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a b s t r a c t

Through detailed and realistic numerical simulations, the present paper assesses the precision with
which the Juno spacecraft can measure the normalized polar moment of inertia (MOI) of Jupiter. Based
on Ka-band Earth-based Doppler data, created with realistic 10 μm/s of white noise at 60 s of integration,
this analysis shows that the determination of the precession rate of Jupiter is by far more efficient than
the Lense–Thirring effect previously proposed to determine the moment of inertia and therefore to
constrain the internal structure of the giant planet with Juno.

We show that the Juno mission will allow the estimation of the precession rate of Jupiter's pole with
an accuracy better than 0.1%. We provide an equation relating the pole precession rate and the nor-
malized polar moment of inertia of Jupiter. Accounting for the uncertainty in the parameters affecting
precession, we show that the accuracy of the MOI inferred from the precession rate is also better than
0.1%, and at least 50 times better than inferred from the Lense–Thirring acceleration undergone by Juno.
This accuracy of the MOI determination should provide tight constraints on the interior structure of
Jupiter, especially the core size and mass, helping to distinguish among competing scenarios of formation
and evolution of the giant planet.

In addition, though the Juno mission operations are already defined, the exact duration of the
tracking and its occurrence with respect to the spacecraft pericenter pass are not definitely scheduled.
The simulations performed here quantify the impact of this aspect of the mission on the Juno sensitivity
to (in particular) the spin-pole precession rate of Jupiter.

Finally, additional simulations have been performed to test the usefulness of combining Doppler data
with VLBI data, showing the latter measurements to be 104–105 times less sensitive than the former to
our parameters of interest and therefore, obviously, totally needless.

& 2016 Elsevier Ltd All rights reserved.
1. Introduction

The Juno New Frontiers NASA mission was launched on August
5, 2011 and is now en route to Jupiter. After a five-year trip, the
spacecraft will be injected on July 5, 2016 into an highly elliptical
53-day polar orbit around the giant planet. After two revolutions,
Juno's orbital period will be reduced to 14 days for science
operation. The spacecraft will orbit Jupiter 36 times over 595 days
before deorbit into its atmosphere. The mission aims to study the
planet's composition and interior structure, gravity field, magnetic
field, and polar magnetosphere in order to investigate the origin
and evolution of the giant planet (Matousek, 2007; Bolton, 2010).

Among nine scientific instruments, the payload of Juno
includes radio-science instruments that will be used to accurately
(S. Le Maistre).
map the gravity field of Jupiter through classical Precise Orbit
Determination (POD) techniques (e.g. Iess et al., 2013; Tommei et
al., 2015). In addition to the gravity field, the very accurate
reconstruction of the orbit of Juno enabled by the high precision
Ka-band Doppler data will permit, among others, the determina-
tion of the main moments of inertia (MOI) of the giant planet. MOI
characterize the internal mass distribution inside the planet. Such
information about the interior structure is key for the under-
standing of the planet's formation and evolution (Guillot and
Gautier, 2007).

The MOI of Jupiter can be inferred (1) from the degree-two
gravity coefficient assuming the planet to be at the hydrostatic
equilibrium, (2) from the planet orientation changing (precession)
and (3) from the Lense–Thirring relativistic acceleration experi-
enced by the spacecraft (Iorio, 2010; Helled et al., 2011). Expected
to be very small, the acceleration experienced by Juno due to
Jupiter pole precession rate has not been analyzed in detail before.
So far, only Helled et al. (2011) considered Jupiter's polar
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precession to return to the normalized polar moment of inertia,
C=MR2 (M the mass of Jupiter and R its mean radius). Other studies
about the estimation of Jupiter's moment of inertia with Juno were
mainly focused on the measurement of the Lense–Thirring accel-
eration (Iorio, 2010; Finocchiaro et al., 2011; Iess et al., 2013;
Tommei et al., 2015). This relativistic acceleration of the spacecraft
appeared first to be a promising way to constrain Jupiter internal
structure and has been predicted by some of these authors to
allow estimating C with a relative accuracy of about 2%. However,
this precision is one order of magnitude too large to bring sig-
nificant constraint on Jupiter's core properties as pointed out by
Helled et al. (2011).

It is worthwhile to mention that the previous simulations
published on Juno's gravity experiment have all been performed
assuming an 11-day orbit tracked during one Earth-year. Our
simulations are the first ones based on the very recently adopted
14-day orbit over the extended 1.6 Earth-year nominal mission
duration.

A brief review of the model-predicted moment of inertia of
Jupiter is presented in Section 2. A discussion on the precessional
equations of the spin-pole of Jupiter leading to our recommended
formula is done in Section 3. Section 4 describes the simulations
set up and Section 5 provides and discusses the simulations
results. The interest of the VLBI data is assessed in Section 6 and
Section 7 summarizes the main results of the paper.
2. Jupiter's polar moment of inertia

We know only a little about the interior of the largest planet of
our solar system. Is there a core inside Jupiter? What can be its
size and its mass? These are remaining secrets that could be
revealed by the Juno orbiter through the determination of the
moment of inertia of the whole planet, providing thereby key
information on the origin and evolution of Jupiter. Although the
interior structure and composition of the giant planet remain very
uncertain, we know from its mass–radius relation that Jupiter is
not made of pure hydrogen and helium but also contains an
additional fraction of heavy elements (Guillot and Gautier, 2007).
The mass spectrometer aboard the Galileo probe measured the
abundance of heavy elements in the troposphere of Jupiter (Wong
et al., 2004). However, it is currently impossible to claim if most of
the heavy elements have collapsed in the center to form a dense
core or if they are still distributed in the envelope. Measuring the
MOI related to the density profile inside the planet will help to
answer this critical question about Jupiter's interior.

Different methods have been used to predict the MOI of Jupiter.
Jeffreys (1924) used the Radau–Darwin approximation to infer the
MOI from the second degree gravity coefficient, J2. The large MOI
value they obtained (see Table 1) indicates a small or even non-
existent core. However this first order approximation is not
Table 1
Non-exhaustive published values for Jupiter normalized polar moment of inertia.

Reference C=MR2 Core properties Technics

Jeffreys (1924) 0.265 Small or inexistent Radau–Darwin
approximation

Hubbard and Mar-
ley (1989)

0.264 Not constraininga Most plausible interior
model

Ward and Canup
(2006)

0.236 Massive Dynamical
considerations

Helled et al. (2011) 0.2629–
0.2645

Mcoreo40MEarth Core/enveloppe inter-
ior modelRcoreo0:3RJupiter

a Helled et al. (2011) hinge value.
unequivocal and the MOI could actually be shifted considering
higher order terms of the Radau–Darwin equation. Helled et al.
(2011) provided a range of MOI based on a simple core/enveloppe
interior model of Jupiter exactly fitting the measured zonals J2 and
J4 and matching J6 within its error bar. They found a range of
possible MOI centered on 0.2637 and varying by 70.3% allowing
for either a core as large as one third of the planet size, with a
mass up to 40 Earth mass, or no core at all. These authors never-
theless acknowledge that the range provided is interior-model-
dependent and could be biased. Finally, a more peculiar method
has been used by Ward and Canup (2006) to deduce the MOI of
Jupiter from its obliquity. These authors assumed that a portion of
the obliquity of Jupiter results from a spin-orbit secular resonance
with Uranus whose orbital plane precession rate was observed to
be close to the Jupiter polar precession rate. The several-percent-
smaller value they obtained (see Table 1) would be in favor of a
massive core, but is maybe more speculative.

In conclusion, the MOI predicted by the theories (geophysical
and dynamical) are model-dependent and not in accordance with
each other, currently providing only a poor constraint on the
interior structure and composition of Jupiter. Therefore trying to
determine the actual MOI of Jupiter with Juno is of great interest. If
obtained with enough precision (tenth of percent, Helled et al.,
2011), such a measurement could definitely prove the existence of
a heavy-element core and bring strong constrain on its mass and
size taking a huge leap forward in our comprehension of Jupiter,
the solar system and beyond (Guillot and Gautier, 2007; Bolton,
2010).
3. Jupiter's pole precession

Due to the gravitational torque from the Sun on the Jovian
system, the orientation of the spin-axis of Jupiter changes in
inertial space, sliding the equatorial plane of the planet along the
invariable plane of the Sun-Jupiter system (slightly inclined from
Jupiter orbital plane) by an angle equal to _ψ ðt�t0Þ with respect to
the pole direction at epoch t0. This very slow motion of the tilted
rotation axis around the invariable plane pole is called precession
and is characterized by the rate _ψ at which the pole orientation
evolves. _ψ is inversely proportional to the planet normalized polar
moment of inertia, C=MR2, giving the precession rate a real geo-
physical interest. However, returning to the MOI from a precise
measurement of _ψ is not straightforward since the precessional
equations are not obvious, especially in the case of a planet with a
batch of accompanying satellites as for Jupiter. Indeed, as pointed
out by Ward (1975), the presence of its numerous moons (espe-
cially the four Galilean satellites) plays a major role in the pre-
cessional motion of Jupiter spin pole.
3.1. Proposed precession model

In this section we provide a new precession model for Jupiter.
Starting from the equation of rotational motion of the planet's pole
torqued by the Sun and k satellites, the basic equations for the long
term motion of the right ascension, α , and declination, δ , of
Jupiter's pole are Jacobson (2014)

_α cos δ ¼ �3
2

MR2J2
C _ω

 !
μ�
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ĥ0 � ŝ
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ĥ0 � ĝ
� �
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ĥ j � ŝ
� �
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where

J2 Jupiter's second zonal gravity harmonic coefficient
_ω Jupiter's rotation rate
C Jupiter's polar moment of inertia
μ� GM of the Sun
μj GM of satellite j
r0 distance of Jupiter from the Sun
rj distance of Jupiter from the satellite j
ĥ0 the unit vector normal to the Jupiter centered orbit of

the Sun
ĥ j the unit vector normal to the Jupiter centered orbit of

satellite j
ŝ Jupiter pole vector
f̂ vector along the ICRF node of the Jupiter equator
ĝ vector completing the orthogonal coordinate system

These equations are analogous to those given in Chapter IV of
Sampson (1921) for the representation of the motion of Jupiter's
equator. Our analytical expressions of the pole rates are

_α ¼ 3MR2J2
4C _ω cos δ

Xk
j ¼ 0

μj

μ0

� � n2
j

1� e2j
� �3=2 1�3

2
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�
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with

μ0 GM of Jupiter
n0 Jupiter's mean orbital motion
Table 2
Jovian system dynamical parameters and orbital elements.

Param. Jupiter Io

μ (km3 s�2) 126,686,534.20 5959.92
J2 14;695:6� 10�6 –

_ω (deg/day) 870.5360 –

n (deg/day) 9:1503600� 10�2 203.488958

e 0.048459 0.004135
I (deg) 1.304032 0.035709
Ω (deg) 302.659159 133.947277
_Ω (deg/y) 0.00201465 �48.504994
i (deg) 2.215940 0.001448
Δ (deg) 159.586765 126.548974
nj the mean orbital motion of satellite j
e0 Jupiter's orbital eccentricity
ej the orbital eccentricity of satellite j
I0 the inclination of Jupiter's orbit to the invariable plane
Ij the inclination of the orbit of satellite j to its Laplace plane
i0 the inclination of the invariable plane to Jupiter's equator
ij the inclination of the Laplace plane of satellite j to the

Jupiter equator
Ω0 the node of Jupiter's orbit on the invariable plane
Ωj the node of the orbit of satellite j on its Laplace plane
Δ0 the node of the invariable plane on Jupiter's equator
Δj the node of the Laplace plane of satellite j on

The Ω's are measured from the intersection of the invariable/
Laplace planes with the Jupiter equator, and the Δ's are measured
from the intersection of the Jupiter equator with the ICRF refer-
ence plane. Assuming C=MR2 ¼ 0:264 and using the numerical
values of Table 2 we obtain the rates:

_α ¼ �0:0065541 =cy and _δ ¼ þ0:0024761 =cy ðcy stands for centuryÞ:
ð5Þ

Note that we can integrate (3) and (4) to obtain expressions for the
orientation angles (see Appendix A).

Assuming that the pole (ŝ) is precessing about the normal to
the invariable plane (ŵ0) with rate _ψ , i.e.

d
dt

ŝ
� �¼ _ψ ŵ0 � ŝ

� �
ŵ0 � ŝ
� � ð6Þ

we get

_ψ ¼ �2
_α cos δ cos Δ0þ _δ sin Δ0

sin 2i0

 !
; ð7Þ

which, after substituting from (3) and (4), becomes

_ψ ¼ � 3
2 sin 2i0

MR2

C
J2
_ω

Xk
j ¼ 0

μj

μ0

n2
j 1�3

2
sin 2 Ij

� �
sin 2ij

ð1�e2j Þ3=2
cos Δ0�Δj

� �þ _ψ 00:

ð8Þ
j¼0 corresponds to the parameters relative to the primary and 1
r jrk is for the set of satellites. R¼69911 km is Jupiter's mean
radius.

_ψ 00 is a small corrective term coming from the incorporation of
small long-period variations due to the precession of Jupiter's
orbital plane with respect to the invariable plane. In other words,
assuming the node of Jupiter's orbit to the invariable plane (Ω0)
slowly sliding at a rate _Ω0 along the invariable plane (i.e.
Ω0 ¼Ω00þ _Ω0t, with t being time from epoch andΩ00 the node at
epoch measured from the intersection of the invariable plane and
the Jupiter equator), then periodic terms appear in the orientation
angle of the spin pole (see Appendix A) that have so long peri-
Europa Ganymede Callisto

3202.74 9887.82 7179.30
– – –

– – –

101.374724 50.317607 21.571073

0.009371 0.001404 0.007368
0.530508 0.234910 0.660810
47.142650 279.100438 171.533370
�11.919505 �2.612227 �0.623531
0.016411 0.083281 0.446992
136.948144 140.851829 138.786197
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Fig. 1. Jupiter pole axis precession rate as a function of the normalized polar
moment of inertia according to Eq. (8). Right y-axis corresponds to the relative
difference between the actual precession rate _ψ reported on left y-axis and the
nominal value _ψ n ¼ �3269 mas=yr.
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od ( _Ω0C2� 10�3 deg=y) that one can break them down into

constant and rate terms.1 The latter, denoted here as _Ψ
α
0 and _Ψ

δ
0,

modify the precession rate of Jupiter pole of rotation according to

_ψ 00 ¼ � 3
2 sin 2i0

MR2

C
J2
_ω

n2
0

ð1�e20Þ3=2
ð cos Δ0

_Ψ
α
0 þ sin Δ0

_Ψ
δ
0Þ; ð9Þ

where the incorporated rate terms are

_Ψ
α
0 ¼ þ sin 2I0 cos 2ði0=2Þ½1�4 sin 2ði0=2Þ� cos ðΩ00þΔ0Þ

þ sin 2I0 sin 2ði0=2Þ½1�4 cos 2ði0=2Þ� cos ðΩ00�Δ0Þ
�2 sin 2 I0 sin ði0=2Þ cos 3ði0=2Þ� cos ð2Ω00þΔ0Þ
þ2 sin 2 I0 cos ði0=2Þ sin 3ði0=2Þ� cos ð2Ω00�Δ0Þ; ð10Þ

and

_Ψ
δ
0 ¼ þ sin 2I0 cos 2ði0=2Þ½1�4 sin 2ði0=2Þ� sin ðΩ00þΔ0Þ

� sin 2I0 sin 2ði0=2Þ½1�4 cos 2ði0=2Þ� sin ðΩ00�Δ0Þ
�2 sin 2 I0 sin ði0=2Þ cos 3ði0=2Þ� sin ð2Ω00þΔ0Þ
�2 sin 2I0 cos ði0=2Þ sin 3ði0=2Þ� sin ð2Ω00�Δ0Þ: ð11Þ

Applied to the Jovian system (considering here only Jupiter and
the four Galilean satellites) with the parameter values taken from
Table 2 and with C=MR2 ¼ 0:264, we get from Eq. (8) a predicted
value of the nominal precession rate of Jupiter's pole equal to

_ψ n ¼ �3269 mas=yr ð12Þ
with a contribution from the precession of its orbital plane equal
to

_ψ 00 ¼ �336 mas=yr: ð13Þ
Fig. 1 shows how this theoretical value varies given the MOI
reported in Table 1 (the extremely low _ψ ¼ �3452 mas=yr cor-
responding to the MOI proposed by Ward and Canup, 2006, has
not been displayed). Evaluating Eq. (7) using the IAU recom-
mended values, _α ¼ �0:0064991/cy and _δ ¼ þ0:0024131=cy
(Archinal et al., 2011) leads to _ψ ¼ �3228 mas=yr. This precession
rate as well as the one obtained by Ward (1975) (see discussion in
Section 3.2) is also displayed in Fig. 1.

Our model (8) allows us to quantify the contribution to _ψ of the
different torques experienced by Jupiter. It predicts that the Gali-
leans satellites are responsible for about 57% of the total preces-
sion rate of Jupiter and that 43% is directly induced by the Sun on
1 Note that the pole of rotation also exhibits shorter periodic terms that have to
be incorporated in the pole direction modeling to properly deal with incoming true
data (see analytic expressions in Appendix A).
the oblate tilted planet. Ganymede (30%) and Callisto (20%) are
predicted to be responsible for half of the precessional motion of
Jupiter's spin axis. Neglecting the precession of Jupiter orbital
plane (i.e. _ψ 00 ¼ 0) induces an error on _ψ of about 10% by
underestimating the direct solar contribution _ψ 0 to only 35% of
the total pole precession rate. The precession due to the Sun can be
computed according to

_ψ 0 ¼ �3
2
MR2

C
J2
_ω

n2
0

1� e20
� �3=2 1�3

2
sin 2 I0

� �
þ _ψ 00: ð14Þ

3.2. Historical models

Ward (1975) first proposed an analytical expression for the
contribution of natural satellites to the precession rate of the
primary:

_ψ ¼ �3n2
0

2 _ω
J2þq

C=MR2þ l

 !
cos ε; ð15Þ

where ε¼ i0þ I0 is the obliquity of Jupiter, q is the satellites con-
tribution to J2 and l is the angular momentum of the k satellites
system normalized to MR2 _ω. They read

q¼ 1

2R2

Xk
j ¼ 1

μjðμ0njÞ�2=3 and l¼ 1

R2 _ω

Xk
j ¼ 1

μjðμ0njÞ�1=3: ð16Þ

The above expression (15) assumes a zero-eccentricity and a zero-
inclination of the orbit of Jupiter and its satellites. Based on the
knowledge of that time, and assuming C=MR2 ¼ 0:25, Ward (1975)
obtained a precessional period for Jupiter corresponding to a rate of
_ψ ¼ �2880 mas=yr when accounting for its satellites. This precession
rate is 17% slower than what we get with Eq. (8) when we use the
same C=MR2 ¼ 0:25. However, these computed rates differ mostly
because of the numerical values used by the authors and because of
the different approximations made. In order to properly compare the
different formula predictions we recompute Eq. (15) with parameter
values taken in Table 2 and with C=MR2 ¼ 0:264. This leads to
_ψ ¼ �3294 mas=yr, which is this time 0.76% faster than our nominal
value. Without accounting for the satellites, Eqs. (8) and (15) both
predict _ψ 0 ¼ �1058 mas=yr if the ð1�e20Þ�3=2 Jupiter orbit eccen-
tricity factor is applied to Eq. (15) and if _ψ 00 is set to 0 in Eq. (8).
However, _ψ 00 ¼ �336 mas=yr is not negligible, meaning that Eq. (15),
considering Jupiter's orbital plane fixed in inertial plane, should be less
accurate than Eq. (8).

Thirty years later, Boué and Laskar (2006) derived with mini-
mal approximations the precession equations of a planet with a
satellite. However, as acknowledged by the authors, their numer-
ical applications only account for the Sun-planet-satellite without
accounting for mutual perturbations or accumulated effects of
multiple satellites. This explains why summing the contributions
to the planet pole precession they computed for the Galileans
satellites ( _ψ k) and for the direct Sun contribution ( _ψ 0) leads to a
very different precession rate than the one we have (12):

_ψ ¼ _ψ 0 1þ
X
k

_ψ k� _ψ 0
_ψ 0

 !
¼ �3705 mas=yr ð17Þ

with _ψ 0 ¼ �1376 mas=yr. The latter value for the direct Sun
contribution is obtained by scaling the �908.216 mas/yr proposed
by the authors, who considered Jupiter as an homogeneous sphere
(i.e. C=MR2 ¼ 0:4), by 0.4/0.264. Because of the multiple satellite
limitation previously evoked, such a large value of the precession
rate (17) is disregarded hereafter.

Helled et al. (2011) used a third numerical value for _ψ equal to
133 mas/yr. This value is 25 times smaller than our predicted value
(12) and can be obtained by computing the angle (θ) between the



Table 3
Juno's gravity experiment characteristics.

Parameter value

Orbital period 14 days
Mean motion ns ¼ 5:2� 10�6 rad=s
Eccentricity e¼0.95
Inclination î ¼ 901
Semi-major axis a¼1,670,000 km
Orbital plane Closer to face-on

Frequency band Ka-band (32.5 GHz)
Doppler noise 10 μm/s@60 s
Ground tracking station DSS-25 (34-m at Goldstone)
Nominal tracking duration �6 h about pericenter

Jupiter orbit insertion (JOI) July 5, 2016
Nominal mission duration 595 days
Gravity science start November 11, 2016
Gravity science end January 23, 2018
Science/gravity operations 32/26 passes
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Fig. 2. Sun–Earth-Probe angle during operations. Blue dots locate the tracking time
of Juno. The grey area shows the region of very high plasma noise in the raw data.
Small numbers reported along the curve are orbit's numbers. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
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spin-pole direction at t0 and the spin pole direction at t1 ¼ t0þ1
year according to

cos θ¼
cos δ0 cos α0

cos δ0 sin α0

sin δ0

0
B@

1
CA �

cos δ1 cos α1

cos δ1 sin α1

sin δ1

0
B@

1
CA; ð18Þ

with α1 ¼ α0þ _αðt1�t0Þ and δ1 ¼ δ0þ _δðt1�t0Þ. However, such an
assumption does not account for the tilt of the spin pole with
respect to the invariable plane (i0). The latter being small, a slight
shift in the pole's direction (θ) translate into a large shift in the
longitude direction of the node (Δψ ), which can be inferred from
θ according to

cos ðΔψ Þ ¼ cos θ� cos 2 i0
sin 2 i0

; ð19Þ

with Δψ ¼ _ψ ðt1�t0Þ. Using Archinal et al.'s (2011) numerical
values for α0; δ0; _α ; _δ in Eq. (18) and i0 from Table 2 in Eq. (19), one
gets _ψ ¼ �3451 mas=yr which is more in line with, but still not
equal to what we obtained above from Eqs. (7) and (8) (i.e.
�3269 mas/yr).

Taken as they are the published values of the precession rate2

of the Jupiter's pole, one gets a wide range of values for _ψ (from
�2880 to �133 mas/yr), which are not in accordance with our
_ψ n ¼ �3269 mas=yr nominal value. This range shifts and reduces
to [�3294, �3228] mas/yr when ignoring the prediction from
Boué and Laskar (2006) equations and the prediction derived from
Helled et al. (2011) and it further reduces to _ψ A ½�3294; �3269�
mas=yr by neglecting the older IAU value. This corresponds to 1%
variation in _ψ , meaning that, even with a infinitely precise esti-
mation of _ψ , C=MR2 could suffer of biased estimate at the level of
1%.

We have not investigated deeper the reasons of these differ-
ences, coming most probably from the approximations made in
the analytical developments (e.g. zero eccentricity, zero-
inclination hypothesis in Eq. (15)). However, we emphasized
here that inferring the C=MR2 from _ψ must be performed carefully
in order to infer the MOI without any bias and we recommend
using Eq. (8) for that purpose, as done here in Section 5.
version of this paper.)
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4. Simulation settings

In this paper we carry out detailed and realistic numerical
simulations with the JPL Orbit Determination Program (ODP) to
assess the precision with which the precession rate of Jupiter's
pole of rotation can be measured by Juno. We use ODP first to
simulate two-way3 Doppler and range data and then to perform a
covariance analysis based on them. The simulated data are focused
on the well defined characteristics of the Juno mission presented
here below and summarized in Table 3.

Juno science operations will be in a very elliptical polar orbit
with an orbital period of about 14 days. The spacecraft will orbit
Jupiter 36 times before deorbiting into its atmosphere. Perijove
numbers 4–36 will be dedicated to science observations among
which 80% of the pericenter operations will be devoted to the
gravity experiment. The latter consists of a nominal 6 h of Earth
based radio tracking of the spacecraft around each of the 26
gravity-pericenter passes. Juno's radio subsystem includes two
coherent transponders communicating in X-band (7.2 GHz uplink,
2 We mean here that the numerical values are from the authors. For instance,
even if _ψ does not appear as it is in the papers, the equivalent precession period
does, or _α and _δ .

3 Round-trip signal between the spacecraft and a given ground station
on Earth.
8.4 GHz downlink) and Ka-band (34 GHz uplink, 32.5 GHz down-
link), respectively. Since the orbit numbers 4, 6, 7, 8, 9 and 14 will
be granted to the Microwave Radiometer (MWR) for probing the
deep atmosphere of Jupiter, there will be no Ka-band data then but
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the X-up/X-down radio link should be established during the
pericenter pass of those orbits. The nominal configuration for the
gravity experiment is considered here to be based on the Ka-band
data only (blue dots in Figs. 2–4). However, the optimal case
consisting to include the X-band data is also tested. Note that the
orbit number 1 could also be X-band tracked improving the
tracking timespan by 95 days, which could be useful to better
determine the precession rate of Jupiter's spin pole.

In real operations both transponders will operate simulta-
neously during the nominal gravity experiment. Because the
charged-particles contribution to Doppler is inversely proportional
to the radio signal frequency, the Ka-band data will be poorly
degraded by the solar plasma over most of the science phase of the
mission when the SEP (Sun–Earth-Probe) angle remains greater
than 15°. As shown in Fig. 2, only orbits 27–30, acquired around
the solar conjunction, could have significant plasma noise. How-
ever, a suitable combination of both X- and Ka-band signals (as it is
customarily done using X- and S-band) will enable to cancel most
of the plasma noise in the radio-science data to the water vapor
noise level, ensuring a very small plasma noise in the Ka-band data
over the whole mission.

Only the Deep Space Station (DSS)-25 located at Goldstone in
California's Mojave desert will be used to track Juno for gravity
science since it is the only NASA station to enable transmitting
(uplink) in Ka-band. During the nominal 6 h per orbit of DSS-25
observations, the radio signal will be acquired with an elevation
ranging approximately between 10° and 50°, which ensure a small
noise contribution from the Earth troposphere. Therefore, the
Juno's Ka-band two-way Doppler and range measurements should
be of a rather good quality that is why we assume a noise level of
10 μm s�1 at 60 s of integration time for the Doppler and of about
2 m for the range. Note that we consider only one range mea-
surement per pass.

As shown in Fig. 3, the pericenter altitude of Juno will increase
with time and drift northward in latitude by almost 1° per orbit
due to the strong oblateness of Jupiter and the high eccentricity of
the orbit. At pericenter, Juno will overfly Jupiter at an altitude
ranging between �4200 km and �8000 km above the 1 bar level.
After each pericenter pass, the spacecraft altitude increases very
rapidly making Juno totally insensitive to the high degree har-
monic gravity coefficients shortly after the closest approach. In
addition to such a limited area of low pass of Juno, the inclination
of its orbital plane relative to the plane normal to the Earth-Jupiter
direction (or Earth plane-of-sky) remains between 14° and 51°
throughout Juno's science operations (see Fig. 4) and below 25° for
the first 25 orbits. The view of the orbit from the Earth is then
nearly “face-on”, which is known to be unfavorable for orbit
determination because most of the accelerations undergone by a
spacecraft mainly express along-track. Such orbital characteristics
have therefore a significant impact on the determination of the
gravity field, but

1. this does not prevent accurate determination of the degree-two
zonal gravity coefficient that relates the precession rate and the
MOI as shown in Section 5, and

2. a face-on configuration is even favorable for observing the
signature in the Doppler data of the precessing orbital plane
of Juno as discussed in Appendix D.

The simulations presented here follow the multi-arc strategy
established by the previous authors for the orbit reconstruction
(Finocchiaro et al., 2011; Iess et al., 2013). That is to say, we con-
sider one data arc to be one tracking window, systematically
excluding from the arc the spacecraft maneuvers that will be
performed few hours after one pericenter pass to target the next
perijove's longitude. This strategy has been chosen in order to
avoid the dynamical noise induced by the maneuvers. We thus
compute the 14-day orbit of Juno from only �6 h of tracking
(o2% of time). Nevertheless, such a very small amount of tracking
time corresponds to a spacecraft true anomaly ranging between
�125° and þ125°. We have then Ka-band radio observations over
70% of the spacecraft true anomaly, including the periapsis, which
explains why the orbit can be properly reconstructed.

The exact timing for the Orbit Trim Maneuvers (OTM) should
be fixed only a few weeks before the maneuver date but will
nominally happen 4 or 6 h after perijove. To correctly align the s/c-
axis with theΔv direction needed for the OTM, Juno's attitude will
be modified losing by the way the Earth pointing of its 2.5-m fixed
antenna. The Spin Burn (SB) allowing such a rotation of the
spacecraft will typically happen 1.75 h before the OTM, reducing
the maximum radio link duration to 2.25 or 4.25 h after perijove
(see Fig. B2). Therefore the 6 h of guaranteed tracking per orbit
could be slightly shortened or extended with respect to the 3 h
tracking past pericenter of the nominal configuration. Moreover,
there is still some flexibility in the radio-science operation such
that the tracking pass could be more or less centered on the
periapsis. We assess here the impact of such tracking window
characteristics on the parameter estimate precisions, considering
three more tracking windows of 6 h shifted by �30 min, þ30 min
and by þ1 h from the perfect perijove centered nominal window.
We also consider two longer tracking passes of about 7 h and of
maximum tracking time. The latter assumes that DSS-25 tracks
Juno when the spacecraft is 10° above the horizon, sometimes
stopping before this when an early SB has been scheduled. Details
on the tracking characteristics are provided in Appendix B.

We carry out a variance/covariance analysis focused on the
determination of the precession rate. Nevertheless, the precession
rate uncertainty coming from a least square method is estimated
together with those of the Jupiter gravity coefficients and others
dynamical parameters in order to take into account the possible
correlation between all these variables, that could introduce bias
in the precession rate estimates and degrade the associated
uncertainties. In all, about 350 parameters are estimated. This
includes the initial positions and velocities for each arcs (6�26
parameters) plus corrections in the calculations of the forces
undergone by Juno due to the solar pressure (one scale factor
estimated per arc), due to Jupiter infrared radiation (one scale
factor estimated per arc), and due to spacecraft outgassing (one
correction per arc). In addition to these local parameters estimated



Table 4
Expected 1-σ uncertainties of the estimated parameters used to infer the MOI of
Jupiter obtained from the nominal 6 h of tracking centered on the pericenter of
Juno's orbit.

Parameter Nominal value A priori
constraint

1-σ absolute
precision

1-σ relative
precision (%)

α0 268°.05 100° 11:015� 10�4 0.00004

δ0 64°.49 100° 81:82� 10�5 0.00014

_ψ �3269 mas/yr 106 mas/yr 1.99 mas/yr 0.06
J2 0.014736 2�10-2 9:47� 10�9 0.00006

LT 1 108 7:56� 10�1 75.6

0 4 8 12 16 20 24 28 32 36
Juno’s orbit number

0

2

4

6

8

10

12

14

16

18

20

σ ψ
 [m

as
/y

r]

6h = 2.0h + 4.0h
6h = 2.5h + 3.5h
6h = 3.0h + 3.0h
6h = 3.5h + 2.5h
7h = 3.5h + 3.5h
Maximum tracking

0.60

0.06

0.12

0.18

0.24

0.31

0.37

0.43

0.49

0.55

0.60

0.06

0.12

0.18

0.24

0.31

0.37

0.43

0.49

0.55

σ ψ
 [%

]

Fig. 5. Time evolution of the 1-σ uncertainties in Jupiter spin axis precession rate
as a function of the orbit number of Juno. The expected uncertainties obtained for
each of the 6 tracking passes tested in this paper are color-distinguished. Black thin
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for each pericenter pass, we estimate global parameters from the
26 gravity data arcs as the GM of Jupiter, and about 110 gravity
coefficients including the first 20 zonal harmonic coefficients and
the degree-two Love numbers. Only the five first sectorial coeffi-
cients are taken into account, whereas the tesseral gravity coeffi-
cients of order one and two are included until degree 20 (see
Appendix C for justifications about the choice of this maximum
degree). Finally, stacking together all the gravity tracking data also
allows us to estimate the Lense–Thirring acceleration experienced
by Juno4 as well as the pole orientation of Jupiter at J2000, and of
course its precession rate. Note that we chose as a baseline to fix
the secular change in the obliquity of Jupiter spin-axis according to
rotation theories (e.g. Reasenberg and King, 1979). In the least
square regression, we apply a priori constraints on the parameters.
Those applied to our parameters of interest are very low and
reported in Table 4, the initial position and velocity parameters
have all a priori constraint of 1 km and 1 m/s, respectively. Con-
straints used for the zonal gravity harmonics (see Fig. C2) equal
100 times their expected value (e.g. Kaspi et al., 2010).

Since an error on the orientation of the Earth will show up as
an error on the Jupiter's orientation parameters (including the
precession rate), we accounted for them in our study by con-
sidering an error of about 0.4 mas5 on each rotation angles
orienting the spin-pole of the Earth. These Earth orientation
uncertainties are thus included in the uncertainties of estimated
parameters through the use of consider analysis (Bierman, 1977).
However, as we will see in the next section, the Jupiter's orienta-
tion parameter precisions provided by Juno will still be several
times larger than the current Earth's orientation errors. The latter
have then a negligible impact on the estimate of the precession
rate of Jupiter's pole of rotation.
5. Results and discussion

5.1. Focus on the precession rate

In general, the formal errors we obtained for the 350 para-
meters estimated here are for the main ones in agreement with
the estimation already presented in conference by other authors
(Finocchiaro et al., 2011; Iess et al., 2013). Therefore, we will not
discuss our results on the gravity field and other parameters
except than those allowing to estimate the MOI of Jupiter, namely
the precession rate ( _ψ ), the degree-two gravity coefficient (J2) and
the Lense–Thirring (LT) effect. We also provide the obtained pre-
cisions for the orientation angle at t0, i.e. the spin-axis right
ascension (α0) and declination (δ0) at J2000, since these two
parameters, highly correlated with _ψ , see their formal errors
4 See details on the Lense–Thirring effect in Iorio (2010) for instance.
5 Deduced from the Earth orientation series provided by the IERS (Interna-

tional Earth Rotation and Reference Systems).
multiplied by 10 and 8 respectively when estimating the secular
change in the orientation of the spin-pole of Jupiter, rather that
fixing it as done by most of the previous authors. The other
parameters uncertainties are only slightly affected by the preces-
sion rate estimation, the largest decrease in precision being on the
GM of Jupiter, by about 7%, the k22 Love number by 3% and the C30
gravity coefficient by 1.5%. Although some of the laid aside para-
meters are reported in Table C1 of Appendix C, we invite the
reader to consult the previous study for details.

5.1.1. Nominal tracking scenario
If nominally tracked 3 h before and 3 h after the pericenter

pass, the Juno mission will estimate the precession rate of the
spin-axis of Jupiter with a precision of about 2 mas/yr. Table 4
reports the predictions obtained on our parameters of interest
with such a nominal 6 h of Ka-band radio tracking. The a priori
constraints used in the least square fit are also reported in Table 4.
They are greatly larger than the post-fit 1-σ uncertainties (by
about 6 orders of magnitude), which indicates the strong sensi-
tivity of the Juno's tracking data to our parameters of interest. The
time evolution of the nominal 1-σ uncertainty on _ψ is shown by
the solid black curve in Fig. 5. The latter figure also shows, looking
at the black dashed curve, how negligible it is to combine the
nominal Ka-band data with the X-band measurements that should
be obtained at pericenters 1, 4, 6, 7, 8, 9 and 14 in order to better
determine the precession rate of Jupiter with Juno. Such a negli-
gible improvement of σ _ψ is due on one hand to the fact that the X-
band data acquired at pericenters 1 and 4 close to the solar con-
junction (see Fig. 2) are predicted to be respectively 33- and 14-
times noisier than the nominal Ka-band data (Folkner, 1994). On
the other hand, because the precession signature in the Doppler is
mainly controlled by the data time span, in theory, orbits 5 and 35
would be sufficient to measure the secular drift of the spin pole of
Jupiter, assuming well known all other forces affecting the
spacecraft trajectory. Additional data acquired between these two
set of data would thus be theoretically useless to determine _ψ .
Obviously the more data points, the more precise are the esti-
mates, but above all, in real life, we critically need as much
tracking data as possible to actually determine the best we can the
parameters used to model these other forces, otherwise degrading
the estimate of the precession rate.

It is worthwhile to mention that including one range data point
in each tracking pass is found to have an insignificant contribution



Table 5
Summarize of the current uncertainties in percent in the parameters relating the
MOI to the precession rate. Parameters appearing in Eq. (8) not mentioned here are
considered as well known. G is the gravitational constant in km3 s�2.

Parameter Symbol Absolute uncertainty Relative uncertainty
(%)

Deg 2 gravity zonal
coef.

J2 0:29� 10�6 0.002000

Io's mass Gm1 0.012 km3/s2 0.000200
Europa's mass Gm2 0.009 km3/s2 0.000280
Ganymede's mass Gm3 0.017 km3/s2 0.000170
Callisto's mass Gm4 0.013 km3/s2 0.000180
Jupiter rotation rate _ω 1 s 0.002800
Galileans mean

motion
ni ¼ 1�4 o10�13 rad=s o0:000001
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to the precession estimate although useful for Jupiter orbit
determination. In addition, also estimating the polar axis secular
change in obliquity increases the precession estimate uncertainty
by less than a factor of 2.

One time the formal error is relevant: We consider the 1-σ for-
mal error reported in Table 4 as relevant because the data noise
statistics of Juno are well known and because we do not expect
significant systematic errors since no reaction wheels desatura-
tions nor maneuvers during the tracking are planned. We also
ignore the factor of 5 obtained by Folkner (1994) and typically
applied to the estimated parameter formal errors from the martian
orbiters (Konopliv et al., 2011) to account for the correlations
between the measurements due to plasma noise, since the latter
should be very small as explained before.

An already better precision than for Mars: The 2 mas/yr of pre-
cision obtained by Juno (see Table 4) after about one Earth year of
operation is already better than the 6.1 mas/yr of precision
obtained by Kuchynka et al. (2014) for the Mars precession rate
using about 15 years of abundant radio tracking data from MGS,
ODY and MRO. This is first explained by the good quality of the
Juno's Ka-band tracking data, with a noise 10 times smaller than
the martian X-band data noise. Moreover, due to its very elliptical
orbit, Juno's velocity around the perijove is very high (�55 km/s)
compared to that of the quasi-circular martian orbiters (�3.5 km/
s). Therefore, since the Doppler signal is controlled by the space-
craft velocity, the signature of the precession rate will strongly
affect Juno's orbit, much more significantly than it affects the Mars
orbiters. Finally, as said above, the orbit of Juno is close to face-on
during most of the mission (75% of the time with an Earth Plane-
of-sky inclination smaller than 30°, see Fig. 4), which is a favorable
orbit geometry to measure the precession rate with Doppler data
(see Appendix D).

Helled et al.'s (2011) too small precession rate: Helled et al.
(2011) considered a precession rate equal to 133 mas/yr which is
about 25 times lower than the one computed in the present paper.
Since the Doppler observable linearly depends on _ψ , the formal
errors proposed by the least squares analysis do not depend on the
actual value of _ψ . Therefore, the relative accuracy obtained by
Helled et al. (2011) can easily be corrected directly scaling their
0.22% prediction by 1/25, obtaining �0.01% which is (this time)
lower than our maximum-tracking best estimate (�0.04%, see
following section). As acknowledged by the authors, their simu-
lation is simple, likely providing too optimistic precision for _ψ .
Thus, this can be seen as a threshold, giving us some confidence to
our own results, which are a bit worse than 0.01%. It is important
to mention here that such a difference between their published
value and ours could be crucial to efficiently return to the core
properties. Indeed, a precession estimation at 0.22% will poorly
reduce the range of core models (see Helled et al., 2011's Fig. 2)
whereas an estimate at 0.06%, or better at 0.04%, could really be a
key information to distinguish between formation's scenarios.

5.1.2. Other tracking scenarios
Fig. 5 shows the evolution of the precession rate formal error as

a function of time for the six tracking coverage described above
(including the nominal 6 h-pericentered case). Given such tracking
window characteristics, the precession rate will be estimated with
a precision ranging between �0.04% and �0.11% of its nominal
value. Indeed, for such a tracking repartition (centered or not
around the periapsis) and duration (in a range of 6 h to about 8 h
in average per pass), the precision in the determination of the
parameters can be increased or decreased by almost a factor of
2 as shown in Fig. 5. The longer the tracking duration just before
the pericenter, the better the precession rate estimate precision
and the longer the tracking duration just after the pericenter, the
worst. This influence of the tracking coverage dissymmetry with
respect to the pericenter is even more significant for the preces-
sion parameter determination than the tracking duration itself
(Fig. 5). These conclusions are also true for the J2000 spin-pole
orientation parameters (α0; δ0) but are not necessarily true (or in a
minor extent) for the other estimated parameters (see Fig. C1 in
Appendix C). Such a better supply on the precession estimate of
the tracking acquired before the pericenter is probably due to a
better Doppler geometry before the pericenter than after. We note
for instance that the line-of-sight elevation above the horizon of
the ground station is in average about 20° lower at the beginning
of the tracking pass (i.e. before the pericenter) than it is at the end
of the pass, which could have some beneficial influence on the
orbit determination of Juno. We think that the differences
between the solutions in Fig. 5 are also due to the fact that the
worst case 6 h¼2 hþ4 h (red in figures) acquires less Doppler
data than the best 6 h-case (3.5 hþ2.5 h, blue in figures) at orbits
#19 and #20 (see Appendix B) when the spacecraft's orbit is the
most sensitive to Jupiter's spin pole precession rate as explained in
Appendix D. Although this difference in _ψ estimate precision due
to the tracking schedule is apparently small, it could be crucial in
constraining the interior structure of Jupiter as discussed below.

5.2. Inferring the MOI

In order to infer realistic precision on the geophysical para-
meter of interest (C=MR2), one need to account for the lack of
knowledge on the different parameters entering in the definition
of _ψ (8), namely J2; _ω;mj and the orbital parameters of the natural
satellites. The mass of Jupiter as well as its orbital characteristics
are considered as well known. The uncertainties in J2 (pre-Juno)
and themj's are taken from Jacobson's JUP310 solution available on
the JPL database (http://ssd.jpl.nasa.gov) and reported in Table 5.
As one can find in the literature (e.g. Riddle and Warwick, 1976; Yu
and Russell, 2009), the rotation period of jupiter (�9 h 55 m
29.7 s) is known with an accuracy better than one second. Then,
we nominally consider here an uncertainty of 1 s corresponding to
about 0.0028% of error on _ω. Finally, by computing the differences
between the last two Jupiter's satellite ephemeris (JUP230 and
JUP310), we see that the most significant error in the orbital
parameters of the natural satellites affects the Galileans mean
motions. These differences are plotted in Fig. 6, where one can see
that these largest differences between Jacobson's solutions JUP230
and JUP310 are actually very small, corresponding to a relative
accuracy of less than 10�6% of the satellite mean motion, negli-
gibly affecting the inferred MOI precision. Fig. 7 shows the MOI
relative precision inferred from the precession estimate precision

http://ssd.jpl.nasa.gov
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reached after 438 days of Juno gravity operation (see Table 3). Each
of the six estimates are plotted (colored dots) along the black solid
curve, which considers the above reasonable uncertainties on J2, _ω
and the mj's. As the relative errors of the latter parameters are at
least one order of magnitude smaller than our best relative pre-
cision for _ψ (see Table 5), there is no significant contributions of
these parameters to the C=MR2 uncertainties provided by Juno.
Therefore, σC=MR2 should be similar to σ _ψ , also ranging between
�0.04% and �0.11%. The contribution of the J2, _ω and the mj's
“reasonable” uncertainties listed in Table 5 are displayed in Fig. 7
and correspond to the dotted, dashed-dotted and dashed black
curves, respectively.

Differential rotation in Jupiter: Jupiter exhibits various zones of
different rotation at its surface. We do not know yet how deep the
winds of each zone sink into Jupiter's atmosphere. Kaspi (2013)
showed that the zonals gravity coefficients will be shifted from
those of the Jupiter solid-body at a level depending on the actual
depth of these zonal winds. These authors showed in particular
that J2 could be modified by up to 10�5, which is much higher than
the 10�8 precision we will get on J2 with Juno (see Table 4).
Therefore, besides the fact that Juno may detect the zonal winds
contribution in the gravity signal and use it to constrain the depth
of the winds (scope of a future paper), the differential rotation in
Jupiter if neglected could introduce error in J2 at the 10�5 level.
The green solid curve in Fig. 7 shows how such a high level of
uncertainty on J2 would deteriorate the MOI determination, lim-
iting its precision to Z0:08%. Nevertheless, this has to be con-
sidered as a case study because such a bias on J2 is very unlikely
since its determination from the radio-science data does not
depend on the wind models (only its interpretation does). On the
contrary, the rotation rate _ω is considered as a non-estimated
constant when we infer C=MR2 from the precession rate using Eq.
(8). Its value could therefore suffer of bias. Actually, we do not have
a good idea of the uncertainty in _ω due to deep winds, and the
Jupiter that rotates differentially with significant mass involved in
the different rotation zones may have a significantly different
rotation rate than the basic rotation rate of a solid Jupiter. There-
fore, the uncertainty σ _ω could be large and noticeably affect the
MOI estimate precision. The blue and red curves in Fig. 7 show the
consequences of an uncertainty on the rotation rate of Jupiter
equal to 10 s and 60 s, respectively. If the former (σ _ω ¼ 10 s) does
not affect much the precision with which one will get the MOI
from the precession rate estimated by Juno, the latter (σ _ω ¼ 60 s)
would definitely preclude a precise-enough determination of C=
MR2 in order to significantly constrain the interior structure of
Jupiter. Actually, a 10 s of uncertainty on _ω appears to be an upper
limit beyond what the rotation rate would become the parameter
limiting the precise determination of Jupiter's MOI.

Lense–Thirring effect and MOI : As pointed out by several
authors, Juno should undergo a significant relativistic acceleration,
first predicted in 1918 by Lense and Thirring (see Mashhoon et al.,
1984), due to its pericenter high velocity and due to the fast
rotation rate of Jupiter. The amplitude of this acceleration is
directly proportional to C=MR2 and has been evaluated by Iorio
(2010) to be responsible of a shift of the ascending node of Juno's
orbit of about 570 m over one Earth-year. This corresponds to a
“gravito-magnetic” precession rate of the orbital node of Juno of
68.5 mas/yr being about 50 times slower than the pole precession
rate. As one can expect, such a measurable effect allows us to
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retrieve the MOI with a relative precision not better than 2–3%, i.e.
also about 50 times worse than the precision obtained from the
precession rate determination. In fact, such a precision is even
optimistic: the theoretical 2–3% is obtainable only by excluding
from the fit the angle α0, since the effects of LT and α0 are hard to
separate with no further information on these two parameters.
However, the estimation of the pole angle is necessary to properly
wedge the gravity field in space. The actual precision on the MOI
inferred from the Lense–Thirring will not be better than 75% in
reality (see Table 4).

5.3. Implication for the interior and origin scenarios

Helled et al. (2011) conclude that an MOI estimate with a
precision of a few tenths of percent could constrain the internal
structure models of Jupiter, even if the constraints will be more or
less powerful given what will be the actual value of the MOI. We
predict here a precision likely at the level of a few hundredth of
percent and definitely better than the 0.22% obtained by Helled
et al. (2011). In the worse case we should be able to conclude
about the existence of the core (unless the MOI turn out to equal
0.264, Helled et al., 2011), to distinguish between the different
model-dependent MOI predictions, supporting some models and
excluding others, and we could possibly provide some valuable
constraints on the core properties. In the best case, the size and
the mass of the core will likely be determined with enough pre-
cision to help distinguishing among competing scenarios for the
planet's origin.

As summarized in the review of Helled et al. (2014), there are
two main scenarios for Jupiter's formation. The giant planet could
have been formed first accreting a large and dense core, which
would have been then surrounded by a hydrogen–helium envel-
ope, or Jupiter may have formed from gravity instability in the
solar primitive nebula so rapidly that possibly no core at all would
have time to collapse in the center. In fact there is a collection of
hybrid scenarios between these “core accretion model” and “Disk
instability model”, and even those two models could end up into a
wide range of possible interior structure for Jupiter. They could
even have occurred one after the other. It seems therefore that
even an exact estimate of the core properties would not ensure the
discrimination between the formation models of Jupiter, except for
a coreless planet (obviously against the core accretion model).
However, if it is not straightforward to return to the exact for-
mation process from a good knowledge of the core properties, it is
easy to agree that the formation models of Jupiter will have to
account for the heavy-element core mass and size once they will
be determined. Generally speaking, once tighter constraints on the
heavy-element mass in Jupiter will be obtained from Juno's mea-
surements, formation models of Jupiter will be better constrained
(e.g. Helled and Lunine, 2014). This might have strong con-
sequences on the origin and evolution of the entire solar system
since Jupiter, as the largest of its inhabitant, undoubtably play(ed)
a major role in its evolution.
6. About additional VLBI data

Nowadays, the main techniques used to compute spacecraft
trajectories on or around solar system bodies imply ranging and
Doppler data exactly as done in the first part of this paper. Those
data provide precise information on the distance and radial velo-
city of the probe with respect to the Earth ground station (i.e.
along the line of sight (LOS) direction). The ability of Very Long
Baseline Interferometry (VLBI) techniques is to determine the
spacecraft position in the plane-of-sky during its flight (i.e. per-
pendicular to the LOS direction) (e.g. Jones et al., 2011; Duev et al.,
2012). Thus, including such data will theoretically provide com-
plementary positional information that could be critical in some
cases in determining the precise location of the spacecraft. As
previously evoked, during its one Earth year of mission the orbit of
Juno will remain almost face-on, offering thus a poor Doppler
sensitivity to its orbital motion. Therefore, consider using VLBI
tracking data makes sense and one could expect to improve the
accuracy of the Juno's reconstructed orbit, allowing for a better
detection of the smallest accelerations experienced by the probe
such as those induced by the precession rate of Jupiter.

In order to assess the usefulness of adding such data, we make
additional simulations with ODP, combining the previously created
Doppler and range data with the VLBI data. Actually, we used
herein an advanced version of the VLBI data which is called ΔDOR
(delta-differential one-way ranging). This data type consists in the
difference between measured and nominal two-station time delay
differences. In other words, it is the residuals between measured
and model predicted difference in the radio signal propagation
time between the target and (at least) two Earth based radio-
telescopes. The target is alternatively an angularly nearby quasar
and the spacecraft itself, moving from one to the other every 5 min
along the pass (see details in Curkendall and Border, 2013). Typi-
cally, these data provide the spacecraft angular position relative to
the quasar in the plane of sky with a precision currently of the
order of 1 nrad (i.e. about 0.2 mas). The corresponding ΔDOR
measurement noise taken in our simulations equal to 0.025 ns.
ΔDOR data are computed here using the 10 radio-telescopes of the
Very Long Baseline Array (VLBA), spanning more than 8000 km in
the northern hemisphere, between Hawaii and the Virgin islands.
These data are created considering for each record the baselines
linking the Owens Valley station (closest station to DSS-25 Gold-
stone station used for Doppler tracking) and the other 9 VLBA
stations. ΔDOR data are acquired simultaneously with Doppler
data, consisting therefore in a set of 25 passes of about 6 h of 5-
min sampled data every 11 days, when Juno is at its periapsis.

We estimate the same parameters that we did before using the
Doppler and range data. However, because of the VLBI inherent
necessity to track with multiple ground stations in the same time,
one has to account for the difference between the stations' clocks.
This particular source of error requires estimating additional clock
parameters for 9 of the 10 stations, the 10th one providing the
reference clock. We model the station time (Tsta) error with respect
to the reference time (Tref) as follows:

Tref �Tsta ¼ aþbtþct2; ð20Þ

with t being the time past the beginning of the tracking pass. The
three clock parameters (a, b, c) are estimated for each station and
for each tracking pass, leading to 3�9�25 additional parameters.

Our study revealed that combining such VLBI and Doppler data
does not improve the precision we get on any parameter. Typically,
VLBI data provide estimates 4–5 orders of magnitude less precise
than Doppler data (see Table C1 in Appendix C). For the particular
case of the precession rate determination, a similar precision than
provided by Doppler could be reached if the accuracy of the
interferometric techniques was of the order of 10�6 ns.
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7. Conclusion

Because of its huge gravitational attraction, Jupiter played the
primary role in the formation and evolution of our solar system.
The interior structure and composition are fundamental clues to
trace back the origin of the largest gaseous planet. They are
therefore essential to be known to understand our Solar System as
well as other extrasolar systems where giant planets are found in
abundance.

We have shown in this paper that the best way to precisely
constrain the moment of inertia of Jupiter from Juno is to deter-
mine its spin-axis precession rate. We found that the latter allows
for a MOI estimate at least 50 times more precise than inferring it
from the Lense–Thirring effect as proposed by previous studies. A
new precessional equation for Jupiter is also provided and
recommended to be used in order to infer the MOI with
limited bias.

In addition, we showed that, given the actual tracking repar-
tition and duration that will be performed to compute the orbit of
Juno, the precision in the determination of the parameters can be
increased (or decreased) by almost a factor of 2 with respect to the
6 h-periapsis-centered nominal tracking estimates. Such a quite
small variation can however be critical in order to reach the goal of
the mission and could have some consequences on the mission
programmatic, depending on what will be the parameters of most
interest. It has been found for instance that, given the Doppler
geometry offered by the orbital characteristic of Juno, the longer
the tracking before the pericenter pass, the more precise is the
precession rate estimate. Indeed, the shifting of the tracking pass
away from the periapsis-centered nominal configuration by up to
one hour is shown to be responsible for a variation in the uncer-
tainty of the pole precession estimate ranging between 0.04% and
0.11% around the nominal σ _ψ ¼ 0:06%. We found moreover that
the MOI will be inferred from the spin-pole precession rate of
Jupiter at the same level of relative precision (i.e.
σC=MR2 A ½0:04%;0:11%�). Therefore, and given the work of Helled
et al. (2011), either (σC=MR2 ¼ 0:11%) the MOI determination will
“only” allow us to conclude about the existence of the core of
Jupiter and sweep some interior- and formation-models away,
hopefully providing also some valuable constraints on the core
properties, or (σC=MR2 ¼ 0:04%) the core size and mass will likely
be determined with enough precision to help distinguish among
competing scenarios for the planet's origin.

Finally, we found that VLBI techniques, providing angular
position of a spacecraft with an accuracy of 10�9 rad in the plane
of sky, are totally useless in the precise orbit determination of
Juno. These data should be several orders of magnitudes more
precise to improve the precision of the geophysical parameter
estimations provided by Juno.
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Appendix A. Analytic expression of Jupiter's pole orientation
in right ascension and declination

Assuming that the node of the orbit of body j is Ωj ¼Ωj0þ _Ω jt
with t being time from epoch (j¼0 corresponds to the parameters
relative to the primary and 1r jrk is for the set of satellites), we
can integrate (3) and (4) to obtain expressions for the orientation
angles:
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We evaluate the above expressions with the parameter values
taken from Table 2 to obtain the terms in the series for the pole
angles. Based on these values we find it unnecessary to retain all of
the series terms. The reduced series are

α ¼ α0þ
3MR2J2

4C _ω cos δ

X4
j ¼ 0

μj

μ0

� �n2
j

_Ω j

1� e2j
� ��3=2

1�3
2
sin 2 Ij

� ��8<
:

sin 2ij cos Δj
� � _Ω jt:þ sin 2Ij cos 2 ij=2

� �
1�4 sin 2 ij=2

� �h i
sin Ωj
�

þΔj
��þ n2

0
_Ω0

1� e20
� ��3=2

sin 2I0 sin 2 i0=2
� �

1�4 cos 2 i0=2
� �	 
h

sin Ω0 � Δ0
� �� sin 2 I0 sin i0=2

� �
cos 3 i0=2

� �
sin 2Ω0þΔ0
� �i9=;

ðA:3Þ

δ ¼ δ0þ
3MR2J2
4C _ω

X4
j ¼ 0

μj

μ0

� �n2
j

_Ω j

1� e2j
� ��3=2

1�3
2
sin 2 Ij

� ��8<
:

sin 2ij sin Δj
� � _Ω jt:� sin 2Ij cos 2 ij=2

� �
1�4 sin 2 ij=2

� �h i
cos Ωj

�

þΔj
��þ n2

0
_Ω0

1� e20
� ��3=2

sin 2I0 sin 2 i0=2
� �

1�4 cos 2 i0=2
� �	 
h

cos Ω0 � Δ0
� �þ sin 2 I0 sin i0=2

� �
cos 3 i0=2

� �
cos 2Ω0þΔ0

� �i9=;
ðA:4Þ

Moreover, because the periodic rates for the solar terms are small,
we can set

sin Ω0þΔ0
� �¼ sin Ω00þΔ0

� �þ _Ω0 t cos Ω00þΔ0
� � ðA:5Þ

sin Ω0 � Δ0
� �¼ sin Ω00�Δ0

� �þ _Ω0 t cos Ω00�Δ0
� � ðA:6Þ



0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Orbit number

0

1

2

3

4

5

6

7

8

9

10

H
ou

rs
 o

f t
ra

ck
in

g

6h = 2.0h + 4.0h
6h = 2.5h + 3.5h
6h = 3.0h + 3.0h (nominal)
6h = 3.5h + 2.5h
7h = 3.5h + 3.5h
Maximum tracking

Fig. B1. Ka-band tracking duration per orbit for each of the 6 tracking passes tested in this paper. The black dashed lines are for the X-band simulated data. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

16

20

24

28

32

36

O
rb

it 
nu

m
be

r

DSS25 10º rise
Rise + RLT
PeriJove (PJ)
PJ+/-3hr (nominal)
SB Maneuver
DSS25 10º set

S. Le Maistre et al. / Planetary and Space Science 126 (2016) 78–92 89
sin 2Ω0þΔ0
� �¼ sin 2Ω00þΔ0

� �þ2 _Ω0 t cos 2Ω00þΔ0
� � ðA:7Þ

cos Ω0þΔ0
� �¼ cos Ω00þΔ0

� �� _Ω0 t sin Ω00þΔ0
� � ðA:8Þ

cos Ω0 � Δ0
� �¼ cos Ω00�Δ0

� �� _Ω0 t sin Ω00�Δ0
� � ðA:9Þ

cos 2Ω0þΔ0
� �¼ cos 2Ω00þΔ0

� ��2 _Ω0 t sin 2Ω00þΔ0
� � ðA:10Þ

and incorporate the “periodic” terms into the constant and
rate terms.
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Fig. B2. Radio-signal reception time in hours past the time of maximum elevation
during the pass for each orbit. The nominal tracking start and end times are marked
with black dots, which corresponds to plus or minus 3 h from the reception of the
signal acquired at Juno's pericenter (blue crosses). Red triangles show the max-
imum period of operation of DSS-25 pointing toward Jupiter when above 10° of
elevation. Open green left triangles are obtained by adding the Roundtrip Light
Time (RLT) to the time when Jupiter climbs above 10° of elevation. Solid green right
triangles correspond to the spacecraft Spin Burn (SB) maneuvers pointing out the
end of maximum track when arising before the DSS-25 set time (solid red down
triangles). (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Appendix B. Tracking characteristics

We provide in this appendix some characteristics of the
6 tracking configurations considered in this paper:
� Fig. B1 summarizes the tracking duration of the simulated

Doppler data used in our simulations. We see on this figure
the duration of each pericenter tracking pass for each of the
6 configurations tested in this paper.

� Fig. B2 shows some details of the tracking operations where one
can understand for instance what would limit the maximum
tracking duration for each arc. Indeed, the first two-way data
points that can be measured by DSS-25 correspond to the open
green left-pointing triangles tagging the time of reception of a
signal transmitted at the minimal 10° of elevation, whereas the
last data points would be either marked by the solid green
right-pointing triangles, showing when should be performed
the SB maneuvers, or by the solid red down-pointing triangles,
showing when the signal path moves down to the 10° of
elevation threshold.

� Fig. B3 shows the accumulation of Doppler measurements
throughout the course of the mission. We note that the worst
case 6 h¼2 hþ4 h (red in figures) acquires less Doppler data
during the tracking passes of orbits #19 and #20 than the best
6 h-case (3.5 hþ2.5 h, blue in figures), due to early spin-burn
maneuvers (see Figs. B2 and B1). However, these two specific
orbits correspond to the mission period when Juno is the closest
to a face-on orbit configuration (see Fig. 4). This is when the
spacecraft's orbit is the most sensitive to Jupiter's spin pole
precession rate as explained in Appendix D. In the opposite, the
worse-red configuration has more data than the best-6 h-blue
configuration after orbit 28, when the plane-of-sky inclination
is the greater (i.e. when the orbital plane moves toward an
edge-on configuration, see Fig. 4). This ultimately leads to a total
number of data for the red scenario similar to the blue scenario
(see Fig. B3), but based on datasets less powerful to determine
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the precession rate. These differences in the data acquisition
timing might be (partly) responsible for the differences
between the precession solution uncertainties in Fig. 5.
Appendix C. Main parameters estimates uncertainties

Together with the precession rate, 350 parameters are esti-
mated from the Juno simulated tracking data. Fig. C1 provides an
overview of the changes in the 1-σ formal errors of all these
parameters with respect to the nominal 6 h of Ka-band tracking
centered on the perijove as a function of the tracking character-
istics tested in this paper. The main parameters estimated uncer-
tainties are reported in Table C1 for the nominal scenario, for the
worst and best tracking scenarios and for the VLBI stand-alone
Table C1
Estimated uncertainties for the main gravity parameters considered in our simulations fo
on 2-way Ka-band Doppler data at 60 s of integration time. The VLBI stand-alone uncer

Parameter Unit A priori sigma Doppler 6 h nom.

GMJupiter km3/s2 1.5 1.054e�02
GMAlmathea km3/s2 1e4 4.668e�02
GMThebe km3/s2 1e4 4.239e�02
α0 deg 100 1.028e�04
δ0 deg 100 8.818e�05
_ψ deg/cy 100 5.528e�05
LT % 1e8 76
J2 2e�2 9.467e�09
J3 4.3e�3 1.865e�10
J4 1.1e�3 1.978e�10
J5 2.7e�4 3.207e�10
J6 7.7e�5 5.395e�10
J7 2.0e�5 9.269e�10
J8 5.9e�6 1.560e�09
J9 5.3e�6 2.543e�09
J10 4.8e�6 3.951e�09
C21 1.0e�8 1.720e�10
C22 1.0e�8 2.400e�10
S21 1.0e�8 1.827e�10
S22 1.0e�8 3.294e�10
k20 1 1.475e�01
k21 1 7.658e�01
k22 1 2.851e�03

a Equal to a priori sigma used.
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solutions. Among them, the gravity field zonal coefficients are
provided up to degree n¼10 although zonals are estimated up to
nmax ¼ 20. The latter upper limit has almost no effect on the esti-
mate of the parameters of interest of this paper, but it has sig-
nificant implication for the zonals estimates themselves as shown
in Fig. C2. The deep zonal winds are predicted by Kaspi et al.
(2010), Kaspi (2013) to affect the first 8 gravity zonals pro-
portionally less significantly than the higher moments for which
the winds contribution could be at the level or even greater than
the hydrostatic contribution. From Juno's real data we plan to
estimate the first 8 zonals and extract the wind contribution in
higher-degrees with another strategy. nmax has thus been set in
our simulations to 20 since nmaxZ20 provide post-fit uncertainties
on the first 8 zonals no more depending on nmax itself as shown in
Fig. C2. The determination of the wind contribution in the gravity
r three different tracking scenarios (nominal-black, worst-red, best-green) all based
tainties are in last column.

Doppler 6 h¼2 hþ4 h Doppler max. track. VLBI only 6 h nom.

1.419e�02 6.337e�03 1.5a

4.651e�02 2.984e�02 6.1eþ02
4.535e�02 3.089e�02 6.5eþ02
1.800e�04 7.335e�05 1.2eþ00
1.563e�04 6.368e�05 1.1eþ00
9.806e�05 3.986e�05 6.84e�01
73 69 ⪢100
9.016e�09 8.013e�09 4.08e�06
1.927e�10 1.579e�10 6.38e�06
1.825e�10 1.639e�10 1.01e�05
2.982e�10 2.756e�10 1.44e�05
5.042e�10 4.773e�10 1.67e�05
8.779e�10 8.425e�10 1.39e�05
1.491e�09 1.447e�09 5.64e�06
2.453e�09 2.398e�09 5.09e�06
3.838e�09 3.772e�09 3.97e�06
1.824e�10 1.633e�10 a

2.305e�10 2.117e�10 a

1.921e�10 1.722e�10 a

3.155e�10 2.838e�10 a
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signal is the subject of a paper in preparation, but ignored in the
present paper.
Appendix D. Orbit geometry

As the spin pole of Jupiter precesses, the quasi-fixed orbital
plane of the Juno spacecraft in the inertial space will see its orbital
inclination changing. This change is slow, corresponding in first
approximation to that of angle θ (18), equaling _θ ¼ 133 mas=yr.
For the Jupiter approximated to an homogeneous oblate planet, i.e.
only accounting for its strong J2 in the potential of gravity, only the
angular Keplerian elements of Juno will vary with time (Kaula,
1966). Two of them, the mean anomaly (M̂) and the argument of
perigee (ω̂), are in-orbit variations with small contributions to the
Doppler because the orbit is face-on. The third one, the longitude
of the ascending node (Ω̂), characterizes an out-of-plane variation
of the orbit. The secular changes of these three angles due to J2 are
given by Kaula (1966)

dM̂
dt

¼ þ 3nsJ2R
2
e

4ð1�e2Þ2a2
ð3 cos 2 î�1Þþns; ðD:1Þ

dω̂
dt
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2
e
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ð5 cos 2 î�1Þ; ðD:2Þ

dΩ̂
dt

¼ � 3nsJ2R
2
e

2ð1�e2Þ2a2
cos î; ðD:3Þ

where Re¼71,492 km is the mean equatorial radius of Jupiter, a; e; î
are the metric Keplerian elements of Juno's orbit and ns ¼ 5:2�
10�6 rad=s is its mean motion. The precession of the pole of
Jupiter leads to î ¼ 9017εî ðtÞ, with εî ðtÞC _θΔt after Δt of orbiting
duration. After one Earth year of nominal mission εî ¼ 133 mas,
which is still a very small increment in inclination such that cos
îCεî in first order approximation. Since the in-orbit variations
(D.1), (D.2) due to the precession of the pole are proportional to
cos 2 î, they are several orders of magnitude smaller than the out-
of-plane variation (D.3). In other words, the variations of the
ascending node exhibit the largest contribution from the planet's
pole precession, making the face-on orbit the most favorable to its
determination from Doppler measurements. The expression (D.3)
simplifies to

dΩ̂
dt
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which corresponds to a variation of about εî ¼ θ¼ 133 mas after
one Earth year. Though small, it corresponds to a perturbation of
the velocity of the spacecraft in the normal direction equal to
Christodoulidis et al. (1988)
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This corresponds to a variation of the radial velocity Δvr along the
signal path ranging between 26.5 μm s�1 and 41 μm s�1 given the
orbit inclination with respect to the Earth plane-of-sky during the
mission (Fig. 4). This is above the Doppler measurements noise of
Juno (10 μm s�1 at 60 s of integration time), suggesting how
powerful are such data to determine the precession rate of Jupiter.
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