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Abstract.

Objective. Proton arc therapy (PAT) is a new delivery technique that exploits

the continuous rotation of the gantry to distribute the therapeutic dose over many

angular windows instead of using a few static fields, as in conventional (intensity-

modulated) proton therapy. Although coming along with many potential clinical and

dosimetric benefits, PAT has also raised a new optimization challenge. In addition

to the dosimetric goals, the beam delivery time (BDT) needs to be considered in the

objective function. Considering this bi-objective formulation, the task of finding a

good compromise with appropriate weighting factors can turn out to be cumbersome.

Approach. We have computed Pareto-optimal plans for three disease sites: a brain,

a lung, and a liver, following a method of iteratively choosing weight vectors to

approximate the Pareto front with few points. Mixed-Integer Programming (MIP) was

selected to state the bi-criteria PAT problem and to find Pareto optimal points with a

suited solver. Main results. The trade-offs between plan quality and beam irradiation

time (static BDT) are investigated by inspecting three plans from the Pareto front. The

latter are carefully picked to demonstrate significant differences in dose distribution

and delivery time depending on their location on the frontier. The results were bench-

marked against IMPT and SPArc plans showing the strength of degrees of freedom

coming along with MIP optimization. Significance. This paper presents for the first

time the application of bi-criteria optimization to the PAT problem, which eventually

permits the planners to select the best treatment strategy according to the patient

conditions and clinical resources available.

Keywords: Proton arc therapy, bi-objective optimization, multi-criteria optimization,
Pareto front, mixed-integer programming, scalarization
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1. Introduction

A common problem in radiotherapy planning is to find the best possible trade-offs

between target coverage and normal tissue sparing. This is usually done by compounding

a multi-objective function and manually tuning the weighting factors of each objective

until the plan meets the clinical goals based on the planner’s insights and experience

(Brahme 1995, Oelfke & Bortfeld 2001). This iterative trial-and-error process may

turn treatment planning into a long process and sometimes it can become tedious,

especially for the patients with complicated geometry with conflicting clinical goals in

terms of target coverage and OARs sparing. Another popular approach is to use multi-

criteria optimization (MCO), which automatically generates a set of Pareto-optimal

plans for different (well-chosen) patterns of objectives weights (Küfer et al. 2000, Yu

et al. 2000, Craft et al. 2005, Breedveld et al. 2019).

Pareto optimality and front. A solution (i.e. a treatment plan) is called Pareto-optimal

if, by further improving one of the objectives, at least one of the other objectives gets

worsened. In fact, there are as many Pareto-optimal solutions than there are possible

such compromises between all the objectives at stake. By computing a set of such

solutions, a so-called Pareto front (a.k.a. Pareto set or frontier) is obtained. In our

case, the Pareto frontier represents the set of all Pareto-optimal treatment plans, over

which the clinicians can efficiently navigate, and from which they can eventually pick the

best trade-off depending on the clinical constraints at stake. This problem has already

been extensively described in the literature for photon radiotherapy optimization such

as VMAT and IMRT (Craft et al. 2012, Craft et al. 2006).

Proton arc therapy. In this article, we apply bi-criteria optimization to a recent

innovation in proton therapy delivery, namely, proton arc therapy (PAT). PAT differs

from conventional proton therapy in how the treatment is delivered to the patient,

involving a sequence of many incidence angles along a rotating gantry arc, instead of

using only a few fixed-angle beams. The price to pay for the larger number of irradiation

angles and the increased flexibility that comes with them is that the beam delivery time

(BDT) also increases, in spite of the continuous rotation of the gantry. The underlying

challenge raised by this new modality is therefore to minimize the BDT concurrently

with the traditional clinical or dosimetric goals. Because a true delivery time model will

be certainly not convex, involving a dynamic delivery with mechanical parameters, we

choose to rather optimize the static beam delivery time approximated by a simplified

irradiation time, denoted BDT≈. We are investigating a bi-objective formulation where

we optimize simultaneously an estimation of the irradiation time, and the dose fidelity

term grouping a fixed weighted combination of objectives to treat the tumor and to

penalize dose in various healthy organs.
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The PAT problem. We refer to the problem of finding the best PAT treatment plan

(i.e., optimal dose distribution with minimal delivery time) as the PAT problem. A

solution (i.e. a treatment plan) is composed of a sequence of irradiation angles. To each

angle is associated a sequence of energy layers. Finally, each energy layer is composed of

a sequence of spots, each spot is associated with an intensity used to modulate the dose

delivered to the patient. In other words, a solution is a big sequence of spot intensities

with their x-y coordinates. Informally (more formally defined in Sec. 2.1), our PAT

problem consists in finding a combination of such intensity values, such that a set of

dosimetric and logistic objectives are optimized.

Related work and contributions. To the best of our knowledge, this is the first time

bi-criteria optimization is applied to proton arc therapy in order to optimize the

treatment delivery time and plan quality simultaneously. Among the few published

PAT optimizers currently available, the oncology group from UCLA was the first one

presenting a simultaneous approach for energy delivery sequence and plan quality op-

timization (Gu et al. 2020). Based on this paper, Zhang et al. (2022) have speed

up the optimization and improved both delivery efficiency and plan quality using

energy matrix regularization. The other previous published paper, however, do not

directly optimize the energy sequence simultaneously with the spot intensities yet. For

instance, RaySearch (RaySearch Laboratories AB, Stockholm, Sweden) has recently

published a method of selecting energy layers and spots, as a proof of concept coined

ELSA (Early Layer and Spot Assignment), prior to spot weight optimization (Engwall

et al. 2022). Additionally, Ding et al. (2016) developed the Spot-Scanning Proton Arc

(SPArc) algorithm, an iterative greedy approach based on robust optimization. Bertolet

& Carabe (2020) have also developed the so-called proton monoenergetic arc therapy

(PMAT) technique in which, as its name suggests, monoenergetic partial arcs are pre-se-

lected and thus the energy sequencing optimization is a by-product of the application of

the energy selection criteria. However, their research goal was different and the selection

was carefully designed to enhance the dose-averaged linear energy transfer distribu-

tion within the target. As a consequence, we present the first bi-objective optimization

study applied to proton arc therapy. The proposed framework is based on Pareto bi-cri-

teria optimization (BCO) theory, using an original algorithm for computing the Pareto

frontier, inspired from the method introduced in Craft et al.’s (2006).

Organization. The rest of the paper is as follows. Section 2 provides a detailed

description of the proton arc therapy bi-criteria problem and modeling as well as a sketch

of the method applied to solve this problem incorporated in an innovative binary tree

search technique. Section 3 demonstrates the method on three patients with different

tumor sites: a brain, a lung, and a liver. Sections 4 and 5 discuss and conclude the

paper. Appendices are also provided to define the mathematical model on which the

PAT optimization is based (Appendix A) and to help the reader to understand the BCO

Pareto approximation algorithm in more detail (Appendix B).
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2. Methods

This section defines the necessary mathematical notations, states the bi-criteria PAT

problem within a Mixed-Integer Programming (MIP) framework. A binary tree search

technique is proposed to construct an approximation of the Pareto front.

2.1. Problem statement

The PAT problem pools two different types of objectives. The first objective, namely,

the dose fidelity term f(d), reflects the standard clinical goals and it is formulated with

the deviation between the delivered and prescribed doses of each voxel. The second

objective measures the static beam delivery time BDT(x), i.e. the irradiation time,

that is minimized to obtain efficient PAT plans. This term depends on the plan delivery

sequence which includes irradiation parameters such as spot scanning speed, energy

layer switching time, and burst switching time and was modeled by Zhao et al. (2022).

Given the set of spot S, we consider the following bi-objective optimization problem.

min
x

{f(d),BDT(x)} (1)

s.t. d = Ax (2)

x ∈ R|S|
≥0 , (3)

where d ∈ R≥0
|V | is the vectorized dose on the |V | voxels (|·| is the cardinality operator),

A is the beamlet matrix, containing |S| × |V | elementary dose values, i.e., the dose de-

posited by each spot to each voxel computed with an in-house Monte Carlo engine,

MCsquare (Souris et al. 2016). x is the column vector of spot weights, containing |S|
values (namely, our set of decision variables).

There is a conflicting interplay between these two main objectives. Reducing the

BDT improves the patient’s comfort, mitigates motion effects over time (and therefore

treatment errors), and increases the number of patients who can be treated in a day.

Yet, reducing too much the BDT can also significantly degrade the dose quality.

2.2. MIP model

The fidelity term can be modeled as a linear cost function (See equation A.8 in Appendix

A) with weighted linear objective functions for penalizing over-dosing and under-dosing

on target, OAR doses over the limit. This term alone leads to a linear programming (LP)

problem that already demonstrated its ability for dose optimization in radiotherapy as

early as in the 60’s with Bahr et al. (1968) and, more recently, with Bortfeld (1999) or

Romeijn et al. (2006).

The real BDT objective, naturally dynamic, is not convex and this leads to

difficulties for any optimizer. We choose to model and minimize the irradiation time

(BDT≈) using the reasonable approximation that it takes 1 s to deliver one energy

layer, 5.5 s to increase the energy, 0.6 s to decrease it and 0.2 s when same energy

is kept to deliver the next layer (Liu et al. 2020). In a previous work (Wuyckens
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et al. 2022), we showed that this approximation of irradiation time can be modeled

as a convex linear objective provided integrality constraints resulting in a mixed-integer

programming (MIP) problem statement. The MIP statement has been extended to

frame the bi-objective optimization problem 1, the specific mathematical expression of

which is A.1-A.6 in Appendix A.

It is worth noticing that the integrality of the PAT problem is due to the BDT≈

(as well as the BDT in general). In fact, it mainly depends on whether each irradiation

angle and energy layer is activated or not, introducing this temporal dimension turns our

PAT problem into a discrete, integer problem. In a recent study (Wuyckens et al. 2022),

we proved in that the irradiation time only is responsible for the inherently complexity

(i.e., the NP-hardness) of the PAT problem.

2.3. MIP solver

Optimization is carried out by Gurobi 9.5 (Gurobi Optimization, LLC 2022), through

its Python API, for mixed-integer programming using tuned parameters to speed up

the algorithm. These tuned parameters include the specification of the algorithm used

to solve the continuous model, the presolving level and number of pass limits, etc. They

were obtained using the Gurobi tuning tool that automates the search for parameter

settings. In short, it runs the solver multiple times on the model, choosing different

initial parameter settings for each call, in a search for settings that improve run time.

The tuning tool parameter was run 24 hours on a model built from a phantom case with

a small target. At the end, it provided a summary showing the number of parameter

sets it tried and details on a few of the best parameter sets it found. On this basis, we

use the parameter set with the shortest running time for the subsequent optimizations.

Gurobi solves the MIP model using a linear-programming (LP) based branch-and-bound

algorithm (Lawler & Wood 1966, Clausen 2003, Morrison et al. 2016). Starting from

the original MIP, it removes all integrality restrictions and solves the so-called LP relax-

ation of the original problem through the barrier method (Marsten et al. 1990) (tuned

parameter). Next, it will start the branch-and-bound procedure and will improve the

bounds (relaxation) and/or incumbent solution using heuristics. Additional techniques

proper to Gurobi are included to limit the size of the branch-and-bound tree that must

be explored. The termination criterion is a parameter set to the time spent solving the

model in this study.

2.4. Pareto frontier approximation

In order to solve the bi-objective optimization problem (1), it is customary in the

radiotherapy field to compute a set of trade-off solutions, which are referred to as

Pareto optimal points and from which the planner can conveniently pick a suitable

solution. In the current article, this is carried out by blending (or scalarizing) the

multiple objectives into a single compound objective, formulated as a linear combination

of the initial objectives: wD f(d) + wT BDT≈(x). However, the adjustment of the
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weighting factors, to be used as constant parameters by the optimizer, is not trivial if

one wants to obtain a good approximation of the Pareto front efficiently. We decided

to implement Craft et al.’s (2006) algorithm initially applied to optimizing multiple-

objective intensity-modulated radiation therapy (IMRT) convex problems. In our case,

the feasibility space is a polyhedron resulting from a combination of linear constraints

(aside from the integer constraint). Note that the smallest polyhedron that contains all

the feasible integer points is called the “convex hull” (which results from a different,

optimal, set of linear constraints: the perfect problem formulation - in fact, knowing

these constraints amounts to solving the problem itself). The objective function is also

linear, and therefore convex. The convexity of both the feasibility space and the ob-

jective function allows us to reuse the method to approximate the Pareto front and to

best reduce its front position uncertainty. Note that due to the discrete nature of our

problem (and henceforth the MIP integrality constraints), the Pareto front is here a

discrete set of points.

P1A, P1B, P1CParent node

Children
nodes

P4A, P4B, P4C

d1left d1right

depth = 2

depth = 0

P5A, P5B, P5C P6A, P6B, P6C P3A, P3B, P3C

Leaf node :
Tolerance reached

P7A, P7B, P7C P8A, P8B, P8C depth = 3

depth = 1

Binary Tree construction

d4left d4right

P2A, P2B, P2C

d2left

d2right <= tol

d6left

d6right<= told5left <= tol
 d5right <= tol
 d3left <= tol


d3
right

... ... ...

Figure 1: Pareto front construction in 2 dimensions as a binary search that produces a

binary tree where each node corresponds to a point on the front. The figure contains

technical details that are useful in the detailed explanation of the algorithm, in Appendix

Appendix B.

For a bi-objective formulation, the BCO algorithm can be described as a search

through a binary tree whose branches can be grown and explored in order to refine the

Pareto front with new points wherever they are needed, such as illustrated in Figure

1. Our version of the BCO algorithm (Algorithm 1) differs from that of Craft et al.’s

(2006) by the use of a binary tree, hence specialized to bi-objective optimization.

In a nutshell, the construction of the binary tree goes as follows: we start from

an initial node (the parent node) corresponding to three points PA, PB and PC desig-

nated as the anchor points . PA, and PC relate to individual minima of each objective

while PB is an intermediate solution between PA and PC obtained with equal weights.

Next, two new points (thus corresponding to Pareto optimal solutions) can be com-

puted, respectively, between PA and PB and PB and PC , each corresponding to left
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and right branching in the binary tree depicted in Figure 1. In a 2D graph, maximal

distances between segments lines PA − PB and PB − PC and the lower bounds of the

Pareto front, i.e., tangent lines through each vertex, are computed (dleft and dright, re-

spectively). Depending on the branching followed (the one with the minimal distance),

points are renamed. For example, if one looks at left branching PA → PA but PB → PC

and a new PB is computed by solving the model using the weights average from PA and

PC . In this way, PB will always be the intermediate point between PA and PC that the

optimizer needs to find. Then, new points can be subsequently and iteratively computed

and added to the Pareto frontier, each time between two existing points, and so on, until

some tolerance threshold (or tree depth, or time limit) is reached. However, computing

each new solution (i.e., a point on the Pareto front) may potentially take a significant

time. In order to cope with time limitation, one must obviously prioritize the order in

which the new points are computed, or in other words the order in which the branches

of the binary tree are constructed, so that we end up with a representative set of points,

well-balanced, to approximate the Pareto front whenever the BCO algorithm is inter-

rupted. The algorithm, and especially the prioritization method used, is explained in

details in Appendix B, including the appropriate formulas and equations.

Algorithm 1 Binary search tree

while D and i ≤ Imax do

input parent (Pi
A,P

i
C)

compute average weights (wi
B) associated with parent (Pi

A,P
i
C)

optimize with weights wi
B to find the single interior point Pi

B

input the two presume descendants (Pi
A,P

i
B) and (Pi

B,P
i
C)

compute dileft and diright and check tolerance of each

if dij < tol (j = left, right) then

remove dij from D (leaf node is reached)

else

update parent

end if

pick next node to run with largest dj (j = left, right)

end while

2.5. Evaluation

As a proof of concept, we have tested the BCO algorithm on three clinical cases: a brain,

a lung, and a liver. MCsquare (Souris et al. 2016) was selected as the dose calculation

engine for the production of beamlets as well as the final dose computation. The sizes

of each problem are reported in Table 1. The weighting factors in the dose fidelity

objective were manually adjusted beforehand until the clinical goals were met in the

situation where the weight of the dose fidelity term was much more important than the
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BDT weight. The aim was to get rid of additional dimensions in the problem and hence

to keep a bi-objective formulation for the sake of simplicity.

For each case, we report a table with the metrics of interest, i.e., the clinical

goals, the irradiation time, the conformity index (CIRTOG, Shaw et al. (1993)), and

homogeneity index (HI, defined by the quotient of maximum and prescription dose to

the target volume) for three points lying on the computed approximation of the Pareto

frontier. These points are carefully picked to demonstrate the trade-off machinery such

as the impact of a large weight on the dose fidelity term (big D) combined with a small

weight on the BDT≈ term (small t), denoted D t and, conversely, d T for low dose

(small d) and high time weightings (big T). An intermediate point d t is added to the

comparison. It was chosen at a glance to show a more balanced solution although the

plan quality might still be questionable in some cases. Other more specific points might

offer a better compromise. Only a physician could make the final decision according to

each patient’s conditions. A series of plots are also provided and includes the computed

Pareto fronts, the DVHs and dose distributions associated with the previously described

three points, and finally the distributions of the absolute and relative weighting factors

run by the BCO algorithm. In order to benchmark our results, we also evaluate an

IMPT plan and a SPArc plan (Ding et al. 2016) for each disease site. They were pro-

duced in the same treatment planning system using the same solver (Gurobi) as the

MIP plans, except that solely the dose fidelity term was minimized making it a linear

program solved in polynomial time. Appendix C provides additional details on the dose

distribution and dose-volume histograms obtained with these modalities.

Brain Lung Liver

CT voxel size (mm) 1.17× 1.17× 1.00 1.23× 1.23× 3.00 1.17× 1.17× 2.00

Beamlet voxel size (mm) 2.5× 2.5× 2.5 2.5× 2.5× 2.5 3× 3× 3

nSpots 5,816 10,220 17,866

nEnergyLayers 507 762 624

nBeams 37 48 41

Table 1: Size of each optimization problem

Partial arcs were defined for each clinical case to reduce the memory load and

computation time. For the brain case, one partial arc was defined. With the couch

angle set to 0◦, it spans angles from 40◦ to 130◦ by steps of 2.5◦, resulting in 37 beams.

The IMPT plan is built with three beams whose gantry angles and couch angles are re-

spectively 95◦, 95◦, 75◦ and 0◦, 180◦, 270◦. The prescription to the tumor is set according

to the IMPT clinical plan associated with the case, that is, 54 Gy to be delivered in 30

fractions where 95% of the tumor volume receives 100% of the dose. For this first case,

beside the target coverage objectives, the sparing of the brain stem, the left optical

nerve, and the optical chiasm were included in the fidelity objective given the close

proximity of these OARs to the tumor.
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The lung case was handled by creating two partial arcs with angles ranging from

2.5◦ to 197.5◦ and 322.5◦ to 357.5◦, respectively, and spaced by 5◦. Regarding the

IMPT plan, one posterior-anterior and one lateral beams were used. The patient was

prescribed a hypo-fractionnated dose of 48 Gy in 12 Gy per fraction. For this patient,

optimization objectives were only set on the target coverage and irradiation time given

that the dose metrics for the surrounding OARs were particularly low and uncertainties

were not considered.

The third case makes use of one partial arc covering angles from 170◦ to 250◦ with

a control angular step of 2◦. The IMPT plan for the liver case makes use of two oblique

posterior-anterior beams (couch angle = 180◦) at 155◦ and 186◦. We followed the original

prescription of 67.5 Gy to be delivered in 15 fractions in total. For this patient, we have

included soft objectives to control the average dose received by the liver (target volume

is subtracted) and the spinal canal maximum dose level.

All the SPArc plans were initialized and splitted so that the resulting arc would

reach the same sampling angle frequency and arc span (start-stop) as the MIP plans.

3. Results

We apply the proposed BCO algorithm to three clinical examples as stated in 2.5. Their

results are demonstrated case by case as the following:

3.1. Brain

From Table 2 and the DVHs in Figure 2b, one can already study the balance between the

objectives. The three points included in the table and shown in Figure 2a, are Pareto-

optimal plans. For example, the extreme anchor point D t yields a plan that has the

best target coverage (D5-D98 = 3.45 Gy) among all plans but also the worst irradiation

time. If the user wants to improve the irradiation time, it translates automatically to

a degradation of the dose quality (d t solution: D5-D98 = 4.39 Gy) and vice-versa.

Although the organs at risk are always better spared with higher BDT≈ weighting, it

is only due to the fact that less beams and layers are activated in this case. For the

d T point, we did not pick the other extreme point (i.e. P2 anchor point) because

the dose distribution obtained has absolutely no clinical relevance due to too poor

plan quality objective weighting versus the BDT one. The dose distributions (Fig-

ure 3) associated with each point are drastically different and emphasize the need to

understand the compromises. Figure 2c shows the distribution of absolute weighting

factors in decision space that were run during the BCO iterative algorithm. A color code

is used to understand to which part of the Pareto front (Figure 2a) corresponds. Their

distribution appears semi-continuous in the sense that the fidelity objective minimization

is continuous while the BDT≈ is discrete due to energy sequencing. Thus, this discrete

behaviour impacts directly the aspect of the Pareto frontier, with few points at low dose

weighting (high fidelity cost). When looking at the objective cost versus the relative
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weights this time in Figure 2d, the direct point-to-point correspondence is observed with

almost a symmetrical behaviour supporting the hypothesis of conflicting objectives. Re-

garding the benchmark (last two columns of Table 2), the MIP demonstrates its supe-

riority compared to both IMPT and SPArc plans in terms of OARs sparing thanks to

the efficient use of the additional degrees of freedom available in the optimization. The

intermediate MIP plan was even capable of reducing the irradiation time compared to

the IMPT plan. The SPArc plan is still faster but fails at satisfying the dose constraints.

Modality
MIP - PAT

IMPT SPArc
D t d t d T

ROI Metric Limit (Gy) Result (Gy)

Fidelity

Target
D98 51.30 53.28 53.06 50.28 53.59 52.72

D5 56.70 56.73 57.45 61.58 57.03 59.07

Optical

chiasm
D5 54.25 54.14 54.87 58.34 55.85 57.53

Brain

stem

Dmean 21.50 4.34 4.00 3.45 4.90 5.82

D5 54.00 17.37 16.54 14.47 19.10 20.98

LON D5 54.50 54.04 55.53 54.87 54.48 56.21

External D5 56.65 2.31 2.12 1.10 4.18 3.27

CI 2.28 2.08 2.26 2.59 3.03

HI 1.06 1.07 1.19 1.06 1.12

Irradiation time (s) 126.2 69.4 24.1 72.2 51.40

# active spots 288 248 183 315 276

# active layers 37 26 13 40 27

# active beams 37 26 13 3 27

Optimization time (s) 18000 18000 18000 16 2155

Table 2: Summary of optimization results for the brain case for three points standing

on Pareto front illustrated on Figure 2a

3.2. Lung

From the DVHs (Figure 4b) and metrics related (Table 3), sensitive trade-offs can be

observed with the target losing rapidly its dose coverage if the time weighting gets

too strong. Figure 5 illustrates the addition of beam angles to secure the dose fidelity

objective and target conformity index. Compared to the brain case, this dataset is twice

as large, making it harder for the MIP to find an optimal solution. This behaviour is

reflected in Figure 4a where some points stack on levels, indicating the MIP was not able

to push enough the optimality of the solution found in the allocated time. The IMPT

and SPArc plans present significant improvement in the target coverage compared to

the MIP plans. The underlying cause is that the plan parameters (spot spacing, layer

spacing, and target margin) differed from those used in the MIP plans. For the lung
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(a) Pareto front

(b) DVHs associated with 3 points on Pareto

front

(c) Absolute weighting factors distribution (d) Relative weighting factors distribution

Figure 2: BCO results obtained for the brain case. D t is a solution where dose fidelity

objective has large importance versus BDT≈ objective while d T just do the opposite

and d t is a more balanced combination of both objectives

Figure 3: Brain dose distributions for three points standing on Pareto front

case, MIP plan parameters create a spot placement with insufficient coverage of the
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target, which the SPArc method was unable to compensate for. Hence, we increased the

target margin by 1 mm, which led to better dosimetric results for SPArc. An interesting

consequence is that the intermediate MIP plan (d t) is much faster than the SPArc plan

to be delivered.

Modality
MIP-PAT

IMPT SPArc
D t d t d T

ROI Metric Limit (Gy) Result (Gy)

Fidelity

Target
D98 45.60 47.13 46.79 44.74 46.89 47.25

D5 50.40 52.21 54.89 61.78 52.04 51.89

Heart D5 15.00 0.62 2.15 0.03 0.00 0.70

Lungs-GTV Dmean 1.00 0.68 0.68 0.83 1.07 0.99

Chest wall D5 30.00 2.29 2.35 1.57 1.84 3.65

External D5 62.00 0.06 0.05 0.03 0.02 0.06

CI 1.29 1.31 1.60 1.82 1.74

HI 1.10 1.17 1.36 1.13 1.12

Irradiation time (s) 96.6 30.5 11.2 49.7 73.80

# active spots 199 141 114 186 195

# active layers 43 17 8 29 41

# active beams 43 17 8 2 41

Optimization time (s) 18000 18000 18000 45 950

Table 3: Summary of optimization results for the lung case for three points lying on

Pareto front illustrated in Figure 4a

3.3. Liver

The extreme anchor point d T point obviously leads to very poor dose quality (Figure

6b) and should not be considered at all in a real clinical study. Table 4 shows an

interesting compromise where we would reduce by more than half the irradiation time

and lose 2.8 Gy in the target coverage (D5-D98) when comparing points D t and d t.

Considering the largest beamlet size, i.e., lower dose resolution, the MIP optimizer was

this time able to compute a very smooth approximation of the Pareto front (Figure 6a)

within the time limit. Smoothness is referring in this case to the shape of the hypo-

thetical curve connecting the solution points on the Pareto front. Figure 6d now shows

clearly the inter-dependence of both objectives with a symmetric correspondence point

by point. Finally, looking at the benchmark results, IMPT and SPArc plans show su-

perior target coverage compared to the intermediate point d T picked from the Pareto

front. However, this can be explained by the fact that plan parameters had also to be

tuned to obtain a sharp target DVH. The spot grid used by the MIP was too small

and too sparse this time indeed. The layer spacing and spot spacing had to be both
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(a) Pareto front

(b) DVHs associated with 3 points on Pareto

front

(c) Absolute weighting factors distribution (d) Relative weighting factors distribution

Figure 4: BCO results obtained for the lung case. D t is a solution where dose fidelity

objective has large importance versus BDT≈ objective while d T just do the opposite

and d t is a more balanced combination of both objectives.

Figure 5: Lung dose distributions for three points lying on Pareto front.

reduced, whereas the target margin had to be increased, in order to bring sufficient

target coverage. Appendix C discusses a few additional results to support this claim.
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Modality
MIP - PAT

IMPT SPArc
D t d t d T

ROI Metric Limit (Gy) Result (Gy)

Fidelity

Target
D98 64.13 66.37 66.27 60.12 66.20 66.17

D5 70.88 71.13 73.82 99.96 72.01 71.88

Liver-IGTV Dmean 4.10 3.54 3.09 2.14 3.88 4.45

Spinal Canal D5 8.00 4.53 4.77 3.16 7.9 6.45

External D5 71.25 1.25 0.72 0.10 1.10 2.66

CI 1.14 1.00 0.57 1.52 1.59

HI 1.04 1.05 1.25 1.08 1.09

Irradiation time (s) 103.20 40.10 11.20 54.50 65.80

# active spots 640 557 354 680 714

# active layers 41 23 8 32 36

# active beams 41 23 8 2 36

Optimization time (s) 18000 18000 18000 40 1200

Table 4: Summary of optimization results for the liver case for three points standing on

Pareto front illustrated on Figure 6a

4. Discussion

We have presented the first application of bi-criteria optimization to the PAT treatment

planning problem, which requires innovative trade-offs between clinical and delivery

time goals.

Mixed-Integer programming. Finding an optimal point on Pareto front is converted

into a traditional single objective optimization problem. We choose mixed-integer linear

programming as most suited formalism to tackle it, and a well known optimizer to solve

it. According to our previous study (Wuyckens et al. 2022), the MIP problem statement

is a proper formulation, allowing to model our full objective function and constraints in

a convex form, which is a commonly admitted prerequisite to apply the BCO algorithm.

Given enough computation time, solutions with optimality proofs can be obtained by

using an appropriate solver (such as Gurobi) on our MIP model. Unfortunately, our

problem is proven to be NP-hard (Wuyckens et al. 2022), which means that such proofs,

or even the corresponding solutions, are impossible to compute in reasonable time, for

realistically sized problem instances. This is the case when the dimension of the problem

increases, typically for higher dose resolution or larger tumor. This has been observed

in some of the Pareto plots, where several points found by the optimizer were slightly

“off the curve”. This indicates a clear limitation of our current optimizer to give an

efficient approximation of the Pareto frontier. However, looking at the results, we can

say that our optimizer is close to finding and proving the optimal solutions considering

the smooth shape of the Pareto fronts with a slight experimental noise that also supports
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(a) Pareto front

(b) DVHs associated with 3 points on Pareto

front

(c) Absolute weighting factors distribution (d) Relative weighting factors distribution

Figure 6: BCO results obtained for the liver case. D t is a solution where dose fidelity

objective has nearly exclusive priority versus BDT≈ objective while d T just do the

opposite and d t is a more balanced combination of both objectives.

Figure 7: Liver dose distributions for three points lying on Pareto front.

the claim of a convex approximation. Over 30 optimizations for each case, about 10

are useful to represent the Pareto front. Some runs were indeed not necessary because
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their final solution was already found in a previous run or eventually ended being not

Pareto optimal. We suspect this behavior is induced by the discrete nature of the PAT

problem. Because we are using a MIP model, the number of points in the Pareto front

should be finite. The Pareto front is therefore discrete and disconnected, as observed

in the results. Another benefit of our MIP formulation is its ability to interchange soft

objectives with hard constraints, although this has not been exploited in the current

article. As shown in Wuyckens et al.’s (2022), the ability to turn medical constraints,

from soft to hard, is mandatory in order to compute solutions with strong treatment

guarantees. Finally, the benchmark produced for this study including a conventional

IMPT plan and a SPArc plan allows to make several statements. Given that for each

case, the plan parameters had to be adjusted to bring sufficient target coverage for

both IMPT and SPArc plans, it only reflects the power of degrees of freedom that is

efficiently used in the MIP plans. It also demonstrates that the energy sequence opti-

mization matters and especially for more complex cases such as small brain tumors for

which, in our case study, SPArc (through its greedy heuristic) was unable to satisfy the

dose constraints even with tuned plan parameters.

Anchor points choice. The weights of the anchor points we selected to start the BCO

algorithm might not be very reasonable considering a large part of the Pareto optimal

plans are too extreme for a physicist in real clinical practice. Indeed, many points lead

to poor results in terms of dose distribution and would not be regarded at all. A less

exhaustive and more economical exploration technique should therefore be devised to

avoid some unnecessary optimization runs. For example, fixing hard constraints (made

possible by MIP) to obtain a minimal acceptable target coverage in addition to the soft

objectives might have given more clinically relevant results.

True delivery time. In this work, we only consider an approximation of the static

beam delivery time. However, the true delivery time is in reality dynamic and includes

mechanical parameters on top of the irradiation parameters such as maximum gantry

velocity, acceleration, and deceleration speeds. The modeling of such function and the

search for a suitable optimizer are very complex and require further research.

Time considerations. Solving each scalarized problem for a mixed-integer programming

problem is very costly. For this study, each optimization has been run for 5 hours.

Considering we have made 30 iterations to approximate a single Pareto front for each

test case, it implies that 6 days in total were needed, which is certainly not realistically

feasible for a clinical implementation at the present time. Nevertheless, this huge

computation time is not exclusively attributable to the BCO layer. Underneath, PAT

optimization is still recent and much progress is needed to improve the optimization

efficiency. In our case, further effort could be dedicated to the MIP problem statement

itself, as well as to the tuning of the optimizer parameters.
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N dimension. We have considered a bi-objective formulation although in reality the

fidelity objective is itself a multi-objective problem. The planners state a new objective

for each target/organ clinical goal specified in the prescription. A weighting factor is

therefore attached to each term and requires a fine tuning to fulfill the combination

of objectives. In this work, we indicated that these factors were adjusted beforehand

through an iterative manual loop. However, one could ask about the implications for

subsequent bi-objective optimization. The reason behind this choice is the following:

the dose quality is the most important objective in any case, as we cannot deliver a

plan that does not respect the dose limits. If we find a good set of weighting factors

for the target and OARs that work to obtain a good plan quality, we assume the same

set will also work for the subsequent bi-objective optimization including the BDT ob-

jective given that we only seek to minimize BDT as long as the dose quality remains

sufficient. We understand that the last statement is weak and might deteriorate our al-

gorithm efficiency to solve the PAT problem since degrees of freedom are cut out when

adjusting the weights beforehand or that a set of weights might be more convenient

than another for a specific BDT weight but this extends outside the scope of this work.

The next logical step is therefore to use multi-criteria optimization. One could use the

convex hulling method presented by Craft et al. (2006) to take all the dimensions of the

problem into account. For example, in the liver case, the MCO would show the trade-

offs between average liver dose, high dose volumes for the other OARs, or conformality.

Advanced techniques for generating Pareto fronts of MIP-specific problems should also

be considered though today this is still a very active field of research. Recently, Burachik

et al. (2019) presented a review of such algorithms where they ultimately proposed a

new four-objective algorithm in a challenging mixed-integer programming problem.

Uncertainties. In this study, uncertainties have voluntarily been neglected in the treat-

ment planning optimization and, consequently, no robustness evaluation was performed.

However, robustness planning and evaluation are of utmost importance for proton ther-

apy due to dose distributions sensitivity to the uncertainties of the position of the Bragg

peaks (Albertini et al. 2011, Fredriksson 2012). However, the integration of robustness in

proton arc therapy treatment optimization is extremely difficult and also computation-

ally too intensive at this time, when using optimizers with no restrictive pre-selection

of the energy layers, i.e., using the full available set of degrees of freedom. Actually,

none of the works published in the literature on proton arc optimization with no pre-se-

lection has presented results optimized with robust settings. In our case, mixed-integer

programming will require elaborated mathematical techniques in order to obtain robust

treatment plans. Given a set of sampled outcomes, the L-shaped method (Laporte &

Louveaux 1993) could be exploited to minimize expected deviations from the initial

treatment. Monte Carlo sampling, such as the sample average approximation method

(Ahmed, Shapiro & Shapiro 2002), should also be considered, although the complexity

of our problem will severely limit the size of the sample required to produce estimates.

Few methods exists in order to reduce the size of a sample, while preserving its repre-
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sentativeness (Kahn & Marshall 1953). One could also look at the progress made with

the well-known beam angle optimization (BAO) problem (Cao et al. 2022) and translate

the methods to energy layer optimization (ELO) problem we have in proton arc ther-

apy. Moreover, there is still limited data for robustness optimization or evaluation for

PAT, and therefore no indication on what a good robustness evaluation strategy would

possibly be used for this new modality. For this purpose, the difference of robustness

between PAT and IMPT should be investigated and, based on that, tools to evaluate the

robustness of proton arc plans can be developed in a clinically relevant way. Note that

there is still no consensus for the robustness evaluation of a conventional IMPT plan

itself, though the topic is widely recognized by the community (Sterpin et al. 2021).

MCO utility. If planners made use of an efficient MCO algorithm, it would eventually

speed up planning time by a great amount and ease the decision-making process

to select the plan, which represents the most desirable compromise between target

coverage, organ at risk sparing, and irradiation time, where the last is critical to make

efficient use of the PAT modality. While interesting algorithmic challenges remain open

for PAT treatment plan optimization (reliable approximation of beam delivery time,

MIP modeling) as well as for Pareto front generation in multi-objective mixed-integer

programming problems, we believe PAT potential could ultimately be unlocked when

combined with MCO.

5. Conclusion

PAT is a new modality that delivers the treatment over multiple proton beam directions

following an arc. The PAT optimization problem imposes minimizing the beam delivery

time in addition to the traditional clinical and dosimetric goals. Trade-offs between

these two objectives are therefore indispensable in order to deliver dose and time efficient

PAT plans. In this work, we have demonstrated the feasibility of applying a bi-crite-

ria algorithm to the PAT problem statement, which could further help the treatment

planners understand the different options that are actually available. The next steps as

future work would be to further reduce the optimization time, e.g., by using an iterative

grid size approach, implementing heuristics to shrink the searchable solution space, etc.

Moreover, scaling to N dimension, with more than 2 concurrent objectives, and hence

solving a clinically relevant MCO is another important milestone on the future roadmap

of PAT.
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Appendix A. MIP model

We represent a specific sequence of energy layers (EL) as a path in a directed graph,

from a source node 0− which has outgoing directed edges (0−, n) to every EL n ∈ E, to

a sink node 0+ which has incoming edges from every EL, passing by a network of edges

that link the ELs altogether: there is an edge (m,n) for each pair of ELs such that n

belongs to a strictly higher beam than m. We note Eedges the set of all edges that consti-

tute the graph, whereas E− = E ∪ {0−}, E+ = E ∪ {0+}, E± = E ∪ {0−, 0+} denotes

the nodes.

Let xj and emn be decision variables such that

• ∀j ∈ S : xj determines the intensity attributed to a spot j ∈ S,

• emn are redundant variables determining whether some energy layer (EL) switch

happens: ∀m,n ∈ E± : emn = 1 if (m,n) ∈ Eedges and layer n ∈ E+ is activated

directly after layer m ∈ E−, otherwise emn = 0.

From Wuyckens et al. (2022), the proton arc therapy treatment optimization

problem for finding a single optimal point on the Pareto front can be modelled as a

weighted sum using a mixed-integer two-index flow formulation

minx1,...,x|S| F (x) := wD f(d) + wT BDT≈(x) (A.1)

s.t. :
∑
n∈E+

e0−n =
∑
n∈E−

en0+ = 1 (A.2)

∀m ∈ E
∑
l∈E−

elm =
∑
n∈E+

emn (A.3)

∀m ∈ E, ∀j ∈ Sm xj ≤ I
∑
l∈E−

elm (A.4)

∀j ∈ S 0 ≤ xj ≤ I (A.5)

∀(m,n) ∈ Eedges emn ∈ {0, 1} (A.6)
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where the fidelity term f(d) is represented as follows:

f(d) =
∑

k∈ROI

ukfk(d) (A.7)

s.t. fk(d) = ∥(di − pi)+∥1 (A.8)

d = Ax (A.9)

and the approximation of the irradiation time BDT≈(x) is modeled as:

BDT≈(x) =
∑

(m,n)∈Eedges

cmn emn

s.t. ∀(m,n) ∈ Eedges emn ∈ {0, 1}

cmn =


6.5 for upwards energy switching

1.6 for downwards energy switching

1.2 for constant energy

Appendix B. The BCO Pareto approximation algorithm

This appendix provides details on the BCO algorithm through a simple example as

well as a the full description of the equations derived for the Pareto approximation

construction.

Figure B1: Pareto front geometric construction. Left (iteration 1 & 2): Constructing

depth 1 on the right hand side branch of the tree depicted in Figure 1. Right (iteration

3): Constructing depth 2. Blue: Pareto optimal points (the red encircled ones are

selected for next iteration). Green: upper Pareto quadratic approximation. Distal

points (orange) and their distance (red) to segment lines.

Following the path depicted in the binary tree search (dashed nodes in Figure 1),

we give hereinafter a detailed description of the different steps within the iterations.
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Iteration 1. The first iteration starts from the parent node where we compute the so-

called anchor points P1
A, P

1
C representing the individual minima of each objective. In

the present study, these points are obtained by optimizing the global objective function

with individual weights w = (wD, wT ) for the dose fidelity objective fD and the BDT≈

objective fT . These weights are set to wA = (1, 0.001), wC = (0.001, 1), respectively, to

avoid too poor quality solutions in terms of dose coverage. Next, a third (interior) point

P1
B is obtained with equal weights, wB = (1, 1). From these three points, an initial

upper Pareto quadratic approximation is obtained. Using the bounding segment lines

between these points and the tangent line at the interior point, initial lower distal points

and their distance to segment lines PAPB and PBPC (d1left and d1right, respectively) can

be computed by solving the equation system: (see equations B.3 and B.4 in the formulas

below). This step is illustrated geometrically on Figure B1 (left). At this stage, the

parent node has now two children nodes corresponding to each distance.

Iteration 2. In the next iteration i = 2, we pick the tree node associated with the

currently largest di−1 distance. In our example, d1right (resulting from P 1
B and P 1

C) is

picked, the new weights to run to obtain a new Pareto optimal point (P 2
B) are obtained

by averaging the weights of P 1
B and P 1

C . The same geometric construction as in iteration

1 is carried out to compute the segment lines d2left and d2right.

Iteration 3. As d2right is lower than a predefined tolerance threshold, we then cut the

current branch (leaf node in tree). The third iteration thus continues with the tree node

associated with d2left. It generates a new point P 3
B (Figure B1, right) and so on.

These iterations (summarized in Algorithm 1) are repeated until all distances di

fall below minimal distance tolerance, or the user-specified tree depth Imax is reached.

In order to mitigate the bias introduced by objectives having different magnitudes,

a dimension scaling on the individual objective functions is performed whenever a new

point Pi
B is computed, still following Craft et al.’s (2006) method.

Formulas

The anchor points for input upper Pareto approximation are PA = (xA, yA) for f(d)

and PC = (xC , yC) for BDT
≈(x), the single interior point is PB = (xB, yB). Then the

upper Pareto quadratic approximation is

y =
(x− xC)(x− xB)

(xA − xC)(xA − xB)
y1 +

(x− xA)(x− xB)

(xC − xA)(xC − xB)
yC +

(x− xA)(x− xC)

(xB − xA)(xB − xC)
yB

The slope of its tangent line is

y′ =
(x− xC) + (x− xB)

(xA − xC)(xA − xB)
yA +

(x− xA) + (x− xB)

(xC − xA)(xC − xB)
yC +

(x− xA) + (x− xC)

(xB − xA)(xB − xC)
yB

The tangent line at the interior point has the slope

y′(xB) =
xB − xC

(xA − xC)(xA − xB)
yA +

xB − xA

(xC − xA)(xC − xB)
yC +

(xB − xA) + (xB − xC)

(xB − xA)(xB − xC)
yB
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The tangent line at the interior point is

y − yB = y′(xB)(x− xB)

The initial lower distal point (LDP) to facet PAPB is

Ileft = (xA, yB + y′(xB)(xA − xB)) (B.1)

The initial LDP to facet PCPB is

Iright = (xB +
yC − yB
y′(xB)

, yC) (B.2)

The equation of facet PAPB is

y − yA =
yB − yA
xB − xA

(x− xA)

that is, in standard form

(yB − yA)x− (xB − xA)y + yA(xB − xA)− xA(yB − yA) = 0

The distance from LDP Ileft to facet PAPB is

dleft =
|(yB − yA)xA − (xB − xA)[yB − y′(xB)(xB − xA)] + yA(xB − xA)− xA(yB − yA)|√

(xB − xA)2 + (yB − yA)2
(B.3)

Similarly, the equation of facet PCPB is

(yB − yC)x− (xB − xC)y + yC(xB − xC)− xC(yB − yC) = 0

The distance from LDP Iright to facet PCPB is

dright =
|(yB − yC)[xB + yC−yB

y′(xB)
]− (xB − xC)yC + yC(xB − xC)− xC(yB − yC)|√
(xB − xC)2 + (yB − yC)2

(B.4)

Appendix C. Benchmark

For each disease site, IMPT and SPArc dose distributions are shown in Figure C1. The

DVHs are provided in Figure C2. To give an appreciation of the MIP plan quality com-

pared to IMPT and SPArc, a pastel shade band was added on top of the DVH curves,

with a thickness proportional to the range of solutions between the MIP plans D t and

d T.

In Section 3, we have argued that the plan parameters for the IMPT and SPArc

plans had to be fine-tuned from those used in the MIP plans, in order to reach a suffi-

cient target coverage. We provide additional material to support this assertion. In Table

C1, original plan parameters (used for the MIP plans) and tuned parameters are listed.

Table C2 reports the target coverage obtained for each plan and each patient, as well

as the initial number of spots at plan creation and thus available to the optimizer.
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(a) IMPT - Brain (b) SPArc - Brain

(c) IMPT - Lung (d) SPArc - Lung

(e) IMPT - Liver (f) SPArc - Liver

Figure C1: Optimal dose distributions for 3 patients

(a) Brain (b) Lung (c) Liver

Figure C2: DVH comparison between IMPT (solid line), SPArc (dashed line) and MIP-

BCO solutions (filled area)
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Plan parameters Disease site Original Tuned

Spot spacing [mm]

Brain

7

5

Lung 7

Liver 5

Layer spacing [mm]

Brain

4

3

Lung 4

Liver 3

Target margin [mm]

Brain

6 7Lung

Liver

Table C1: Plan parameters for spot placement

Modality IMPT SPArc

Plan parameters Original Tuned Original Tuned

D5-D98 (Gy)

Brain 7.5 3.4 10.9 6.3

Lung 5.1 6.9 4.6

Liver 18.5 5.8 11.8 5.7

# spots

Brain 459 1352 475 614

Lung 312 472 550

Liver 880 2481 1217 2698

Table C2: Target coverage comparison of plans using original (MIP) and tuned plan

parameters


