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Abstract: Thermodynamics has served as a framework to establish physics-based criteria for
the stabilization, control and optimization of process systems. In this article, we establish
conditions for the internal entropy production rate to characterize the stability properties
of thermal equilibrium in irreversible multiphase systems. In particular, in Theorem 1, we
show how, as a multiphase system evolves towards equilibrium, internal entropy production
decreases monotonically in time for a particular class of multiphase systems. Being positive
semi-definite and having a semi-negative definite time derivative, internal entropy production is
thus a Lyapunov function that characterizes the stability of thermal equilibrium in multiphase
irreversible systems.
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1. INTRODUCTION

Thermodynamic systems design, analysis, control and
optimization stand as fundamental elements of process
systems engineering. Chemical process systems are fre-
quently assumed as quasi-stationary systems with state
trajectories restrained to evolve inside a thermodynamic
equilibrium manifold (Ydstie, 2016). In our research, we
establish a methodology to characterize thermodynamic
systems operating far from the equilibrium manifold. In
this paper, we focus on developing a stability analysis for
nonlinear multiphase processes that operate far from the
equilibrium manifold. We investigate how thermodynamic-
based criteria can be used to gain better understanding
in dynamical process systems. Using the first and second
laws of thermodynamics, we show that the internal entropy
production rate can be used to design a physics-based
Lyapunov function that characterizes the stability of an
irreversible liquid-vapor systems as it evolves towards a
thermodynamic equilibrium state.

Multiphase systems appear frequently in process engi-
neering. Liquid-gas-solid operations in chemical and bio
chemical-engineering (Seader et al., 2011), complex dis-
tillation separations (Drioli et al., 2015), and polymer
crystallization (Sangroniz et al., 2021) are some exam-
ples where two or more phases interact as part of the
process system. Despite its significance, the dynamic sta-

bility properties of chemical process systems is still not
fully understood. Steady state multiplicity (Güttinger and
Morari, 1999), and limit cycles (Lee et al., 1999) have
been documented in process systems operations. A better
understanding of the dynamical properties of multiphase
systems should thus provide better design, control, and
optimization methods for chemical process systems.

Physics-based formulations have been used to character-
ize the dynamical properties of process systems. Energy
dissipation is, for instance, a stability criteria for nonlin-
ear physical systems (Willems, 1972). Even though the
early developments in dissipative analysis (Willems, 1972)
are considered to be a cornerstone of modern analysis
and applied control, the early applications of dissipative
analysis were limited, for the most part, to the study of
electro-mechanical systems. Dissipative theory applied to
chemical processes received an increasing level of attention
after its introduction during the late 1990s by Alonso and
Ydstie (1996).

Thermodynamic potentials have well-defined convexity
properties. In single-phase thermodynamic systems en-
tropy is a concave function of the extensive variables
(Callen, 1985), see Figure 1 (right). The concavity of en-
tropy has allowed to assess for stability and to build control
structures using Lyapunov theory and dissipative analysis
(Favache and Dochain, 2009; Garćıa-Sandoval et al., 2015;
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nonlinear multiphase processes that operate far from the
equilibrium manifold. We investigate how thermodynamic-
based criteria can be used to gain better understanding
in dynamical process systems. Using the first and second
laws of thermodynamics, we show that the internal entropy
production rate can be used to design a physics-based
Lyapunov function that characterizes the stability of an
irreversible liquid-vapor systems as it evolves towards a
thermodynamic equilibrium state.

Multiphase systems appear frequently in process engi-
neering. Liquid-gas-solid operations in chemical and bio
chemical-engineering (Seader et al., 2011), complex dis-
tillation separations (Drioli et al., 2015), and polymer
crystallization (Sangroniz et al., 2021) are some exam-
ples where two or more phases interact as part of the
process system. Despite its significance, the dynamic sta-

bility properties of chemical process systems is still not
fully understood. Steady state multiplicity (Güttinger and
Morari, 1999), and limit cycles (Lee et al., 1999) have
been documented in process systems operations. A better
understanding of the dynamical properties of multiphase
systems should thus provide better design, control, and
optimization methods for chemical process systems.

Physics-based formulations have been used to character-
ize the dynamical properties of process systems. Energy
dissipation is, for instance, a stability criteria for nonlin-
ear physical systems (Willems, 1972). Even though the
early developments in dissipative analysis (Willems, 1972)
are considered to be a cornerstone of modern analysis
and applied control, the early applications of dissipative
analysis were limited, for the most part, to the study of
electro-mechanical systems. Dissipative theory applied to
chemical processes received an increasing level of attention
after its introduction during the late 1990s by Alonso and
Ydstie (1996).

Thermodynamic potentials have well-defined convexity
properties. In single-phase thermodynamic systems en-
tropy is a concave function of the extensive variables
(Callen, 1985), see Figure 1 (right). The concavity of en-
tropy has allowed to assess for stability and to build control
structures using Lyapunov theory and dissipative analysis
(Favache and Dochain, 2009; Garćıa-Sandoval et al., 2015;
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Fig. 1. Non-concave entropy for a liquid-vapor system (left) VS a concave entropy function in a gas system (right).

Hoang and Dochain, 2013). Unfortunately, the concavity
of entropy is lost for multiphase systems (Callen, 1985),
see Figure 1 (left). To characterize a system regardless of
the convexity properties of its thermodynamic potentials,
we propose to study multiphase chemical processes using
an internal entropy production Lyapunov-based analysis.

Thermodynamic-based formulations have brought physi-
cal significance to the stability properties of reactive sys-
tems (Favache and Dochain, 2009; Garćıa-Sandoval et al.,
2015) and have been used to establish control structures
and to design observers based on irreversible thermody-
namics (Hoang et al., 2012; Hoang and Dochain, 2019;
Zárate-Navarro et al., 2022). Thermodynamic-based char-
acterization of process systems is mostly limited to the
study of single-phase systems. The work here presented
sets the basis to extend physics-based characterization
methodologies to multiphase systems.

In a previous paper we formulated a semi-positive definite
entropy production equation Σ̇i as a Lyapunov function
candidate to characterize the stability properties in mul-
tiphase systems (Romo-Hernandez et al., 2019b). In this
note we show that relaxation processes that occur as a
system is driven towards thermodynamic equilibrium set
the time derivative of Σ̇i to be semi-negative definite.
Following this property we state that Σ̇i is a Lyapunov
function to characterize the stability of equilibrium in
irreversible multiphase systems.

The article is structured as follows. In Section 2 we use bal-
ance equations to set a mathematical model to describe an
irreversible thermodynamic system that exchanges mass
and energy with its environment. In Section 3 we ex-
tend the model to describe a multiphase system and we
compute the entropy production rate for the system. In
Section 4 we establish the internal entropy production
function and we discuss how this function decreases in
time as a consequence of relaxation processes that push
an irreversible system towards equilibrium. We present
concluding remarks in Section 5.

2. IRREVERSIBLE THERMODYNAMIC SYSTEMS

In this section we set the basis for the modeling of irre-
versible thermodynamic systems. Using molar and energy
conservation principles, we establish a model to describe a

macroscopic system that exchanges mass and energy with
the environment.

Consider a lumped macroscopic system that exchanges
mass and energy with its surroundings. An abstract rep-
resentation of the system is depicted in Figure 2, left.
The system has one mass convective inflow Fin and one
mass convective outflow Fout. Additionally, the system ex-
changes mass at a rate JNj an energy at a rate JE through
non-convective transport mechanisms such as diffusive
transport or chemical reactions. For modeling purposes we
assume that:

1. The system is perfectly mixed.
2. Changes in potential, electromagnetic, and kinetic en-

ergy are negligible inside the system.
3. Work is done to (or done by) the system only as PdV

work.
4. Crossed mass and energy diffusive transport mecha-

nisms, such as thermodifussion or Dufour effect energy
transfer, are negligible inside the system.

5. The system is locally at thermodynamic equilibrium.

As a consequence of assumptions 1-3, molar and energy
holdups, Nj (moles) and U (J) respectively, can be de-
scribed as

dNj

dt
= Ṅj,in − Nj

V
V̇ − JNj , j = 1, . . . , c (1)

dU

dt
= Ḣin −

(
U

V
+ P

)
V̇ + P

dV

dt
+ Q̇− JE , (2)

where Ṅj,in (moles/s) and Ḣin (W) represent molar and
enthalpy convective inflows; V (m3) and P (Pa) refer to the

volume and pressure of the system, respectively; V̇ (m3/s)
stands for the volumetric outflow rate of the convective
outlet port Fout, see Figure 2, left; Q̇ (W) is defined as
a heat source; and the terms JNj (moles/s) and JE (W)
stand for non-convective outflow rates of moles and energy,
respectively.

It is worth noticing that equations (1)-(2) describe a sys-
tem where non-convective transport processes JNj and JE
play a role as a sinks of moles and energy. If non-convective
transport processes worked as sources increasing the moles
and energy of the system we must write a plus sign, instead
of the minus, for the last terms in (1)-(2).

Considering differences in temperature and concentration
between the blue and gray subsystems (Figure 2, left) as

Fig. 2. Left: Lumped thermodynamic system that exchanges mass (Fin, Fout) and energy (Q̇) with its surroundings, and
where irreversible mechanisms transport mass (JNj) and energy (JE). Center: Liquid-vapor open system. Right:
Abstract representation of a liquid-vapor system as the interconnection of two lumped thermodynamic systems.

driving forces for mass and energy transfer mechanisms, we
can establish the non-convective transport terms as (Bird
et al., 2002; Taylor and Krishna, 1993)

JNj = kjC(xj − xj,i) + xj

∑c
k=1 JNk (3)

JE = λ(T − Ti) +
∑c

k=1 hjJNk, (4)

where kj and λ stand for mass and energy transport co-
efficients; C, xj , and T represent the total concentration,
molar fraction of component j and temperature of blue
subsystem, respectively; whereas xj,i and Ti stand for
the molar fraction of j and the temperature of the gray
subsystem; finally hj in the last term of the energy balance
stands for the partial molar enthalpy of component j in the
blue system. No crossed mass or energy transport effects
are considered in (3)-(4) as a consequence of assumption 4.

It is worth noting that the balance equations (1)-(4) are
written in terms of extensive variables whereas the trans-
port equations (3)-(4) are written in terms of intensive
variables. To write both the balance and the transport
equations in terms of intensive variables we use the follow-
ing change of thermodynamic coordinates

Nj = xj

∑c
k=1 Nk, U = U0 + Cv(T − To)

∑c
k=1 Nk (5)

to rewrite (1)-(4). The first step to write the system’s
model in terms of intensive variables is to differentiate (5)
with respect to time to obtain

N
dxj

dt
=

dNj

dt
− xj

dN

dt
, j = 1, . . . , c− 1 (6)

NCv
dT

dt
=

dU

dt
− Cv(T − T0)

dN

dt
, (7)

where, the sake of simplicity, we have writen N =∑c
k=1 Nk to represent the total molar holdup of the sys-

tem. After some tedious algebra, substitution of (1)-(2)
into (6)-(7) leads to

CV
dxj

dt
= Ṅj,in(xj,in − xj)− jNj , j = 1, . . . , c− 1 (8)

CV
dT

dt
= Ṅj,inCv,in(Tin − T )

+ PinV̇in − PV − P
dV

dt
− jE , (9)

where Cv represents the isochoric heat capacity of the fluid
in the blue subsystem, and

jNj = kjC(xj − xj,i) (10)

jE = λ(T − Ti) +
P

C

∑c
k=1 JNk (11)

stand for adjusted non-convective transport terms. It is
worth remarking that, as a consequence of the coordinate
change, the advective terms

xj

c∑
k=1

JNk and

c∑
k=1

hjJNk

in the transport equations (3)-(4) no longer appear as part
of the system description (8)-(11). The dynamical behavior
of the system, described in terms of intensive variables,
no longer requires an explicit description of advective
transport.

Even tough the system of interest (composite blue-gray
system depicted in Figure 2, left) does not necessarily have
homogeneous temperature or composition, the change of
coordinates 5 is still considered valid as the system is
locally at thermodynamic equilibrium, assumption 5.

In the following section we use the modeling framework
described in this section to establish an abstract descrip-
tion of a multiphase system. Using the established model
we set a function that describes how entropy is produced
as a consequence of internal transport mechanisms that
occur inside an irreversible system.

3. INTERNAL ENTROPY PRODUCTION IN A
MULTIPHASE SYSTEM

A multiphase system can be understood as the coupling
of two bulk phases through an interface subsystem. In
Figure 2, center, we represent a liquid-vapor open system
that exchanges mass and energy with its surroundings. In
Figure 1, right, we represent the liquid-vapor open system
as the interconnection of two lumped macroscopic systems.

Temperature and composition of the liquid system is
represented as the pair 1 (Tl, xj) whereas for the vapor
system we set temperature and composition as (Tg, yj).
The dynamic model (8)-(9) can be easily extended to
describe the temperature and composition of a liquid-
vapor system as

ClVl
dxj

dt
= Ṅj,in,l(xj,in − xj)− jNj,l, (12)

CgVg
dyj
dt

= Ṅj,in,g(yj,in − yj) + jNj,g, (13)

1 Saying that (T, xj) is a pair or referring to (Ti, xj,i, yj,i) as
a triplet is an abuse of notation. Strictly speaking, we should
be talking about a (c + 1)−tuple (T, x1, . . . , xc) to represent the
temperature and composition of a bulk-phase or a (2c + 1)−tuple
(T, x1, . . . , xc, , y1, . . . , yc) to represent the temperature and compo-
sition of the interface.
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driving forces for mass and energy transfer mechanisms, we
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JNj = kjC(xj − xj,i) + xj

∑c
k=1 JNk (3)

JE = λ(T − Ti) +
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k=1 hjJNk, (4)

where kj and λ stand for mass and energy transport co-
efficients; C, xj , and T represent the total concentration,
molar fraction of component j and temperature of blue
subsystem, respectively; whereas xj,i and Ti stand for
the molar fraction of j and the temperature of the gray
subsystem; finally hj in the last term of the energy balance
stands for the partial molar enthalpy of component j in the
blue system. No crossed mass or energy transport effects
are considered in (3)-(4) as a consequence of assumption 4.

It is worth noting that the balance equations (1)-(4) are
written in terms of extensive variables whereas the trans-
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where Cv represents the isochoric heat capacity of the fluid
in the blue subsystem, and

jNj = kjC(xj − xj,i) (10)

jE = λ(T − Ti) +
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stand for adjusted non-convective transport terms. It is
worth remarking that, as a consequence of the coordinate
change, the advective terms
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JNk and
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in the transport equations (3)-(4) no longer appear as part
of the system description (8)-(11). The dynamical behavior
of the system, described in terms of intensive variables,
no longer requires an explicit description of advective
transport.

Even tough the system of interest (composite blue-gray
system depicted in Figure 2, left) does not necessarily have
homogeneous temperature or composition, the change of
coordinates 5 is still considered valid as the system is
locally at thermodynamic equilibrium, assumption 5.

In the following section we use the modeling framework
described in this section to establish an abstract descrip-
tion of a multiphase system. Using the established model
we set a function that describes how entropy is produced
as a consequence of internal transport mechanisms that
occur inside an irreversible system.

3. INTERNAL ENTROPY PRODUCTION IN A
MULTIPHASE SYSTEM

A multiphase system can be understood as the coupling
of two bulk phases through an interface subsystem. In
Figure 2, center, we represent a liquid-vapor open system
that exchanges mass and energy with its surroundings. In
Figure 1, right, we represent the liquid-vapor open system
as the interconnection of two lumped macroscopic systems.

Temperature and composition of the liquid system is
represented as the pair 1 (Tl, xj) whereas for the vapor
system we set temperature and composition as (Tg, yj).
The dynamic model (8)-(9) can be easily extended to
describe the temperature and composition of a liquid-
vapor system as

ClVl
dxj

dt
= Ṅj,in,l(xj,in − xj)− jNj,l, (12)

CgVg
dyj
dt

= Ṅj,in,g(yj,in − yj) + jNj,g, (13)

1 Saying that (T, xj) is a pair or referring to (Ti, xj,i, yj,i) as
a triplet is an abuse of notation. Strictly speaking, we should
be talking about a (c + 1)−tuple (T, x1, . . . , xc) to represent the
temperature and composition of a bulk-phase or a (2c + 1)−tuple
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Fig. 3. Composition variations between liquid (blue), interface, and vapor (white) subsystems inside an irreversible
multiphase system (left). Monotonic decrease of temperature between liquid (blue), interface, and vapor (white)
subsystems inside an irreversible multiphase system (right)

ClVl
dTl

dt
= Ṅj,in,lCv,in,l(Tin,l − Tl)

+ Pin,lV̇in,l − PlVl − P
dVl

dt
− jE,l, (14)

CgVg
dTg

dt
= Ṅj,in,gCv,in,g(Tin,g − Tg)

+ Pin,gV̇in,g − PgVg − P
dVg

dt
+ jE,g, (15)

where subscripts l and g refer a variable to the liquid or
vapor subsystem, and the index of the molar balances (12)-
(13) runs as j = 1, . . . , c− 1.

Between phases, there exists an interface that intercon-
nects liquid and vapor subsystems. Temperature and
composition of the interface are represented as the
triplet 1 (Ti, xj,i, yj,i). Far from thermodynamic equilib-
rium, temperatures and compositions may vary between
the bulk-phases and the interface subsystem as depicted in
Figure 3. As a consequence of temperature and composi-
tion variations in a multiphase system, transport processes
occur between the bulk-phases and the interface. Trans-
port processes between the liquid phase and the interface
can be described using equations (3)-(4). An equivalent
formulation can be made to describe the transport between
the vapor phase and the interface. Assuming that the
interface dynamics is faster than the bulk-phase dynamics
we can consider that neither mass nor energy accumulate
in the interface, thus

kj,lCl(xj − xj,i)− kj,gCg(yj,i − yj) + (xj − yj)JN = 0
(16)

λl(Tl − Ti)− λg(Ti − Tg)

+
∑c

k=1(hj,l − hj,g)JNk = 0 (17)

where the sub-index j runs as j = 1, . . . , c− 1 in equation
(16), and JN =

∑c
k=1 JNk stands as the total molar

transport rate through the interface. As the interface is lo-
cally at thermodynamic equilibrium (Taylor and Krishna,
1993), the liquid-vapor system description is completed
with local liquid-vapor equilibrium and sum relations

yj,i −Kj,i xj,i = 0 j = 1, . . . , c (18)

1−
∑c

k=1 xj,i = 0 (19)

1−
∑c

k=1 yj,i = 0 (20)

where Kj,i stands for the liquid-vapor thermodynamic
equilibrium K−value of component j evaluated at the
interface conditions.

Equations (12)-(20) stand as a differential algebraic sys-
tem with 4c + 4 equations that, once solved, gives time
dependent trajectories for the state

(Tl, Tg, Ti, xj , yj , xj,i, yj,i, JN ), j = 1, . . . , c.

The second law of thermodynamics establishes that as
mass and energy are transferred between the phases and
the interface of the composite system, entropy increases at
a rate Ṡgen ≥ 0. We call this rate the entropy production
of the system. To quantify the entropy production rate, we
require to couple an entropy balance over the liquid-vapor
system together with the entropy fundamental equation.
Both the entropy balance and the entropy fundamental
equation are briefly presented below.

An entropy balance (Sandler, 1999) over the liquid-vapor
system depicted in Figure 2, right, allows to write the
internal entropy production rate as

Ṡgen = Ṡout − Ṡin +
dS

dt
−

∑
p∈{l,g}

Q̇p

TQ,p
. (21)

where Ṡin (W/K) and Ṡout (W/K) stand for entropy inflow
and outflow rates that come as a consequence of the
system exchanging mass with the environment, and TQ,p

represents the temperature at which the heat input Qp is
delivered to phase p. Note that for the liquid-vapor system,
the entropy flow-rates can be described as

Ṡin =
∑c

j=1(Ṅjsj)|in,l +
∑c

j=1(Ṅjsj)|in,g (22)

Ṡout =
∑c

j=1(Ṅjsj)|out,l +
∑c

j=1(Ṅjsj)|out,g (23)

where sj stands for the liquid, or vapor, partial molar
entropy of component j at the inflow (outflow) conditions.

Entropy is a function that depends on the energy, volume,
and molar holdups of a physical system (Callen, 1985).
Differentiation of the relation S = S(U, V,Nj) leads to the
entropy fundamental relation (Callen, 1985)

dS =
1

T
dU +

P

T
dV −

c∑
k=1

µk

T
dNj .

Entropy is an extensive property. Using the fundamental
relation we can therefore write entropy variations in time
inside a liquid-vapor system as

dS

dt
=

dSl

dt
+

dSg

dt

=
∑

p∈{l,g}

(
1

Tp

dUp

dt
+

Pp

Tp

dVp

dt
−

c∑
k=1

µk,p

Tp

dNk,p

dt

)
. (24)

Substitution of molar and energy balances (1)-(2) in the
fundamental relation (24), and combining (24) with (21)
gives

Ṡgen =

{
Environment
Interaction

terms

}
+

(
1

Tg
− 1

Tl

)
JE

+

c∑
k=1

(
µk,g

Tg
− µk,l

Tl

)
JNk, (25)

where

{
Environment
interaction

terms

}
= Ṡout − Ṡin +

∑
p∈{l,g}

{(
1

Tp
− 1

TQ,p

)
Q̇p

+
1

Tp

(
Ḣin,p −

Hp

Vp
V̇p

)
−

c∑
k=1

µk,p

Tp

(
Ṅin,p −

Np

Vp
V̇p

)}

stands for the entropy produced as the system exchanges
mass and energy with the surroundings.

4. ENTROPY PRODUCTION-BASED LYAPUNOV
FUNCTION

As we are interested in characterizing the entropy produc-
tion due to interface transport mechanisms, we define the
internal entropy production for the liquid-vapor system as
a bi-linear form on fluxes Ji and driving forces Xi

Σ̇i := Ṡgen −

{
Environment
Interaction

terms

}
=

∑
i∈{Nj ,E}

JiXi (26)

where JNj , j = 1, . . . , c, and JE stand for interface fluxes
of moles and energy, respectively, see (3)-(4); and

XNk =

(
µk,g

Tg
− µk,l

Tl

)
, j = 1, . . . , c (27)

XE =

(
1

Tg
− 1

Tl

)
(28)

represent driving forces for moles and energy transport
through the interface of the liquid-vapor system.

4.1 Change of thermodynamic coordinates

As chemical potential is a state variable that is difficult
to measure, we rewrite the internal entropy production in
terms of alternative fluxes and forces as

Σ̇i =
∑

i∈{Nj ,E}

J ′
iX

′
i (29)

where (Romo-Hernandez et al., 2019b)

J ′
Nj = RJNj , X ′

Nj = ln y�j − ln yj , j = 1, . . . , c,

J ′
E = λl(Tl − Ti), X ′

E =

(
1

Tg
− 1

Tl

)
.

In the definition of the alternative fluxes and forces for
the internal entropy production, Equation (30), R stands
for the ideal gas constant and y�j represents the vapor
composition of component j that is in thermodynamic
equilibrium with the liquid 2 .
2 Assuming that we wish to describe a low pressure system at
pressure P where the vapor phase can be considered as an ideal gas
mixture, we can describe the vapor equilibrium composition using
Raoult’s modified liquid-vapor K-values as (Seader et al., 2011)

y�j = Kjxj , Kj = γj
P sat
j

P
j = 1, . . . , c,

where the activity coefficient γj and the saturation pressure are
computed using the liquid bulk-phase composition and temperature.

4.2 Time decreasing properties of dΣ̇i/dt

The internal entropy production is a function that depends
on the temperatures, compositions, and transport terms
inside a non-equilibrium multiphase system. To show that
the internal entropy production is a Lyapunov function
that characterizes the stability of thermodynamic equilib-
rium, it has been demonstrated that there exists a domain
Ω that contains the thermodynamic equilibrium state z�

such that (Romo-Hernandez et al., 2019b)

Σ̇i(z) > 0, z �= z�, z ∈ Ω (30)

Σ̇i(z) = 0, z = z� (31)

where

z = (Tl, Tg, Ti, xj , yj , xj,i, yj,i, JN ), j = 1, . . . , c.

A second condition required for Σ̇i to be a Lyapunov
function is that dΣ̇i/dt is negative semi-definite far from
thermodynamic equilibrium. In the theorem presented be-
low we tackle the problem of showing that energy-related
relaxation processes decrease the internal entropy produc-
tion Σ̇i in time inside a multiphase system. Therefore
showing that Σ̇i behaves, under certain restrictions, as a
Lyapunov function that characterizes the evolution of a
system towards thermodynamic equilibrium.

Theorem 1. Consider a multiphase system where temper-
ature between phases changes monotonically 3 between
phases and assume that the system is at chemical equi-
librium, that is

yj = yj,i, xj,i = xj , yj = Kjxj j = 1, . . . , c.

Assume that relaxation processes drive the system towards
the thermodynamic equilibrium state, that is, temperature
changes in time tending to the equilibrium temperature T �

Tl → T �, Tg → T �, , Ti → T �.

Then, the internal entropy production satisfies

dΣ̇i

dt
< 0 for Tl �= Tg �= Ti (32)

dΣ̇i

dt
= 0 at equilibrium Tl = Tg = Ti (33)

Dem: Without loss of generality we will consider the case
shown in Figure 3, right, when 4 Tl > Ti > Tg. As the
system is at chemical equilibrium, the internal entropy
production function is reduced to

Σ̇i =

(
1

Tg
− 1

Tl

)
Q̇i (34)

where Q̇i = λl(Tl − Ti) stands for the heat transferred be-
tween the liquid bulk-phase and the interface. Computing
the time derivative of (35) we obtain

dΣ̇i

dt
= Q̇i

(
1

T 2
l

dTl

dt
− 1

T 2
g

dTg

dt

)
+

dQ̇i

dt

(
Tl − Tg

TlTg

)
(35)

As Tl > Ti > Tg, it follows immediately that Q̇i =
λl(Tl − Ti) > 0 and that Tl − Tg > 0. Additionally,
as the relaxation processes occur, the liquid temperature
will decrease to an equilibrium value Tl → T � and the

3 Monotonicity of temperature implies that heat is neither accumu-
lated nor generated inside the liquid-vapor interface.
4 This demonstration works also for the case when Tg > Ti > Tl as
long as the temperature variations across phases are monotonic.
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Ṡgen =

{
Environment
Interaction

terms

}
+

(
1

Tg
− 1

Tl

)
JE

+

c∑
k=1

(
µk,g

Tg
− µk,l

Tl

)
JNk, (25)

where

{
Environment
interaction

terms

}
= Ṡout − Ṡin +

∑
p∈{l,g}

{(
1

Tp
− 1

TQ,p

)
Q̇p

+
1

Tp

(
Ḣin,p −

Hp

Vp
V̇p

)
−

c∑
k=1

µk,p

Tp

(
Ṅin,p −

Np

Vp
V̇p

)}

stands for the entropy produced as the system exchanges
mass and energy with the surroundings.

4. ENTROPY PRODUCTION-BASED LYAPUNOV
FUNCTION

As we are interested in characterizing the entropy produc-
tion due to interface transport mechanisms, we define the
internal entropy production for the liquid-vapor system as
a bi-linear form on fluxes Ji and driving forces Xi

Σ̇i := Ṡgen −

{
Environment
Interaction

terms

}
=

∑
i∈{Nj ,E}

JiXi (26)

where JNj , j = 1, . . . , c, and JE stand for interface fluxes
of moles and energy, respectively, see (3)-(4); and

XNk =

(
µk,g

Tg
− µk,l

Tl

)
, j = 1, . . . , c (27)

XE =

(
1

Tg
− 1

Tl

)
(28)

represent driving forces for moles and energy transport
through the interface of the liquid-vapor system.

4.1 Change of thermodynamic coordinates

As chemical potential is a state variable that is difficult
to measure, we rewrite the internal entropy production in
terms of alternative fluxes and forces as

Σ̇i =
∑

i∈{Nj ,E}

J ′
iX

′
i (29)

where (Romo-Hernandez et al., 2019b)

J ′
Nj = RJNj , X ′

Nj = ln y�j − ln yj , j = 1, . . . , c,

J ′
E = λl(Tl − Ti), X ′

E =

(
1

Tg
− 1

Tl

)
.

In the definition of the alternative fluxes and forces for
the internal entropy production, Equation (30), R stands
for the ideal gas constant and y�j represents the vapor
composition of component j that is in thermodynamic
equilibrium with the liquid 2 .
2 Assuming that we wish to describe a low pressure system at
pressure P where the vapor phase can be considered as an ideal gas
mixture, we can describe the vapor equilibrium composition using
Raoult’s modified liquid-vapor K-values as (Seader et al., 2011)

y�j = Kjxj , Kj = γj
P sat
j

P
j = 1, . . . , c,

where the activity coefficient γj and the saturation pressure are
computed using the liquid bulk-phase composition and temperature.

4.2 Time decreasing properties of dΣ̇i/dt

The internal entropy production is a function that depends
on the temperatures, compositions, and transport terms
inside a non-equilibrium multiphase system. To show that
the internal entropy production is a Lyapunov function
that characterizes the stability of thermodynamic equilib-
rium, it has been demonstrated that there exists a domain
Ω that contains the thermodynamic equilibrium state z�

such that (Romo-Hernandez et al., 2019b)

Σ̇i(z) > 0, z �= z�, z ∈ Ω (30)

Σ̇i(z) = 0, z = z� (31)

where

z = (Tl, Tg, Ti, xj , yj , xj,i, yj,i, JN ), j = 1, . . . , c.

A second condition required for Σ̇i to be a Lyapunov
function is that dΣ̇i/dt is negative semi-definite far from
thermodynamic equilibrium. In the theorem presented be-
low we tackle the problem of showing that energy-related
relaxation processes decrease the internal entropy produc-
tion Σ̇i in time inside a multiphase system. Therefore
showing that Σ̇i behaves, under certain restrictions, as a
Lyapunov function that characterizes the evolution of a
system towards thermodynamic equilibrium.

Theorem 1. Consider a multiphase system where temper-
ature between phases changes monotonically 3 between
phases and assume that the system is at chemical equi-
librium, that is

yj = yj,i, xj,i = xj , yj = Kjxj j = 1, . . . , c.

Assume that relaxation processes drive the system towards
the thermodynamic equilibrium state, that is, temperature
changes in time tending to the equilibrium temperature T �

Tl → T �, Tg → T �, , Ti → T �.

Then, the internal entropy production satisfies

dΣ̇i

dt
< 0 for Tl �= Tg �= Ti (32)

dΣ̇i

dt
= 0 at equilibrium Tl = Tg = Ti (33)

Dem: Without loss of generality we will consider the case
shown in Figure 3, right, when 4 Tl > Ti > Tg. As the
system is at chemical equilibrium, the internal entropy
production function is reduced to

Σ̇i =

(
1

Tg
− 1

Tl

)
Q̇i (34)

where Q̇i = λl(Tl − Ti) stands for the heat transferred be-
tween the liquid bulk-phase and the interface. Computing
the time derivative of (35) we obtain

dΣ̇i

dt
= Q̇i

(
1

T 2
l

dTl

dt
− 1

T 2
g

dTg

dt

)
+

dQ̇i

dt

(
Tl − Tg

TlTg

)
(35)

As Tl > Ti > Tg, it follows immediately that Q̇i =
λl(Tl − Ti) > 0 and that Tl − Tg > 0. Additionally,
as the relaxation processes occur, the liquid temperature
will decrease to an equilibrium value Tl → T � and the

3 Monotonicity of temperature implies that heat is neither accumu-
lated nor generated inside the liquid-vapor interface.
4 This demonstration works also for the case when Tg > Ti > Tl as
long as the temperature variations across phases are monotonic.
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vapor temperature will increase to an equilibrium value
Tg → T �. As relaxation processes decrease temperature

differences between phases, the heat transfer Q̇i decreases
in time. Thus, relaxation processes bound derivatives of
temperature and heat transfer as

dTl/dt < 0 < dTg/dt, dQi/dt < 0.

It follows immediately from the previous inequalities that

dΣ̇i/dt < 0

as relaxation processes push temperatures towards ther-
mal equilibrium. It is easy to verify that (36) reaches zero
at the thermal equilibrium state Tl = Tg = Ti = T �. �

5. CONCLUSIONS AND FUTURE WORK

The thermodynamic characterization of irreversible pro-
cesses here presented had brought to light phenomenolog-
ical insights on the dynamic characteristics of multiphase
systems. In Theorem 1, we have presented formal evidence
showing that internal entropy production, Equation (27),
decreases in time when multiphase systems evolve towards
thermal equilibrium. Internal entropy production is thus a
Lyapunov function that characterizes the stability of non-
isothermal multiphase systems. An extension of Theorem
1 is still required to consider the stabilization effects of
mass transport relaxation processes in multiphase systems.
Even thought the main result in this article is restricted to
system with thermal energy transport, we strongly believe
that the methodology here presented can be extended to
show that internal entropy production Σ̇i decreases in time
in systems with interface molar/mass transport processes.
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