝑟 )𝑏𝑣𝑣
we obtain the value of 𝑏𝑣𝑣 .

If 𝑣 has parents in 𝜏 we have that 𝑣 must satisfy (I2), hence participate in at least one
another tournament, 𝜏 . There must exist a node 𝑣 ′ ∈ 𝑈 such that 𝜋 (𝑣, 𝑣 ′) = {𝑝 (𝑣, 𝑣 ′)}
according to Lemma 4.6.3.1. We can identify all edge weights on the path 𝑝 (𝑣, 𝑣 ′) and
then from 𝑏𝑣′𝑣 = 𝑐𝑝 (𝑣,𝑣′ )𝑏𝑣𝑣 we obtain 𝑏𝑣𝑣 .

The principle is illustrated in Fig. 5.1.
For the case when any subset of 𝐾 is unobserved we can combine the methods in

case 2.A) and in case 2.B).

Next we prove necessity (only if). We will show that when at least one of the two
conditions in (I1) and (I2) are not satisfied, there are two parameters 𝜃 ≠ 𝜃 ′ ∈ Θ̊Σ

such that 𝐻𝜃,𝑈 = 𝐻𝜃 ′,𝑈 . We will look at two cases: (1) condition (I2) is not satisfied;
(2) condition (I1) is not satisfied and condition (I2) is satisfied.

Case (1). The proof is analogous to the one for the max-linear model. Let 𝑣 ∈ 𝑈
be such that condition (I2) is not satisfied, i.e., there is a 𝑣 ∈ 𝑈 which is not a source
of any tournament. Then 𝑣 belongs to only one tournament, say 𝜏 . We will proceed
by induction on the number of tournaments. For a single tournament, i.e., 𝜏 , the lack
of identifiability follows directly from Lemma 5.8.4. Let T have𝑚 tournaments. In
the corresponding proof for the max-linear model it was argued that we can find an
order on the tournaments, 𝜏1, 𝜏2, . . . , 𝜏𝑚 such that 𝑉𝑚 ∩ {𝑉1, . . . ,𝑉𝑚−1} is a singleton,
say 𝑠 . Let 𝜏 be one of 𝜏1, 𝜏2, . . . , 𝜏𝑚−1. Note that 𝑣 ≠ 𝑠 as 𝑣 should belong to a single
tournament. Then by the same argument as in the proof of Proposition 4.4.2 we argue
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𝑣 𝑦1

𝑥1

𝑤1

𝑧1

. . .

. . . 𝑧𝑛

. . . 𝑦𝑞

. . . 𝑥𝑚

. . . 𝑤𝑙

. . .. . .

K

Figure 5.1: Illustration of the proof method: this is the subgraph induced by the nodes
𝐾 ∪ 𝑣 ∪ 𝑧1, K , which is itself a transitive tournament. All the nodes in this graph could
be unobserved, therefore colored in red. The parameters on the thick black edges are
available by the induction assumption. The nodes in black carry observable variables.
The nodes in red carry non-observable. The scope is to identify the coefficients on the
thick green edges, which all point to the node 𝑧1. We first compute the value of 𝑐𝑦1,𝑧1
as explained in the proof. Next, we want to compute the value of 𝑐𝑥1,𝑧1 . The non-direct
path from 𝑥1 to 𝑧1 given by 𝑐𝑥1,𝑦1𝑐𝑦1,𝑧1 is available, because 𝑐𝑥1,𝑦1 is available from the
induction assumption and 𝑐𝑦1,𝑧1 has just been computed. Then we can identify the
direct one, i.e., 𝑐𝑥1,𝑧1 as explained in the proof. After that, all non-direct paths from
𝑤1 to 𝑧1 are available and we can identify the direct path 𝑐𝑤1,𝑧1 . In this way working
backwards to the node 𝑣 until we identify 𝑐𝑣,𝑧1 which completes the proof.

that the distribution of 𝑋𝑉 \𝑣 as a sum-linear model in Definition 5.2.1 is identical
under two different parameters 𝜃, 𝜃 ′ ∈ Θ̊Σ. We only need to use the markovianity of
𝑋 from Proposition 5.4.1.

Case (2). Let 𝑣 ∈ 𝑈 be such that condition (I1) is not satisfied and condition (I2)
is satisfied. Because 𝑣 has to be a source in at least one tournament, but at the same
time it should have less than two children, then 𝑣 has actually one child, say𝑤 , and
the tournament composed of nodes {𝑣,𝑤} and edges (𝑣,𝑤) is the one in which 𝑣 is
source.

If 𝑣 has parents, these must belong to only one tournament, say 𝜏 = (𝑉𝜏 , 𝐸𝜏 ) is the
tournament that 𝑣 shares with its parents.

Note that 𝑣 is the sink (node without children) in 𝜏 . This means that edge weights
𝑐𝑖𝑣, 𝑖 ∈ pa(𝑣) are contained only in coefficient products on directed paths passing
through or ending at 𝑣 . These paths are from 𝑘 ∈ An(𝑣) to 𝑙 ∈ Desc(𝑣). The coeffi-
cients in the max-linear model 𝑋 that depend on these path products are accordingly

𝑏𝑙𝑘 , 𝑘 ∈ An(𝑣), 𝑙 ∈ Desc(𝑣). (5.37)

Similar reasoning holds for𝑤 : because𝑤 is a sink in the tournament shared with 𝑣 ,
only the coefficients

𝑏𝑙𝑘 , 𝑘 ∈ An(𝑤), 𝑙 ∈ Desc(𝑤) (5.38)

depend on 𝑐𝑣𝑤 .
When 𝑣 ∈ 𝑈 from the definition of 𝐻𝜃,𝑈 in (5.26) or also (4.20) and (4.21), the

coefficients 𝑏𝑣𝑖 , 𝑖 ∈ An(𝑣) are no longer available. Adjusting the set of coefficients in
(5.37) and (5.38), by removing 𝑏𝑣𝑖 , 𝑖 ∈ An(𝑣), gives

𝑏𝑙𝑘 , 𝑘 ∈ An(𝑣), 𝑙 ∈ desc(𝑣)
𝑏𝑙𝑘 , 𝑘 ∈ An(𝑤), 𝑙 ∈ Desc(𝑤).

(5.39)
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Besides this, the atoms 𝑎𝑣,𝑈 ∝ (𝑏𝑖𝑣, 𝑖 ∈ Desc(𝑣) ∩ 𝑈 ) and 𝑎𝑤,𝑈 ∝ (𝑏𝑖𝑤, 𝑖 ∈
Desc(𝑤) ∩𝑈 ) are equal, hence the measure𝐻𝜃,𝑈 has an atom, say𝜔 , which is equal to
𝑎𝑣,𝑈 = 𝑎𝑤,𝑈 . We explain this now. We have Desc(𝑣) ∩𝑈 = Desc(𝑤) ∩𝑈 and for every
𝑖 ∈ Desc(𝑤) ∩ 𝑈 we have 𝑏𝑖𝑣 = 𝑐𝜋 (𝑣,𝑖 )𝑏𝑣𝑣 = 𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑖 )𝑏𝑣𝑣 and 𝑏𝑖𝑤 = 𝑐𝜋 (𝑤,𝑖 )𝑏𝑤𝑤 =

𝑐𝜋 (𝑤,𝑖 ) (1 − 𝑐𝑣𝑤). Hence the two vectors are proportional

(𝑏𝑖𝑣, 𝑖 ∈ Desc(𝑤) ∩𝑈 ) = 𝑏𝑣𝑣𝑐𝑣𝑤

1 − 𝑐𝑣𝑤
(𝑏𝑖𝑤, 𝑖 ∈ Desc(𝑤) ∩𝑈 ).

This means that the two atoms 𝑎𝑤,𝑈 , because of their definition as in in (5.12), are
equal

𝑎𝑣,𝑈 = 𝑎𝑤,𝑈 =

(
𝑐𝜋 (𝑤,𝑖 )∑

𝑖∈Desc(𝑤 )∩𝑈 𝑐𝜋 (𝑤,𝑖 )
, 𝑖 ∈ Desc(𝑤) ∩𝑈

)
, (5.40)

and as we see its elements do not depend on 𝑐𝑣𝑤 . Hence 𝐻𝜃,𝑈 contains an atom
𝜔 = 𝑎𝑣,𝑈 = 𝑎𝑤,𝑈 given by (5.40). The mass of it, say 𝜇, is given by

𝑚𝑣,𝑈 +𝑚𝑤,𝑈 = (𝑐𝑣𝑤𝑏𝑣𝑣 + 1 − 𝑐𝑣𝑤)
∑︁

𝑖∈Desc(𝑤 )∩𝑈
𝑐𝜋 (𝑤,𝑖 ) . (5.41)

Because of the atom 𝜔 given by (5.40) the coefficients 𝑏 ·𝑣 and 𝑏 ·𝑤 are not anymore
available in 𝐻𝜃,𝑈 . Adjusting the set of coefficients in (5.39)

𝑏𝑙𝑘 , 𝑘 ∈ an(𝑣), 𝑙 ∈ desc(𝑣)
𝑏𝑙𝑘 , 𝑘 ∈ an(𝑤) \ 𝑣, 𝑙 ∈ Desc(𝑤)

(5.42)

Note that an(𝑣) = an(𝑤) \ 𝑣 and desc(𝑣) = Desc(𝑤). Therefore these coefficients
in 𝐻𝜃,𝑈 that depend on at least one of the edge weights 𝑐𝑖𝑣, 𝑖 ∈ pa(𝑣) depend on 𝑐𝑣𝑤
too and they are

𝑏𝑙𝑘 , 𝑘 ∈ an(𝑣), 𝑙 ∈ Desc(𝑤) . (5.43)

If an(𝑣) = ∅, then pa(𝑣) = ∅ too and from (5.43) there are no coefficients 𝑏𝑙𝑘 that
depend on 𝑐𝑣𝑤 since 𝑘 ∈ an(𝑣) = ∅ and hence 𝑐𝑣𝑤 can take arbitrary value in (0, 1)
without changing 𝐻𝜃,𝑈 . If an(𝑣) is non empty we will look at two cases: A) when
𝑘 ∈ pa(𝑣) and B) when 𝑘 ∈ an(𝑣) \ pa(𝑣).

Let’s first consider two parameters, 𝜃 = (𝑐𝑒 , 𝑒 ∈ 𝐸) ∈ Θ̊Σ and 𝜃 ′, with

𝜃 ′ =


𝜆𝑐𝑖𝑣, for all 𝑖 ∈ pa(𝑣),
𝜆−1𝑐𝑣𝑤,

𝑐𝑒 , 𝑒 ∈ 𝐸 \ {(𝑣,𝑤), (𝑖, 𝑣), 𝑖 ∈ pa(𝑣)}.
(5.44)

for some 𝜆 such that 𝜃 ′ ∈ Θ̊Σ too. Since Θ̊Σ is open space we can always find such 𝜆.
Then we have coefficients 𝑏′

𝑙𝑘
for 𝑘 ∈ an(𝑣), 𝑙 ∈ Desc(𝑤) which depend on at least

one of the parameters 𝜆𝑐𝑖𝑣, 𝑖 ∈ pa(𝑣) and on 𝜆−1𝑐𝑣𝑤 .
Case 2.A) If 𝑘 ∈ pa(𝑣) we have the following expression for the sum of all product

paths
𝑐𝜋 (𝑘,𝑣) =

∑︁
𝑖∈pa(𝑣)∩Ch(𝑘 )

𝑐𝜋 (𝑘,𝑖 )𝑐𝑖𝑣 . (5.45)

Then

𝑏′
𝑙𝑘

= 𝑐𝜋 (𝑘,𝑙 )𝑏
′
𝑘𝑘

= 𝑐𝜋 (𝑘,𝑣)𝜆
−1𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑙 )𝑏

′
𝑘𝑘

=
©«

∑︁
𝑖∈pa(𝑣)∩Ch(𝑘 )

𝑐𝜋 (𝑘,𝑖 )𝜆𝑐𝑖𝑣
ª®¬ 𝜆−1𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑙 )𝑏𝑘𝑘

= 𝑐𝜋 (𝑘,𝑣)𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑙 )𝑏𝑘𝑘 = 𝑏𝑙𝑘 .
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Note that 𝑏′
𝑘𝑘

= 𝑏𝑘𝑘 = 1 −∑
𝑗∈pa(𝑘 ) 𝑐 𝑗𝑘 by (5.44) and Lemma 4.6.3.3.

Case 2.B) If 𝑘 is not a parent of 𝑣 but another ancestor, then we can write 𝑐𝜋 (𝑘,𝑣) =
𝑐𝜋 (𝑘,𝑠 )𝑐𝜋 (𝑠,𝑣) where 𝑠 is the source of 𝜏 (the tournament 𝑣 shares with its parents).
Then we have a similar expression for 𝑐𝜋 (𝑠,𝑣) as in (5.45). Hence

𝑏′
𝑙𝑘

= 𝑐𝜋 (𝑘,𝑠 )
©«

∑︁
𝑖∈pa(𝑣)∩Ch(𝑠 )

𝑐𝜋 (𝑠,𝑖 )𝜆𝑐𝑖𝑣
ª®¬ 𝜆−1𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑙 )𝑏

′
𝑘𝑘

= 𝑐𝜋 (𝑘,𝑠 )𝑐𝜋 (𝑠,𝑣)𝑐𝑣𝑤𝑐𝜋 (𝑤,𝑙 )𝑏𝑘𝑘 = 𝑏𝑙𝑘 .

In both cases two different parameters 𝜃, 𝜃 ′ generate the same distribution 𝐻𝜃,𝑈 =

𝐻𝜃 ′,𝑈 .
□
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Estimation and analysis
with gremes 6
The package has been published on CRAN in December 2021.

6.1 Introduction

The R package gremes provides tools for estimation of the tail dependence param-
eters in graphical models parameterized by a family of Hüsler–Reiss distributions.
The only supported graphs are trees and block graphs. The estimation methods are
variations of method of moments (Engelke, Malinowski, Kabluchko, and Schlather,
2014; Asenova, Mazo, and Segers, 2021), maximum likelihood (Asenova, Mazo, and
Segers, 2021; Engelke and Hitz, 2020) and a method based on extremal coefficients
(Einmahl, Kiriliouk, and Segers, 2018).

The package is provided with rich explanations and illustrations of the available
functionalities, their use and relation to the statistical model. The accompanying
vignettes are written with the scope to explain at a moderate level of detail the
statistical model and the estimation methods, aiming to be self-contained and avoid
referring the reader to the corresponding articles. The following vignettes make part
of the literature available with the package.

■ Vignette Detailed contents contains a detailed guide into the documentation
of the package and a summary of the main functionalities. We recommend a
potential user to have a look at this document first.

■ Vignette Hüsler–Reiss distributions presents the particular parameterizations
used in the Hüsler–Reiss distributions.

■ Vignette Subsets and coordinates presents classes and methods used to create
subsets on the vertex set. The choice of subsets can be based on the principle
of a neighborhood around a particular node. Some of the coordinates are set to
zero in the extremal coefficient estimator. The choice of subsets and non-zero
coordinates may be a non-trivial task when there are latent variables. Details
are not provided in this chapter.

■ Vignettes Estimation - Note 1-6 present detailed description of the estimation
methods.

■ Vignettes Code - Note 1-6 illustrate the use of the estimation tools (the methods,
classes and functions) of the package.

■ Vignette Additional functionalities provides explanation and illustrates the
functions related to additional functionalities such as generating random sample
from a model, computing extremal coefficients, tail dependence coefficients,
confidence intervals for one of the estimators.
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The package is developed in an object-oriented style. The classes are S3 classes.
There are two main types of objects.

■ An object containing the graph and the dataset is created using classes Network,
Tree, BlockGraph, and subclasses of these.

■ An object containing the graph and the edge weights is created with classes
HRMnetwork, HRMtree, HRMBG, and subclasses of these.

The first type of objects represents the non-parametric view on the problem -
all we know is the graph and the data. The second type of objects represents the
Hüsler–Reiss parametric model: every clique is parameterized by a Hüsler–Reiss
distribution with parameters - the edge weights within this clique. Hence all that
characterizes the parametric model is the graph and the edge weights.

Consider for instance the method extrCoeff which is written both for classes
Tree and HRMtree. If we pass an object of class Tree to the method extrCoeff,
the command will return non-parametric estimates of the extremal coefficients. If the
object passed is of class HRMtree, parametric extremal coefficients will be returned.

The main goal of the package is estimation, therefore the method estimate is
the key functionality of the tools provided in the package. Estimation in gremes
happens by using the method estimate on an object from one of the following
classes:

■ MME, MLE, MLE1, MLE2, EKS, EKS_part, EngHitz, MMEave, MLEave in
which case it estimates the edge weights on a tree.

■ HRMBG in which case it estimates the edge weights on a block graph.

We recall once again the models and the object of estimation.

6.2 Theoretical setting - once again

6.2.1 The model on trees

Let𝑇 = (𝑉 , 𝐸) be a tree with node set𝑉 and edge set 𝐸. Consider a |𝑉 |-variate random
vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) for which it holds: 𝑋 satisfies the global Markov property
with respect to the tree𝑇 ; every bivariate distribution between two adjacent variables
uses a bivariate Hüsler–Reiss copula with parameter 𝜃𝑒 for some 𝑒 ∈ 𝐸; standardized
to unit-Pareto univariate marginal distributions. The particular parameterization of
the Hüsler–Reiss distribution is as in Chapter 2, i.e., for two adjacent nodes 𝑢, 𝑣 and
𝑧𝑢, 𝑧𝑣 ∈ (0,∞)2

𝐻𝜃𝑒 (𝑧𝑢, 𝑧𝑣) = exp
{
− 1
𝑧𝑢

Φ

(
𝜃𝑒

2
+ ln 𝑧𝑣/𝑧𝑢

𝜃𝑒

)
− 1
𝑧𝑣

Φ

(
𝜃𝑒

2
+ ln 𝑧𝑢/𝑧𝑣

𝜃𝑒

)}
,

Based on different asymptotic results of 𝑋 , we can have different estimators of
the parameters 𝜃𝑒 , 𝑒 ∈ 𝐸, which we collect in a vector 𝜃 ∈ (0,∞)𝐸 .

(L1) Consider the log-differences conditional on a high threshold exceeding at a
particular node

(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡, 𝑡 →∞.

It can be shown that the limiting distribution of the vector above is multivariate
Gaussian distribution with mean vector 𝜇𝑢 (𝜃 ) and covariance matrix Σ𝑢 (𝜃 )
which depend on the edge weights and on the particular node 𝑢. This is a result
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from Chapter 2 or also Asenova, Mazo, and Segers (2021) and references therein.
The MME and the CLE both aim at estimating Σ𝑢 and accordingly 𝜃 . The
estimators are implemented in methods estimate.MME, estimate.MLE,
estimate.MLE1 and estimate.MLE2.

(L2) Consider the limiting distribution of the scaled componentwise maxima if we
dispose of a random sample of size 𝑛 of 𝑋 , i.e., {𝑋𝑣,𝑖 }𝑖∈1,...,𝑛;𝑣∈𝑉(

1
𝑛

max
𝑖=1,...,𝑛

𝑋𝑣,𝑖 , 𝑣 ∈ 𝑉
)
, 𝑛 →∞.

The limit shown in Chapter 2 or also Asenova, Mazo, and Segers (2021) is a
max-stable Hüsler–Reiss copula with unit Fréchet margins and with parameter
matrix Λ given by(

Λ(𝜃 )
)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) =
1
4

∑︁
𝑒∈𝑝 (𝑖, 𝑗 )

𝜃 2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑒 ∈ 𝐸. (6.1)

The notation 𝑝 (𝑖, 𝑗) means the unique shortest path between 𝑖, 𝑗 . The extremal
coefficient estimator, introduced in Einmahl, Kiriliouk, and Segers (2018) and
used in Asenova, Mazo, and Segers (2021) is based on bi- and tri-variate ex-
tremal coefficients derived from this max-stable distribution. The estimator is
implemented in methods estimate.EKS, estimate.EKS_part.

(L3) Consider the scaled random vector, given that the maximum exceeds a high
threshold:

(𝑋𝑣, 𝑣 ∈ 𝑉 )/𝑡 | max
𝑣∈𝑉

𝑋𝑣 > 𝑡, 𝑡 →∞.

The limit is a so called Hüsler-Reiss Pareto (Engelke and Hitz, 2020) distribution
with the same matrix Λ as in (6.1). Proof of this limit is provided in Asenova
and Segers (2021), see also Engelke and Hitz (2020). For Hüsler–Reiss Pareto
distributions with respect to trees, Engelke and Hitz (2020) presents a cliquewise
estimator which is has been implemented in gremes and called ‘Engelke and
Hitz’ estimator. We have adapted it to make it suitable when there are latent
variables. More details are presented in the next section. The estimator is
implemented in method estimate.EngHitz.

(L4) Consider the differences with respect to the mean of the log-transformed vari-
ables

(ln𝑋𝑣 − ln𝑋, 𝑣 ∈ 𝑉 ) | ln𝑋 > 𝑡, 𝑡 →∞,

where ln𝑋 = (1/|𝑉 |)∑𝑣∈𝑉 ln𝑋𝑣 . The limit of this vector is also a multivariate
Gaussian distribution with mean and covariance matrix, say Σ̄, that contain the
matrix Λ(𝜃 ) in (6.1). This asymptotic result is shown in an unpublished note
Segers (2019) and details are not provided here. The package offers method of
moments and maximum composite likelihood estimates, The estimators are
implemented in methods estimate.MMEave, estimate.MLEave.

To illustrate the idea, recall the Seine network from Chapter 2 on seven nodes as
in Fig. 6.1, which represent measurement locations in cities, 𝑉 = {Paris, 2, Meaux,
Melun, 5, Nemours, Sens}, and edge weights (𝜃1, . . . , 𝜃6). Let (𝑋Paris, 𝑋2) have bi-
variate Hüsler–Reiss copula with parameter 𝜃1. We make the analogous assump-
tions for all adjacent pair of variables. Then for 𝑋 the four asymptotic results
above hold. To estimate tail dependence measures in 𝑋 , we need estimates of
𝜃1, . . . , 𝜃6. We need to choose between one of the following methods - for method
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Melun 52

Nemours

Sens

Paris

Meaux

𝜃1

𝜃2
𝜃3 𝜃4

𝜃5

𝜃6

Figure 6.1: Schematic representation of Seine network on seven nodes.
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𝑐𝑑
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𝑐𝑒
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𝛿2
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𝑐𝑔

𝛿2
𝑓 𝑔

Figure 6.2: A block graph on three cliques: {𝑎, 𝑏, 𝑐}, {𝑐, 𝑑, 𝑒}, {𝑐, 𝑓 , 𝑔}.

of moments estimates estimate.MME; for maximum composite likelihood estima-
tion estimate.MLE, estimate.MLE1, estimate.MLE2; for method based on
extremal coefficients estimate.EKS and estimate.EKS_part; cliquewise esti-
mation estimate.EngHitz; for estimation based on different conditioning event
estimate.MMEave and estimate.MLEave.

6.2.2 The model on block graphs

Let 𝐺 = (𝑉 , 𝐸) be a block graph with node set 𝑉 and edge set 𝐸. Let 𝑋 be a random
vector on𝑉 with the following characteristics: 𝑋 satisfies the global Markov property
with respect to𝐺 ; every distribution of variables belonging to the samemaximal clique
(or block), say 𝐶 ⊂ 𝑉 , is a multivariate Hüsler–Reiss distribution with parameter
matrix {𝛿2

𝑖 𝑗 }, 𝑖, 𝑗 ∈ 𝐶; the univariate marginal distributions are unit Pareto.
Consider the log-differences conditional on a high threshold being exceeded at a

particular node
(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡, 𝑡 →∞.

It can be shown that the limiting distribution is multivariate Gaussian distribution
with mean vector 𝜇𝑢 (𝛿) and covariance matrix Σ𝑢 (𝛿) where 𝛿 = (𝛿2

𝑒 , 𝑒 ∈ 𝐸) (Asenova
and Segers, 2021) and references therein. Based on this asymptotic result we come up
with method of moments type estimator for Σ𝑢 and subsequently of 𝛿 .

To illustrate the idea, consider the following block graph in Fig. 6.2 with only three
cliques (or blocks) and nine edge parameters: three per each clique. We suppose that
the subvector (𝑋𝑎, 𝑋𝑏, 𝑋𝑐 ) has a Hüsler–Reiss copula with parameter matrix Δ1 which
is symmetric, with zero diagonal and non-zero parameters (𝛿2

𝑎𝑏
, 𝛿2

𝑐𝑎, 𝛿
2
𝑐𝑏
). Similarly for

the other two subvectors (𝑋𝑐 , 𝑋𝑒 , 𝑋𝑑 ) and (𝑋𝑐 , 𝑋𝑓 , 𝑋𝑔). To estimate tail dependence
in 𝑋 we need to estimate the edge weights (or edge parameters), 𝛿2

𝑖 𝑗 , (𝑖, 𝑗) ∈ 𝐸. We
apply the method estimate.HRMBG.

160



6.3. ESTIMATION IN MODELS ON TREES

Similar results as in (L2), (L3), (L4) for trees exist for block graphs. However, the
package does not implement an estimator based on these results.

6.3 Estimation in models on trees

6.3.1 Method of moment estimator

This method is based on the asymptotic results in (L1). The MME is described in detail
in Section 4.1 in Asenova, Mazo, and Segers (2021). For completeness we repeat most
of the notations here. The idea is to find (𝜃𝑒 , 𝑒 ∈ 𝐸) which minimizes the distance
between the empirical and the theoretical covariance matrices:

𝜃MM
𝑛,𝑘

= arg min
𝜃 ∈ (0,∞)𝐸

∑︁
𝑢∈𝑈
∥Σ̂𝑊𝑢 ,𝑢 − Σ𝑊𝑢 ,𝑢 (𝜃 )∥2𝐹 ,

where
■ 𝑛 is the number of all observations in the sample;
■ 𝑘 is the number of the upper order statistics used in the estimation;
■ 𝑢 is the node for which we condition on the event {𝑋𝑢 > 𝑡};
■ ∥ · ∥𝐹 is the Frobenius norm;
■ 𝑈 ⊆ 𝑉 is the set of observable variables;
■ 𝑊𝑢 is a subset on the node set depending on 𝑢. Typically a neighborhood of 𝑢
or the nodes that are flow connected to 𝑢 or the intersection of both. Note that
the induced graph on𝑊𝑢 must be connected. A good practice is to compose the
sets such that within each subset all parameters are uniquely identifiable. This
means that every node in𝑊 with latent variable should be connected to at least
three other nodes in the same set𝑊 .

■ Σ̂𝑊𝑢 ,𝑢 is the non-parametric covariance matrix;
■ Σ𝑊𝑢 ,𝑢 (𝜃 ) is the parametric covariance matrix;
■ For fixed 𝑢 and𝑊𝑢 the parametric matrix Σ𝑊𝑢 ,𝑢 is given by(

Σ𝑊,𝑢 (Λ)
)
𝑖 𝑗
= 2(𝜆2

𝑖𝑢 + 𝜆2
𝑗𝑢 − 𝜆2

𝑖 𝑗 ), 𝑖, 𝑗 ∈𝑊 \ 𝑢

with (
Λ(𝜃 )

)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) =
1
4

∑︁
𝑒∈𝑝 (𝑖, 𝑗 )

𝜃 2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑒 ∈ 𝐸;

■ If the sample of the original variables is 𝜉𝑣,𝑖 , 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛 consider the
transformation using the empirical cumulative distribution function 𝐹𝑣,𝑛 (𝑥) =[ ∑𝑛

𝑖=1 1(𝜉𝑣,𝑖 ≤ 𝑥)
]
/(𝑛 + 1)

𝑋𝑣,𝑖 =
1

1 − 𝐹𝑣,𝑛 (𝜉𝑣,𝑖 )
, 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛;

■ Fix 𝑢 and𝑊𝑢 . For given 𝑘 ∈ {1, . . . 𝑛} consider the set of indices

𝐼𝑢 = {𝑖 = 1, . . . , 𝑛 : 𝑋𝑢,𝑖 > 𝑛/𝑘}.

■ For every 𝑣 ∈𝑊𝑢 \ 𝑢 and 𝑖 ∈ 𝐼𝑢 compose the differences

Δ𝑢𝑣,𝑖 = ln𝑋𝑣,𝑖 − ln𝑋𝑢,𝑖 ;

■ The vector of means of these differences is given by

𝜇𝑊𝑢 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 , 𝑣 ∈𝑊𝑢 \ 𝑢);
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■ The non-parametric covariance matrix Σ̂𝑊𝑢 ,𝑢 is given by

Σ̂𝑊𝑢 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 − 𝜇𝑊𝑢 ,𝑢, 𝑣 ∈𝑊𝑢 \ 𝑢) (Δ𝑢𝑣,𝑖 − 𝜇𝑊𝑢 ,𝑢, 𝑣 ∈𝑊𝑢 \ 𝑢)⊤ .

We will illustrate the method on Seine dataset, which is also part of the package.
Detailed description of the content of the dataset is provided in the supplement section
of Chapter 2. We load the dataset from the package, generate the graph and name
the nodes. Assigning names to nodes is crucial. The names of the nodes should
correspond to the names of the columns in the dataset.

data("SeineData", package = "gremes") # loads object Seine as
database

seg<- graph(c(1,2, 2,3, 2,4, 4,5, 5,6, 5,7), directed = FALSE)
name_stat<- c("Paris", "2", "Meaux", "Melun", "5", "Nemours",

"Sens")
seg<- set.vertex.attribute(seg, "name", V(seg), name_stat)

In the first step, subsets are used for local estimation of the edge weights. In the
second step, the estimates are combined through a minimal distance procedure to
obtain unique estimates.

subs<- Neighborhood()
subs<- subset(subs, 2, seg, U_bar=c("2", "5"))

Estimate using method of moment estimator and 20% of the upper order statistics.

mme<- MME(seg)
mme<- suppressMessages(

estimate(mme, Seine, subs, k_ratio = 0.2)
)

There are messages which have been suppressed. They inform about certain things
along the estimation process, but as long as they do not stop the estimation they are
not errors. The estimates are squares of the parameters, hence take the square root.

sqrt(mme$depParams)
#> e1 e2 e3 e4 e5 e6
#> 0.3833844 0.9491690 0.5914040 0.6287704 1.0034604 0.6162232

6.3.2 Composite likelihood estimation

The methods here are also based on the asymptotic result in (L1). We have three
versions of the composite likelihood method. Consider the same notation as in the
previous subsection.

Composite likelihood method - Version 1 The estimator of (𝜃𝑒 , 𝑒 ∈ 𝐸) is ob-
tained in a two-step procedure:
Step 1: For each 𝑢 ∈ 𝑈 obtain

𝜃𝑊𝑢 ,𝑘,𝑛 = arg max
𝜃𝑊𝑢 ∈ (0,∞)𝑊𝑢 \𝑢

𝐿

(
𝜇𝑊𝑢\𝑢 (𝜃 ), Σ𝑊𝑢\𝑢 (𝜃 ); {Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢}

)
.

Step 2: Then solve

𝜃𝑀𝐿𝐸1
𝑘,𝑛

= arg min
𝜃 ∈[0,∞)𝐸

∑︁
𝑢∈𝑈

∑︁
𝑒∈𝐸
(𝜃𝑒,𝑊𝑢

− 𝜃𝑒 )2,
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where 𝜃𝑒,𝑊𝑢
is the estimate of 𝜃𝑒 from the vector of estimates 𝜃𝑊𝑢

found in step 1. The
advantage of the first version is that the computational time is shorter with respect
to the second version.

Composite likelihood method - Version 2 Consider the likelihood function of a
random sample 𝑦𝑖 , 𝑖 = 1, . . . , 𝑘 of multivariate normal distribution with mean vector 𝜇
and covariance matrix Σ, where 𝑦𝑖 is of dimension 𝑑

𝐿(𝜇, Σ;𝑦1, . . . , 𝑦𝑘 ) =
𝑘∏
𝑖=1

𝜙𝑑 (𝑦𝑖 − 𝜇; Σ)

= (2𝜋)−𝑘𝑑/2 (det Σ−1)𝑘/2 exp
(
− 1

2

𝑘∑︁
𝑖=1
(𝑦𝑖 − 𝜇)𝑇 Σ−1 (𝑦𝑖 − 𝜇)

)
.

The method of composite likelihoods consists of optimizing a function that collects
the likelihood functions across all the sets𝑊𝑢, 𝑢 ∈ 𝑈 . So let for all 𝑢 ∈ 𝑈 the subsets
𝑊𝑢 be given. Consider the composite likelihood function

𝐿
(
𝜃 ; {Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢, 𝑢 ∈ 𝑈 }

)
=

∏
𝑢∈𝑈

𝐿
(
𝜃𝑊𝑢

; {Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢}
)

=
∏
𝑢∈𝑈

∏
𝑖∈𝐼𝑢

𝜙

(
{Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢} − 𝜇𝑊𝑢 ,𝑢 (𝜃 ); Σ𝑊𝑢 ,𝑢 (𝜃 )

)
.

The estimator is given by

𝜃𝑀𝐿𝐸2
𝑘,𝑛

= arg max
𝜃 ∈ (0,∞)𝐸

𝐿
(
𝜃 ; {Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢, 𝑢 ∈ 𝑈 }

)
.

The assumption under this definition is that for any𝑢, 𝑣 ∈ 𝑈 we have the independence
condition Δ𝑊𝑢\𝑢 ⊥⊥ Δ𝑊𝑣\𝑣 , which is clearly not true for overlapping vertex sets𝑊𝑢

and𝑊𝑣 . However, this simplifies the joint likelihood function, and simulation results
show that the estimator has comparable qualities to the one under the method of
moments or the one based on extremal coefficients.

Covariance selection model Let𝐺 (𝑊𝑢) is the subgraph induced on the node set
𝑊𝑢 . This graph must be connected. The maximum likelihood estimator of 𝜃 ∈ (0,∞)𝐸
is obtained in a two-step procedure similar to the MM estimator, but using the MLE
of Σ·\𝑢 (𝜃 ) instead.

As a first step a maximum likelihood approach is used to obtain an estimator of
Σ·\𝑢 (𝜃 ) and then a least squares procedure is used to estimate 𝜃 in the second step.
The first step is an implementation of the Iterative Proportional Scaling algorithm
from the R package gRim Højsgaard (2017). For description of the IPS we refer to
Lauritzen (1996).
Step 1: For every 𝑢 ∈ 𝑉 obtain

Σ̂−1
𝑊𝑢\𝑢 = arg max

(Σ−1 )𝑊𝑢 \𝑢

𝐿

(
𝜇𝑊𝑢\𝑢, (Σ−1)𝑊𝑢\𝑢 ; {Δ𝑢𝑣,𝑖 : 𝑣 ∈𝑊𝑢 \ 𝑢, 𝑖 ∈ 𝐼𝑢}

)
.

Step 2: Solve the problem:

𝜃𝑀𝐿𝐸
𝑘,𝑛

= arg min
𝜃 ∈[0,∞)𝐸

∑︁
𝑊𝑢⊆𝑉 ,𝑢∈𝑉

Σ̂−1
𝑊𝑢\𝑢 − Σ𝑊𝑢\𝑢 (𝜃 )

2

𝐹
.
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We illustrate the three estimators using the dataset on Seine. First, the nodes for
which we do not observe realizations are extracted, the subsets are created, and we
check if these can induce identifiability problem:

tobj<- Tree(seg, Seine)
Uc<- getNoDataNodes(tobj) #obtain the nodes with latent variables

subs<- Neighborhood()
subs<- subset(subs, 3, seg, Uc) # neighborhood of order three

# verify if the identifiability criterion is satisfied for every
subgraph induced by a subset

is_identifiable(subs, tobj)
#> The nodes with latent variables { 5 } in set { Paris 2 Meaux

Melun 5 } have degree less than three.
#> The subgraph contains edge parameters that are

non-identifiable.
#>
#> The nodes with latent variables { 5 } in set { Meaux 2 Paris

Melun 5 } have degree less than three.
#> The subgraph contains edge parameters that are

non-identifiable.
#>
#> The nodes with latent variables { 2 } in set { Nemours 5 Melun

Sens 2 } have degree less than three.
#> The subgraph contains edge parameters that are

non-identifiable.
#>
#> The nodes with latent variables { 2 } in set { Sens 5 Melun

Nemours 2 } have degree less than three.
#> The subgraph contains edge parameters that are

non-identifiable.
#>

# change the order of the neighborhood and verify the
identifiability again

subs<- subset(subs, 2, seg, Uc) # neighborhood of order two
is_identifiable(subs, tobj)

Since no message is produced after calling is_identifiable, the subsets are ap-
propriate for estimation. They are created on the principle of neighborhood of order
two for every observed variable.

Estimate CLE Version 1 We estimate using the first version of the CLE.

mle1<- MLE1(seg)
mle1<- suppressMessages(

estimate(mle1, Seine, subs, k_ratio = 0.2)
)

Estimate CLE Version 2 Now we use the second version.

mle2<- MLE2(seg)
mle2<- suppressMessages(

estimate(mle2, Seine, subs, k_ratio = 0.2)
)
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The estimates from the two versions of the likelihood based estimators are very
similar.

mle1$depParams
#> e1 e2 e3 e4 e5 e6
#> 0.3111864 1.0747109 0.6152536 0.6901670 1.0305526 0.6546275
mle2$depParams
#> e1 e2 e3 e4 e5 e6
#> 0.4097665 1.0571181 0.6065951 0.6859331 1.0104937 0.6784847

Estimate the Covariance Selection Method The Covariance Selection Method
in Højsgaard (2017) is not applicable when there are latent variables. To illustrate
the method using the dataset on Seine we create a graph without nodes with latent
variables. This will be a tree on five nodes and four edges, hence we have only five
parameters to estimate.

seg_short<- graph(c(1,2, 2,3, 2,4, 2,5), directed = FALSE)
name_stat<- c("Paris", "Melun", "Meaux", "Nemours", "Sens")
seg_short<- set.vertex.attribute(seg_short, "name", V(seg_short),

name_stat)

The constructor of class Tree checks the nodes in the graph and the columns of the
dataset if they match, and if there are latent variables.

tobj<- Tree(seg_short, Seine)
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
Uc<- getNoDataNodes(tobj)

Create the subsets.

subs_short<- Neighborhood()
subs_short<- subset(subs, 2, seg_short, Uc) # neighborhood of

level two

Estimate using Covariance Selection Model.

mle<- MLE(seg_short)
mle<- suppressMessages(

estimate(mle, Seine, subs_short, k_ratio = 0.2)
)

The estimates are squares of the parameters, hence take the square root.

sqrt(mle$depParams)
#> e1 e2 e3 e4
#> 0.5010519 0.9133062 1.0333349 0.6907978

6.3.3 Extremal coefficients’ estimator

The pairwise extremal coefficients’ estimator is introduced in Einmahl, Kiriliouk, and
Segers (2018), and is based on bivariate or trivariate stable tail dependence functions
(stdf). It is described in Section 4.3 in Asenova, Mazo, and Segers (2021). We repeat
some formulas for completeness.
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For the Hüsler–Reiss distribution with parameter matrix Λ(𝜃 ) and for a pair of
nodes 𝐽 = {𝑢, 𝑣}, the bivariate extremal coefficient is given by

𝑙 𝐽 (1, 1) = 2Φ(𝜆𝑢𝑣 (𝜃 )),

with Φ the standard normal cumulative distribution function (cdf).
The non-parametric estimator of the stdf dates back to Drees and Huang (1998)

and yields the following estimator for the extremal coefficient 𝑙 𝐽 (1, . . . , 1) for 𝐽 ⊆ 𝑉 :

𝑙 𝐽 ;𝑛,𝑘 (1, . . . , 1) =
1
𝑘

𝑛∑︁
𝑖=1
1

(
max
𝑗∈ 𝐽

𝑛𝐹 𝑗,𝑛 (𝜉 𝑗,𝑖 ) > 𝑛 + 1/2 − 𝑘
)
.

Let Q ⊆ {𝐽 ⊆ 𝑈 : |𝐽 | = 2}, i.e., a collection of pairs of nodes associated to
observable variables and put 𝑞 = |Q|, ensuring that 𝑞 ≥ |𝐸 |, the number of free edge
parameters.

ECE Version 1 The pairwise extremal coefficients estimator (ECE) of 𝜃 is

𝜃ECE
𝑛,𝑘

= arg min
𝜃 ∈ (0,∞)𝐸

∑︁
𝐽 ∈Q

(
𝑙 𝐽 ;𝑛,𝑘 (1, 1) − 𝑙 𝐽 (1, 1;𝜃 )

)2
.

One may include also trivariate extremal coefficients, in which case 𝑙 𝐽 (1, 1, 1), |𝐽 | =
3 is composed of two bivariate normal cdfs.

ECE Version 2 The second version of the ECE which is implemented with object
of class EKS_part uses the subsets𝑊𝑢 for every 𝑢 ∈ 𝑈 . It is similar to the CLE
Version 1.

For fixed 𝑢 and𝑊𝑢 such that 𝐺 (𝑊𝑢) is a connected subgraph we apply the EC
estimator of 𝜃𝑊𝑢

which is the collection of all edge weights within the subgraph
𝐺 (𝑊𝑢). In the first step we solve for every 𝑢 ∈ 𝑈 and given𝑊𝑢

𝜃𝑊𝑢 ,𝑛,𝑘 = arg min
𝜃 ∈ (0,∞)𝑊𝑢 \𝑢

∑︁
𝐽 ∈Q𝑢

(
𝑙 𝐽 ;𝑛,𝑘 (1, 1) − 𝑙 𝐽 (1, 1;𝜃 )

)2
,

where Q𝑢 is the collection of all possible pairs (and possibly triples) of nodes in𝑊𝑢 .
In a second step we combine all estimates to obtain (𝜃𝑒 , 𝑒 ∈ 𝐸)

𝜃
ECEp
𝑘,𝑛

= arg min
𝜃 ∈[0,∞)𝐸

∑︁
𝑢∈𝑈

∑︁
𝑒∈𝐸
(𝜃𝑒,𝑊𝑢

− 𝜃𝑒 )2.

In some cases the second version may be faster than the first one.
Below we illustrate the application of these methods in gremes. We use again

the dataset Seine. Consider the objects created earlier, the graph seg. Obtain the set
of nodes for which we do not observe realizations

tobj<- Tree(seg, Seine) # via an object of class Tree
Uc<- getNoDataNodes(tobj)
Uc<- c("2", "5") # alternatively do it manually (not recommended)

Create the set of coordinates, in this case only vectors with two non-zero entries. If
three variate extremal coefficients are to be computed we have to create an empty
object of class Triples and pass it to method evalPoints.

tup<- Tuples()
x<- rep(1,5)
names(x)<- getNodesWithData(tobj)
tup<- evalPoints(tup, tobj, x)
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Estimate ECE Version 1 Estimation with ECE requires to create an object of class
EKS. Again 20% of the upper order statistics is used.

eks<- EKS(seg)
eks<-estimate(eks, Seine, tup, k_ratio = 0.2)

Estimate ECE Version 2 To apply ECE Version 2, we need to create subsets for
local estimation.

subs<- Neighborhood()
subs<- subset(subs, 2, seg, Uc) # neighborhood of level two

Call the estimation method.

eks_part<- EKS_part(seg)
eks_part<- suppressMessages(

estimate(eks_part, Seine, subs, k_ratio = 0.2, xx =
x)

)

The estimates are quite similar. For large graphs the second version is faster.

eks$depParams
#> e1 e2 e3 e4 e5 e6
#> 0.6998687 1.2696199 0.2228986 0.5155293 1.1730987 0.9649355
eks_part$depParams
#> e1 e2 e3 e4 e5 e6
#> 0.6430240 1.2985508 0.4067386 0.6610828 1.1893985 0.9446311

6.3.4 Cliquewise likelihood estimator

The estimator in this section is based on Engelke and Hitz (2020). We summarize their
idea and introduce a variation of their estimator when there are latent variables.

The cliquewise estimator of Engelke and Hitz (2020) Recall the simple extreme
value distribution with exponent measure that will be denoted by Λ only in this
subsection in order to be in uniform with the notation in Engelke and Hitz (2020)

𝐺 (𝑥𝑣, 𝑣 ∈ 𝑉 ) = exp(−Λ(𝑥𝑣, 𝑣 ∈ 𝑉 )),

for every (𝑥𝑣, 𝑣 ∈ 𝑉 ) ∈ E := [0,∞]𝑉 \ {0}. When Λ has positive and continuous
density, the latter will be denoted by 𝜆. The density of the multivariate Pareto
distribution corresponding to this extreme value distribution is given by (Engelke
and Hitz, 2020, equation 7)

𝑓 (𝑦𝑣, 𝑣 ∈ 𝑉 ) = 𝜆(𝑦𝑣, 𝑣 ∈ 𝑉 )/Λ(1 |𝑉 | ), (6.2)

where 1 |𝑉 | is a vector of ones of length |𝑉 | and (𝑦𝑣, 𝑣 ∈ 𝑉 ) ∈ {𝑧 ∈ E : ∥𝑧∥∞} > 1. Let
further have C the set of cliques and D the set of minimal separators. The minimal
separators in a block graph (including trees) is a single node. According to Engelke
and Hitz (2020, Theorem 1) if 𝑌 has a multivariate Pareto distribution with positive
and continuous density and satisfies the global or pairwise Markov property with
respect to a decomposable graph (in the sense of equation 20 of their paper), the
density of 𝑌 with expression as in (6.2) factorizes as follows

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ) =
1

Λ(1 |𝑉 | )

∏
𝐶∈C 𝜆𝐶 (𝑦𝑣, 𝑣 ∈ 𝐶)∏
𝐷∈D 𝜆𝐷 (𝑦𝑣, 𝑣 ∈ 𝐷)

. (6.3)

167



6.3. ESTIMATION IN MODELS ON TREES

We have 𝜆𝐶 the density of Λ𝐶 which is the exponent measure associated to the
marginal extreme value distribution 𝐺𝐶 (𝑥𝑣, 𝑣 ∈ 𝐶). Because for a block graph the
minimal separators, 𝐷 ∈ D are singletons we have 𝜆𝐷 (𝑦𝑣, 𝑣 ∈ 𝐷) = 𝑦−2

𝐷
. Replace this

in (6.3) and multiply and divide by
∏

𝐶∈C 𝜆𝐶 (1 |𝐶 | ). We get from (6.3)

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ) =
1
𝑍

∏
𝐶∈C

𝜆𝐶 (𝑦𝑣, 𝑣 ∈ 𝐶)
Λ𝐶 (1 |𝐶 | )

,

with
𝑍 = Λ(1 |𝑉 | )

∏
𝐷∈D

𝑦−2
𝐷

1∏
𝐶∈C Λ𝐶 (1 |𝐶 | )

.

Emphasizing that the density above depends on the edge weights 𝜃 = (𝜃𝐶 ,𝐶 ∈ C),
we get

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ;𝜃𝐶 ,𝐶 ∈ C) =
1

𝑍 (𝜃 )
∏
𝐶∈C

𝜆𝐶 (𝑦𝑣, 𝑣 ∈ 𝐶;𝜃𝐶 )
Λ𝐶 (1 |𝐶 | ;𝜃𝐶 )

.

By equation 7 or 35 in Engelke and Hitz (2020) we get

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ;𝜃𝐶 ,𝐶 ∈ C) =
1

𝑍 (𝜃 )
∏
𝐶∈C

𝑓𝐶 (𝑦𝑣, 𝑣 ∈ 𝐶;𝜃𝐶 ). (6.4)

The factorization into the densities in the last expression is in the origin of the idea to
estimate each 𝜃𝐶 from the likelihood function only of the variables in that clique 𝐶 .
The term 𝑍 depends on all the parameters and it does not factorize, but the authors
say that the results based on full likelihood and cliquewise likelihood estimation show
not much difference between the two.

Recall ourmodel for𝑋 : 𝑋 Markovwith respect to a block graph,𝑋 is parameterized
cliquewise by Hüsler–Reiss copulas and it has unit Fréchet margins. In Asenova and
Segers (2021) we showed that for such a model the Pareto limit is an extremal graphical
model with respect to the same graph. We can thus apply Theorem 1 in Engelke
and Hitz (2020), respectively equations (6.3) and (6.4) because the Pareto type limit
of our model satisfies the pairwise (the global too) Markov properties with respect
to the original graph (in the sense of equation 20 in Engelke and Hitz (2020)). We
could implement the cliquewise estimator to data (𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | max𝑣 𝑋𝑣 > 𝑡 for
some large 𝑡 , because the approximate distribution has density as in (6.4). However
all variables must be observed.

Engelke and Hitz estimator with unobserved variables When there are un-
observed variables, the density in (6.4) is inappropriate as some cliques will contain
unobserved variables and hence there will be unidentifiable coefficients. In what
follows we will present our estimator inspired from the idea of Engelke and Hitz
(2020) and adapted to allow estimation with unobserved variables. It is this estimator
that is implemented in gremes.

For non-empty disjoint subsets 𝐴, 𝐵,𝐶 ⊂ 𝑉 and 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝑉 such that 𝐶 is
separator of 𝐴 and 𝐵, by Proposition 1 in Engelke and Hitz (2020) the density of 𝑌 as
extremal graphical model factorizes as

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ) =
𝜆(𝑦𝑣, 𝑣 ∈ 𝑉 )
Λ(1 |𝑉 | )

=
𝜆𝐴∪𝐶 (𝑦𝑣, 𝑣 ∈ 𝐴 ∪𝐶)𝜆𝐵∪𝐶 (𝑦𝑣, 𝑣 ∈ 𝐵 ∪𝐶)

Λ(1 |𝑉 | )𝜆𝐶 (𝑦𝑣, 𝑣 ∈ 𝐶)
. (6.5)

We choose 𝐴, 𝐵,𝐶 such that 𝐶 is a singleton, 𝐴 ∪𝐶 induces a subgraph for which the
identifiability criterion holds (every node with latent variable must belong to at least
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three cliques), and similarly for 𝐵 ∪𝐶 . When 𝐶 contains one node only, say node 𝑐 ,
then 𝜆𝑐 (𝑦𝑐 ) = 𝑦−2

𝑐 . The density of 𝑌𝑈 is given by

𝑓𝑈 (𝑦𝑣, 𝑣 ∈ 𝑈 ) =
1

Λ(1 |𝑉 | )𝑦−2
𝑐

∫
𝑦�̄�

𝜆𝐴∪𝐶 (𝑦𝐴∪𝐶 )𝜆𝐵∪𝐶 (𝑦𝐵∪𝐶 )dy𝑈 .

If 𝐶 ∉ 𝑈 , there are no overlapping variables in 𝜆𝐴∪𝐶 and 𝜆𝐵∪𝐶 , so we can split the
integral

1
Λ(1 |𝑉 | )𝑦−2

𝑐

∫
𝑦 (𝐴∪𝐶 )∩�̄�

𝜆𝐴∪𝐶 (𝑦𝐴∪𝐶 )dy(𝐴∪𝐶 )∩𝑈

×
∫
𝑦 (𝐵∪𝐶 )∩�̄�

𝜆𝐵∪𝐶 (𝑦𝐵∪𝐶 )dy(𝐵∪𝐶 )∩𝑈 .

The two integrals are the margins of 𝜆, (see also equation 5 in Engelke and Hitz (2020)),
hence we get

𝑓𝑈 (𝑦𝑣, 𝑣 ∈ 𝑈 ) =
1

Λ(1 |𝑉 | )𝑦−2
𝑐

𝜆 (𝐴∪𝐶 )∩𝑈 (𝑦 (𝐴∪𝐶 )∩𝑈 )𝜆 (𝐵∪𝐶 )∩𝑈 (𝑦 (𝐵∪𝐶 )∩𝑈 ).

Multiplying and dividing by both the measures Λ (𝐴∪𝐶 )∩𝑈 (1 | (𝐴∪𝐶 )∩𝑈 | ) and by
Λ (𝐵∪𝐶 )∩𝑈 (1 | (𝐵∪𝐶 )∩𝑈 | ) we get

𝑓𝑈 (𝑦𝑈 ) =
1
𝑍

𝜆 (𝐴∪𝐶 )∩𝑈 (𝑦 (𝐴∪𝐶 )∩𝑈 )
Λ (𝐴∪𝐶 )∩𝑈 (1 | (𝐴∪𝐶 )∩𝑈 | )

𝜆 (𝐵∪𝐶 )∩𝑈 (𝑦 (𝐵∪𝐶 )∩𝑈 )
Λ (𝐵∪𝐶 )∩𝑈 (1 | (𝐵∪𝐶 )∩𝑈 | )

with

𝑍 =
Λ(1 |𝑉 | )𝑦−2

𝑐

Λ (𝐵∪𝐶 )∩𝑈 (1 | (𝐵∪𝐶 )∩𝑈 | )Λ (𝐴∪𝐶 )∩𝑈 (1 | (𝐴∪𝐶 )∩𝑈 | )
.

Using equation 7 or 35 in Engelke and Hitz (2020) we write

𝑓𝑈 (𝑦𝑈 ) =
1
𝑍
𝑓(𝐴∪𝐶 )∩𝑈 (𝑦 (𝐴∪𝐶 )∩𝑈 ) 𝑓(𝐵∪𝐶 )∩𝑈 (𝑦 (𝐵∪𝐶 )∩𝑈 ).

Consider 𝜃𝐴∪𝐶 and 𝜃𝐵∪𝐶 . These are the weights on the edges in the subgraph induced
on the nodes of the corresponding set. We have 𝜃 = (𝜃𝐴∪𝐶 , 𝜃𝐵∪𝐶 ). As a function of 𝜃 ,
we have

𝑓𝑌 (𝑦𝑣, 𝑣 ∈ 𝑉 ;𝜃 ) = 1
𝑍 (𝜃 ) 𝑓(𝐴∪𝐶 )∩𝑈 (𝑦 (𝐴∪𝐶 )∩𝑈 ;𝜃𝐴∪𝐶 )

× 𝑓(𝐵∪𝐶 )∩𝑈 (𝑦 (𝐵∪𝐶 )∩𝑈 ;𝜃𝐵∪𝐶 ).
(6.6)

The expression in (6.6) suggests to estimate 𝜃𝐴∪𝐶 and 𝜃𝐵∪𝐶 separately, ignoring the
term 𝑍 (𝜃 ) as explained in Engelke and Hitz (2020, Section 5). It is important that
𝐴, 𝐵,𝐶 are chosen so that the identifiability criterion holds for each of the subgraphs
induced by the node sets 𝐴 ∪𝐶 and 𝐵 ∪𝐶 .

The method can be generalized if we further decompose 𝐴 ∪𝐶 in two sets and a
separator - singleton between them, for instance 𝐴, 𝐵,𝐶 such that 𝐴 ∪ 𝐵 ∪𝐶 = 𝐴 ∪𝐶
and 𝐶 is the singleton separator between 𝐴 and 𝐵. Further, we should have that on
the subgraph induced by 𝐴 ∪𝐶 the identifiability criterion is satisfied. Similarly for
𝐵 ∪𝐶 . Then using again Engelke and Hitz (2020, Proposition 1 and equation 7) we
have

𝑓𝐴∪𝐶 =
𝜆𝐴∪𝐶

Λ𝐴∪𝐶 (1 |𝐴∪𝐶 | )
and 𝑓𝐴∪𝐶 =

𝜆𝐴∪𝐶𝜆�̄�∪𝐶
Λ𝐴∪𝐶 (1 |𝐴∪𝐶 | )𝜆𝐶

from which it follows
𝜆𝐴∪𝐶 =

𝜆𝐴∪𝐶𝜆�̄�∪𝐶
𝜆𝐶

.
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We replace 𝜆𝐴∪𝐶 in (6.5) with the right hand side of the above expression. We can
continue like this to obtain an expression for 𝑓𝑈 , given by

𝑓𝑈 (𝑦𝑈 ;𝜃 ) = 1
𝑍 (𝜃 )

∏
𝑖

𝜆𝐵𝑖∩𝑈 (𝑦𝐵𝑖∩𝑈 ;𝜃𝐵𝑖
)

Λ𝐵𝑖∩𝑈 (1;𝜃𝐵𝑖
) =

1
𝑍 (𝜃 )

∏
𝑖

𝑓𝐵𝑖∩𝑈 (𝑦𝐵𝑖∩𝑈 ;𝜃𝐵𝑖
), (6.7)

for some carefully chosen subsets {𝐵𝑖 }. The idea is to estimate 𝜃𝐵𝑖
separately from

𝑓𝐵𝑖∩𝑈 ignoring 𝑍 (𝜃 ). For instance, in Seine network the only possible subsets which
will allow estimation of all edge weights is 𝐵1 = {Paris, 2,Meaux, Melun} and 𝐵2 =

{Melun, 5,Nemours, Sens}. Instead of using cliques, we use the smallest subgraphs
from which the corresponding subset of parameters is still uniquely identifiable.

For implementation of the estimator based on (6.7) we need
■ the subsets {𝐵𝑖 };
■ the set of indices 𝐼𝑘,𝑛 given by

𝐼𝑘,𝑛 = {𝑖 = 1, . . . , 𝑛 : max
𝑣∈𝑈

𝑋𝑣,𝑖 > 𝑛/𝑘}, 𝑘 ∈ {1, . . . 𝑛};

■ for every 𝑖 ∈ 𝐼𝑘,𝑛 compose the ratios

𝑌𝑣,𝑖 = 𝑋𝑣,𝑖/(𝑛/𝑘),

which gives rise to a sample (𝑦𝑣,𝑖 , 𝑣 ∈ 𝑈 , 𝑖 ∈ 𝐼𝑘,𝑛).
For given 𝐵 from the set {𝐵𝑖 } an estimate of 𝜃𝐵 = (𝜃𝑖 𝑗 , 𝑖, 𝑗 ∈ 𝐵, (𝑖, 𝑗) ∈ 𝐸) is obtained
by maximizing ∏

𝑗∈𝐼𝑘,𝑛
𝑓𝐵∩𝑈 (𝜃𝐵 ;𝑦𝐵∩𝑈 ,𝑗 ) =

∏
𝑗∈𝐼𝑘,𝑛

𝜓𝐵∩𝑈 (𝜃𝐵 ;𝑦𝐵∩𝑈 ,𝑗 )
Ψ𝐵∩𝑈 (𝜃𝐵 ; 1 |𝐵∩𝑈 | )

,

where Ψ and𝜓 are the Hüsler-Reiss Pareto exponent measure and its density respec-
tively as in Section 2 of Engelke and Hitz (2020). We have

Ψ𝐵∩𝑈 (𝜃𝐵 ; 1 |𝐵∩𝑈 | ) = 𝑙𝐵∩𝑈 (𝜃𝐵 ; 1 |𝐵∩𝑈 | ) = 𝑙 (𝜃 ; 𝜄𝐵∩𝑈 ),

where 𝑙𝐵∩𝑈 is the stdf of the subvector𝑋𝐵∩𝑈 , 𝑙 is the stdf of the full vector𝑋 = (𝑋𝑣, 𝑣 ∈
𝑉 ), and 𝜄𝐵∩𝑈 = (1𝑖∈𝐵∩𝑈 , 𝑖 ∈ 𝑉 ).

The density of the exponent measure 𝜓 is given for every 𝑢 ∈ 𝐵 ∩ 𝑈 by (see
Engelke and Hitz (2020, Section 2))

𝜓𝐵∩𝑈 (𝜃𝐵 ;𝑦𝐵∩𝑈 ,𝑗 )

= 𝑦−2
𝑢,𝑗

∏
𝑣≠𝑢

𝑦−1
𝑣,𝑗𝜙 |𝐵∩𝑈 |−1

(
ln(𝑦𝑢,𝑗/𝑦𝑣,𝑗 ) + 𝜆2

𝑢𝑣 (𝜃𝐵)/2; Σ𝐵∩𝑈 ,𝑢 (𝜃𝐵)
)
.

The vector of all 𝜃𝐵 for all 𝐵 in the collection {𝐵𝑖 } is what we called the cliquewise
likelihood estimator or the Engelke-and-Hitz estimator.

We will illustrate it using the dataset Seine. Create a list of subsets on the node
set. These sets should cover all the vertex set, but every two subsets are allowed to
have at most one node in common.

subs<- list(c("Paris", "2", "Meaux", "Melun"), c("Melun", "5",
"Nemours", "Sens"))

We require that within the induced subgraph of a given subset all edge parameters
are identifiable. This is key in this estimator. We can check this requirement with
the function is_identifiable. To use this function we need however to create
an object of class RootDepSet and an object of class Tree. If it is clear that the
criterion is satisfied there is no need from this step and the two additional objects
created below.
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rdsobj<- RootDepSet()
rdsobj<- setRootDepSet(rdsobj, subs, c("Paris", "Melun"))
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
tobj<- Tree(seg, Seine)
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
is_identifiable(rdsobj, tobj)

We get no messages from the call of the function is_identifiable, the identifia-
bility criterion is satisfied. Estimate using the cliquewise likelihood method.

ehobj<- EngHitz(seg)
#> From HRMnetwork: Edges have been assigned names
ehobj<- suppressMessages(
estimate(ehobj, Seine, subs, k_ratio = 0.2)
)
ehobj$depParams
#> e1 e2 e3 e4 e5 e6
#> 0.3653028 1.0398823 0.5751127 0.6949520 1.0905722 0.6667259

6.3.5 Conditioning on the mean

This estimator differs from the others because the conditioning event does not depend
on a particular node 𝑢 but it depends on the event that the geometric mean exceeds a
high threshold. It is based on the limit result in (L4) and it is applicable when there
are latent variables.

In an unpublished note Segers (2019) it is shown that if the random vector 𝑋 =

(𝑋1, . . . , 𝑋𝑑 ) has unit Pareto margins and is in the max-domain of attraction of a
Hüsler-Reiss copula with parameter matrix Λ = (𝜆2)𝑖 𝑗 , then it holds

L
(
(𝑌𝑣 − 𝑌 )𝑑𝑣=1 |𝑌 > 𝑦

)
→ N𝑑 (𝜇, Σ̄),

with 𝑌 = (𝑌1, . . . , 𝑌𝑑 ) = (ln𝑋1, . . . , ln𝑋𝑑 ) and certain matrices Σ̄ and 𝜇. We do not
provide further details on this result as it an unpublished work.

Consider a tree𝑇 = (𝑉 , 𝐸) and edge weights 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸). Under the assumption
that 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) is in the domain of attraction of a Hüsler-Reiss copula with unit
Fréchet margins and structured parameter matrix Λ(𝜃 )(

Λ(𝜃 )
)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) =
1
4

∑︁
𝑒∈𝑝 (𝑖, 𝑗 )

𝜃 2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑒 ∈ 𝐸.

we can employ themethod of moments or the composite likelihoodmethod to estimate
𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸) from Σ̄(𝜃 ).

The method of moments estimator The method of moments estimator is given
by

𝜃MMave
𝑘,𝑛

= arg min
𝜃 ∈ (0,∞)𝐸

∥Σ̂𝑈 − Σ̄𝑈 (𝜃 )∥2𝐹

■ Σ̂𝑈 is the non-parametric covariance matrix
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■ Σ̄𝑈 (𝜃 ) is the parametric covariance matrix
■ The parametric matrix Σ̄𝑈 (𝜃 ) is given by

Σ̄𝑈 (𝜃 ) = −𝑀
(
Λ(𝜃 )

)
𝑖, 𝑗∈𝑈𝑀

with (
Λ(𝜃 )

)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝜃 ) =
1
4

∑︁
𝑒∈𝑝 (𝑖, 𝑗 )

𝜃 2
𝑒 , 𝑖 ≠ 𝑗, 𝑒 ∈ 𝐸.

and certain matrix𝑀 .
■ If the sample of the original variables is 𝜉𝑣,𝑖 , 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛 consider the
transformation using the empirical cumulative distribution function 𝐹𝑣,𝑛 (𝑥) =[ ∑𝑛

𝑖=1 1(𝜉𝑣,𝑖 ≤ 𝑥)
]
/(𝑛 + 1).

𝑋𝑣,𝑖 =
1

1 − 𝐹𝑣,𝑛 (𝜉𝑣,𝑖 )
, 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛.

Then consider their logarithm

𝑌𝑣,𝑖 = ln𝑋𝑣,𝑖

■ For given 𝑘 ∈ {1, . . . 𝑛} consider the set of indices

𝐼 =

{
𝑖 = 1, . . . , 𝑛 : 𝑌 𝑖 =

(
1
|𝑈 |

∑︁
𝑣∈𝑈

𝑌𝑣,𝑖

)
> 𝑛/𝑘

}
■ For every 𝑣 ∈ 𝑈 and 𝑖 ∈ 𝐼 compose the differences

Δ𝑣,𝑖 = 𝑌𝑣,𝑖 − 𝑌 𝑖 .

■ The vector of means of these differences is given by

𝜇 =
1
|𝐼 |

∑︁
𝑖∈𝐼
(Δ𝑣,𝑖 , 𝑣 ∈ 𝑈 ).

■ The non-parametric covariance matrix Σ̂𝑈 is given by

Σ̂ =
1
|𝐼 |

∑︁
𝑖∈𝐼
(Δ𝑣,𝑖 − 𝜇, 𝑣 ∈ 𝑈 ) (Δ𝑣,𝑖 − 𝜇, 𝑣 ∈ 𝑈 )⊤ .

The composite likelihood estimator The composite likelihood estimator is given
by

𝜃MLEave
𝑘,𝑛

= arg max
𝜃 ∈ (0,∞) |𝐸 |

𝐿

(
𝜇𝑈 (𝜃 ), Σ̄𝑈 (𝜃 ); {Δ𝑣,𝑖 , 𝑖 ∈ 𝐼 , 𝑣 ∈ 𝑈 }

)
.

The likelihood function 𝐿 above is the one of |𝑈 |-variate Gaussian probability density
function with mean 𝜇𝑈 and covariance matrix Σ̄𝑈 .

We illustrate the two estimators on the Seine dataset. Create an object combining
the graph and the data. We can extract from it the nodes with latent variables.

tobj<- Tree(seg, Seine)
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
Uc<- getNoDataNodes(tobj)
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Method of moments estimator Estimate according to the method of moments:
first create an object of the appropriate class and then call the method estimate.

mme_ave<- MMEave(seg)
#> From HRMnetwork: Edges have been assigned names
estimate(mme_ave, Seine, k_ratio=0.2)$depParams
#> From validate.Network: There are nodes with latent variables
#> From validate.Network: There are nodes with latent variables
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setParams.HRMtree: Names have been attributed to the

vector ’value’ in the order corresponding to the order of the
edges: The fist element has the name of the first edge, the
second element the name of the second edge, etc.

#> From setParams.HRMtree: The parameters have been attached to
the edges according to their names

#> e1 e2 e3 e4 e5 e6
#> 0.3991855 1.7674395 0.7114457 0.8146106 1.7026741 0.9087931

Composite likelihood estimator Estimate according to the method of maximum
likelihood: first create an object of the appropriate class and then call the method
estimate.

mle_ave<- MLEave(seg)
#> From HRMnetwork: Edges have been assigned names
estimate(mle_ave, Seine, k_ratio=0.2)$depParams
#> From validate.Network: There are nodes with latent variables
#> From validate.Network: There are nodes with latent variables
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> e1 e2 e3 e4 e5 e6
#> 0.3416488 1.6908232 0.9294585 1.0357446 1.6046801 0.9647892

The estimates are slightly different from each other. Note also that the estimates are a
bit higher compared to MME and CLE in sections 6.3.1 and 6.3.2.

Although local estimation is possible using a collection of subsets around every
node with observable variable, we do not pursue this method here.

6.4 Estimation in models on block graphs

The estimator is based on the limit result in section 6.2.2 and it is appropriate when
there are latent variables. We have chosen to implement an estimation method which
is simple, fastest with respect to all the others proposed for tree models and it gives
very satisfactory results, at least for tree models. The idea is to find the edge weights
𝛿 = (𝛿2

𝑒 , 𝑒 ∈ 𝐸) which minimize the distance between the empirical and the theoretical
covariance matrices:

𝛿MM
𝑛,𝑘

= arg min
𝛿∈ (0,∞)𝐸

∑︁
𝑢∈𝑈
∥Σ̂𝑊𝑢 ,𝑢 − Σ𝑊𝑢 ,𝑢 (𝛿)∥2𝐹 .

Some of the notations are the same as in section 6.3.1, some of them we repeat for
completeness.
■ 𝑊𝑢 is a subset on the node set depending on 𝑢. Typically a neighborhood of 𝑢
or the nodes that are flow connected to 𝑢 or the intersection of both. Note that
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the induced graph on𝑊𝑢 must be connected. A good practice is to compose
the sets such that within each subset all parameters are uniquely identifiable.
This means that every node in𝑊 with latent variable should be connected to
at least three other cliques in the same set𝑊 .

■ Σ̂𝑊𝑢 ,𝑢 is the non-parametric covariance matrix
■ Σ𝑊𝑢 ,𝑢 (𝛿) is the parametric covariance matrix
■ For fixed 𝑢 and𝑊𝑢 the parametric matrix Σ𝑊𝑢 ,𝑢 is given by(

Σ𝑊,𝑢 (Λ)
)
𝑖 𝑗
= 2(𝜆2

𝑖𝑢 + 𝜆2
𝑗𝑢 − 𝜆2

𝑖 𝑗 ), 𝑖, 𝑗 ∈𝑊 \ 𝑢.

with (
Λ(𝛿)

)
𝑖 𝑗
= 𝜆2

𝑖 𝑗 (𝛿) =
∑︁

𝑒∈𝑝 (𝑖, 𝑗 )
𝛿2
𝑒 , 𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑒 ∈ 𝐸.

■ If the sample of the original variables is 𝜉𝑣,𝑖 , 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛 consider the
transformation using the empirical cumulative distribution function 𝐹𝑣,𝑛 (𝑥) =[ ∑𝑛

𝑖=1 1(𝜉𝑣,𝑖 ≤ 𝑥)
]
/(𝑛 + 1).

𝑋𝑣,𝑖 =
1

1 − 𝐹𝑣,𝑛 (𝜉𝑣,𝑖 )
, 𝑣 ∈ 𝑈 , 𝑖 = 1, . . . , 𝑛.

■ Fix 𝑢 and𝑊𝑢 . For given 𝑘 ∈ {1, . . . 𝑛} consider the set of indices

𝐼𝑢 = {𝑖 = 1, . . . , 𝑛 : 𝑋𝑢,𝑖 > 𝑛/𝑘}

■ For every 𝑣 ∈𝑊𝑢 \ 𝑢 and 𝑖 ∈ 𝐼𝑢 compose the differences

Δ𝑢𝑣,𝑖 = ln𝑋𝑣,𝑖 − ln𝑋𝑢,𝑖 .

■ The vector of means of these differences is given by

𝜇𝑊𝑢 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 , 𝑣 ∈𝑊𝑢 \ 𝑢).

■ The non-parametric covariance matrix Σ̂𝑊𝑢 ,𝑢 is given by

Σ̂𝑊𝑢 ,𝑢 =
1
|𝐼𝑢 |

∑︁
𝑖∈𝐼𝑢
(Δ𝑢𝑣,𝑖 − 𝜇𝑊𝑢 ,𝑢, 𝑣 ∈𝑊𝑢 \ 𝑢) (Δ𝑢𝑣,𝑖 − 𝜇𝑊𝑢 ,𝑢, 𝑣 ∈𝑊𝑢 \ 𝑢)⊤ .

We illustrate the estimation methods on a simulated data. We create the igraph
object which is with the diagram as in Fig. 6.2

g<- graph(c(1,3,1,2,2,3,
3,4,4,5,5,3,
3,7,3,6,6,7), directed = FALSE)

g<- set.vertex.attribute(g, "name", V(g), c("a", "b", "c", "d",
"e", "f", "g"))

Create the edge weights to be assigned to the edges of the graph.

# all deltas are squares already
C1<- c(0.2, 0.8, 0.6) # d_13^2, d_12^2, d_23^2
C2<- c(0.3, 0.5, 0.1) # d_34^2, d_45^2, d_35^2
C3<- c(0.4, 0.05, 0.25) # d_37^2, d_36^2, d_67^2

We create an object of class HRMBG and attach the edge weights to the edges using
the method setParams.
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hrmbgobj<- HRMBG(g)
#> From HRMnetwork: Edges have been assigned names
hrmbgobj<- setParams(hrmbgobj, c(C1, C2, C3))
#> From setParams.HRMtree: Names have been attributed to the

vector ’value’ in the order corresponding to the order of the
edges: The fist element has the name of the first edge, the
second element the name of the second edge, etc.

#> From setParams.HRMtree: The parameters have been attached to
the edges according to their names

hrmbgobj
#> $graph
#> IGRAPH 28f4820 UN-- 7 9 --
#> + attr: name (v/c), name (e/c)
#> + edges from 28f4820 (vertex names):
#> [1] a--c a--b b--c c--d d--e c--e c--g c--f f--g
#>
#> $depParams
#> e1 e2 e3 e4 e5 e6 e7 e8 e9
#> 0.20 0.80 0.60 0.30 0.50 0.10 0.40 0.05 0.25
#>
#> attr(,"class")
#> [1] "HRMnetwork" "HRMBG" "MME"

We create the matrix Λ, whose entry 𝜆𝑖 𝑗 is the sum of the edge weights on the unique
shortest path between node 𝑖 and node 𝑗 .

hrmlam<- HRLambda(hrmbgobj)
hrmlam
#> a b c d e f g
#> a 0.00 0.80 0.20 0.50 0.30 0.25 0.60
#> b 0.80 0.00 0.60 0.90 0.70 0.65 1.00
#> c 0.20 0.60 0.00 0.30 0.10 0.05 0.40
#> d 0.50 0.90 0.30 0.00 0.50 0.35 0.70
#> e 0.30 0.70 0.10 0.50 0.00 0.15 0.50
#> f 0.25 0.65 0.05 0.35 0.15 0.00 0.25
#> g 0.60 1.00 0.40 0.70 0.50 0.25 0.00

Generate 1000 observations from Hüsler-Reiss distribution with parameter matrix Λ
and some independent random noise.

X<- rHRM(hrmbgobj, hrmlam, 1000, noise = TRUE)

We will treat the variable 𝑋𝑐 as unobserved. If 𝑐 is unobserved, given the graph
structure we don’t have much choice in creating the subsets. If we follow the rec-
ommendation to choose subset such that in the subgraph induced by the subset the
edges are uniquely identifiable we simply take all observable nodes six times.

rdsobj<- RootDepSet()
rdsobj<- setRootDepSet(rdsobj, subset = list(c("a", "b", "d", "e",

"f", "g"),
c("a", "b", "d", "e", "f", "g"),
c("a", "b", "d", "e", "f", "g"),
c("a", "b", "d", "e", "f", "g"),
c("a", "b", "d", "e", "f", "g"),
c("a", "b", "d", "e", "f", "g")),
c("a", "b", "d", "e", "f", "g"))

Estimate the model treating the third variable as latent: create first an object of class
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HRMBG and then use on it the method estimate.

hrmbg<- HRMBG(g)
#> From HRMnetwork: Edges have been assigned names
hrmbg<- suppressMessages(
estimate(hrmbg, X[,-3], rdsobj, k_ratio = 0.2)
)
hrmbg$depParams
#> e1 e2 e3 e4 e5 e6 e7
#> 0.11626913 0.33142701 0.22438322 0.12975244 0.28151050

0.08391488 0.20506818
#> e8 e9
#> 0.05308032 0.16180281

6.5 Additional functionalities

The package contains several additional functionalities that may serve for generating
data from the model and post-estimation analysis.

6.5.1 Random sample from a Markov tree parameterized cliquewise by
Hüsler-Reiss distributions

Consider the random vector 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) with three properties: it satisfies the
global Markov property with respect to a tree 𝑇 = (𝑉 , 𝐸), every two adjacent nodes
have Hüsler-Reiss distribution with some parameter 𝜃𝑒 , 𝑒 ∈ 𝐸, and the univariate
margins are unit Fréchet, 𝐹 (𝑥) = exp(−1/𝑥). For simulation purposes, it is useful to be
able to generate from the model for 𝑋 . The method that does this is rHRM.HRMtree.
There are two options - with or without independent normal noise.

seg<- make_tree(8,3, mode = "undirected") # create the tree
seg<- set.vertex.attribute(seg, "name", V(seg), letters[1:8]) #

name the nodes
plot(seg)
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hrm<- HRMtree(seg) # initialize the object of of class HRMtree
#> From HRMnetwork: Edges have been assigned names
hrm<- setParams(hrm, seq(0.1, 0.7, 0.1)) # set its parameters
#> From setParams.HRMtree: Names have been attributed to the

vector ’value’ in the order corresponding to the order of the
edges: The fist element has the name of the first edge, the
second element the name of the second edge, etc.

#> From setParams.HRMtree: The parameters have been attached to
the edges according to their names

X<- rHRM(hrm, 1000) # generate a random sample
round(head(X), 4)
#> a b c d e f g h
#> [1,] 3.4472 3.9739 4.0591 3.9641 3.6598 1.4403 5.9760 1.4458
#> [2,] 0.5888 0.5696 0.6494 0.3557 0.4057 0.7999 0.5375 0.2906
#> [3,] 1.3907 1.4325 1.9571 1.5407 1.7510 1.1323 3.5939 0.8053
#> [4,] 1.9043 2.0291 2.5510 1.4914 2.3184 2.6095 2.2060 2.3886
#> [5,] 157.8761 144.0455 182.9044 328.4986 153.4239 127.6369

161.5266 429.3421
#> [6,] 20.7303 24.5769 17.7094 13.4588 32.2752 35.7236 18.4102

16.3959
XX<- rHRM(hrm, 1000, noise = TRUE) # generate a random samle with

independent normal noise
round(head(XX), 4)
#> a b c d e f g h
#> [1,] 3.0549 3.9415 3.9036 3.1851 2.3651 4.5122 3.4977 2.3783
#> [2,] 1.0991 1.2879 1.3439 0.5735 1.8647 0.7414 0.9795 0.5649
#> [3,] 12.6987 11.2157 9.6800 12.9609 6.5391 12.3512 5.4284 9.6943
#> [4,] 2.4669 2.9649 3.2005 3.3334 6.0280 4.4191 9.9984 4.3267
#> [5,] 3.0698 3.2577 4.4243 2.2971 3.1269 2.9672 3.0714 2.5784
#> [6,] 2.3324 2.4746 1.4741 1.2014 1.9920 1.2968 4.5669 1.5034
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For any 𝑢 ∈ 𝑉 the joint density function of 𝑋 is

𝑓 (𝑥) = 𝑓𝑢 (𝑥𝑢)
∏
(𝑣,𝑗 ) ∈𝐸𝑢

𝑓𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣),

with 𝐸𝑢 ⊆ 𝐸 the set of edges directed away from 𝑢, i.e., (𝑣, 𝑗) ∈ 𝐸𝑢 if and only if 𝑣 = 𝑢
or 𝑣 separates 𝑢 and 𝑗 . The joint density 𝑓 is determined by 𝑑 − 1 bivariate densities
𝑓𝑣 𝑗 . The univariate margins 𝑓𝑢 are unit Fréchet densities, 𝑓𝑗 (𝑥 𝑗 ) = exp(−1/𝑥 𝑗 )/𝑥2

𝑗 for
𝑥 𝑗 ∈ (0,∞), and the bivariate margins for each pair of variables on adjacent vertices
𝑗, 𝑣 are Hüsler–Reiss distributions with parameter 𝜃 𝑗𝑣 .

To generate an observation from the left hand-side of the equation above we
use the right hand-side of that equation, proceeding iteratively, walking along paths
starting from 𝑢 using the conditional densities. An observation of 𝑋 𝑗 given 𝑋𝑣 = 𝑥𝑣
is generated via the inverse function of the conditional cdf 𝑥 𝑗 ↦→ 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣), the
conditional cdf of 𝑥 𝑗 given 𝑥𝑣 . To do so, the equation 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣) − 𝑝 = 0 is solved
numerically as a function in 𝑥 𝑗 for fixed 𝑝 ∈ (0, 1). The choice of the Hüsler–Reiss
bivariate distribution gives the following expression for 𝐹 𝑗 |𝑣 (𝑥 𝑗 | 𝑥𝑣):

Φ

(
𝜃 𝑗 𝑣

2
+ 1
𝜃 𝑗 𝑣

ln
𝑥 𝑗

𝑥𝑣

)
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𝑥𝑣

{
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𝜃 𝑗𝑣

2
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𝑥𝑣
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}
− 1
𝑥 𝑗

Φ

(
𝜃 𝑗 𝑣

2
+ 1
𝜃 𝑗 𝑣

ln
𝑥𝑣

𝑥 𝑗

)]
.

6.5.2 Diagnostic for the random sample

As a diagnostic tool of the joint distribution of the sample generated above, we provide
comparison between the bivariate true copula and the bivariate empirical copula.
We fix a node, say 𝑎, and if 𝑏 and 𝑐 are adjacent to 𝑎, we compute the true bivariate
copulas and the empirical copulas of pairs (𝑋𝑎, 𝑋𝑏) and (𝑋𝑎, 𝑋𝑐 ) and compare them.
We also provide plot of the true and the empirical cumulative distribution function of
the selected variable, e.g., of 𝑎 in the preceding example.

diagnost(hrm, X, "b", y = c(0.3,0.5))
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#> [1] "variable b adj. variable a ; true copula 0.299999999921372
; empirical copula 0.3"

#> [1] "variable b adj. variable e ; true copula 0.29589026650931
; empirical copula 0.292"

#> [1] "variable b adj. variable f ; true copula 0.291002999050035
; empirical copula 0.287"

#> [1] "variable b adj. variable g ; true copula 0.28491676575979
; empirical copula 0.289"

When we add some noise to the model the univariate empirical curve is a bit below
the true one, but in the tail the difference diminishes.

Similarly for the tail of the bivariate copulas: for higher coordinates, (0.8, 0.9),
the bivariate true and empirical copulas become closer to each other than for smaller
values of the coordinates (0.3, 0.5):

diagnost(hrm, XX, "b", y = c(0.3, 0.5))
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#> [1] "variable b adj. variable a ; true copula 0.299999999921372
; empirical copula 0.266"

#> [1] "variable b adj. variable e ; true copula 0.29589026650931
; empirical copula 0.275"

#> [1] "variable b adj. variable f ; true copula 0.291002999050035
; empirical copula 0.253"

#> [1] "variable b adj. variable g ; true copula 0.28491676575979
; empirical copula 0.243"

diagnost(hrm, XX, "b", y = c(0.8, 0.9))

180



6.5. ADDITIONAL FUNCTIONALITIES

#> [1] "variable b adj. variable a ; true copula 0.8 ; empirical
copula 0.8"

#> [1] "variable b adj. variable e ; true copula 0.799431996325495
; empirical copula 0.799"

#> [1] "variable b adj. variable f ; true copula 0.798248020703279
; empirical copula 0.798"

#> [1] "variable b adj. variable g ; true copula 0.796402838196817
; empirical copula 0.795"

6.5.3 Random sample from max-stable Hüsler-Reiss distribution with
structured matrix

When 𝑋 is Markov with respect to a block graph and parameterized cliquewise by a
family of Hüsler-Reiss distributions, we do not dispose of a method to generate from
the exact distribution of such a model as we do when the graph is a tree. We can
generate from the max-stable attractor of this model. To do this we use the package
mev of Belzile et al. (2020).

bg<- graph(c(1,2,2,3,1,3,
3,4,3,5,4,5,
3,7,3,6,6,7), directed = FALSE) # create the graph
bg<- set.vertex.attribute(bg, "name", V(bg), letters[1:7]) # name

the nodes
plot(bg)
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hrbg<- HRMBG(bg) # initialize an object with zero dependence
parameters

#> From HRMnetwork: Edges have been assigned names
hrbg<- setParams(hrbg, seq(0.1, 0.9, 0.1)) # set the parameters
#> From setParams.HRMtree: Names have been attributed to the

vector ’value’ in the order corresponding to the order of the
edges: The fist element has the name of the first edge, the
second element the name of the second edge, etc.

#> From setParams.HRMtree: The parameters have been attached to
the edges according to their names

lam<- HRLambda(hrbg) # compute the structured matrix Lambda,
XB<- rHRM(hrbg, lam, 1000, noise = TRUE)
round(head(XB), 4)
#> a b c d e f g
#> [1,] 0.8995 2.4714 2.1611 2.2669 1.5366 0.9505 1.0385
#> [2,] 7.9079 8.1340 3.3715 1.8902 1.3748 1.7690 3.6102
#> [3,] 2.2044 1.5360 2.1932 3.8561 5.6708 4.3940 4.7238
#> [4,] 3.3555 2.9799 2.5561 3.0176 2.7400 4.7078 11.2548
#> [5,] 1.3955 0.8804 1.5267 1.9929 1.4649 0.9123 3.5049
#> [6,] 2.8644 3.7879 2.5622 1.8191 1.5134 1.1738 1.7523

This code samples from a max-stable Hüsler-Reiss copula with unit Fréchet uni-
variate margins and with parameter matrix

𝜆2
𝑖 𝑗 =

∑︁
𝑒∈𝑝 (𝑖, 𝑗 )

𝛿2
𝑒 ,

where 𝑝 (𝑖, 𝑗) is the unique shortest path between two nodes 𝑖, 𝑗 .
If the matrix Lambda corresponds to a tree, then we sample from the distribu-

tion which determines the max-stable domain of attraction of the distribution in
section 6.5.1. The theoretical result has been proved in Asenova, Mazo, and Segers
(2021).
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6.5.4 The stable tail dependence function (stdf)

The stdf is a key quantity in the topics of multivariate extremal dependence. It is
defined as the following limit

𝑙 (𝑥𝑣, 𝑣 ∈ 𝑉 ) = lim
𝑡→∞

𝑡𝑃

( ⋃
𝑣∈𝑉
{𝑋𝑣 > 𝑡/𝑥𝑣}

)
, 𝑥 ∈ (0,∞) |𝑉 |

where 𝑋 has unit Pareto univariate margins. The relation between the stdf and a
max-stable (extreme value) distribution is given by

𝐺 (𝑥𝑣, 𝑣 ∈ 𝑉 ) = exp
{
− 𝑙 (1/𝑥𝑣, 𝑣 ∈ 𝑉 )

}
,

if𝐺 is an extreme value distribution with unit Fréchet margins. More about the stdf
can be read in Drees and Huang (1998), Beirlant et al. (2004), and de Haan and Ferreira
(2007). The distribution 𝐺 can have a parametric model such as the Hüsler-Reiss
model used throughout the package gremes.

The package provides tools for computing parametric and non-parametric stdf
for models on trees and block graphs.

The parametric estimate of 𝑙 when 𝑙 is parameterized using the Hüsler-Reiss
distribution is 𝑙 (𝑥𝑣, 𝑣 ∈ 𝑉 ;𝜃𝑛,𝑘 ) in case of tree models and 𝑙 (𝑥𝑣, 𝑣 ∈ 𝑉 ;𝛿𝑛,𝑘 ) in case of
models on block graphs. The vector 𝜃𝑛,𝑘 = (𝜃𝑒 ;𝑛,𝑘 , 𝑒 ∈ 𝐸) is any estimate of the edge
weights on a tree, and 𝛿𝑛,𝑘 = (𝛿𝑒 ;𝑛,𝑘 , 𝑒 ∈ 𝐸) is any estimate of the edge weights on a
block graph.

The non-parametric estimate of the stdf is given in Drees and Huang (1998).

𝑙𝑛,𝑘 (𝑥𝑣, 𝑣 ∈ 𝑉 ) =
1
𝑘

𝑛∑︁
𝑖=1

1

(⋃
𝑣∈𝑉

{
𝑛𝐹𝑣,𝑛 (𝑋𝑣,𝑖 ) > 𝑛 + 1/2 − 𝑘𝑥𝑣

})
,

where 𝐹𝑣,𝑛 (𝑥) = (1/𝑛)∑𝑛
𝑖=1 1(𝑋𝑣,𝑖 ≤ 𝑥), i.e., the non-parametric estimate of the

cumulative distribution function.
The methods which compute stdf are
■ stdf.Network for non-parametric estimates of the stdf disregarding of the
graph, tree of block graph.

■ stdf.HRMtree for parametric estimates for models on trees.
■ stdf.HRMBG for parametric estimates for models on block graphs.
Here we have some examples for these.

Non-parametric estimates on an object containing a tree

x<- runif(8)
names(x)<- letters[1:8]
tobj<- Tree(seg, XX) # an object of containing block graph and the

data associated to it
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
stdf(tobj, x, 0.2) # 20% of the upper order statistics
#> [1] 1.035
x<- x[3:8] # with latent variables on nodes "a" and "b"
names(x)<- letters[3:8]
XU<- X[,3:8]
tobjU<- Tree(seg, XU) # an object containing a tree an the data

associated to it
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
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#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
stdf(tobjU, x, 0.25)
#> [1] 0.916
x<- matrix(runif(40), 5,8)
colnames(x)<- letters[1:8]
stdf(tobj, x, 0.25) # 25% of the upper order statistics
#> [1] 1.160 1.228 1.000 0.888 1.120

Non-parametric estimates on an object containing a block graph

x<- runif(7)
names(x)<- letters[1:7]
bgobj<- BlockGraph(bg, XB) # an object containing a tree an the

data associated to it
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: No latent variables
stdf(bgobj, x, 0.15) # 15% of the upper order statistics
#> [1] 1.786667

Parametric estimates on model with respect to a tree

x<- c(0, 0.1, 0, 2.5, 0, 1.3, 2.3, 1.5)
names(x)<- letters[1:8]
stdf(hrm, x )
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> b
#> 3.254016
#> attr(,"error")
#> [1] 3.077146e-43
#> attr(,"msg")
#> [1] "Normal Completion"

Parametric estimates on a model with respect to a block graph

x<- runif(7)
names(x)<- letters[1:7]
stdf(hrbg, x)
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
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#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> a
#> 2.162505
#> attr(,"error")
#> [1] 6.044999e-05
#> attr(,"msg")
#> [1] "Normal Completion"

6.5.5 Extremal coefficients

We look at extremal coefficients as some tools for post-estimation analysis. A typical
analysis includes a comparison between estimates of extremal coefficients using the
estimates of the edge weights and non-parametric extremal coefficients.

The extremal coefficient of variables in the set 𝐽 ⊆ 𝑉 is given by

𝑙 𝐽 = 𝑙 (1𝐽 ),

where 𝑙 is the stable tail dependence function and 1𝐽 = (1𝑖∈ 𝐽 , 𝑖 ∈ 𝑉 ), i.e., a vector of
length |𝑉 | whose elements are zero or one. An element 𝑖 will be one if it belongs to 𝐽
and zero otherwise. The range of a 𝐽 -variate extremal coefficient is between 1 and |𝐽 |
with dependence decreasing for large value of the coefficient.

There are three methods for computing extremal coefficients:
■ extrCoeff.Network can be used to compute non-parametric extremal coef-
ficients for data related to tree or to block graphs. Here the graph it doesn’t
matter, as the only input in the computation is the data.

■ extrCoeff.HRMtree for parametric extremal coefficients of models on trees
■ extrCoeff.HRMBG for parametric extremal coefficients of models on block
graphs

Non-parametric extremal coefficients - trees and block graphs Given two
objects of classes BlockGraph or Tree respectively we can compute the bivariate
extremal coefficients as follows (k-ratio = 0.2).

extrCoeff(bgobj, 0.2)
#> a b c d e f g
#> a 0 1.25 1.375 1.505 1.555 1.600 1.605
#> b 0 0.00 1.295 1.480 1.565 1.590 1.585
#> c 0 0.00 0.000 1.410 1.455 1.525 1.510
#> d 0 0.00 0.000 0.000 1.485 1.595 1.595
#> e 0 0.00 0.000 0.000 0.000 1.625 1.655
#> f 0 0.00 0.000 0.000 0.000 0.000 1.555
#> g 0 0.00 0.000 0.000 0.000 0.000 0.000
extrCoeff(tobj, 0.2)
#> a b c d e f g h
#> a 0 1.07 1.09 1.095 1.130 1.205 1.235 1.250
#> b 0 0.00 1.08 1.100 1.115 1.190 1.260 1.240
#> c 0 0.00 0.00 1.110 1.155 1.180 1.270 1.220
#> d 0 0.00 0.00 0.000 1.145 1.205 1.255 1.255
#> e 0 0.00 0.00 0.000 0.000 1.245 1.265 1.275
#> f 0 0.00 0.00 0.000 0.000 0.000 1.325 1.315
#> g 0 0.00 0.00 0.000 0.000 0.000 0.000 1.350
#> h 0 0.00 0.00 0.000 0.000 0.000 0.000 0.000
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For an arbitrary dimension of the extremal coefficient, we need to create the vector
of coordinates and name it according to the names of the nodes. If we want a four
variate extremal coefficient of the variables (𝑋𝑎, 𝑋𝑐 , 𝑋𝑑 , 𝑋𝑒 ) we need to do

y<- c(1, 0, 1, 1, 1, 0, 0)
names(y)<- letters[1:7]
extrCoeff(bgobj, 0.25, y)
#> [1] 1.9
extrCoeff(tobj, 0.25, y)
#> [1] 1.26

If there are latent variables the bivariate extremal coefficients are computed
between only observable variables.

# on the tree
extrCoeff(tobjU, 0.2)
#> c d e f g h
#> c 0 1.125 1.135 1.180 1.215 1.235
#> d 0 0.000 1.165 1.195 1.215 1.240
#> e 0 0.000 0.000 1.205 1.255 1.275
#> f 0 0.000 0.000 0.000 1.275 1.265
#> g 0 0.000 0.000 0.000 0.000 1.310
#> h 0 0.000 0.000 0.000 0.000 0.000

# on the block graph
XBU<- XB[, -3]
bgobjU<- BlockGraph(bg, XBU)
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
#> From validate.Network: Edges have been assigned names
#> From validate.Network: There are nodes with latent variables
extrCoeff(bgobjU, 0.3)
#> a b d e f g
#> a 0 1.206667 1.446667 1.483333 1.563333 1.540000
#> b 0 0.000000 1.446667 1.473333 1.553333 1.500000
#> d 0 0.000000 0.000000 1.443333 1.550000 1.533333
#> e 0 0.000000 0.000000 0.000000 1.593333 1.546667
#> f 0 0.000000 0.000000 0.000000 0.000000 1.493333
#> g 0 0.000000 0.000000 0.000000 0.000000 0.000000

Note that for the parameters to be all identifiable on the tree, only variables on
nodes 𝑎, 𝑏 can be latent - from section 6.5.1 we see that only these nodes have at least
three neighbors. On the block graph only variable on node 𝑐 can be latent - from
section 6.5.3 we see that only node 𝑐 takes part in three cliques (Asenova and Segers,
2021).

If we want an extremal coefficient of other dimension we need to pass a vector
with non-zero coordinates only for observed variables.

v<- c(0,0,1,1,0,1,0,1)
names(v)<- letters[1:8]
extrCoeff(tobjU, 0.2, v)
#> [1] 1.42

v<- c(1, 1, 0, 1, 0, 0, 1)
names(v)<- letters[1:7]
extrCoeff(bgobjU, 0.15, v)
#> [1] 2.16
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Parametric extremal coefficients The method extrCoeff.HRMtree is used
for models on trees.

extrCoeff(hrm) # bivariate
#> a b c d e f g h
#> a 0 1.039878 1.079656 1.119235 1.163330 1.201239 1.238977

1.284146
#> b 0 0.000000 1.089021 1.125633 1.158519 1.197413 1.235823

1.286697
#> c 0 0.000000 0.000000 1.143065 1.181231 1.215809 1.251150

1.273661
#> d 0 0.000000 0.000000 0.000000 1.201239 1.232620 1.265478

1.306198
#> e 0 0.000000 0.000000 0.000000 0.000000 1.251150 1.281568

1.324294
#> f 0 0.000000 0.000000 0.000000 0.000000 0.000000 1.303842

1.343254
#> g 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

1.364744
#> h 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000
v<- c(0,0,1,1,0,1,0,1)
names(v)<- letters[1:8]
extrCoeff(hrm, v) # for a particular set of variables
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> c
#> 1.518277
#> attr(,"error")
#> [1] 5.488687e-05
#> attr(,"msg")
#> [1] "Normal Completion"

The method extrCoeff.HRMBG is used for models on block graphs.

extrCoeff(hrbg) # bivariate
#> a b c d e f g
#> a 0 1.24817 1.416118 1.597216 1.628907 1.705734 1.682689
#> b 0 0.00000 1.345279 1.561422 1.597216 1.682689 1.657218
#> c 0 0.00000 0.000000 1.472911 1.520500 1.628907 1.597216
#> d 0 0.00000 0.000000 0.000000 1.561422 1.726678 1.705734
#> e 0 0.00000 0.000000 0.000000 0.000000 1.745787 1.726678
#> f 0 0.00000 0.000000 0.000000 0.000000 0.000000 1.657218
#> g 0 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000
v<- c(0,0,1,1,0,1,0)
names(v)<- letters[1:7]
extrCoeff(hrbg, v) # for a particular set of variables
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> From setRootDepSet.RootDepSet: The order of the subset must

correspond to the
#> order of its corresponding root
#> c
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#> 2.062956
#> attr(,"error")
#> [1] 1e-15
#> attr(,"msg")
#> [1] "Normal Completion"

6.5.6 Tail dependence coefficients for models on trees

The tail dependence coefficient (tdc) of a subset𝑊 ⊆ 𝑉 and a node 𝑢 ∉𝑊 is defined
as

lim
𝑡→∞

𝜒𝑊 |𝑢 (𝑡) := lim
𝑡→∞

Pr(𝑋𝑊 > 𝑡 | 𝑋𝑢 > 𝑡) 𝑢 ∉𝑊, 𝑡 > 1.

The event {𝑋𝑊 > 𝑡} is to be read as the intersection
⋂

𝑤∈𝑊 {𝑋𝑤 > 𝑡}. When 𝑋 has
unit Pareto univariate margins Pr(𝑋𝑢 > 𝑡) = 1/𝑡 for 𝑡 > 1, so that

Pr(𝑋𝑊 > 𝑡 | 𝑋𝑢 > 𝑡) = 𝑡 Pr(𝑋𝑊∪𝑢 > 𝑡)

If we set𝑊 :=𝑊 ∪ 𝑢 we have

𝜒
𝑊

= lim
𝑡→∞

𝜒
𝑊
(𝑡)

as a bivariate or multivariate tail dependence coefficient (tdc). In terms of the stable
tail dependence function 𝑙 of 𝑋𝑈 , the inclusion–exclusion formula yields

𝜒
𝑊

=

|𝑊 |∑︁
𝑖=1
(−1)𝑖−1

∑︁
𝐽 ⊆𝑊, | 𝐽 |=𝑖

𝑙 (1𝐽 ),

where 1𝐽 = (1𝑗∈ 𝐽 , 𝑗 ∈ 𝑈 ) is a vector of zeroes and ones. Note that 𝑙 (1𝐽 ) is the extremal
coefficient as considered above.

The parametric estimate of 𝜒
𝑊

involves the parametric expressions of the stdf
evaluated at a particular estimate of the parameter vector 𝜃 = (𝜃𝑒 , 𝑒 ∈ 𝐸).

Non-parametrically we estimate 𝜒
𝑊
(𝑡) at 𝑡 = 𝑛/𝑘 via

𝜒
𝑊

=
𝑛

𝑘

1
𝑛

𝑛∑︁
𝑖=1

1
{
𝑛𝐹𝑣,𝑛 (𝑋𝑣,𝑖 ) > 𝑛 − 𝑘, ∀𝑣 ∈𝑊

}
.

For the set𝑊 = (𝑎, 𝑐, 𝑑, 𝑒) we should do

v<- c(1,0,1,1,1,0,0,0)
names(v)<- letters[1:8]
suppressMessages(taildepCoeff(hrm, v)) # parametric tdc
#> a
#> 0.7419965
#> attr(,"error")
#> [1] 0
#> attr(,"msg")
#> [1] "univariate: using pnorm"
taildepCoeff(tobj, 0.2, v) # non-parametric tdc
#> [1] 0.795

6.5.7 Confidence intervals for pairwise ECE - models on trees

Confidence intervals can be computed for the edge weights for models on trees if
the pairwise extremal coefficients estimator is used. This is thanks to the distribution
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available of this estimator in Einmahl, Kiriliouk, and Segers (2018). The method that
computes the confidence intervals is confInt.EKS.

Let 𝜃𝑛,𝑘 = 𝜃ECE
𝑛,𝑘

denote the pairwise (bivariate) extremal coefficient estimator and
let 𝜃0 denote the true vector of parameters. By Einmahl et al. (2018, Theorem 2) with
Ω equal to the identity matrix, the ECE is asymptotically normal,

√
𝑘 (𝜃𝑛,𝑘 − 𝜃0) ∼ N|𝐸 |

(
0, 𝑀 (𝜃0)

)
, 𝑛 →∞,

The asymptotic covariance matrix takes the form

𝑀 (𝜃0) = ( ¤𝐿⊤ ¤𝐿)−1 ¤𝐿⊤Σ𝐿
¤𝐿( ¤𝐿⊤ ¤𝐿)−1 .

The matrices ¤𝐿 and Σ𝐿 depend on 𝜃0 and are based on partial derivatives of the stable
tail dependence function.

For every 𝑘 and every 𝑒 ∈ 𝐸, an asymptotic 95% confidence interval for the edge
parameter 𝜃0,𝑒 is given by

𝜃0,𝑒 ∈
[
𝜃𝑘,𝑛;𝑒 ± 1.96

√︃
{𝑀 (𝜃𝑘,𝑛)}𝑒𝑒/𝑘

]
.

For more details on this interval we refer to section A.5 in Asenova, Mazo, and
Segers (2021).

In the example below we suppose that the estimates obtained from the pairwise
extremal coefficient estimator are given by the sequence (0.1, 0.2, . . . , 0.8) and the
matrix of evaluation points based on pairs is the one based on all pairs. We suppose
also that the estimates are based on 𝑘 = 150.

# create the matrix of evaluation points
tup<- Tuples()
x<- rep(1, 8)
names(x)<- letters[1:8]
pair<- evalPoints(tup, tobj, x)
# create an object of class EKS with the supposed estimates of the

parameters
eks<- EKS(seg)
#> From HRMnetwork: Edges have been assigned names
eks<- setParams(eks, seq(0.1, 0.8, 0.1))
#> From setParams.HRMtree: Names have been attributed to the

vector ’value’ in the order corresponding to the order of the
edges: The fist element has the name of the first edge, the
second element the name of the second edge, etc.

#> From setParams.HRMtree: The parameters have been attached to
the edges according to their names

suppressMessages(confInt(eks, pair, 150))
#> [,1] [,2]
#> e1 0.04324791 0.1567521
#> e2 0.12486398 0.2751360
#> e3 0.20901358 0.3909864
#> e4 0.29547348 0.5045265
#> e5 0.38320722 0.6167928
#> e6 0.47152312 0.7284769
#> e7 0.55790699 0.8420930

When there are latent variables we should use a matrix of evaluation points where
all pairs are between observed variables only. Hence we should use this matrix that
should have been used in estimation for computing the confidence intervals too.
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x<- rep(1, 6)
names(x)<- letters[3:8]
pairU<- evalPoints(tup, tobjU, x )
suppressMessages(confInt(eks, pairU, 150))
#> [,1] [,2]
#> e1 -0.18515204 0.3851520
#> e2 0.08115924 0.3188408
#> e3 0.19466120 0.4053388
#> e4 0.28500252 0.5149975
#> e5 0.37881600 0.6211840
#> e6 0.46951129 0.7304887
#> e7 0.55860393 0.8413961

6.6 Conclusion

The main functionalities in gremes are methods that estimate edge weights on
Hüsler–Reiss models on trees or block graphs.

For models on trees

■ estimate.MME provides method of moments estimates, based on the limiting
distribution in (L1).

■ estimate.MLE, estimate.MLE1, estimate.MLE2 provide composite like-
lihood estimates, based on the limiting distribution in (L1).

■ estimate.EKS, estimate.EKS_part provide estimates based on extremal
coefficients. The estimator uses the limiting distribution in (L2).

■ estimate.EngHitz provides a type of composite likelihood estimate and it
is a variation of the cliquewise estimator in Engelke and Hitz (2020). It is based
on the limit discussed in (L3).

■ estimate.MMEave and estimate.MLEave apply the method of moments
estimator and a composite likelihood estimator and are based on asymptotics
presented in an unpublished note Segers (2019). The estimator is based on the
limit presented in (L4).

For models on block graphs the available functionality for estimation the method
estimate.HRMBG provides method of moments estimates based on the limit dis-
cussed in section 6.2.2.
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Conclusion 7
The current research aims to study extreme value (EV) limits of graphical models
with respect to undirected and directed graphs that represent generalizations of
trees. The generalizations considered are the block graphs and the trees of transitive
tournaments (ttt). The latter ones are directed block graphs which are acyclic. Two
major models are discussed in the thesis:

■ a random vector which satisfies the undirected global Markov property with
respect to a tree or a block graph and which is parameterized block-wise by a
family of Hüsler–Reiss distributions, and

■ a linear structural equations model (SEM) with unit Fréchet independent factors
with respect to a ttt, namely the max- or the sum-linear model.

Apart from EV limits on such models we study the identifiability of the distribu-
tional parameters from a certain marginal distribution. The topic on EV limits on such
models is inspired from studies on Markov chains and dates back to Smith (1992) and
more recently on Markov trees (Segers, 2020b). This thesis shows that results holding
for Markov chains and trees can be extended to more complex structures such as
Markov block graphs and Bayesian networks with respect to a ttt. The identifiability
problem in its particular context is new in the EV literature but it is based on the
usual concept of identifiability according to which, for two distinct parameter points
in the allowed parameter space, say 𝜃1 ≠ 𝜃2, we also have two distinct probability
measures, i.e., P𝜃1 ≠ P𝜃2 .

For a graphical model (𝑋𝑣, 𝑣 ∈ 𝑉 ) on a graph G = (𝑉 , 𝐸) the EV limits that this
thesis focuses on are represented by its max-domain of attraction, its multivariate
Pareto type limit, or the convergence of

(𝑋𝑣/𝑡, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 = 𝑡, 𝑡 →∞ (7.1)

and/or
(𝑋𝑣/𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡, 𝑡 →∞, (7.2)

or also
(ln𝑋𝑣 − ln𝑋𝑢, 𝑣 ∈ 𝑉 ) | 𝑋𝑢 > 𝑡, 𝑡 →∞. (7.3)

In Chapter 2 it is shown that if the graphical model, say 𝑋 , is defined by a class of
bivariate Hüsler–Reiss copulas, one for every adjacent pair of variables, its extreme
value distribution is a Hüsler–Reiss distribution with structured parameter matrix
where the 𝑖 𝑗-th element depends on the path between the two nodes. Also, the limit
in (7.3) is a |𝑉 | − 1-variate Gaussian distribution whose parameters depend on the
edge weights along the paths from node 𝑢 to the rest of the nodes. These limiting
distributions are expected in view of the results in Segers (2020b) and Engelke et al.
(2014). In Chapter 3 it is shown that the multivariate pareto distribution (MPD) linked
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to the EV distribution of 𝑋 is an extremal graphical model according to the definition
in Engelke and Hitz (2020).

Chapter 2 introduces the identifiability problem mentioned earlier. In particular,
we come up with a necessary and sufficient criterion such that for a sub-vector 𝑋𝑈

of 𝑋 = (𝑋𝑣, 𝑣 ∈ 𝑉 ) the marginal distribution P𝑈 ,𝜃 determines uniquely the extremal
dependence in the complete vector 𝑋 . We demonstrate the relevance of this with
an application on data from the Seine, France. The advantage of establishing such a
criterion is that we can compute different metrics of extremal dependence involving
nodes where we do not observe the corresponding variable.

Chapter 3 extends results from Segers (2020b) and from Chapter 2 to Markov block
graphs by showing that parameters of the EV limits depend on the unique shortest
paths between any pair of nodes, the existence of which is a key characteristic of the
block graph. Thanks to the model constructed in Chapter 3 we were able to find the
expression of the unique parameter matrix of the Hüsler–Reiss extremal graphical
model from Engelke and Hitz (2020, Theorem 3 and 4).

Two linear SEMs popular in the EV literature are studied in Chapters 4 and 5.
These are the sum- and max-linear graphical models with respect to a certain DAG
which represents a directed version of a block graph and which we called a ttt. SEMs
or also Bayesian networks are used to model causality with the interpretation that
one variable is directly caused by its parents together with an independent factor
term. In the EV literature it makes sense to consider heavy tailed factors. The key
message of Chapter 4, which focuses on the max-linear models, is that such a model
behaves in the tails as a Markov block graph if and only if the ttt has a unique source.
The identifiability criterion in such models is different from the one from Chapters 2
and 3 but again easy to check. The problem is worked out on the basis of the angular
measure, which is shown to be discrete and of the same form for both models (Einmahl
et al., 2012).

Chapter 5 of the thesis is dedicated to the sum-linear model. It presents results
which allow the comparison of the two linear SEMs and it demonstrates that despite
the obvious differences between the two settings they share many similarities too.
For instance, the identifiability criterion is the same although the angular measure of
the sum-linear model has atoms and masses which depend on the edge weights in
a completely different way than those of the max-linear model. Sum-linear models
are more prone to manipulations using classical matrix algebra and conditional
independence theory as opposed to tropical algebra and conditional independence
theory developed in Améndola et al. (2022).

The topics studied in the framework of max-linear models are new in the EV
literature, and it is early or difficult to assess to what extent they are of relevance.
This gap could be filled with an application to a real problem, where we model a
certain dataset as max-linear with respect to a fixed ttt. This is a problem for further
research.

SEMs are interpreted as causal, and the dominating research interest so far is
in causal discovery or also graph structure learning from data. When it comes to
extremes this means discovering variables which represent direct causes for extreme
levels at a certain node. Most applications in the literature are on quantities related
to rivers where the outcome of the proposed causal discovery method is compared
to the true river network to illustrate the goodness-of-fit of the approach. To enter
into the field of active research it might be possible to exploit the properties of a ttt
with unique source to search for methods for graph discovery under the constraint
that the graph should be a ttt. An interesting question would be also if the Markov
property and the factorization of the limiting distribution along unique shortest paths
can be used in order to infer some minimal graph structure.

The last chapter of the thesis presents some estimation approaches implemented
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in the R package gremes. The models to estimate are based on Hüsler–Reiss parame-
terizations. Some of the estimation methods are presented in Chapter 2 and others are
variations of these which are supposed to be computationally faster on a larger graph.
Three estimation methods are applied — the MME, CLE and ECE. The results are
estimates of the edge weights representing the tail dependence within a Hüsler–Reiss
distribution. The MME and ECE are variations of estimators in Engelke et al. (2014)
and Einmahl et al. (2018) respectively. The estimators are suitable when there are
unobservable variables as long as the identifiability criterion is satisfied. While all
these methods estimate the parameters at once, the so called clique-wise estimator
proposed in Engelke and Hitz (2020) estimates parameters independently one from
another. Their estimator is adapted to models with latent variables in the package.
Some comparison of estimation methods is presented in Chapter 2 where it can be
seen that the MME and the CLE give very similar results. The highest dimension of
the data that the estimation methods have been tested on is 30 variables. The fastest
one is the MME as it represents a quadratic optimization problem.

Amajor gap of the thesis is the lack of practical motivation of the presentedmodels,
namely those in Chapters 3, 4 and 5 which treat graphical models with respect to
generalizations of trees. In the introduction to the thesis it has been argued that we
could consider the latter as approximations to some real networks where clusters
are formed and are linked together in a tree-like manner. Recent literature in this
direction is Hu et al. (2022). The advantage of the approximations of real networks
by trees or generalizations of trees is that the approximation carries some structure,
some order, and perhaps more useful information about the underlying network then
the network itself.

In the same spirit, a possible line of further research is if the probabilistic results
regarding the EV limits can be extended to even larger classes of graphs. Key factors
for the special representation of the tail limiting vectors are the unique shortest paths
and the fact that all minimal separators are singletons. These properties are lost for a
graph which is not a block graph, so we suspect that this is the largest class of graphs
for which the results in Chapter 3 hold. For graphs where minimal separators are
not singletons we might need to condition on a different event than the separator
variable exceeding a high threshold.

Another intriguing research idea would be to study a model according to which
the graph is random and growing as the threshold exceeded at some node goes to
infinity. Think for instance of an extreme event happening at some location which
starts activating different locations where extreme events can be observed too, for
instance an earthquake.
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