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A B S T R A C T   

Intensified human activities can augment soil organic carbon (SOC) losses from the world’s croplands, making 
SOC a highly dynamic parameter both in space and time. Sentinel-2 spectral imagery is well placed to capture the 
spatiotemporal variability of SOC, but its capability has only been demonstrated for agricultural regions mostly 
located in Europe. Furthermore, most studies so far only used single-date images that resulted in spatially non- 
continuous SOC maps, hampering their ability to aid multiscale SOC assessments. Here, we aim to achieve 
spatially continuous mapping of SOC in croplands, by creating multitemporal bare soil composites that maximize 
cropland coverage in two regions of varying agroecosystems and landscape structure in the Northeast China 
Chernozem region and the Belgian Loam Belt. Bare soil pixels were extracted via spectral index thresholding that 
excluded contaminated pixels from external perturbance. Multitemporal soil composites were then obtained by 
averaging over multiple single-date bare soil images that were selected within pre-determined optimal time- 
windows, corresponding to the region-specific crop sowing periods when best possible surface conditions were 
expected. Results show that the optimal time-window filter ensured selective inclusion of single-date images that 
themselves yielded stable and robust SOC predictions across multiple years. Spectral-based models developed 
from multitemporal composites consistently produced better or similar prediction accuracies than single-date 
images for both study regions (R2: 0.52–0.62; RMSE: 0.17–0.21 g 100 g− 1), while also achieved maximum 
cropland coverage (>82 %). Bootstrap modelling demonstrated that SOC mapping via multitemporal Sentinel-2 
data was associated with small uncertainties. Investigations into the significant spectral bands that contributed to 
the prediction of SOC suggested that, regardless of the study regions, the physical relationship between spectral 
bands and SOC that predominantly exists for laboratory spectra is largely translated into Sentinel-2 platforms. 
This study highlights the widespread applicability of multitemporal Sentinel-2 remote sensing for effective and 
high-resolution SOC mapping, in order to detect localized soil degradation as well as to inform regional cropland 
management in diverse agroecosystems.   

1. Introduction 

Intensified human activities can augment the vertical soil- 
atmosphere carbon flux as well as the lateral redistribution of soil 
organic carbon (SOC) by earth surface processes (Van Oost et al., 2007; 
Yue et al., 2016), making SOC a highly dynamic parameter both in space 
and time. This is particularly relevant for the world’s croplands, where 
the ever-increasing human pressure exerts significant disturbances to 
SOC dynamics, threatening food security and its functions to provide 
ecosystem services and mitigate climate change (Lal, 2004; Lorenz et al., 

2019). Thus, there is an increasing demand to quantify SOC at high 
spatial resolution in order to detect localized soil degradation and 
monitor the temporal change in SOC at scales relevant for sustainable 
cropland management. 

Laboratory visible, near-, and short-wave infrared (VNIR/SWIR) 
spectroscopy has become a widely adopted approach to rapidly and 
accurately determine primary soil properties, especially SOC (Soriano- 
Disla et al., 2014). Evaluations on whether the success established in the 
laboratory could be translated into remote sensing platforms have 
shown that the spatial variability of SOC from field to landscape scales 
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could be reliably captured with both air- and spaceborne spectral im-
agery (Angelopoulou et al., 2019). Compared to the conventional digital 
soil mapping methods that are often constrained by dated and/or 
inconsistent soil data (Arrouays et al., 2014; Vågen et al., 2016), soil 
mapping based on spectral imaging relies on the physical link between 
soil spectral reflectance in the VNIR/SWIR region and soil chromo-
phores at pixel level (Ben-Dor et al., 2009; Chabrillat et al., 2019); thus 
providing robust, up-to-date and spatially explicit information needed 
for SOC monitoring and assessment. 

The launch of the Sentinel-2 super spectral satellite in 2015 has 
opened a new arena of opportunities for large-scale, high-resolution soil 
mapping, as it provides continuous data streams of global surface 
reflectance at improved spatial, spectral and temporal resolution in 
comparison to its counterparts such as Landsat 8 (Helder et al., 2018). 
The Sentinel-2 spectral bands span across the VNIR/SWIR region, 
including two SWIR bands at around 1600 and 2200 nm, which are 
known to be highly sensitive to SOC variation (Ben-Dor et al., 1997). 
Pilot studies have demonstrated the potential of Sentinel-2 imagery to 
reproduce the spatial pattern of SOC both at field scale and across wider 
landscapes (Castaldi et al., 2019b; Vaudour et al., 2019a), particularly 
for regions with high and variable SOC values (Gholizadeh et al., 2018). 
Recent work also developed bottom-up approaches to link existing soil 
spectral libraries with Sentinel-2 spectra (Castaldi et al., 2019a; Tziolas 
et al., 2020). However, most of these studies were carried out in high- 
input agricultural systems across Europe, little research has been con-
ducted on how and to what extent Sentinel-2 imagery can facilitate high- 
resolution SOC mapping in other continents, where interferences may 
arise from a large heterogeneity in soil surface conditions and landscape 
structure. 

Another research gap in using Sentinel-2 imagery for SOC mapping 
lies in the fact that most studies so far only used single-date images for 
this task. The major issue associated with the use of single-date images is 
the limited availability of bare soil pixels at a given time (Tziolas et al., 
2020; Vaudour et al., 2019a) due to varying crop rotations between 
neighboring fields. The direct product resulting from one single-date 
image is thus a spatially non-continuous SOC map, hampering its po-
tential to aid in better targeting cropland management. In this context, 
Diek et al. (2016) combined three airborne hyperspectral image acqui-
sitions to create a multitemporal bare soil composite that doubled the 
bare soil coverage as compared to single-date images. Upscaling to na-
tional scale, Rogge et al. (2018) used Landsat legacy data to build bare 
soil composites of Germany at 5-year intervals for monitoring the tem-
poral evolvement of cropland extent within 30 years. They created 
minimum and maximum modified Normalized Difference Vegetation 
Index (NDVI) composites, which were later intersected to separate bare 
cropland from other land use classes such as built-up areas (including 
urban areas, rural villages, and road networks) and forests. With a 
similar objective, Demattê et al. (2018) designed the GEOS3 processor to 
create a multitemporal bare soil mosaic with 68 % cropland coverage of 
the study area. Such bare pixel compositing methodologies have since 
been applied in various contexts for topsoil mapping, but primarily with 
Landsat products (Rizzo et al., 2020; Safanelli et al., 2020). Silvero et al. 
(2021) recently attempted to combine Sentinel-2 with Landsat 8 to 
obtain a soil reflectance composite that improved soil prediction models 
with two times larger bare soil area covered than those obtained from 
single-date images. Moreover, Vaudour et al. (2021) tested several 
image temporal-mosaicking strategies, including the utilization of 
Sentinel-1 data to account for soil moisture variation, to maximize 
cropland coverage while maintaining good SOC prediction accuracy. 

The remaining challenge with creating above-mentioned bare soil 
composites for soil mapping purposes arises from the temporal in-
consistencies in spectral characteristics caused by disturbing factors 
such as crop residue, soil moisture and surface roughness (Chabrillat 
et al., 2019; Diek et al., 2019; Vaudour et al., 2019b). Ignoring the ef-
fects of such perturbing factors as crop residue on the purity of soil 
spectra could lead to systematic overestimation of SOC (Dvorakova 

et al., 2020). Vaudour et al. (2019b) assessed the impact of Sentinel-2 
image acquisition date on the predictive performance of SOC in the 
Versailles Plain, France, and found that images acquired within a period 
of several months produced drastically different results and the best 
model performance was obtained in March-April, coinciding with the 
crop sowing period with optimal soil surface condition. Gomez et al. 
(2019) also tested Sentinel-2 images from varying months and found 
that considerable uncertainties were associated with soil texture pre-
diction, due to changing soil surface conditions over time that interfered 
with the “true” soil spectra. To account for this problem, Demattê et al. 
(2018) used the Normalized Burn Ratio 2 (NBR2) index, also known as 
the normalized difference tillage index (NDTI) (Van Deventer et al., 
1997), to remove soil pixels that are “contaminated” by crop residue and 
soil moisture. Castaldi et al. (2019a) found that stricter NBR2 thresh-
olding led to better SOC prediction, but a smaller number of available 
calibration samples and thus limited coverage of bare soil area by single- 
date Sentinel-2 images. 

Hence, the road to accurate and spatially continuous SOC mapping 
using Sentinel-2 imagery requires (i) selecting images within the optimal 
time window when the largest percentage of bare soils is exposed, 
ideally at seedbed condition before crop sowing; (ii) using spectral index 
(e.g. NDVI and NBR2) thresholding to further refine bare soil pixels by 
removing the spectral noise from perturbing factors; and finally (iii) 
mosaicking the refined single-date images to create a multitemporal 
bare soil composite with maximized cropland area. Previous studies 
have addressed these requirements separately but rarely all at once to 
achieve a consolidated framework, particularly in agroecosystems of 
different continents, where the general applicability of such a frame-
work is confronted with additional constraint posed by the varying soil 
surface management and landscape structure. For instance, as opposed 
to previous applications demonstrated in European croplands charac-
terized by elevated fertilization and intensive management, to what 
extent would Sentinel-2 based SOC predictive modelling be able to 
capture the spatial variability of SOC in largely degraded croplands? 

In this study, we aim to address these requirements simultaneously in 
an attempt towards spatially continuous mapping of SOC in croplands of 
different agroecosystems. To this end, a methodological framework, 
including delineation of cropland extent, detection of barest soil pixels 
with minimal disturbance and creation of multitemporal bare soil 
composite for SOC mapping was first developed for the Chernozem re-
gion of Northeast (NE) China, one of the most seriously degraded agri-
cultural regions in the country. The transferability of such an approach 
was then tested in a typical European agricultural area located in the 
Belgian Loam Belt. Particular focus was given to (i) testing the consis-
tency of Sentinel-2 data when selected within the optimal time window 
over three successive years; and (ii) the assessment of the accuracy and 
uncertainty of SOC prediction between composited and single-date soil 
spectra. 

2. Study regions 

The two selected study regions, one in NE China and the other in 
Belgian Loam Belt, are both characterized by loess-derived loamy soils 
and rolling topography, both under prolonged intensive cultivation, and 
in need for spatially resolved SOC monitoring and assessment platform 
to aid sustainable agricultural management. They differ, however, in 
two key aspects: (1) croplands in NE China are mostly sown once a year 
with long periods of bare soil exposure in spring, while Belgium Loam 
Belt is characterized by a more diverse cropping system; (2) in com-
parison to the Belgian study region dominated by Luvisols with rela-
tively lower average SOC content, soils in NE China are characterized by 
fertile Chernozems and Phaeozems but under higher degree of soil 
erosion due to improper management (Borrelli et al., 2020). As a result, 
soils in this region are among the most severely degraded in the country. 
Erosion-induced soil redistribution have caused significant decline in 
and a spatial re-organization of SOC (Ou et al., 2017), making this region 
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an ideal location, and a contrast to the Belgian Loam Belt, to assess the 
capability of Sentinel-2 remote sensing in driving the new generation of 
SOC mapping. More specific site characteristics of the two study regions 
are given below. 

2.1. Chernozem region in Northeast China 

The study area (ca. 10 000 km2, 44.22 N-44.83 N, 124.76E-126.33E) 
located in the Chernozem region of NE China (Fig. 1a) is an important 
grain base in the country, with maize being the dominant crop. The 
climate is temperate continental monsoon with mean temperatures 
ranging from − 11 ◦C in January to 25 ◦C in July, and the mean annual 
precipitation is 577 mm. The crop calendar for maize spans from April to 
October, and vast areas of bare croplands are exposed in April-May as 
farmers prepare the seedbed for maize sowing. 

2.2. Belgian Loam Belt 

The Belgian study area is located in the Loam Belt in the central part 
of Belgium (Fig. 1b). It occupies a rectangular area of ca. 230 km2 (SW 
corner: 50.60 N, 4.65E; NE corner:50.70 N, 5.06E) that is characterized 
by a temperate oceanic climate with a mean annual precipitation of 790 
mm, and mean temperatures between 2.3 ◦C (January) and 17.8 ◦C 
(July). Large areas of bare croplands are usually found in two time- 
windows of each year, the first in May before the sowing of maize and 
the second in late August to September before the planting of winter 
wheat and winter barley. 

2.3. Soil sampling and analyses 

To establish the ground-reference datasets needed for the develop-
ment of Sentinel-2 based SOC prediction models, soil sampling cam-
paigns were carried out in May 2019 in NE China and in October 2018 
and 2019 in the Belgian Loam Belt. Spatial distribution of the soil 
sampling points is given in Fig. 1, and the number of samples in Table 1. 
For both study regions, a stratified random sampling design was adopted 
to cover different levels of SOC concentration according to SOC data 
from the SoilGrids250m product (Hengl et al., 2017). Each bulk sample, 
consisting of five sub-samples taken in a 2 m radius, was taken at 0–10 
cm depth, then air-dried and passed through a 2 mm sieve. Total C 
concentration of ground soil samples (<100 µm) was measured with a 
VarioMax CN analyzer (Elementar GmbH, Langenselbold, Germany). 
For the samples that showed clear reactions under 10 % HCl treatment, 

inorganic C content was determined using a modified pressure- 
calcimeter method (Sherrod et al., 2002). SOC was then obtained by 
the subtraction of inorganic C from total C. Laboratory VNIR/SWIR 
spectra were also acquired on the sieved (<2 mm) samples for the two 
regions, using an ASD Fieldspec 3 FR spectroradiometer (Analytical 
Spectral Devices Inc., USA). Details on the instrument set-up and mea-
surement procedure are given in Shi et al. (2020b). 

3. Methodology 

Fig. 2 depicts the general workflow of the methodology. Three inter- 
connected main steps, consisting of image pre-processing, cropland 
extent extraction and creation of bare soil composite, are structured in a 
way that the product from the preceding step was fed into the next. 
Details on the approach are in the following. 

3.1. Sentinel-2 image pre-processing 

Sentinel-2 Multi-Spectral Imager constellation currently comprises 
two satellites (2A and 2B) providing data with 13 VNIR/SWIR bands at 
approximately-five-day revisit time. For the two study regions, Level-1C 
products within the period from January 1, 2018 to May 15, 2020 were 
downloaded, and atmospherically corrected to Level-2A products, i.e. 
Bottom-of-Atmosphere reflectance, using the Sen2Cor processor 
(standalone version 2.8). A cloud filter of <10 % was applied to exclude 
images with excessive cloud coverage, and the Scene Classification 
Layer output from the Sen2Cor algorithm was used to further remove 
pixels that were recognized as clouds, cloud shadow, dark feature 
shadow and thin cirrus. As a result, 27 cloud-free scenes were obtained 
in NE China, while 22 scenes were available for the Belgian Loam Belt 
(Table 1). Finally, 10 bands covering the visible (B2, B3, B4), red-edge 
(B5, B6, B7), NIR (B8, B8A) and SWIR (B11, B12) regions were 
selected as explanatory variables for SOC prediction. All the bands were 
spatially resampled at 10 m by nearest neighbor using the SNAP 
software. 

3.2. Delineation of cropland extent 

To create the cropland spatial extent, other land use classes needed to 
be detected and excluded, usually by setting critical spectral index 
thresholds. While NDVI has been widely used to distinguish bare soils 
from photosynthetic vegetation (Shi et al., 2020a), built-up area has 
significant overlap with bare soil in low NDVI values. To tackle this 

Fig. 1. Geographic location of the two study regions in (a) the Chernozem region of Northeast China and (b) the Belgian Loam Belt. The spatial distribution of soil 
sampling points (red triangles) within each study region was overlaid onto the respective Sentinel-2 true color image of a specific date. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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problem, we followed the principal outlined by Rogge et al. (2018), who 
took advantage of the distinct pattern of NDVI time-series for different 
land use classes. Specifically, maximum and minimum NDVI composites 
(NDVImax and NDVImin) were created from NDVI time-series, and 
pixels that have high values in the NDVImax composite and low values 
in the NDVImin composite were intersected to create a mask that is only 
composed of bare cropland soil pixels. This method is particularly useful 
for areas where up-to-date information on land cover is scarce. Details 
on the implementation of the method can be found in Rogge et al. 
(2018). 

To verify the method, the processed Sentinel-2 images for NE China 
were used to establish a NDVI time-series, which were later used to 
create the NDVImax and NDVImin composites. NDVI characteristics of 
cropland, forests, and built-up area were investigated to determine the 
critical threshold for bare soil. 2000 points per land use class were 
randomly selected based on the 2019 Land Use Distribution vector map 
provided by the Department of Natural Resources, Jilin Province. NDVI 
values for those selected points were extracted from the NDVI com-
posites as plotted in Fig. 3. For the NDVImin composite, it can be seen 
that NDVI values representative of bare croplands fell in the range of 
0.10–0.24, which can be used to clearly differentiate bare cropland from 
forest. Built-up areas generally displayed low NDVI values that did not 
vary much from NDVImin to NDVImax, as compared to croplands and 
forests. In this line, a NDVI threshold of <0.75 can thus be determined 
from NDVImax to exclude the built-up areas and then combined with the 
NDVI of 0.10–0.24 from NDVImin to delineate the cropland extent. 
Zoom-in shots on two restricted areas in NE China (Fig. 4a, b) show that 
the NDVI thresholding resulted in a cropland mask that accurately 
excluded built-up and forest areas. The same NDVImin and NDVImax 
thresholds were also applied against the Belgian site and showed good 
discrimination of croplands from other land use classes (Fig. 4c, d). 

3.3. Creation of bare soil composite 

The cropland extent created above is used only as a “canvas”, upon 
which pure bare soil pixels from multiple single-date images were filled 
to create a multitemporal mosaic of “true” soil spectral reflectance. A 
two-step refinement procedure was applied to extract the bare soil 
pixels: (1) only images within the determined optimal time-windows 
were included for the bare soil pixel compositing; (2) a combination 
of NDVI and NBR2 thresholds was applied to extract bare soil pixels of 
the highest possible purity, that is of minimal disturbance from green 
vegetation, crop residue and soil moisture. 

For the first refinement procedure, we define the “optimal time- 
window” as the period when the largest percentage of bare soils at its 
optimal surface condition can be found. For this purpose, we extracted 
the beginning periods of major crop sowing in the study regions based 
on the FAO crop calendar per country and assumed that soils were at 
their barest condition when seedbeds were prepared for sowing. The 
optimal time-window was found in April-May for NE China, and April- 
May plus September-October for Belgium. Then, the determined time- 
windows were used as filter to extract the single-date images for SOC 
modelling. A total of three and four images were extracted for NE China 
and Belgium from a pool of 27 and 22 images respectively. 

For the second refinement procedure, the 0.10–0.24 NDVI range, as 
identified in Fig. 3, was used to remove green vegetation pixels. This 
agrees with the study by Shi et al. (2020a), who set a similar NDVI 
threshold (0.10–0.25) based on investigations on 100 bare fields in the 
Belgian Loam Belt. Furthermore, temporal evolution of NDVI during the 
year 2019 was plotted using the same 2000 sampling points as in Fig. 3 
for the croplands in NE China. Although similar NDVI occurred in April 
and October, contrasting distributions of NBR2 values were found in the 
two time periods (Fig. 5). Higher NBR2 in October was due to the 
excessive maize stalk residues left on the field after harvest. This sug-
gests that NDVI alone is not sufficient to extract bare soil pixels, and the 

Table 1 
Summary statistics of soil organic carbon content and number of samples and Sentinel-2 scenes used in this study. Q1 and Q3 denote the 1st and 3rd quantile. SD: 
standard deviation.  

Study region Sample size Soil organic carbon (g/100 g) N◦ of Sentinel-2 scenes 

Min Q1 Mean Median Q3 Max SD Skewness 

Northeast China 203  0.64  1.32  1.51  1.50  1.69  2.51  0.28  0.23 27 
Belgian Loam Belt 137  0.67  0.99  1.36  1.18  1.51  2.55  0.67  1.16 22  

Fig. 2. Flowchart of the three main steps (as indicated by the thick blue arrow) to produce a spatially continuous soil organic carbon (SOC) map. NDVI: Normalized 
Difference Vegetation Index; NBR2: Normalized Burn Ratio 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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NBR2 threshold of 0.075 was adopted to further remove the soil pixels 
that were “contaminated” by crop residue (Fig. 5b). The same NBR2 
threshold was also used by Demattê et al. (2018) to remove noisy pixels 
in tropical Brazil, and by Castaldi et al. (2019a) who reported that the 
NBR2 index at 0.075 was the most suitable threshold to produce a good 
SOC prediction model while concurrently maintaining a relatively high 
proportion of bare soil coverage in Northern Germany. The consistent 
adoption of the NBR2 threshold at 0.075 across diverse agroecosystems 
proved its potential for widespread applications. 

Therefore, a combination of NDVI and NBR2 thresholding was 
applied to each single-date image within the determined optimal time- 
window. Then, all the processed single-date images were filled into 
the cropland extent, and a mean multitemporal bare soil composite was 
created by averaging over the multiple occurrences of bare soil reflec-
tance for each pixel. It should be noted that the procedures described in 
Sections 3.2 and 3.3 were first developed and verified in NE China, and 
then applied in the Belgium Loam Belt to create both the single-date bare 
soil images as well as the multitemporal bare soil composites. 

3.4. SOC predictive modelling 

3.4.1. Single-date versus multitemporal composite 
Sentinel-2 based SOC prediction models were developed using 

multitemporal bare soil composites as well as every single-date image 
within the optimal time-window. The reason of developing SOC models 
with single-date images was twofold: first, to serve as a reference for 
comparing the model performance with that from multitemporal com-
posites; and second, to assess the temporal consistency of Sentinel-2 data 
across multiple years. To this end, geographic coordinates of the avail-
able soil samples (Table 1) were used to extract Sentinel-2 spectra from 

both the bare soil composites and the selected single-date images. For 
each study region, spectra-based SOC prediction model was built by 
means of partial least squares regression (PLSR) with 10-fold cross- 
validation and applied to all the available bare soil pixels to produce 
SOC maps in 10 m spatial resolution. Percentage of bare soil coverage 
(PBC) was calculated by dividing the number of pixels in the predicted 
SOC maps with that in the cropland extent. Lastly, the SOC model 
calibrated using the 2019 Sentinel-2 data in NE China was evaluated 
against the 2018 and 2020 data, with the aim to further test the con-
sistency and interchangeability of Sentinel-2 data acquired in different 
years. 

3.4.2. Model performance assessment 
To assess the prediction performance of the PLSR models, bootstrap 

resampling with replacement was adopted to obtain a slightly different 
dataset each time for model calibration and cross-validation during 100 
repeated simulations. Mean predicted SOC values from simulations were 
reported and standard deviation of the mean was used to indicate the 
robustness of the PLSR models. The coefficient of determination (R2) of 
measured against predicted values, root mean squared error (RMSE), 
ratio of performance to deviation (RPD), and ratio of performance to 
interquartile range (RPIQ) were examined to evaluate the model per-
formances. Variance Importance Projection (VIP) index was calculated 
to identify the spectral regions (VIP greater than 1) that contributed to 
the prediction of SOC in the PLSR models (Chong and Jun, 2005). In 
addition, the prediction uncertainties of the PLSR models developed 
from the multitemporal composites were assessed following the method 
outlined in Malone et al. (2017), where the average MSE of model 
predications was added to the bootstrap prediction variance at each 
pixel to obtain the overall prediction variance, accounting for the sys-
tematic, random and deterministic errors from modelling. The uncer-
tainty was expressed as 90 % prediction intervals, which were the square 
root of overall prediction variance multiplied by the Z score at 90 % 
probability. All the statistical analyses, SOC prediction and mapping 
were conducted with R software. 

3.4.3. Resampled Sentinel-2 versus real Sentinel-2 
The laboratory VNIR/SWIR (400–2500 nm) spectra for the two study 

regions were resampled into the same spectral resolution as the Sentinel- 
2 bands, and SOC models were established and evaluated following the 
same procedure as described above. In particular, the VIP index was 
calculated for the PLSR model using both resampled and real Sentinel-2 
data, in order to investigate whether the widely acknowledged physical 
relationship between certain spectral regions and SOC for laboratory 
spectra would translate to satellite platforms. 

4. Results 

4.1. Soil organic carbon content in the study regions 

Summary statistics on the measured SOC content in the study regions 
are shown in Table 1. The study region in NE China, as largely charac-
terized by Chernozem soils, had a mean SOC concentration of 1.51 g 
100 g− 1 and a close median, indicating a normally distributed sample 
set. While, in comparison, the Belgian Loam Belt region had lower mean 
SOC concentration (1.36 g 100 g− 1), and its median SOC was lower than 
the mean, showing that the SOC distribution for the Belgian study region 
was slightly skewed towards low SOC levels (skewness: 1.16). 

4.2. Sentinel-2 based SOC predictive modelling and mapping 

4.2.1. NE China 
Three cloud-free Sentinel-2 images within the optimal time window 

(April-May) during 2018–2020 were selected for model development 
and for creating the multitemporal bare soil composite. Individual SOC 
prediction models built with single-date images showed reasonable 

Fig. 3. Density distribution of the normalized difference vegetation index 
(NDVI) for built-up, cropland, and forest areas in the Northeast China study 
region. NDVImin (a) and NDVImax (b) denote the minimum and maximum 
NDVI composites created using the Sentinel-2 time-series (January 2018-May 
2020). Density plots were created based on the NDVI characteristics of 2000 
randomly sampled points for each land use class based on the 2019 Land Use 
Distribution vector map in the study area. 
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performances with RMSE smaller than 0.20 g 100 g− 1, R2 larger than 
0.5, and RPD larger than 1.4 for all three dates (and years) (Table 2). 
Nearly all of the available soil samples were detected as in bare soil 
condition, indicating that during the selected time-window, large areas 
of croplands were prepared for seedbed for crop sowing. This corrobo-
rates the validity of determining optimal time-windows, which maxi-
mized the number of training samples. As a result, high PBC values (>80 
%) were consistently observed for the three single-date images in three 
years in NE China. Moreover, the SOC model calibrated with the 2019 
Sentinel-2 image was tested against the 2018 and 2020 images and the 
validation yielded equally good R2 but slightly higher RMSE, lower RPD 
and RPIQ. 

The SOC prediction model developed from the multitemporal bare 
soil composite demonstrated promising capability of Sentinel-2 data for 
high-resolution SOC mapping. The performance of the PLSR model 
developed from the multitemporal composite represented broad im-
provements over the single-date models, as expressed by lower RMSE 
and higher R2, RPD and RPIQ values (Fig. 6). Furthermore, the close 
match between the regression line and the 1:1 line indicates the unbi-
asedness of the PLSR model. Finally, the predicted 10 m spatial resolu-
tion SOC map is consistent with existing knowledge on the spatial 
distribution pattern of SOC in this region, with higher SOC values found 

close to river valleys. 

4.2.2. Belgian Loam Belt 
The SOC modelling and mapping procedure used in NE China was 

applied in the Belgian Loam Belt region, for the purpose of further 
evaluation on the general applicability of the proposed methodology. 
According to the cropland calendar of this region, optimal time- 
windows for maximized bare cropland exposure were found in May 
and August-September each year during the sawn of potatoes, sugar 
beets, and winter cereals. Similar to the NE China case, all four selected 
single-date images in the Belgian site gave acceptable results with 
generally low RMSEs and satisfactory R2 and RPDs (Fig. 7). But unlike 
the NE China case, varying numbers of bare soil samples (from 28 to 76) 
were available to train SOC prediction models, and this led to differing 
model performances as well. For instance, the largest number of training 
samples was obtained for the September 2018 image, while the PLSR 
model from this image also gave the largest RMSE at 0.22 g 100 g− 1. For 
the 2019 and 2020 images, more accurate model predictions were ob-
tained with R2 larger than 0.6 and RMSE as low as 0.14 g 100 g− 1 in 
2020, but this is likely due to the reduction in the size of training sam-
ples that led to narrower range of SOC variations, thus not well repre-
senting the true population in terms of SOC distribution in the Belgian 

Fig. 4. Zoom-in shots to demonstrate the effectiveness of the delineated cropland mask in (a,b) Northeast China and (c, d) Belgian Loam Belt. The same NDVImin and 
and NDVImax thresholds identified in Fig. 3 were used to delineate the cropland extent for Belgium. Each sub-figure consists of a true color image (left) and a 
matching binary image (right), depicting the extracted bare cropland extent (white areas) and the excluded forests and built-up areas (black areas). 
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region. 
When upgrading from single-date to multitemporal composite, the 

most striking result was the roughly-two-times increase in PBC from 35 
% to 45 % among the single-date images to 82 % for the multitemporal 

composite. With the substantial improvement in the area of bare soil 
covered, the model accuracy maintained at the similar level (RMSE: 
0.21 g 100 g− 1) to that from the single-date images (Fig. 7). The 
regression line again fit almost perfectly with the 1:1 line, although 
there seemed to be some underestimation of the high SOC values. 

4.3. Comparison of SOC predictions between resampled and real Sentinel- 
2 data 

SOC prediction models were also established using the resampled 
Sentinel-2 data for the NE China and Belgian regions, and it was found 
that the PLSR models had similar levels of accuracy as those developed 
with real Sentinel-2 data, with identical RMSEs at 0.17 and 0.21 g 100 
g− 1 for NE China and Belgium (Fig. 8). The VIP figure showed a similar 
pattern for both resampled and real Sentinel-2 data, with NIR and SWIR 
bands (B8A, B11, B12) being significant predictors in the PLSR models, 
whereas the red-edge bands (B5-B7) remained non-significant for both 
study regions. Apart from the similarities, the visible bands from the 
resampled Sentinel-2 data seemed to have played a relatively more 
important role in predicting SOC than the visible bands from the real 
Sentinel-2 data. 

4.4. Uncertainty assessment of SOC prediction 

The 100 bootstrapped model simulations enabled assessments both 
on the robustness of the developed PLSR models and their overall pre-
diction uncertainties. As shown in Figs. 6 and 7, the mean predicted SOC 
values for both study regions were associated with small standard de-
viations (indicated by the error bars) from bootstrapping, highlighting 
the robustness of the SOC prediction models based on Sentinel-2 derived 
spectra, especially for the NE China region. Furthermore, the uncer-
tainty maps (Fig. 9), as expressed by 90 % prediction interval, could 
allow assessments of SOC modelling from a spatial perspective. A ma-
jority of the areas in both regions were characterized by narrow range of 
prediction intervals (<0.3 g 100− 1), but comparatively speaking, the 
SOC map of NE China on average had lower prediction uncertainty than 
that of Belgium. Areas with relatively higher uncertainties are 
commonly found along field boundaries for both regions, but also in the 
northeast and northwest corners of NE China and individual fields of 
Belgium with no clear spatial pattern. 

5. Discussion 

5.1. Capability of multitemporal Sentinel-2 remote sensing for SOC 
mapping 

The selected single-date images within the optimal time-windows for 
the NE China and Belgian study regions consistently produced satisfac-
tory SOC prediction models with small RMSEs (0.14–0.22 g 100 g− 1). 
Considering the narrow range of variation in SOC for the NE China re-
gion and the generally low SOC content for the Belgian region, the fact 
that a large part of SOC variability was captured by the prediction 
models highlights the promising potential of Sentinel-2 remote sensing 
for high spatial resolution SOC mapping. Furthermore, single-date 
Sentinel-2 images across multiple years yielded comparable SOC pre-
diction accuracies (Table 2) means that a high level of interannual data 
consistency and stability can be expected when images were properly 
processed for noise removal and selected within the optimal time- 
windows. This was further supported by the good model trans-
ferability among the multiple single-date images when the PLSR model 
calibrated using the 2019 data was validated against the 2018 and 2020 
data in NE China. This implies that the Sentinel-2 soil reflectance from 
different years could be used interchangeably if a slight decrease in 
model accuracy is tolerated. 

The consistent good performance achieved from SOC prediction 
models built with single-date images also justified the creation of 

Fig. 5. (a) Temporal evolution of the normalized difference vegetation index 
(NDVI) for the croplands in the Northeast China study region for the year 2019. 
The same 2000 cropland points presented in Fig. 3 were used. (b) the 
normalized burn ratio 2 (NBR2) distribution for the two dates that had similar 
NDVI range but contrasting NBR2 values. 

Table 2 
Cross-validation performances of soil organic carbon (SOC) prediction models 
using single-date Sentinel-2 images in Northeast China. The reported root mean 
squared error (RMSE), coefficient of determination (R2) and ratio of perfor-
mance to interquartile range (RPIQ) values are the mean values ± the standard 
deviations resulting from 100 bootstrapped model simulations.  

Image 
acquisition 
date 

N◦ of 
training 
samples 

RMSE 
(g/ 
100 g) 

R2 RPD RPIQ Percentage of 
bare soil 
coverage 
within the 
bare cropland 
extent 

24/04/ 
2018 

198 0.19 
± 0.01 

0.53 
±

0.06 

1.48 
±

0.09 

1.91 
±

0.18 

91 % 

19/04/ 
2019 

201 0.18 
± 0.01 

0.59 
±

0.04 

1.57 
±

0.08 

2.08 
±

0.16 

94 % 

13/05/ 
2020 

197 0.19 
± 0.01 

0.51 
±

0.06 

1.44 
±

0.09 

1.90 
±

0.17 

81 %  

Applicability of SOC prediction model built with 2019 Sentinel-2 data 
to other years 

24/04/ 
2018 

198 0.23 0.53 1.15 1.49 91 % 

13/05/ 
2020 

197 0.23 0.52 1.19 1.57 81 %  
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multitemporal bare soil composites, because only the high-quality im-
ages selected within optimal time-windows were included for creating 
the bare soil mosaic. Consequently, SOC prediction models developed 
from bare soil composites gave better (Table 2 and Fig. 6, NE China) or 
similar (Fig. 7, Belgian Loam belt) performances in comparison to those 
from single-date images. While maintaining a good prediction accuracy, 
the area of bare soil coverage for the Belgian study region increased 
roughly-two times from single-date to multitemporal analysis. A similar 
magnitude of increase was also reported by Diek et al. (2016) and Sil-
vero et al. (2021), highlighting the major advantage of such multi-
temporal approaches to achieving spatially continuous SOC maps. 

Compared to previous studies that used Sentinel-2 images to predict 
SOC, our model created with the multitemporal bare soil composites 
either had similar level of prediction accuracy or outperformed other 
studies, a majority of which were built with single-date images 
(Table 3). Specifically, RMSE varied substantially among different 
studies, due to the inherently distinct range of variations in SOC. This 
implies that comprehensive examination into model predictive perfor-
mances should use more than one RMSE index. The highest R2 was 
obtained in the NE China region of this study, followed by studies from 
Vaudour et al. (2019a) and Vaudour et al. (2021), who used both single- 
date and multitemporal approaches to predict SOC for the croplands in 
the Versailles Plain, France; this stresses once again the advantage of the 
multitemporal approach to maximize the mapped cropland area. For the 
Belgian study region, the multitemporal approach adopted in this study 
achieved similar RMSE and higher RPD than the single-date study by 
Castaldi et al. (2019b). Moreover, Shi et al. (2020a) used the Airborne 
Prism Experiment (APEX) hyperspectral imagery in the same Belgian 
Loam Belt region and achieved comparable model performance (R2: 
0.52, RMSE: 0.19 g 100 g− 1) to what was obtained in this study that used 
Sentinel-2 images with coarser spectral resolution. 

The overall good model performance across the three study regions 
was also reflected in other aspects: (1) the SOC predictions were char-
acterized by small uncertainties, suggesting the robustness of the 
developed prediction models; (2) investigations into the VIP scores of 
the PLSR models created with both resampled lab spectra and real 
Sentinel-2 data showed that similar bands were involved in controlling 
the SOC prediction. This implies that the physical relationship between 
spectral bands and SOC existing for laboratory spectra was also found in 
Sentinel-2 spectra. For both study regions, SOC was consistently found 
to be sensitive to variations in the NIR bands (B8 and/or B8A) and two 

SWIR bands (B11 and B12), which are known to have relations to spe-
cific chemical bonds and organic compounds (Ben-Dor et al., 1997), 
corroborating again the validity to directly link soil chromophores with 
satellite-based soil reflectance. 

5.2. Using temporally consistent Sentinel-2 images to create 
multitemporal composite 

It is well established that the quality of the spectral images is crucial 
for quantitative assessment of soil properties (Ben-Dor et al., 2009). In 
this study, the designation of optimal time-windows is believed to be the 
main reason that secured images of high quality in terms of low cloud 
cover, maximal bare soil coverage and minimal spectral noise from 
external factors. Without making selective screening of Sentinel-2 im-
ages, Vaudour et al. (2019b) found that images acquired in different 
months produced drastically different SOC prediction performances, 
with R2 ranging from 0.58 during the crop sowing period in spring 
characterized by optimal soil surface conditions to <0.1 for dates that 
were influenced by soil moisture and surface roughness, particularly 
during winter periods. In a more recent study, the same lead author 
adopted a “per-date” mosaicking approach that achieved good SOC 
prediction accuracy with larger bare soil coverage (Vaudour et al., 
2021). They followed a similar philosophy as the optimal time-window 
pre-determination used in this study, together with exploration into the 
potential of Sentinel-1 data to account for soil moisture, in order to 
create a bare soil composite based only on single-date images that gave 
good individual performances. 

Furthermore, we compared our approach against a non-selective 
approach that included all available cloudless images to create a bare 
soil composite, and found that, in NE China, almost identical model 
performances were obtained with or without setting an optimal time- 
window (Figs. 6 and 10), while in the Belgian Loam Belt, the model 
performance worsened if no optimal time-window was used for image 
screening (Figs. 7 and 10). This suggests that for NE China, the pre- 
determination of an optimal time-window was shown to be unnec-
essary for such monoculture systems, as bare soil typically only occur 
once per year during the annual sowing of maize. On the other hand, for 
regions where bare soil might occur at different times and during pro-
longed periods per year, the selection of optimal time-windows could 
help exclude bare soil pixels that are interfered by perturbing factors, 
such as crop residue, soil moisture, soil crusts, surface roughness, and 

Fig. 6. Scatterplot of measured versus predicted soil organic carbon (SOC) for the Northeast China study region. 10-fold cross-validation was used to develop the 
PLSR model based on the multitemporal bare soil composite. The predicted SOC values are average values from 100 bootstrap model simulations, and the error bars 
represent standard deviations of the mean predicted SOC, as a measure of prediction uncertainty. The reported RMSE, R2, RPD and RPIQ values are also the mean 
values ± the standard deviations of the 100 simulations. The black line is the 1:1 line while the red dashed line is the linear regression line. The developed PLSR 
model was applied to the entire bare soil composite to enable pixel-wise SOC predictions for a 10 m resolution map on the right, which is also the mean of 100 
predicted maps. PBC denotes the percentage of bare soil coverage within the cropland extent. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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reduced quality of atmospheric corrected images in winter months as 
sun elevation varies (Chabrillat et al., 2019; Vaudour et al., 2019b). 

5.3. Spatial characterization of SOC dynamics with Sentinel-2 imagery 

McBratney et al. (2003) developed the scorpan-type framework as 
the basis of classical digital soil mapping methods, the products of which 
often show compromised ability to capture localized soil heterogene-
ities, due to the general lack of up-to-date, high-resolution soil and 
environmental inputs (Vågen et al., 2016). Leveraging on recent ad-
vances in extracting bare soil spectra from Sentinel-2 composites, the 
goal of this study was to bring one step closer to achieving spatially 
continuous and real-time SOC mapping at high spatial resolution, thus 
allowing field-scale investigations into the spatial variability of SOC at 
two intensively cultivated regions. 

Zoom-in SOC maps (Fig. 11) at selected areas revealed contrasting 
SOC patterns of the two study regions at fine scale, coinciding with the 
status of cropland management practices taken in these regions. In NE 
China, severe degradation processes (e.g., tillage and water erosion) at 
sloping croplands led to the exposure of light-colored subsoils, a 
commonly observed phenomenon in black soils (e.g., Chernozems, 
Phaeozems, Kastanozems) as indicated in the true color image (Fig. 11a) 
and reported elsewhere in the US Great Plain and Czech Republic 
(Thaler et al., 2021; Žížala et al., 2019). The fact that erosion-induced 
SOC redistribution pattern could be well-captured by Sentinel-2 based 
soil mapping has significant global implications, because, according to 
the FAO report (FAO, 2022), 30 % of global wheat production, 16 % of 
maize, and 46 % of barley come from black soils, a majority of which are 
facing degradation issues at present. In this line, the proposed approach 
could serve as an useful tool for high-resolution SOC and soil 

Fig. 7. Measured versus predicted soil organic carbon (SOC) for the Belgian Loam Belt study region based on the partial least squares regression (PLSR) models 
created using four single-date images as well as one multitemporal bare soil composite, and their corresponding SOC maps predicted with the PLSR models. 100 
bootstrapped model simulations were conducted, and only mean results are presented together with their standard deviations. More details are given in Fig. 6. PBC is 
the percentage of bare soil coverage within the cropland extent. 
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degradation assessment in the world’s black soil areas (Gholizadeh 
et al., 2018). In the Belgian Loam Belt, SOC variability showed a con-
trasting spatial pattern from NE China, as SOC distribution was more 
dictated by inter-field variability rather than intra-field, suggesting a 
dominant impact of field-specific management practices on SOC. The 
same finding was reported by Zhou et al. (2022), who found that the 
amount of organic inputs from varying crop rotations and cover crop-
ping largely contributed to inter-field SOC variability in the croplands of 
Wallonia, Belgium. In summary, the multitemporal Sentinel-2 remote 

sensing approach adopted in this study was shown capable of capturing 
field-scale SOC patterns at two regions with distinct degrees of soil 
degradation and cropland management. 

From the SOC monitoring perspective, however, the ability of 
Sentinel-2 based SOC modelling approach adopted in this study to detect 
cropland SOC changes likely remains to be limited. For instance, Yan 
et al. (2011) reported a 15 % decrease in topsoil SOC content for the 
Chernozem region of NE China during a 30-year period (1980–2010). 
Taking the current average SOC content of 1.51 g 100 g− 1 (Table 1) in 

Fig. 9. Maps of uncertainties in SOC prediction for (a) NE China and (b) study regions expressed as the range of the 90 % prediction interval.  

Table 3 
Comparing the model performances in SOC prediction with previous studies that used Sentinel-2 imagery. RMSE: root mean squared error; R2: coefficient of deter-
mination; RPD: ratio of performance to deviation; RPIQ: ratio of performance to interquartile range. n.a. indicates that corresponding values were not reported by 
relevant studies.  

Study region RMSE (g 100 g− 1) R2 RPD RPIQ Approach References 

Přestavlky, Czech Republic  0.14 n.a. 1.6 n.a. Single-date Gholizadeh et al. (2018) 
Šardice, Czech Republic  0.23 n.a. 1.7 n.a. 
Nová Ves, Czech Republic  0.08 n.a. 1.7 n.a. 
Jičín, Czech Republic  0.08 n.a. 1.9 n.a. 
Gutland-Oesling, Luxemburg  0.30 n.a. 2.6 n.a. Single-date Castaldi et al. (2019) 
Demmin, Germany  0.12 n.a. 2.2 n.a. 
Belgian Loam Belt  0.19 n.a. 1.1 n.a. 
Versailles Plain, France  0.12 0.56 1.5 n.a. Single-date Vaudour et al. (2019) 
Peyne Valley, France  0.37 0.02 1.0 n.a. 
São Paulo, Brazil  0.61 0.38 n.a. n.a. Multitemporal Silvero et al. (2021) 
Versailles Plain, France  0.33 0.54 1.5 2.2 Multitemporal Vaudour et al. (2021) 
Northeast China  0.17 0.62 1.6 2.1 Multitemporal This study 
Belgian Loam Belt  0.21 0.52 1.5 2.0  

Fig. 8. Variable importance projection (VIP) in the partial least squares regression (PLSR) models using both simulated and real Sentinel-2 (S2) data. Spectral bands 
that have VIP scores larger than 1 are considered significant predictors in the PLSR models. Simulated S2 data were generated from the laboratory VNIR/SWIR 
(400–2500 nm) spectra, which were resampled into the same spectral resolution as the real S2. PLSR models developed with simulated and real S2 data achieved 
identical RMSE values for both study regions (see also Figs. 6 and 7). 
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Fig. 10. Performances of soil organic carbon (SOC) prediction models based on a “non-selective” bare soil composite, encompassing all available cloudless Sentinel-2 
images for the Northeast China and Belgian study regions. Total number of scenes used in creating the bare soil composites were 27 for Northeast China and 22 for 
the Belgian Loam Belt (see also Table 1). The bare pixel selection criteria, modelling approaches and presentation of results are the same with those from Figs. 6 
and 7. 

Fig. 11. Predicted soil organic carbon (SOC) map at selected areas for (a) Northeast China and (b) Belgium study regions. SOC map was overlaid onto Sentinel-2 true 
color images as shown on the left side of each row. 
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the study region as end reference, a 15 % decrease would correspond to a 
SOC change of 0.27 g 100 g− 1, similar to the level of prediction uncer-
tainty for the region with more than 90 % of pixels had prediction in-
tervals (90 %) between 0.2 and 0.25 g 100 g− 1 (Fig. 9). Repeated LUCAS 
surveys on European croplands in 2009 and 2015 revealed even smaller 
changes (2.49 % decrease) for the sampling points that remained as 
croplands during the 6-year period (Fernández-Ugalde et al., 2020). 

5.4. Limitations and outlook 

The spectra-based PLSR models yielded reasonable prediction ac-
curacies, but there appeared to be consistent underestimation of high 
SOC values for both study regions (Figs. 5 and 7), possibly due to (1) the 
relatively small number of training samples in that range, and/or (2) the 
exclusive use of bare soil spectra without considering additional envi-
ronmental covariates. For the former, more balanced sampling strategies 
in support of specific mapping objectives should be explored (Brus, 
2019). For the latter, future studies should investigate to what extent 
combining vegetation, topographic, and pedoclimatic indices (Gholiza-
deh et al., 2018; Yang et al., 2020) with soil spectra can improve SOC 
prediction, but caution should be taken in the selection of covariates, 
given the controlling factors of SOC are likely to be scale-dependent 
(Lamichhane et al., 2019). 

Admittedly, the use of bare soil spectra to map SOC also seemingly 
confronts against the promotion of SOC sequestration resulting from a 
diverse crop rotation, cover cropping, residue retention, and conserva-
tion tillage practices (Amelung et al., 2020), all of which would other-
wise be regarded as disturbing factors if detection of barest soil pixels 
was desired. Rather than treating these as two paradoxical compart-
ments, perhaps the way forward is to work the two in unison, where 
baseline soil information from bare soil spectra of different platforms 
(Tziolas et al., 2020) is linked with the account of field-specific man-
agement inputs (Zhou et al., 2022) to arrive at a more comprehensive 
framework of SOC mapping. Given that SOC prediction uncertainties 
associated with current spectral-based mapping approaches do not yet 
allow meaningful SOC monitoring at field scale, we speculate that 
perhaps only by explicitly incorporating cropland management data into 
the core of spectra-based SOC mapping, can we realistically expect to 
detect management-induced SOC changes from a remote sensing 
perspective. This will require a concerted effort to bridge future ad-
vances from various research fields in remote sensing and soil science. 

Finally, Sentinel-2 based SOC mapping studies so far mostly focused 
on agricultural systems in temperate regions, while the largest SOC data 
gap lies in the global tropics dominated by small-holder agriculture. 
Future studies should therefore also be devoted to facilitating the further 
development and application of such methodology in tropical systems, 
where effective algorithms are needed to optimize the quality and 
quantity of bare soil pixels under frequent influence of cloud cover and 
mixed signals of soil and vegetation. 

6. Conclusions 

The capability of multitemporal Sentinel-2 remote sensing for 
spatially continuous SOC mapping in croplands was demonstrated in 
two contrasting agroecosystems of the NE China Chernozem region and 
the Belgian Loam Belt. A methodological framework, including delin-
eation of cropland extent, detection of barest soil pixels with minimal 
disturbance, and creation of multitemporal bare soil composite, was 
established to achieve maximum cropland coverage in each study re-
gion. Optimal time-windows, corresponding to major crop sowing pe-
riods when soils are largely exposed and of minimal disturbance, were 
determined to ensure the inclusion of temporally stable and consistent 
single-date images for the generation of bare soil composites. 

Spectral-based models developed from multitemporal composites 
consistently produced better or similar prediction accuracies than 
single-date images for the two study regions (R2: 0.52–0.62; RMSE: 

0.17–0.21 g 100 g− 1), while also achieved maximum cropland coverage 
(>82 %). Investigations into the significant spectral bands that 
contributed to the prediction of SOC suggested that the physical rela-
tionship between spectral bands and SOC existing for laboratory spectra 
was largely translated into Sentinel-2 platforms. This highlights the 
widespread applicability of multitemporal Sentinel-2 remote sensing for 
spatially continuous and high-resolution SOC mapping in regions with 
contrasting biophysical environments and agricultural systems. 
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