
Malware Analysis with Symbolic Execution and
Graph Kernel

Charles-Henry Bertrand Van Ouytsel1[0000−0001−5720−6569] and Axel
Legay1[0000−0003−2287−8925]

INGI, ICTEAM, Université Catholique de Louvain,
Place Sainte Barbe 2, LG05.02,01, 1348 Louvain-La-Neuve, Belgium

{charles-henry.bertrand,axel.legay}@uclouvain.be

Abstract. Malware analysis techniques are divided into static and dy-
namic analysis. Both techniques can be bypassed by circumvention tech-
niques such as obfuscation. In a series of works, the authors have pro-
moted the use of symbolic executions combined with machine learning to
avoid such traps. Most of those works rely on natural graph-based repre-
sentations that can then be plugged into graph-based learning algorithms
such as Gspan. There are two main problems with this approach. The
first one is in the cost of computing the graph. Indeed, working with
graphs requires one to compute and representing the entire state-space
of the file under analysis. As such computation is too cumbersome, the
techniques often rely on developing strategies to compute a representa-
tive subgraph of the behaviors. Unfortunately, efficient graph-building
strategies remain weakly explored. The second problem is in the clas-
sification itself. Graph-based machine learning algorithms rely on com-
paring the biggest common structures. This sidelines small but specific
parts of the malware signature. In addition, it does not allow us to work
with efficient algorithms such as support vector machine. We propose a
new efficient open source toolchain for machine learning-based classifi-
cation. We also explore how graph-kernel techniques can be used in the
process. We focus on the 1-dimensional Weisfeiler-Lehman kernel, which
can capture local similarities between graphs. Our experimental results
show that our approach (1) outperforms existing ones by an impressive
factor, (2) is resistant to static adversarial attacks.

Keywords: Malware Analysis · Symbolic Execution · Malware Classi-
fication

1 Introduction

According to the independent IT security institute AV-Test [5], the number of
malware infections has increased significantly over the last ten years, reaching a
total of 1287.32 million in 2021. With approximately 450 000 new malware every
day, companies spend on average 2.4 millions dollars [1] on defenses against such
malicious software. For this reason, effective and automated malware detection

2 C-H. Bertrand Van Ouytsel and A. Legay

and classification is an important requirement to guarantee system safety and
user protection.

Most malware classification approaches are based on the concept of signa-
ture and signature detection. A malware signature, which is often built manually,
represents the DNA of the malware [13,18,7]. Consequently, deciding whether a
binary file contains a specific malware boils down to checking whether the sig-
nature of such malware is present in the binary. The simplest type of signature
is the syntactic signature, i.e., signatures based on syntactic properties of the
malware binaries (length, entropy, number of sections, or presence of certain
strings). Alternatively, behavioral signatures are based on the malware’s behav-
ioral properties (interaction with the system and its network communications).

Different types of signature give rise to different malware classification ap-
proaches. In static malware analysis approaches, the classification boils down
to detecting the presence of a given static signature directly in the binary
that has been disassembled. This signature often boils down to a sequence of
characters[15]. The two main advantages of this approach is that it is fast and
does not require executing the malware. On the other hand, static signatures are
very sensitive to obfuscation techniques that modify the binary code to change
its syntactic properties [22]. An illustration of those limitations is given in [7,25]
where the authors show the approach is not robust to variants of the MIRAI
malware. Other static approaches use machine learning algorithms (see [34] for
an illustration in the context of Android systems). Several works shows that
those are not resistant to adversarial examples (e.g:[32]).

Another classification approach is that of dynamic analysis, which executes
the malware and observes if its effect on the system corresponds to some behav-
ioral signature [21,38]. This approach is based on the fact that a static obfusca-
tion does not modify the behavior of the malware and therefore has no influence
on the classification of a behavioral signature. To avoid infecting the analyst’s
system and to prevent the malware from spreading, the malware is commonly
executed in a sandbox. Unfortunately, malware can implement sandbox detec-
tion techniques to determine whether they are being executed in a sandbox.
As dynamic analysis is limited to one execution, a malware can pass detection
by avoiding exhibiting malicious behavior [3]. More information on static and
dynamic malware analysis can be found in the following tutorial [7].

Aware of those limitations, several authors have proposed using some ex-
ploration techniques coming from the formal verification areas. This includes
symbolic execution [12,14,10], a technique that explores possible execution paths
of the binary without either concretizing the values of the variables or dynam-
ically executing the code. As the code exploration progresses, constraints on
symbolic variables are built and system calls tracked. A satisfiability-modulo-
theory (SMT) checker is in charge of verifying the satisfiability of the collected
symbolic constraints and thus the validity of an execution path.

The advent of symbolic execution has led to the development of a new set of
machine learning-based fully automatised malware classification methods. Those
continue and extend the trend of applying machine learning to malware classi-

Malware Analysis with Symbolic Execution and Graph Kernel 3

fication [20,35,34]. In particular, in [25] the authors have proposed combining
symbolic execution with Gspan [37], a machine learning algorithm that allows
us to detect the biggest common subgraphs between two graphs. In its training
phase, the algorithm collects binary calls via symbolic analysis. Such calls are
then connected in a System Call Dependency Graph (SCDG), that is a graph
that abstracts the flow of information between those calls. Gspan can compute
the biggest common subgraphs between malware of a given family. Those then
represent the signature for the family. In its classification phase, the approach
extracts the SCDG from the binary and compares it with each family’s signature.

Unfortunately, the above-mentioned approach has several limitations. The
first one is that it depends on the efficiency of the symbolic analysis engine. The
second one is that SCDGs are built as an abstraction of the real behavior of the
binary. In particular, the approach will connect two calls that have the same
argument even though those calls may be from different function. Such a choice,
which is motivated by efficiency reasons, may lead to a crude over-approximation
of the file’s behavior and hence to misclassification.

Relying on the biggest common subgraphs may exclude important but iso-
lated calls that are specific to the malware. In addition, using graphs poses a
particular challenge in the application of traditional data mining and machine
learning approaches that rely on vectors. To surmount those limitations, the
authors in [24] proposed using a graph kernel [23], which can be intuitively un-
derstood as a function measuring the similarity of pairs of graphs. In their work,
the authors used the approach in a non-supervised process. However, such kernel
can be plugged into a kernel machine, such as a support vector machine. Results
in [24] show that the graph kernel outperforms Gspan in terms of accuracy. Un-
fortunately, the kernel used in [24] still implicitly relies on detecting the biggest
commonalities between graphs. Individual important calls are out of its scope.

Our paper makes several contributions to improving symbolic analysis-based
malware classification. The first contribution consists in a flexible and open
source implementation of a malware analysis toolchain based on [31] (avail-
able here [6]). In addition to obtaining better performances, the flexibility of
the new implementation allows us to plug in and compare various classifica-
tion algorithms and symbolic execution strategies. In particular we develop and
compare several efficient resource-based strategies that enable us to build com-
pact but more informative SCDGs than those in [25,24]. The approach is able
to distinguish more SCDGs and hence obtain a finer grain in both training and
classification processes. Another important contribution of this paper is the com-
parison of the Weisfeiler-Lehman Kernel [30] with other classifiers. Such a graph
kernel is capable of comparing the graph’s local small structures by a ingenious
relabelling of its vertices. Finally, a major contribution of the paper is a series of
experimental results showing that our approach outperforms those in [25] and in
[24] when being used in a supervised context. We also show that our approach
outperform static approaches when facing adversarial examples.

4 C-H. Bertrand Van Ouytsel and A. Legay

2 On Graph Comparison for Malware Analysis

This section briefly introduces several notions related to graphs. It also outlines
the limits of graph-based representation in malware analysis and advantages of
graph kernels.

A graph G is defined as a pair (V,E), where V is a set of Vertices and E a
set of edges such that {{u, v} ⊆ V |u ̸= v}. The set of edges and vertices of G are
given by E(G) and V (G), respectively. We also consider labelled graphs where
a label function l : V (G) → Σ assigns a label from Σ to each vertex of G. We
use l(v) to denote the label of vertices v. A graph G’ = (V’,E’) is a subgraph of
G=(V,E) if V ′ ⊆ V and E′ ⊆ E. We are interested in applying graph comparison
to extract and compare malware signatures represented by SCDGs. In particular,
graph isomorphism is considered to be a powerful tool that allows us to detect
structural similarities between graphs that may not be identical. Two unlabelled
graphs G and H are said to be isomorphic (G ≃ H) if there exists a bijection
ϕ : V (G) → V (H) such that (u, v) ∈ E(G) if and only if (1) (ϕ(u), ϕ(v)) ∈ E(H)
(for all u, v ∈ V (G)), and (2) l(v) = l(v′) for each (v, v′) ∈ ϕ. There exists a wide
range of graph similarity measures. This includes, e.g., subgraph isomorphism
used to compute the largest common subgraph. Checking graph isomorphism is
known to be NP. Moreover, reducing the comparison of two graphs to checking
their isomorphism is known to be restrictive as it requires both graphs to have
same structure. This situation is rarely encountered when comparing (classes of)
malware. The situation is illustrated in Figure 1, where two malware from the
same family are considered to be different since Vertex SetF ilePointer cannot
be covered by an isomorophic relationship.

Graph 1

VirtualFree

CloseHandle

WriteFile

CreateFileA

VirtualAlloc

WriteFile

GetFileType

WritePrivateProfileStringA

GetModuleHandleA

GetSystemDirectoryA

IsDebuggerPresent

Graph 2

VirtualFree

CloseHandle

WriteFile

CreateFileA

VirtualAlloc
WriteFile

GetFileSize

WritePrivateProfileStringA

GetModuleHandleA

CopyFileA

IsDebuggerPresent

SetFilePointer
CopyFileA

GetSystemDirectoryA

Fig. 1: Example of non-isomorphic
graphs with high similarities

To address the problem, au-
thors in [25] proposed an ap-
proach based on Gspan. This
is a popular algorithm for fre-
quent graph-based pattern min-
ing. Given a set of graphs G and a
desired support min supp, Gspan
(whose pseudo-code is given in
Appendix A) tries to extract all
subgraphs present at least in
min supp graphs of G. If G rep-
resents a set of malware from the
same family, the set of common
subgraphs represents their signa-
tures.

Unfortunately, relying on com-
puting the biggest subgraphs may dismiss small but important connected com-
ponents that do not belong to the biggest subgraphs. The situation is illustrated
in Graph 3 of Fig. 2, where important calls such as IsDebuggerPresent may
be ignored. An inefficient solution could be to extend the number of subgraphs.
Unfortunately, when bigger graphs than in our example are involved, this ap-

Malware Analysis with Symbolic Execution and Graph Kernel 5

proach will mostly favor a variant of the biggest connected component, as we
will see in Section 4. In order to address this problem, we resort to the concept
of Graph Kernels.

2.1 Graph kernels

In machine learning, kernel methods are algorithms that allow us to compare
different data points with a particular similarity measure. Consider a set of data
points X such as Rm and let k : X ×X → R be a function. Function k is a valid
kernel onX if there exists a Hilbert spaceHk and a feature map ϕ : X → Hk such
that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for x, y ∈ X , where ⟨·, ·⟩ denotes the inner product
of Hk. It is known that ϕ exists only if k is a positive semidefinite function. A
well-known kernel is the Gaussian radial basis function (RBF) kernel on Rm,
m ∈ N, defined as:

kRBF (x, y) = exp(−∥x− y∥2

2σ2
) (1)

with σ, the bandwidth parameter. Observe that RBF kernel gives an explicit
definition of ϕ. In practice, this is not always required. Indeed, algorithms such
as Support Vectors Machine (SVM) use the data X only through inner products
between data points. Having the kernel value k(x, y) between each data point
is thus sufficient to build an SVM-based classifier. This approach is known as
the kernel trick [16]. A Gram matrix K, is defined with respect to a finite set
of point x1, .., xn ∈ X. Each element Ki,j with i, j ∈ {0, .., n} represents the
kernel value between pairs of points k(xi, xj). If the Gram Matrix K of Kernel
k is positive semi-definite for every possible set of data points, then k is a valid
kernel.

It is common for kernels to compare data points using differences between
data vectors. However, the structures of graphs are invariant to permutations
of their representations (i.e., ordering of edges/vertices does not influence struc-
ture and distance between graphs). This motivates the need to compare graphs
in ways that are permutation invariant. Moreover, to avoid strict comparison
(which would be equivalent to isomorphism), it is common to use smoother
metrics of comparison, such as convolutionnal kernels, for better generalization
capabilities. Convolutionnal kernels divide structures (i.e., graphs in our case)
into substructures (e.g., edges, subgraphs, paths, etc) and then evaluate a kernel
between each pair of such substructures.

In [24], the authors propose a similarity metric for malware behavior graphs
based on common vertices and edges. Concretely, they define a similarity σ
between two graphs G and H as:

σ(G,H) = ασvertices(G,H) + (1− α)σedges(G,H) (2)

where α is the vertice-edge factor allowing to adjust weights of vertices and
edges in the similarity function (set to 0.25 in the conclusion of their work). The

6 C-H. Bertrand Van Ouytsel and A. Legay

vertice similarity is defined as:

σvertices(G,H) =
|V(G) ∩ V(H)|

min(V(G),V(H))
(3)

and the edge similarity as:

σedges(G,H) =
|CCmax(G ∩H)|

min(|CCmax(G)|, |CCmax(H)|)
(4)

where V(G) are the set of vertices of G and CCmax(G) is the biggest connected
component of G.
While this approach adds information related to all nodes labels compared to
Gspan, it suffers from similar drawbacks than Gspan. Indeed, it focus on the
biggest connected component, neglecting edges in other connected components.
This problem is illustrated on Graph 4 of Fig. 2. One can see that the kernel
identifies similarities between nodes of Graph 1 and Graph 2. However, it ig-
nores important edge dependencies such as GetModuleHandle, CopyFileA, and
GetSystemDirectoryA.

Graph 3

VirtualFree

CloseHandleWriteFile

CreateFileA

VirtualAlloc

WriteFile

Graph 4

VirtualFree

CloseHandle

WriteFile

CreateFileA
VirtualAlloc

WriteFile

WritePrivateProfileStringA

GetModuleHandleA

IsDebuggerPresent

CopyFileA

GetSystemDirectoryA

Fig. 2: Graph 3 represents the sub-
graph extracted with Gspan from
graphs of Fig. 1. Graph 4 corre-
sponds to the extraction with the ker-
nel from [24]

To tackle this problem, a pop-
ular approach in graph kernels
is the comparison of local struc-
ture. In this approach, two ver-
tices of different graphs are con-
sidered to be similar if they share
the same labels. The two vertices
are considered to be more simi-
lar if, in addition, they share sim-
ilar neighborhoods (i.e., vertices
with the same labels). Using this
approach, Shervashidze et al. [30]
introduced graph kernels based
on the 1-dimensional Weisfeiler-
Lehman (WL). Let G and H be
graphs, and l : V (G)∪V (H) → Σ
be a function giving their vertices
labels. By several iterations i =
0, 1, ..., the 1-WL algorithm computes a new label function li : V(G)∪V (H) → Σ,
with each iteration allowing comparison of G and H. Let N(v) be the neighbor-
hood of a vertex v ∈ G in V (G), i.e., N(v) = {u ∈ V (G)|(v, u) ∈ E(G)}. In the
first iteration, l0 = l, and in subsequent iterations,

li(v) = relabel(li−1(v), sort(li−1(u)|u ∈ N(v))) (5)

with v ∈ V (G) ∪ V (H), sort(S) returning a sorted tuple of S and function
relabel(p) maps the pair p to a unique value in Σ which is not already used
in previous iterations. When the cardinality of li equals the cardinality of li−1,

Malware Analysis with Symbolic Execution and Graph Kernel 7

the algorithm stops. The idea of the WL sub-tree kernel is to compute the
previous function for h ≥ 0 and after each iteration i to compute a feature
vector ϕi(G) ∈ R|Σi| for each graph G, where Σi ⊆ Σ denotes the image of li.
Each component ϕi(G)σi

j
counts the number of appearances of vertices labelled

with σi
j ∈ Σi. The overall feature vector ϕ

WL(G) is defined as the concatenation
of the feature vectors of all h iterations, i.e.,

ϕWL(G) = (ϕ0(G)σ0
1
, ..., ϕ0(G)σ0

|Σ0|
, ϕh(G)σh

1
, ..., ϕh(G)σh

|Σh
|) (6)

Finally, to compute similarity between two different feature vectors, we apply
the following formula:

kWL(G,G′) =
∑

ϕ∈ϕWL(G)

∑
ϕ′∈ϕWL(G′)

δ(ϕ, ϕ′) (7)

where δ is the Dirac kernel, that is, it is 1 when its arguments are equals and
0 otherwise. The more labels the two graphs have in common, the higher this
kernel value will be. Compared with Gspan and the kernel from [24], this kernel
also targets similarities related to all nodes and edges of the biggest subgraph
but also local similarities. This is illustrated in Fig. 3, where dependencies be-
tween GetModuleHandle, CopyFileA, and GetSystemDirectoryA are kept in the
learning process.

Weisfeiler-Lehman

VirtualFree

CloseHandleWriteFile CreateFileA

VirtualAlloc
WriteFile

WritePrivateProfileStringA GetModuleHandleA

IsDebuggerPresent

CopyFileA

GetSystemDirectoryA

Simple kernel

VirtualFree

CloseHandleWriteFile
CreateFileA

VirtualAllocWriteFile

WritePrivateProfileStringA
GetModuleHandleA

IsDebuggerPresent

CopyFileA

GetSystemDirectoryA

Fig. 3: The figure shows that, contrary to Simple Kernel, the Weisfeiler-Lehman
kernel captures all common edges between the graphs of Figure 1

3 Approach: Symbolic execution + Machine Learning for
Malware analysis

We propose an open source toolchain for malware analysis that is based on
machine learning and SCDGs (available here [6]). The toolchain relies on the
following important components: the first component consists in collecting and

8 C-H. Bertrand Van Ouytsel and A. Legay

labelling a series of binaries from different malware families. Then, angr [31],
a python framework for symbolic execution, is used to execute those files. The
result is used to extract a SCDG for each such binary. One of the contributions
of this paper will be to improve and adapt the symbolic engine to malware anal-
ysis as well as the construction of SCDGs. Those SCDGs are then used to train
machine learning algorithms. If Gspan is used, the training will result in com-
mon subgraphs to represent signatures for each family. If SVM is used, a Gram
matrix between all the malware programs is created. Finally, the toolchain also
contains supervised classifiers. If Gspan is used, the SCDG of the new malware
is compared with those of the signature of each family and the classifier retains
the one with the closest distance. If SVM is used, a Gram matrix is created
between all trained malware and the new malware. This matrix is then used in
the SVM classification process. A main contribution of this paper is to compare
those two types of classification.

3.1 Extraction of calls

The construction of the SCDG is based on Symbolic Execution. This approach
envisages the exploration of all the possible execution paths of the binary without
either concretizing the values of the variables or dynamically executing the code
(i.e., the binary is analyzed statically). Instead, all the values are represented
symbolically. As the code exploration progresses, constraints on symbolic vari-
ables are built and system calls tracked. A satisfiability-modulo-theory (SMT)
checker is in charge of verifying the satisfiability of the collected symbolic con-
straints and thus the validity of an execution path. A wide range of tools and
techniques have been developed for efficient symbolic execution analysis. Most
of those techniques agree on the fact that symbolic execution still suffers from
state-space-explosion and, consequently, only a finite set of symbolic paths can
be explored in a reasonable amount of time. This is particularly the case with
malware analysis where the classification process must be done with very lim-
ited resources. As the calls that form the SCDG are collected directly from those
symbolic paths, the choice of which paths to follow will have an impact on the
machine learning process.In a recent work, authors showed how SMT solving
could impact performances [28,8,11]. In this paper, we focus on path selection
strategies. The work in [25] implements a Breadth-First Search (BFS) approach,
that is, at each execution step all ongoing paths are explored simultaneously.
This approach leads to an important growth of states and memory usage. As we
have limited resources, we propose to explore one subset of paths at a time. We
prioritize states from which one can explore new assembly instruction addresses
of the program. Our Custom Breadth-First Search Strategy (CBFS-Strategy)
is presented in Algorithm 1. The algorithm begins by taking L states for explo-
ration from the set of available states and putting them in the list R of states
to explore next (line 4). It then iterates among all other available states. If it
finds a state leading to an unexplored part of the code or with a shorter path of
execution (line 6), it puts it in R and takes out a state with a lower priority (i.e:
state not leading to a new instruction or state with a longer depth). After going

Malware Analysis with Symbolic Execution and Graph Kernel 9

through each state, it returns R to allow angr to perform a new execution step on
R’ states. In addition to BFS-Strategy, we also implemented a Custom Depth-
First Search Strategy (CDFS-Stategy), which is presented in Algorithm 2 (the
main difference with CBFS-Strategy being the condition to select successor state
at Line 6). Observe that symbolic execution with this coverage heuristic is not
new. However, the implementation and evaluation of restricted versions within
a tool for malware classification are.

Algorithm 1 CBFS exploration

1: Inputs: A set of states: S
2: Limit of states: L
3: Outputs: A set of L states: R
4: R← S[: L]
5: for state s ∈ S do
6: if new(s.next ip)|{∃state ∈

R|s.depth <
state.depth & !new(state.next ip)}
then

7: Remove state from R
8: Add s to R
9: Return R

Algorithm 2 CDFS exploration

1: Inputs: A set of states: S
2: Limit of states: L
3: Outputs: A set of L states: R
4: R← S[: L]
5: for state s ∈ S do
6: if new(s.next ip)|{∃state ∈

R|s.depth >
state.depth & !new(state.next ip)}
then

7: Remove state from R
8: Add s to R
9: Return R

Another important challenge in symbolic execution is that of handling loops.
Indeed, the condition of such loops may be symbolic. In addition, the loop
may create an infinite repetitive behavior. In those situations, deciding between
staying in the loop or exiting the loop remains a tricky choice that has been
the subject of several works focusing on the possibilities, which include Loop-
extended Symbolic Execution [26], Read-Write set [9], and bit-precise symbolic
mapping [36]. As those approaches may be too time-consuming, we propose to
reuse two intermediary heuristics from [25]. The first one applies to loops whose
condition contains a symbolic value. Such loops may give rise to two states at
each iteration: one that exits the loop for those symbolic values that exceed
the condition and one that remains within the loop for other values, with this
last state being used again to iterate on the loop. We chose to stop such itera-
tion after four steps. For loops that do not contain symbolic values, since such
loop may still lead to an unbounded number of behaviors, our approach consists
in limiting the execution to a finite, arbitrary fixed, number of steps and then
forcing the execution to exit the loop.

3.2 Creating SCDGs

Symbolic execution allows us to obtain several paths representing executions
of a given binary. Our next step is to collect the sets of calls present on each
such path as well as their addresses and arguments. Those are used to build the
SCDG corresponding to this binary. Following [25], SCDGs are graphs where
each vertex is labelled with the name of a system call; and the edges correspond
to (an abstraction of) information flow between these calls. Concretely, each

10 C-H. Bertrand Van Ouytsel and A. Legay

SCDG is built from the symbolic representation by merging and linking calls
from one or more symbolic paths. Their construction could be influenced by
applying different SCDG-Strategies.

Consider first the creation of a graph execution from one symbolic path.
We consider three types of edge. In the first one, two calls are linked if they
both share an argument with identical value (i.e: one-edge strategy). This is,
for example, the case of two calls with the same file handler. The second link
is established between two calls that both have an argument with the same
symbolic value. An example is a symbolic file size returned by a call and passed
to a second call added to another value. In addition, we consider that two calls
can be linked if an argument of the first call is the calling address of the second
one. This situation typically arises in dynamic loading of a library. We also
label each edge with the index of the argument in both calls (return value of
a call is given index 0). The three-edges strategy is called SCDG-Strategy
1 and the one-edge strategy is called SCDG-Strategy 2. Our experiments
shows that SCDG-Strategy 2 loses important dependency between calls and
leads to more isolated nodes in SCDGs. Indeed, this strategy suffers from two
types of problem. First, symbolic values may be modified before being passed to
another call. Second, some calls used by obfuscation techniques exhibit address-
arguments links. A typical example is given by GetProcAddress, used to hide
real content of the import table of PE files.

An example of an SCDG is given in Fig. 4 with SCDG-Strategy 1 and
SCDG-Strategy 2. The program first calls CreateFile, which returns a handle
to the file with the specified filename. A vertex is thus constructed for CreateFile.
Then, a call to SetFilePointer on the preceding file handle occurs. This leads to
the creation of a new vertex (SetFilePointer). Since the returned argument of
CreateFile (index 0) is the same as the first argument of SetFilePointer (index
1), an edge is added between them. Vertices ReadFile and WriteFile are created
and linked following similar principles.

0->1

CreateFileA

SetFilePointer

WriteFile

1->1

0->1

2->2
ReadFile

GetProcAddress(lib,"CreateFileA")
HANDLE = CreateFileA('out.txt')
SetFilePointer(HANDLE, 120)
SIZE = GetFileSize("/etc/passwd")
ReadFile("/etc/passwd",buffer)
WriteFile(HANDLE,buffer,SIZE+128)

0->addr

GetProcAdress

0->1

CreateFileA

SetFilePointer

WriteFile

1->1

0->1

2->2

ReadFile

GetProcAdress

1->1
0->3

GetFileSize

1->1

GetFileSize

SCDG-Strategy 1 SCDG-Strategy 2

Fig. 4: Illustration of a SCDG built with SCDG-Strategy 1 and SCDG-
Strategy 2

Malware Analysis with Symbolic Execution and Graph Kernel 11

There are situations where different calls in the same execution share the
same API name and occur at the same instruction address but with distinct
arguments. One may decide to merge the two calls into one single vertex. In
this case, we conserve the set of arguments of the first call observed in the
execution. This merge incurs a loss of precision but leads to a more compact
SCDG representation [28]. This may be of importance when one has to train the
system with a large number of different types of malware. This merging strategy
is called SCDG-Strategy 3. Merging calls gives different advantages. First, it
decreases the size of the SCDG, which may lead to better classification/detection
performances. In addition, it may reduce the impact of some calls in the learning
phase. An example is given with the wabot malware, which uses a hundred of
calls to WriteFile during its execution. If not merged, those calls that are not
part of the main actions of the malware will constitute an important part of the
signature. This may have a negative impact on the training phase. On the other
hand, there are situations where SCDG-Strategy 3 merges calls with different
goals. This situation may result in losing part of the malware behavior.

The above strategies apply to single symbolic paths only. When several sym-
bolic paths are considered, one can decide to produce an SCDG that is com-
posed of the disjoint union of such executions. Such a strategy is referred to as
SCDG-Strategy 5. On the other hand, SCDG-Strategy 4 consists in merg-
ing successive executions from different symbolic paths. SCDG-Strategy 5 is
simplier to compute, but SCDG-Strategy 5 gives smaller graphs. According
to our experimental results, SCDG-Strategy 4 may speed up the computation
time by an exponential factor for families with high symbolic execution numbers.

3.3 Creating a classification model and evaluate new samples

The toolchain uses SCDGs to train a classifier which is used to detect and classify
malware. We have implemented two classifiers. One implementation is based on
Gspan and follows the idea from [25]. Another one implements the graph kernel
from [24] and the Weisfeiler-Lehman extension we outlined in Section 2.

The classifier that uses Gspan implementation works by extracting signatures
from malware families. We obtain the signature of each family by computing
the biggest subgraphs between the SCDG of each malware. In the classification
phase, we compare the SCDG of new binary with those of each signature. The
file belongs to the malware family whose graph is the closest to the binary’s.

For the case of graph kernel, the training phase consists in computing the fea-
ture vector that corresponds to applying the algorithm in [24] or the Weisfeiler-
Lehman extension to each malware of the family. As explained in the background
section, the algorithm produces a Gram matrix between all those vectors. This
matrix represents an implicit version of the kernel. A support vector machine can
then exploit this implicit representation. In the classification phase, we compute
a Gram matrix between the feature vector of the binary under classification and
the vectors of all malware used in the training set. Observe that, contrary to the
Gspan approach, graph kernel does not require us to produce an explicit and
hence all-encompassing representation of the signature of each family.

12 C-H. Bertrand Van Ouytsel and A. Legay

4 Experimental Results

This section describes the methodology used to assess our toolchain’s perfor-
mance in both extracting SCDGs and classifying new binaries. Our evaluation
set was composed of 1874 malware divided into 15 families plus 150 cleanware
samples. The data set’s exact composition is given in Table 1. In terms of ori-
gins, 64 percent of the samples were obtained thanks to a direct collaboration
with Cisco. The remaining 36 percent were extracted from MalwareBazaar [2].
Samples were labelled using AVClass [27], a python tool to label malware sam-
ples. This tool is fed with VirusTotal reports and outputs the most likely family
of each sample. To evaluate detection performance, we used 150 open source
programs found online [33]. To show the relevance of approach, we also compare
our classifier performance with a SVM classifier trained on Ember [4] static fea-
tures. Those features are known to be representative features for existing static
machine learning approach. We then demonstrate how easily it could be fooled
with adversarial examples generated with framework such as MAB-malware [32].

Family #samples Family # samples

bancteain 91 remcosRAT 476
delf 78 sfone 32
fickerstealer 44 sillyp2p 269
gandcrab 92 simbot 126
ircbot 36 sodinokibi 75
lamer 61 sytro 115
nitol 71 wabot 134
redlinestealer 35 cleanware 150

Table 1: Composition of the dataset

In the rest of the section,
all experiments were performed
on a desktop PC with an In-
tel Core i7-8665U CPU (1.90GHz
x 8) and 16GB RAM running
Ubuntu 18.04.5. Our experimen-
tal results relied on our ability to
extract SCDGs efficiently. In all
experiments, we used a timeout of
ten minutes for each SCDG. Note
that 20 percent of the SCDGs
were computed in time while 80
percent never computed entirely. For the case of BFS-Strategy, we used the same
parameters as in [28] (loop threshold of 4, unlimited number of states to explore,
z3 optimization enabled). However, for CDFS-Strategy and CBFS-Strategy we
imposed a limit of 10 states that could be explored simultaneously. All metrics
for multi-class classification are weighted average.

Environment modelling Proper environment modelling is a major challenge
in developing efficient symbolic execution techniques. Indeed, when we apply
symbolic execution we avoid exploring/executing API call code. Since performing
such an operation would drastically increase the computation time [19]. In angr,
when a call to an external library occurs, the call is hooked to a simulated
procedure called simprocedures that will produce the symbolic outputs for the
function. A simple but crude implementation of such procedure is to assume that
the external function returns a symbolic value without any constraint. In such
a case, simprocedures simply returns symbolic values covering the full range
of outputs given in the specification. In practice, such a solution gives good
results in 26 percent of the analyzed families. However, this solution may generate
outputs that are not defined in the specification. In addition, it ignores many

Malware Analysis with Symbolic Execution and Graph Kernel 13

potential effects of the call, which include the modifications of input parameters
or the number of its arguments. This may lead to incoherent executions if those
parameters impact the rest of the execution (e.g.: in branch choices). We propose
several improvements to fix those issues. The first one consists in restricting
the ranges of outputs to those given in the specification. As an example, if the
output is an integer variable that can take only four values, simprocedures would
generate those values instead of the full range of integers. Another one concerns
the case where an execution is blocked because modifications of some arguments
by the external call are not performed. This happens in situations where the
external call may modify some of its inputs or even some environment variables.
In such case, we emulate several potential modifications with concrete values.
Observe that this improvement work must be performed for each call in our
dataset that causes problems. That is why, we have constituted a simprocedures
library that is constantly enriched with experiments and calls.

We first apply Gspan to SCDGs obtained with combinations of different
strategies. Signatures are obtained by sampling randomly 30% of the SCDGs of
each family; those SCDGs constitute the training set. Other SCDGs are then
classified to assess the quality of those signatures; those SCDGs constitute the
test set. This process is repeated three times and performance is averaged.

SCDG-strategy BFS-Strategy CBFS-Strategy CDFS-Strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.685 0.566 0.619 0.721 0.604 0.657 0.652 0.609 0.629

x x x 0.623 0.552 0.585 0.674 0.568 0.616 0.61 0.587 0.5983

x x 0.683 0.589 0.632 0.698 0.555 0.619 0.669 0.597 0.631

x x 0.609 0.534 0.569 0.651 0.534 0.586 0.629 0.54 0.581

x x x 0.684 0.651 0.667 0.736 0.655 0.693 0.693 0.639 0.664

x x x 0.614 0.594 0.614 0.686 0.615 0.648 0.645 0.586 0.614

x x 0.679 0.587 0.629 0.623 0.465 0.532 0.68 0.597 0.636

x x 0.602 0.556 0.578 0.587 0.448 0.508 0.632 0.578 0.603

Table 2: Results of Gspan classifier with different exploration strategies

In Table 2, we observe that CDFS-Strategy generally outperforms CBFS-
Strategy and BFS-Strategy. By inspecting the results, we observed that
BFS-Strategy ran out of memory for 7 percent of the binaries, thus reduc-
ing its performance compared to CBFS-Strategy. While SCDG-strategy 4
showed improvements with SCDG-strategy 5, it should be noted that SCDG-
strategy 5 entails significant overhead in SCDG building (up to 100 times
slower) and signature size (5 times bigger on average). In general, the best perfor-
mances were obtained by combining SCDG-strategy {2,3,4}. Upon inspecting
best classifier in Fig. 6, we see a lot of confusion between different classes. This
can be explain by plotting similarities between signatures built with Gspan,
as illustrated in Fig. 5. There, different signatures share important similarities,
leading to confusion between different malware families, as illustrated in Fig. 6.

14 C-H. Bertrand Van Ouytsel and A. Legay

This problem is directly linked to a problem exposed in Section 2, that is, Gspan
focus on the biggest subgraph while neglecting other components.

Re
m

co
sR

AT

Ni
to

l

Re
dL

in
eS

te
al

er

W
ab

ot

So
di

no
ki

bi

Irc
bo

t

La
m

er

Sf
on

e

Ga
nd

cr
ab

Sy
tro

Ba
nc

te
ia

n

Si
m

bo
t

De
lf

Fe
ak

er
St

ea
le

r

Si
lly

p2
p

RemcosRAT

Nitol

RedLineStealer

Wabot

Sodinokibi

Ircbot

Lamer

Sfone

Gandcrab

Sytro

Bancteian

Simbot

Delf

FeakerStealer

Sillyp2p

1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.33 0.0 0.33 0.67 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 1.0 0.06 0.0 0.0 0.44 0.0 0.06 0.89 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.06 1.0 0.06 0.0 0.05 0.0 0.0 0.04 0.0 0.33

0.0 0.0 0.0 0.0 0.0 0.0 0.06 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.33 0.0 0.0 0.0 0.0 0.44 0.05 0.0 0.0 1.0 0.0 0.05 0.45 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.33 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.05 0.0 1.0 0.04 0.0 0.0

0.67 0.0 0.0 0.0 0.0 0.89 0.04 0.0 0.0 0.45 0.0 0.04 1.0 0.0 0.0

0.0 0.0 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.17 0.0 0.0 0.33 0.17 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Similarity matrix be-
tween signatures obtained with
Gspan

W
ab

ot

Irc
bo

t

Si
m

bo
t

Re
dL

in
eS

te
al

er

Sf
on

e

Ba
nc

te
ai

n

La
m

er

Ga
nd

cr
ab De
lf

Ni
to

l

Fe
ak

er
St

ea
le

r

Re
m

co
sR

AT

So
di

no
ki

bi

Si
lly

p2
p

Sy
tro

Predicted label

RemcosRAT

Nitol

RedLineStealer

Wabot

Sodinokibi

Ircbot

Lamer

Sfone

Gandcrab

Sytro

Bancteian

Simbot

Delf

FeakerStealer

Sillyp2p

Tr
ue

 la
be

l

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 5 0 0 2

0 0 29 0 0 0 0 0 0 0 0 3 0 0 0

0 0 0 2 0 0 0 4 0 0 4 0 0 0 0

0 0 0 0 7 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 10 0 13 0 0 0 0 0 0 0

0 4 0 0 0 0 35 0 0 0 0 4 0 0 0

0 0 0 2 0 0 0 16 0 0 5 0 0 0 0

0 5 0 1 0 0 0 0 5 4 0 3 0 0 0

0 0 0 0 0 0 0 1 0 17 0 0 0 0 0

0 2 0 1 0 2 0 10 0 0 6 1 0 0 0

0 34 0 1 0 0 0 16 9 0 7 45 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 12 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 60 0

0 7 0 0 0 0 0 0 0 0 0 4 0 0 9

Fig. 6: Confusion matrix
obtained for Gspan with
CBFS-strategy and SCDG-
strategy {2,3,4}.

We now turn to applying kernel from [24]. Table 3 shows that overall perfor-
mance increased compared with Gspan. Moreover,CBFS-Strategy andCDFS-
Strategy outperformed both BFS-Strategy and SCDG-strategy {2,3,4}
strategies appeared to be more efficient. However, Fig. 7 shows that several fam-
ilies were still indistinguishable.

SCDG-strategy BFS-Strategy CBFS-Strategy CDFS-Strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.754 0.691 0.721 0.845 0.812 0.828 0.833 0.787 0.8093

x x x 0.728 0.673 0.699 0.785 0.736 0.759 0.77 0.714 0.741

x x 0.742 0.71 0.725 0.827 0.778 0.801 0.82 0.754 0.786

x x 0.711 0.649 0.678 0.771 0.703 0.735 0.74 0.698 0.718

x x x 0.769 0.723 0.745 0.851 0.826 0.838 0.847 0.813 0.829

x x x 0.738 0.645 0.688 0.813 0.752 0.781 0.802 0.738 0.768

x x 0.747 0.632 0.684 0.798 0.747 0.771 0.835 0.772 0.802

x x 0.714 0.654 0.682 0.781 0.733 0.756 0.763 0.718 0.739

Table 3: Results of SVM classifier and kernel from [24] with different exploration
strategies

Malware Analysis with Symbolic Execution and Graph Kernel 15

W
ab

ot

Irc
bo

t

Si
m

bo
t

Re
dL

in
eS

te
al

er

Sf
on

e

Ba
nc

te
ai

n

La
m

er

Ga
nd

cr
ab De
lf

Ni
to

l

Fe
ak

er
St

ea
le

r

Re
m

co
sR

AT

So
di

no
ki

bi

Si
lly

p2
p

Sy
tro

Predicted label

Wabot

Ircbot

Simbot

RedLineStealer

Sfone

Bancteain

Lamer

Gandcrab

Delf

Nitol

FeakerStealer

RemcosRAT

Sodinokibi

Sillyp2p

Sytro

Tr
ue

 la
be

l

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 11 0 0 0 0 0 0 0 0 0 0 4 0 16

2 0 18 2 0 0 0 8 0 0 0 0 0 0 4

0 0 2 28 0 0 0 1 0 0 0 0 1 0 3

0 0 0 0 1 0 0 0 0 0 0 0 3 0 12

0 0 0 0 0 54 0 0 0 0 0 0 2 0 12

0 0 0 0 0 0 26 0 0 0 0 0 0 0 2

0 0 6 0 0 0 0 7 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 11 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 104 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 38 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 17 0 0 3

0 2 0 0 3 0 0 0 0 0 0 0 22 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 54 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 176

Fig. 7: Confusion matrix ob-
tained for SVM classifier
and kernel from [24] with
CBFS-strategy and SCDG-
strategy {2,3,4}

W
ab

ot

Irc
bo

t

Si
m

bo
t

Re
dL

in
eS

te
al

er

Sf
on

e

Ba
nc

te
ai

n

La
m

er

Ga
nd

cr
ab De
lf

Ni
to

l

Fe
ak

er
St

ea
le

r

Re
m

co
sR

AT

So
di

no
ki

bi

Si
lly

p2
p

Sy
tro

Predicted label

Wabot

Ircbot

Simbot

RedLineStealer

Sfone

Bancteain

Lamer

Gandcrab

Delf

Nitol

FeakerStealer

RemcosRAT

Sodinokibi

Sillyp2p

Sytro

Tr
ue

 la
be

l

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 18 0 0 0 0 0 0 0 0 0 0 0 0 21

1 0 35 1 0 1 0 0 0 0 0 0 0 0 0

0 0 4 33 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 11 2 0 0 0 0 0 0 0 0 2

0 0 0 0 0 81 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 28 0 0 0 0 0 0 0 0

0 0 5 2 0 0 0 7 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 12 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 108 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 51 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 9 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 29 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 54 0

0 0 5 0 0 1 0 0 0 0 0 0 0 0 173

Fig. 8: Confusion matrix ob-
tained for WL kernel with
CDFS-strategy and SCDG-
strategy {1,4}.

Weisfeiler-Lehman kernel (WL). Finally, we investigated the SVM classi-
fier with the WL kernel. The results in Table 4 clearly outperformed the oth-
ers, reaching an F1-score of 0.929 with CDFS-Strategy and SCDG-strategy
{1,3,4}. Families were better distinguished, as illustrated in Fig. 8. Those re-
sults confirm our supposition of Section 2: taking advantage of an SCDG’s local
structure increases the efficiency of machine learning in malware classification.

Adversarial Examples. Contrary to a static approach, our observed classifiers
are resistant to adversarial examples based on static features. This is illustrated
in Table 5 where we show that the MAB-malware adversarial framework [32]
can easily mutated and corrupt Ember features [4] used in most of static classi-
fiers. This fact highlights that, although offering good performance, those static
classifiers are highly vulnerable and there is a need to develop new approaches.

Training time. In general, WL kernel outperforms Gspan by a factor of 15
and Kernel in [24] by a factor of 10 000. We suspect that the overhead is due
to the extensive use of pairwise graph mining in the similarity metric presented
in Section 2. Compare to the Kernel in [24], Gspan reduces these number of
computation since it first create a signature for each family before comparing
those signature with the binary to classify.

These experiments permit to draw several conclusions. First, SCDG-strategy
1 gives overall better results than SCDG-strategy 2 with WL kernel. That is
not the case for the other classifier where these information seems to lead to
overfitting and SCDG-strategy 2 should be preferred. Moreover, the impact
of SCDG-strategy 3 varies. While it improves classification for kernels that

16 C-H. Bertrand Van Ouytsel and A. Legay

SCDG-strategy BFS-Strategy CBFS-Strategy CDFS-Strategy

1 2 3 4 5 Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

x x x 0.852 0.847 0.846 0.865 0.864 0.852 0.936 0.931 0.929

x x x 0.832 0.824 0.827 0.85 0.842 0.846 0.915 0.91 0.912

x x 0.895 0.891 0.892 0.894 0.881 0.874 0.937 0.933 0.929

x x 0.847 0.836 0.841 0.86 0.851 0.855 0.918 0.911 0.914

x x x 0.86 0.855 0.857 0.897 0.879 0.867 0.929 0.925 0.924

x x x 0.812 0.795 0.803 0.867 0.862 0.864 0.885 0.877 0.881

x x 0.895 0.891 0.891 0.895 0.891 0.886 0.939 0.933 0.929

x x 0.834 0.828 0.831 0.862 0.858 0.859 0.891 0.887 0.888

Table 4: Results of SVM and WL kernel with different exploration strategies

Model
Initial dataset Mutated dataset
Precision Recall F1-score Precision Recall F1-score

Gspan 0.911 0.914 0.911 0.911 0.914 0.911
SVM kernel from [24] 0.965 0.95 0.957 0.965 0.95 0.957
SVM Weisfeiler-Lehman 0.989 0.975 0.981 0.989 0.975 0.981

SVM Ember features 0.964 0.965 0.964 0.763 0.564 0.502

Table 5: Comparison in the context of adversarial examples (mutated dataset)

are based on the biggest common subgraph, its impact when combined with
other strategies varies. Finally, while SCDG-strategy 5 leads to a consider-
able overhead, it does not improve performance of any classifier. On the other
hand, SCDG-strategy 4 leads to more compact signatures, better computation
times and good classification performances. Regarding exploration strategies,
BFS-strategy is generally outperformed by CBFS-strategy while CDFS-
strategy outperforms other strategies when used with the WL graph kernel.

5 Future Work

We propose a new efficient approach for malware detection. Directions for future
work includes new exploration heuristics, such as concolic executions [29] or
smart sampling [17]. Another objective is to apply our kernel in a non-supervised
approach like in [24]. We are also interested in implementing a distributed
version of the toolchain. In this context, the federated learning paradigm should
allow us to combine information from different contributors. We also plan to
investigate resistance to adversarial examples based on semantical modifications
of malware. In addition, we will continue to improve our toolchain with new
simprocedure and plugin interfaces.

Acknowledgments. Charles-Henry Bertrand Van Ouytsel is an FRIA grantee
of the Belgian Fund for Scientific Research (FNRS-F.R.S.). We would like to
thank Cisco for their malware feed, VirusTotal for their API and the CyberEx-
cellence project funded by the Walloon Region under convention 2110186.

Malware Analysis with Symbolic Execution and Graph Kernel 17

A Gspan algorithm

The Gspan algorithm is presented hereunder in Algorithm 3. Given a dataset of
graphs G and a desired support min supp, Gspan tries to extract all subgraphs
present at least in min supp graphs of G. If G represents a set of malware
from the same family, the output set of common subgraphs S represents their
signatures. To this purpose, Gspan defines a DFS Code of a graph G as an
ordered edge sequence constructed from a DFS exploration of G. Original Gspan
paper [37] defines a way to order these DFS codes, allowing to define a unique
minimum DFS code for a graph G (min(.) function in Algorithm 3). Given a
DFS code s, c is called a child of s if it expands s with a new edge to create a
valid DFS code.

Algorithm 3 Gspan algorithm

1: In: A set of graphs:G
2: Out: A set of common subgraphs S
3: Sort labels in G by their frequency
4: Remove infrequent vertices/labels
5: Relabel remaining vertices and edges
6: S1 ← all frequent 1-edge graphs in

G
7: Sort S1 in lexicographical order
8: S← S1

9: for each edge e ∈ S1 do
10: initialize s with e
11: Subgraph mining(G ,S, s)
12: D← D− e
13: if |G| < min supp then
14: break
15: Return S

Algorithm 4 Main procedure
Subgrap mining of Gspan algo-
rithm

1: if s ̸= min(s) then
2: return;

3: S← S ∪ {s}
4: enumerates s in each graph in G
5: and count its children;
6: for each c; c is a child of s do
7: if support(c) ≥ min supp then
8: s ← c
9: Subgraph mining(G ,S, s)

References

1. Eighth Annual Cost of Cybercrime Study. https://www.accenture.com/us-en/
insights/security/eighth-annual-cost-cybercrime-study, accessed: 2021-10-29

2. MalwareBazaar by abuse.ch, fighting malware and botnets. https://bazaar.abuse.
ch/, accessed: 2021-10-29

3. Afianian, A., Niksefat, S., Sadeghiyan, B., Baptiste, D.: Malware dynamic analysis
evasion techniques: A survey. ACM Computing Surveys (CSUR) 52(6), 1–28 (2019)

4. Anderson, H.S., Roth, P.: Ember: an open dataset for training static PE malware
machine learning models. arXiv preprint arXiv:1804.04637 (2018)

5. AV-Test: AV-Test, the independent IT-Security institute (2021), https://www.
av-test.org/en/statistics/malware/

6. Bertrand Van Ouytsel, C.H., Crochet, C., Dam, K., Legay, A.: SEMA : a toolchain
using Symbolic Execution for Malware Analysis. To appear in 17th International
Conference on Risks and Security of Internet and Systems (CRiSIS) (2022)

https://www.accenture.com/us-en/insights/security/eighth-annual-cost-cybercrime-study
https://www.accenture.com/us-en/insights/security/eighth-annual-cost-cybercrime-study
https://bazaar.abuse.ch/
https://bazaar.abuse.ch/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

18 C-H. Bertrand Van Ouytsel and A. Legay

7. Biondi, F., Given-Wilson, T., Legay, A., Puodzius, C., Quilbeuf, J.: Tutorial: An
overview of malware detection and evasion techniques. In: International Sympo-
sium on Leveraging Applications of Formal Methods. pp. 565–586. Springer (2018)

8. Biondi, F., Josse, S., Legay, A., Sirvent, T.: Effectiveness of synthesis in concolic
deobfuscation. Computers & Security 70, 500–515 (2017)

9. Boonstoppel, P., Cadar, C., Engler, D.: RWset: Attacking path explosion in
constraint-based test generation. In: International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS). pp. 351–366.
Springer (2008)

10. Cadar, C., Ganesh, V., Sasnauskas, R., Sen, K.: Symbolic execution and constraint
solving (dagstuhl seminar 14442). Dagstuhl Reports 4(10), 98–114 (2014)

11. Chen, Z., Chen, Z., Shuai, Z., Zhang, G., Pan, W., Zhang, Y., Wang, J.: Synthesize
solving strategy for symbolic execution. In: Cadar, C., Zhang, X. (eds.) ISSTA. pp.
348–360. ACM (2021)

12. David, R., Bardin, S., Ta, T.D., Mounier, L., Feist, J., Potet, M.L., Marion, J.Y.:
Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis. In: 2016
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER). vol. 1, pp. 653–656. IEEE (2016)

13. Faruki, P., Laxmi, V., Bharmal, A., Gaur, M.S., Ganmoor, V.: Androsimilar: Ro-
bust signature for detecting variants of android malware. Journal of Information
Security and Applications 22, 66–80 (2015)

14. Godefroid, P.: Test generation using symbolic execution. In: IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2012). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

15. Griffin, K., Schneider, S., Hu, X., Chiueh, T.c.: Automatic generation of string
signatures for malware detection. In: International workshop on recent advances
in intrusion detection. pp. 101–120. Springer (2009)

16. Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26(3),
1–16 (2006)

17. Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: International Conference on Computer Aided Verifi-
cation. pp. 576–591. Springer (2013)

18. Kirat, D., Vigna, G.: Malgene: Automatic extraction of malware analysis evasion
signature. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. pp. 769–780 (2015)

19. Lin, Y.: Symbolic Execution with Over-approximation. Ph.D. thesis, University of
Melbourne, Parkville, Victoria, Australia (2017)

20. Macedo, H.D., Touili, T.: Mining malware specifications through static reachability
analysis. In: European Symposium on Research in Computer Security. pp. 517–535.
Springer (2013)

21. Massicotte, F., Couture, M., Normandin, H., Michaud, F.: A testing model for
dynamic malware analysis systems. In: 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation (ICST). pp. 826–833. IEEE (2012)

22. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-third annual computer security applications conference (ACSAC). pp.
421–430. IEEE (2007)

23. Nikolentzos, G., Vazirgiannis, M.: Learning structural node representations using
graph kernels. IEEE transactions on knowledge and data engineering 33(5), 2045–
2056 (2019)

Malware Analysis with Symbolic Execution and Graph Kernel 19

24. Puodzius, C., Zendra, O., Heuser, A., Noureddine, L.: Accurate and robust malware
analysis through similarity of external calls dependency graphs (ecdg). In: The 16th
international conference on availability, reliability and security (ARES). pp. 1–12
(2021)

25. Said, N.B., Biondi, F., Bontchev, V., Decourbe, O., Given-Wilson, T., Legay, A.,
Quilbeuf, J.: Detection of mirai by syntactic and behavioral analysis. In: 2018 IEEE
29th International Symposium on Software Reliability Engineering (ISSRE). pp.
224–235. IEEE (2018)

26. Saxena, P., Poosankam, P., McCamant, S., Song, D.: Loop-extended symbolic ex-
ecution on binary programs. In: Proceedings of the Eighteenth International Sym-
posium on Software Testing and Analysis (ICST). pp. 225–236 (2009)

27. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: Avclass: A tool for massive
malware labeling. In: International Symposium on Research in Attacks, Intrusions,
and Defenses (RAID). pp. 230–253. Springer (2016)

28. Sebastio, S., Baranov, E., Biondi, F., Decourbe, O., Given-Wilson, T., Legay, A.,
Puodzius, C., Quilbeuf, J.: Optimizing symbolic execution for malware behavior
classification. Computers & Security p. 101775 (2020)

29. Sen, K.: Concolic testing: a decade later (keynote). In: Xu, H., Binder, W. (eds.)
WODA@SPLASH. ACM (2015)

30. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research
12(9) (2011)

31. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al.: Sok:(state of) the art of war:
Offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security and
Privacy (SP). pp. 138–157. IEEE (2016)

32. Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., Yin, H.: Mab-malware: A
reinforcement learning framework for blackbox generation of adversarial malware.
In: Proceedings of the 2022 ACM on Asia Conference on Computer and Commu-
nications Security (AsiaCCS). pp. 990–1003 (2022)

33. Sébastien, C.: Portable freeware dataset (Jan 2019)
34. Taheri, R., Ghahramani, M., Javidan, R., Shojafar, M., Pooranian, Z., Conti, M.:

Similarity-based android malware detection using hamming distance of static bi-
nary features. Future Generation Computer Systems 105, 230–247 (2020)

35. Ucci, D., Aniello, L., Baldoni, R.: Survey of machine learning techniques for mal-
ware analysis. Computers & Security 81, 123–147 (2019)

36. Xu, D., Ming, J., Wu, D.: Cryptographic function detection in obfuscated binaries
via bit-precise symbolic loop mapping. In: 2017 IEEE Symposium on Security and
Privacy (SP). pp. 921–937 (2017)

37. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: 2002 IEEE
International Conference on Data Mining, 2002. pp. 721–724. IEEE (2002)

38. Zhang, Z., Qi, P., Wang, W.: Dynamic malware analysis with feature engineering
and feature learning. In: Proceedings of the AAAI conference on artificial intelli-
gence. pp. 1210–1217. AAAI (2020)

