
BATCH LEARNING SDDP FOR LONG-
TERM HYDROTHERMAL PLANNING

Daniel Ávila, Anthony Papavasiliou, Nils
Löhndorf

REPRINT | 3221

CORE
Voie du Roman Pays 34, L1.03.01

B-1348 Louvain-la-Neuve

Tel (32 10) 47 43 04

Email:lidam-library@uclouvain.be

https://uclouvain.be/en/research-institutes/lidam/core/core-reprints.html

https://uclouvain.be/en/research-institutes/lidam/core/core-reprints.html

1

Batch Learning SDDP for Long-Term Hydrothermal
Planning

Daniel Ávila, Anthony Papavasiliou, Senior Member, IEEE, and Nils Löhndorf

Abstract—We consider the stochastic dual dynamic program-
ming (SDDP) algorithm - a widely employed algorithm applied
to multistage stochastic programming - and propose a variant
using experience replay - a batch learning technique from
reinforcement learning. To connect SDDP with reinforcement
learning, we cast SDDP as a Q-learning algorithm and describe
its application in both risk-neutral and risk-averse settings. We
demonstrate the superiority of the algorithm over conventional
SDDP by benchmarking it against PSR’s SDDP software using a
large-scale instance of the long-term planning problem of inter-
connected hydropower plants in Colombia. We find that SDDP
with batch learning is able to produce tighter optimality gaps
in a shorter amount of time than conventional SDDP. We also
find that batch learning improves the parallel efficiency of SDDP
backward passes.

Index Terms—Dynamic programming, parallel algorithms,
stochastic optimal control, hydroelectric-thermal power gener-
ation, SDDP

I. INTRODUCTION

STOCHASTIC dual dynamic programming (SDDP) is a
popular technique for optimizing power system opera-

tions. Industrial applications include: long-term hydro-thermal
planning [1]–[5], it application to power systems of various
countries, e.g., Brazil [6] and Norway [7]; risk management in
hydro-thermal scheduling [8]; emission constraints in hydro-
thermal planning [9]; short-term dispatch [10]; demand re-
sponse [11]; optimal power flow [12]; gas storage valuation
[13]; hydropower expansion planning [14]; and dairy farm
operations [15]. While SDDP has exhibited superior perfor-
mance in solving large-scale instances of difficult optimization
problems, the algorithm often also fails to converge due to
computational limitations, e.g., [16], despite being able to
converge theoretically [17]. Failure to converge is a problem
of practical relevance in short-term planning, where solutions
need to be available within a certain period in time. Parallel
computing has been proposed to circumvent this problem [4],
[18]–[20], as it is has shown a lot of promise for solving unit
commitment problems [21], but as shown in [22], paralleliza-
tion does not necessarily overcome the convergence challenges
faced by the SDDP algorithm.

We propose to use experience replay - a batch learning
technique that is popular within the reinforcement learning
framework - to improve SDDP convergence as well as its
parallel efficiency. We show how batch learning makes better
use of parallel computations than conventional SDDP, and
we compare it with a commercial implementation of SDDP
- the PSR SDDP algorithm, on a long-term hydro-thermal
scheduling. We argue that our findings open the door for a

number of relevant applications in short-term planning, which
are to be explored further in future work.

A. SDDP Challenges

Stochastic dual dynamic programming (SDDP) is a scal-
able algorithm for solving multistage stochastic programming
problems. Since the seminal work of [1], SDDP has captivated
the interest of the stochastic programming community and
achieved widespread adoption in several industrial applications
[2]–[5], [13], [15].

The SDDP algorithm works by finding supporting hyper-
planes that provide tight outer approximations of the value
functions of the dynamic programming formulation in regions
of the state space that can be reached by the optimal policy.
While the gap between the simulated cost from following the
incumbent policy and the approximated cost-to-go value closes
quickly for many problems, there exist a number of counter-
examples where convergence stalls and the gap does not close
in a reasonable amount of time. For example, gaps of nearly
22% are reported for a widely studied instance of the long-
term planning problem of the Brazilian power system [16].

In order to speed up convergence, several approaches have
been proposed in the extant literature. Such methods include
cut selection techniques for removing redundant hyperplanes
[5], [23]–[25], regularization techniques for selecting better
trial points during the forward pass [26], forward sampling
schemes that exploit problem structure [27], [28], as well
as parallel computing [4], [18]–[20]. While all of these ap-
proaches may improve the convergence of SDDP to some
extent, their individual performance is never compared to
an independent benchmark. We address this shortcoming by
comparing our implementation against PSR’s SDDP1 imple-
mentation on a challenging instance of the long-term hydro-
thermal planning problem.

B. Parallel computing

Parallel schemes are a natural choice for countering the
computational complexity of SDDP [4]. The extant literature
mostly discusses parallel Monte Carlo sampling during the
forward and backward passes of the algorithm [4], [18], [19],
[30]. This view is somewhat limited, as we argue in the present
paper. Experimental evidence suggests [3], [22], [23] that an
obvious downside of increasing the number of parallel forward
passes is that it often leads to an accumulation of trial points

1PSR is a consulting firm based in Rio de Janeiro that has pioneered the
commercialization of the SDDP algorithm for hydro-thermal planning [29]

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

that are similar, which in turn leads to an accumulation of
redundant cuts that hardly improve the approximation but
severely slow down the convergence of the algorithm.

Furthermore, past research has shown that different tech-
niques tailored for exploiting synchronous and asynchronous
parallel computing present a behaviour that is dependent on
the problem and may not hold for long runs of the algorithms
[20], [22]. These results have allowed us to identify that
forward exploration is not sufficient for creating a highly
parallelizable algorithm, but that the focus should rather be on
the backward pass. This motivates the idea of being accurate
during backward passes, a notion which has connections
with certain ideas originating from the reinforcement learning
framework.

C. Batch learning
Reinforcement learning (RL) is an area of machine learning

that aims at training computational (robotic) agents in order
to enable them to reach decisions in a dynamic and uncertain
environment, so that these agents can maximize their rewards.

Reinforcement learning distinguishes between model-free
and model-based methods. In model-free RL, the objective
is to train an agent by observing its interaction with an
environment for which no model exists. In model-based RL,
the objective is to train an agent that interacts with a model
of the environment. Since stochastic programming provides us
with a model of the environment, we focus on model-based
methods.

Conventional RL algorithms apply a sequential strategy that
updates a decision policy as soon as new information arrives.
It has been found that it can be better to delay and batch
these updates so as to avoid costly matrix multiplications when
updating gradients or simply to reduce noise [31]. This so-
called batch learning has emerged as an attractive alternative
that often outperforms other reinforcement algorithms [31]–
[33].

Experience replay [32], a batch learning technique, resam-
ples states and actions that have been visited in previous
iterations, thereby replacing the old belief regarding expected
cost associated with those state-action pairs with new infor-
mation. In this way, the algorithm decreases the delay to
revisit previously explored states, which may have a significant
impact on the decision policy [32], [33]. Googles DeepMind
algorithm uses experience replay in combination with Q-
learning as a strategy for obtaining human-level performance
in a series of Atari games [34].

We propose to use batch learning and experience replay
in order to speed up learning and thereby the convergence
of SDDP. The proposed algorithm applies experience replay
during the backward pass, where experiences correspond to the
trial points of previous iterations. The updates of these trial
points can be batched and parallelized during the backward
pass. We address the increase in computational burden due to
the accumulation of trial points with parallel computing.

D. Organization & Contributions
In this work, (i) we introduce a novel variant of SDDP,

which we refer to as Batch Learning SDDP (BL-SDDP) and

show its connection to reinforcement learning (RL); (ii) we
compare the algorithm to a widely used commercial SDDP
implementation distributed by PSR Inc.; (iii) we demonstrate
its suitability for parallel computing; (iv) we test its perfor-
mance in both, risk neutral and averse settings.

In Section II, we formulate multistage stochastic program-
ming problems as Markov decision processes (MDPs). We
cast SDDP as a reinforcement learning algorithm, similar
to Q-learning. In Section III, we introduce BL-SDDP. BL-
SDDP uses experience replay, a batch learning technique from
reinforcement learning, as a novel approach for accelerat-
ing the convergence of the algorithm. We describe a novel
parallel scheme for BL-SDDP in Section IV. In Section V,
we benchmark the new algorithm, not only against our own
implementation of SDDP, but also against the commercial PSR
SDDP software. The benchmark is performed against a high-
dimensional, real-world instance of a hydro-thermal planning
problem.

II. PROBLEM FORMULATION

The SDDP algorithm is guaranteed to converge finitely [17].
Nevertheless, empirically SDDP has been observed to struggle
in certain (difficult) problems. This can be related to how
SDDP constructs approximations of the value function. To
cope with this, we resort to batch learning through experience
replay, a technique from the reinforcement learning frame-
work, which has demonstrated to improve the learning process.

In this section, we discuss the connection between SDDP
and reinforcement learning, so as to motivate our algorithmic
developments. The section is divided into three subsections.
The first subsection provides a brief introduction to Markov
Decision Processes (MDP). The second subsection provides
a link between multistage stochastic programs and MDP. In
particular, in lemma 2.1, we establish that multistage stochastic
programs which underlie SDDP can be cast as MDPs, which in
turn underlie reinforcement learning. Last subsection presents
Lemma 2.2, which demonstrates that SDDP is a reinforcement
learning algorithm. This development allows us to access a
wealth of algorithms from reinforcement learning that have
delivered impressive performance in applications outside of
power systems optimization, thereby bringing these ideas to
the power systems community.

A. Markov decision processes

A Markov decision processes (MDP) is defined by the tuple
(St,At, Ct, P), where St is the set of states, At is the set
of actions, Ct : St × At → R is the reward function of an
agent, and P (st+1|at, st) is the probability of transitioning to
state st+1 ∈ St if we are in state st ∈ St and select action
at ∈ A(st). The set A(st) indicates the set of feasible actions
when in state st. A policy π = (π1, π1, . . .) is a vector of
functions, where each function maps states to actions2, namely
πt : St → At. We focus on finite horizon models with a
time horizon T . Further details on the definition of MDPs can

2The literature presents more general policies, where a state is mapped to a
probability measure over the set of actions. Instead, we focus on deterministic
policies in this paper.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

be found in [35]–[37]. The objective in MDPs is to obtain
a policy π ∈ Π that minimizes the expected cost over the
decision-making horizon: minπ∈Π E

[∑T
t=1 Ct(s

π
t , a

π
t)
]
.

B. Multistage stochastic programming and MDP

We motivate the connections between multistage stochastic
linear programs and MDPs using the familiar example of a
two-stage hydrothermal scheduling problem.

min C · g1 + VOLL · ls1 + E[C · g2(ξ2) + VOLL · ls2(ξ2)]

s.t. q1 + g1 + ls1 = L1

x1 = X0 +A1 − q1

q2(ξ2) + g2(ξ2) + ls2(ξ2) = L2

x2(ξ2) = x1 +A2(ξ2)− q2(ξ2)

gt(ξt) ≤ Ḡ
xt(ξt) ≤ X̄
gt(ξt), xt(ξt), qt(ξt) ≥ 0, for all ξt ∈ Ωt

Here, gt is the power generated by thermal units at a marginal
cost C. The thermal generators can produce up to Ḡ units of
power per period. The system can shed load at a high cost
V OLL, and lst is the amount of power that is curtailed from
consumers. The variable qt is the power generated from hydro
units, generated at zero cost. The variable xt represents the
amount of available energy in the hydro reservoir at the end
of period t. The hydro reservoir can store a maximum amount
X̄ of energy, and has as initial condition X0. The system is
subject to uncertain natural inflows represented by At. We
assume that there are finitely many outcomes Ωt. Note that
there is a single realization Ω1 = {ξ1} in the first stage. Using
standard MDP notation, we can write the problem as follows.
• The set of states are defined as

S1 = {(X0, ξ1)}

S2 =
{

(x1, ξ2) : exists q1, g1 s.t. x1 = X0 +A1 − q1

q1 + g1 + ls1 = L1

g1 ≤ Ḡ, x1 ≤ X̄, g1, x1, q1 ≥ 0, ξ2 ∈ Ω2

}
• The actions for a state st = (xt−1, ξt) is defined as

At(st) = {(xt, qt, gt, lt) : qt + gt + lst = Lt

xt = xt−1 +At(ξt)− qt
gt ≤ Ḡ, xt ≤ X̄, gt, xt, qt ≥ 0}

We use at to refer to an action.
• The reward function is given by

Ct(st, at) = C · g1 + V OLL · lst
• The probability of transitioning to state s2 while being in
state s1 = (X0, ξ1) and selecting action at = (xt, qt, gt, lt) is
defined as:

P (st+1|st, at) =

{
P (ξ2|ξ1) s2 = (xt, ξt+1)

0 otherwise

These definitions allow us to translate the multistage stochastic
program into the MDP framework.

Now let us consider the general case of a multistage
stochastic linear program over T stages, given by:

min
B1x0+A1x1+D1y1=b1

x1,y1≥0

uT1 x1 + vT1 y1 + E

[

min
B2x1+A2x2+D2y2=b2

x2≥0

uT2 x2 + vT2 y2 + E

[
· · ·+

E

[
min

BT xT−1+AT xT +DT yT =bT
xT≥0

uTTxT + vTT yT

]]]
(MSP-P)

For each stage, we have vectors ut, vt, bt as well as matrices
Bt, At, Dt that constitute the stochastic data process ξt =
(ut, vt, bt, Bt, At, Dt). We assume that u1, v1, b1, B1, A1, C1

are deterministic, and that we are given an initial condition
x0. To avoid notational clutter, we drop the dependence of
Bt on ωt that indicates stochasticity of the data process.
Let us assume that, at each stage, there are finitely many
outcomes Ωt, and that the data process follows a Markov
chain. We therefore consider that we can define transition
matrices P (ξt+1|ξt).

Following the standard MDP description [37], we cast the
MSP as an MDP by defining a tuple (St,At, Ct, P) in the
following way. To simplify the description we define the
following feasibility set:

Feast(xt−1, ξt) = {(xt, yt) ∈ Rn : ∃ xt, yt ≥ 0,

Bt(ξt)xt−1 +At(ξt)xt +Dt(ξt)yt = bt(ξt)}

• States: The set of states is defined recursively as:

S1 = {(x0, ξ1)}

St =
{

(xt−1, ξt) : ξt ∈ Ωt and (xt−1, yt−1) ∈

Feast−1(xt−2, ξt−1) for some (xt−2, ξt−1) ∈ St−1

}
• Actions: For each state st = (xt−1, ξt), the feasible actions
are defined as At(st) = Feast(xt−1, ξt). To improve readabil-
ity, we define at = (xt, yt) to refer to an action.
• Reward: The reward function is given by Ct(st, at) =
ut(ξt)

Txt + vt(ξt)
T yt.

• Dynamics: The probability of transitioning to state st+1

while being in state st = (xt−1, ξt) and selecting action at =
(xt, yt) is as follows:

P (st+1|st, at) =

{
P (ξt+1|ξt) st+1 = (xt, ξt+1)

0 otherwise

Furthermore, the state transition equation can be expressed as
(xt, ξt+1) = ft(st, at, ξt+1).

Remark II.1. Note that problem MSP-P is a linear program.
Consequently, the optimal action is at the vertex of the
feasibility set. Therefore, we can always restrict the actions
to such a set, and have finitely many actions and states.

With these definitions, we can pose the MDP problem as
one of finding a policy that minimizes the expected reward,
minπ∈Π E

[∑T
t=1 Ct(s

π
t , a

π
t)
]
. Let us refer to this problem,

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

with the presented choice of (St,At, Ct, P), as MDP-P. To
link reinforcement learning with stochastic dual dynamic pro-
gramming, we establish the following relationship.

Lemma II.2. The problems MDP-P and MSP-P are equiva-
lent.

Proof. Let us consider a feasible solution of problem MSP-P.
Furthermore, we can ask such a solution to be a vertex of
the polyhedra defining the linear programs. Then, for every
t and ξt ∈ Ωt, we have feasible values xt(ξt), yt(ξt) and an
objective cost

uT1 x1 +v1y1 +E
[
uT2 x2 +vT2 y2 +E

[
· · ·+E

[
uTTxT +vTT yT

]]]
Note that we can define a policy πt such that for st =
(xt−1(ξt−1), ξt) we have πt(st) = (xt(ξt), yt(ξt)). Moreover,
under such a policy,

E
[T∑
t=1

Ct(s
π
t , a

π
t)
]

= uT1 x1 + v1y1 + E
[
uT2 x2 + vT2 y2+

E
[
· · ·+ E

[
uTTxT + vTT yT

]]]
Therefore, every vertex solution of MSP-P gives a policy π
which, when evaluated in MDP-P, yields the same cost. Thus,
MDP-P ≤MSP-P. Similarly, given any policy π, we can define
a feasible solution for MSP-P which, when evaluated, yields
the same result as when evaluating the policy, and so MDP-P
≥ MSP-P.

C. Stochastic dual dynamic programming as a reinforcement
learning algorithm

The optimal expected reward of problem MDP-P is often
calculated with the help of the value functions of the problem,
defined as: V πt (st) = E

[∑T
n=t Cn(sπn, a

π
n)
∣∣∣st]. The value

functions, after applying an expectation operator, are denoted
as Vπt+1(st, at) = E

[
V πt+1(st+1)|st, at

]
. We further define Q-

factors as

Qπt (st, at) = E
[T∑
n=t

Cn(sπn, a
π
n)
∣∣∣st, at]

= Ct(st, at) + Vπt+1(st, at)

The last equality allows us to express the Q-factors in terms
of the value functions. As we describe subsequently, the SDDP
algorithm proceeds as an iterative procedure to approximate
the Q-factors, using for this purpose supporting hyperplanes in
order to approximate V∗t+1(st, at) and then using the Bellman
optimality equation in order to approximate the value functions
of preceding stages.

As discussed in [16], the optimal expected value functions
V∗t+1(st, at) (which correspond to the expected cost-to-go
functions in stochastic programming terminology) can be
outer-approximated by a piecewise linear function approxima-
tion Vt+1(st, at). Such an approximation is obtained through
supporting hyperplanes H, commonly referred to as cuts.
These cuts are computed by calculating the subgradient of
the expected value function.

Following a similar structure as double-pass algorithms
[35], we can describe SDDP as a reinforcement learning
algorithm that can be used to tackle problem MDP-P.

Lemma II.3. SDDP is a reinforcement learning algorithm
used to solve MDP-P.

Proof. The Q-factors satisfy

Q∗t (st, at) = Ct(st, at) + V∗t+1(st, at)

Moreover, V∗t+1 can be approximated by building a sup-
porting hyperplane around xnt [16], where (xnt , y

n
t) = ant

is a trial action. Thus, we can consider an update rule
that adds a supporting hyperplane around xnt to the current
approximation of the value function, Vt+1, and updates the
Q-factor as Qt(st, at) = Ct(st, at) + Vt+1(st, at). Building
such a supporting hyperplane requires a model-based scheme.
A detailed exposition on how the supporting hyperplane is
built can be found in [16]. Let us express this update rule
as Qt = U(at, Qt+1). We can now formulate the SDDP
algorithm following a similar structure as the double-pass
algorithms:

Algorithm 1 SDDP

INPUT: Provide an initialization of the Q-factors Q0
t (st, at)

for st ∈ St, at ∈ At(st) and t = 1, · · · , T .

for n = 1, · · · , N
1) Forward Pass: Initialize at state s1. for t = 1, · · · , T

(1.1) Find the decision using the current Q-factors.

ant ∈ arg min
at∈X (snt)

Qn−1
t (snt , at)

(1.2) Take action ant and transition to state snt+1.
2) Backward Pass: for t = T, · · · , 1

(2.1) Update Qn−1
t using the update rule.

Qnt = Ut(a
n
t , Q

n
t+1)

return QNt estimates for t = 1, · · ·T

III. BATCH LEARNING SDDP (BL-SDDP)

The motivation of Batch Learning SDDP is to exploit par-
allel computing for proposing a novel and effective approach
to perform backward passes, aiming at back-propagating the
information accurately across stages.

The relevance of the backward pass can be understood
as follows. Poor value function approximations in the last
stage, which SDDP will build at early steps, will produce
even looser cuts for the previous stage, with approximation
errors increasing as we move backwards in time stages. The
BL-SDDP algorithm addresses this drawback by allowing
previously visited trial actions or experiences to have access
to the value function updates carried out in later stages. The
idea of re-visiting previous experiences, a technique known as
experience replay, has gained popularity in the reinforcement

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

learning literature due to its success in accelerating learning
speed [32], [34], [38].

This section presents a novel application of the experience
replay framework in the context of SDDP as a corollary of the
results presented in section 2. The first subsection presents
the experience replay scheme, and the second subsection
introduces our novel batch learning SDDP algorithm.

A. Experience replay

The experience replay framework, introduced first by [32],
aims to update Qt using previously computed states and
actions, commonly referred to as experiences. The motivation
behind this is that updating a state-action pair (st, at) at stage
t may affect some preceding states st−1. Nevertheless, this in-
formation will not back-propagate until state st−1 is re-visited.
Furthermore, states preceding st−1 will need to be re-visited
after the update of st−1 before being able to see the update car-
ried out in the upper layers. Therefore, the back-propagation
of information is not possible unless states are re-visited.
Given an arbitrary update rule Qt = Ut(st, at, st+1, Qt+1),
the experience replay algorithm, which has been adapted for
the finite horizon setting, can be described as follows [32],
[34], [38].

Algorithm 2 Experience Replay

INPUT: Initialization of the Q-factors Q0
t (st, at) for st ∈ St,

at ∈ At(st) and t = 1, · · · , T . For each stage, provide a
set of experiences Mt = {(snt , ant , snt+1) : n = 1, . . . , N}
and let K be the batch size K ≤ |Mt|.

for t = T, · · · , 1
1) Retrieve a subset {(skt , akt , skt+1) : k = 1, . . . ,K} ⊂

Mt.
2) for k = 1, · · · ,K update Q0

t using the update rule.

Q1
t = Ut(s

k
t , a

k
t , s

k
t+1, Q

1
t+1)

return Q1
t estimates for t = 1, · · ·T

Note that this process can be repeated iteratively. That
is to say, a set of experiences is collected, the experience
replay algorithm is applied, afterwards more experiences are
collected, and the experience replay algorithm is applied again.
In the literature, when K equals the total set of experiences,
the method is usually referred to as a full-batch update,
whereas when K is less than the total size it is referred to
as a mini-batch update.

B. BL-SDDP description

As presented in section II-C, the SDDP algorithm can
be described as a type of double-pass algorithm, of the
sort that can be encountered in the reinforcement learning
literature (lemma II.3). As a consequence, we can apply known
techniques for MDP algorithms, such as the experience replay
scheme. This leads to the Batch Learning SDDP algorithm
described as follows.

Algorithm 3 BL-SDDP

INPUT: Initialization of the Q-factors Q0
t (st, at) for st ∈ St,

at ∈ At(st) and t = 1, · · · , T . Let K be the batch size,
Z be the number of collected experiences before applying
experience replay. Let M = ∅ be the set of experiences.

for n = 1, · · · , N
1) Apply SDDP, collecting up to Z experiences, and add

them to the replay memory M .
2) Consider a batch of K experiences of M . Apply

experience replay on the K experiences.
return Q1

t estimates for t = 1, · · ·T

Note that, as we are using the update rule based on
supporting hyperplanes, the replay memory simply requires
M = {ant : n = 1, . . . , N}. The proposed scheme can also be
seen as an update of cuts, which is carried out for a batch of
K cuts every Z SDDP iterations. Note that the procedure can
be combined with other schemes. For instance, during step 1
the forward sampling procedure could be changed to the one
presented in [27], [28] in order to adjust the sampling to the
problem structure.

The BL-SDDP algorithm can be described using the flow
chart shown in Fig. 1. The algorithm commences by perform-
ing usual SDDP iterations, collecting the trial actions obtained
during the forward passes. These trial actions are added to the
replay memory. The procedure continues until Z new trial
actions are added to the replay memory. Next we proceed to
the experience replay scheme. This step receives as an input
the replay memory, which is a collection of trial actions, and
builds a cut for a batch of these trial actions. As an output of
this step, we obtain cuts around a batch of trial actions, which
can then be used as an input for SDDP.

Relative to standard SDDP, the improved performance of
BL-SDDP stems from the fact that it approximates the value
functions more diligently in the backward pass. It thus pre-
vents the back-propagation of approximation errors of value
functions at later stages of the problem from “contaminating”
the approximations of value functions at earlier stages of the
algorithm. This comes at the cost of increased computational
effort at each backward pass relative to standard SDDP. We
propose resorting to parallel computing in order to cope with
this increased computational burden, and thus to combine the
most appealing attributes of experience replay and SDDP into
a single and highly parallelizable algorithmic procedure.

IV. SDDP PARALLELIZATION STRATEGIES

The parallel SDDP literature presents parallelization
schemes that are mostly focused on increasing the number of
Monte Carlo forward samples and distributing these samples
among the available processors [4], [18], [19], [30]. Neverthe-
less, these strategies may fail to scale properly as the number
of Monte Carlo samples increases [3], [22], [23].

A. Standard SDDP parallelization
The common SDDP parallelization framework [4], [18],

[19], [30] can be described as follows:

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

Fig. 1. Flow chart describing the BL-SDDP scheme. The algorithm com-
mences by performing usual SDDP iterations, until Z trial actions or experi-
ences are collected. A batch of K trial actions is selected and the cuts around
these trial actions are updated.

• Forward pass: The forward pass consists of N Monte
Carlo samples. Each processor computes a different
sample, thereby producing trial points xn1 , · · · , xnT , for
n = 1, · · · , N .

• Backward pass: At stage t, the n-th processor generates
a cut for the expected value functions of stage t − 1 at
point xnt−1.

In Fig. 2 we depict this procedure graphically over a lattice.
The x-axis represents the elapsed computing time. In the
forward pass the red CPU draws a sample implied by the
lattice distribution. The red CPU then proceeds to solve the
node problems and thus produces trial actions. The red CPU
then proceeds to the backward pass. During the pass, the cuts
are built around the trial actions found by the red CPU. The
blue CPU follows a similar sequence of steps.

The communication between processors in this scheme has

Fig. 2. Standard parallel SDDP Scheme. The forward pass consists of several
sample paths, which are distributed among the available processors. The
backward pass distributes the trial points that are obtained in the forward
pass among the processors.

commonly been synchronous, and is discussed in a number of
publications [1], [4], [18]–[20]. Synchronization is included
at each stage of the backward pass. Thus, at the end of each
stage the cuts are shared among the processors.

The literature has proposed certain variants in the communi-
cation between processors. In [19] the authors present a relax-
ation of the synchronization points, whereby a processor waits
for only a subset of processors before proceeding with the next
stage of the backward pass. The authors describe the benefits
of their proposal relative to a fully synchronous version. In
[30] the authors propose an asynchronous version, whereby
a processor does not wait for other processors to compute
a cut before proceeding to the next stage in the backward
pass. Nevertheless, the advantages of such an approach are
not clearly demonstrated. As past research has shown, different
choices of Monte Carlo sampling may produce different results
in the performance of the algorithm [3], [23]. Moreover, as
observed by [20], an increase in Monte Carlo samples has the
disadvantage of increasing the workload of the problem. At
each iteration, the algorithm requires computing more samples,
thereby resulting in instances where more CPUs imply a
greater workload.

The parallelization strategy described in [20] differs notably
from the aforementioned parallel schemes, which are based
on increasing the Monte Carlo samples in order to exploit
parallelism. In [20], the authors propose a scheme whereby a
processor is attached to a stage and builds cuts for the given
stage. Thus, there is no actual backward pass. Instead, all
the stages of the backward pass are calculated simultaneously.
The authors report advantages relative to the standard parallel
SDDP scheme for certain instances. Other instances present a
similar behaviour to the standard SDDP algorithm.

As the parallel scheme described in Fig. 2 is the most
commonly adopted strategy for parallelizing SDDP, we use
it as a benchmark for the parallel strategy that we develop in
the next subsection.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Fig. 3. Parallelization of the BL-SDDP algorithm. The SDDP iterations are
parallelized by considering a small number of samples in the forward pass,
which are then distributed among the available processors. In the backward
pass, the problems at each stage are distributed among the processors.

B. Parallelization of BL-SDDP

We propose a novel parallelization scheme for SDDP based
on the BL-SDDP algorithm that we propose in section III. The
developed BL-SDDP algorithm is divided into two parts. The
first part is a common SDDP run. The second part employs
the experience replay framework. We propose a synchronous
parallel computing strategy for each one of these parts.
• SDDP parallelization. As we have discussed, the stan-
dard parallelization strategy for SDDP can result in inferior
performance. In order to avoid a possible deterioration in
performance, our proposed parallelization proceeds by fixing a
small number of samples in the forward pass. We illustrate the
parallelization strategy through the example depicted in Fig.
3. The forward pass consists of 2 samples. Each processor
computes one sample. Note that the blue CPU remains idle at
this point. There is a synchronization point at the end of the
forward pass. During the backward pass, at every stage, there
are 6 problems, since there are 2 samples and 3 nodes per stage
in the lattice. These 6 problems are then distributed among the
available processors. Once the problems of the stage have been
computed, the processors synchronize, the cuts are built, and
the obtained cuts are shared among the available processors.
Note that, as presented in the picture, the scheme has several
synchronization points.
• BL parallelization. Let us assume that the replay memory
is given by Mt = {ant : n = 1, . . . , N} where ant = (xnt , y

n
t)

is an action. Let us introduce the parallelization through
the example shown in Fig. 4. Let us assume we have a
batch of size 5. The algorithm starts by selecting a batch
of 5 experiences (trial actions), for each stage, among the
collected experiences in the replay memory. These selected
experiences are distributed among the available processors.
Then, proceeding backwards in time, each processor updates
the Q-factors around the corresponding actions. That is to say,
each processor builds supporting hyperplanes for the expected
value functions around the experiences that it receives. Note
that, at the end of each stage, the processors synchronize
in order to receive the cuts obtained by other processors.
This procedure naturally scales up with the introduction of

Fig. 4. Parallelization of the BL-SDDP algorithm. The BL steps are
parallelized by distributing the trial actions of the replay memory among
the available processors. The processors update the cuts around those trial
actions. .

additional CPUs, since additional processors imply that each
processor will have a smaller set of experiences.

V. CASE STUDIES

We carry out computational experiments over a realistic
instance of a long-term planning problem for a network of
hydropower plants in Colombia. We further analyze the impact
of the methodology on an instance of long-term hydro-thermal
planning from Brazil that is well-know for its difficulty. Our
experimental results can be summarized as follows: (i) The
BL-SDDP algorithm is able to produce tighter gaps in less
time, compared to the PSR SDDP commercial implementation.
(ii) The BL-SDDP parallel scheme is better suited for parallel
computing, and responds more favorably to an increase in
parallel computing capacity than standard SDDP. (iii) The su-
perior performance of BL-SDDP can be observed in both risk-
neutral and risk-averse formulations of multistage stochastic
programming.

We proceed by briefly introducing the test cases analyzed
in our paper. The SDDP literature has focused extensively
on hydrothermal scheduling problems due to their practical
relevance [1], [4], [16], [23], [39]. The objective of the
problem is to determine optimal storage levels for the hydro
reservoirs of a power system under inflow uncertainty, while
respecting operational constraints and satisfying demand, in
such a way that the total expected operational costs of the
system are minimized. The mathematical description of the
problem can be found in the Appendix.

The first considered test case is an instance of the Colom-
bian power system that has been provided by PSR. The case
study comprises 32 thermal plants and 42 hydro plants, 25

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

of which have storage capacity. The case study considers a
river network that consists of a 54-dimensional inflow vector.
Since transmission network data was not available to us, it
is not considered. The instance considers long-term planning
and exhibits a time horizon of 10 years and monthly steps, i.e.,
120 stages in total. Inflow uncertainty is modeled using PSR’s
SDDP software that fits a periodic autoregressive (PAR) model
to historical inflow data. We follow the state space expansion
discussed in [16] who propose to add equality constraints into
the problem. Historical inflow data from 1937 to 2019 is used
to calibrate a PAR(1) model. This inflow model is then used
in PSR’s SDDP model as well as our own implementations,
so as to arrive to a meaningful comparison. Uncertainty is
represented by drawing a sample of 100 realizations of the
error terms of the PAR model. The result is a high-dimensional
multi-stage stochastic program. The test case is analyzed in
subsections A to D.

The introduction of a transmission network increases the
complexity of the problem. Therefore, we consider an addi-
tional test case, described in [16], which includes a trans-
mission network. The case study considers an instance of
the Brazilian power system, where the reservoirs have been
aggregated into equivalent energy reservoirs [40]. The instance
has 4 energy equivalent reservoirs. The transmission network
is formulated as a transportation network. The model spans a
time horizon of 10 years, again in monthly time increments.
100 uncertainty realizations are considered per stage. In [16],
the users use this instance to study risk-neutral and risk-averse
formulations and find that SDDP struggles to close the opti-
mality gap in the presence of time-dependent inflows. Similar
observations have been made in [39]. In addition to analyzing
the impact of a transmission network, this test case allows us
to test the methodology under two uncertainty assumptions:
time series modelling and Markov Chain modelling. The last
subsection analyzes this case study.

Our algorithms are implemented in Julia v0.6 [41] and
JuMP v0.18 [42]. The chosen linear programming solver is
Gurobi 8. In order to avoid confusion in the subsequent sec-
tions regarding which codes are being compared, the following
nomenclature is adopted. PSR SDDP: This scheme refers to
the PSR software. The language used to code PSR SDDP is
FORTRAN and uses the XPRESS solver. SDDP: Refers to
our base Julia SDDP implementation. BL-SDDP: Refers to
our proposed algorithm, which we describe in section III.

A. Comparison of BL-SDDP to PSR SDDP

The present subsection aims at comparing the performance
of the BL-SDDP algorithm against the PSR SDDP commercial
software. The PSR SDDP commercial software is developed
for solving hydrothermal scheduling problems. We conduct
our comparison on the basis of an instance of the Colombian
power system that has been provided to us by PSR. The
experimental results for this subsection were obtained on an
Intel Core i5-6198DU CPU with 2.30GHz and 8 GB of RAM,
using a single CPU.

Both codes are run with the exact same parameters. Specif-
ically, each SDDP iteration consists of 20 samples for the

0 50 100 150 200 250 300 350
Iterations

1.1

1.2

1.3

1.4

1.5
1e9

PSR SDDP

0 5 10 15 20 25
Iterations

1.1

1.2

1.3

1.4

1.5
1e9

BL-SDDP

Fig. 5. Lower and Upper bound evolution over iterations for the Colombian
hydrothermal test case.. Left panel presents the PSR SDDP software while
right panel presents the BL-SDDP algorithm.

forward pass. Each stage consists of 100 uncertainty realiza-
tions, namely 100 nodes per stage. Regarding the BL-SDDP
algorithm, we perform batch updates every 5 SDDP iterations.
The batch size corresponds to a full-batch update, namely all
the experiences are used for the update. The time horizon is
defined to be equal to 120 stages.

Fig. 5 presents the convergence behavior for each of the
two algorithms. Panel (a) presents the evolution of the lower
and upper bound over iterations for the PSR software, while
panel (b) presents the evolution for our BL-SDDP code.
The upper bound estimate presented in panel (a) is the one
reported by the PSR software. In our approach, in order
to provide reliable estimates, we estimate the upper bound
every 5 iterations by simulating our current policy over a
large collection of samples, concretely 4000 inflow samples.
Note that the PSR SDDP software reaches a steady state
behaviour after approximately 150 iterations, at which point
the difference between the lower and upper bound remains
relatively constant. On the other hand, the BL-SDDP approach
is able to reduce the difference between upper and lower bound
significantly after each batch update.

Table I presents the total run time and the reported gap after
34 hours of run time. Note that the BL-SDDP algorithm is able
to produce a better gap. The table also presents the mean cost
of an out-of-sample evaluation of both policies. Concretely,
2000 out-of-sample inflow samples are generated using PSR
software. The policies are then tested against these inflows. As
we can observe, the improved gap of the BL-SDDP algorithm
also results in a superior out-of-sample performance relative to
the policy generated by the PSR SDDP commercial software.

TABLE I
COMPARISON OF THE POLICIES AFTER 34 HOURS OF RUN TIME.

PSR SDDP BL-SDDP
Reported Gap (%) 6.2 4.2

Time (h) 34 (1 CPU) 34 (1 CPU)
Out-Of-Sample Inflows ($) 1.437e9 1.39e9

Interestingly, such a superior performance in computing
tighter optimality gaps holds even though our base SDDP
implementation is considerably slower as compared to the PSR
SDDP implementation. Concretely, PSR SDDP requires ap-
proximately about 30 minutes in order to compute 20 iterations

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

while our base SDDP implementation requires approximately
3 hours in order to compute the same number of iterations.

The superior performance of the BL-SDDP algorithm in
computing tighter optimality gaps, despite the less optimized
performance of the subproblem solvers, can be understood
in terms of the amount of “work” that each approach is
performing, and in particular the number of linear programs
that both approaches are solving. For ease of exposition, let us
ignore the forward pass as it comprises a very small part of the
computational effort. The problems solved when performing
the backward pass can be described as follows:

(i) PSR SDDP: Evaluating a single trial point involves solv-
ing, at each stage, 100 LPs. Since the time horizon is equal to
120 stages, this amounts to a total of 119·100 problems. Every
iteration considers 20 forward samples. Thus, 20 trial points
are generated per iteration. Consequently, a total of 100·119·20
problems are solved per iteration. Over 370 iterations, this
amounts to a total of 100·119·20·370 = 88, 060, 000 problems.

(ii) BL-SDDP: The algorithm performs a total of 25 usual
SDDP iterations. As explained in the previous paragraph,
this results in 100 · 119 · 20 · 25 = 5950000 problems
after the execution of the 25 usual SDDP iterations. In this
case, we have to add the problems that are solved when
performing the full-batch updates. After N iterations, a total
of N · 20 trial points need to be solved. As we mention
previously, for each trial point a total of 119 · 100 LPs need
to be solved. Thus, performing a full-batch update after N
iterations would require solving 119 · 100 · 20 · N LPs. As
the full-batch update is performed every 5 iterations, this
means N = 5, 10, 15, 20, 25. Thus, the full-batch update
step throughout the entire execution of the algorithm requires
solving 100 · 119 · 20 · (5 + 10 + 15 + 25) = 17, 850, 000
problems. Adding the full-batch update LPs and the LPs of
the usual SDDP iterations results in a total of 23, 800, 000
problems, which represents 27% of the problems that the PSR
software is solving. In short, the difference is due to the fact
that the BL-SDDP algorithm avoids over-exploring and thus
avoids redundant computation in extra iterations.

As a consequence of the aforementioned observation, we ad-
ditionally note that the expected value function approximations
for the BL-SDDP algorithm are considerably lighter. Con-
cretely, PSR SDDP performs 370 iterations before terminating,
thus the expected value function approximation consists of
approximately 370 · 20 = 7, 400 cuts per stage. Instead, the
BL-SDDP code requires approximately 25 ·20 = 500 cuts per
stage.

B. Comparison of parallel BL-SDDP to parallel SDDP
The present subsection aims at analyzing the BL-SDDP

algorithm by evaluating it against the standard SDDP scheme.
For this purpose, we resort to the same base Julia implementa-
tion. The computational work is performed on the Lemaitre3
cluster of UCLouvain, which is hosted at the Consortium des
Equipements de Calcul Intensif (CECI). The cluster, where the
algorithms are run, consists of 80 compute nodes with two 12-
core Intel SkyLake 5118 processors at 2.3 GHz and 95 GB
of RAM (3970MB/core), interconnected with an OmniPath
network (OPA-56Gbps).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (h)

0

10

20

30

40

Ga
p
%

BL-SDDP
SDDP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (h)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1e9

BL-SDDP
SDDP

Fig. 6. Convergence evolution for the Colombian hydrothermal test case using
20 CPUs

Figure 6 present the convergence evolution when using
20 CPUs. The algorithms are set up to compute, at each
iteration, 20 samples in the forward pass. The BL-SDDP
algorithm performs full-batch updates every 5 iterations. The
figures demonstrate that the BL-SDDP algorithm produces
considerably tighter gaps throughout the execution of the
algorithm.

Increasing the number of CPUs produces a similar be-
haviour. Fig. 7 presents the scaling of the algorithm with
respect to an increasing number of CPUs. Panel (a) of the
figure presents the elapsed time until achieving a certain target
optimality gap in the y-axis. Panel (b) presents the obtained
gap after a fixed run time in the y-axis. As we can observe, the
BL-SDDP scheme is able to attain a considerable improvement
relative to the standard SDDP scheme.

Fig. 8 presents the parallel efficiency results for both test
cases. We can observe that both SDDP and BL-SDDP achieve
a parallel efficiency approximately equal to 0.8 for the hy-
drothermal test case.

The literature discusses changes to the forward pass in
order to improve exploration of the state space [27], [28]. As
described in Section III, the BL-SDDP scheme can be easily
combined with these exploration schemes. However, initial
tests performed by the authors that compare and combine BL-
SDDP with the schemes described in [27] and [28] showed
only small improvements in performance, so that we decide
not to further explore this topic. It should be noted that
the scheme presented in [27] appears to be better suited for
problems with many realizations per stage but only few stages,
which is not the case for the studied problem instances.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

20 30 40 50 60 70 80
CPUs

500

1000

1500

2000

2500

3000

Ru
n
Ti
m
e
(s
)

Performance for Gap: 12 %
BL-SDDP
SDDP

20 30 40 50 60 70 80
CPUs

4

6

8

10

12

14

Ga
p
%

Performance for Run Time: 2448.0 (s)
BL-SDDP
SDDP

Fig. 7. CPU increase for the Colombian hydrothermal test case.

20 30 40 50 60 70 80
CPUs

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ra
lle

l E
ffi
ce

nc
y

BL-SDDP
SDDP

Fig. 8. Parallel efficiency for the Colombian hydrothermal problem.

C. Comparison of the value functions

In order to illustrate the differences between the value
functions calculated by SDDP and BL-SDDP, we compare
the expected value functions obtained through SDDP and BL-
SDDP after running both codes for the same amount of time.
The comparison is performed as follows. Let ft, gt denote the
expected value function approximation obtained by BL-SDDP
and SDDP respectively at stage t. At stage t, we consider the
trial points obtained by SDDP and evaluate them at both ft and
gt. The relative difference, for each trial point, is computed as

ft(x)− gt(x)

max{|ft(x)|, |gt(x)|}
· 100

The relative difference at each stage is then averaged among
the trial points. Note that this procedure should in principle
lead to an advantage for SDDP, because we are using the trial
points where the SDDP cuts are calculated.

Fig. 9 presents the results of this procedure. The x axis
corresponds to the stage number and the y axis corresponds to
the relative difference. The first observation is that the relative
difference is a positive number for almost all stages. This

20 40 60 80 100 120
Stage

−4

−2

0

2

4

Re
la
tiv

e
Di
ffe

re
nc

e
%

Fig. 9. Comparison of expected value functions for the Colombian hydrother-
mal test case. The x axis represents the current stage. The y axis represents
the relative difference between the expected value functions obtained through
SDDP and BL-SDDP.

indicates that the BL-SDDP algorithm is computing tighter
cuts. Moreover, negative values are only encountered in few
stages at the end of the time horizon. Sometimes the differ-
ences are significant. For example, in the hydrothermal test
case, the relative difference in the last stage is approximately
equal to −20%. However, this is expected: in the last stages
the cuts produced by SDDP are tight at the trial point. Since
the gap comparison is performed at the trial points obtained by
SDDP, it is expected that SDDP performs better at these points
(even if these points do not correspond to where an optimal
policy would have “landed” at the given stage). The second
observation is that the relative difference becomes greater as
we move backwards in the number of stages. SDDP builds
a cut for the previous stage using the current stage approxi-
mation of the expected value function approximation. A poor
approximation will result in an even poorer approximation for
the previous stages, thereby resulting in a back-propagation of
errors. BL-SDDP is less susceptible to such an effect as the
batch update results in expected value function approximations
that are calculated at a large collection of trial points and
therefore high-quality approximations of the expected value
functions.

D. Batch Choices

The present subsection aims at providing a brief study on
the effect of different batch choices. We consider the following
rules for selecting a batch.

F Corresponds to a full batch update.
R Corresponds to a random batch.
B Let Ci correspond to a cut calculated around xi. Let δi

be defined as the distance between the cut Ci and the
value function at point xi, namely:

δi = V (xi)− Ci(xi)

The batch corresponds to the smallest δi: the best cuts.
W Using the same notation as in previous item, the batch

corresponds to the highest δi. These are the worst cuts.
The results are presented in Fig. 10. As in the previous

experiments, 20 samples are considered in the forward pass.
The batch update is performed every 5 iterations for the

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

0.0 0.5 1.0 1.5 2.0
Time (h)

0

10

20

30

40

Ga
p
%

F BL-SDDP
B BL-SDDP
W BL-SDDP
R BL-SDDP

Fig. 10. Batch choices for BL-SDDP applied to the Colombian hydrothermal
test case. The batch size is set up to 50%, except for the F BL-SDDP that
performs a full-batch update.

hydrothermal test case. The chosen batch size for batch choices
R, B and W is 50%. Fig. 10 shows that the W and R
strategies tend to behave the worst. On the other hand, there
is a significant improvement in the B strategy at the early
steps, as compared to the F strategy. Nevertheless, in the long
run, both strategies behave similarly. We highlight that several
alternative strategies for batch selection can be considered.
Such a detailed investigation is left for future research.

E. Risk-Averse SDDP

The objective of a risk-averse model is to avoid risky
decisions that would lead to high costs for certain unfavorable
scenarios. We consider the risk measure [16]

ρt[Z] = (1− λ)Et[Z] + λAV@Rα[Z]

where λ ∈ [0, 1] is a weighting parameter and AV@Rα[Z]
is the Average Value-at-Risk (also referred to as Conditional
Value-at-Risk). It is defined as

AV@Rα[Z] = V@Rα[Z] + α−1Et[Z − V@Rα[Z]]+

Intuitively, AV@Rα[Z] is the expected value given that Z is
greater than the (1−α)-quantile. The minimization then aims
at minimizing the costs found at the tail of the distribution. As
stated in [16], the SDDP algorithm can be adapted to handle
such a measure. Nevertheless, the algorithm only provides
a lower bound approximation. Thus, stabilization criteria are
used for deciding on convergence [16]. We are then interested
in examining whether the BL-SDDP algorithm provides better
lower bound estimates in a shorter amount of time.

Fig. 11 presents the results when employing the risk
measure introduced in section II-C for different choices of
weighting parameters λ ∈ [0, 1]. As we can observe, the
BL-SDDP method, which corresponds to the blue color, is
consistently able to achieve a better lower bound relative to the
standard SDDP method, which corresponds to the red color.

F. BL-SDDP on models with transmission network

The present subsection aims at testing the BL-SDDP algo-
rithm on a known hard instance of the Brazilian interconnected
power system, which is described in [16]. In particular, this

Fig. 11. Risk averse BL-SDDP applied to the Colombian hydrothermal test
case. The blue color corresponds to the BL-SDDP code, while the red color
corresponds to SDDP.

allows us to test the effectiveness of BL-SDDP in a system
with a transmission network. Inflow uncertainty is modeled
as a geometric periodic autoregressive (GPAR) process [16].
Two scenarios are considered: (i) following [16], inflows
are modeled as decision variables which entails additional
balance equations in the optimization problem. We refer to
this setting as the time series approach; (ii) following [39], the
GPAR process is discretized to a Markov chain using vector
quantization. We refer to this setting as the Markov Chain
approach.

Figure 12 presents the convergence evolution when using
20 CPUs. The algorithms use 20 forward samples and, in the
case of BL-SDDP, a full batch update is performed every
5 iterations. The upper panel presents the results for the
serial independence case while the lower panel presents the
results for the Markov chain case. In both cases, BL-SDDP
is able to provide a notable improvement as compared to
standard SDDP. As in [5], we observe that convergence of
the time series approach is slower than with the Markov chain
approach.

We additionally tested the effectiveness of the BL-SDDP
algorithm on a realistic economic dispatch model, with a
horizon of one year, for the pan-European power system.
The test case considers an instance of the European Resource
Adequacy Assessment (ERAA) [43] which includes 56 zones
and 109 lines. The installed capacity consists of nuclear, coal,
lignite, gas, oil, PV, wind and hydro. A detailed description
of the capacity mix per zone can be found in [44]. The
lattice has 92 stages, where each stage corresponds to 4 days
of operation in 12 blocks per day time resolution, and 35
nodes per stage. After 6 hours of computation, BL-SDDP
attains an optimality gap of approximately 5%, whereas the
optimality gap of standard SDDP is approximately 100%.
This observation indicates that our findings for the simpler
Brazilian network topology carry over to power systems with
more complex topologies.

VI. CONCLUSIONS

In this work, we introduce a novel variant of the SDDP al-
gorithm that integrates ideas from reinforcement learning. The
new algorithm exhibits superior performance when compared

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

0 1 2 3 4
Time (h)

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
1e8

BL-SDDP
SDDP

0 1 2 3 4
Time (h)

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

3.25

1e8

BL-SDDP
SDDP

Fig. 12. Convergence evolution for the Brazilian hydrothermal test case using
20 CPUs. Upper panel shows the case with serial independence. Lower panel
shows the Markov Chain setting.

with a commercial-grade SDDP implementation on a chal-
lenging problem from power systems planning. Our research
opens a path for investigating whether SDDP could benefit
from other reinforcement learning techniques. In particular,
techniques for selecting past experiences may further improve
the performance of the algorithm. We found that BL-SDDP
benefits more from parallel computing than conventional
SDDP. Nevertheless, as the algorithm requires synchroniza-
tion, it remains susceptible to well-known synchronization
issues [45].

ACKNOWLEDGMENTS

Computational resources have been provided by the Con-
sortium des quipements de Calcul Intensif (CCI), funded by
the Fonds de la Recherche Scientifique de Belgique (F.R.S.-
FNRS) under Grant No. 2.5020.11 and by the Walloon Re-
gion. This project has received funding from the European
Research Council (ERC) under the European Union Horizon
2020 research and innovation programm (grant agreement No.
850540). The authors would also like to thank Joaquim Garcia,
from PSR, for providing the hydrothermal test case which is
considered in this paper, as well as Mauricio Junca, from los
Andes university in Colombia, for his valuable input.

HYDROTHERMAL SCHEDULING PROBLEM

The problem aims at minimizing the operational costs of
thermal plants and curtailed demand by determining optimal
water levels in the hydro reservoirs. Let Vt+1(vt, ξt) denote
the expected value function. Each stage is described in terms

of the value function Vt(vt−1, ξt), which is defined by solving
the following problem:

Vt(vt−1, ξt) = min
∑
n∈G

Cn · gn,t + VOLL · lst + Vt+1(vt, ξt)

s.t.
∑
n∈H

Pn · qt,n +
∑
n∈G

gt,n + lst = Lt

vt = vt−1 +At(ξt) +M(qt + st)

gt ≤ Ḡ
vt ≤ V̄
qt ≤ Q̄
gt, vt, qt, st ≥ 0

NOMENCLATURE

Markov Decision Process. St: The states for stage t.
At : The set of feasible actions at stage t.
Ct: The reward function at stage t.
P : Probability distribution.
πt: A policy that maps states to actions.
T : The considered time horizon.
Vt: The value function.
Vt: The value function after taking expectation.
Qt: The Q-factors.
V∗t \Q∗t : The optimal value function \ Q-factor.
Multistage stochastic program. xt : The state variable.
yt: An optimization variable.
ξt: The stochastic data process.
ut, vt, bt: Input data vectors.
Bt, At, Dt: Input data matrices.
Ωt: Uncertainty realizations at stage t.
Hydrothermal scheduling problem. vt,n: The storage level

of reservoir n ∈ H.
qt,n : Water turbined outflow of reservoir n ∈ H.
st,n : Spilled volume of water at reservoir n ∈ H.
gt,n: Vector of thermal generated power from n ∈ G.
lst: Variable which accounts for load shedding.
Cn: The generation cost of thermal plant n ∈ G.
Pn: The energy generation coefficient for the turbined out-

flow for hydro plant n ∈ H.
Lt: Load at stage t.
At: The inflow vector.
M : Matrix representing the hydrological topology.
Ḡ, V̄ , Q̄ : Upper limits on the variables.
H: The set of reservoirs.
G : The set of thermal plants.

REFERENCES

[1] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization
applied to energy planning,” Mathematical programming, vol. 52, no.
1-3, pp. 359–375, 1991.

[2] B. Flach, L. Barroso, and M. Pereira, “Long-term optimal allocation
of hydro generation for a price-maker company in a competitive mar-
ket: latest developments and a stochastic dual dynamic programming
approach,” IET generation, transmission & distribution, vol. 4, no. 2,
pp. 299–314, 2010.

[3] V. De Matos, A. B. Philpott, E. C. Finardi, and Z. Guan, “Solving long-
term hydro-thermal scheduling problems,” Technical report, Electric
Power Optimization Centre, University of Auckland, Tech. Rep., 2010.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[4] R. J. Pinto, C. T. Borges, and M. E. Maceira, “An efficient parallel
algorithm for large scale hydrothermal system operation planning,” IEEE
Transactions on Power Systems, vol. 28, no. 4, pp. 4888–4896, 2013.

[5] N. Löhndorf, D. Wozabal, and S. Minner, “Optimizing trading decisions
for hydro storage systems using approximate dual dynamic program-
ming,” Operations Research, vol. 61, no. 4, pp. 810–823, 2013.

[6] B. Gorenstin, N. Campodonico, J. da Costa, and M. Pereira, “Stochastic
optimization of a hydro-thermal system including network constraints,”
IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 791–797, 1992.

[7] T. Rotting and A. Gjelsvik, “Stochastic dual dynamic programming for
seasonal scheduling in the norwegian power system,” IEEE Transactions
on Power Systems, vol. 7, no. 1, pp. 273–279, 1992.

[8] B. Mo, A. Gjelsvik, and A. Grundt, “Integrated risk management of
hydro power scheduling and contract management,” IEEE Transactions
on Power Systems, vol. 16, no. 2, pp. 216–221, 2001.

[9] S. Rebennack, B. Flach, M. V. Pereira, and P. M. Pardalos, “Stochas-
tic hydro-thermal scheduling under co2 emissions constraints,” IEEE
Transactions on Power Systems, vol. 27, no. 1, pp. 58–68, 2011.

[10] A. Papavasiliou, Y. Mou, L. Cambier, and D. Scieur, “Application
of stochastic dual dynamic programming to the real-time dispatch of
storage under renewable supply uncertainty,” IEEE Transactions on
Sustainable Energy, vol. 9, no. 2, pp. 547–558, 2017.

[11] C. Gérard, D. Ávila, Y. Mou, A. Papavasiliou, and P. Chevalier,
“Comparison of priority service with multilevel demand subscription,”
IEEE Transactions on Smart Grid, 2022.

[12] A. Kiszka and D. Wozabal, “Stochastic dual dynamic programming for
optimal power flow problems under uncertainty.”

[13] N. Löhndorf and D. Wozabal, “Gas storage valuation in incomplete
markets,” European Journal of Operational Research, 2020.

[14] S. Rebennack, “Generation expansion planning under uncertainty with
emissions quotas,” Electric Power Systems Research, vol. 114, pp. 78–
85, 2014.

[15] O. Dowson, A. Philpott, A. Mason, and A. Downward, “A multi-
stage stochastic optimization model of a pastoral dairy farm,” European
Journal of Operational Research, vol. 274, no. 3, pp. 1077–1089, 2019.

[16] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares, “Risk
neutral and risk averse stochastic dual dynamic programming method,”
European journal of operational research, vol. 224, no. 2, pp. 375–391,
2013.

[17] A. B. Philpott and Z. Guan, “On the convergence of stochastic dual dy-
namic programming and related methods,” Operations Research Letters,
vol. 36, no. 4, pp. 450–455, 2008.

[18] E. L. da Silva and E. C. Finardi, “Parallel processing applied to the
planning of hydrothermal systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 8, pp. 721–729, 2003.

[19] A. Helseth and H. Braaten, “Efficient parallelization of the stochastic
dual dynamic programming algorithm applied to hydropower schedul-
ing,” Energies, vol. 8, no. 12, pp. 14 287–14 297, 2015.

[20] F. D. Machado, A. L. Diniz, C. L. Borges, and L. C. Brandão,
“Asynchronous parallel stochastic dual dynamic programming applied
to hydrothermal generation planning,” Electric Power Systems Research,
vol. 191, p. 106907, 2021.

[21] I. Aravena and A. Papavasiliou, “Asynchronous lagrangian scenario
decomposition,” Mathematical Programming Computation, pp. 1–50,
2020.

[22] D. Ávila, A. Papavasiliou, and N. Löhndorf, “Parallel and distributed
computing for stochastic dual dynamic programming,” Computational
Management Science, pp. 1–28, 2021.

[23] V. L. De Matos, A. B. Philpott, and E. C. Finardi, “Improving the
performance of stochastic dual dynamic programming,” Journal of
Computational and Applied Mathematics, vol. 290, pp. 196–208, 2015.

[24] V. Guigues, “Dual dynamic programing with cut selection: Convergence
proof and numerical experiments,” European Journal of Operational
Research, vol. 258, no. 1, pp. 47–57, 2017.

[25] V. Guigues and M. Bandarra, “Single cut and multicut sddp with cut
selection for multistage stochastic linear programs: convergence proof
and numerical experiments,” arXiv preprint arXiv:1902.06757, 2019.

[26] T. Asamov and W. B. Powell, “Regularized decomposition of high-
dimensional multistage stochastic programs with markov uncertainty,”
SIAM Journal on Optimization, vol. 28, no. 1, pp. 575–595, 2018.

[27] C. Donohue and J. Birge, “The abridged nested decomposition method
for multistage stochastic linear programs with relatively complete re-
course,” Algorithmic Operations Research, vol. 1, no. 1, pp. 20–30,
2006.

[28] M. Hindsberger and A. Philpott, “Resa: A method for solving multistage
stochastic linear programs,” Journal of Applied Operational Research,
vol. 6, no. 1, pp. 2–15, 2014.

[29] PSR, “Sddp - stochastic hydrothermal dispatch with network
restrictions.” [Online]. Available: https://www.psr-inc.com/softwares-en/
?current=p4028

[30] O. Dowson and L. Kapelevich, “SDDP.jl: a Julia package for
stochastic dual dynamic programming,” Optimization Online, 2017.
[Online]. Available: http://www.optimization-online.org/DB HTML/
2017/12/6388.html

[31] S. Kalyanakrishnan and P. Stone, “Batch reinforcement learning in
a complex domain,” in Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, 2007, pp.
1–8.

[32] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–
321, 1992.

[33] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
in Reinforcement learning. Springer, 2012, pp. 45–73.

[34] V. Mnih, K. Kavukcuoglu, and e. a. Silver, “Human-level control through
deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[35] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[36] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[37] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[38] M. Pieters and M. A. Wiering, “Q-learning with experience replay in a
dynamic environment,” in 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). IEEE, 2016, pp. 1–8.

[39] N. Löhndorf and A. Shapiro, “Modeling time-dependent randomness
in stochastic dual dynamic programming,” European Journal of Opera-
tional Research, vol. 273, no. 2, pp. 650–661, 2019.

[40] N. V. Arvanitidits and J. Rosing, “Composite representation of a mul-
tireservoir hydroelectric power system,” IEEE Transactions on Power
Apparatus and Systems, no. 2, pp. 319–326, 1970.

[41] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM review, vol. 59, no. 1, pp.
65–98, 2017. [Online]. Available: https://doi.org/10.1137/141000671

[42] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for
mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–320,
2017.

[43] “European resource adequacy assessment. 2021 edition.” https://www.
entsoe.eu/outlooks/eraa/2021, accessed: 2023-01-18.

[44] “European resource adequacy assessment. 2021 edition. annex 1 as-
sumptions.” https://eepublicdownloads.azureedge.net/clean-documents/
sdc-documents/ERAA/ERAA Annex 1 Assumptions.pdf, accessed:
2023-01-18.

[45] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ, 1989, vol. 23.

Daniel Ávila is a PhD student at the Center for
Operations Research and Econometrics (CORE), at
the Universit catholique de Louvain. He received
his bachelor and masters degree from the math-
ematics department of Universidad de los Andes,
Bogot, Colombia. He works under the supervision
of Professor Anthony Papavasiliou. His research
interests include convex optimization, stochastic pro-
gramming, renewable energy integration in power
systems.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.psr-inc.com/softwares-en/?current=p4028
https://www.psr-inc.com/softwares-en/?current=p4028
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
http://www.optimization-online.org/DB_HTML/2017/12/6388.html
https://doi.org/10.1137/141000671
https://www.entsoe.eu/outlooks/eraa/2021
https://www.entsoe.eu/outlooks/eraa/2021
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_Annex_1_Assumptions.pdf
https://eepublicdownloads.azureedge.net/clean-documents/sdc-documents/ERAA/ERAA_Annex_1_Assumptions.pdf

14

Anthony Papavasiliou (M06-SM20) is an Assis-
tant Professor at the department of Electrical and
Computer Engineering at the National Technical
University of Athens in Greece. He was formerly
an Associate Professor and holder of the ENGIE
Chair at the Center for Operations Research and
Econometrics at the Universit catholique de Lou-
vain. He works on operations research, electricity
market design, and electric power system operations.
He is the recipient of the Francqui Foundation re-
search professorship (2018), the ERC Starting Grant

(2019), and the Bodossaki Foundation Distinguished Young Scientist award
(2021). He has served as an Associate Editor of Operations Research and the
IEEE Transactions on Power Systems.

Prof. Dr. Nils Löhndorf is Chairholder in Digital
Procurement and Associate Professor at the De-
partment of Economics and Management and the
Luxembourg Centre for Logistics and Supply Chain
Management within the University of Luxembourg.
Prior to joining the University of Luxembourg, he
was Assistant Professor at the Vienna University of
Economics and Business, where he earned his habil-
itation. He received his PhD from the University of
Vienna in Austria and a MSc in Management from
the University of Mannheim in Germany. He has ex-

tensive expertise in stochastic programming and its application in management
decision-making and has published his research in leading journals such as
Operations Research, European Journal of Operational Researchs, and others.
He is co-founder of Quantego, a company specializing in multistage stochastic
programming. His models for operation, valuation, and trading of energy
storage systems are used by several energy companies throughout Europe.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3246724

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	cover
	cover-verso
	Batch_Learning_SDDP_for_Long-Term_Hydrothermal_Planning
	Introduction
	SDDP Challenges
	Parallel computing
	Batch learning
	Organization & Contributions

	Problem Formulation
	Markov decision processes
	Multistage stochastic programming and MDP
	Stochastic dual dynamic programming as a reinforcement learning algorithm

	Batch Learning SDDP (BL-SDDP)
	Experience replay
	BL-SDDP description

	SDDP Parallelization Strategies
	Standard SDDP parallelization
	Parallelization of BL-SDDP

	Case Studies
	Comparison of BL-SDDP to PSR SDDP
	Comparison of parallel BL-SDDP to parallel SDDP
	Comparison of the value functions
	Batch Choices
	Risk-Averse SDDP
	BL-SDDP on models with transmission network

	Conclusions
	References
	Biographies
	Daniel Ávila
	Anthony Papavasiliou
	Prof. Dr. Nils Löhndorf

