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ABSTRACT

In this research, we compared two different sets of land sur-
face phenological metrics (phenometrics) derived from dense
satellite image time series to classify agricultural land in the
Cerrado biome. We derived phenometrics from a dense En-
hanced Vegetation Index (EVI) data cube with an 8-day tem-
poral resolution and subjected them to classification using the
Random Forest (RF) algorithm. We used a hierarchical clas-
sification with four levels, from land cover to crop rotation
classes. We then evaluated the classification results compar-
ing the use of phenometrics extracted using TIMESAT soft-
ware [1], those obtained by polar representation, proposed by
Körting et al. (2013) and the combination of both. We con-
cluded that the accuracies of semi-perennial and winter crop
classes increase substantially when using TIMESAT metrics
combined with Polar features, and the misclassifications be-
tween single crops with non commercial crops are reduced.

Index Terms— Big data, random forest, land use and
land cover mapping, multi-sensor

1. INTRODUCTION

Brazils position as one of the most relevant agribusiness fron-
tiers in the world, as well as having large areas of native veg-
etation, providing environmental services with global impact,
reinforces the need to ensure sustainable agricultural devel-
opment. Accurately mapping methods of the distribution of
agricultural areas, and its evolution over time, are therefore
essential. TerraClass is the official LULC mapping program
in Brazil, starting from Legal Amazon deforested areas [2]
moving all the way to the Cerrado [3]. Recently, MapBiomas
has proposed to carry out the annual automatic mapping of all
biomes of the country in a Landsat-like resolution. However,
in addition to the limitations of each initiative [4], agriculture

Thanks to the World Bank for funding through the FIP (Forest Invest-
ment Program). This study was financed in part by the Coordenao de Aper-
feioamento de Pessoal de Nvel Superior (CAPES) Finance Code 001.

was mapped with little thematic detail. Remotely sensed im-
age time series are valuable for agricultural mapping, as they
allow for the monitoring of the highly dynamic crops devel-
opment. Several studies highlighted the benefits of time series
for agricultural mapping in Brazil [5]. The use of crop phe-
nological parameters extracted from image time series can be
an important strategy for the development of agriculture map-
ping methods. Different phenological metrics were explored
for this purpose, mainly using MODIS time series [5, 6] and
recently also with Landsat-like images [7, 8]. Nonetheless,
the full potential of these metrics derived from Landsat-like
images has not yet been fully explored, considering the range
of possible metrics. TIMESAT software [1] is already a well
known tool to generate phenometrics and it is valuable for
crop mapping. However, some studies showed limitations re-
garding the detection of seasons within a specified period, as
it depends on smoothing methods and regular time series. Re-
cently, Körting et al. (2013) proposed phenometrics obtained
from time series in polar representations, which are based on
fixed intervals of time, defined by the quadrants [9]. These
metrics were already applied in crop mapping [9], but there
is still no analysis of its benefits for this task. Furthermore,
in Brazil there is a lack of the development of methods capa-
ble of classifying agriculture, semi-automatically, in Landsat
scale and with such level of detail. The main objective of this
research is to compare different sets of phenometrics derived
from dense satellite image time series to classify agricultural
land in the Cerrado biome.

2. METHODOLOGY

For the development of this study we carried on a field ex-
periment applying the method in two areas within the Cer-
rado (Figure 4), in the west of Bahia State (A) and south-
eastern of Mato Grosso (B). The first area features mostly
single-cropping regimes of soybean, but there are also double
cropping systems of soy and cotton, and minor winter crops
in irrigated areas. It is considered to be the newest agriculture

469978-1-5386-9154-0/19/$31.00 ©2019 IEEE IGARSS 2019



frontier in Brazil. The study area in southeastern Mato Grosso
is characterized by intensive double-cropping rotations of soy
/ maize and soy / cotton. We collected training points based
on the representativeness of cropping systems of the Cerrado.
We conducted the survey during the growing peak and col-
lected information from farmers in the study area. The team
also collected training points from other sites in the Cerrado
biome. For the thematic class definition we used a hierarchi-
cal approach with 4 levels: the cropland classes (Level 1 - L1),
consisting of a crop class and a non-cropped class. Both are
divided in a second level (Land cover class - Level 2), where
the crop class is divided into another level, grouping annual
crops and semi-perennial crops. The non-cropped class con-
sists of natural vegetation classes, divided into three main
Cerrado physiognomies: forest, savanna and natural grass-
lands [10]. And also Perennial crops, Planted Forest and Pas-
ture. From the annual crop class a Crop Group (Level 3 - L3)
is defined by the main agricultural practices in the Cerrado re-
gion. A Crop Rotation class (Level 4 - L4) is the most detailed
level of thematic detail and it consists on crop rotation types
definitions. We used the TerraClass maps and photo interpre-
tation of Google Earth imagery to collect additional samples
for the non-crop classes. Field boundaries were digitized over
Google Earth imagery to obtain a ground polygon database.
Finally, 841 polygons were generated, where randomly pixels
were sampled from each polygon.

2.1. Remotely Sensed Image Time Series

We used all available ETM+ and OLI data for all the sites
(Path/Row 226/070, 225/070, 226/071, 225/071, 220/068,
220/069, 220/070, 219/069 and 219/075), acquired between
April 2013 and April 2017. Assuming an 8-day temporal
resolution, this 4-year period contains 186 potential obser-
vations. The images were obtained from the Center Science
Processing Architecture (ESPA) of the US Geological Sur-
vey (USGS). These data are provided with level 1 geometric
correction (L1TP). We used the Enhanced Vegetation Index
(EVI). The limiting factors of a dense time series are sen-
sor errors and cloud cover. To overcome these constraints,
Schwieder et al. (2016) used a weighted ensemble of Ra-
dial (Gaussian) Basis Function (RBF) convolution filters to
approximate the missing data in a Landsat time series. To ap-
proximate the given EVI observations into dense 8-day time
series without data gaps, we used the RBF approach [11] with
some adaptations.

2.2. Phenometrics

We obtained the phenological parameters using TIMESAT
V3.2 software [1], where seasonal data are extracted from the
time series for each growing season of the focal year (between
August 4, 2015, to October 1, 2016). We fitted the time series
using the Savitzky-Golay filter [12, 1]. A set of 13 phenomet-
rics were derived for each season. Parameters included day-

of-the-year (DOY) of start, mid, end, and length of season
and phenological proxies like peak and base value, seasonal
amplitude or rate of increase and decrease. Detailed infor-
mation on the calculation of TIMESAT parameters are found
in Jönsson and Eklundh [1]. Besides the TIMESAT pheno-
metrics, we also used the phenometrics proposed by Körting
et al. (2013) [9], which are also called polar features, since
the purpose is to represent the time series by projecting the
values onto angles in the interval [0,2π]. Let a cycle be the
function f(x)=(x,y,T), where (x,y) is the spatial position of a
point, and T is a time interval t1, ...tN , and N is the num-
ber of observations in such a cycle. The cycle can be vi-
sualized as a set of values vi ∈ V , where vi is a possible
value of f(x, y) in time ti. Let its polar representation be de-
fined by the function g(V ) −→ {A,O} (A corresponds to
the abscissa axis in the Cartesian coordinates, and O to the
ordinate axis). where: a1 = v1cos

2π
N ∈ A, i = 1, ...N and

o1 = v1sin
2π
N ∈ O, i = 1, ...N . Considering aN+1=a1 and

oN+1=o1, we can obtain the coordinates of a closed shape.
We then calculate the area of the resulting shape for each of
the quadrants [0, π2 ], [π2 , π], [π, 3π2 ] and [ 3π2 , 2π], and are sup-
posed to represent the seasons.

2.3. Random Forest Classification

After the feature extraction, we used our complete field
database to train RF [13] and obtained a classifier for each
level, considering 3 set of phenometrics: 1) TIMESAT phe-
nometrics (TIMESAT); 2) Polar phenometrics (Polar) and
3) TIMESAT combined with Polar phenometrics (TIME-
SAT+Polar). The models were trained with a set of 40,385
samples. We applied a hierarchical classification approach by
which L1 classes domains are isolated, and land cover is clas-
sified by correspondence at each domain for the subsequent
nomenclature levels. RF is a classification technique in which
the dataset is randomly divided into smaller subsets, and a
decision tree is built from each subset. RF needs two param-
eters to be tuned including the number of trees (ntree), and
the number of variables. The ntree parameter values of each
RF classification model (L1, 2, 3 and 4) were respectively 50,
50, 70 and 90.

3. RESULTS AND DISCUSSIONS

The validation was done using exhaustive method based on
the Monte Carlo simulation [14], where 1000 simulations
were carried out by randomly selecting 70% of the samples
to train a RF classification model for each hierarchical level.
The remaining 30% were used for validation. For each sub-
division, a confusion matrix was calculated, and the average
confusion matrix was used to derive the overall accuracy and
the class f1-scores. Table 1 shows the overall accuracy for
each model and each set of phenometrics.
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Table 1. Overall accuracy for each model and each set of
phenometrics.

A small increase in the overall accuracy when using Po-
lar features can be observed. Neves et al. (2016) also found
similar results combining basic features extracted from time
series, with Polar features [15]. The L2 classification showed
the higher increase. Figure 1 illustrates the increase in the
class f1-score when using the combination of TIMESAT and
the Polar phenometrics.

Fig. 1. Class f1-score improvement with the addition of the
polar phenometrics.

There is a high increase in the ”Maize / Onion” class when
using the Polar features. By analyzing the confusion matrices,
we observe that this class presented confusion with ”Maize”
class when using only TIMESAT metrics. An onion crop has
a weak EVI response due to its canopy which exhibits an erec-
tophile leaf angle distribution. So that, TIMESAT was not ef-
fective on the detection of this variation to capture the crop
season. We selected phenometrics based on the Mean De-
crease in Gini for all the models and present the boxplots in
Figure 2.

Looking to Figure 3, where the boxplots corresponding
to the class ”Maize / Onion” shows a high range of distribu-
tion of the variable ”Left Derivative of Season 2”, the mean
is zero, which means that for the most part of the samples of
this class, TIMESAT did not detect the second season, We
can also observe both inclusion and omission errors between
the classes ”Soy / Sorghum”, ”Soy / Maize”, ”Soy / Millet”
and ”Soy / Brachiaria” when using only TIMESAT metrics.
This happened because the spectral and temporal response of
grasses like ”Maize” is similar; this was observed by other
authors [5]. When using Polar features, we noticed a reduc-

Fig. 2. Boxplots of selected phenometrics.

tion on the confusion between ”Soy” and ”Maize”, however,
it increases misclassification with the other classes in general.
Around 3% of the annual crop samples were wrongly classi-
fied being included as semi-perennial crop when using only
TIMESAT features, so we can see a great increase on the ac-
curacy of Semi-perennial crop class with the use of the Polar
features. The 3D-scatterplot shows the 3 most important vari-
ables on the classification of Level 2 (Figure 3).

Fig. 3. 3D-scatterplot of important variables on the classifi-
cation of Level 2.

Semi-perennial crops showed lower values of Left and
Right derivatives and higher values of EVI in the fourth quad-
rant. The combination of these variables was important for
separating semi-perennial crops from other crops. Finally,
Figure 4 shows the maps of the study area, classified on L2
(for the non-cropped classes) and L4, using only TIMESAT
phenometrics, in the right, and when combining to the Polar
phenometrics, on the left.

When using the Polar features, there is much less salt and
pepper noise, especially for the Semi-perennial class. We can
also observe the inclusion errors of Semi-perennial class in
the non-cropped class and other cropped classes.
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Fig. 4. Maps of the study areas (L2 non-cropped classes
and L4), using only TIMESAT phenometrics in the right, and
when combining to the Polar phenometrics, in the left.

4. FINAL CONSIDERATIONS

The main goal of this research was to compare different sets
of phenometrics derived from dense satellite image time se-
ries to classify agricultural land in the Cerrado biome. Our
tests showed that, when using TIMESAT metrics combined
with Polar features, the accuracies of semi-perennial classes,
winter crops increase substantially and misclassifications be-
tween single crops with non commercial crops are reduced.
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“GeoDMA-Geographic data mining analyst,” Comput-
ers & Geosciences, vol. 57, pp. 133–145, 2013.

[10] J. F. Ribeiro and B. M. T. Walter, “Fitofisionomias do
bioma cerrado.,” Embrapa Cerrados-Capı́tulo em livro
cientı́fico (ALICE), 1998.

[11] M.. Schwieder, P. J. Leito, M. M. C. Bustamante, L. G.
Ferreira, A. Rabea, and P. Hostert, “Mapping Brazilian
savanna vegetation gradients with Landsat time series,”
International Journal of Applied Earth Observation and
Geoinformation, vol. 52, pp. 361–370, 2016.

[12] X. Zhang, M. A. Friedl, C. B. Schaaf, A. H. Strahler,
J. C. F. Hodges, F. Gao, B. C. Reed, and A. Huete,
“Monitoring vegetation phenology using MODIS,” Re-
mote sensing of environment, vol. 84, no. 3, pp. 471–
475, 2003.

[13] L. Breiman, “Random forests,” Machine learning, vol.
45, no. 1, pp. 5–32, 2001.

[14] R. Y. Rubinstein and D. P. Kroese, Simulation and the
Monte Carlo method, vol. 10, John Wiley & Sons, 2016.

[15] A. K. Neves, H. N. Bendini, T. S. Korting, and L. M. G.
Fonseca, “Combining time series features and data min-
ing to detect land cover patterns: a case study in north-
ern Mato Grosso state, Brazil,” Revista Brasileira de
Cartografia, vol. 68, no. 6, 2016.

472


