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Abstract
The cotunnelling is systematically studied in comparison to sequential
tunnelling in Coulomb blockade metallic double quantum dot structures, using
the standard master equation approach. In the case of zero gate voltage, we are
able to derive analytical expressions of threshold voltages for both tunnelling
processes: V (s)

th for the sequential tunnelling and V (2)
th for the lowest-order

inelastic macroscopic quantum tunnelling (cotunnelling). Taking into account
the gate and temperature effects, numerical solutions of the master equation
show that an increase of the inter-dot capacitance leads to a decrease of the
ratio V (2)

th /V (s)
th and at the same time to a decrease of cotunnelling conductance

compared to the sequential one. An oscillation of cotunnelling conductance
is observed in classical Coulomb blocked regions. In comparison with the
sequential tunnelling conductance spectroscopy, the peak height of cotunnelling
conductance is about three orders of magnitude smaller and the peak spacing
distribution is far from regular. Increase of temperature raises the current and
destroys the Coulomb gap. Its relative influence is more important at lower bias.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Coulomb blockade (CB), observed widely in quantum dot (QD) structures, has attracted
great attention from both fundamental physics and technological applications. At the CB
regime in current–voltage (I –V ) characteristics there exists a gap of V < V (s)

th , where the
current associated with the sequential electron tunnelling strictly vanishes. The threshold
voltage V (s)

th is the most important quantity, characterizing the CB phenomenon. This quantity
has been analytically evaluated for some simple structures [1], e.g. single QD structures or
arrays of identical QDs, using the so-called Orthodox theory [2]. It was however predicted
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early that taking into account higher-order electron tunnelling processes (macroscopic quantum
tunnelling—q-MQT) the current could be finite even at V < V (s)

th [3]. There are two kinds of
q-MQT: the inelastic process associated with the simultaneous tunnelling of different electrons
through different junctions, and the elastic one, where one electron tunnels across two or several
junctions. While the former process gives a major contribution to the total q-MQT current in
metallic or large semiconductor QDs, where the energy spectrum is essentially continuous or
many levels contribute to tunnelling, the latter becomes important in small QDs, where the
energy levels are well separated. In this paper, since the object of study is metallic QDs we will
be interested in only the inelastic process, which for short will be called the cotunnelling.

In the theory of quantum transport through CB metallic QDs, developed by Schoeller and
Schön [4], the sequential tunnelling (ST) and cotunnelling (CT) can be respectively described
by the lowest-order and the second-order perturbation with respect to the parameter RQ/Rt,
where RQ = h/e2 is the quantum resistance and Rt is the tunnelling resistance of a single
tunnelling junction. In this theory the range of parameter RQ/Rt and of temperature, where
the CT may be dominant, was also well identified. Experimentally, the CT has been measured
in various metallic [5–7] and semiconductor [8–10] QD structures. Though the CT current is
much smaller than that due to the ST, it basically destroys the classical CB effect, giving rise to
a limitation to the accuracy of single electron devices.

Generally, in a linear array of N junctions, regarding the number of electrons involved in
one CT act, the CT can be seen as consisting of n-electron processes, where n can be from 2
to N . While the contribution from each process to the total CT current decreases quickly with
increasing the order n, analytical calculations can be done only for the highest-order n = N ,
when all the junctions are equivalent in the sense that each of them experiences simultaneously
a ‘partial’ single electron tunnelling. For this process the zero temperature CT rate has the
form [3]

�N ∝ V 2N−1
N∏

i=1

(RQ/Rti ), (1)

where V is the applied voltage and Rti is the tunnelling resistance of i -junction. The I –V
characteristics deduced from this rate expression describes well experimental data for linear
arrays of two and three metallic tunnel junctions [5, 7]. On the other hand, because the range
of bias voltages, where the n-electron process is most favourable, moves down as n increases
it is reasonable to assume that for each n-electron process there exists a threshold voltage V (n)

th ,
and on the whole, for a given measurement sample, V (s)

th > V (2)
th > · · · > V (N−1)

th > V (N)
th = 0.

Qualitatively, the tunnelling phenomenon is thus well understood. However, currently, its
quantitative description is mostly limited to single QD structures. Recently, the double quantum
dot structures have been strongly suggested as the most prospective candidate for a solid state
qubit [11–13], and therefore have become a very attractive object of both experimental [14]
and theoretical [15–18] investigations. In the structure where two quantum dots are embedded
between three tunnel junctions (figure 1(a)), two dominant tunnelling processes are the ST and
the two-electron cotunnelling (2ECT). Two corresponding threshold voltages are V (s)

th and V (2)

th ,
while V (3)

th is already zero (following (1)). The aim of the present work is, using the standard
master equation approach, to derive exact expressions of the thresholds, V (s)

th and V (2)
th , for

this configuration of metallic double quantum dot structures (MDQDSs) without gate and to
numerically calculate the I –V characteristics for both ST and 2ECT, taking into account the
gate and temperature effects. The obtained results give a quantitative description of how the
2ECT is important, compared to the ST, in devices with different parameters. We neglect the
higher-order three-electron tunnelling process, which becomes important only at lower bias
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Figure 1. (a) Equivalent circuit diagram of the MDQDS under study; (b) illustrative diagram used
to evaluate threshold voltages (see section 3).

voltages and at lower temperatures. Also, we do not consider the structures where two QDs are
coupled in parallel, as discussed, for example, in [12, 18].

The paper is organized as follows. Section 2 is devoted to formulating the problem and
presenting fundamental expressions. In section 3 we derive exact expressions for V (s)

th and V (2)
th

in the case of zero gate voltages. These thresholds are identified as the voltages below which
the ST (or 2ECT) is energetically blocked and over which there exists a finite current through
the device. Numerical results of threshold voltages and conductance, taking into account the
gate and temperature effects, are discussed in section 4. Lastly, a brief summary is given in
section 5.

2. General consideration

The equivalent circuit diagram of the Coulomb blockade MDQDS studied is drawn in
figure 1(a), where the gate with voltage Vg1 (or Vg2) is coupled to the dot D1 (or D2) via
the gate capacitance Cg1 (or Cg2) and the bias voltage is applied symmetrically, (−V/2, V/2).
Within the framework of the Orthodox theory [2] the state of the system is entirely determined
by the numbers of excess electrons in two dots, n and m. For a given (n, m)-state, the free
energy of the system can be written as [19, 22]

F(n, m) = Q2
1

2C∗
l

+ Q2
2

2C∗
r

+ Q1 Q2

C∗
m

+ eV

2
(nl − nr ) − V 2

8
(Cl + Cr ) − 1

2
(Cg1V 2

g1 + Cg2V 2
g2).

(2)

Here Q1 = Cl V/2 − Cg2Vg2 − ne, Q2 = −Cr V/2 − Cg2Vg2 − me, C∗
l = �/C2, C∗

r =
�/C1, C∗

m = �/Cm, C1 = Cm +Cg1 +Cl, C2 = Cm +Cg2 +Cr ,� = C1C2 −C2
m , and nl(nr )

is the number of electrons that have entered the structure from the left (right). Any electron
transfer across junctions (l, m or r ) results in a change in free energy F . The main electron
tunnelling processes in MDQDSs of interest, as mentioned above, are ST and 2ECT.

For the ST, there are six possible electron transfers across three junctions to the right (+)

or left (−). The change in free energy F associated with these STs can be easily deduced from
equation (2) as

�F±
l (n, m) = e[(e/2 ∓ Q1)/C∗

l ∓ Q2/C∗
m ∓ V/2]

�F±
m (n, m) = e[(e/2 ± Q1)/C∗

l − (e ± Q1 ∓ Q2)/C∗
m + (e/2 ∓ Q2)/C∗

r ]
�F±

r (n, m) = e[(e/2 ± Q2)/C∗
r ± Q1/C∗

m ∓ V/2].
(3)
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The rate of an ST across any ν-junction, ν = l, m or r , is well known [2] for zero temperature:

�ν =
{

0, �Fν � 0
|�Fν |/e2 Rtν, �Fν < 0

(4)

as well as finite temperatures:

�ν = (e2 Rtν)
−1�Fν/[exp(�Fν/kBT ) − 1], (5)

where �Fν is the corresponding change in free energy defined in equation (3).
For the 2ECT, following Averin and Nazarov (AN) [3], we will neglect all the processes

when two electrons tunnel across the same junction and when two electrons tunnel into or out
of the same dot. Then, for MDQDSs under study, there are eight possible 2ECT transfers with
the changes in free energy as follows:

�F±±
lm (n, m) = e[(e/2 ∓ Q2)/C∗

r ∓ Q1/C∗
m ∓ V/2]

�F±±
lr (n, m) = e[(e/2 ∓ Q1)/C∗

l − (e ∓ Q1 ± Q2)/C∗
m + (e/2 ± Q2)/C∗

r ∓ V ]
�F±∓

lr (n, m) = e[(e/2 ∓ Q1)/C∗
l + (e ∓ Q1 ∓ Q2)/C∗

m + (e/2 ∓ Q2)/C∗
r ]

�F±±
mr (n, m) = e[(e/2 ± Q1)/C∗

l ± Q2/C∗
m ∓ V/2]

(6)

where the subscripts (e.g. lr ) indicate the two junctions involved in the cotunnelling act,
whereas the superscripts (e.g. +−) indicate the direction of partial tunnels across corresponding
junctions. For example, �F+−

lr (n, m) denotes the change in free energy F of the system at the
state (n, m) due to the 2ECT, when two electrons tunnel simultaneously across l-junction to the
right and r -junction to the left.

As for the 2ECT rate, AN [3] have derived both the zero and finite temperature expressions,
but only for double junction systems. Extending the AN-calculating procedure to the MDQDS
of interest we obtained the 2ECT rates as follows: for zero temperature

�νµ =
{

0, �Fνµ � 0
(h̄/12e4π Rtν Rtµ)(1/�Fν + 1/�Fµ)2 × �F3

νµ, �Fνµ > 0
(7)

and for finite temperatures

�νµ = h̄

12e4π Rtν Rtµ

{
1

�Fν

+ 1

�Fµ

}2 �Fνµ(�F2
νµ + (2πkBT )2)

exp(�Fνµ/kBT ) − 1
. (8)

Here ν and µ denote two junctions (with tunnelling resistances Rtν and Rtµ) involved in the CT
act, �Fν and �Fµ are the changes in free energy associated with two partial single electron
tunnellings through these junctions considered separately (see equation (3)), and �Fνµ is
the difference in free energy between the initial and resulting states with respect to the CT
event (see equation (6)). The expressions (7) and (8) have been obtained under the condition
|�Fνµ| � |�Fν |, |�Fµ|, implying the low bias voltages when the SET is blocked. To
compare, respectively, these expressions, (7) and (8), with those, (12) and (14), in [3] we note
that for the double junction structure studied in [3] the quantity �Fνµ is nothing but eV .

Using expressions (3)–(5) for STs, or (6)–(8) for 2ECTs, in principle, we can solve the
master equation or perform Monte Carlo simulations to get I –V characteristics at zero (using
equation (4) or (7)) as well as finite temperatures (using equation (5) or (8)). For this paper,
in fact, both calculation methods have been implemented; their results are however practically
coincident in all cases of interest, and therefore, the only master equation (ME) is chosen to be
discussed. Denoting p(i) as the probability of the state |i〉 ≡ (ni , mi ) of the system, the ME
can be for short written in the matrix form (for details see the appendix):

d p̂(t)/dt = M̂ p̂(t), (9)
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where p̂(t) is the matrix of elements p(i, t) and M̂ is the evolution matrix of elements
Mi j = �(i ← j) − δi j

∑
k �(k ← i) with �( j ← i) being the net transition rate from

|i〉 to | j〉, which is explicitly expressed in terms of tunnelling rates as shown in the appendix.
Solving the ME (9) in the condition

∑
i p(i, t) = 1, one can further calculate the steady current,

which is equal to the current through any of junctions, l, m or r :

I = e
∑

i

[�+
l − �−

l ]p(i) ≡ e
∑

i

[�+
m − �−

m]p(i) ≡ e
∑

i

[�+r − �−
r ]p(i), (10)

where, taking into account 2ECTs, �+
l = �+

l (i) + �++
lm (i) + �++

lr (i) + �+−
lr (i); �−

l =
�−

l (i) + �−−
lm (i) + �−−

lr (i) + �−+
lr (i); �+

m = �+
m (i) + �++

lm (i) + �++
mr (i); �−

m = �−
m (i) +

�−−
lm (i) + �−−

mr (i); �+
r = �+

r (i) + �++
mr (i) + �++

lr (i) + �−+
lr (i) and �−

r = �−
r (i) + �−−

mr (i) +
�−−

lr (i) + �+−
lr (i). For the ST-current, in �-expressions all the 2ECT rates should be omitted.

In some simple cases, for example without gates at low applied bias and zero temperature
as considered in [22, 23], the ME can be exactly solved, giving analytical expressions for I –V
curves, and particularly, for threshold voltages as can be seen in the next section. With gates
and at finite temperature, in general, the ME has to be solved numerically.

It should be here emphasized that the ME approach used is valid only in the strongly
Coulomb blockade regime, when the charge (n, m)-states of the system are well defined. Such
a regime has been identified in [4] with respect to the parameter RQ/Rt and the temperature.
For larger values of RQ/Rt and at lower temperatures the coherent many-body transport may
become considerable [12, 20, 21]. Experimentally, Franceschi et al [10] have shown that there
really exists a range of temperature where the coherent correlations are still unimportant and
the conduction is dominated by CT processes.

3. Threshold voltages: analytical expressions

Actually, the threshold voltages for both ST and 2ECT can be evaluated by solving the ME in
the way as discussed recently in [22, 23]. In these works, we were able to exactly derive the
I –V characteristics for the MDQDS of interest in the first Coulomb staircase region. The idea
is that at low bias voltages there are only some available states, corresponding to the honeycomb
cells immediately adjacent to the initial state (0, 0) in the stability diagram (see figure 1(b)),
and therefore, the ME comes to be solved exactly. The net current appears when the bias
voltage is high enough to create an electron transfer around a triple point associated with the
state (0, 0). Then, in general, for the n-electron cotunnelling, the threshold can be defined as
the voltage V (n)

th , below which all the n-electron cotunnellings from the state (0, 0) are blocked
and above which there appears a current through the device. The threshold voltages for STs
and 2ECTs determined in this way of using the ME are respectively presented in sections 3.1
and 3.2, where for simplicity we consider the case of zero gate voltage, Vg1 = Vg2 = 0. The
capacitances Cg1 and Cg2 can be then seen as the dot self-capacitances [24] and will be assumed
to be equal, Cg1 = Cg2 ≡ Cs . The gate effect will be in detail examined by solving the ME
numerically in the next section.

3.1. Sequential electron tunnelling threshold V (s)
th

At zero temperature, as stated above, an electron transfer is energetically favourable only if it
decreases the free energy F . Let us first consider the case of symmetrical MDQDSs when Cl =
Cr ≡ C . Assuming that at zero bias voltage the system is in the state (0, 0), a finite bias voltage
V (within the first Coulomb staircase) could cause an ST through some junction, resulting in
a transition from this state to a nearest neighbour in the stability diagram (figure 1(b)). From
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equation (3), with n = m = 0, Vg1 = Vg2 = 0, Cg1 = Cg2 = Cs , and Cl = Cr = C , we find
that for bias voltages V < Vt = e(C + Cs + Cm)/[(C + Cs)(2C + Cs + 2Cm)] all the changes
in free energy are positive, i.e., all STs from the state (0, 0) are strictly blocked. This means
that the ST threshold V (s)

th we want to find must be not lower than Vt. To identify the voltage
Vt as V (s)

th we have to show that at V � Vt there exists at least one electron transition around
a triple point of the cell (0, 0) that opens a current through the device. In reality, as can be
seen in equation (3), for bias voltages V � Vt, two quantities �F+

l (0, 0) and �F+
r (0, 0) are

negative, implying that two transitions, (0, 0) to (1, 0) and (0, 0) to (0,−1), are energetically
favourable. Further, starting from the state (1, 0), we find that �F+

r (1, 0) < 0, showing a
favour to the transition from (1, 0) to (1,−1). On the other hand, the transition from (1,−1)

back to (0, 0) is always allowed, making an entire ST around the corresponding triple point.
Thus, for V � Vt there really exists a current through the device, and therefore, Vt is just the
ST threshold voltage for the symmetrical MDQDS under study:

V (s)
th = e(C + Cm + Cs)/[(C + Cs)(2C + 2Cm + Cs)]. (11)

In the case of asymmetrical MDQDSs, using the same examining procedure as above
with a little more complexity, the ST threshold V (s)

th can be also evaluated, but only under
the following condition for device parameters (assuming Cl > Cr ):

Cm � A + {A2 + 16(Cl − Cr )(Cl + Cr + 2Cs)(Cl Cr + ClCs + Cr Cs + C2
s )}1/2

4(Cl + Cr + 2Cs)
, (12)

where A = 2C2
l − 4ClCr − 2C2

r + Cl Cs − 7Cr Cs − 2C2
s . For instance, with Cs = 0 and

Cl = 2Cr this condition simply gives Cm � Cr/2. Under the condition (12) the ST threshold
was found as

V (s)
th = e(Cr + Cm + Cs)/[2ClCr + 2ClCm + Cs(2Cl + Cr + 2Cm + Cs)]. (13)

The threshold voltage (13) turns into (11) in the particular case of symmetrical MDQDSs,
when the condition (12) becomes trivial. Furthermore, if the self-capacitance Cs is set to be
zero, the expressions (11) and (13) turn into the well-known expression [1]:

V (s)
th = min{e/2Cl, e/2Cr }. (14)

The obtained results (11) and (13) show the role of each coupling capacitance in forming the
Coulomb gap. The ST threshold is essentially defined by the largest capacitance in the device.

3.2. Two-electron cotunnelling threshold V (2)

th

The threshold voltage V (2)

th can be determined in the way similar to that used above for STs.
Certainly, one should here focus attention on only the range of bias voltages lower than V (s)

th ,
where the STs are blocked. Assuming as above that at zero bias voltage the system is in the
state (0, 0), we have found from expressions (6) that there exists the voltage Vt, below which all
the changes in free energy of equation (6) are positive, i.e., the initial state (0, 0) is stable with
respect to 2ECTs, while at V � Vt the free-energy change �F++

lr (0, 0) is negative, showing
a favour to the transition from the state (0, 0) to the state (1,−1) caused by the 2ECT event,
when one electron tunnels through the l-junction from the left and another electron tunnels
through the r -junction to the right. Moreover, as noted above, the further transition from the
state (1,−1) back to the initial state (0, 0) is always allowed, making a finite current across the
structure. The voltage Vt found in this way is thus identified as the threshold for 2ECTs:

V (2)

th = e(Cl + Cr + 2Cs)

4ClCr + 2ClCm + 2Cr Cm + Cs(3Cl + 3Cr + 4Cm + 2Cs)
. (15)
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Figure 2. I–V characteristics calculated from numerical solutions of ME, taking into account
2ECTs, for the device with parameters Cl = 1, Cm = 5, Rl = Rm = Rr = 10, Cg1 = Cg2 = 0.5
and at various gate voltages, Vg = 0 (curve 1), 1.0 (curve 2), and 1.7 (curve 3). The temperature is
zero. The I–V curves of STs for the same device at the same Vg are correspondingly presented in
the inset for a comparison.

In the particular case of symmetrical MDQDSs with Cl = Cr ≡ C , this expression comes to
have a simple form of V (2)

th = e/(2C + 2Cm + Cs), which should be compared with the ST
threshold (11). In the other particular case, when Cs = 0, the obtained 2ECT threshold voltage,
V (2)

th = e(Cl + Cr )/2(2ClCr + Cl Cm + Cr Cm), demonstrates the role of the inter-dot coupling
capacitance Cm .

The expressions (11) (or (13)) and (15), together with (1), give the threshold voltages for
all electron tunnelling processes of interest in MDQDSs under study. While the threshold V (3)

th

is already zero, the ratio between V (2)

th and V (s)
th mostly depends on the inter-dot capacitance

Cm and the self-capacitance Cs . In the case of symmetrical structures this ratio is simply
V (2)

th /V (s)
th = (C + Cs)/(C + Cs + Cm), which increases with decreasing Cm and/or increasing

Cs . The full curve of this ratio as a function of Cm is presented in figure 3, where the gate effect
is also included.

4. Numerical results and discussion

To calculate I –V characteristics for both STs and 2ECTs, taking into account the gate and
temperature effects, we have to solve the ME (9) (see the appendix for details), and then
calculate the current (10) numerically. For each sample, two currents, IS for STs alone and
IC with contributions from 2ECTs, are separately collected. In numerical calculations, for
convenience, the elementary charge e, the quantum resistance RQ ≡ h/e2, and the capacitance
Cr are chosen as basic units. The voltage, the temperature, and the current are then measured
in units of e/Cr , e2/Cr , and e2/Cr RQ, respectively.

In figure 2 we show, as an example, the I –V curves for 2ECTs of the device with
parameters given in the figure. For a comparison, the low-bias part of I –V curves of STs for
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Figure 3. The ratio V (2)
th /V (s)

th is plotted against the inter-dot capacitance Cm for the same device as
that in figure 2 and with various gate voltages: Vg = 0 (curve 1); 1.0 (curve 2); and 1.7 (curve 3).

the same device is also shown in the inset (the I –V curve of STs has been discussed in detail
in [22]). Here as well as in other figures below, for simplicity, two gate voltages are always
assumed to be equal, Vg1 = Vg2 ≡ Vg. The calculations like those in this figure have been
performed for devices with different inter-dot capacitances Cm and at different gate voltages Vg.

From the I –V characteristics obtained, by comparing two curves, of STs and 2ECTs, for
the same device and at the same Vg, we can examine how the 2ECTs are important compared to
the STs. In magnitude, the 2ECT current is always much smaller than the ST current (typically,
IC/IS ≈ 10−3). For the threshold voltage, the ratio V (2)

th /V (s)
th is sensitive to various device

parameters: in particular, to the inter-dot capacitance Cm and the gate voltage Vg.
Figure 3 shows the ratio V (2)

th /V (s)
th , plotted against Cm for three values of Vg. Certainly,

for the case of Cg = 0, curve 1 can be directly produced from expressions (11) and (15). For
any gate voltage Vg, the ratio V (2)

th /V (s)
th always decreases as Cm increases. In the limit of small

Cm the 2ECT threshold approaches the ST one, implying a relative weakness of 2ECTs. In the
opposite limit of large Cm , the threshold V (2)

th becomes much smaller than V (s)
th , which implies a

relatively important role of 2ECTs in smearing the classical Coulomb gap. Another interesting
feature observed in figure 3 is an oscillation of the ratio V (2)

th /V (s)
th as the gate voltage varies

(compare curves 1–3 with Vg = 1, 1.2 and 1.7, respectively). Such an oscillation of the ratio
V (2)

th /V (s)
th should be seen as a manifestation of a more general phenomenon: oscillation of the

conductance with respect to the gate voltage, which is clearly demonstrated in figure 4.
Actually, figure 4 shows not only the well-known oscillation of the ST conductance (two

peaks in the main figure), but also an oscillation of 2ECT conductance found in a classical
blocked region (inset). Calculations performed for devices with different parameters show
that in contrast to the ST conductance spectroscopy, for the 2ECT conductance, though the
peaks are still of almost equal height, the peak spacing distribution is very far from regular,
depending on device parameters. Another strong difference between the two conductance
spectroscopies is the peak height. For the sample analysed in figure 4 the height of 2ECT-
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Figure 4. The typical conductance spectroscopy for 2ECTs (inset) which is found in a blocked
region for STs (main figure). Note the difference in scale: the peak height for the 2ECT conductance
is much smaller than that for the ST. The 2ECT conductance peak spacing distribution is far from
regular.

conductance peaks is about in three orders of magnitude smaller than that of ST conductance
peaks. We would like here to mention that Hanna et al [6], measuring tunnelling characteristics
of a double metallic junction system, have reported on a similar value for the ratio of the two
conductances. In fact, this ratio depends on device parameters. In particular, it should decrease
with increasing tunnelling resistances. In figure 5, the ratio gC/gS is plotted against Rt for
devices with all tunnelling resistances equal, Rtl = Rtm = Rtr ≡ Rt, and with different inter-
dot capacitances Cm . Here, gC and gS respectively are typical values of the 2ECT and the ST
conductance, determined at bias voltages close to corresponding thresholds. Clearly, the ratio
gC/gS monotonically reduces as Rt becomes larger. And, interestingly, as can be seen in the
inset of the figure, for any Cm it seems that gC/gS ∝ R−γ

t , where γ is almost independent of
Cm and γ ≈ 1.

Finally, we show in figure 6 the I –V characteristics, taking into account 2ECTs, for
the same device as that discussed in figure 2, but at finite temperatures. In principle, from
equation (8) we learn that the Coulomb gap disappears, i.e., V (n)

th → 0, at any finite temperature
(curve 2 for T = 0.007 and curve 3 for T = 0.015). In practice, if the temperature is still low
enough relative to the charging energy, the current reduces very quickly with decreasing bias
voltage V and may become too small to be detected at even a finite V . For example, for
curve 2 with temperature T = 0.007 the current decreases from ≈1.4 × 10−5 at V = 0.12 to
≈3.5 × 10−12 at V = 0.06. At low biases the current is very sensitive to temperature, and the
lower the bias, the stronger the effect of temperature on the current magnitude becomes. For
STs, the finite temperature effect has been in detail discussed in [22, 25].

5. Conclusion

We have studied the tunnelling transport through an MDQDS in the regime when the
conduction is essentially dominated by the SE and the lowest-order 2ECT process. Though
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Figure 6. I–V characteristics of 2ECTs for the same device as that in figure 2, but at finite
temperatures: T = 0 (curve 1), 0.007 (curve 2), and 0.015 (curve 3); Vg = 0.

the conductance of 2ECT is much smaller than that of ST, in principle, it smears the Coulomb
gap, and therefore puts a limitation on the accuracy of single electron devices. It is important
then to adequately evaluate the 2ECT effect (compared to STs) in devices of various parameters,
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including the gate voltage. To do this, we have quantitatively examined in detail both tunnelling
processes, ST and 2ECT, using the standard ME approach.

In the simple case of zero gate voltage we were able to derive analytical expressions of two
threshold voltages, V (s)

th for ST and V (2)

th for 2ECT, with their dependence on device parameters.
The ratio V (2)

th /V (s)
th , describing the relative role of 2ECT, decreases with increasing the inter-

dot coupling capacitance Cm .
Taking into account the gate voltage Vg we have numerically solved the ME and calculated

the I –V characteristics of both ST and 2ECT for devices of various parameters. The obtained
results show that, while the ratio V (2)

th /V (s)
th still decreases with increasing Cm , it oscillates

as Vg varies. Analysing the conductance spectroscopy we found not only the well-known
oscillation of the ST conductance, but also an oscillation of the 2ECT conductance in an ST-
blocked region. In comparison with the ST conductance, 2ECT conductance peaks are much
lower in height (by about three orders of magnitude) and the peak spacing distribution is very
non-regular. The ME also allows us to calculate the I –V characteristics at finite temperature.
While, in principle, both threshold voltages should vanish at any non-zero temperature, the
2ECT current seems to be more sensitive to the temperature at lower bias.

All numerical data reported can be reproduced, using Monte Carlo simulations. Actually,
such simulations have been performed and we believe that in all cases of interest the two
methods, ME and Monte Carlo simulation, give practically the same results.
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Appendix

Taking into account both tunnelling processes, STs and 2ECTs, the ME equation reads
d

dt
p(ni , mi ) = �+

l p(ni − 1, mi) + �−
l p(ni + 1, mi ) + �+

m p(ni + 1, mi − 1)

+ �−
m p(ni − 1, mi + 1) + �+

r p(ni , mi + 1) + �−
r p(ni , mi − 1)

+ �++
lm p(ni , mi − 1) + �−−

lm p(ni , mi + 1) + �++
mr p(ni + 1, mi )

+ �−−
mr p(ni − 1, mi ) + �++

lr p(ni − 1, mi + 1) + �−−
lr p(ni + 1, mi − 1)

+ �+−
lr p(ni − 1, mi − 1) + �−+

lr p(ni + 1, mi + 1)

− [�+
l + �−

l + �+
m + �−

m + �+
r + �−

r + �++
lm + �−−

lm + �++
mr + �−−

mr

+ �++
lr + �−−

lr + �+−
lr + �−+

lr ]p(ni , mi ).

This equation can be rewritten in the matrix form

d

dt
p̂ = M̂ p̂, (16)

where p̂ is the matrix of elements pi ≡ p(ni , mi ) and the evolution matrix M̂ has diagonal
elements

M(i, i) = −�+
l (i) − �−

l (i) − �+
m (i) − �−

m (i) − �+
r (i) − �−

r (i) − �++
lm (i)

− �−−
lm (i) − �++

mr (i) − �−−
mr (i) − �++

lr (i) − �−−
lr (i) − �+−

lr (i) − �−+
lr (i)
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where, for short, �(ni , mi) is written as �(i), and non-diagonal elements

M(i, j) =





�+
l ( j) + �−−

rm ( j) if n j = ni − 1, m j = mi

�−
l ( j) + �++

mr ( j) if n j = ni + 1, m j = mi

�−
m ( j) + �−−

lr ( j) if n j = ni + 1, m j = mi − 1
�−

m ( j) + �++
lr ( j) if n j = ni − 1, m j = mi + 1

�+
r ( j) + �−−

lm ( j) if n j = ni , m j = mi + 1
�−

r ( j) + �++
lm ( j) if n j = ni , m j = mi − 1

�+−
lr ( j) if n j = ni − 1, m j = mi − 1

�−+
lr ( j) if n j = ni + 1, m j = mi + 1

where the ST and 2ECT rates are respectively defined in equation (4) or (5) and equation (7)
or (8).
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