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ARTICLE INFO ABSTRACT

Edited by: Emilio Chuvieco Understanding biodiversity changes in time is crucial to promptly provide management practices against diver-
sity loss. This is overall true when considering global scales, since human-induced global change is expected to
make significant changes on the Earth's biota. Biodiversity management and planning is mainly based on field
observations related to community diversity, considering different taxa. However, such methods are time and
cost demanding and does not allow in most cases to get temporal replicates. In this view, remote sensing can
provide for a wide data coverage in a short period of time. Recently, the use of Rao's Q diversity as a measure
of spectral diversity has been proposed in order to explicitly taking into account differences in a neighbourhood
considering abundance and relative distance among pixels. The aim of this paper was to extend such a measure
over the temporal dimension and to present an innovative approach to calculate remotely sensed temporal di-
versity. We demonstrated that temporal beta-diversity (spectral turnover) can be calculated pixel-wise in terms
of both slope and coefficient of variation and further plotted over the whole matrix / image. From an ecological
and operational point of view, for prioritisation practices in biodiversity protection, temporal variability could
be beneficial in order to plan more efficient conservation practices starting from spectral diversity hotspots in
space and time. In this paper we delivered a highly reproducible approach to calculate spatio-temporal diversity
in a robust and straightforward manner. Since it is based on open source code, we expect that our method will
be further used by several researchers and landscape managers.
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1. Introduction (Somers et al., 2015) tropical forests, savannas (Oldeland et al., 2010),

grasslands (Feilhauer et al., 2013), among the others.

Understanding biodiversity changes in time is crucial to promptly
provide management practices against diversity loss (Gaston, 2008).

This has been proven for various part of the globe, considering
different biomes and habitat types like dry (Nagendra et al., 2010)
and humid

This is overall true when considering global scales, since human-in-
duced global change is expected to make significant changes on the
Earth's biota (Moreno et al., 2018). This is explicitly taken into account
by the Sustainable Development Goals of the United Nations (https://
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www.un.org/sustainabledevelopment/sustainable-development-goals/
), with Goal 15 explicitly aiming to “halt biodiversity loss”.

However, biodiversity management and planning is mainly based on
field observations related to community diversity, considering different
taxa, under the assumption of robust statistical sampling and proper
methods of analysis (e.g. Chiarucci et al., 2009). Such a method is time
and cost consuming and does not allow in most cases to get temporal
replicates.

This led to the urgent need of developing worldwide research and
stakeholders networks to face climate and biodiversity change at global
scale, like the Global Climate Observing System (GCOS, https://public.
wmo.int/), the Intergovernmental Panel on Climate Change (IPCC, http:
//www.ipce.ch/) or the Group on Earth Observations - Biodiversity Ob-
servation Network (GEO BON, https://geobon.org/). Essential Climate
Variables (ECVs) and the Essential Biodiversity Variables (EBVs, see
Pereira et al., 2013) were thus the main outputs of such networks, as
proxies of Earth global change in space and time.

In this framework, remote sensing has been proposed as a straight-
forward operational tool providing a wide data coverage in a short pe-
riod of time (Rocchini and Di Rita, 2005; Skidmore et al., 2015), help-
ing to save costs and time. Furthermore, measures of diversity from re-
motely sensed vs. field data showed a positive relationship, leading to
consider remote sensing diversity as a direct proxy of the variation of
biodiversity in space (Gillespie et al., 2008; Lausch et al., 2016).

Most of the remote sensing-based measures of spectral diversity have
been widely based on i) the spatial variability of pixel values by mea-
suring pairwise distances in a spectral space (Feret and Asner, 2014;
Somers et al., 2015) or on ii) measures of relative abundance of values
based on information theory (Ricotta, 2005).

Recently, Rocchini et al. (2017) proposed the use of Rao's Q diversity
as a measure of spectral diversity which explicitly takes into account dif-
ferences in a neighbourhood relying on abundance and relative distance
among pixels, extending for the first time to 2D-matrices (satellite im-
ages) the measure firstly proposed by Rao (1982).

This might allow the so called continuous field mapping which in
most cases has been applied to land cover classification (Mathys et al.,
2009) but it is also a valuable tool for diversity mapping over wide
geographical regions, mainly based on moving window methods. Basi-
cally, starting from the spectral mixing space of a satellite image, one
can measure the continuous variability of pixel values in space by lo-
cal-based measures, which maximise the contrast in spectral diversity
highlighting hotspots of diversity, mainly related to transition zones in
space (Small, 2005).

The temporal dimension, coupled with spatial approaches, might
help inferring biodiversity change over large areas. While this has been
widely acknowledged in some ecological modelling practices, like in en-
vironmental niche modelling (Feng and Papes, 2017), it has rarely been
explicitly considered when dealing with remotely sensed diversity mea-
surements, over wider temporal scales. In this view, most of the research
efforts have been devoted to phenology (He et al., 2009) without an ex-
plicit spatial approach to measure spectral turnover in space and time.

The aim of this paper is to present an innovative approach to cal-
culate the temporal change of remotely sensed diversity. We will first
introduce the theoretical background of the diversity calculation in
time and then provide an empirical example based on MODIS data,
by also providing the complete R code (Appendix 1 or https://gitlab.
com/danidr/temporal_rs_biodiversity/blob/master/RocchiniEtAl_2019_
slopes.R).

2. Benchmark example
2.1. Algorithm development

Rao's Q diversity explicitly considers both relative abundance and
spectral distances among pixel reflectance values as:
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Q=szijxpixpj

®

where d; = pairwise distance between pixels attaining to reflectance
values i and j, p; = relative abundance of pixels attaining to reflectance
value i, and p; = relative abundance of pixels attaining to reflectance
value j. As proposed by Rocchini et al. (2017), given an input 2D matrix
(image)

Py P Pz Py

I Py Py Py Py,
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where P = input pixel, Rao's Q can be calculated by a moving window
(spatial kernel or 2D matrix)

Py Py P
M=|Py, Py Py3 3
Py Py Pij ®

using n X n pixels in a neighbourhood of a given site (pixel) by return-
ing an output map of local alpha-diversity hotspots.

Rao's Q diversity value applied to remotely sensed images allows
one to discriminate among environmental situations with low or high
evenness, as the mostly used Shannon's H does, but also including dis-
tance among pixel vaues. Given an image I, Fig. 1 shows four different
situations, starting from the lowest diversity in the environment (Fig.
1A), with pixels which are similar to each other (low distance) and
with one value dominating the landscape(low evenness). On the con-
trary, Fig. 1D represents the highest possible diversity with a high dis-
tance among pixels and a high evenness (equidistribution of pixel val-
ues). While information theory based on Shannon's H allows discrimi-
nating between extreme situations, it does not allow discriminating di-
versity hotspots deriving from i) a high evenness of pixel values but
with a low distance among them (similar environments) and ii) a high
evenness of pixel values with a high distance among them (very differ-
ent environments). Since in environmental science and in remote sens-
ing of environmental diversity the interest is pointed to the detection of
strong differences among environment, i.e. diversity hotpots, the Rao's
Q diversity seems to perform better with respect to common informa-
tion theory based calculus. The mathematical calculation of Shannon's
H and Rao's Q values is provided in Appendix 2, which is performed
by the algorithm described in Rocchini et al. (2017) and freely avail-
able under the GitHub flagship project at: https://github.com/mattmar/
spectralrao/blob/master/spectralrao.r.

In general, the output Rao's Q diversity map is derived at a certain
time t,, based on the date of the original input image being used. In this
paper, we are aiming at summarizing different output maps derived in
different times as:
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Fig. 1. Synthetic example showing four different environmental situations and their relative Shannon's H and Rao's Q indices. (A) Lower diversity in terms of both evenness and distance
among pixel values; (B) and (C) intermediate situations; (D) higher diversity in terms of both evenness and distance among pixel values. Refer to the main text for additional information

and to Appendix 2 for the mathematical calculation.
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In other words, the present manuscript seeks to find a method to ac-
count for the change in time of Rao's Q diversity.

Let Qpy, be the Rao's Q value at a given site (pixel Py) in a cer-
tain moment (time t,, Fig. 2). The Qp, value can be viewed in a lin-
ear time space from ¢, to t,. Once such values have been plotted, a lo-
cally weighted scatterplot smoothing (LOWESS) function, also referred
to as LOESS (Cleveland, 1979; Cleveland and Devlin, 1988), can be es-
timated, which reduces to a linear function y~x in case of linear vari-
ability. LOESS fits a function to a subset of the data, generally splitting
the explanatory variable and giving a higher weight to points near the
point where the response is being estimated.

The mean slope (trend) of the LOESS is expected to represent the
change of Rao's Q diversity in time. In order to get a pixel-wise approx-
imation of the slope we extracted the derivative of the Rao's Q diversity
smoothed temporal function at each t;, computing the A\y//\x. Then,
the descriptive statistics over the whole time series were calculated, giv-
ing information on the smoothed function trend.

TN

Pixel 1

Pixel 1 temporal trend

pixel value

10

year

Fig. 2. The Rao's value Qp,, at a given site (pixel Py) in a certain moment (time t,) can be plotted on a time scale. Once all the values from Qp, to Qp,, have been plotted, a smooth LOESS
function canbe estimated and its slope (trend) of coefficient of variation would represent the mean variation of Q in time and its temporal turnover.
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As a proxy of the variation of the Rao's Q diversity values over the
whole time series, a temporal coefficient of variation index (CV) was
computed following Hijmans (2004). This index, expressed as a percent-
age, is the ratio between the standard deviation and the mean of all
the Rao's Q diversity values. Larger percentages represent a higher spec-
tral-turnover, providing a beta-diversity quantification.

Summarizing, the average slope of the LOESS curve is expected to
represent the amount of mean diversity along a temporal trend, while
its coefficient of variation would represent the temporal turnover in the
spectral Rao's Q. Temporal diversity can thus be calculated pixel-wise in
terms of both slope and coefficient of variation and further plotted over
the whole matrix/image.

In order to implement an empirical example of the method being
proposed, we made use of the free set of Rao's Q data based on MODIS
NDVI images at a resolution of 5km provided in Rocchini et al. (2018).
A sketch of the original MODIS NDVI input set is provided in Appen-
dix 3. In order to rely on a high complexity landscape we decided to
focus on the Italian peninsula, which guarantees a high ecological gra-
dient from the sea to high mountain alps (until 4000 m). Based on the
open source code provided in Appendix 1, the method can be straight-
forwardly extended to other areas, habitats, or biomes. The final stack
of layers consisted of 17 Rao's Q images gathered from 2000 to 2016 in
June (Fig. 3).

Each pixel was projected in a temporal space according to Fig. 2
from 2000 to 2016, and a LOESS function with automatic smooth-
ing parameter selection through bias-corrected Akaike information cri-
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was fitted relying on the r package fANCOVA (Wang, 2010), building a
global set of N functions where N = number of pixels in the image. The
mean slope and the coefficient of variation along the temporal gradient
of the LOESS function was calculated for each pixel and further spatially
plotted.

2.2. Results

Rao's Q temporal diversity considering LOESS mean slope (mean
temporal diversity) and LOESS coefficient of variation (temporal
turnover) showed a discriminant pattern among different areas (Fig. 4).
Both measures detected a higher temporal diversity in areas with higher
landscape morphological complexity detected by the spatial Rao's Q
(see Fig. 3) with an enhancement in the relative temporal beta-diversity
(turnover) detected by the coefficient of variation of the LOESS func-
tion.

Spatial Rao's Q showed a high value in Italy in topographically
and ecologically complex mountain areas, including Alps and Appen-
nines (central Italy) (Fig. 3). However, once considering the tempo-
ral dimension, alpine areas showed a higher relative value of Rao's
Q temporal variation, considering both mean and turnover in tem-
poral diversity (Fig. 4). This pattern has also been hypothesized, but
never specifically tested until now, by Rocchini et al. (2011) who
stressed the possibility of a higher variation in space and time of top
mountainous areas (in particular, Alps) which are expected to show
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Fig. 3. Spatial representation of the free set of Rao's Q data based on MODIS NDVI images at a resolution of 5km provided by Rocchini et al. (2017). The final stack of layers consists of

17 Rao's Q images gathered from 2000 to 2016 in June.
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Fig. 4. Rao's Q temporal diversity considering LOESS mean slope (mean temporal diversity) and LOESS coefficient of variation (temporal turnover). Both measures detected a higher
temporal diversity in areas with higher landscape morphological complexity detected by the spatial Rao's Q.



D. Rocchini et al.

trasting traits, from agricultural areas to conifers and broadleaf forests,
to pastures, grasslands and bare rocks (Pelorosso et al., 2011).

3. Discussion

Estimating values of diversity over an area given a sample is crucial
for a number of different ecological tasks (Granger et al., 2015). Remote
sensing certainly represents a powerful tool for getting estimated diver-
sity values in a 2D surface. Extending on Ricotta (2008), who calcu-
lated community beta-diversity starting from species presence/absence
scores, in this paper we propose to substitute such scores with pixel
based values, being such values diversity measures (like the Rao's Q
scores) or original reflectances in a satellite image, by further redistrib-
uting them in a new time-system to carry out a LOESS based calculation
of diversity changes.

In this view, the variability of diversity over space has been investi-
gated at different spatial scales and with different approaches (refer to
Rocchini et al., 2010 for a review). As stressed by Leitao et al. (2015), it
might be crucial to find methods readily available to deal with time se-
ries data, in order to potentially account for the time axis in the analysis
of beta-diversity change.

Our method represents a powerful approach to estimate remotely
sensed beta-diversity in time, at large spatial extents. Once coupled with
hierarchical methods to also account for different scales of diversities,
e.g. with Bayesian hierarchical modelling (Zhang et al., 2014), our ap-
proach might represent a benchmark for modelling the variability in
space and time of diversity at multiple spatial scales. It is far beyond the
aim of this paper to test the sensitivity of the method to different spatial
grains and spectral resolutions, but since it is based on pixel distances
and relative abundance we expect that it can be applied to any kind of
multi- or hyper-volumes like multi- or hyper-spectral images at differ-
ent spatial and spectral resolutions from high (e.g. Quickbird, Ikonos)
to medium (e.g. Sentinel-2 or Landsat data) and low grains (like MODIS
data in our case).

Furthermore, our method might help measuring not only spatial
variations in beta-diversity to be related directly to the effect of ecosys-
tem dynamics (Wang and Loreau, 2014), but also supply a synthesis of
temporal variations in beta-diversity thus implicitly incorporating such
dynamics.

In some cases, spatial non-stationarity has been advocated as one of
the major problems when the variability of a certain variable is non-uni-
form in space (Osborne et al., 2007). In our case, we would promote our
approach to also account for potential anomalies, or simply spots of di-
versity variation in time, when measuring beta-diversity from satellites.
As an example, Mathys et al. (2009) proved that, when dealing with
land cover continuous variability over space, adding spectral diversity
derived from remotely sensed images could improve modelling perfor-
mance.

There are intrinsic difficulties related to the estimate of biodiversity
changes in time (temporal beta-diversity) mainly related to the sam-
pling replication in the same location with the same sampling protocol.
Permanent plots arranged in networks like the Long Term Ecosystem
Research in Europe (LTER, http://www.lter-europe.net/) have been ex-
plicitly implemented to solve the problem. However, they represent spo-
radic and spatially scattered locations in local areas. Once zones with
high spatial and temporal variability have been detected, the attained
information could be a powerful tool for guiding field based surveys of
species diversity (Rocchini et al., 2005). This is overall true when con-
sidering ancillary models specifically dedicated to the development of
efficient sampling designs, based on e.g. sampling optimisation based
on synthetic maps (Schweiger et al., 2015) or on virtual species sets
(Garzon-Lopez et al., 2016).

Landscape metrics (e.g., patch area and connectivity) have been
widely used as tools for identification of areas with higher biodiversity,
but they mostly refers to categorical maps such as land cover (Katayama
et al., 2014; Morelli et al., 2018). However, land cover maps are gener-
ally an oversimplification of habitat variability (Amici et al., 2017) and
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should be used with care to avoid the underestimation of the continu-
ous ecological variability over the landscape (Austin, 1987; Palmer et
al., 2002; Rocchini, 2007).

In this paper, the continuous variability of spectral pixel values, cou-
pled with the temporal dimension provided for additional information
on the variation of ecosystems, allowing a better detection of highly di-
verse spot in space and in time, considering different time spans t0, t1,
..., tn. Strictly speaking, including temporal variation in the analysis of
diversity from remote sensing might provide additional information to
spatial kernels measured at t0.

Obviously, the variability of the spectral signal is not the only proxy
of diversity, and in some cases (e.g. in urban areas) a high environ-
mental variability is not necessarily related to a high amount of biodi-
versity in the field (Ricotta et al., 2010). However, in case of natural
and seminatural areas, spectral variability might represent one of the
main proxies of diversity (Schmeller et al., 2017; Skidmore et al., 2015).
Hence, in order to measure spatial and temporal changes in diversity, it
could be coupled with additional variables such as: i) climatic predic-
tors (Zellweger et al., 2019), ii) soil properties (Tuomisto et al., 2003),
iii) topographical complexity (Badgley et al., 2017). Furthermore, in this
manuscript we made use of a spectral index like the inter-annual NDVI
as an example dataset to calculate spatial heterogeneity, as in Oindo and
Skidmore (2002) or Gillespie (2005) and more recently Feilhauer et al.
(2012), by deriving the Rao's Q diversity on a continuous data matrix
to monitor heterogeneity changes through time, although the annual in-
ter-variation of productivity could be related to several factors, and not
just to niche-based diversity changes. We refer to the debate between
Krishnaswamy et al. (2009) and Rocchini (2009) about problems related
to alpha- and beta-diversity measurement from NDVI.

4. Conclusion

In this paper, we presented a robust and reproducible approach
to estimate the temporal ecosystems' beta-diversity based on a locally
weighted scatterplot smoothing. We applied it to the spatial Rao's Q di-
versity proposed by Rocchini et al. (2017), but the method could be
ported to any spatial diversity measure made in a spectral space.

Being based on open source coding, we expect a high reproducibility
of the proposed approach, and stimulate researchers to test it in differ-
ent habitats, by varying spatial grains and extents and potentially mak-
ing use of different sensors.

The open source code provided will guarantee the robustness and re-
producibility of the method. In fact, we are expecting that such a code
will be used by other researchers to further develop additional algo-
rithms on temporal variability measurement from satellite images.

From an ecological and operational point of view, for species inven-
torying maximisation in biodiversity protection, advocated by the Sus-
tainable Development Goal 15 (“halt biodiversity loss”) and scientifi-
cally proposed by Rocchini et al. (2005) and more recently reviewed
by Schmeller et al. (2017), the temporal variability, together with the
spatial one, could be beneficial in order to plan more efficient conser-
vation practices starting with those diversity hotspots detected in space
and time by remote sensing techniques.

Attempts have been made to measure the spatial sensitivity of the re-
lation between species and spectral diversity (Wang et al., 2018) which
might impact further management practices if disregarded. However, as
far as we know, nothing has been done to project it also in time. Our
method represents a potential benchmark for applying such a variation
measurement in time, which could be extended i) not only to other types
of sensors in satellite images but to every kind of 2D matrices including
species-plot arrays, ii) to other methods such as the measure of spatial
and temporal autocorrelation (Guelat and Kery, 2018), iii) to additional
ecospaces (sensu Dick and Laflamme, 2018) by fuzzy modelling.
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