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Throughout the ages, notably in ancient Greece and
Rome, the Arab Empire, up to the Renaissance and the
Enlightenment, geometers have discovered and proved
theorems of pure, classical geometry. They used shapes,
alignments, distances, angles. All of their tremendous
work is known as geometry, and taught to billions of peo-
ple around the world since the existence of education.

Many of those theorems are expressed as an equality,
stating that in such circumstances, such quantity is equal
to a function of others – the Pythagoras theorem is an
emblematic illustration. They can actually be written as
real functions, from a domain included in Rn, to R. As
the intputs corresponding to lengths, magnitudes, etc.
change in their domain, reflecting all possible configura-
tions under the assumptions of the theorem, the function
gives the output predicted by the theorem. But the con-
cept of function was not known to the Ancients, at least
not in this form.

The Enlightenment was precisely the time of the rise
of another famous branch of mathematics, also widely
taught in most colleges on the planet: calculus, which
deals with functions and small deviations called infinites-
imals – a point recently emphasized by Strogatz [1].
Among others, including of course Leibniz [2], Newton
played a central role in the development of calculus [3].

What if History had been reversed and all this had hap-
pened earlier, much earlier...

I. THALES OF MILETUS

Imagine that Newton was born before Thales. When
considering a triangle with two sides of lengths x and
y, he could have fantasized about moving the third side
parallel to itself and thought: ”Well, I am not an Greek
geometer but I am rather good in calculus and I feel there
might be some connection between the way x and y vary
in such circumstances.”
He would have materialized his suspicion in a function

y = y(x) (1)

connecting x and y whatever the position of the third
side, as long as it is moved parallel to itself. In particular,
after a slight displacement resulting in small deviations
δx and δy, he would have had to first order

δy = y′(x)δx (2)

Figure 1. Small paral-
lel displacement of a side
in any triangle, resulting
in small deviations of the
two other sides.

But the lengths δx and δy of the small added segments
must themselves obey equation (1), that is

δy = y(δx) (3)

To see it, translate those segments to the (x, y) vertex.
Developing the right-hand-side member of equation (3)
to first order and noticing that y(0) = 0, we have

δy = y′(0)δx (4)

which, compared to eq. (2), implies that y′(x) is con-
stant. Integrating y′ = k, k being a positive constant
since y(x) is an increasing and smooth function, gives
the Thales theorem [4, Book VI, Prop. II]

y(x) = kx (5)
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II. PYTHAGORAS OF SAMOS

If he was born before Thales, Newton was born before
Pythagoras too, so that we do not have to make any
further unlikely hypothesis. Imagine that driven by his
success in suspecting the existence of a Greek theorem,
he moved to consider a right triangle of legs of lengths x
and y and of hypotenuse of length z.
He might have been tempted to speculate about the

link, if any, between x, y and z in every right triangle.
And again, as calculus master, he could have postulated
that

z = z(x, y) (6)

a relation that must be true for any x, y and z in a
right triangle. In particular, after a slight increase in the
length of x, leading to a small deviation δx, while δy = 0,
he would have found, to first order, that

δz = ∂xz δx (7)
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Figure 2. Small dis-
placement of a vertex in
a right triangle, resulting
in small deviations of one
of the legs and the hy-
potenuse.

Here, δx is the length of the hypotenuse of a right trian-
gle with one leg of length δz. To first order, this small
triangle is similar to the initial one. Using the Thales
theorem that he has just found out,

δz =
x

z
δx (8)

Substituting this result to δz in eq. (7) would have led
him to the partial differential equation

z∂xz = x (9)

whose general solution is

z2(x, y) = x2 + k(y) (10)

where k(y) is an arbitrary function of y. But the function
z has to be symmetric in x and y (since he could have
made the same reasoning with a non-zero δy while δx =
0) and z(x, 0) = x. Hence

z2(x, y) = x2 + y2 (11)

that is, the Pythagorean theorem, which, like Thales’,
was probably discovered long before – and taken up later
by Euclid, in his Elements [4, Book I, Prop. XLVII]. This
proof is known and is published in a slightly different
form in [5, 6].

III. APOLLONIUS OF PERGA

Thales and Pythagoras theorems are not the only ones
that are named before famous Greek geometers. Newton
could have gone a step further – eastwards, a few cen-
turies later – and assumed that in any triangle of side-
lengths x, y and z, the length d of the median relative to
the z-length side is a smooth function of x, y and z, i.e.

d = d(x, y, z) (12)

After an infinitesimal rotation of the y-length side around
the (y, z) vertex resulting in a small deviation δx, with
δy = 0 and δz = 0, to first order:

δd = ∂xd δx (13)

Figure 3. In any triangle, small rotation of a vertex around another one, resulting in small deviations of the sides connected

by the rotated vertex, and of the corresponding median.

In order to get an expression for δx and δd and then
a differential equation leading to the would-be theorem,
consider the infinitesimal arc travelled by the moved ver-
tex, of length δℓ.

To first order, it can be seen as the hypotenuse of a small
right triangle with one leg of length δx, which is similar
to a larger right triangle whose corresponding leg is the
hy-length height relative to the y-length side, and the

hypotenuse is the x-length side, so that

δx =
hy

x
δℓ (14)

The δℓ-length arc is also the first order hypotenuse of an-
other small right triangle with one leg of length δd, which
is similar to the triangle with a d-length hypotenuse and
whose corresponding leg is a segment starting from the
foot of the median and parallel to – and thus half of the
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length of – the hy-length height, so that

δd =
hy

2d
δℓ (15)

Inserting those deviations in eq. (13) leads to the partial
differential equation

d∂xd =
x

2
(16)

whose general solution is

d2(x, y, z) =
x2

2
+ k(y, z) (17)

where k(y, z) is a function of y and z. But d(x, y, z) has
to be symmetric in x and y (since we can make the same
reasoning with a non-zero δy while δx = 0). Hence

d2(x, y, z) =
x2 + y2

2
+ c(z) (18)

with c(z) a function of z. Furthermore, if x = 0 (or
y = 0), y = z (or x = z) and d = z/2. This yields
c(z) = −z2/4, which can be obtained alternatively by
invoking the Pythagorean theorem for y = x. The par-
ticular solution reads

d2(x, y, z) =
x2 + y2 − 2(z/2)2

2
(19)

that is, Apollonius’s theorem, to be found in a slightly
more elaborate form in [7].

IV. MATTHEW STEWART

Suppose Newton was born before Stewart, an 18th-
century Scottish mathematician (and reverend). Well,
he was. Perhaps he was not interested, or did not have
the time, otherwise he could have used this tool to gen-
eralise Apollonius’s theorem to any cevian.

In a triangle of sidelengths x, y and z, assume that the
length d of a cevian dividing the side of length z in two
segments of lengths m and n, is a smooth function of x,
y, m and n, that is

d = d(x, y,m, n) (20)

After an infinitesimal rotation of the y-length side around
the (y, z) vertex resulting in a small deviation δx, with
δy = 0, δm = 0 and δn = 0, to first order:

δd = ∂xd δx (21)

Figure 4. In any triangle, small rotation of a vertex around another one, resulting in small deviations of the sides connected

by the rotated vertex, and of the corresponding cevian.

Using the same similarities as for the Apollonius’s theo-
rem, with the unique difference that the foot of the cevian
is not necessarily the middle of the (m + n)-length side
but falls at a distance n from its right vertex, we find

δx =
hy

x
δℓ δd =

nhy

(m+ n)d
δℓ (22)

hy being the length of the height relative to y, we have
the partial differential equation

d∂xd =
n

m+ n
x (23)

whose general solution is

d2(x, y,m, n) =
n

m+ n
x2 + k(y,m, n) (24)

where k(y,m, n) is a function of y, m and n. But
d(x, y,m, n) must be symmetric in (x,m) and (y, n)
(since we can make the same reasoning with a non-zero
δy while δx = 0). Hence

d2(x, y,m, n) =
nx2 +my2

m+ n
+ c(m,n) (25)

with c(m,n) a symmetric function of m and n. Further-
more, if x = 0 (or y = 0), y = m + n (or x = m + n)
and d = m (or d = n). This yields k(m,n) = −mn. The
particular solution reads

d2(x, y,m, n) =
n(x2 −m2) +m(y2 − n2)

m+ n
(26)

that is, Stewart’s theorem [8].
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V. HERON OF ALEXANDRIA

Intoxicated by his findings, Newton could have switched
to a more elaborate, though older, challenge – as proba-
bly did an Ancient Greek Roman Egyptian mathemati-
cian... What if, for any triangle, the area A could be
a smooth function of the sides lengths x, y and z? He

would have assumed

A = A(x, y, z) (27)

After an infinitesimal rotation of the y-length side around
the (y, z) vertex resulting in a small deviation δx, while
δy = 0 and δz = 0, to first order:

δA = ∂xAδx (28)

Figure 5. In any triangle, small rotation of a vertex around another one, resulting in small deviations of the sides connected

by the rotated vertex, and of the corresponding height.

First note that the hz-length height relative to the z-
length side divides the initial triangle in two right trian-
gles of horizontal legs of lengths t and z − t respectively.
One can express hz as a result of the Pythagorean theo-
rem in both right triangles.
Equating those expressions yields x2 − t2 = y2 − (z − t)2

and hence

t =
x2 − y2 + z2

2z
z − t =

y2 − x2 + z2

2z
(29)

Again, δℓ is the length of the infinitesimal arc travelled
by the moved vertex. Like in the two last sections, it can
be considered as the first-order hypotenuse of a small
triangle whose similarity with a larger one allows to find
δx. But it is also, to first order, the hypotenuse of another
small triangle with one leg of length δhz, which is similar
to the large right triangle whose corresponding leg is the
(z − t)-length segment, and the hypotenuse the y-length
side. Since hy = 2A/y and δhz = 2δA/z, we have

δx =
2A

xy
δℓ δA =

y2 − x2 + z2

4y
δℓ (30)

Plugging in results (30) into equation (28), gives the par-
tial differential equation

A∂xA =
1

8
[x(y2 + z2)− x3] (31)

which can be integrated out to give the general solution

A2(x, y, z) =
1

16
[2x2(y2 + z2)− x4 + k(y, z)] (32)

where k(y, z) is an homogeneous function of y and z.
Since A(x, y, z) must be symmetric in x, y and z (since
we can make the same reasoning with a non-zero δy or
δz), k(y, z) = 2y2z2 − y4 − z4. Hence

A(x, y, z) =
1

4

√
2(x2y2 + x2z2 + y2z2)− (x4 + y4 + z4)

(33)
which can be factorized into the Heron theorem [9]

A(x, y, z) =

√
x+ y + z

2

−x+ y + z

2

x− y + z

2

x+ y − z

2
(34)

whose discovery could actually be Archimedes’ [10].

VI. JAMSHID AL-KASHI

Newton could have chosen to deal with angles – besides
calculus, he knew a bit about trigonometry. Let us send
him to Persia, a few centuries before his birth, and won-
der wether in any triangle of sidelengths x, y and z, the

angle γ = (̂x, y) could be a smooth function of x, y and
z, that is

γ = γ(x, y, z) (35)

After an infinitesimal rotation of the y-length side around
the (y, x) vertex resulting in a small deviation δz, with
δx = 0 and δy = 0, to first order:

δγ = ∂zγ δz (36)
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Figure 6. In any tri-
angle, small rotation of
a vertex around another
one, resulting in small
deviations of the sides
connected by the rotated
vertex, and (of one) of its
angles.

While δγ is easy to connect to δℓ, the length of the arc
travelled by the moved vertex (in the illustrative figures,
x and z have been swapped for aesthetic reasons), δz can
be determined thanks to the same similiarity as in the
three previous sections. We have thus

δγ =
δℓ

y
δz =

hy

z
δℓ with hy = x sin γ (37)

Inserting those deviations in eq. (36) yields the partial
differential equation

sin γ ∂zγ =
z

xy
(38)

whose general solution is

cos[γ(x, y, z)] = −z2 + k(x, y)

2xy
(39)

where k(x, y) is a symmetric, homogeneous function of x
and y. According to Pythagoras, when γ = π/2, z2 =
x2 + y2, i.e. k(x, y) = −x2 − y2. Hence

cos[γ(x, y, z)] =
−z2 + x2 + y2

2xy
(40)

that is, al-Kashi’s theorem [11] – also known as the law of
cosines or generalized Pythagorean theorem, and already
familiar to Euclid [4, Book II, Prop. XII & XIII].

VII. OLRY TERQUEM

Completely exhilarated, Newton could have taken on a
bigger piece and assumed that in any triangle of side-

lengths x, y and z, the length d of the γ = (̂x, y) angle
bisector is a smooth function of x, y and z, i.e.

d = d(x, y, z) (41)

After an infinitesimal rotation of the y-length side around
the (x, y) vertex resulting in a small deviation δz, with
δx = 0 and δy = 0, to first order:

δd = ∂zd δz (42)

Figure 7. In any triangle, small rotation of a vertex around
another one, resulting in small deviations of the sides con-
nected by the rotated vertex, and of the bisectors.

Again, thanks to the same similiarity as in the four pre-
vious sections, δz can easily be linked to δℓ, the length

of the arc travelled by the moved vertex.

It is a little more complicated for δd. First note that



6

in the illustrative figure, δd < 0, so that we will consider
the positive length −δd. Then observe that when the y-
length side infinitesimally rotates around the (x, y) ver-

tex, the foot of the γ = (̂x, y) angle bisector moves along
a perpendicular to the y-length side, just like the (z, y)
vertex. But the angle between this perpendicular and
the angle bisector is the complementary of γ/2. Thus in
the small right triangle of legs of lengths −δd and d δγ/2,
the opposite angle to the −δd-length leg is, to first order,
equal to γ/2, implying that tan(γ/2) = −δd/(d δγ/2).
Hence

δz =
hy

z
δℓ δd = − tan

γ

2

d

2
δγ with δℓ = yδγ (43)

hy being the length of the height relative to y. Using

tan
γ

2
=

sin γ

1 + cos γ
(44)

with

sin γ =
hy

x
and cos γ =

−z2 + x2 + y2

2xy
(45)

we have the partial differential equation

∂zd

d
=

−z

−z2 + (x+ y)2
(46)

whose general solution is

d(x, y, z) = k(x, y)
√
(x+ y)2 − z2 (47)

where k(x, y) is a symmetric function of x and y. To
determine it, note that in the particular case of a right
triangle with hypotenuse of length z, the angle bisector is

the diagonal of the inscribed square of sidelength xy/(x+
y) – as can be deduced from similarities between the right
triangles generated by the square in the initial triangle.
We find k(x, y) =

√
xy/(x+ y). Hence

d(x, y, z) =

√
xy

(
1− z2

(x+ y)2

)
(48)

that is, the length of the angle bisector, as Terquem com-
puted in the 19th century [12].

VIII. JEAN-PAUL DE GUA DE MALVES

Armed with this powerful theorem-finding tool, Newton
could have moved on to even bolder challenges, like leav-
ing the plane for the real space, and imagining, say, a
generalization of the Pythagorean theorem in three di-
mensions! Let him consider a trirectangular tetrahedron,
that is a tetrahedron with a right angle corner, like the
corner of a cube: what if, for any of them, the area of
the face opposite to the right angle was a function of the
areas of the other faces?
A convenient way to parametrize the problem is to

give arbitrary lengths to the three edges from the right
angle vertex, say x, y and z. The areas of the three right
triangle faces are xy/2, xz/2 and yz/2. For the area of
the last face, opposite to the right angle, say A, we can
have an expression by choosing a base, say the edge of

length
√
y2 + z2 (thanks Pythagoras) and the relative

height of length h. We have

A =
1

2

√
y2 + z2 h (49)

Figure 8. In a trirectangular tetrahedron, small displacement of a vertex, resulting in small deviations of one of the three

orthogonal edges and of two of the other edges connected to the moved vertex.

Let us go back to Newton and his obsession. He could
have stated that A is a smooth function of x and y:

A = A(x, y, z) (50)

Choosing to slightly increase x, while leaving y and z
invariants, that is, an infinitesimal deviation δx, with
δy = 0 and δz = 0, we find

δA = ∂xAδx (51)

Eq. (49) implies that

δA =
1

2

√
y2 + z2 δh (52)

But what do we know of δh? First note that the foot
of the h-length height is not affected by the deviation δx
since this h-length height and the x-length edge are in a
plane orthogonal to the base of the A-area face. In this
plane, we can check that to first order, the right triangle
with h-length hypotenuse and x-length leg is similar to
the one with δx-length hypotenuse and δh-length leg, so
that

δh =
x

h
δx (53)

Combining this equation with result (52), itself plugged
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in into eq. (51) with δy = 0, we have

1

2

√
y2 + z2

x

h
δx = ∂xAδx (54)

Simplifying by δx and using eq. (49) to get rid of h, we
find a partial differential equation

A∂xA =
1

4
(y2 + z2)x (55)

It can be integrated out to give the general solution

A2(x, y, z) =
1

4
[(y2 + z2)x2 + k(y, z)] (56)

with k(y, z) an homogeneous and symmetric function of
y and z. Since A(x, y, z) must itself be symmetric in x,
y and z (i.e. we can make the same reasoning with a
non-zero δy or δz), k(y, z) = y2z2. Hence

A2(x, y, z) =
(xy

2

)2

+
(xz

2

)2

+
(yz
2

)2

(57)

known as de Gua’s theorem [14], first formulated by
Descartes [15], which states that in any trirectangular
tetrahedron, the square of the area of the face opposite
to the right corner is equal to the sum of the squares of
the areas of the other faces – a three-dimensional gener-
alization of the Pythagorean theorem.

CONCLUSION

This way to derive classical theorems in Euclidean ge-
ometry can be used for many more of them, including

Ptolemy’s, Brahmagupta’s, Euler’s and the law of sines
(by examining infinitesimal rotations and scale transfor-
mations along/of the circumcircle). It also allows to find
quantities like the circumradius and the inradius of a tri-
angle expressed as functions of the sidelengths.
It cannot be used for all theorems, of course. It does

not work for theorems in discrete geometry or involving
number theory, for theorems stating that this or that
line cuts another at this or that point, is perpendicular
or tangent to this or that circle, etc. It has to be a
theorem involving an equation that defines a function,
which will be seen as a particular solution of a (system
of) differential equation(s). The proofs that we propose
are not necessarily simpler than others. They do not
evade the geometric difficulties at stake. We displace the
argument of the proof into the game of infinitesimals, but
it remains as geometric.
The main advantage of this method is that the theorem

does not need to be known. We start with an unknown
function and observe the way it behaves, to first order,
under small deviations of some quantities. In the best
case, it gives us a (system of) differential equation(s) that
we can solve and, therefore, discover the theorem. We
hope this method may be used to discover new theorems,
perhaps in other fields of mathematics.
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