
RL-Net: Interpretable Rule Learning with
Neural Networks

Lucile Dierckx1,2[0000−0003−2855−1042], Rosana Veroneze2,3[0000−0003−4007−9350],
and Siegfried Nijssen1,2[0000−0003−2678−1266]

1 TRAIL Institute, Louvain-la-Neuve, Belgium
2 ICTEAM/INGI, UCLouvain, Louvain-la-Neuve, Belgium

3 FEEC/DCA, Unicamp, Campinas-SP, Brazil
{firstname.lastname}@uclouvain.be

Abstract. As there is a need for interpretable classification models in
many application domains, symbolic, interpretable classification models
have been studied for many years in the literature. Rule-based models
are an important class of such models. However, most of the common
algorithms for learning rule-based models rely on heuristic search strate-
gies developed for specific rule-learning settings. These search strategies
are very different from those used in neural forms of machine learning,
where gradient-based approaches are used. Attempting to combine neu-
ral and symbolic machine learning, recent studies have therefore explored
gradient-based rule learning using neural network architectures. These
new proposals make it possible to apply approaches for learning neural
networks to rule learning. However, these past studies focus on unordered
rule sets for classification tasks, while many common rule-learning algo-
rithms learn rule sets with an order. In this work, we propose RL-Net,
an approach for learning ordered rule lists based on neural networks. We
demonstrate that the performance we obtain on classification tasks is
similar to the state-of-the-art algorithms for rule learning in binary and
multi-class classification settings. Moreover, we show that our model can
easily be adapted to multi-label learning tasks.

Keywords: Interpretability · Pattern Set Mining · Rule Learning · Binary Neu-
ral Networks

1 Introduction

Organizations are increasingly using Machine Learning models to help decision-
making. For many application domains (such as medicine, health care, criminal
justice, and education), interpretability is essential in addition to predictive per-
formance. Therefore, white-box models are preferable to black-box models in
these scenarios.

Rule-based classification models are an important class of interpretable mod-
els, which provide symbolic white-box models that are expressed as simple IF-
THEN rules. A distinction can be made between rule sets and rule lists. In a



rule list, the rules have an order, and the first rule of which all conditions in the
IF-part are satisfied is used to perform a prediction. An advantage of this ap-
proach is that the resulting models are also interpretable on classification tasks
with more than two classes: one rule is used to perform the prediction. Models
based on rule sets typically rely on voting, where all rules vote for classes, or
they only work for two classes. This makes these methods less interpretable. For
this reason, we focus on rule lists in this work.

Roughly speaking, two classes of approaches for learning rule-based models
can be distinguished. A common strategy for rule learning relies on pattern
mining. Traditional pattern mining is formulated as the problem of computing
Th(L, φ,D) = {π ∈ L|φ(π,D) is true}, where D is the dataset, L is a language
of patterns, and φ is a constraint, often based on support [9,10]. The size of the
search space of this problem is exponential in the size of L.

The number of all patterns satisfying the constraints is usually too large.
Thus, patterns are often post-processed in a step-wise procedure to become useful
[10]. In the first step, the patterns that meet the constraints are enumerated.
In the second step, some patterns are selected and combined. Again, we have
another search space of exponential size, in this case in the size of Th(L, φ,D).

Most methods adopt heuristics to select and combine the patterns, which
is commonly the case for associative classification proposals, such as CBA [12]
and CMAR [11]. These methods solve one particular instance of the pattern
set mining problem, which consists in computing Th(L, φ, ψ,D) = {Π ⊆
Th(L, φ,D)|ψ(Π,D) is true}, where ψ expresses constraints that have to be sat-
isfied by the overall pattern set [9,10]. The major drawback of the step-wise
procedure is that it does not scale well.

The second class of methods scales better. Instead of first mining patterns,
these approaches learn the rules themselves also using heuristics; typically, they
use a heuristic to iteratively add the most promising condition to a rule. A
well-known representative of this class is the RIPPER [5] algorithm. While, as
a consequence, these approaches find rules more quickly, the heuristics are often
specific to one learning task and may have as effect that the algorithm overlooks
good rules.

In many application domains of machine learning, recent advances in learning
deep neural networks have led neural network techniques to become the state-of-
the-art. Search strategies in the neural network literature are very different, and
are often based on the use of gradient descent techniques. The success of neural
methods has had as effect that many learning problems have now been phrased
and solved using these gradient descent techniques. However, traditional neural
networks are not interpretable models.

Therefore, the research community has been looking for strategies to com-
bine symbolic forms of Artificial Intelligence with techniques based on neural
networks, leading to techniques for neuro-symbolic AI. In the case of rule learn-
ing, this could lead to a combination of the interpretability of rule-based models
with the search strategies employed when learning neural networks. Recently,
Qiao et al. [14] and Fischer & Vreeken [7] developed pattern set mining strate-



gies that rely on binarized neural networks. Adopting a neural network trained
with gradient descent methods has several advantages. Indeed, all advances in
the area of neural networks have the potential to be leveraged for pattern set min-
ing. This includes stochastic well-developed gradient descent algorithms, well-
developed loss functions, well-developed regularization concepts, sophisticated
development frameworks, and powerful computing platforms. However, none of
these approaches studied how to learn ordered rule models for a wide range of
learning tasks, including multi-class and multi-label classification tasks, and it
is not clear how well neural network-based techniques would work on this task.

In this work, we focus on such problems by extending the Decision Rules
Network (DR-Net) proposal of Qiao et al. [14]. We incorporated the possibilities
of (a) using hierarchy among the rules, hence adding the possibility of learning
classifiers based on rule lists in addition to rule sets, and (b) solving multi-class
classification problems. Furthermore, the consequent part of the rules (i.e., the
class labels) is fixed in DR-Net, so all learned rules have the same consequent.
We instead learn the class label of each rule together with the condition. Lastly,
our proposal can easily be tweaked to solve multi-label classification problems.

This paper is organized as follows: Sect. 2 gives an overview of the related
work. Section 3 presents the architecture of our proposed interpretable Rule
Learning neural Network (RL-Net). The datasets used, the models for compari-
son, the experimental protocol, as well as the obtained results, are presented in
Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

The use of neural networks to learn rule-based classifiers is still in its early stages.
A first example is the work of Beck and Fürnkranz [2,3] which learns rule sets

to perform binary classification using a network structure. However, the network
weights are learned using a greedy heuristic instead of a differentiable approach.

Yang et al. [16] presented the Deep Neural Decision Tree (DNDT) method
that mimics the structure of a decision tree using a neural network architecture.
In this proposal, the weights are trained with a gradient descent algorithm.
The splitting value for each attribute and the rule labels are learned during the
training. The model is thus suitable for binary and multi-class classification.
The key limitation of their proposal is that it is not scalable w.r.t the number
of features. In their experiments, they could only find an accurate single tree for
datasets with at most 12 features. Moreover, the limitation of a tree structure
makes it impossible to learn arbitrary rule lists.

The Explainable Neural Rule Learning (ENRL) method [15] also learns rules
in a differentiable manner coupled with a neural network structure. The Explain-
able Condition Module (ECM) is the building block of the method. It comprises a
feature, an operator, and a value, learning atomic propositions such as age ≥ 18.
Based on the atomic propositions, ENRL adopts a complete binary tree topology
to express multiple rules, and the problem of seeking appropriate rules is trans-
formed into a neural architecture search. ENRL creates an ensemble of trees,



and the final decision is made by a voting mechanism, which makes this method
less interpretable. Also, it is limited to binary classification.

The Decision Rules Network (DR-Net) method [14] learns rule sets for binary
classification. The model is composed of three layers: the input layer, the Rules
layer, and the OR layer. The Rules layer learns the rules. The number of neurons
in this layer is a user-defined parameter that sets the maximum number of rules.
Its regularization term controls the length of the rules. The OR layer chooses
which rules to use and which to ignore. Its regularization term controls the
number of rules that will be used in the classifier. The network training is done
in two alternating phases, one for the Rules layer and one for the OR layer. This
method does not identify rule lists, but rule sets.

As can be seen, most existing methods focus on binary classification, and
none of them can find arbitrary rule lists. In this work, we contribute to a
neural network for learning rule-based classifiers that are fully interpretable,
and suitable for binary and multi-class classification. Our proposal takes full
advantage of the advances in neural network literature.

3 Approach

This section introduces the details of our contribution.

3.1 RL-Net

Our Rule Learning neural Network (RL-Net) was conceived to learn interpretable
rule lists that can perform multi-class classification. It can also be easily tweaked
to be used in multi-label experiments. RL-Net employs the structure of a neural
network as well as its gradient optimization learning methods.

The network is composed of four layers, as depicted in Fig. 1. The first layer
is the input layer that receives the dataset’s features. It is connected to the
rule layer, where the rule conditions are learned. The next layer expresses the
hierarchy among the rules, which is necessary to learn a rule list instead of a
rule set. Finally, the output layer assigns a specific class label to each rule.

Each layer is presented in more detail in what follows. The method imple-
mentation can be found in our GitHub repository on https://github.com/

luciledierckx/RLNet.

Input Layer We assume that the features that are fed to the network are bi-
nary. As discussed in the rule layer description, there is no need to duplicate
the input dataset to express the negation of a feature because the network can
express that by itself. The number of nodes in this layer is equal to the number
of binarized features of the dataset.

Rule Layer This layer mimics the behavior of logical ANDs. It is composed of r
nodes, where r is a user-defined parameter that specifies the number of rules to
be learned. This layer and the input layer are the same as in DR-Net[14], while

https://github.com/luciledierckx/RLNet
https://github.com/luciledierckx/RLNet


A

B

C

D

E

ReLU

ReLU

ReLU

0

1

2

Input
features

Rule
layer

Hierarchy
layer

Output
layer

Ternary
weights
{-,0,+}

Fixed
weights
{-1,0,1}

Free
weights

ReLU

IF A and C and not D THEN 1

ELSE IF not B and not E THEN 2

ELSE IF A and D and E THEN 0

ELSE 2

Fig. 1: Global architecture of RL-Net for learning a rule list composed of three
rules and the default rule (else) for an input dataset consisting of five binary
features and three class labels. Green (resp. red) weights represent weights with
a positive (resp. negative) value. The edges in bold represent the edges with
the highest weight for each node in the hierarchy layer. Connections between
neurons that are not represented are non-trainable zero weights.

the next ones are different. Each weight of this layer can either be negative,
zero, or positive to represent the fact of using a feature in the rule (+), using
the negation of that feature (−), or not considering that feature for the rule (0).
As it is not simple to learn discrete weights with a gradient descent algorithm,
the ternary weights WT are obtained by an element-wise product of two other
matrices:

WT =WS ◦WH (1)

The weights in the matricesWS andWH are floating-point numbers. The weights
in WS will converge to a positive or a negative value during the training, thus
deciding if we use the positive form of a given attribute or its negation. The
weights in WH are referred to as hidden weights. They will decide whether an
attribute is used in a rule or is ignored. We ensure that these weights converge
to 1 or 0 thanks to the method discussed by Louizos et al. [13] to approximate
binary random variables with a Bernoulli distribution. To these hidden weights,
a sparsity-based regularization [13] is added to push the weights toward zero
and, therefore, obtain shorter rules.

The neurons of the rule layer have to mimic the behavior of a logical AND,
that outputs true (1) when all rule conditions are met or false (0) otherwise.
This is done in two steps, as proposed in [14].

In the first step, a neuron from the rule layer performs the following operation:

y =
∑

wi · xi −
∑
wi>0

wi + 1, (2)

where wi ∈ WT and xi ∈ {0, 1} is the value of the binary feature i. In this
formulation, the bias has a dynamic value that depends on the number of positive



weights for the neuron. Note that y = 1 can only be obtained when all positive
weights are related to inputs equal to 1 and all negative weights are related to
inputs equal to 0. Thus, the output computed by equation (2) is within (−∞, 1].

The second step is the binarization of the output computed by (2), which is
given by b(x) = 1 if x = 1 and b(x) = 0 otherwise.

We would like to highlight that we attempted to avoid using the two sets
of weights, WS and WH , but the results were much worse, which validates the
design of the Rules layer in DR-Net.

Hierarchy Layer This layer expresses the hierarchy among the different rules
such that a rule Rk can be activated only if all previous rules R1, R2, ..., Rk−1

were not. The structure of this layer was inspired by [1] and adapted to a neural
network architecture. The weights of this layer are set in the initialization and
are not trainable, as illustrated in Figure 1. The activation of a neuron of this
layer is given by a ReLU function. The neuron k in the rule layer represents the
rule Rk in the rule list. It is connected to a neuron l of the hierarchy layer by
an edge with weight wkl, where wkl is 1 when l = k, −1 when l < k, and 0
otherwise.

The last neuron of the hierarchy layer represents the default rule (else). It
is the only neuron of this layer that uses a bias with a value equal to 1. This
ensures that the default rule will be applied when none of the previous rules are
applicable. Thus, the number of nodes in this layer is equal to r + 1. As the in-
put values of the hierarchy layer are binary (0 or 1), its output will also be binary.

Output Layer The last layer of our network learns the label associated with
every rule condition. The number of neurons in this layer is equal to the num-
ber of class labels in the input dataset. The weights are free, but we add L2-
regularization. The activation function is the softmax. As only one rule at a time
is active, only the label with the highest activation (i.e., with the highest weight
for the active rule) is considered at prediction time. Thus, the learned rules are
fully interpretable.

3.2 Training and Tuning of RL-Net

Standard neural network techniques are applied in the training of RL-Net. In-
deed, we used the Adam optimization algorithm with the cross-entropy loss
function. A callback on the validation loss is also applied.

As observed in standard neural networks, the performance of RL-Net for
strongly imbalanced datasets can be improved by using a class-balanced version
of the loss. Therefore, a balanced version of the loss is used in the first eb epochs,
where eb is a user-defined parameter. This parameter can be set to zero for
datasets for which there is no need for a balanced loss.

Other important parameters of RL-Net refer to the hidden weights WH .
These weights are initialized using a normal distribution with mean µ and vari-
ance σ2, which directly impacts the probability of using (or not) an attribute in



a rule. Thus, the choice of these parameters influences the length (specificity) of
the rules in the initialization, making the search for a good local optimum more
or less hard. Other hyper-parameters that must be tuned are the learning rate,
the weight of the sparsity-regularization term of the rule layer, as well as the
weight of the L2-regularization of the output layer.

3.3 RL-Net for Multi-label Classification

The RL-Net architecture was conceived for multi-class classification, but one
of its advantages is that it can easily be transformed into a basic multi-label
classifier with two minor changes. The first modification is that the activation
of the output layer must be the sigmoid activation instead of the softmax. The
second one concerns the loss function, which must be designed for multi-label
classification, such as binary cross-entropy loss, focal loss, Huber loss, multi-label
margin loss, MSE loss, and L1 loss. For our experiments, we choose the binary
cross-entropy loss.

4 Experiments

Our experiments were designed to answer the following research questions: How
does RL-Net compare against its basis, DR-Net, for binary classification? How
does RL-Net compare against state-of-the-art rule-based classifiers, RIPPER and
CART, for binary and multi-class classification? Are the simple changes in RL-
Net for multi-label classification enough to achieve a satisfactory performance?

4.1 Datasets

We selected 7 binary and 6 multi-class datasets for our experiments, among which
all binary datasets used in the DR-Net paper [14]. We also chose 2 multi-label
datasets to perform a first evaluation on multi-label classification. The datasets
all come from the UCI Repository [6] except heloc4, house5, yeast6, and scene6.

From the DR-Net paper [14], we used adult census (adult), magic gamma
telescope (magic), fico heloc (heloc), and home price prediction (house). To
these, we added internet advertisements (ads), king-rook vs. king-pawn (chess),
and mushroom (mushroom). For multi-class classification, we chose car evalua-
tion (car), nursery (nursery), contraceptive method choice (contraceptivemc),
page blocks classification (pageblocks), pen-based recognition of handwritten
digits (pendigits), and sensorless drive diagnosis (drive). We kept the differ-
ent classes of the multi-class datasets untouched except for nursery where we
merged the class “very recom” and “recommend” as they represented respec-
tively 2.531% and 0.015% of the class distribution. The multi-label experiments
were made with the yeast (yeast) and scene (scene) datasets.

4https://community.fico.com/s/explainable-machine-learning-challenge
5https://www.openml.org/d/821
6https://www.uco.es/kdis/mllresources/

https://community.fico.com/s/explainable-machine-learning-challenge
https://www.openml.org/d/821
https://www.uco.es/kdis/mllresources/


Table 1: Characteristics of the different datasets: The column #Attributes bi-
narized presents the number of attributes after the different preprocessing steps
while all the other columns are computed from the unprocessed dataset.
Binary and multi-class

datasets
#Rows #Attributes

#Attributes
binarized

Proportion of each class

Adult 48842 14 128 0.24, 0.76
Magic 19020 10 90 0.35, 0.65
House 22784 16 132 0.70, 0.30
Heloc 10459 23 147 0.48, 0.52

Mushroom 8124 22 111 0.52, 0.48
Chess 3196 36 38 0.52, 0.48
Ads 3279 1559 1577 0.86, 0.14

Nursery 12960 8 26 0.33, 0.03, 0.33, 0.31
Car 1728 7 21 0.70, 0.22, 0.04, 0.04

Pageblocks 5473 10 88 0.90, 0.06, 0.01, 0.02, 0.02
Pendigits 10992 16 135 10 classes with equal proportions

Contraceptivemc 1473 9 34 0.43, 0.35, 0.23
Drive 58509 48 432 11 classes with equal proportions

Multi-label datasets #Rows #Attributes
#Attributes
binarized

#Labels Cardinality Density Distinct

Yeast 2417 103 927 14 4.237 0.303 198
Scene 2407 294 2646 6 1.074 0.179 15

4.2 Data Preprocessing

Regarding the data used for training, the first step was to remove the data sam-
ples for which the percentage of missing values was ≥ 40%. Next, we removed the
features for which the percentage of missing values was ≥ 40%. The remaining
missing values were replaced by the most frequent value in the case of categori-
cal attributes, and by the mean value for numerical features. Lastly, we applied
the same feature binarization as the one implemented for the DR-Net. This bi-
narization applies one-hot encoding to the categorical attributes, and quantile
discretization to the numerical ones followed by ordinal scaling [8].

The main properties of each dataset before and after the preprocessing are
presented in Table 1. The preprocessed datasets are the input for all methods
used in our experiments. In that way, we can be sure that any observed difference
in performance comes from the model itself and not from the data preprocessing.

4.3 Algorithms

We compare RL-Net with two state-of-art rule-based classifiers, CART [4] and
RIPPER [5], as well as with DR-Net, which is the basis for RL-Net. We used
CART from the scikit-learn library and RIPPER from Weka (JRip). We used
the authors’ implementation of DR-Net.

4.4 Protocol

Some of the datasets (namely adult, pendigits, yeast, and scene) have a pre-
defined test set. In this case, it was used as the test dataset. Otherwise, we
created a test dataset by selecting 25% of the data samples in a stratified fashion.



For RL-Net and DR-Net, we tuned the hyper-parameters using stratified 10-
fold cross-validation. The number of rules ranges from 2 to 20 in our experiments,
but we fixed it to 10 in the hyper-parameter tuning for a matter of time. For both
algorithms, we tuned the following hyper-parameters: the number of epochs, the
learning rate, and the weight of the sparsity-regularization term. The batch size
was set to 5% of the dataset size.

For RL-Net, we also tuned the weight of the L2-regularization of the output
layer, the number of epochs for the balanced loss eb, and the mean value µ of
the normal distribution used for the initialization of the hidden weights WH .

We compare the algorithms using the same number of rules. Therefore, we
do not need to train the OR layer of DR-Net. Accordingly, we set the weight of
the OR layer regularization term to zero, and the network training was focused
on the Rules layer. For CART, the number of rules is controlled through the
user-defined parameter max leaf nodes. There is no user-defined parameter to
control the number of rules in RIPPER’s implementation. However, the minimal
weights of instances within a split parameter influences the number of rules in
the classifier. So, we varied this parameter to find the desired number of rules.

For CART, we also tuned the criterion using stratified 10-fold cross-validation.
The remaining hyper-parameters of all algorithms were left to their default

values. For ease of reproduction, all details about the hyper-parameter tuning
are available in our GitHub repository.

4.5 Results

Fig.2 shows the performance of RL-Net and its competitors in terms of accuracy.
We set the number of rules from 2 to 20 as our focus is on obtaining interpretable
models. RL-Net and DR-Net were run 10 times for each dataset because these
methods can get stuck in a poor local optimum depending on the random ini-
tialization. The results of these runs are exhibited in a box-plot format.

The binary classification performance is presented in Figs. 2(a)-(g). When we
compare RL-Net to DR-Net, we see that it is not possible to say that one of them
always performs better than the other. It actually depends on the dataset. For
some datasets, such as adult, mushroom, and chess, RL-Net has higher accuracy,
for others like ads, it is the other way around. In some other cases, the best-
performing method depends on the number of rules considered, such as for magic,
house, and heloc. RL-Net has a large performance variability on heloc and ads
datasets (with a maximal variability of 10%). In contrast, DR-Net has a large
performance variability on the chess dataset (with a maximal variability of 35%).
This variability is a drawback of neural networks with such non-standard layers,
but it does not stop both networks from achieving competitive performance when
the learning does not get stuck in a poor local optimum. RIPPER’s performance
is generally better than the two neural network approaches, but the difference is
not large. RL-Net outperforms CART in a wide range of cases. The performance
of the CART decision tree is the most affected when the number of rules is low.
Indeed, the length of the rules in the tree is limited by the maximum number of
rules, while it is not the case for the other algorithms.



2 4 6 8 10 12 14 16 18 20
Number of Rules

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(a) Adult

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(b) Magic

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(c) House

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.66

0.67

0.68

0.69

0.70

0.71

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(d) Heloc

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(e) Mushroom

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(f) Chess

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.92

0.94

0.96

Ac
cu

ra
cy

RL-Net
DR-Net
CART
RIPPER

(g) Ads

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(h) Nursery

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(i) Car

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(j) Pageblocks

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(k) Pendigits

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.450

0.475

0.500

0.525

0.550

0.575

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(l) Contraceptivemc

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

RL-Net
CART
RIPPER

(m) Drive

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.765

0.770

0.775

0.780

1 
- H

am
m

in
g 

lo
ss

RL-Net
CART
Baseline

(n) Yeast

2 4 6 8 10 12 14 16 18 20
Number of Rules

0.80

0.82

0.84

0.86

1 
- H

am
m

in
g 

lo
ss

RL-Net
CART
Baseline

(o) Scene

Fig. 2: Performance of our RL-Net (blue), the DR-Net (orange), Ripper (green),
and CART (red) versus the number of rules, on binary datasets (a to g), multi-
class datasets (h to m), and multi-label datasets (n to o).



Figs. 2(h)-(m) present the results for multi-class classification. RL-Net can
achieve performance as high as RIPPER for nursery, car, pendigits, and drive
datasets. RIPPER outperforms RL-Net for the pageblocks dataset, and when
using 2 to 4 rules for the contraceptivemc dataset. Concerning CART, RL-Net
can achieve identical performances even though some runs get stuck in poor local
optimums as for the binary case. From these results, we can thus clearly see that
RL-Net works well on multi-class classification.

The results for multi-label classification are presented in Figs. 2(n)-(o). In
addition to CART, we also compare our results with a baseline that, for each
class label, predicts the most frequent value (true or false). For both datasets,
RL-Net has a lower performance than CART. For the yeast dataset, RL-Net
follows CART’s performance but scores 1 to 1.5% lower. RL-Net’s result for
two rules is similar to the baseline one, but RL-Net’s performance improves
with the number of rules, being up to 1.2% better. For the scene dataset, RL-
Net can obtain a lower performance than the baseline when it gets stuck in a
poor local minimum, but it clearly outperforms the baseline. However, CART
is considerably better than RL-Net for the scene dataset. From these results,
we note that using RL-Net for multi-label classification has potential, but its
performance is not state-of-the-art yet. This experiment is a proof of concept,
indicating that exploring this direction could yield good results.

5 Conclusion

Building on the interest in combining neural and symbolic machine learning, in
this work we explored gradient-based rule learning using neural network archi-
tectures. We implemented and presented our RL-Net method to learn binary
and multi-class rule lists using a neural network approach. We showed that
with minor adaptations RL-Net can be used to learn multi-label classifiers. We
compared our proposal to some other state-of-the-art algorithms for binary and
multi-class classification. We also evaluated the potential of RL-Net for learn-
ing multi-label tasks. From our results, we concluded that RL-Net is a proper
method for learning fully interpretable binary and multi-class classifiers. It does
not always achieve the highest performance, but it is never far from the best.
Regarding multi-label classification, some additional work should be done to in-
crease RL-Net’s performance, but our network architecture is easily compatible
with this task, indicating that RL-Net has potential in the integration of rule
learning with other neural network-based approaches. Future works include mak-
ing the method less susceptible to a bad initialization, improving the method for
multi-label classification, and integrating RL-Net further with other research in
the neural network literature, such as transfer learning, semi-supervised learn-
ing, or active learning.

Acknowledgments This work was supported by Service Public de Wallonie
Recherche under grant n°2010235 – ARIAC by DIGITALWALLONIA4.AI, and
under grant n°2110107 - SERENITY2 by WIN2WAL. We would also like to



thank FAPESP, Brazil (Grants No. 2017/21174-8 and 2020/00123-9) for the
financial support.

Computational resources have been provided by the supercomputing facili-
ties of the Université Catholique de Louvain (CISM/UCL) and the Consortium
des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI)
funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS)
under convention 2.5020.11 and by the Walloon Region.

References

1. Aoga, J.O., Nijssen, S., Schaus, P.: Modeling pattern set mining using boolean
circuits. In: International Conference on Principles and Practice of Constraint Pro-
gramming. pp. 621–638. Springer (2019)

2. Beck, F., Fürnkranz, J.: An empirical investigation into deep and shallow rule
learning. Frontiers in Artificial Intelligence 4 (2021)

3. Beck, F., Fürnkranz, J.: An investigation into mini-batch rule learning. arXiv
preprint arXiv:2106.10202 (2021)

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-
sion trees. Routledge (2017)

5. Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference
on Machine Learning, pp. 115–123. Elsevier (1995)

6. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

7. Fischer, J., Vreeken, J.: Differentiable pattern set mining. In: Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. pp.
383–392 (2021)

8. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations. Springer
Science & Business Media (2012)

9. Guns, T., Nijssen, S., De Raedt, L.: Evaluating pattern set mining strategies in
a constraint programming framework. In: Pacific-Asia Conference on Knowledge
Discovery and Data Mining. pp. 382–394. Springer (2011)

10. Guns, T., Nijssen, S., De Raedt, L.: K-pattern set mining under constraints. IEEE
Transactions on Knowledge and Data Engineering 25(2), 402–418 (2011)

11. Li, W., Han, J., Pei, J.: Cmar: Accurate and efficient classification based on multi-
ple class-association rules. In: Proceedings 2001 IEEE international conference on
data mining. pp. 369–376. IEEE (2001)

12. Liu, B., Hsu, W., Ma, Y., et al.: Integrating classification and association rule
mining. In: Kdd. vol. 98, pp. 80–86 (1998)

13. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
L0 regularization. In: 6th International Conference on Learning Representations,
ICLR 2018 - Conference Track Proceedings (2018)

14. Qiao, L., Wang, W., Lin, B.: Learning accurate and interpretable decision rule
sets from neural networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 35, pp. 4303–4311 (2021)

15. Shi, S., Xie, Y., Wang, Z., Ding, B., Li, Y., Zhang, M.: Explainable Neural Rule
Learning. In: WWW 2022 - Proceedings of the ACM Web Conference 2022. pp.
3031–3041. Association for Computing Machinery, Inc (2022)

16. Yang, Y., Morillo, I.G., Hospedales, T.M.: Deep neural decision trees. ICML
Workshop on Human Interpretability in Machine Learning. arXiv preprint
arXiv:1806.06988 (2018)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	RL-Net: Interpretable Rule Learning with Neural Networks

