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Abstract—In-memory computing provides unprecedented
power and area efficiency for the execution of convolutional
neural networks by using memory bitcells to perform dot-product
(DP) operations in the analog domain. Yet, these operators suffer
from analog non-idealities (ANIs) that degrade the inference
accuracy. This paper proposes design guidelines inferred from
a holistic simulation-based analysis of the impact of ANIs on
the accuracy-efficiency trade-off that affects current-domain
DP operators based on conventional 6T-SRAM bitcell arrays.
We define a custom SNR metric aware of the DP operand
distribution to quantify decision errors associated with various
ANIs, over ranges of input/output resolution and hardware design
parameters. We find out that non-linearity and local mismatch
are the dominant ANIs limiting the design space, while IR drops
turn out to be critical only when targeting high parallelism.
We then quantify the accuracy-efficiency trade-off related to
these dominant ANIs across the design space and propose
optimal design choices. We notably identify that using larger
operators can either improve or worsen the SNR depending
on the target output resolution. Furthermore, we show that
hardware calibration techniques which mitigate mismatch help
to recover a fraction of the lost SNR, with greater effectiveness
when scaling down the supply voltage.

Index Terms—6T-SRAM, analog non-idealities, design space
analysis, hardware calibration, in-memory computing, neural
networks, quantization.

I. INTRODUCTION

GROWING interest in processing machine learning (ML)
tasks directly at the edge has raised unprecedented

challenges in terms of computational efficiency amid concerns
of bandwidth, energy and privacy [1]. In order to address
these challenges, new computing paradigms have emerged,
favouring local computations and data reuse [2], such as
neuromorphic systems [3]. Computing in-memory (CIM) has
recently delivered tremendous efficiency for the execution
of convolutional neural networks (CNNs) by mapping their
massively parallel dot-product (DP) operations directly inside
memory arrays. The bitcell-based analog DP operators allow
nowadays SRAM-based CIM accelerators (CIM-SRAMs) in
standard CMOS processes to be 10-100× more power and area
efficient than state-of-the-art digital CNN accelerators [Fig.
1 (top)]. However, analog operators suffer from analog non-
idealities (ANIs), exacerbated in dense memory environments.
These ANIs create bit errors on the digitized DP result, which
lead to a degradation of the inference accuracy. While ANI-
aware training helps to recover part of this degradation [4],
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Fig. 1. (Top) Comparison of power/area efficiencies between state-of-the-art
digital accelerators and analog mixed-signal CIM-SRAMs. (Bottom) Trade-off
between power efficiency and inference accuracy (CIFAR-10 dataset), driven
by the increase in CIM-SRAM output resolution (dark to light grey).

[5], its effectiveness is eventually limited by the hardware
equivalent noise level [6]. The sensitivity to this noise is a
function of the design space of the DP operators and the target
input/output resolution. Nowadays, CIM-SRAMs strive for
more resolution, required to obtain golden levels of inference
accuracy on datasets of moderate complexity at the edge [7],
[5], unreachable with efficient binary networks [8], as seen in
Fig. 1 (bottom) for the CIFAR-10 dataset.

In this context, analyzing the impact of ANIs at the
hardware-level is key to understand the physical impact on
the accuracy-efficiency trade-off observed at the system-level.
Yet, there have been few exhaustive analyses of ANIs over
the broad design space of CIM-SRAMs in the literature.
Kang et al. proposed an analytical model assessing the bit
error probability due to non-linearity and hardware equivalent
noise (mainly from local mismatch between transistors) on
the output of their DIMA architecture [9]. They showed there
exist fundamental limits to the accuracy level of mapped
ML algorithms depending on the noise level. However, they
rely on several analytical hypotheses and only detail the
effects of changing the bitline voltage swing and operator
size. Jaiswal et al. quantified mismatch and voltage drop on
parasitic bitline resistances for 8T-based CIM-SRAMs with
current-mode readout [10]. However, they do not provide a
unified metric to compare these ANIs, nor do they consider
output quantization. Also, they limit their analysis to small
operator sizes (≤ 16 parallel inputs). Ali et al. introduced
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Fig. 2. General framework: (a) analysis setup, showing a simple CNN topology for image recognition, and (b) the considered CIM-SRAM architecture, able
to map both convolutional and fully-connected operations on column-parallel DP current-domain operators. (c) Representation of the ideal and actual DP
operators with (d) electrical waves depicting the ideal current-DP operation, neglecting sneak current and (e) classification of the considered ANIs.

an innovative multi-bit operator using parallel columns and
discussed non-linearity, mismatch and process variations [11].
Yet, they do not present their sampling methodology and have
only limited considerations for the effect of design parameters.
Yin et al. provided hardware measurements highlighting the
impact of ANIs with supply voltage for their XNOR-SRAM
architecture [12]. They also simulated the relative impact of
mismatch and bitline resistance with supply voltage, showing
one or the other dominates as a function of it. Many works
targeting emerging technologies addressed device modelling
[6], [13] without considering quantization issues. Other works
[14] developed system-level frameworks for the generic design
of CIM architectures but focus on power/performance metrics.
Finally, to the best of our knowledge, there has been no work
addressing the effect of transistor Vt selection or technology
scaling, nor comparing these many ANIs in a unified way.

In the present work, we propose a holistic analysis quanti-
fying the impact of ANIs on the design space of in-memory
current-domain DP operators based on 6T-SRAM bitcells
(which we will now refer to as 6T current-DP operators).
We therefore divide the rest of this paper as follows. Section
II presents the current-DP operation and the hypotheses un-
derlying our analysis framework. We also introduce a custom
distribution-aware SNR metric to objectively quantify bit
errors at the output while accounting for the distribution of
DP operands. Section III proposes mitigation schemes against
the systematic ANIs that affect the DP operation. Section IV
compares the impact of various spatial and temporal ANIs on
the SNR metric and derives critical design space boundaries.
Section V then analyzes the accuracy-efficiency trade-offs
across the design space for the main sources of ANIs, deduced
from Section IV. In Section VI, we discuss how hardware
calibration techniques can push the design space boundaries
from Section V. Eventually, we summarize and conclude.

II. ANALYSIS FRAMEWORK

Traditional CNNs as in Fig. 2 (a) consist of successive (2D)
convolutional and fully-connected layers, separated by regular-
ization and activation layers. Assuming fixed-point resolution,
the neurons in these layers perform DP operations in parallel,
yielding the expected outputs

D̂out,n = ρ
(

D̂Pn
)

= ρ

(
Nin−1∑
i=0

Wi,n Din,i

)
. (1)

W and Din respectively stand for the weights and digital
inputs, D̂P is the expected DP output for a given (Din,W)
combination and D̂out is its quantized version in fixed-point
representation, ρ is the output quantization function, and
Nin/out are respectively the number of inputs/outputs such that
n ∈ [0, Nout−1]. Please note that Appendix A summarizes the
main recurrent symbols used in this work. One can directly
map these DP operations onto parallel DP operators inside
an SRAM array, like the one in Fig. 2 (b). When mapping
fully-connected layers, each column acts as a single neuron,
with inputs fed horizontally and outputs retrieved vertically.
For convolutional layers, filter weights are usually flattened
in a single dimension to suit DP computations, each column
mapping one output channel [15], [16]. In both cases, the
computation relies upon the current-domain DP operators.

A. The ideal 6T current-DP operator

Fig. 2 (c) and (d) show the ideal operator and depict the
operation free of ANIs. Let Nb be the operator size and rin the
input resolution. First, Nb digital inputs are converted by DACs
into analog wordline (WL) voltages with 2rin levels. Mean-
while, bitlines (BLs/BLBs) are precharged to supply voltage
level VDD. The DP operation begins when Non (≤ Nb)
bitcells are asserted based on the WL values. For these Non
bitcells, the discharge current Ion depends on the WL level
and the stored bitcell data, which acts as a differential +1/-1
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weight W. The differential discharges of BLs/BLBs then build
the analog DP voltages VDP,n = VBL,n − VBLB,n by the
end of the DP duration, with n ∈ [0, Ncols − 1]. Eventually,
column-pitched ADCs digitize these DP voltages with output
resolution rout, giving the ideal outputs

Dout,n = ρADC (VDP,n)

= ρADC

(
TDP
CBL

Non−1∑
i=0

Wi,n Ion,i(VWL,i)

)
,

(2)

with ρADC the ADC quantization function, TDP the duration
of the DP operation, CBL = CBLB the bitline capacitance and
Ion,i(VWL,i) the i-th pull-down current, whose value depends
on its corresponding input-dependent WL voltage level. This
expression matches the linear DP in Eq. (1), ignoring a
multiplication factor and supposing the Ion values are linearly
spaced following the DAC conversion. We investigate this
point in Section III.B. Furthermore, we consider the following
hypotheses during the CIM-SRAM study:

• We take Nrows = 256 and Ncols = 64 to allow the study
of moderate-to-high operator sizes with reasonable com-
putational cost. Hence, we can do up to 64 DP operations
in parallel on the same 256-dimensional inputs.

• Given that recent designs in both current- [4], [11]
and charge-domain [7] use multiple columns to express
multi-bit weights followed by weighted analog or digital
summation, we can study binary +1/-1 weights in a single
column without major loss of generality.

• Baseline conditions use a 65nm LP CMOS technology
with standard-Vt (SVT) transistors, supplied at their nom-
inal 1.2V voltage. Input and output resolution are set to
a default value of 1b.

• We use minimum-sized bitcells to keep maximum den-
sity, with a 1.5× upsized NMOS pull-down width to
ensure read-stability.

• Total bitline capacitances CBL(B) account for layout-
extracted parasitic values in metal-2 for 256 rows, which
reach 50fF for the selected 65nm LP node.

• We assume ideal DAC and ADC operations as we focus
here on the DP operator. By default, we assume that
ADCs have an uniform quantization with a half-LSB neg-
ative voltage offset which removes the nominal deadband
at 0V differential input (see Fig. 4). The DAC response
will be detailed in Section III.B but works as a simple
WL buffer for binary inputs.

B. Bit-1 stability conditions

CIM-SRAMs based on 6T bitcells suffer from sneak pull-
up currents (Isneak in Fig. 2) which can alter the DP result
and jeopardize data stability, as first noted in [17]. Neglecting
leakage, these currents arise when VBL(B) < VWL − Vt and
start to discharge the bit-1 node through the accessed bit-0
cells. This discharge can lead to undesired bit-flips if (i) the
cell inverter PMOS cannot sustain the sneak current, and (ii)
the DP duration is long enough for the bit-1 node capacitance
to discharge below the inverter tipping point. Hence, at fixed
supply voltage, the bit-1 stability is a function of VWL and
Nb, which control the driving strength of the access transistors

BL voltage swing
reduction

Slew rate + negative 
charge-injection

Fig. 3. Evolution of the normalized maximum DP duration for a 0.03ppm
bit-flip with different WL voltage and operator sizes, at 1.2V in the 65nm LP
node. The BL voltage swing under constrained conditions is also shown.

and the maximum DP duration. Moreover, changing the DP
duration also modifies the BL voltage swing. Because of high
bitcell variability, we have to evaluate the statistical conditions
yielding a 1-to-0 flip during the worst-case DP scenario: a
single bitcell storing a bit-1 and Nb − 1 bitcells with a bit-
0. Assuming that we strive for 99% of CIM-SRAMs without
a single bit-flip, we should find the critical DP duration for
which the bit-flip probability of an individual cell stays below
1−0.991/(16×256×64) = 3.84×10−8 (0.03ppm), assuming 16
banks of size 256×64. We can accurately extract such rare
events using high-sigma techniques, and resort here to the
gradient-based importance sampling methodology from [18].

Fig. 3 features the ratio between the maximum DP duration
that ensures a 0.03ppm bit-flip and the nominal DP duration to
reach 95% of BL full-scale, at different values of WL voltage
and 1.2V. It highlights three regions with different stability
conditions: region 1 ensures static stability of the data for any
DP duration, region 2 safely achieves the 0.03ppm target at
the nominal DP duration and region 3 requires to shorten the
maximum DP duration to ensure statistical retention. When the
operator size increases, the nominal DP pulse width narrows
and the bit-1 node has less time to discharge. Hence, the WL
voltage at which we transition from region 2 to 3 tends to
rise, as seen for Nb = 256. Nonetheless, it becomes difficult
to accurately monitor such narrow DP pulses in practice. We
discuss this point in Section IV.E. Besides, we would expect
a reduction of the maximum voltage swing when limiting the
DP duration in region 3 , as observed for Nb = 16. However,
increasing the operator size appears to mitigate the swing
reduction and even to increase it above full-scale. This happens
due to an important one-sided negative charge-injection from
the active WLs on the BL, worsening with higher WL voltage.
Furthermore, the BL swing saturates as the DP duration
becomes close to the considered 25ps slew rate. While one
could take advantage of Fig. 3 for a dedicated design with
fixed operator size, we opt for the conservative choice of fixing
VWL to the safe V max,99%WL static limit. Such choice minimizes
the additional non-linear contribution from sneak currents and
relaxes the design space exploration. However, note that this
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Fig. 4. Impact of ANIs on the DP transfer function (TF) for Nb = 16.
(Left) Systematic ANIs alter the TF linearity, with the highest INL reached
for intermediate D̂P. The equivalence of (Din,W) combinations lead to
nominal DNL (shown with 1-σ error bars). (Right) Spatial and temporal ANIs
respectively increase the deviation and shift the mean of each VDP (D̂P)
distribution, here for D̂P = −1. These ANIs increase the likelihood of
erroneous quantization near ADC thresholds, as seen when rout = 1b.

choice also reduces the maximum DP throughput and increases
mismatch sensitivity compared to regions 2 and 3 .

C. ANIs classification and decision errors

Despite stable bit-1 conditions, Eq. (2) cannot hold with
a finite BL voltage swing and ANIs affecting the VDP (D̂P)
transfer function. We sketch the impact of these ANIs on the
DP operator in Fig. 2 (c). We did not draw IR drops for clarity.
Note that charge-injection has eventually a low impact on the
DP result thanks to the differential architecture. We classify
these ANIs based on their deterministic or stochastic nature,
as well as whether they induce the same constant error on
all operators (systematic), whether they change the transfer
function of a given operator over time (temporal) or due to
bitcell variability and layout position dependence (spatial).

Fig. 4 (right) shows that systematic ANIs alter the linearity
of the ideal voltage response. With the 25ps slew rate in
baseline conditions, the observed non-linearity comes from
the drain-to-source modulation of the Ion current by the BL
voltage. Importantly, we also notice a nominal deviation of
VDP samples because different (Din,W) combinations can
produce the same D̂P result (e.g. D̂P = 3 = 3 − 0 = 8 − 5).
These different combinations correspond to more or less
bitcells passing, such that the differential error on the DP result
changes, which spreads the nominal output. This notion of
(Din,W) equivalence is a key concept in 6T-based architectures
as it impacts both the differential and integrated non-linearity
(DNL/INL) of the transfer function. Although D̂P = 0 has
the largest number of equivalent (Din,W), its DNL remains
close to 0 because the corresponding differential voltage error
is nominally very low. Moreover, BL clamping and a low
number of equivalent (Din,W) combinations reduce errors at
high D̂P values. Therefore, intermediate D̂P values show the
highest DNL and INL. Besides, spatial and temporal ANIs
further affect the nominal distribution of the DP results, as
illustrated in Fig. 4 (right) for D̂P = −1. Spatial ANIs,

0 1

0.5

(a)

(b)

(c) (d)

Fig. 5. Distribution-aware SNR components: (a) Ideal normalized ADC
quantization function with increasing rout. (b) Root MSE in baseline condi-
tions (w/ mismatch). (c) D̂P distribution with gaussian Din and binomial W
sampling, increasing the binomial probability pbin. (d) Obtained distribution-
aware SNR metric with increasing pbin and rout in baseline conditions
(Nb = 16), corresponding to the shown MSE data.

in particular local mismatch, increase the deviation of DP
results due to position-dependent differences in individual Ion
values. Temporal ANIs change the DP distribution in each
operator over successive operations as noise varies over time.
Altogether, spatio-temporal ANIs increase the likelihood of
wrongly crossing one (or multiple) ADC decision threshold(s),
as depicted for a 1b output. These incorrect ADC decisions
are the eventual cause of bit errors on the digital outputs. In
order to assess them quantitatively and to account for both the
ADC resolution and operands distribution, we have to define
an appropriate error metric and simulation framework.

D. Error metric definition

Let us consider the quantization of the previous DP results
by the quantization steps in Fig. 5 (a). The resulting mean-
square error (MSE) per D̂P value in Fig. 5 (b) highlights how
the output resolution shapes bit-wise decision errors. With a
high output resolution, the MSE follows the INL shape in Fig.
4, such that quantization has negligible impact on the distri-
bution of errors. However, decreasing the resolution discards
increasingly more MSE contributions, eventually leading to
decision errors only around D̂P = 0 at a 1b output resolution.
Hence, one should evaluate decision errors directly at the ADC
output to account for the quantization shaping. Furthermore,
the D̂P distribution will also affect these errors. Therefore,
we introduce the following distribution-aware SNR metric
between expected and actual digital outputs,

SNR =

D̂Pmax∑
i=−D̂Pmax

pi
Ndata,i−1∑

j=0

D̂
2

out,i

D̂Pmax∑
i=−D̂Pmax

pi
Ndata,i−1∑

j=0

(
D̂out,i − Dout,(i,j)

)2 . (3)

D̂Pmax = (2rin − 1)Nb is the maximum achievable D̂P and
Ndata,i is the number of samples associated with the i-th
DP value, with the total sample size summing up to Ndata.
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Fig. 6. Depicting the link between the accuracy degradation on MNIST and
the SNR at the output of each layer of a 784×512×256×10 MLP, with binary
inputs and weights. DP results are quantized to 4b.

We obtain each set of Dout samples by performing Monte-
Carlo simulations on top of random (Din,W) combinations
satisfying Eq. (1). Now, let us analyze the impact of the D̂P
distribution on the SNR. For a CNN topology with batch-
normalizations [19] and (quantized) activations between suc-
cessive CIM-SRAM layers, we assume a (discrete) gaussian
distribution of the inputs. Furthermore, the weights distribution
is highly dependent on the inference task, CNN architecture
and layer position within the network [20]. Still, as we limit
our scope to binary weights, we can assume they follow
a binomial distribution W ∼ B(1, pbin). Fig. 5 (c) depicts
the distribution for increasing pbin, with uniformly-distributed
weights corresponding to a value of 0.5. Then, we obtain the
dependence of the SNR on the D̂P distribution in Fig. 5 (d)
when applying local mismatch. The asymmetry of the curves
comes from the difference in signal power associated with
negative and positive D̂P values. At pbin = 0.5, samples are
mainly drawn around D̂P = 0, and the power increase with
output resolution dominates. When pbin approaches 1, the D̂P
distribution shifts towards higher values, requiring additional
quantization thresholds to introduce new errors. Altogether,
we conclude here that the SNR strongly relies on the D̂P
distribution. Nonetheless, we will fix pbin to 0.5 throughout
the rest of this work to simplify design space exploration.

In practice, when working with a fixed network architecture
and parameters, one can link the accuracy degradation with
the SNR at each layer output. We depict it in Fig. 6 when
injecting a known level of equivalent noise on the ideal DP
outputs. By extracting these noisy input/weights distribution to
get actual Dout samples with our framework, one can check
whether the acutal SNR resulting from Eq. (3) is larger than
the target SNR in Fig. 6 for each layer. This guarantees to
reach the targeted accuracy under the studied ANI constraints
when mapping the network on the fixed CIM-SRAM macro.

E. Simulation framework

Results presented in this work are based on SPICE circuit-
level simulations embedded within a MATLAB framework,
as depicted in Fig. 7. This framework operates in successive
steps: (i) the simulation type and parameters, such as the
supply voltage, are specified to SPICE, (ii) a first round
of circuit-level simulations extracts critical parameters, in
particular the maximum DP duration and the WL levels for
multi-bit inputs. Stability simulations also occur at this stage,
(iii) MATLAB generates the distribution of (Din,W) data,

(i) Sim type and circuit selection

(iii) (Din/W) generation 
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Fig. 7. MATLAB-SPICE simulation framework. For statistical simulations,
we choose the sample size and repartition (red curves) to keep the 3σ simula-
tion error on the SNR below 5% for the worst-case situation (Nb = Nrows).

either for worst-case analyzes or statistical simulations, (iv) the
corresponding WL inputs and bitcell data are fed to SPICE,
which in turn extracts the analog DP result, (v) expected and
actual results are quantized and, when desired, the SNR is
finally derived. SNR evaluations always use the statistical
distribution. Besides, note that power metrics are directly
retrieved from SPICE.

For statistical simulations, we draw multiple (Din,W) com-
binations as described in the previous section. However, the
choice of the total sampling size Ndata sets a trade-off between
computation speed and SNR accuracy. Moreover, for Monte-
Carlo simulations, balancing this total sample size between
Monte-Carlo runs and the number of random (Din,W) combi-
nations per Monte-Carlo also affects accuracy. But, it allows
to better distinguish mismatch within a single operator from
mismatch across operators. We will take advantage of this
distinction in Section VI. In order to keep the final SNR error
below 5% for 3σ simulations, we take Ndata = 2× 104, with
200 Monte-Carlo samples and 100 combinations per Monte-
Carlo run when necessary. This sampling strategy corresponds
to the highlighted red curves in Fig. 7 for the maximum oper-
ator size, which achieves the statistical worst-case simulation
error.

III. ANALYSIS AND MITIGATION OF SYSTEMATIC ANIS

The non-linearity of the access transistor current Ion is the
backbone of systematic ANIs. Considering the α power law
expression from [21], Ion evolves non-linearly with both the
gate-to-source voltage Vgs = VWL(t) − VQ(B),0 and drain-
to-source voltage Vds = VBL(B) − VQ(B),0, with VQ(B),0 the
average bit-0 voltage level of accessed bitcells. Let us study
how one can mitigate these non-linearities.

A. Vds non-linearity mitigation by TDP calibration

Let us first assume binary inputs. The drain-to-source mod-
ulation of Ion by the BL voltage integrates a non-linear error
on the DP result over time. Hence, we should expect to reduce
INL by decreasing the BL voltage swing, which is associated
to the DP duration as seen in Section II.B. Besides, a shorter
DP duration would also decrease the integrated error from
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slew rates and (bottom) the SNR metric with the BL voltage swing and its
corresponding DP duration, for Nb = 16 and increasing output resolution.
Drain-to-source non-linearity decreases with a smaller BL swing.

Fig. 9. (Top) Comparison of the actual DP result for (Din,W) yielding an
expected equivalent result. Tuning the WL voltage allows to fit the actual
(Din,W) = (1,48) result onto the (3,16) one. (Bottom) The non-linear WL
DAC code is given by the abscissa of the minima of the ∆Ion curves.

the total leakage current. We can evaluate this improvement
by looking at the total mean INL across all D̂Ps in Fig. 8,
for different values of slew rate. The non-linearity reduction
eventually stops when the slew rate becomes a large fraction
of the DP duration. Observe that the INL decreases faster in
the triode region because of exacerbated drain-to-source mod-
ulation associated with BL swing clipping. This suggests to
keep the swing below the saturation limit VDD−VBL,sat, with
VBL,sat the BL voltage at the edge of saturation. Minimum
INL is obtained at very small BL swings. In practice, such
swing would severely increase the sensitivity to noise and
jitter while slowing ADC conversion. One would either need to
waste ADC resolution bits or to adapt the ADC architecture for
low-voltage [22], [23]. To prevent this, we fix the DP duration
along the rest of this analysis so that the BL voltage swing
reaches the saturation edge. Nonetheless, we shall review this
trade-off in Section VI.

B. Vgs non-linearity mitigation by WL pre-distortion

For multi-bit inputs, Ion is a non-linear function of the
WL voltage levels which follow a linear, thermometer DAC

Fig. 10. Degradation of the SNR when increasing σVt in 65nm LP CMOS
(SVT) at 1.2V and Nb = 256, for different values of rout. The actual Vt
deviation for the technology reaches 35.6mV in these parametric conditions.

code. Fig. 9 (top) illustrates this non-linearity for two (Din,W)
combinations, which give the same D̂P result. While the actual
DP results differ from the linear code, tuning the WL voltage
level recovers the expected response. Hence, one could find the
set of actual WL voltages VWL that minimizes the integration
error over the DP duration,

∆Ion,i =

VDD∫
VBL,sat

|Ion(V max,99%WL )− i Ion(VWL,i)|
VDD − VBL,sat

dVBL.

Fig. 9 (bottom) shows the resulting error curves for a 2b
input, with Din = 3 mapping to V max,99%WL . Observe that
the minimum error is non-zero because second-order effects
exacerbated in short-channel devices correlate the dependen-
cies on WL and BL voltages. Practically, achieving such
programmable pre-distortion would require a dedicated DAC,
similar to [24], but with much lower overheads by targeting
an input resolution below 4b and by allowing some flexibility
around the ∆Ion minima. As such, we shall consider the
optimal mapping along the rest of this paper.

IV. IMPACT OF SPATIO-TEMPORAL ANIS

With systematic ANIs addressed, let us compare the relative
impact of each spatio-temporal ANI source highlighted in
Fig. 2 (e) on the SNR. This comparison aims at providing
a breakdown of the dominant ANI(s) in different corners of
the design space.

A. Impact of local mismatch

Random dopant fluctuations and line-edge roughness dis-
tribute threshold voltages as Vt ∼ N (µVt

, σ2
Vt

), which leads to
strong local mismatch between each Ion. This high variability
is usually pointed to as the main challenge in current-based
CIM-SRAMs [17] and motivated the strive for other architec-
tures [16]. Sweeping σVt in baseline conditions and maximum
operator size (Nb = Nrows) in Fig. 10 quickly reveals the SNR
degradation. This degradation is quasi-linear (in dB scale) with
σVt

once mismatch becomes substantial (here, σVt
& 10mV)

and shows a similar slope for all considered output resolutions.
Indeed, most outputs are close to the 1b quantization threshold
for the considered (Din,W) distribution, yielding an identical
increase in decision errors. In practice, σVt

is fixed by the
technology and transistor type: we shall therefore consider
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Fig. 11. (Left) Comparison of the INL on the DP result with and without
RBL parasitics for Nb = 256. The INL deviation is only altered at low
D̂P values. (Right) Impact of the RBL CBL delay on the SNR, at different
supply voltages. The SNR always remains above the reference mismatch level
at Nb = 256.

the highlighted actual SNR for 65nm LP SVT transistors as
an upper bound when comparing with other spatio-temporal
ANIs in similar parametric conditions.

B. Impact of BL parasitic resistance
The parasitic resistance associated with the long and narrow

BL metal wires create an RBL CBL network, as illustrated in
Fig. 2 (c). Because of the physical wiring distance between
the ADC input and bitcells performing the DP operation, this
network introduces static position-dependent delays leading to
additional decision errors, assuming the DP duration is fixed.
In the 65nm LP bulk CMOS technology, the estimation of the
parasitic resistance for minimum-width 0.1µm metal-2 wires
gives RBL = 0.91Ω/µm. We compare in Fig. 11 (left) the
INL with the addition of these parasitics to the systematic-
only case for the maximum operator size, which has the
largest disparity in wiring distances. The INL deviation only
rises around low D̂P values, characterized by a large number
of equivalent (Din,W) combinations, each with a different
delay. This behavior explains that the additional SNR loss in
Fig.11 (right) is only significant at a low output resolution,
because one only accounts for decisions around D̂P = 0.
Nonetheless, the SNR remains high compared to the local
mismatch reference in identical conditions (Nb = 256 at
1.2V). Moreover, scaling the supply voltage down reduces the
BL current density during the DP operation, which lowers
the dynamic voltage drop across the parasitic RBL and the
resulting delay-based deviation of DP results. Eventually, we
should underline that the small impact of these parasitics in
6T-based architectures is an advantage over existing single-
ended designs that perform the DP as a voltage division on
the bitline, such as [12]. While we only suffer here from a
slight RBL CBL delay, parasitic resistances in such designs
introduce direct IR drops on the expected voltage division,
which impacts the DC level of the DP result meaningfully.

C. Impact of IR drops
Let us now assume Ncells pull-down paths act in parallel

during a single DP operation, as represented in Fig. 12 (left).

BL1 BL2 BLN

R
g
n
d

QB,1

WL

Q
,0

Ncells

Ion

Vgnd

Fig. 12. (Left) Representation of IR drops affecting parallel DP pull-down
paths. (Right) Concurrent evolution of Ion and V DC

gnd with Req at different
supply voltages. V DC

gnd and thus VQ,0 increase when Req increases, so that
Ion starts decreasing when Vgnd overcomes the nominal value of VQ,0.

1.2V mismatch level

Fig. 13. Evolution of the SNR with V DC
gnd at 1.2V and 0.6V. The SNR falls

below the reference mismatch level above a critical value IR drops.

The peak current drawn from this large level of parallelism can
induce severe IR drops across the parasitic wiring resistance
to ground Rgnd. Assuming strong inversion, one finds the DC
level of the virtual ground node Vgnd:

V DCgnd = Req Ion where

{
Req = Rgnd Ncells,

Ion ∝ (VWL − VQ,0 − Vt)2.
(4)

Changing the equivalent resistance in DC conditions with the
BL voltage set to VDD in Fig. 12 (right) gives the critical value
for which IR drops start to significantly affect Ion, as the bit-
0 node rises above its nominal read-access voltage level ('
70mV, from simulations). This critical value rises when one
decreases the supply voltage, as the lower nominal read current
induces smaller IR drops at fixed resistance value.

By sweeping V DCgnd in Fig. 13 (right), we find that IR drops
quicky degrade the SNR, as they reduce both the actual BL
voltage swing and Ion. Besides, the increased bit-0 voltage
level also weakens bitcell stability and pushes the access tran-
sistors towards weaker inversion, making them more sensitive
to mismatch. With the value of Rgnd obtained from layout
parasitic extraction, one can deduce the maximum number
of cells working in parallel from Fig. 12 (right) for a target
SNR level in Fig. 13 by matching the values of V DCgnd . In
that perspective, scaling the supply voltage down allows more
parallelism, at the cost of a larger sensitivity to mismatch.
Applying these considerations to the 65nm LP node, we obtain
Req = 780Ω for our 256× 64 array when assuming a meshed
power grid (see Appendix B for the detailed computation).
From Fig. 12, we conclude that such equivalent resistance does
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Fig. 14. Transient evolution of thermal, flicker and total RMS noise on VDP

during a DP operation, at different supply levels (Nb = 16, RMS averaged
over 103 noisetran simulations). Noise power falls steeply off when the access
transistors reach the edge of saturation, as Av,0 collapses quickly.

Thermal

Flicker

Total

Fig. 15. Evolution of thermal, flicker and total maximum RMS voltage
σn,DP with (left) operator size and (right) supply voltage. The RMS noise
stays below 1mV over both full parametric ranges.

not impact V DCgnd meaningfully, leaving the SNR intact.

D. Impact of sample-and-hold noise

The accumulation of noise injected by bitcells on BL/BLB
during DP operations behaves as a non-stationary stochastic
process. Adapting the expressions of the thermal and flicker
noise variances in [25] and [26] to our DP operator, we find


σ2
n,th =

kBT

CBL
γ
Gm
Gd

(
1− e−2t/τ

)
u(t) with τ = CBL/Gd,

σ2
n,1/f =

G2
mkF

CoxWL
t2

2 C2
BL

(
3/2 + log(4Ts/t)

)
.

(5)
kB is the Boltzmann constant, T is the temperature (in Kelvin),
γ is the body-effect coefficient (' 2/3, 1 for bulk technologies
in saturation and triode, respectively [27]), Gm and Gd are
respectively the total equivalent transconductance and output
impedance seen by the bitline, kF is a technology-specific
factor, Cox is the access transistor gate-oxide capacitance, and
Ts is the characteristic time of the 1/f process. Given here
that the DP duration is much smaller than Ts (Ts ≥ 1ms),
flicker noise acts during several cycles as a static offset which
depends quadratically on the DP duration. Furthermore, the
total integrated thermal noise increases with the DP noise
bandwidth 1/τ .
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Fig. 16. Evolution of the SNR with WL delay at 1.2V and Nb = 16, with
increasing relative jitter (rout = 4b). The INL improvement at moderate
delay and without noise increases the SNR, before collapsing at larger ones.

Knowing that each BL/BLB precharge resets the noise
level, let us consider the transient response of this non-
stationary process over an indefinitely long DP operation
(TDP ∈ [0,+∞[ ). Fig. 14 gives the root mean square (RMS)
value σn,DP of the DP voltage due to these noise contributions
over 103 noise realizations, in baseline conditions. The RMS
voltage increases over time as predicted in Eq. (5), until the
total gain Av,0(= Gm/Gd) collapses and transistors enter
the triode region (VBL < VBL,sat). At that point, the flicker
contribution disappears entirely and the RMS voltage settles
around the thermal noise floor RMS at zero Vds, equal to√

4kBTγGd,0 with Gd,0 the total off-mode impedance [27].
Hence, the integrated noise impact is maximum when VDP is
close to the saturation edge.

We further investigate in Fig. 15 how changing the operator
size or supply voltage affects this maximum value. From Eq.
(5), the shorter DP duration obtained when increasing the
operator size reduces flicker noise, despite the linear increase
of Gm with Nb. Moreover, the cancelling dependences on
Nb in the opposing Gm/Gd and TDP /τ ratios lead to bare
fluctuations of the thermal noise. At first order, both ratios
do however increase when scaling the supply voltage down,
such that thermal noise decreases as in Fig. 15 (right). On the
contrary, flicker noise increases with a longer DP duration,
until it becomes close to Ts. Finally, advanced nodes will
increasingly suffer from such noise because of BL capacitance
reduction.

E. Impact of WL timing errors

Considering 1b inputs, timing errors on the WL signals also
affect the DP result at fixed DP duration. Let us distinguish
two kinds of timing errors.

1) Inter-column delay error: The parasitic RWL CWL net-
work creates a horizontal WL propagation delay that shortens
the actual pulse width seen at a given column, assuming
the digitization of DP results by all column-ADCs occur
simultaneously. Fig. 16 showcases the impact of the relative
delay on the SNR at a 1.2V supply voltage and Nb = 16. The
SNR begins to drop around a 20% relative delay and drops
exponentially. Interestingly, we also observe an increase in
SNR for moderate delays. In fact, such delay slightly improves
the linearity of the transfer function, as verified with the INL
curve. Still, we note that additional statistical variability shatter
this improvement, such as the relative jitter σTDP

. Now, let
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Fig. 17. (Top) Evolution of the SNR with normalized jitter σTDP
, for

different supply voltages (Nb = 16, rout = 4b). (Bottom) Correspondence
between WL buffer sizing and relative WL jitter increase. Limiting the
maximum buffer width sets the maximum jitter-induced SNR level.

us estimate the worst-case delay in the 65nm LP technology.
With (i) 64 bitcells of width 1.05µm, (ii) the WL parasitic
capacitance estimated to 25fF (half of CBL), (iii) a parasitic
resistance of 0.91Ω/µm for metal-3 wires, the delay of the
64-th column is only 4.28ps. Such value remains smaller than
the 25ps slew rate, only affecting large operator sizes.

2) Inter-row jitter: Noise and mismatch between WL
drivers introduce an inter-row jitter with standard deviation
σTDP

. Assuming a normal distribution of this jitter and ne-
glecting noise, we evaluate its impact by applying random
jitter to each WL on top of the (Din,W) distribution. As
such, we find in Fig. 17 (top) that the SNR starts to fall
exponentially at a 20-30% relative jitter depending on the
supply voltage, for 16 bitcells per operator. Yet, the actual
jitter level depends on the WL driver strength. Let us consider
the simple buffer topology supplied at V max,99%WL for 1b inputs.
We can extract the actual jitter effectively introduced for any
total width Wdriver of the WL driver and directly relate it to
the SNR estimate, as done in Fig. 17. In that regard, low-Vt
(LVT) devices enable to work with lower area to reach a same
SNR. Assuming we allow up to 10% area overhead for the WL
drivers compared to the total array, we find that LVT drivers
ensure no SNR degradation with Nb = 16. Nonetheless,
increasing the operator size would decrease the DP duration,
requiring to upsize the WL driver to keep the SNR constant.

For multi-bit inputs, mismatch would affect both the pulse
width and the generated WL voltage level. In order to avoid a
statistical Vgs non-linearity, one should size the DAC to keep
the WL voltage levels close to the minima in Fig. 9. As for the
1b WL driver, this requirement introduces a trade-off between
area and accuracy, but also depends upon the resilience of the
selected DAC architecture to noise and mismatch.

F. SNR breakdown

Finally, we can dress a breakdown of the SNR under the
typical hardware conditions described for each ANI. Table I
showcases that local mismatch prevails in most corners of the
design space. Observe that WL timing errors become critical

TABLE I
SNR BREAKDOWN IN TYPICAL CONDITIONS

0.6V, Nb = 16 0.6V, Nb = 256 1.2V, Nb = 256
rout 1b 4b 1b 4b 1b 4b

Systematic only +∞ 24.5dB +∞ 39.7dB +∞ 40.9dB
Mismatch 4.7dB 13.6dB 3.9dB 22.5dB 9.6dB 29.3dB
RBL CBL delay +∞ 24.3dB +∞ 38.2dB 21.1dB 38.5dB
IR drops +∞ 21.6dB +∞ 39.2dB +∞ 40.6dB
Intrinsic BL noise +∞ 18.3dB 39.6dB 33.4dB +∞ 39.8dB
WL timing error 13.5dB 23.3dB 5.8dB 27.2dB 9.5dB 33.3dB

as well at large operator size due to the 10% area overhead
constraint on the WL driver. However, relaxing this constraint
could directly improve the SNR back.

V. ANALYSIS OF DESIGN SPACE TRADE-OFFS

Considering that local mismatch is the only substantial
source of non-systematic SNR degradation, let us consider
how the trade-off between SNR, power metrics and throughput
evolve across the design space of the 6T current-DP operator.
Moreover, area efficiency is obtained as throughput/area, with
the 65nm LP 6T bitcell area of 0.5µm2 with dense rules and
about 1µm2 with logic rules, here considered [16]. Note that
power and throughput are only extracted for the bitcell array,
yielding upper bounds results unconstrained by the WL/BL
drivers and periphery. We speak hereafter of unbounded
power and throughput. For power metrics, we evaluate both
the total leakage power normalized per bitcell (Pleak) and
the power efficiency (PE). Power efficiency is estimated in
the worst-case scenario where all WLs and BLs/BLBs are
charged to full-swing. For interpreting the SPICE-extracted
power figures, let us use the following analytical expressions,

Pleak = VDD Icell(VDD) and PE = Nop/EDP , where

EDP ' (2 NcolsCBL +NbCWL) V 2
DD

+NrowsNcols

∫ TDP

0

Pleak dt.

(6)
Icell is the current drawn from supply by a single bitcell
(for static leakage, we assume VWL = VBL(B) = 0V),
Nop = 2×Nb×Ncols is the number of addition and multipli-
cation computed by all of the bitcells involved in parallel DP
operations. Moreover, the throughput is equal to Nop/TDP .
Let us underline that leakage power is often overlooked in the
CIM-SRAM literature compared to power efficiency, although
this metric is key when targeting edge applications with sparse
activity, especially with volatile memories like SRAMs [28].

A. Transistor type

Memory designers can select amongst several process fla-
vors and transistor types to trade-off read/write latency, bitcell
leakage and area [29]. For example, in 65nm CMOS, one
usually finds a Low-Power (LP) and a General-Purpose (GP)
process flavor, with different Vt’s, printed gate length and
effective gate-oxide thickness [30]. Note that these flavors
use here different nominal supply voltages: 1V for GP and
1.2V for LP. The differences in sensitivity to Vt variations
amongst these flavors is critical for mismatch resilience. In
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Fig. 18. (Top) Comparison of sensitivities to Vt (left) and Ion (right) changes
across all transistor types in the 65nm bulk CMOS technology. (Bottom)
Trade-off between SNR (rout = 4b) and (left) bitcell leakage power, (right)
power efficiency over 64 columns.

light of this, Fig. 18 (top) showcases a general increase in Vt
deviation when moving from GP to LP flavors, or from low-
Vt (LVT) to high-Vt (HVT) devices, with the exception of the
GP LVT one. The relative Ion variability

(
σ
/
µ
)
Ion

follows
the Vt deviation trend, with higher sensitivity at large Vt as
transistors are biased closer to weak inversion, at constant Vgs.

We derive the trade-off between SNR and power metrics in
Fig. 18 (bottom). It clearly highlights the trade-off between
low leakage power at high Vt and high SNR at low Vt
thanks to the lower Ion variability. GP LVT devices are an
exception because their high leakage cannot be neglected
compared to Ion, hence noticeably distorting the DP result.
Regarding power efficiency, LP devices have a negligible
leakage contribution, such that the BL/BLB precharge cost
dominates. We note slight variations with their Vt type, related
to changes in the total intrinsic drain capacitance connected to
BL/BLB. Still, GP devices showcase a better power efficiency
thanks to their reduced nominal supply voltage. However,
their high total leakage quickly degrades this efficiency when
moving from HVT to LVT. These devices also have a better
throughput because of their lower Vt, in spite of the supply
voltage difference. Altogether, we conclude here to select GP
devices to reach high power efficiency and high SNR, and LP
devices for applications requiring low standby power.

B. Technology and supply voltage scaling

While technology scaling increases the CIM-SRAM density,
it also worsens Vt variability following Pelgrom’s law [31],

σVt = AVt

/√
W L. (7)

In Eq. (7), W and L are the transistor width and length, and
AVt

is a technology-dependent parameter. Table II compares
the technology data of increasingly scaled nodes. For bulk
technologies, we observe that AVt

improvement with scaling
can generally not follow the reduction of the

√
W L factor,

leading to an increased Vt variability. We should also note
that FD-SOI technologies have much lower AVt than bulk
CMOS processes thanks to inherently undoped channels [32],

TABLE II
LIST OF TECHNOLOGY-SPECIFIC PARAMETERS

V nom
DD

*

[V]
(W/L)min*

[nm/nm]
Vt†

[V]
AVt

†

[nm·V]
σVt

†

[mV]
CBL

‡

[fF]

0.18µm
bulk CMOS 1.8 240/180 0.39 3.45 18.1 120

0.13µm GP SVT
bulk CMOS 1.2 150/130 0.29 3.57 25.2 90

65nm GP SVT
bulk CMOS 1 135/60 0.31 2.14 23.6 50

65nm LP SVT
bulk CMOS 1.2 135/60 0.52 3.19 35.6 50

28nm SVT
FD-SOI 0.9 80/30 0.33 0.95 17.3 25

* From technology datasheets.
† From SPICE simulations.
‡ From post-layout extraction (M2).

From strong to weak inversion
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Fig. 19. Evolution of (top) the normalized Ion deviation and (b) the SNR
(rout = 4b, Nb = 16) with supply voltage scaling for different technologies.
At constant supply, the lower normalized current deviation achieves the best
SNR. The 65nm LP technology has the worst SNR because of its higher Vt.

explaining the lower Vt deviation of the 28nm FD-SOI node.
Let us now investigate how the SNR associated with these
technologies evolves with supply voltage scaling. Fig. 19 (top)
presents the evolution of the relative Ion variability when scal-
ing it down to half its nominal value for each technology. Each
value is extracted at the corresponding V max,99%WL voltage,
which decreases quasi-linearly with the supply voltage to keep
the driving strength ratio between pull-up PMOS and access
transistor constant. Hence, the relative Ion variability rises due
to the lower WL voltage, quickly pushing the access transistors
towards weak inversion. The steep slope in Fig. 19 (top)
characterizes this transition from strong to weak inversion.
Such behavior strongly degrades the SNR, as seen in Fig. 19
(bottom) for a 4b output resolution. Comparing technologies
at fixed supply voltage, a lower relative Ion variability means a
better SNR because the mismatch contribution dominates that
of systematic ANIs, except for very close values of (σ/µ)Ion .

Let us now discuss the SNR, power and throughput trade-
offs facing these scaling aspects in Fig. 20. On the one hand,
leakage power increases exponentially with the supply voltage
as the bitcell inverters are biased in weak inversion. On the
other hand, there is a clear trade-off between power efficiency
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Fig. 20. Trade-off between SNR (rout = 4b, Nb = 16) and (left)
bitcell leakage power and (b) power efficiency/throughput with supply voltage
scaling, for different technologies. FD-SOI technology provides the lowest
leakage thanks to substrate isolation, and the highest power efficiency because
of reduced supply and WL/BL capacitance.

and SNR/maximum throughput as we scale the supply voltage
down. Observe that the power efficiency begins to saturate for
the 28nm FD-SOI and 65nm GP technology at low supply
voltage: DP duration increases, so that the total integrated leak-
age eventually overcomes the diminishing WL/BL precharge
costs. Furthermore, technology scaling reduces the total WL
and BL capacitances, which improves power efficiency at a
fixed supply voltage. Overall, the FD-SOI technology shows
excellent trade-offs between SNR, power metrics and through-
put at fixed supply voltage, leading us to the conclusion that
FD-SOI designs offer promising perspectives for the further
scaling of current-based CIM-SRAMs.

C. Operator size

The ability to scale the operator size and/or the input
resolution in CIM-SRAM designs is key to enable the mapping
of different CNN topologies. Yet, tuning these parameters
affects the SNR as they change the range of D̂P results and the
number of equivalent (Din,W) combinations associated with
each result. Moreover, while changing the operator size does
not affect leakage power as the number of rows is fixed, Eq.
(6) predicts a linear increase in power efficiency with Nb if

2 CBL � (Nb/Ncols) CWL (8)

when neglecting the impact of the integrated leakage
power. As a corollary, CIM-SRAMs with low aspect ratio
Nrows/Ncols do not improve in power efficiency when ex-
panding the operator size. Given that Eq. (8) yields CWL ≤
1/9CBL in our baseline framework, this assumption is par-
tially correct.

Fig. 21 quantifies the dependences on Nb (exponentially
spanned from 8 to 256 bitcells) and rin for different output
resolutions, assuming other baseline conditions (1.2V, 65nm
LP SVT). Fig. 21 (right) validates the linear increase in power
efficiency with the operator size, and shows a supra-linear
increase in the unbounded throughput. However, remember
from Section IV.E that the tiny DP duration at large operator
size makes the DP very sensitive to WL timing errors at fixed
WL driver width. More interestingly, this figure showcases
that the operator size that maximizes the SNR increases
with the output resolution. To understand this and ease the
simultaneous vizualization of different Nb curves, let us define
D̂Peq = (Nrows/Nb) × D̂P. Fig. 22 demonstrates that two

SNR
Throughput

Fig. 21. Evolution of the SNR (65nm LP at 1.2V) with (left) rin for different
output resolutions, and (right) Nb (from 8 to 256) with the corresponding
throughput and power efficiency. The operator size which maximizes the SNR-
PE trade-off increases with the output resolution.

0.02

0.004

Fig. 22. Evolution of (top) INLeq , (bottom) the D̂Peq distribution with Nb

at 1.2V. These phenomena oppose one-another and result in an increase of
the operator size maximizing the SNR with rout.

opposing effects lead to such behavior. On the one hand, Fig.
22 (top) shows an increase of INLeq = (Nb/Nrows) × INL,
which corresponds to more quantization errors. On the other
hand, the D̂Peq distribution concentrates around D̂Peq = 0
when the operator size increases. For a 1b output resolu-
tion, a large number of data samples are located around
the sole 1b quantization level, whatever the operator size.
Therefore, the increasing INLeq results in a larger quantization
error, decreasing the SNR accordingly. However, for multi-
bit outputs, we see that the number of data samples around
additional quantization levels shrinks with Nb. Consequently,
these samples do not provide additional quantization errors on
the output. As a result, the SNR improves despite the larger
INLeq when increasing the output resolution. The maximum
SNR is reached when the sample size around all non-binary
quantization levels becomes close to zero, such that the INLeq
increase prevails again.

Eventually, we find in Fig. 21 (left) that the SNR degrades
with the input resolution at low output resolution and fixed
operator size. The reason is twofold: first, the effective number
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Fig. 23. Evolution of the SNR with the maximum BL voltage swing, for
uniform and calibrated ADC quantizations (baseline conditions). The SNR
loss at high output resolution driven by non-linear effects is mostly recovered
through calibration.

of steps increases with rin as D̂Pmax = (2rin − 1) Nb.
Given that the DP duration remains unchanged, fitting more
steps within the same voltage range increases INLeq . Second,
using a DAC makes inputs with reduced WL voltage more
sensitive to mismatch. Nevertheless, we only notice the SNR
decrease when moving from 1b to 2b input resolution. Besides,
statistical averaging amortizes the drop at larger operator size
and output resolution.

In the end, we conclude that striving concurrently for a
high operator size and output resolution gives the best SNR
and power efficiency results. Besides, it minimizes the SNR
sensitivity to changes in input resolution. However, we should
underline that this conclusion remains highly dependent on the
D̂P distribution.

VI. PUSHING THE DESIGN SPACE LIMITS

With the design trade-offs of 6T-based current-DP operators
exposed, let us finally consider how hardware calibration
techniques could alleviate the design constraints by improving
resilience to mismatch and non-linearity, in particular.

A. Strategies of statistical calibration

Taking a step back, the overall inter-operator distribution of
DP results comes from the accumulation of individual intra-
operator responses. These intra-operator transfer functions
suffer from identical systematic errors but different local
mismatches. As calibrating each bitcell is not possible in
practice, let us rather consider distribution-aware calibration
techniques respectively acting at the inter- and intra-operator
levels.

1) Inter-operator distribution-aware ADC quantization:
Yin et al. proposed to manually tune the quantization levels
of custom flash ADCs by using external supplies, so as to
account for the actual distribution of outputs extracted from
chip measurements [12]. However, we could instead use the
knowledge of the statistical inter-operator distribution in order
to infer, at design time, the calibrated ADC quantization levels
which maximize the SNR. This solution bypasses the need
for external supplies, as we could directly specify the quan-
tization levels by software-configured registers of the CIM-
SRAM. These registers could control a dedicated DAC that
periodically refreshes the 2rout non-linear decision thresholds
of rout-bit flash ADCs.
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Fig. 24. Comparison of SNR improvements using calibration techniques,
for different corners of the design space (SVT transistors). These techniques
showcase a better effectiveness at high rout, low VDD and small Nb.

2) Intra-operator gain and offset compensation: Assuming
the choice of BL voltage swing makes the nominal transfer
function almost linear, we could reduce the actual deviation of
the inter-operator distribution by aligning the transfer functions
of each operator on average by applying gain and offset
compensations γn and βn specific to each column, such that

Vcal,n = γnVDP,n + βn, with n ∈ [0, Ncols− 1]. (9)

one can find each γ and β by simply estimating the DP
voltage obtained for the maximum and minimum DP result in
each operator, as these results are inherent averages of the Nb
currents respectively on the BL and BLB side. With regards
to practical implementation, tuning of the BL capacitance
(e.g. with a digitally-controlled capacitive bank) or column-
wise back-biasing (for FD-SOI technology [33]) could apply
the gain corrections γn. Additional calibration bitcells could
generate the βn factors by applying an offset on each VDP,n.
However, technology scaling degrades the efficiency of such
a calibration as the Vds non-linearity in saturation increases.

B. SNR improvement results

With these calibration techniques defined, let us first take a
look back at the BL voltage swing selection with the addition
of local mismatch, as announced in Section III. With uniform
quantization, the SNR level in Fig. 23 (including now local
mismatch) degrades more steeply with a large output reso-
lution, as the sensitivity to non-linearity rises. However, we
observe that this dwindling fades away with the proposed inter-
operator calibration, which takes the stochastic non-linearity
of the outputs into consideration. Therefrom, we recover one
degree of freedom on the BL swing selection at design stage,
reducing it to a trade-off between noise, speed and power.

Still assuming the initial BL swing, Fig. 24 quantifies SNR
improvements using the proposed calibration for different
sets of design space parameters. The SNR recovery is more
effective at high output resolution as inter-operator calibration
also tackles the residual non-linearity. Besides, we find that
intra-operator calibration induces a better recovery of the SNR
at low supply voltage, related to a better linearity of the
transfer function in weak inversion. On the contrary, increasing



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 13

the operator size limits the effectiveness of the iterative inter-
operator calibration because the importance of non-binary
quantization levels diminishes. Also, we limited the voltage
resolution when calibrating the quantization levels to 2% of
the supply voltage. Finally, applying dual calibration (i.e. ADC
calibration applied on the aligned intra-operator distributions)
always yields the best SNR improvement. Altogether, these
techniques alleviate some design space trade-offs: they espe-
cially enable to work at lower supply voltage for a fixed target
SNR, improving concurrently leakage power and efficiency.

Nevertheless, the overhead and limitations associated with
the actual implementation of these techniques need a careful
study. Let us give here a coarse overview of the power/area
overheads. In the 65nm LP technology, eight 8-bit HVT
registers based on standard-cell flip-flops would generate 1.5%
additional leakage power and 9.7% area overhead (compared
to the bitcell array only). These look acceptable if the 8-bit
DAC generating the quantization levels fits within the WL
drivers pitch and consumes a low average power. For intra-
operator calibration with 4b resolution on γ and β, one could
use 16 bitcells and a 4b gain correction circuit. While the
bitcells bring 6.25% static power and area overheads, the gain
correction circuit would need a finer design attention.

VII. CONCLUSION

In this paper, we addressed the impact of analog non-
idealities (ANIs) on the design space of analog dot-product
(DP) operators based on 6T-SRAM bitcells for in-memory
computing. We introduced the distribution-aware SNR metric
to objectively quantify bit-errors on the DP results and showed
that assumptions taken on the distribution of the DP operands
critically affect the obtained error level. We proposed solutions
to systematic ANIs by carefully analyzing their sources. For
the 65nm LP node, we found out that parasitic RC delays and
intrinsic noise have negligible impact on the SNR compared
to local mismatch. Furthermore, we detailed how one can
prevent IR drops and WL jitter from impacting the SNR by
respectively finding the maximum number of parallel DPs
and appropriately sizing the WL drivers. Assuming these
conditions, we quantified the design trade-offs between the
mismatch-induced SNR degradation and power consumption
metrics. The scaling of supply voltage and Vt with CMOS
technology usually improves power efficiency at the cost of
more leakage and current variability, which degrades the SNR.
Instead, we showed that FD-SOI technologies provide a better
scaling solution thanks to inherently lower leakage and Vt
mismatch. Besides, maximizing concurrently the operator size
and output resolution improves at the same time the power
efficiency, throughput and SNR. Finally, we discussed inter-
and intra-operator calibration techniques enabling a partial
recovery of the lost SNR. They especially allow to scale supply
voltage down while preserving the same SNR level, hence
improving power metrics. Altogether, this work provides a
physical and quantitative roadmap of the main design-stage
trade-offs faced by current-domain DP operators based on 6T-
SRAM bitcells. The proposed framework with its distribution-
aware metric also paves the way for applying such analysis to
other in-memory DP operators.

TABLE III
DEFINITION OF RECURRENT SYMBOLS

Category Symbol Definition

General ANI(s) Analog non-ideality(-ies)
DP Dot-product

Architecture-
related

BL, VBL, CBL Bitline, bitline voltage and total capacitance
WL, VWL, CWL Wordline, wordline voltage and total capacitance
Nrows, Ncols Number of rows and columns in the CIM-SRAM framework

VQ,0/1 Analog voltage level of the stored bit-0/1 data
Vdsat, VBL,sat Drain-to-source saturation voltage and the corresponding BL voltage

Dot-product
symbols

Din, Dout Fixed-point input and output data to the CIM-SRAM
D̂out Expected fixed-point output
VDP Differential voltage representing the analog DP result
D̂P Expected floating-point dot-product result

W +1/-1 weights, mapped to 1/0 and 0/1 bit values and stored in bitcells
(Note: sometimes used for the transistor width, see context)

Dot-product
operation

TDP Duration of the analog DP operation
Ion Current drawn by the bit-0 side of one accessed bitcell

Vmax,99%
WL Maximum WL voltage for 99% CIM-SRAMs without any DP bit-flip

Analysis
parameters

rin, rout Input and output resolution
Nb Size (i.e. number of bitcells) of the analog DP operator (≤ Nrows)

Outer power ring: ideal GND 
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Fig. 25. Meshed power grid considered when estimating Req .

APPENDIX A
SUMMARY OF SYMBOL DEFINITIONS

Table III regroups the definitions of recurrent symbols used
in this work. Symbols defined and used within a single sub-
section are not displayed here, as well as standard symbols
and abreviations in electronics (VDD, INL, ...).

APPENDIX B
ESTIMATION OF Req

When estimating Req for the proposed CIM-SRAM frame-
work, we assume a meshed power grid layouted in M4/M5
metal layers and surrounded by an ideal power ring, as shown
in Fig. 25. M4 to M5 vias ensure the connection between
horizontal and vertical power lines, which are 0.3µm wide
(Wm) in the considered 65nm node. In this technology, the
sheet resistance Rsh for Mx (x≥ 2) layers is equal to 0.12Ω/�
at this width. Besides, we consider a 0.5µm2 area (A) for the
foundry 6T bitcell, with a 2.39 width/height aspect ratio (AR).

Because of the rectangular power ring, bitcells at the center
of the array see the largest Rgnd. Note that we take this worst-
case value as a constant in Eq. 4, therefore overestimating the
actual level of IR drops. Given the previous set of hypotheses,
we find the equivalent resistance Req as

Req ' Ncells
(

1

Rv
+

1

Rh

)−1

with


Rv =

Rsh
2

Nrows
√

A/AR
NcolWm

,

Rh =
Rsh

2

Ncol
√

A× AR
NrowsWm

.

The factor 1/2 comes from the two-sided connection to the
ideal power ring. Using the previous data and Ncells = 256×
64, we eventually obtain Req = 780Ω in 65nm CMOS.
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