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Abstract
In this paper, we present a version of the cubic regularization of Newton’s method for
unconstrained nonconvex optimization, in which the Hessian matrices are approx-
imated by forward finite difference Hessians. The regularization parameter of the
cubic models and the accuracy of the Hessian approximations are jointly adjusted
using a nonmonotone line search criterion. Assuming that the Hessian of the objective
function is globally Lipschitz continuous, we show that the proposed method needs
at most O n −3/2 function and gradient evaluations to generate an -approximate
stationary point, where n is the dimension of the domain of the objective function.
Preliminary numerical results corroborate our theoretical findings.

Keywords Nonconvex optimization · Second-order methods · Finite differences ·
Worst-case complexity

1 Introduction

The cubic regularization of Newton’s method (CNM) is a globally convergent vari-
ant of Newton’s method for unconstrained minimization of twice continuously
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differentiable functions [16, 22]. At the t-th iteration of CNM, the next iterate xt+1
is obtained by minimizing a cubic model that consists of a third-order regularization
of the second-order Taylor approximation of the objective function f ( · ) around xt .
For a given tolerance > 0, Nesterov and Polyak [22] proved that the CNM takes at
most O −3/2 iterations to generate an -approximate stationary point of the objec-
tive function (i.e., an iterate xt such that ∇f (xt ) 2 ≤ ), when f ( · ) is a nonconvex
function with Lipschitz continuous Hessian. Remarkably, Cartis, Gould and Toint [7]
proved that in the same problem class the standard Newton’s method (without regu-
larization) may need a number of iterations arbitrarily close to O −2 to generate an
-approximate stationary point of the objective function. In view of these complex-

ity results, several second-order methods inspired by the CNM have been proposed
for nonconvex optimization in the last decade (see, e.g., [2, 4, 9, 11, 13, 14, 19]).
More recently, Carmon et al. [6] showed that the worst-case complexity bound of
O −3/2 is the best that second-order methods can achieve when applied to func-
tions with Lipschitz continuous Hessians, establishing the optimality of the CNM in
this problem class.

As aforementioned, the iterates in the CNM are computed by minimizing cubic
models, which involve Hessian matrices of the objective function. However, in sev-
eral applications the computation of Hessian matrices can be computationally very
expensive (see, e.g., [20, 24]). For the case in which only function values and first-
order derivatives are provided by the user, Cartis, Gould and Toint [10] analyzed a
variant of the CNM with Hessian matrices ∇2f (xt ) approximated by forward finite
difference Hessians Bt . Assuming that the gradient and the Hessian of the objec-
tive function are Lipschitz continuous on the path of iterates, and that the gradient
is bounded over the iterates, they showed that the referred method (called ARC-
FDH) needs at most O n −3/2 + n| log( )| calls of the oracle1 to generate an
-approximate stationary point, where n is the dimension of the domain of the objec-

tive function. Regarding the Hessian approximations, the key condition required in
[10] is that

∇2f (xt ) − Bt ≤ κB xt+1 − xt , (1)
where κB ≥ 0. Since xt+1 is unknown during the computation of Bt , the ARC-FDH
is endowed with an adaptive procedure in which the stepsize that defines the finite
difference approximation Bt is reduced until a sufficient condition for (1) is satisfied.
This is the source of the additional logarithmic term in the complexity bound for the
number of calls of the oracle (Lemma 3.2 in [10]).

In this paper, we present a new first-order version of the CNM with Hessian matri-
ces approximated by forward finite difference Hessians. Different from [10], the
stepsize that defines the finite difference approximation Bt is adjusted aiming the
condition

∇2f (xt ) − Bt ≤ κB xt − xt−1 . (2)
The use of (2) instead of (1) was first suggested by Kohler and Lucchi [18] and
further investigated (theoretically and numerically) by Wang et al. [26, 27], and by
Bellavia, Gurioli and Morini [1] in the context of sub-sampled variants of the CNM

1Throughout this paper, by call of the oracle we mean one function evaluation or one gradient evaluation.
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for finite-sum minimization2. Based on condition (2), in our method, the regulariza-
tion parameter of the cubic models and the accuracy of the Hessian approximations
are jointly adjusted using a nonmonotone line search criterion. Assuming that the
Hessian of the objective function is globally Lipschitz continuous, we show that the
proposed method needs at most O n −3/2 calls of the oracle to generate an -
approximate stationary point. Moreover, we also show that the method needs at most

O n max −3/2
g , −3

H calls of the oracle to generate an ( g, H )-approximate

second-order stationary point, i.e., an iterate xt such that

∇f (xt ) ≤ g and λmin ∇2f (xt ) ≥ − H .

The paper is organized as follows. In Section 2, we formulate the problem and
establish the crucial auxiliary results. In Section 3, we present our first-order CNM
variant and analyze its worst-case evaluation complexity. Finally, in Section 4, we
report preliminary numerical results that corroborate our theoretical findings.

Notation The symbol · denotes the 2-norm for vectors or matrices (depending on
the context), while · F denotes the Frobenius norm for matrices. The Euclidean
inner product of x, y ∈ R

n is denoted by x, y . For j = 1, . . . , n, ej ∈ R
n is the

j -th orthonormal vector of the canonical basis for Rn. We denote the identity matrix
of Rn×n by I , and for any symmetric matrix A ∈ R

n×n, λmin (A) is the smallest
eigenvalue of A. Given two square matrices A and B, the inequality A B means
that the matrix A − B is positive semidefinite.

2 Problem formulation and auxiliary results

We consider the unconstrained minimization problem

min
x∈Rn

f (x), (3)

where f : R
n → R is a twice continuously differentiable function, potentially

nonconvex. Our analysis will be carried out under the following assumptions:

A1 The Hessian of f is L-Lipschitz continuous on the whole R
n, i.e.,

∇2f (y) − ∇2f (x) ≤ L y − x , ∀x, y ∈ R
n.

A2 There exists flow ∈ R such that f (x) ≥ flow for all x ∈ R
n.

From A1, it can be shown that, for all x, y ∈ R
n,

f (y) ≤ f (x) + ∇f (x), y − x + 1

2
∇2f (x)(y − x), y − x + L

6
y − x 3 (4)

2The numerical experiments reported in [1] show that in certain variants of CNM with inexact Hessians,
the difference between xt+1 − xt and xt − xt−1 may reach different orders of magnitude. Thus, in
practice, inequalities (1) and (2) induce very different error bounds.
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and

∇f (y) − ∇f (x) − ∇2f (x)(y − x) ≤ L

2
y − x 2. (5)

In view of inequality (4), we will consider the following cubic models for f (y):

Ωx,σ (y):=f (x) + ∇f (x), y − x + 1

2
∇2f (x)(y − x), y − x + σ

6
y − x 3 (6)

and

Mx,σ (y):=f (x) + ∇f (x), y − x + 1

2
B(y − x), y − x + σ

6
y − x 3, (7)

where σ > 0 and B ∈ R
n×n is an approximation to ∇2f (x).

Our first auxiliary result gives upper bounds for ∇f (x+) and also for
−λmin ∇2f (x+) under suitable conditions about x+ and the matrix B.

Lemma 1 Suppose that A1 holds and assume that x+ ∈ R
n satisfies

∇Mx,σ (x+) ≤ θ x+ − x 2 (8)

for some x ∈ R
n, σ > 0 and θ ≥ 0. If for some κB ≥ 0, γ > 0 and x̂ ∈ R

n, we have

B − ∇2f (x) ≤ κBmin x − x̂ , γ ∇f (x) , (9)

then

∇f (x+) ≤ σ + L + 2(θ + κB)

2
max x+ − x , min x − x̂ , γ ∇f (x)

2
.

(10)
If additionally

B + σ

2
x+ − x I −θ x − x̂ I, (11)

then

− λmin ∇2f (x+) ≤ σ + 2(θ + κB + L)

2
max x+ − x , x − x̂ . (12)

Proof Given y ∈ R
n, denote

Φx(y) := f (x) + ∇f (x), y − x + 1

2
∇2f (x)(y − x), y − x .

Then, by (5)–(8), we get

∇f (x+) ≤ ∇f (x+) − ∇Φx(x+) + ∇Φx(x+) − ∇Mx,σ (x+) + ∇Mx,σ (x+)

≤ L

2
x+ − x 2 + ∇2f (x) − B (x+ − x) − σ

2
x+ − x (x+ − x)

+ ∇Mx,σ (x+)

≤ L + σ

2
+ θ x+ − x 2 + ∇2f (x) − B x+ − x .
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Hence, it follows from (9) that

∇f (x+) ≤ L + σ

2
+ θ x+ − x 2 + κBmin x − x̂ , γ ∇f (x) x+ − x

≤ L + σ

2
+ θ + κB max x+ − x , min x − x̂ , γ ∇f (x)

2
,

that is, (10) is true.
On the other hand, by A1 and (9), for any d ∈ R

n, we have

B − ∇2f (x+) d, d = B − ∇2f (x) d, d + ∇2f (x) − ∇2f (x+) d, d

≤ B − ∇2f (x) d 2 + ∇2f (x) − ∇2f (x+) d 2

≤ κB x − x̂ d 2 + L x+ − x d 2

≤ (κB + L) max |x+ − x , x − x̂ d 2

= (κB + L) max x+ − x , x − x̂ Id, d .

Since the inequality above holds for all d ∈ R
n, it follows that

B − ∇2f (x+) (κB + L) max x+ − x , x − x̂ I

=⇒ B ∇2f (x+) + (κB + L) max x+ − x , x − x̂ I

Then, using Weyl’s inequality [12, 28], we get

λmin (B) ≤ λmin ∇2f (x+) + (κB + L) max x+ − x , x − x̂ . (13)

Now, assuming that (11) is true, we also have

λmin (B) + σ

2
x+ − x ≥ −θ x − x̂

=⇒ λmin (B) + σ

2
x+ − x + θ x − x̂ ≥ 0

=⇒ λmin (B) + σ

2
+ θ max x+ − x , x − x̂ ≥ 0,

which gives

λmin (B) ≥ − σ

2
+ θ max x+ − x , x − x̂ . (14)

Finally, combining (13) and (14), we obtain (12).

The next lemma provides a lower bound on f (x) − f (x+) when Mx,σ (x+) ≤
Mx,σ (x) = f (x) and σ is sufficiently large.

Lemma 2 Suppose that A1 holds and assume that x+ satisfies

Mx,σ (x+) ≤ f (x) (15)

for some x ∈ R
n and σ > 0. Moreover, suppose that for some κB ≥ 0 and x̂ ∈ R

n,
inequality (9) hold. If

σ ≥ 2(L + 3κB) (16)
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then
f (x) − f (x+) ≥ σ

12
x+ − x 3 − κB

2
x − x̂ 3. (17)

Proof By (4), (7), (9) and (15), we have

f (x+) ≤ f (x)+ ∇f (x), x+ − x + 1

2
∇2f (x)(x+−x), x+ − x + L

6
x+ − x 3

= f (x) + ∇f (x), x+ − x + 1

2
B(x+ − x), x+ − x + σ

6
x+ − x 3

+1

2
∇2f (x) − B (x+ − x), x+ − x + (L − σ)

6
x+ − x 3

= Mx,σ (x+) + 1

2
∇2f (x) − B (x+ − x), x+−x + (L − σ)

6
x+ − x 3

≤ f (x) + κB

2
x − x̂ x+ − x 2 + (L − σ)

6
x+ − x 3. (18)

Note that

x − x̂ x+ − x 2 ≤ x − x̂ 3 + x+ − x 3. (19)

Combining (18) and (19), we get

f (x+) ≤ f (x) + κB

2
x − x̂ 3 + L + 3κB − σ

6
x+ − x 3,

and so

f (x) − f (x+) ≥ σ − L − 3κB

6
x+ − x 3 − κB

2
x − x̂ 3.

Finally, using (16), it follows that (17) is true.

The third auxiliary result gives sufficient conditions under which the error bound
(9) is satisfied by a suitable finite difference approximation B. This is a classical
result. For the reader’s convenience, we give the proof here.

Lemma 3 Suppose that A1 holds. Given x ∈ R
n and h > 0, let A ∈ R

n×n be defined
by

A:= ∇f (x + he1) − ∇f (x)

h
, . . . ,

∇f (x + hen) − ∇f (x)

h
. (20)

then the matrix

B:=1

2
A + AT (21)

satisfies

B − ∇2f (x) ≤
√

nL

2
h. (22)
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Proof It follows from (5) with y = x + hei that

∇f (x + hei) − ∇f (x) − h∇2f (x)ei ≤ L

2
h2

=⇒ ∇f (x + hei) − ∇f (x)

h
− ∇2f (x)ei ≤ L

2
h

=⇒ (A − ∇2f (x))ei ≤ L

2
h,

and so

A − ∇2f (x) 2 ≤ A − ∇2f (x) 2
F =

n

i=1

(A − ∇2f (x))ei
2
2 ≤ n

L

2

2

h2,

which gives

A − ∇2f (x) ≤
√

nL

2
h. (23)

Finally, combining (21) and (23), we get

B − ∇2f (x) ≤ A − ∇2f (x) ≤
√

nL

2
h.

Combining the last two results, we have the following theorem, which is the basis
for the nonmonotone line search criterion used in our method.

Theorem 1 Suppose that A1 holds and assume that x+ satisfies (8) and (15) for
some x ∈ R

n and σ > 0. Moreover, suppose that the matrix B in Mx,σ ( · ) is defined
as

B:=1

2
A + AT ,

where A is given by (20) with

0 < h ≤ 2κB√
nσ

min x − x̂ , γ ∇f (x) (24)

for some κB > 0, γ > 0 and x̂ ∈ R
n. If

σ ≥ 2 (L + θ + 3κB) , (25)
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it holds

f (x) − f (x+) ≥ σ

12
x+ − x 3 − κB

2
x − x̂ 3 (26)

and

∇f (x+) ≤ σ max x+ − x , min x − x̂ , γ̂ ∇f (x)
2
, (27)

where γ̂ = max {1, γ }.

Proof By (25) and (24), we have

0 < h <
2κB√
nL

min x − x̂ , γ ∇f (x) .

Then, it follows from Lemma 3 that

B − ∇2f (x) ≤ κBmin x − x̂ , γ ∇f (x) . (28)

Finally, in view of (8), (15), (25) and (28), by Lemmas 1 and 2, we conclude that (26)
and (27) hold.

Lemma 4 Given τ, λ > 0 and a set zj
k

j=1 of nonnegative real numbers, with
k ≥ 2, let

m(k) := argminj∈{1,...,k−1} zτ
j + zτ

j+1 . (29)

If

k

j=1

zτ
j ≤ λ, (30)

then

max zm(k), zm(k)+1 ≤ 2λ

k − 1

1
τ

. (31)

Proof It follows from (29) and (30) that

zτ
m(k) + zτ

m(k)+1 = min
j∈{1,...,k−1} zj

τ + zτ
j+1 ≤ 1

k − 1

k−1

j=1

zτ
j + zτ

j+1

Therefore, zm(k) ≤ [2λ/(k − 1)]1/τ and zm(k)+1 ≤ [2λ/(k − 1)]1/τ , which implies
(31).
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3 CNMwith finite difference Hessian approximations

We are now in position to present our cubic regularization of Newton’s method with
finite difference Hessian approximations to problem (3).

Remark 1 Conditions in (36), which are similar to those proposed in [5], only require
a decrease of the cubic regularized model and an approximate first-order stationary
point.
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Remark 2 Notice that condition (37) allows the acceptance of a trial step x+
t,i for

which

f (xt ) < f (x+
t,i ) ≤ f (xt ) + σ1

12
xt − xt−1

3.

Consequently, the corresponding sequence {f (xt )}t≥0 may be nonmonotone. Thus,
Algorithm 1 is a nonmonotone CNM. Different nonmonotone variants of CNM have
been proposed in [3, 23, 30]. Specifically, the method presented in [3] is inspired
in the nonmonotone line search of Grippo, Lampariello and Lucidi [17], while the
methods presented in [23, 30] are inspired in the nonmonotone line search of Zhang
and Hager [29].

Lemma 5 Suppose that A1 holds. Then, the sequence of regularization parameters
{σt } in Algorithm 1 satisfies

σ1 ≤ σt ≤ 2 L + θ + 3σ1

2
:= σmax, (39)

for all t ≥ 1. Moreover, the number OT of calls of the oracle up to the T -th iteration
is bounded as follows:

OT ≤ (n + 2) 2T + log2 2 L + θ + 3σ1

2
− log2(σ1) . (40)

Proof Clearly, (39) is true for t = 1. Suppose that (39) holds for some t ≥ 1. If
it = 0, then by Step 1 and the induction assumption, we have

σ1 ≤ σt+1 = 1

2
σt ≤ σt ≤ 2 L + θ + 3σ1

2
,

that is, (39) holds for t + 1. On the other hand, if it ≥ 1, then we must have

2it−1σt ≤ 2 L + θ + 3σ1

2
. (41)

Indeed, assuming by contradiction that (41) is not true and using κB = σ1/6, it
follows that

2it−1σt > 2 L + θ + 3σ1

2
= 2 (σ1 + L + θ + 3κB) .

In this case, by Theorem 1, inequalities (37) and (38) would have been satisfied for
i = it − 1, contradicting the minimality of it . Thus, (41) is true. Consequently, by
Step 1 and (41), we have

σ1 ≤ σt+1 = 1

2
2it σt ≤ 2 L + θ + 3σ1

2
,

that is, (39) also holds for t + 1 in this case. This completes the induction argument.
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Finally, note that at the t-th iteration of Algorithm 1 the number of calls of the
oracle is bounded by (n + 2)(it + 1). On the other hand,

σt+1 = 2it−1σt =⇒ (n + 2)(it + 1) = (n + 2) 2 + log2(σt+1) − log2(σt ) .

Thus,

OT ≤
T

t=1

(n + 2)(it + 1) = (n + 2) 2T + log2(σT +1) − log2(σ1)

≤ (n + 2) 2T + log2 2 L + θ + 3σ1

2
− log2(σ1) ,

where the last inequality is due to (39).

Remark 3 It follows from (40) that

1

T
OT ≤ 2(n + 2) + (n + 2)

T
log2 2 L + θ + 3σ1

2
− log2(σ1) .

Thus, in Algorithm 1, the average number of oracle calls per iteration, up to the T -th
iteration, is asymptotically bounded by 2(n + 2).

The theorem below establishes an iteration-complexity bound of O −3/2 for
Algorithm 1.

Theorem 2 Suppose that A1 and A2 hold. Given > 0, let {xt }Tt=1 be generated by
Algorithm 1, such that

∇f (xt ) > , t = 1, . . . , T . (42)

Then,

T < 3 + 24(f (x1) − flow)

σ1
+ 2 x1 − x0

3 4 L + θ + 3σ1

2

3
2 − 3

2 . (43)

Proof Notice that 2it σt = 2σt+1 and, by Step 1, σt ≥ σ1 for all t ≥ 1. Then, it
follows from (37) that

f (xt ) − f (xt+1) ≥ σt+1

6
xt+1 − xt

3 − σt

12
xt − xt−1

3, t = 1, . . . , T − 1.
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As in [5], summing up these inequalities and using the lower bound on f ( · ) and
σt ≥ σ1, we get

f (x1) − flow ≥ f (x1) − f (xT )

=
T −1

t=1

f (xt ) − f (xt+1)

≥
T −1

t=1

σt+1

6
xt+1 − xt

3 −
T −1

t=1

σt

12
xt − xt−1

3

=
T

t=2

σt

6
xt − xt−1

3 −
T −1

t=2

σt

12
xt − xt−1

3 − σ1

12
x1 − x0

3

≥
T

t=2

σt

6
xt − xt−1

3 −
T

t=2

σt

12
xt − xt−1

3 − σ1

12
x1 − x0

3

=
T

t=2

σt

12
xt − xt−1

3 − σ1

12
x1 − x0

3

≥ σ1

12

T −1

t=1

xt+1 − xt
3 − σ1

12
x1 − x0

3,

and so
T −1

t=1

xt+1 − xt
3 ≤ 12(f (x1) − flow)

σ1
+ x1 − x0

3. (44)

Let us denote st := xt+1 − xt . In this way, we can rewrite (44) as

T −1

t=1

st
3 ≤ 12(f (x1) − flow)

σ1
+ s0

3. (45)

Since (43) is clearly true for T ∈ {1, 2}, let us assume that T ≥ 3. Define

t∗:= argminj∈{1,...,T −2} sj
3 + sj+1

3 .

Then, by Lemma 4 with zj = sj , k = T − 1 and τ = 3, it follows from (45) that

max st∗ , st∗+1 ≤ 24(f (x1) − flow)

σ1
+ 2 s0

3
1
3 1

(T − 2)
1
3

. (46)

On the other hand, by (38) and (42), we have

2 σt∗+1 max st∗+1 , st∗
2 ≥ ∇f (xt∗+1) ≥

=⇒ max st∗ , st∗+1 >
2σt∗+1

1
2

. (47)
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Then, combining (46) and (47), it follows that

2σt∗+1

1
2

<
24(f (x1) − flow)

σ1
+ 2 s0

3
1
3 1

(T − 2)
1
3

=⇒
2σt∗+1

3
2

<
24(f (x1) − flow)

σ1
+ 2 s0

3 1

T − 2

=⇒ T − 2 <
24(f (x1) − flow)

σ1
+ 2 s0

3 2σt∗+1
3
2

.

Finally, using the upper bound on σt∗+1 given by Lemma 5, we obtain (43).

Combining (40) and (43), we obtain the following evaluation-complexity bound.

Corollary 1 Suppose that A1 and A2 hold. Then, given > 0, Algorithm 1 needs at

mostO n − 3
2 calls of the oracle to generate an iterate xt such that ∇f (xt ) ≤ .

As a consequence of Corollary 1, we also have a liminf-type global convergence
result for Algorithm 1.

Corollary 2 Suppose that A1 and A2 hold and let {xt }t≥1 be a sequence generated
by Algorithm 1. Then, either exists t̂ such that ∇f (xt̂ ) = 0 or

lim inf
t→+∞ ∇f (xt ) = 0. (48)

Proof Suppose that ∇f (xt ) = 0 for all t ≥ 1. In this case, by Corollary 1, the
sequence {xt }t≥1 has a subsequence xtj j≥1

such that

∇f (xtj ) ≤ j , (49)

where

j = 1, for j = 1,

min 1
j
, mini=1,...,j−1 ∇f (xti ) , for j ≥ 2.

Since limj→+∞ j = 0, by (49), we have

lim
j→+∞ ∇f (xtj ) = 0,

and so (48) is true.

Let us now consider a variant of Algorithm 1 in which, besides (36), we require

Bt,i + 2iσt

2
x+
t,i − xt I −θ xt − xt−1 I . (50)

This means that we will assume that x+
t,i approximately satisfies the first and

the second-order optimality conditions for a local minimizer of the cubic model
Mxt ,2iσt

( · ). In this scenario, we can prove second-order complexity and global
convergence results for Algorithm 1.
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Theorem 3 Suppose that A1 and A2 hold and let {xt }Tt=1 be generated by Algorithm
1 with (36) and (50) being satisfied for all t and i ≤ it . Given g, H > 0, if

∇f (xt ) > g or λmin ∇2f (xt ) < − H , for t = 1, . . . , T , (51)

then

T < 3 + 24 (f (x1) − flow)

σ1
+ 2 x1 − x0

3 max 2σmax, σmax + θ + σ1

6
+ L

3
max −3/2

g , −3
H .

(52)

where σmax is defined in (39).

Proof As in the proof of Theorem 2, we have that

max st∗ , st∗+1 ≤ 24 (f (x1) − flow)

σ1
+ 2 s0

3
1
3 1

(T − 2)
1
3

, (53)

where st = xt+1 − xt and

t∗ = argminj∈{1,...,T −2} sj
3 + sj+1

3 .

If ∇f (xt∗+1) > g , then, by (38), we have

2 σt∗+1 max st∗+1 , st∗
2

> g

=⇒ max st∗+1 , st∗ >
g

2σt∗+1

1
2

On the other hand, if ∇f (xt∗+1) ≤ g then, by (51), we must have

−λmin ∇2f (xt∗+1) > H .

In this case, it follows from Lemma 1 that

max st∗+1 , st∗ >
H

σt∗+1 + θ + κB + L
.

Thus, in any case, we have

max st∗+1 , st∗ >
1

max 2σt∗+1, σt∗+1 + θ + κB + L
min 1/2

g , H .

(54)
Combining (53) and (54), we get

T − 2 <
24 (f (x1) − flow)

σ1
+ 2 s0

3 max 2σt∗+1, σt∗+1 + θ + κB + L
3

max −3/2
g , −3

H .

Finally, using the upper bound on σt∗+1 given by Lemma 5, we obtain (52).

Corollary 3 Suppose that A1 and A2 hold and let {xt }t≥1 be generated by Algorithm
1 with (36) and (50) being satisfied for all t and i ≤ it . Then, given g, H ∈ (0, 1),
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Algorithm 1 needs at mostO n max −3/2
g , −3

H calls of the oracle to generate xt

such that

∇f (xt ) ≤ g and λmin ∇2f (xt ) ≥ − H .

Consequently, either there exists t̂ such that ∇f (xt̂ ) = 0 and ∇2f (xt̂ ) 0 or

lim inf
t→+∞ max ∇f (xt ) ,−λmin ∇2f (xt ) = 0. (55)

Proof The evaluation-complexity bound follows directly from Theorem 3 and
Lemma 5, while (55) follows by the same argument used to prove Corollary 2.

Remark 4 From (55), we see that the addition of requirement (50) in Step 1.2 of
Algorithm 1 allows the iterates to escape from nondegenerate saddle points.

Finally, we can establish a local convergence rate under the following additional
assumption:

A3 There exists μ > 0 such that ∇2f (x) μI whenever

f (x) ≤ 2f (x1) − flow + σ1

6
x1 − x0

3.

Note first that, by (37), we have

f (xt+1) − f (xt ) ≤ σ1

12
xt − xt−1

3, ∀k ≥ 1.

Consequently, for all t ≥ 2, we have

f (xt ) − f (x1) =
t−1

j=1

f (xj+1) − f (xj )

≤ σ1

12

t−1

j=1

xj − xj−1
3

= σ1

12
x1 − x0

3 + σ1

12

t−2

j=1

xj+1 − xj
3

≤ σ1

6
x1 − x0

3 + f (x1) − flow,

where the last inequality is due to (45). Thus, it follows from A3 that

∇2f (xt ) μI, ∀t ≥ 1. (56)

Using this remark, we can prove the following local quadratic convergence rate for
Algorithm 1.
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Theorem 4 Suppose that A1–A3 hold and let {xt }t≥1 be generated by Algorithm 1. If

∇f (x1) ≤ min
6μ

Lγ
,

μ2

2 2γ̂ 2μ2 + 8(θ + 1)2 σmax

, (57)

then

∇f (xt ) ≤ μ2

2γ̂ 2μ2 + 8(θ + 1)2 σmax

1

2

2t

, ∀t ≥ 2. (58)

Proof First, we will show that

∇f (xt+1) ≤ 2γ̂ 2μ2 + 8(θ + 1)2 σmax

μ2
∇f (xt )

2 (59)

for all t ≥ 1. Assume that

∇f (xt ) ≤ min
6μ

Lγ
,

μ2

2 2γ̂ 2μ2 + 8(θ + 1)2 σmax

(60)

for some t ≥ 1. Then, by (32)–(34), Lemma 3, the facts that κB = σ1/6 and 2iσt ≥
2σ1, and (60), we have

∇2f (xt ) − Bt ≤
√

nL

2

2κBγ√
n2σt+1

∇f (xt ) ≤ LκBγ

2σ1
∇f (xt ) = Lγ

12
∇f (xt )

≤ μ

2
.

Thus, given v = 0, we have

vT ∇2f (xt ) − Bt v ≤ ∇2f (xt ) − Bt v 2 ≤ μ

2
v 2 = vT μ

2
I v

=⇒ vT ∇2f (xt )v ≤ vT Bt + μ

2
I v.

Thus,

∇2f (xt ) Bt + μ

2
I .

and, by Weyl’s inequality, we get

λmin ∇2f (xt ) ≤ λmin (Bt ) + μ

2

=⇒ λmin (Bt ) ≥ λmin ∇2f (xt ) − μ

2
. (61)

Combining (61) and (56), we get

λmin (Bt ) ≥ λmin ∇2f (xt ) − 1

2
λmin ∇2f (xt ) = 1

2
λmin ∇2f (xt ) . (62)

On the other hand, it follows from the second inequality in (36) that

∇Mxt ,2it σt
(xt+1) ≤ θ ∇f (xt ) , (63)
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where

∇Mxt ,2it σt
(xt+1) = ∇f (xt ) + Bt (xt+1 − xt ) + 2it σt

2
xt+1 − xt (xt+1 − xt ) .

From the last equality, we get

Bt + 2it σt

2
xt+1 − xt I (xt+1 − xt ) = ∇Mxt ,2it σt

(xt+1) − ∇f (xt )

=⇒ xt+1 − xt = − Bt + 2it σt

2
xt+1 − xt I

−1

∇Mxt ,2it σt
(xt+1) − ∇f (xt ) .

(64)
Then, by (64), (62) and (63), we have

xt+1 − xt = Bt + 2it σt

2
xt+1 − xt I

−1

∇Mxt ,2it σt
(xt+1) − ∇f (xt )

≤ ∇Mxt ,2it σt
(xt+1) − ∇f (xt )

λmin (Bt )

≤ 2 ∇Mxt ,2it σt
(xt+1) − ∇f (xt )

λmin ∇2f (xt )

≤ 2 ∇Mxt ,2it σt
(xt+1) + ∇f (xt )

λmin ∇2f (xt )

≤ 2(θ + 1) ∇f (xt )

λmin ∇2f (xt )
. (65)

Now, combining (38), (39) and (65), and recalling that 2it σt = 2σt+1, it follows that

∇f (xt+1) ≤ 2σmax max xt+1 − xt , min xt − xt−1 , γ̂ ∇f (xt )
2

≤ 2σmax xt+1 − xt , γ̂ ∇f (xt )
2

≤ 2σmax max
2(θ + 1) ∇f (xt )

λmin ∇2f (xt )
, γ̂ ∇f (xt )

2

≤ 2σmax max
2(θ + 1)

μ
, γ̂

2

∇f (xt )
2

≤ 2γ̂ 2 + 8(θ + 1)2

μ2
σmax ∇f (xt )

2

≤ 2γ̂ 2μ2 + 8(θ + 1)2 σmax

μ2
∇f (xt )

2.

Moreover, by (60), we also have

∇f (xt+1) ≤ 2γ̂ 2μ2 + 8(θ + 1)2 σmax

μ2

μ2

2 2γ̂ 2μ2 + 8(θ + 1)2 σmax

∇f (xt ) = 1

2
∇f (xt )

< min
6μ

Lγ
,

μ2

2 2γ̂ 2μ2 + 8(θ + 1)2 σmax

(66)
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Thus, by induction, (59) holds for all t ≥ 1.
Denoting

δt := 2γ̂ 2μ2 + 8(θ + 1)2 σmax

μ2
∇f (xt ) ,

it follows from (59) that
δt+1 ≤ δ2

t ∀t ≥ 1.
Moreover, by (57), we also have

δ1 = 2γ̂ 2μ2 + 8(θ + 1)2 σmax

μ2
∇f (x1) ≤ 1

2
.

Therefore, for all t ≥ 2,

∇f (xt ) = μ2

2γ̂ 2μ2 + 8(θ + 1)2 σmax

δt ≤ μ2

2γ̂ 2μ2 + 8(θ + 1)2 σmax

δ2t

1

≤ μ2

2γ̂ 2μ2 + 8(θ + 1)2 σmax

1

2

2t

,

and the proof is complete.

4 Illustrative numerical experiments

In this section, we present preliminary numerical results obtained by an Octave
implementation of Algorithm 1. Our code corresponds to Algorithm 1 with the addi-
tional condition (50). Regarding the parameters, we used σ1 = 1, θ = 10, γ =
6 ∇f (x1)

−1 and x1 − x0 = 6, resulting in h1 = 1/
√

n. Each cubic subproblem
(35) is approximately solved by a monotone BFGS line search method using as initial
point the approximate solution generated by 10 iterations of the method described in
Section 6.1 of [8]3. In our first experiment, we applied the referred code to a set of 10
nonconvex test problems formed with functions from [21] (each problem with two
choices for the dimension n), using the following stopping criterion:

∇f (xt ) ≤ . (67)

The results are shown in Table 1, where T ( ) represents the number of iterations
required by the code to satisfy the stopping criterion (67), O( ) represents the
corresponding number of calls of the oracle (function evaluations plus gradients
evaluations), and D( ) is defined as

D( ) := O( )

T ( )(n + 2)
. (68)

From Table 1, we can see that all problems were solved in the sense of condition
(67). Moreover, except for Problem 10, D( ) is approximately bounded by 2, which
is in accordance with Remark 3, made about Lemma 5.

3The choice of performing 10 iterations was done based on a few preliminary numerical tests. Running the
method in [8] with this number of iterations often provided a very good initial point for the BFGS method.
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Table 1 Numerical results of an implementation of Algorithm 1

= 10−2 = 10−5

PROBLEM (n) T ( ) O( ) D( ) T ( ) O( ) D( )

1. Extended Rosenbrock (8) 42 882 2.1000 45 942 2.0933

2. Extended Rosenbrock (16) 44 1640 2.0707 47 1748 2.0662

3. Extended Powell Singular (8) 14 252 1.8000 49 952 1.9429

4. Extended Powell Singular (16) 23 884 2.1353 67 2468 2.0464

5. Penalty I (8) 13 252 1.9385 172 3462 2.0128

6. Penalty I (16) 16 578 2.0069 196 7112 2.0159

7. Penalty II (8) 8 192 2.4000 71 1462 2.0592

8. Penalty II (16) 17 722 2.3595 212 7724 2.0241

9. Variably Dimensioned (8) 14 372 2.6571 16 392 2.4500

10. Variably Dimensioned (16) 18 902 2.7840 23 1496 3.6135

11. Trigonometric (8) 5 82 1.6400 8 122 1.5250

12. Trigonometric (16) 6 200 1.8519 8 236 1.6389

13. Discrete Boundary Value (8) 1 12 1.2000 8 82 1.0250

14. Discrete Boundary Value (16) 1 20 1.1111 23 416 1.0048

15. Discrete Integral Equation (8) 2 22 1.1000 3 32 1.0667

16. Discrete Integral Equation (16) 2 38 1.0556 3 56 1.0370

17. Broyden Tridiagonal (8) 4 42 1.0500 5 52 1.0400

18. Broyden Tridiagonal (16) 4 74 1.0278 4 74 1.0278

19. Broyden Banded (8) 6 132 2.2000 7 142 2.0286

20. Broyden Banded (16) 7 272 2.1587 8 290 2.0139

According with Theorem 2, the number of iterations T ( ) satisfies T ( ) ≤
Cf,A

−3/2, where the constant Cf,A > 0 depends on the problem and the parameters
used in Algorithm 1. As pointed in [15], by assuming that

T ( ) = Cf,A
−p, > 0,

we can estimate p numerically using the formula

p = 1

log(τ )
log

T ( /τ)

T ( )
, (69)

where τ > 1. We estimated the complexity power p for the problems in Table 1
considering T ( ) and T ( /τ) with = 10−2 and τ = 103. The results are given in
Table 2.

As we can see, the estimated power p in all problems is much smaller than 3/2,
which agrees with Theorem 2. In particular, the largest power obtained was p =
0.4539. This result illustrate the very pessimistic aspect of the worst-case complexity
bounds in the nonconvex setting.
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Table 2 Numerical estimation of the complexity order p in T ( ) = Cf,A
−p . The largest power obtained

was p = 0.4539 for Problem 14

PROBLEM (n) T ( ) T ( /τ) p

1. Extended Rosenbrock (8) 42 45 0.0100

2. Extended Rosenbrock (16) 44 47 0.0095

3. Extended Powell Singular (8) 14 49 0.1814

4. Extended Powell Singular (16) 23 67 0.1548

5. Penalty I (8) 13 172 0.3739

6. Penalty I (16) 16 196 0.3627

7. Penalty II (8) 8 71 0.3161

8. Penalty II (16) 17 212 0.3653

9. Variably Dimensioned (8) 14 16 0.0193

10. Variably Dimensioned (16) 18 23 0.0355

11. Trigonometric (8) 5 8 0.0680

12. Trigonometric (16) 6 8 0.0416

13. Discrete Boundary Value (8) 1 8 0.3010

14. Discrete Boundary Value (16) 1 23 0.4539

15. Discrete Integral Equation (8) 2 3 0.0587

16. Discrete Integral Equation (16) 2 3 0.0587

17. Broyden Tridiagonal (8) 4 5 0.0323

18. Broyden Tridiagonal (16) 4 4 0.0000

19. Broyden Banded (8) 6 7 0.0223

20. Broyden Banded (16) 7 8 0.0193

In our second experiment, we applied our implementation of Algorithm 1 for the
two-dimensional problem [19]:

min
x∈R2

f (x) ≡ (1/4)x4
1 + (1/4)x4

2 − (5/3)x3
1 − (5/3)x3

2 . (70)

It is worth mentioning that the objective f ( · ) in (70) has a global minimum at x∗ =
5 5 T , a degenerate saddle point at 0 0 T and nondegenerate saddle points at

5 0 T and 0 5 T . We considered seven starting points close to the saddle points
of f ( · ). The results are shown in Table 3, where xF denotes the final point returned
by our code. As we can see in Table 3, for all starting points, Algorithm 1 returned a
point xF very close to the global minimizer x∗, escaping from the saddle points. With
respect to the nondegenerate saddle points, this result is in accordance with Remark
4, made about Corollary 3.

In our final experiment, we applied our code to l2-regularized logistic problems of
the form

min
x∈Rn

fμ(x) := −
m

i=1

b(i) log(cx(a
(i))) + (1 − b(i)) log(1 − cx(a

(i))) + μ

2
x 2

2,

(71)

626 Numerical Algorithms (2022) 90:607–630



Table 3 Numerical results for Algorithm 1 applied to problem (70) with = 10−5

x1 xF − x∗ T ( ) O( ) D( )

4.9 −0.1
T

4.9934E-11 6 26 1.0833

5.1 −0.01
T

2.3653E-08 6 30 1.2500

4.99 0.01
T

1.3076E-09 6 30 1.2500

−0.002 5.1
T

4.7686E-09 6 30 1.2500

0.001 5
T

7.3187E-09 5 26 1.3000

0.001 0.1
T

9.5072E-10 11 70 1.5909

0.001 −0.001
T

3.3821E-09 11 70 1.5909

where (a(i), b(i))
m

i=1 ⊂ R
n × {0, 1} is the dataset, cx(a) := 1/(1 + e− a,x ) is the

logistic model, and μ > 0 is the regularization parameter. The objective function
fμ( · ) in (71) is μ-strongly convex and has Lipschitz continous Hessian. Therefore,
fμ( · ) satisfies assumptions A1–A3. We considered the Breast Cancer Wisconsin

Fig. 1 Behavior of ∇fμ(xt ) as a function of the iteration counter t

627Numerical Algorithms (2022) 90:607–630



dataset [25]4 with n = 10, m = 683 and a
(i)
1 = 1 for i = 1, . . . , m. As starting point

we used x0 = 0 . . . 0 T ∈ R
10. Figure 1 shows the behavior of ∇fμ(xt ) for

μ ∈ {0.1, 1, 5}. The curves confirm the quadratic rate of convergence established in
Theorem 4.

5 Conclusion

In this paper, we presented a new variant of the cubic regularization of Newton’s
method (CNM) with Hessian matrices approximated by forward finite difference
Hessians. The method is designed for the unconstrained minimization of twice dif-
ferentiable functions with globally Lipschitz continuous Hessians. The stepsizes that
define the finite difference approximations are adjusted jointly with the regulariza-
tion parameters of the cubic models. Specifically, at the t-th iteration, our method
approximates ∇2f (xt ) by a matrix Bt such that

∇2f (xt ) − Bt ≤ O (min { xt − xt−1 , ∇f (xt ) }) .

A similar approximation has been considered in [27] in the context of a CNM
variant with inexact Hessians. However, the method analyzed in [27] requires the
knowledge of the Lipschitz constant (used in the regularization parameter) and also
the exact solution of the subproblems. In contrast, our method uses a nonmono-
tone line search procedure to update the regularization parameters and allows the
inexact solution of the subproblems. We proved that the proposed method needs

at most O n
−3/2
g calls of the oracle to generate an g-approximate first-order

stationary point of the objective function. Moreover, we showed that the method

needs at most O n max −3/2
g , −3

H calls of the oracle to generate an ( g, H )-

approximate second-order stationary point. We also proved a quadratic convergence
result for the proposed method. Finally, we presented illustrative numerical results,
which confirmed our theoretical findings.
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