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Abstract
Recently some experiments have suggested that graphene epitaxially grown on SiC can exhibit
an energy bandgap of 260 meV, which enhances the potential of this material for electronic
applications. On this basis, we propose to use spatial doping to generate graphene-on-SiC
double-barrier structures. The non-equilibrium Green’s function technique for solving the
massive Dirac model is applied to highlight typical transport phenomena such as the electron
confinement and the resonant tunneling effects. The I–V characteristics of graphene resonant
tunneling diodes were then investigated and the effect of different device parameters was
discussed. It is finally shown that this kind of double-barrier junction provides an efficient way
to confine the charge carriers in graphene and to design graphene resonant tunneling structures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene and graphene-based nanostructures have recently
attracted a great deal of attention for their fascinating
fundamental properties and various potential applications
[1–4]. This is essentially due to the fact that graphene
offers several specific characteristics associated with a zero
bandgap electronic structure with chiral massless charge
carriers, making it different from conventional solid-state
materials. In particular, this material exhibits many unusual
transport phenomena such as finite minimal conductivity,
unconventional quantum Hall effect or Klein tunneling (see
recent reviews [1, 2] and references therein). Besides, due
to its exciting properties such as high carrier mobility and
small spin–orbit coupling, graphene is expected to be a
good candidate for high-speed electronics and spintronics
(see [3, 4]).

Different tunneling processes through graphene structures
have been discussed in previous works, e.g., see [5–10] or
a recent review [11]. In particular, an important transport
phenomenon, the resonant tunneling effect, has often been
discussed. However, due to the Klein tunneling inherent
in massless chiral fermions [5], it was shown to be hard to
confine the charges using an external electrostatic potential

in graphene nanostructures [12] and most works have mainly
focused on the tunneling processes via hole bound states of
the structures. The resonant tunneling processes via electron
confined states without the contribution of hole states have
recently been discussed in some graphene nanoribbon (GNR)
hetero-junctions [13–16], where the confinement is formed
owing to discontinuities in the electronic structure between
different GNR sections. However, the design of nanoribbon
hetero-structures always raises a technological challenge of
controlling precisely their width and edges at the atomic
scale. The results obtained for such hetero-structures were
shown to be very sensitive to the structure designs and to
the edge disorder effects [16]. Moreover, GNR devices have
limited driving currents, and, therefore, their use for realistic
applications requires the production of dense arrays of ordered
nanoribbons. In this view, besides better understanding
the charge transport in graphene quantum structures, the
systematical investigation of the resonant tunneling devices
based on 2D gapped graphene sheets is desirable for the
development of such materials in electronics.

To confine efficiently the charge carriers in graphene
nanostructures, opening a finite energy bandgap is a key point.
In fact, it can be achieved not only by patterning a graphene
sheet into nanoribbons [17] but also when the inversion
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symmetry of the graphene plane is broken as suggested in
recent works [18–22]. In particular, the experiment reported
in [18] has demonstrated that graphene epitaxially grown on
the SiC substrate can exhibit a bandgap of up to 260 meV.
Although relatively small compared to that in conventional
semiconductors, it is about ten times greater than the thermal
energy at room temperature, which has stimulated some
studies of 2D graphene in electronics [23–26]. Hence,
instead of GNR hetero-junctions [16], we propose here to
use a spatial doping to form graphene-on-SiC double-barrier
structures. We demonstrate that electron states can be fully
confined and strong resonant tunneling effects are achieved in
these structures, which are appropriate for designing efficient
graphene resonant tunneling diodes (RTDs).

The paper is thus organized as follows. In section 2,
the simulated structures and the calculation method are
described. The obtained results are presented and discussed in
section 3: the confinement of electrons, the resonant tunneling
and the negative differential conductance (NDC) effects in
subsection 3.1, the influence of main structure parameters, the
well thickness, the barrier thickness and the transition length
in subsection 3.2. Finally, a conclusion is given in section 4.

2. Model and calculation

Graphene has a honeycomb lattice with a unit cell consisting
of two carbon atoms— normally referred to as A and B atoms.
To describe the charge states in the system, a simple nearest-
neighbor tight binding model can be conveniently used, with
ac = 0.142 nm the carbon–carbon distance, t = 2.7 eV the
hopping energy between nearest-neighbor sites and εA =
−εB = � the on-site energies in the two sublattices. While
� = 0 in the pristine sheet, it is finite (≈130 meV) when
the graphene is epitaxially grown on SiC [18]. Using such a
model, the energy dispersion close to the K-point can simply
be written as

E(�k) = ±
√

h̄2v2
F

(
k2
x + k2

y

)
+ �2, (1)

where vF = 3act/2h̄ ≈ 106 m s−1 is the Fermi velocity,
�k = (kx, ky) is the 2D momentum measured relatively to the
K-point and the sign ± stands for the conduction/valence band,
respectively. From equation (1), the bandgap is determined as
EG = 2� (≈260 meV). To consider the charge transport in
such a system, one can conveniently use the following massive
Dirac-like Hamiltonian:

H = −ih̄vF (σx∂x + σy∂y) + �σz + U(x), (2)

where U is the external potential energy and σx,y,z are the
Pauli matrices. We assume the width of the graphene sheet
to be much larger than the length of the active region (e.g.
a few tens of nm as in our simulations below) so that the
potential energy can be modeled as just a function of x in
this study. This assumption ignores the role of graphene edges
and lateral confinement effects which are important for narrow
GNR channels.

To solve equation (2), an efficient method has been
proposed by rewriting the Hamiltonian within a tight-binding
formulation in a new basis {|xn〉, |ky〉}, where |ky〉 = eikyy

and xn+1 − xn = a0 is an arbitrary mesh spacing [8, 9, 26].
Throughout the work, a0 is chosen to be 0.2 nm, which is
proved to be small enough to give accurate results. The device-
retarded Green’s function is then defined as

Gr(E, ky) = [E + iη − H − �L − �R]−1 (3)

with the left (right) self-energy �L(R), which describes the
device-to-contact coupling. The transmission coefficient
needed to define the current and the local density of states
(LDOS) are defined as T (E, ky) = Tr

[
�LGr�RGr†] and

D(xn) = −Im
[
Gr

n,n(E)
]/

π , respectively, where �L(R) =
i
(
�L − �

†
L

)
. Finally, the current density is computed by the

Landauer formula

J = 2e

πh

∫ ∞

−∞
dE dkyT [fL(E) − fR(E)], (4)

where fL(R)(E) = 1/[1 + exp((E − EFL(R))/kbT )] is the
Fermi distribution function in the left (right) contact with the
Fermi energy EFL(R).

The formalism described above is used to investigate the
ballistic transport characteristics of graphene double-barrier
structures wherein the two potential barriers are formed by
a spatial doping, i.e. the npnpn-junctions schematized in
figure 1. The doped graphene regions are assumed to be gener-
ated by using electrostatic doping [27, 28] or chemical doping
[29, 30]. The key structure parameters are the potential barrier
U0, the barrier thickness L and the well thickness D separat-
ing the barriers. The doping is known to affect/generate a
bandgap in graphene, e.g., see a recent review [31]. Although
not taken into account here, this effect provides additional
possibilities of bandgap engineering, which may be useful for
designing graphene resonant tunneling structures as proposed
in this work.

Moreover, as discussed in [26], the charge transport
through the junction of different doped zones is very sensitive
to the length of the transition region across which the charge
density changes monotonically from n-type to p-type. This
is essentially due to the fact that an increase in this length
enhances the contribution of evanescent states around the
neutral points in the transition regions, which reduces the
interband tunneling of charges from the n-doped side to
the p-doped one. Although the interband tunneling does
not play any important role in the structures studied here,
the transition length influences the effective barrier and well
thicknesses, which may change the confined levels and the
resonant tunneling. In the major parts of the paper, the
transition length of 1 nm is assumed. The effects of this
length (particularly, in the range 1–6 nm) are then discussed
in the final part.

3. Results and discussion

3.1. Electron confinement, resonant tunneling and negative
differential conductance effects

In this subsection, we describe how the confinement and
the resonant tunneling effects are obtained in double-barrier
graphene structures using a spatial doping. In figures 2(a) and
(c), we plot the maps of LDOS for U0 = 0.38 eV > EG and
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(a)

(b)

Figure 1. (a) Schematic of graphene-on-SiC double-barrier structures formed by a spatial doping and (b) their energy band diagram.

for U0 = EG = 0.26 eV, respectively, and for normal incident
particles (ky = 0). Besides, the corresponding transmission
coefficients are displayed in figures 2(b ) and (d) as a function
of energy. They exhibit peaks of resonant tunneling through
the structure. In both cases, we observe clearly the confined
states of electrons in the well region (see figures 2(a ) and
(c)). For U0 > EG, we even find hole confined states in the
barrier regions (figure 2(a)), which are known to govern the
Klein tunneling (the transmission peak is plotted in figure 2(b),
dashed line) of chiral fermions [8]. As mentioned above, since
such a transmission process has been investigated carefully in
previous works [7–9], we mainly focus here on the tunneling
via the confined electron states. For U0 � EG (figures 2(c) and
(d)), when the Klein tunneling process is fully suppressed, the
confinement and resonant effects are shown to be stronger than
those in gapless graphene structures. This is due to the fact that
these effects are obtained even for normal incident particles
(ky = 0) and weakly ky dependent in this study. In contrast,
the situation is very different in the case of gapless graphene
where the transmission is nearly perfect and almost suppressed
for small ky in monolayer [7, 8] and bilayer structures [9],
respectively, and thus strongly dependent on ky . To see more
clearly the dependence of the resonant tunneling on ky , we
display a (kx , ky) contour plot of the transmission coefficient
in figure 3. Practically, the slow reduction of the width
of the resonant peaks is observed with increasing ky . This
feature normally appears in all graphene structures and can be
explained by the fact that the resonant tunneling is affected
by the contribution of evanescent states in the barrier regions
which decay with increasing ky due to the increase of the

effective transmission gap ÊG = 2
√

�2 + h̄2v2
F k2

y . However,
the resonant effects are observed for almost all values of ky .

Based on this, it is expected that the effects on the electrical
current in the considered structures are stronger than for the
gapless graphene ones [7–9].

This idea is now demonstrated in figure 4(a), where we
plot the I–V characteristics of the structure with U0 = 0.26 eV
at different temperatures ranging from 77 K to 300 K. Indeed,
a high peak current and a strong NDC effect are observed
clearly in all the cases studied. Besides, it is shown that when
the temperature is increased from 77 K to 150 K, the smearing
effect leads to a decreased peak current and an increased valley
one, which finally reduces the peak-to-valley ratio (PVR) of
NDC. However, both of them increase when the temperature
is raised to 300 K. This behavior can be understood by the
contribution of the second confined level (see figure 2 (c)). In
spite of such smearing effects, it is remarkable to see that a
PVR as high as 4.1 is achieved at room temperature. When
changing appropriately the device parameters, e.g., increasing
the barrier thickness, the room temperature PVR can even
reach about 7–8, but at the price of a reduced peak current
(discussed later). Such a high PVR is comparable to the best
value obtained in the GNR-RTDs [16] and in conventional
semiconducting RTDs [32, 33].

To analyze the effects of the Klein tunneling observed in
figure 2(b), we display in figure 4(b) the I–V characteristics
obtained for different U0 at T = 77 K. On increasing U0

(U0 > EG), due to the contribution of the transmission
peak associated with the Klein tunneling, the overall current
increases and two NDC regions can be obtained in the bias
range considered 0–0.3 V. However, the large increase in the
valley current for U0 = 0.38 and 0.5 eV finally leads to the
PVRs smaller than those in the case of U0 = 0.26 eV (without
the Klein tunneling). For instance, the maximum PVR (i.e.
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(a) (b)

(c) (d )

Figure 2. (a) and (c) LDOS and (b) and (d) corresponding transmission coefficient as a function of energy in graphene-on-SiC
double-barrier structures. The structure parameters are L = D = 10 nm, ky = 0, U0 = 0.38 eV in (a) and (b) and 0.26 eV in (c) and (d).
The white solid line in (a) and (c) shows the bottom of the conduction band and the top of the valence band profiles.

Figure 3. The (kx, ky) map of the transmission coefficient through a
graphene-on-SiC double-barrier structure. Other parameters are L =
8 nm, D = 10 nm and U = 0.26 eV.

second peak current/second valley current) falls to 65 and 34
for U0 = 0.38 and 0.5 eV, respectively, while it reaches 94 for

U0 = 0.26 eV. Hence, the Klein tunneling may be exploited
to enhance the overall current but it reduces the PVR value.

3.2. Influence of well thickness, barrier thickness and
transition length

We now discuss the role of two structure parameters, the well
and the barrier thicknesses. We first present an (E,D)-map
of the transmission coefficient in figure 5(a). In principle,
the bound states in the well region correspond to the quantized
values of kx , which are defined by kx = nπ/D (n is an integer)
in the case of infinite barriers [34]. In the case of finite
barriers studied here, this simple expression describes well
only the low-energy confined levels, e.g., the first confined
level/resonant peak in figure 3. This feature together with
the energy dispersion described in equation (1) explains well
the unusual quantization of fermions in graphene structures:
the energy spacing between the resonant peaks is nearly
proportional to 1/D as may be seen in the evolution of resonant
peaks with respect to the thickness D in figure 5(a), but not
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(a)

(b)

Figure 4. I–V characteristics of graphene-on-SiC RTDs at different
temperatures (a) and different barrier heights (b). Unless otherwise
stated, EF = 0.15 eV, L = D = 10 nm, U0 = 0.26 eV and
T = 77 K.

to 1/D2 as in conventional materials [7, 8, 11]. To see the
role of the barrier thickness in the tunneling current through
the system, we display an (E,L)-map of the transmission
coefficient in figure 5(b). The intensity and width of the
resonant peaks are shown to decay with the increase of the

(a) (b)

Figure 5. (a) (E, D)- and (b) (E, L)-maps of the transmission coefficient for ky = 0. Other parameters are L = 10 nm in (a), D = 10 nm in
(b) and U = 0.26 eV.

Figure 6. I–V characteristics of graphene-on-SiC RTDs for different
well thicknesses. Other structure parameters are EF = 0.15 eV, L =
10 nm, U = 0.26 eV and T = 77 K.

barrier thickness. This result is explained well by the fact
that the tunneling transmission through the barriers is affected
strongly by the evanescent states in the barrier regions, whose
wavefunctions tend to vanish with increasing L.

To evaluate the roles of these parameters on the RTD
operation, we first display the I–V characteristics for different
well thicknesses in figure 6. Due to the change in the position
of confined levels as seen in figure 5(a), the position of the
first peak current (similar to that observed in [16]) moves to
the low bias with increasing D. Moreover, the reduction of not
only the peak current but also the valley one is observed. The
latter feature can be explained by the smaller contribution of
the thermionic transmission at low bias, which thus results in
an increased PVR in the first NDC region, i.e. it is about 2.5,
94 and 111 for D = 5, 10 and 15 nm, respectively. Besides,
because the number of resonant peaks increases with respect
to D, the second peak current/NDC behavior can be observed
for large D in the considered bias range (i.e. see the case of
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(a)

(b)

Figure 7. (a) I–V characteristics of graphene-on-SiC RTDs for
different barrier thicknesses. (b) The dependence of Jpeak, Jvalley (left
axis) and the PVR (right axis) on L. Other parameters are
EF = 0.15 eV, D = 10 nm, U = 0.26 eV and T = 77 K.

D = 15 nm in figure 6). Next, the I–V characteristics and
the evolution of the peak and the valley currents as a function
of L are displayed in figure 7. Due to the reduction of the
resonant tunneling discussed above, both the peak and the
valley currents strongly decrease with increasing L, which
results in an increased PVR as seen in figure 7(b). This
suggests that a strong NDC effect can be achieved for large
barriers but at the price of a small peak current.

Finally, we discuss the role of the transition length Lt

in the transport in the considered structures. In figure 8,
the transmission coefficient for ky = 0 at zero bias and the
I–V characteristics are displayed for different Lt , while the
average thickness of the well and the barrier is unchanged.
Figure 8(a) shows that on increasing Lt , (i) the transmission
coefficient at low energy is reduced because of the higher
influence of evanescent states in the barrier regions, i.e. the
barrier thickness in this energy regime is enlarged; (ii) the
resonant peak is shifted to higher energy and its width is
simultaneously reduced. These effects of course govern the
behaviors of the I–V characteristics as shown in figure 8(b). On
one hand, the current peak is shifted to higher bias, and on the
other hand, both its width and height decrease with increasing
Lt . This result finally suggests that a sharp profile is desirable
for achieving strong resonant effects, though they remain
significant for large Lt . Such a short transition length (sharp
profile) may be realized by controlling the device design, e.g.,
by appropriately reducing the gate dielectric thickness in the

(b)

(a)

Figure 8. (a) Transmission coefficient for ky = 0 at zero bias and
(b) I–V characteristics of graphene-on-SiC RTDs for different
transition lengths Lt . Other parameters are EF = 0.15 eV,
L = D = 10 nm, U = 0.26 eV and T = 77 K.

case of the electrostatic doping [28], or by using the chemical
doping to generate the p–n junctions as mentioned in [29].

4. Conclusion

We have proposed a graphene-on-SiC resonant tunneling
structure that can be realized by using a spatial doping. The
non-equilibrium Green’s function technique was applied to
highlight the transport characteristics such as the electron
confinement, the resonant tunneling and the negative
differential conductance effects in these structures. It was
found that due to the suppression of Klein tunneling, the
complete confinement of electron states can be achieved
and the resonant tunneling effects are strong in comparison
with what can be obtained in gapless graphene structures.
Therefore, a significant negative differential conductance
effect is observed. The roles of main structure parameters,
the well thickness, the barrier thickness and the transition
length, were then discussed. This study is an additional
contribution to our understanding of the different kinds of
tunneling processes in 2D graphene structures and may be
helpful for further investigations and design of graphene-based
quantum structures/electronic devices.
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