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Abstract

Hybrid systems describe processes that
typically need to satisfy a set of strict physical,
computation, and communication constraints.
Mission-critical and time-critical cyber-
physical systems are a prime example where
these constraints play a key role in analysis,
controller synthesis, and implementation. On
top of classical notions such as stability, safety
plays a major role in the control design of
hybrid systems. There is a long history of
methods related to the safety analysis and
safety enforcement for dynamical systems,
with the ones concerning linear systems being
more mature than the others. Due to the
importance and complexity of the underlying
problem, several different techniques have
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been developed for hybrid systems. This entry
summarizes the most important approaches
and tools, together with references for further
reading.
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Introduction

More and more applications use advanced, data-
driven, decentralized, nonlinear control solutions
for uncertain or complex models. This complex-
ification leads to unavailability of classical guar-
antees on the system’s behavior. Safety-critical
control is a leading challenge in hybrid and cyber-
physical systems. Examples can be found in (air)
traffic control, medicine, drug administration,
logistics and supply chain networks, robotics,
planning, the smart grid, autonomous vehicles
and autonomous navigation, digital manufactur-
ing and Industry 4.0, control over networks, and
edge and cloud computing. Safety analysis of
such systems is extremely difficult, with negative
complexity results holding even for simple hybrid
dynamics, for example, discrete-time switching
systems (Jungers 2009) and rectangular hybrid
automata (Doyen et al. 2018). Many different
approaches have been established to address
the problem of safety, often leading to semi-
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algorithms with asymptotic properties. In view of
the hardness of the task, it is critical to identify
particular features of the system, which could
make safety problems easier than in the general
case. Indeed, for several special cases of hybrid
systems, decidability or semi-decidability results
are available. Let us mention reachability for
timed automata, or the stability problem for
switching systems (see, respectively, (Alur and
Dill 1994; Jungers 2009), and (Doyen et al.
2018, Section 30.3) for precise statements).
However, as a rule of thumb, one can argue that
even elementary safety problems on very simple
hybrid systems are often extremely hard.

Models
A hybrid system is a dynamical system consisting
of both discrete (discrete event) and continu-
ous dynamics, along with the corresponding sets
where these two different dynamics are defined,
often called flow and jump sets. A formal defi-
nition together with conditions for the existence
of solutions is in Goebel et al. (2012, Sec. 1.1),
covering, among others, switching and impulsive
systems, and hybrid automata. For equivalence
results between classes of hybrid systems, see
Heemels et al. (2001), and for a formal definition
for hybrid automata, see Doyen et al. (2018, Sec.
30.2.2). In this entry we consider the simple,
however not restrictive, mathematical model rep-
resentation(

Px D f .x; u;w/; x 2 C;

xC D g.x; u;w/; x 2 D;
(1)

where x 2 X � R
n is the state vector, defined

in a space that may consist of both discrete and
continuous variables, C � R

n, D � R
n, D \

C D ;, are subsets of the state space and u.t/ 2
U and w.t/ 2 W are the control and exogenous
inputs, respectively. We denote the solution of the
system at time t� for an initial condition x0 2 X
with x.t�I x0/. Further details on the model, as
well as conditions and subtleties on the existence
of solutions of (1), can be found in Goebel et al.
(2012).

Safety
Safety is at the heart of many verification prob-
lems of hybrid systems. To introduce the concept,
we first define the notion of reachability; a set
Xe is reachable from x0 if the state can reach Xe
from x0 after some finite time t , i.e., if x.t I x0/ 2
Xe . The notion of safety is related to avoiding
regions of the state space; given a set of unsafe
states Xf and a set of initial states X0, a system
is safe if for any initial state x0 in the set X0,
there exists a sequence of actions such that it
never reaches Xf , i.e., x.t I x0/ … Xf , for all
t > 0 and all x0 2 X0. We note that safety is
meaningful also in the absence of control inputs,
in the context of system analysis.

Safety Verification and Safety-Critical
Control

As already mentioned, the literature on safety
analysis for hybrid systems is huge, with
ramifications in Mathematics, Computer Science,
Robotics, etc. In the rest of the note, an attempt
is made to address the challenge of classifying
and briefly surveying the existing approaches.
The following subsection presents perhaps the
major and more natural technique, namely, set
propagation. Next, optimization-based methods
are presented, followed by an exposition of
formal methods, which have received a strong
influence from the Computer Science literature.
The last subsection discusses probabilistic
methods that seem particularly promising at
the era of data-driven systems and massive
computations.

Set Propagation Methods
Safety is connected to non-violation of con-
straints in the state space. Thus, a natural way
of verifying it is to propagate relevant sets, e.g.,
constraint/initial/target sets, across time. This is
called reachability analysis or set propagation.

Reachability analysis, e.g., Aubin et al.
(2011), is strongly related to dynamic pro-
gramming. In control, the connection has been
made obvious and exploited with the model
predictive control (MPC) paradigm and the
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utilization of invariant sets for the enforcement
of recursive feasibility, stability, and optimality
for closed-loop control systems. Depending
on whether one considers the propagation of
dynamics of the system forward or backward in
time, reachability may be utilized for different
objectives, such as computing invariant sets and
designing controllers (Blanchini and Miani 2008,
Sections 5, 6), reaching a target set, verifying
safety from an initial set, or satisfying more
complex temporal specifications and objectives
(Belta et al. 2017). We present below two popular
instances of forward and backward reachability
maps, noting however that several variants exist,
which serve slightly different objectives and
purposes.

Forward Reachability
Forward reachability can be utilized to study
where the trajectories of the system will lie in
the future when starting from some set of initial
conditions of interest. Here, we restrict to systems
with only exogenous inputs w.�/, as it is the
most common case where these mappings are
utilized in the literature. Given an initial set X0,
the approach consists in generating the sequence
fRig (adapted from Doyen et al. 2018, Sec.
30.4.1) with

RiC1 D Ri [ FC .Ri / [ FD.Ri /; (2)

R0 D X0, and

FC .Ri / D fx.t
�I x0/ W .9x0 2 Ri \ C; 9w.t/ 2W W x.t I x0/ 2 C; t 2 Œ0; t�//g;

FD.Ri / D fg.x0;w/ W x0 2 Ri \D;w 2Wg:

If all elements Ri of the generated sequence do
not intersect with the set of unsafe states, i.e.,
Ri \ Xf D ;, then the system is safe.

Backward Reachability
Going backwards in time, we can define the
sequence (adapted from Aubin et al. 2011, Sec
1.2.1.1, Viability Kernel) fCig generated by

CiC1 D Ci \ .BC .Ci / [ BD.Ci //; (3)

with C0 D X n Xf , and

BC .Ci / D
˚
x0 2 C W .9t

� � �; 9u.t/ 2 U;8t 2 Œ0; t�/ W x.t I x0/ 2 C n Xf; x.t�I x0/ 2 Ci /
�
;

BD.Ci / D fx0 2 D W .9u 2 U W g.x0; u;w/ 2 Ci /g:

In the formula above, � is an arbitrary positive
constant, essentially limiting the dwell time for
the continuous-time dynamics. Let us add that it
is assumed in the formula above that the value u
of the controller is valid for any possible value
of w; however one can model different situations,
where, e.g., the controller knows the input noise.
If the limit of the generated sequence exists and is
not empty, then the system is safe within this limit
set, in the sense that all trajectories starting from
it can be controlled such that they do not enter
the unsafe region. Together with answering the

safety problem, a by-product of the sequence is
the establishment of safe, set-valued controllers,
see, e.g., (Tomlin et al. 2003; De Santis et al.
2004). Moreover, many connections to Lyapunov
theory through the notions of invariance and
set contractivity have been identified (Blanchini
and Miani 2008; Belta et al. 2017). We also
remark that in the literature, different notions of
safety/invariance have been developed, depend-
ing on the knowledge of the controller of the
states, outputs, and exogenous inputs. Moreover,
problems closely related to safety, such as the



4 Safety Guarantees for Hybrid Systems

reach-avoid problem, can be addressed by chang-
ing the set C0.

Computations
Reachability analysis produces sequences of
sets generated by recursive updates. Thus, it
is crucial to work with set parameterizations
that can be described in a computer program
with finite memory, and such that all operations
described above are practically implementable.
Polyhedral sets, especially in cases where linear
dynamics and convex constraints are involved,
are particularly appealing, since they are closed
under Minkowski addition, intersection, convex
union, and affine transformation. There is
extensive literature tackling a great deal of
settings involving linear dynamics and polyhedral
sets, including linear parameter varying systems
and switching systems. Nevertheless, even for the
linear-convex case, computational complexity
of the resulting sets can explode, especially
for Minkowski sums, projections, minimal
representations, and conversions between half-
space and vertex representations, see, e.g.,
Fukuda (2004). A number of works deal with
this issue by providing efficient alternatives
using, e.g., zonotopes (Girard 2005), support
function representations, and other classes of
parameterized polytopes/template polyhedra.
On the other hand, semialgebraic sets can also
be employed for reachability analysis, such as
ellipsoids, sublevel sets of SOS polynomials,
or polynomials in the Bernstein representation.
Moreover, one can leverage combinatorial
techniques to reduce computational complexity
in reachability analysis (Athanasopoulos and
Jungers 2018).

Software
A number of fairly robust software solutions
are available, often accompanied by modeling
interfaces that allow easy formulation analysis
and synthesis problems for hybrid systems and
complex specifications. For toolboxes related
to reachability analysis, we mention SpaceEx,
HyPro, CORA, d/dT, and JuliaReach and note
that the MPT3 and PPL toolboxes are suitable for
polyhedral computations.

Lyapunov-Based Optimization Techniques
The development of interior point optimization
methods, enabling the efficient resolution of
linear matrix inequalities (LMIs), has unlocked
a huge literature in control. Linear matrix
inequalities are particular algebraic optimization
problems involving linear functions of the
variables, and these variables can be nonnegative
real numbers or positive definite matrices. In the
2000s, it was realized that the ability to efficiently
solve such optimization problems actually allows
to solve much more general ones, where the
unknown variables are multivariate polynomials
(of a fixed bounded degree), involving linear
functions of these polynomials together with
constraints requiring nonnegativity of these
polynomials. This is the so-called sum-of-squares
(SOS) programming (Parrilo 2000).

This new optimization technique had a great
impact on state-space methods in control: State-
space methods encode the objective function and
the constraints directly in terms of the time, and
of variables in the state space, by opposition
to frequency domain techniques. In view of the
intrinsic nonlinear and nonstandard behavior of
hybrid systems, it is not surprising that such
methods are well-adapted to solve control prob-
lems for hybrid systems (Parrilo 2000; Coogan
and Arcak 2012). Even more, polynomials turn
out to be efficient tools for representing sets of
points in the state space. As a simple example,
if, for some given multivariate polynomial p.x/;
one defines the set

Xp WD fx 2 R
n W p.x/ � 0g;

then one can encode a sufficient condition for a
safety constraint of the type 8x 2 Xp; Ax 2
Xq D fx 2 R

n W q.x/ � 0g in the following
formula:

8x 2 R
n; q.Ax/ � p.x/:

The above formula is LMI-representable, being
composed of linear functions of the polynomials
p; q: By combining such constraints, one can
encode complicated control objectives in large
SOS programs, which are then solved by standard
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LMI solvers (e.g., MOSEK, SeDuMi, or SDPT3).
Last, we should mention the closely related class
of barrier methods; see, e.g., Prajna and Jad-
babaie (2004), Sloth et al. (2012) and Maghenem
and Sanfelice (2019).

Technicalities
Classical results from algebraic geometry imply
that polynomials are universal, in the sense that
they can approximate arbitrarily well any set, at
the price of increasing the degree of the polyno-
mial; see Henrion and Korda (2014) and refer-
ences therein. This directly translates to univer-
sality of the SOS approach for representing sets
in the state space.

It is important to mention that inequalities of
the type 8x; p.x/ � 0 are in fact not efficiently
solvable by LMI solvers. Instead, one classi-
cally proceeds to a SOS relaxation, requiring
the weaker condition that the polynomial can
be expressed as the sum of squares of other
polynomials. This latter condition can be solved
efficiently. Even though this relaxation induces
conservativeness, one can show that by increasing
the degree of the polynomial, the SOS relaxation
is asymptotically non-conservative (Fig. 1).

Interior point methods are relatively efficient
at solving sum-of-squares programs, as they
essentially rely on the Newton method for
convex functions optimization and hence have
a cubic complexity at every step; see Boyd
and Vandenberghe (2004, Section 11.5) for a
detailed analysis. However, one should note
that in practice, they suffer scalability issues
for problems of moderate to large size. Even
more, the size of the SOS program depends on
the number of monomials of the maximal degree
chosen for the unknown polynomials. Since this
number of monomials grows exponentially with
the degree, in practice, one is bound to limit the
degree to a reasonable value (say, from 8 to 14,
depending on the problems considered).

Scalability Improvements
Recent work has focused on addressing the scal-
ability issues. Of particular relevance for hybrid
systems is the path-complete approach which,
rather than increasing the degree of the polyno-

mial, makes use of a combinatorial tool in order
to enhance the representing power of polynomi-
als by limiting their degree to a small number
(Philippe et al. 2019). See Legat et al. (2018)
for an application to safety-critical control of
hybrid systems. Let us also mention the DSOS
approach (Ahmadi and Majumdar 2014) which
restricts SOS problems to particular subfamilies
of polynomials, on which solvers perform better.

Software
The past decade has seen the creation of efficient
and easy-to-use software for encoding polyno-
mial constraints in a high-level language that are
then automatically transformed in LMI programs
and solved. See Gloptipoly3, Jump, cvx, SOS-
TOOLS, MOSEK, SeDuMi, and SDPT3, along
with the parsers JumP and YALMIP.

Formal Methods and Abstraction
In view of the difficulty and criticality of
safety problems, formal approaches have been
proposed, influenced by the Computer Science
and Model Checking communities. In these
approaches, one formulates the safety problem
in terms of rigorous predicates in a well-
defined syntax corresponding to a particular
logic. Typically, first-order temporal logic
(Pnueli 1977) is well suited to formulate safety
problems for dynamical systems, in particular
hybrid systems. Then one needs to solve the
logical equations formulated to verify safety of
a given system or to construct an appropriate
controller. To solve such complicated equations,
one typically proceeds by abstraction, that is, by
partitioning the state space into cells and the set
of admissible inputs into small intervals, ending
up with a finite-state automaton representing
the dynamical system. Relying on standard
continuity assumptions, many classical control
problems (reachability, safety, reference tracking)
can then be solved in a finite time, provided
that the discrete abstraction satisfies simulation
properties with respect to the actual system. The
simulation property ensures that the behavior
of the discrete, abstract system is a truthful
representation of the original system. See Alur
et al. (2000) for precise definitions. Thanks
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Safety Guarantees for Hybrid Systems, Fig. 1
Example of the increasing performance of the SOS
technique for a safe set computation problem, when
one increases the degree of the unknown polynomial (in
yellow for quadratic, orange for quartic, red for sextic,

and blue for octic) (Legat et al. 2018). The problem is
concerned with finding the range of safe speeds for a
truck with trailers. The pictures are projections of the safe
set in the four-dimensional state space, onto coordinate
planes

to the finiteness of the obtained abstraction,
the above problems reduce to a simple graph-
theoretic one. For example, one can just find (or
optimize) a path in the obtained automaton in
order to solve the control problem. This confers
a great advantage to the method in theory. See
Haghverdi et al. (2005) and Alur (2011) for good
introductions to formal methods.

The formal approach as applied until now suf-
fers from important scalability problems. Indeed,
a straightforward discretization of the state space
in small cells inevitably leads to a huge set of
nodes/edges in the automaton. More precisely,
the size of the discretization step must be small,
because the method relies on a local property,
namely, continuity; and for a fixed discretization
step, the number of cells grows exponentially
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with the dimension of the state space. For this
reason, except for systems of very low dimension
(3 or 4), the approach does not work in prac-
tice. Nevertheless, these techniques are consid-
ered as among the most promising opportunities
for complex problems on hybrid systems and are
at the center of an intense research effort for the
moment.

Software
Several software solutions are being developed
and constantly improved, as, for instance, Pes-
soa, CoSyMa, Tulip, SCOTS, Hytech, HSolver,
Flow*, PHAVer, and PHAVerLite for general sys-
tems, Uppaal, Kronos for timed-automata ori-
ented tools, and Stochy or Prism for probabilistic
hybrid systems.

Probabilistic Techniques
Many models of hybrid systems are probabilistic.
The techniques above can be adapted to such
models, while specialized techniques have also
been developed for the analysis of probabilistic
hybrid systems; see Katoen (2016).

This subsection is not about such systems.
Here we refer to probabilistic techniques that
provide safety guarantees on either deterministic
or probabilistic hybrid systems. Such techniques
have recently received increasing attention as
alternatives to the aforementioned methods,
and the reason is obvious; due to the extreme
computational cost, one may want to resort
to probabilistic, Monte Carlo-like approaches
to tackle the safety analysis problem while
controlling at the same time the computational
cost. In the community of systems and control,
probabilistic techniques like the scenario
approach (Calafiore and Campi 2006) are taking
increasing importance. To our knowledge, the
application of such approaches to hybrid systems
has remained embryonic until now, but we
expect a fast-growing body of work along these
lines in the hybrid systems literature in the
forthcoming years. Among such attempts, let us
mention (Kenanian et al. 2019), which provides
theoretical guarantees on probabilistic stability
analysis for the particular case of switching
systems, and (Julius and Pappas 2008) which

makes use of stochastic bisimulation functions
to provide a partial verification for more general
hybrid systems.

In view of the intrinsic difficulty of coming
with firm safety guarantees with probabilistic
techniques, the state of the art of software imple-
mentation is less mature too. Let us mention S-
Taliro which uses several randomized techniques
for critical trajectory generation.

Summary and Future Directions

The problem of providing safety guarantees on
a control system, called verification or model-
checking in the Computer Science literature, is a
paradigmatic problem that has been of paramount
importance in applications for a long time. Today,
the complexification of (data-driven, embedded,
networked, etc.) control systems to hybrid sys-
tems makes it a challenge more than ever. It also
makes it more important than ever, in view of
the many emerging control systems interacting
with our daily lives. In view of the theoretical
computational barriers (undecidability, NP hard-
ness, and others), one cannot hope that a single
off-the-shelf technique could solve the problem,
and as of today, ad hoc techniques have to be
developed in order to cope with, and leverage, the
specificities of the particular control problem at
stake. Nevertheless, engineers have at their dis-
posal several sound theoretical approaches, with
solid software toolboxes, which can provide eas-
ily implementable solutions on simple models.
We believe that in the future, these solutions will
keep improving in performance and generality, as
testified by the constant improvement on the state
of the art over the past decades.

Cross-References

�Discrete Event Systems and Hybrid Systems,
Connections Between

� Feedback Control of Hybrid Dynamical Sys-
tems

� Stability Theory for Hybrid Dynamical Sys-
tems
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