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Abstract— Geometric misalignment between Landsat and
Sentinel-2 data sets as well as multitemporal inconsistency of
Sentinel-2A and -2B data sets currently complicate multitemporal
analyses. Operational coregistration of Sentinel-2A and -2B
imagery is thus required. We present a modification of the
established Landsat Sentinel Registration (LSReg) algorithm.
The modifications enabled LSReg to be included in an operational
preprocessing workflow to automatically coregister large volumes
of Sentinel-2 imagery with Landsat base images that represent
multiannual monthly spectral average values. The modified
LSReg was tested for the complete Sentinel-2 archive covering
Crete, Greece, which is a particularly challenging region due to
steep topographic gradients and high shares of water in Sentinel-2
tiles. A coregistration success rate of 87.5% of all images was
obtained with a mean coregistration precision of 4.4 m. The
mean shifts of 14.0 m in the x-direction and 13.4 m in the
y-direction before coregistration were found, with maxima
exceeding four pixels. Time series noise in locations with land
cover transitions (n = 585) was effectively reduced by 43% using
the presented approach. The multitemporal geometric consis-
tency of the Sentinel-2 data set was substantially improved, thus
enabling time series analyses within the Sentinel-2 data record,
as well as integrated Landsat and Sentinel-2A and -2B data sets.
The modified algorithm is implemented in the Framework for
Operational Radiometric Correction for Environmental monitor-
ing (FORCE) version 3.0 (https://github.com/davidfrantz/force).

Index Terms— Coregistration, geometric accuracy, Landsat,
multisensor, multitemporal, Sentinel-2, time series.

I. INTRODUCTION

T IME series analysis of remotely sensed data enables
characterization of land cover, land use, and long-term

changes therein. Geometric consistency within single-sensor
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image time series and between time series obtained from
multiple sensors is a vital prerequisite for such analyses [1].

Recently, the integration of medium resolution optical sen-
sors, such as Landsat 8 Operational Land Imager (OLI) and
Sentinel-2 (S2) Multispectral Instrument, gained traction, pos-
ing high demands to the geometric preprocessing of individual
data records and consistency between data sets [2].

The Collection 1 Tier 1 Level 1 Landsat record systemati-
cally provides high multitemporal geometric accuracies (<7 m
at worst) with absolute geometric accuracy of <13 m, that is,
less than half a pixel [3]. The S2 Level 1C data products
currently have a 12-m multitemporal accuracy, which means
that coregistration errors within a pure S2 time series can
already exceed a full pixel in the 10-m visible (VIS) and
near-infrared (NIR) bands [4]. The expected geometric error
between Landsat and S2 data currently amounts for up to
38 m, which further underlies geographic variation due to
varying quality of the Global Land Survey 2000 ground control
[5]. These geometric inaccuracies superimpose challenges for
single-sensor and particularly multisensor time series analy-
ses. Lacking image-level metadata on geometric accuracy in
S2 data adds to the uncertainty on the user side.

Improvements on the absolute geometric accuracy and mul-
titemporal coregistration of both S2 sensors are expected upon
the release of the global Geometric Reference Image (GRI)
by the European Space Agency (ESA), which is assumed
to reduce the multitemporal error to less than 0.3 pixels at
95% [6]. Unfortunately, the release of the GRI has been
repeatedly delayed, reprocessing of past S2 data is cur-
rently not planned, and the expected global geo-registration
accuracy needs to be confirmed in an operational setting.
Time series analysis in world regions with inconsistencies in
image geometry thus requires operational means to remove
pixel and subpixel inconsistencies between S2 and Land-
sat data, and within S2 data before the release of the
GRI [7].

Numerous approaches for automated tie point detection
and coregistration of Landsat and S2 data sets were pre-
sented recently, and most of them reporting substantial inter-
and intrasensor geometric mismatches [2], [7]–[10]. Current
automated image coregistration techniques frequently rely on
area-based correlation or Fourier-based matching techniques
for automated tie point detection [10], [11]. Subsequently,
affine or polynomial translation functions, or Random Forest
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Fig. 1. Study area and Sentinel-2 tiles.

regressions [10] are determined as translation functions based
on the respective set of tie points.

The Harmonized Landsat Sentinel Product [2], for instance,
was created using a modification of the Automated Regis-
tration and Orthorectification Package (AROP) [12], which
used a two-layer hierarchical approach with tie point detec-
tion and cross correlation matching on each layer with dif-
ferent spatial resolutions. The Landsat Sentinel Registration
(LSReg) algorithm [9] constructs a four-layer hierarchical
structure, using a feature-based initial tie point detection
on the top layer (lowest resolution) followed by area-based
least squares matching [13] on every hierarchical layer, and
locations matched on all layers are identified as tie points.
The hierarchical structure of the LSReg algorithm makes
it computationally efficient, and the least squares matching
provides higher subpixel geometric accuracy than the cross
correlation matching [14]. In addition, the least squares match-
ing in LSReg uses the spectral-angle-mapper similarity mea-
sure, which makes it more suitable to account for intersensor
differences between spectral bands, more robust to reflectance
brightness variations, and enables improved multitemporal
consistency when compared with classic correlation-based
least squares matching approaches [9]. Thus, we chose to adapt
LSReg and specifically tuned the algorithm for operational and
fully automated geometric coregistration of S2A/B time series
to selected Landsat base images. Emphasis was particularly
put on the selection of suitable base images, which can be
complicated due to seasonal land surface changes and cloud
cover, as well as parameter tuning for finding enough tie points
in target S2 images that do not contain much valid data.

II. STUDY AREA AND CHALLENGES

The island of Crete in Greece was chosen for developing and
testing the approach (Fig. 1). Crete is a particularly challenging
region for geometric correction for two reasons. First, a high
proportion of open ocean in the individual S2 tiles reduces
the land area available for tie point detection. Furthermore,
the presence of waves on open water regularly results in white-
caps with high reflectance and contrast that tend to be detected
as initial tie points. These effects either reduce the number of

tie points or trigger the occurrence of pseudo tie points in
LSReg, which in combination can lead to distortion during
geometric correction. Second, Crete has a strong topographic
gradient, with steeply rising terrain reaching elevations of
about 2500 m.

III. DATA AND METHODS

A. LSReg 2.0

We used version (2.0) of the LSReg algorithm [9]. Different
from the original algorithm, version 2.0 performs an additional
step of dense point matching on the bottom hierarchical
layer (highest resolution) to provide more tie points for a
better fit of the transformation functions between coregistered
images. LSReg requires only few inputs. First, an image
needs to be designated as the base for coregistration. Second,
a target image to be coregistered with the base image is
specified. Third, the type of transformation needs to be
selected. The tie point matchings are conducted using the NIR
bands that provide high contrast across land cover types and
reduced sensitivity to atmospheric effects [9], [10]. The LSReg
2.0 algorithm does not undertake cloud masking prior to image
coregistration. Further details on the original algorithm can be
found in [9].

B. Modifications

We implemented several refinements to adjust the LSReg
algorithm for operational coregistration of S2A/B with
Landsat-8 images. First, we increased the spatial resolution of
the depth-first matching pyramid layers from 10, 30, 60, and
120 m to 10, 20, 40, and 80 m. This will effectively lead to
more potential tie point locations in images with large shares
of water and in images where only a small part of an S2 data
take is intersecting the tile. Moreover, the sampling step for
dense matching (highest resolution) was modified to depend
on the number of valid land pixels (no cloud, water, or no
data), instead of considering the whole image dimension. This
change results in a potentially higher abundance and density
of tie points in case the land share in an image is low, or if
the image only includes a small part of the S2 data take.

Second, LSReg 2.0 does not have hard coregistration failure
criteria, that is, the code does not abort with an error mes-
sage, but only issues a warning that the coregistration might
have failed. In this case, manual inspection is recommended.
However, for operational implementation into a full processing
chain, failure criteria are necessary that stop the execution of
the code automatically. Thus, we identified a number of criteria
for early termination of the complete processing chain, that is,
if there are less than 12 matched tie points and if the predicted
image shift is larger than 6 pixels, that is, 60 m.

Third, we increased the threshold for water masking from
5% to 10% NIR reflectance to avoid false detection of tie
points on waves and white-caps, which frequently happened
with LSReg 2.0 over the open ocean and resulted in a large
number of tie points with arbitrary shift vectors.

Fourth, as suggested by Yan et al. [9], we considered
only affine transformation, as its performance was shown
to be comparable to polynomial transformations in earlier
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experiments [9], [11], and as it was found to be more robust,
especially if the tie points were not distributed across the com-
plete image extent, for example, due to clouds or higher water
shares at either side of the image. Furthermore, the affine trans-
formation has been demonstrated to perform well on Landsat
and Sentinel 2 images that were terrain-corrected [7], [9].

Fifth, we performed the coregistration subsequent to cloud
masking to increase its computational efficiency in an opera-
tional setting.

The modified LSReg is completely integrated into the
Framework for Operational Radiometric Correction for Envi-
ronmental monitoring (FORCE) Level 2 Processing Sys-
tem [15], [16], and thus coregistration is now a feasible option
in its fully automatic preprocessing chain. The module is
implemented between cloud masking [17] and radiometric
correction [15], and thus the coregistration benefits from
excluding clouds and cloud shadows. In addition, FORCE
uses an integrated radiometric correction that corrects for
both atmospheric and topographic effects. The latter correc-
tion especially benefits from the prior improvement of the
geometric accuracy as it substantially improves the alignment
between S2 and the Digital Elevation Model to perform this
correction and thus reduces correction artifacts, for example,
around crests.

C. Compilation of Base Images

We aimed at matching the geometry of the Landsat
Collection 1 Tier 1 data record, due to its superior geometric
consistency, until the release of the S2 GRI. Furthermore, this
increases the consistency in retrospective time series analyses
in cases where historic Landsat archives are combined with
contemporary S2 images.

The crucial step of selecting suitable base images offers
several options. First, a base image without much change
relative to all target images can be selected for coregistering
multiple target images. While this method facilitates the base
image selection, it requires manual intervention and does not
account for seasonal variations in reflectance, which might
lead to an insufficient number of matched tie points [12].
Second, a selection of individual base images with acquisition
dates proximate to the acquisition of the target images may
be considered [10]. While this mitigates seasonality-related
challenges, the labor-intensive selection of suitable images and
the possibility of no cloud-free base image being available for
a specific year are the drawbacks. Third, chain correction could
be applied where a single base image is defined to correct
one target image, which then serves as a base image for the
temporally neighboring image in the time series. This method
should be used cautiously, as errors are likely to propagate,
which may cause systematic shifts in coregistered image time
series.

We therefore present an alternative approach that uses
monthly Landsat spectral average metrics as base images.
To achieve near gap-free coverage, we accumulated all Land-
sat OLI acquisitions for the five-year period from 2015 to
2019 and calculated monthly mean NIR reflectance images for
January through December. The seasonality of land surfaces

is thereby mitigated, providing a near gap-free base image for
each month.

D. Target Images: Sentinel-2A/B Image Time Series

We aimed at coregistering all available S2A and -2B L1C
images covering Crete across seven tiles (Fig. 1). We down-
loaded images only with a cloud cover below 70% as indicated
by the metadata catalog, resulting in a total of 1739 images in
the time period between July 2015 and end of December 2018.
The L1C images were processed to Level 2 Analysis Ready
Data using the FORCE Level 2 Processing System with the
incorporated coregistration module as outlined above. The
cloud detection module additionally identified 23 images with
a cloud cover larger than 90%, which serves as termination
criterion for the cloud masking [15].

E. Evaluation of Coregistration Performance

We evaluated the performance of the modified LSReg
by calculating the rate of successfully coregistered images,
the number of tie-points used for coregistration, model root
mean square errors (RMSEs), absolute image shifts, and the
noise in original and coregistered normalized difference veg-
etation index (NDVI) time series. For the latter, we collected
585 pixel locations at the borders of land cover transitions,
dispersed across Crete. For each coordinate, we derived noise
across the respective NDVI time series using three successive
measurements yi , yi+1, and yi+2 acquired at dates dayi ,
dayi+1, and dayi+2. We quantified the differences between
the center NDVI and the linear interpolation between the two
outer measurements as follows [18]:

Noise =

√√√√∑n−2
i=1

(
yi+1− yi+2−yi

dayi+2−dayi
(dayi+1−dayi )−yi

)2

N − 2
.

(1)

IV. RESULTS AND DISCUSSION

We applied the coregistration to 1716 S2A/B images using
the modified LSReg algorithm, yielding 1501 coregistered
images, that is, a success rate of 87.5%. The mean RMSE
of the coregistration was 0.44 pixels at 10-m resolution
(Fig. 2 top left) and the number of automatically identified tie
points for the coregistered images ranged between 1219 and
106 359 with a mean of 16 290 (Fig. 2, top right).

The coregistration failed for 215 images. An inspection
of these images’ characteristics revealed that those had low
data coverage in the S2 tiles, high shares of water, high
cloud cover, or the combinations thereof. This reduced the
area of cloud-free land observations available for tie point
matching and thus too few tie points for coregistration
(Fig. 2, bottom left).

The mean image shifts between base and target images
before coregistration were 14.0 m (standard deviation: 6.9 m)
and 13.4 m (standard deviation: 11.3 m) in the x- and
y-direction, respectively. The maximum image shifts were
46.2 in the x-direction and 59.6 m in the y-direction and
were confirmed by examining the associated image pairs.
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Fig. 2. (Top left) Model RMSE, (Top right) number of tie points detected per
image, (Bottom left) scatterplot of percentage water cover and cloud cover for
failed (red) and successfully coregistered images (gray), and (Bottom right)
density plot of absolute image shifts performed during coregistration.

Fig. 3. NDVI time series of Sentinel-2A (red) and -2B (blue) data before (top)
and after (bottom) coregistration procedure. Pixel location alternating between
open and dense tree canopies at latitude/longitude: 35◦34.57737�/24◦8.40115� .

A general tendency for North-West shifts was apparent
(Fig. 2, bottom right).

The determined geometric shifts in the S2 time series
ranged up to six pixels and thus exceeded previously observed
shifts [9], [10]. These inconsistencies in the original time
series caused spectral variability due to alternating land cover
types, partly exceeding the seasonal variability, which hamper
analyses of dense image time series, for example, for capturing
land surface phenology (Fig. 3). Coregistration drastically
improved the consistency of the time series (Fig. 4), with
average time series noise being reduced by 42.9%, from 0.086
(standard deviation = 0.029) in the unregistered to 0.049
(standard deviation = 0.018). In 21 locations, slight increases

Fig. 4. (Left) Scatterplot of noise in Sentinel-2 NDVI time series before
(x-axis) and after (y-axis) coregistration. (Right) Boxplot comparing distribu-
tion of noise in original against coregistered time series. Time series noise was
quantified for 585 manually selected pixels located at boundaries of different
land cover types throughout Crete.

in noise were apparent (mean < 0.008), which relate mostly to
the fact that the time series were dynamic but clear observation
was relatively sparse.

The presented approach is highly automated and thus suit-
able for large-area applications. It operates without manual
selection of suitable base images through the use of Landsat-
based multiyear spectral averages. While mitigating challenges
related to seasonal reflectance variation, the procedure does
not account for interannual variation in reflectance due to
land cover change that might occur in the 5-year period
used to generate the mean NIR data. However, similar to
the occurrences of clouds, the occurrences of land cover
changes only reduce matched tie points at locations of the
occurrences (recall that the original LSReg algorithm does
not undertake cloud masking). Given the fact that dense point
matching was conducted in LSReg 2.0 and we obtained a mean
of 16 290 tie points per coregistered image pair, the issue
of land cover changes was not found to be a problem.
Nevertheless, the aggregation period (here 5 years) for the
generation of the Landsat-based base images can be adapted
flexibly. In deforestation frontiers of tropical evergreen forests,
for instance, low seasonal variability coincides with high rates
of land cover change. In such cases, the overall time frame
should be narrowed down.

The upcoming Landsat Collection 2 will be geometrically
adjusted to the S2 GRI [19], and the forthcoming S2 acquisi-
tions will use the GRI for geo-correction. Consequently, a high
geometric consistency of integrated Landsat and S2 time series
can be expected for GRI-corrected data. However, coregis-
tration will be needed for using post-Level 1 S2 data until
the entire S2A and 2B archive has been reprocessed and the
geometric quality targets have been confirmed globally in an
operational setting.

V. CONCLUSION

We presented a modification of LSReg 2.0, which enables
the operational geometric coregistration of S2-A/B images
based on multitemporal Landsat spectral–temporal metrics.
The approach allows for automated subpixel coregistration
under challenging conditions, overcoming issues of low
data or land coverage in satellite products, topographic gra-
dients, and seasonality. The described modifications of the
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LSReg algorithm and the generation of Landsat base images
are implemented in the free and open source software FORCE
version 3.0 (https://github.com/davidfrantz/force).
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