Distributed and Parallel Databases (2019) 37:273-295
https://doi.org/10.1007/s10619-018-7248-y

@ CrossMark

On-demand big data integration

A hybrid ETL approach for reproducible scientific research

Pradeeban Kathiravelu'23@) . Ashish Sharma' - Helena Galhardas? -
Peter Van Roy3 - Luis Veiga?

Published online: 1 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Scientific research requires access, analysis, and sharing of data that is distributed
across various heterogeneous data sources at the scale of the Internet. An eager extract,
transform, and load (ETL) process constructs an integrated data repository as its first
step, integrating and loading data in its entirety from the data sources. The bootstrap-
ping of this process is not efficient for scientific research that requires access to data
from very large and typically numerous distributed data sources. A lazy ETL process
loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. How-
ever, queries on the integrated data repository of eager ETL perform faster, due to
the availability of the entire data beforehand. In this paper, we propose a novel ETL
approach for scientific data integration, as a hybrid of eager and lazy ETL approaches,
and applied both to data as well as metadata. This way, hybrid ETL supports incremen-
tal integration and loading of metadata and data from the data sources. We incorporate
a human-in-the-loop approach, to enhance the hybrid ETL, with selective data inte-
gration driven by the user queries and sharing of integrated data between users. We
implement our hybrid ETL approach in a prototype platform, Obidos, and evaluate it
in the context of data sharing for medical research. Obidos outperforms both the eager
ETL and lazy ETL approaches, for scientific research data integration and sharing,
through its selective loading of data and metadata, while storing the integrated data in
a scalable integrated data repository.

Keywords Data integration - Scientific research - ETL (extract, transform, and
load) - Big data

B4 Pradeeban Kathiravelu
pradeeban.kathiravelu@emory.edu

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-018-7248-y&domain=pdf
http://orcid.org/0000-0002-0335-0458

274 Distributed and Parallel Databases (2019) 37:273-295

1 Introduction

Big data integration is crucial for numerous application domains, such as reproducible
science [28], medical research [22], and transport planning [15], to enable data anal-
ysis and information retrieval. Scientific research often requires access to big data
from various data sources, often geographically distributed [13]. Scientific data is
typically heterogeneous, including binary and textual data, and stored in structured,
semi-structured, or unstructured formats. Furthermore, data sources usually support
distinct data access interfaces, ranging from database SQL queries to service-based
application programming interfaces (APIs) [12]. Effectively and efficiently integrating
such diversity and quantity of data is challenging.

To discover compelling scientific insights from data, it is often required to extract,

transform, and load (ETL) it into an integrated data repository (e.g., a data warehouse
[7]). This process is typically called ETL [32]. An ETL process makes data accessible
through a uniform schema, by constructing an integrated data repository. Thus it
supports fast and efficient querying of the scientific research data.
ETL efficiency: Traditionally, ETL has been an eager process, loading the entire content
of the data sources into an integrated data repository as a first step. However, eager
ETL is often unsuitable for handling scientific data. First, the bootstrapping process
of eager data integration and loading takes too long. This time waste is unnecessary
for scientific research [6] that often requires only a subset of data. Second, entirely
integrating and loading the contents of data sources can be challenging due to the
substantial resource demands. In fact, it requires high loading time and bandwidth.
Furthermore, eager ETL also demands large storage due to the typical amount of
data to integrate. Third, scientific data sources are often accessible only to authorized
people. Loading the entire contents of data sources into an integrated data repository
may enable to bypass the data authorization permissions established for data sources.
Users would then be able to access data from the integrated data repository, thus
increasing the probability of data access violation.

Lazy ETL [17] aims at mitigating the limitations of eager ETL, by integrating and
loading the data only when necessary. Concretely, it avoids loading the entire contents
of data sources into an integrated data repository as the initial step. A data source is
composed of several data entries. For binary data, there is typically a piece of textual
metadata (containing identifying information) attached to each data entry, in the file
header. Metadata is often sufficient for the initial scientific research demands. As an
illustrative example, consider the medical images stored in DICOM (Digital Imaging
and Communications in Medicine) [27] standard format in various data sources such
as the Cancer Imaging Archive (TCIA) [8]. The DICOM image file is in binary format.
Often, there is textual metadata associated with each image. The DICOM metadata
includes the image identification constituted by the series, study, and the identification
of the patient the image belongs to. The metadata can be leveraged in the early stages of
medical research, while DICOM image processing can be performed at a later phase,
only for images selected as relevant (from the metadata). Thus, lazy ETL advocates
for eagerly integrating and loading only the metadata, instead of the data entry itself
(that is addressed lazily). Integrating and loading the metadata, in this case, is faster

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 275

than loading the entire data entry, due to the substantially smaller size of the metadata.
Therefore, lazy ETL usually bootstraps faster than eager ETL.

Scientific experiments are often repeated several times by multiple researchers

to confirm the accuracy of the outcomes. Therefore, frequent and repetitive queries
are common. As a consequence, persistently storing the previously processed data
entries into the integrated data repository would make recurring scientific research
experiments faster. While eager ETL loads the data entirely into an integrated data
repository, current lazy ETL approaches are not able to persistently store data required
for previous queries. Therefore, recurring scientific queries execute slower under lazy
ETL than under eager ETL. The gain obtained by faster data integration and loading
in lazy ETL is lost when executing recurring queries because they cannot use stored
results from previous queries.
Scalability: Scientific research often requires integrating large amounts of hetero-
geneous data from several web data sources [9]. Consequently, even an eager
metadata-only ETL process (as prescribed by lazy ETL) can be challenging in scientific
research, due to the distributed and heterogeneous nature of data sources. Moreover,
metadata of some data sources tend to be as large as or larger than the data entries them-
selves. For example, Scality RING petascale object storage [29] consists of metadata
up to 10 times larger than the data entries, supporting content-based searches through
its metadata (designed for indexing). A typical lazy ETL process may fail to outper-
form an eager ETL process in bootstrapping in the presence of such data sources, due
to the large size of metadata.

In practice, the researcher is often aware of the specific datasets that she needs
and the characteristics of the data sources those datasets belong to. So, the researcher
may be able to directly access the required data without accessing and querying the
corresponding metadata. For example, consider a research study comparing the effects
of an experimental medicine against those of placebo for variants of brain tumor. For
this research study, the researcher only needs to load the imaging data of brain tumor
from the data sources. Moreover, the researcher often possesses insights of the data
such as the location of relevant image collections and the type of data access that is
provided. Therefore, she can directly query the data sources and then load only specific
subsets of the metadata, rather than eagerly loading the whole metadata.

Additionally, since the number of web data sources, as well as the amount of data and
metadata, tend to increase, the storage requirements for the integrated data repository
must be adaptable. In particular, a scalable storage is essential to accommodate data
and metadata selectively accessed and incrementally integrated and loaded by the
researcher. However, the current ETL approaches do not support such a selective ETL
process into a scalable integrated data repository.

Interoperability and human intervention: Extracting and transforming data from web
sources must consider various data storage and access interfaces. Data storage formats
and access interfaces have been standardized in various research fields, to facili-
tate seamless access to the heterogeneous data sources. For example, Health Level
Seven International (HL7) Fast Healthcare Interoperability Resources (FHIR) [14] is
a standard for consistent data exchange between healthcare applications. Despite the
popularity of these standards, a vast majority of data sources still fail to adhere to them.
Thus, interoperability between heterogeneous data sources is still lacking [16]. Con-

@ Springer

276 Distributed and Parallel Databases (2019) 37:273-295

sequently, data integration across various scientific web data sources is challenging,
and typically not effective and efficient without human involvement.

Currently, in some domains, ETL is performed on-demand by a user [19]. The user
is involved in the ETL process by incrementally integrating and loading subsets of
data or metadata that are relevant to a given research question. The user is often aware
of the details about data source access and data location. This expert knowledge could
and should be incorporated into the ETL process. This type of user involvement is
called human-in-the-loop ETL. It often consists of two parts. First, the user manually
searches and downloads the datasets from the web data sources. Then, she integrates
and stores the result in an integrated data repository. By narrowing down the search
space to a smaller subset of relevant data sources, human-in-the-loop ETL shortens the
data integration and loading time. However, existing ETL frameworks do not support
the automatic incorporation of human in the process. Therefore, currently, human-in-
the-loop ETL process remains a cumbersome manual and repetitive task.

Efficient scientific data sharing: Data used in a scientific research study often needs
to be shared among researchers for collaboration and reproducibility purposes. How-
ever, this process is not efficient. First, sharing data by replicating its contents creates
an excessive overhead on bandwidth, storage, and data maintenance. Therefore, data
must be shared with minimal data replication. Second, researchers interested in the
data resulting from an integration process may belong to one or many organizations.
Repetition of the ETL process to obtain the same integrated data must be avoided,
even when the collaboration extends beyond the organizational boundaries. A typi-
cal use case among the medical research scientists is to virtually integrate datasets
from heterogeneous distributed data sources and share the results among the collab-
orators. Current approaches are inefficient in such data sharing facilitated by a data
integration beyond the organizational boundaries. Therefore, the integrated data are
often manually shared, in an approach oblivious to the ETL process. Such data shar-
ing is inefficient and may lead to the existence and maintenance of duplicate data.
A distributed ETL process to support sharing of the integrated data, with minimal
repeated data loading and integration efforts with a minimal bandwidth overhead, is
still lacking.

Motivation: Given the above premises, we aim at addressing the following research
questions in this paper:

(RQ1) Can we increase the speed of the bootstrapping process in ETL by selectively
accessing, integrating, and loading metadata?

(RQ>) Can we achieve faster execution time for repetitive scientific research queries
by storing the previously integrated and loaded data in an integrated data
repository?

(RQ3) Can we incorporate the human knowledge into an ETL framework to selec-
tively and incrementally integrate and load only the relevant subsets of
metadata or data, from web data sources?

(RQ4) Can the relevant subsets of data and metadata loaded by a research scientist
for a specific experiment be shared efficiently for reproducibility purposes,
thus minimizing data replication across peers from multiple organizations and
avoiding the repetition of the ETL process?

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 277

Contributions: The goal of this paper is to answer the identified research questions,
focusing on medical research as motivating real-life domain. The main contributions
of this paper are:

(1) A novel hybrid ETL approach for accessing and integrating data and metadata
from heterogeneous data sources, and loading the resulting data into a scalable
integrated data repository. (RQ1 and R(Q»)

(2) The incorporation of human knowledge into a hybrid ETL process to selectively
integrate and load subsets of data and metadata on-demand. (RQ3)

(3) A data sharing mechanism that enables to virtually share the relevant datasets
efficiently through “pointers” to data, instead of repeatedly loading and replicating
the actual data and metadata. (R Q4)

We implemented Obidos,' an on-demand big data integration platform for scientific

research. We presented a preliminary version of Obidos in our previous work [18].
In this paper, we elaborate in detail, how Obidos supports hybrid ETL enhanced
with human-in-the-loop for efficient data sharing. We deployed and performed an
experimental evaluation of Obidos for medical research data. In particular: (i) we
compared Obidos data loading and query execution times with eager and lazy ETL,
and (i) we evaluated the efficiency of Obidos regarding the amount of data replication
and bandwidth required in data sharing. The results obtained indicate that Obidos
performs better than or equal to both eager and lazy ETL approaches. We further
observed that Obidos data sharing feature avoids data replication and repeated ETL
efforts.
Paper organization: The rest of this paper is structured as follows: Sect. 2 presents the
solution architecture of Obidos. Section 3 describes the implementation details of the
Obidos prototype. Section 4 presents the experimental evaluation that we conducted
and the results obtained. Section 5 discusses the related work on data integration,
data sharing platforms, and ETL approaches for scientific research. Finally, Sect. 6
concludes with a summary of the current status and future research directions.

2 Obidos: an on-demand big data integration platform

The Obidos platform is instantiated for each organization. Users from the organization
can access, integrate, and load data into the integrated data repository of the corre-
sponding Obidos instance. Furthermore, they can share datasets stored in the integrated
data repository with other users from the same or different organizations. Section 2.1
presents the Obidos hybrid ETL approach and the underlying architecture. Section 2.2
explains how Obidos incorporates human knowledge in the ETL process to selectively
and incrementally integrate and load subsets of data and metadata. Section 2.3 details
Obidos efficient data sharing mechanism beyond organization boundaries to minimize
data replication and repeated ETL efforts.

1 Obidos is a medieval fortified town that has been patronized by various Portuguese queens. It is known
for its sweet wine, served in a chocolate cup.

@ Springer

278 Distributed and Parallel Databases (2019) 37:273-295

2.1 Hybrid ETL process

Obidos architecture: Figure 1 depicts the architecture of an Obidos instance. From
bottom to top, Obidos consists of (i) a scalable Integrated Data Repository, (ii) a
Data Management Layer with constructs for fast data integration and loading, and
(iii) a Query Rewriter with constructs for efficient and unified access to the data in
the integrated data repository and the data sources.

The Integrated Data Repository incrementally stores the data and metadata inte-
grated and loaded by users. It consists of (i) structured and unstructured data (including
binary data) as integrated data and (ii) the corresponding metadata as integrated
metadata. Furthermore, the metadata stored in the integrated data repository needs
to be indexed for efficient query execution over the binary data. We call this index
of the integrated data repository, the Metadata Index. The Metadata Index func-
tions as an internal index that is built over the integrated data and metadata in the
Obidos instance. Obidos further stores the incomplete metadata entries, the metadata
that is being loaded, as virtual proxies. The virtual proxies are stored as future or a
placeholder for the complete metadata in the integrated data repository. The complete
metadata will replace the virtual proxies once the entire metadata is loaded.

The Data Management Layer consists of data structures to manage the data in
the integrated data repository and components to access, integrate, and load from the
data sources. It stores its data structures in memory in a cluster of machines, aiming
to offer fast access to the integrated data while not compromising fault-tolerance. A
virtual replica is a pointer to a dataset from a distinct data source. A replicaset is an
Obidos data structure that is composed of several virtual replicas. Thus, each replicaset
points to the distributed and diverse datasets relevant to a scientific research study.
Furthermore, the replicasets are identified by timestamps. Therefore, the integrated

= | ? = | bidos User
Data Sources

{Pointers to Datasets, User Query}

{Replicaset, sub-queri

Virtual Proxies
Metadata Index Integrated Data

Integrated Metadata
Integrated Data Repository

Obidos

Fig. 1 Obidos architecture

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 279

data repository can be periodically updated with the changes or updates to the datasets
in the data sources pointed by the replicasets.

The Replicaset Holder is the core module of the Data Management Layer. It
identifies each replicaset by a globally unique identifier known as replicasetID. The
Replicaset Holder stores the replicasets in memory in a data structure that maps each
item of integrated and loaded metadata into the corresponding replicasets. Thus, it
indicates which of the datasets have already been loaded into the integrated data
repository, either as integrated metadata and data or as virtual proxies. Moreover, it
enables sharing the replicasets among users freely to make the datasets relevant to the
scientific research available to other participants. Therefore, it serves as a component
that prevents repetitive attempts to access, integrate, and load the same datasets. The
Data Loader selectively loads metadata and data from the data sources. The location
and the access mechanisms to the data sources are provided by the user and are stored
in memory by the Data Loader.

Finally, the Query Rewriter enables uniform access to data sources as well as
to the integrated data repository. It accepts as input a user query and pointers to the
relevant datasets. Then, it converts the pointers to the datasets into replicasets. It
also translates user queries into sub-queries that access either the data sources or the
integrated repository. If the data required to answer the user query is not present in the
integrated data repository, it invokes the Data Loader to integrate and load the datasets
to answer the user query as well as the virtual proxies corresponding to the replicaset.
Obidos incremental data integration and loading: Obidos accesses data and meta-
data from the data sources, and incrementally integrates and loads the results of the
user queries into an integrated data repository. The integrated data repository persists
previous query answers as well as the data and metadata integrated and loaded for
answering previous queries. Therefore, queries can be regarded as virtual datasets that
can be re-accessed or shared (akin to the materialized view in traditional RDBMS).

Obidos enables to incrementally integrate and load metadata to mitigate the chal-
lenges in loading the metadata entirely or eagerly. When incrementally loading the
metadata, Obidos replaces the counterparts of metadata that has not been loaded yet
with a virtual proxy. The use of virtual proxies minimizes the volume of metadata inte-
grated and loaded. Obidos stores the virtual proxies in the integrated data repository
in addition to the integrated data and the corresponding metadata. If only a fraction
of metadata is relevant for a search query, it is sufficient to load only that fraction.
Therefore, Obidos selectively loads metadata as virtual proxies. The virtual proxies
are later replaced by the complete metadata as the metadata is accessed and integrated.
Thus, virtual proxies refer to the metadata of a dataset larger than that is integrated
and loaded to the integrated data repository.

Often a virtual replica may be present in the Replicaset Holder, without having the
exact data for the user query. This usually means, previously at least one different
user query has been executed on the same virtual replicas. Therefore, while the virtual
proxies of the replicaset are present, the exact data for the user query may not be present
in the integrated data repository. With time, as more and more data are selectively
integrated and loaded, the integrated data repository will contain the necessary data
for the subsequent scientific research queries.

@ Springer

280 Distributed and Parallel Databases (2019) 37:273-295

2.2 Human-in-the-loop ETL process

Obidos supports a human-in-the-loop ETL process. By ‘human-in-the-loop’, here
we mean to incorporate the human knowledge that corresponds to the user-defined
replicasets and queries to selectively access and integrate data from the data sources and
incrementally loading the integrated data repository. A user identifies certain datasets
as relevant to her scientific research, and these datasets are the ones against which the
user query will be executed. She defines a replicaset by including pointers to these
datasets as virtual replicas. The replicaset and a specific user query determine the data
to be integrated and loaded by each selective data integration and loading process.
This avoids the need to look for the desired data across data sources exhaustively.

The Obidos selective load process is initiated every time a user issues a query. First,
Obidos iteratively checks for the existence of the data necessary to answer the query in
the instance. It queries the Replicaset Holder for each of the virtual replicas and then
executes the user query on the integrated data repository. If the data is not available in
the instance, it is integrated and loaded from the data sources. The results of the user
queries are persistently stored into the integrated data repository. Furthermore, rather
than just querying and loading only the answers of the user query, Obidos selectively
loads the metadata pointed by the replicaset. This ensures that the integrated data
repository can be incrementally loaded with data, rather than merely storing discrete,
incoherent, or independent sets of data.

Figure 2 shows an Obidos user defining a replicaset along with a user query to be
executed on multiple data sources. The replicaset narrows down the search space from
the entire data sources to specific datasets to answer the user query. She ensures with
the knowledge of the data sources, the data required to answer her user query is part
of the datasets pointed by her replicaset.

The data integrated and loaded into the integrated data repository of an Obidos
instance should be available to be accessed later for scientific research. For exam-
ple, when a user receives a replicaset from another user from the same or another
organization, she may access her organization’s instance to check for already loaded
data. Algorithm 1 illustrates how a user initiates the selective and incremental data
integration and loading process of Obidos.

Dataset.m

- Dataset 2
A

A Data Source 2

N—

Replicaset User Query

\ Data Source n
Data Source 1

An Obidos User

Fig.2 Narrowing down the search space with user-defined replicasets

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 281

Algorithm 1 Obidos Human-in-the-Loop Incremental ETL

procedure SELECTIVELOAD(replicaset, userQuery)
toLoad «— replicaset

for all (virtualReplica in replicaset) do
wasLoadedBefore «— replicasetHolder.get (virtualReplica)
if (/(wasLoadedBefore) then

replicasetHolder. put (virtualReplica)

toLoad.delete(virtualReplica)

end if
end for

if ((toLoad.size > 0) AND
(integrated DataRepository. query(userQuery) == NULL)) then

10:

1:
2
3
4
5
6: loadData(virtualReplica, userQuery)
7
8
9
0
11:

12: for all (virtualReplica in toLoad) do
13: loadData(virtualReplica, userQuery)
14: end for

15: end if

16: end procedure

The algorithm starts by initializing a temporary variable toLoad, as a set, with the
copy of the replicaset (line 2). toLoad tracks the virtual replicas belonging to the
replicaset that have not yet been loaded from the data sources. Then, the algorithm
proceeds to check the existence of the data pointed by each virtual replica in the instance
(line 3). First, it queries the Replicaset Holder to check whether datasets pointed by
the virtual replica have already been loaded by a previous query (line 4). If no dataset
has yet been loaded for the virtual replica (line 5), the data relevant for the virtual
replica and the user query is loaded from the data sources incrementally, invoking
the loadData procedure (line 6). The Replicaset Holder matches the replicasets to the
respective data and metadata integrated and loaded in the integrated data repository,
by the selective load process. Therefore, in line 7, the virtual replica is added to the
Replicaset Holder. Now since the dataset pointed by the virtual replica has already
been loaded, the virtual replica is removed from toLoad (line 8).

The first loop (lines 3—10) checks whether the data, metadata, or virtual proxies
relevant for one or more of the virtual replicas exist in the integrated data repository. It
loads the data only when neither corresponding data and metadata nor virtual proxies
are found for a given virtual replica. Therefore, a non-empty set of toLoad at the end
of the loop indicates that at least a few virtual replicas were not loaded during this
iteration. In that case, the algorithm proceeds to check whether the data and metadata
necessary to answer the current user query are completely available in the integrated
data repository (line 11). The user query will return a NULL if the complete metadata
and data necessary to answer the query are not present in the integrated data repository.
Consequently, the loadData procedure is executed for all the virtual replicas in the
toLoad set (lines 12—-14).

@ Springer

282 Distributed and Parallel Databases (2019) 37:273-295

The loadData procedure: The loadData procedure is the core of the Obidos human-
in-the-loop incremental ETL approach. It accepts a replicaset and a user query as
input arguments. First, the data sources are accessed, and the datasets identified by the
replicasets are selectively loaded as virtual proxies, without loading the entire meta-
data. Then, the user query is executed against the data sources. The relevant metadata
representing the results of a user query is integrated and loaded to the integrated data
repository. If the user query also indicates access to the binary data, the respective
binary data (usually a subset of data corresponding to the metadata already loaded by
the query) is also loaded to the integrated data repository. The loadData procedure
selectively loads the metadata corresponding to the replicaset as virtual proxies. If
previously a different user query was issued with the same virtual replica, the virtual
proxies corresponding to the virtual replica would be present while the exact data
and metadata to answer the current user query would be absent in the integrated data
repository.

2.3 Data sharing process

An Obidos instance is deployed in each organization. Each Obidos instance is used
by: (i) users from the organization, and (ii) users from other organizations and external
users who have limited access to the Obidos instance. Users can share the datasets
among them by sharing the replicasets or their respective replicasetIDs. Therefore,
there is no need to replicate the actual data of the data sources nor the integrated data
repository of an Obidos instance.

Replicasets are small in size. However, they grow with the number of data sources
and diversity of data. ReplicasetID is smaller in size compared to the replicaset and is of
a fixed size. Therefore, they are shared by default. A user outside the organization can
access the data already loaded in an Obidos instance using the replicasetID. Moreover,
users can share the replicasets with other organizations, without letting them access
the data in their integrated data repository. The organizations can then integrate and
load the datasets pointed by the replicaset, from the data sources. The relevant datasets
pointed by the received replicaset can later be integrated and loaded by the remote
users to their own Obidos instance.

Figure 3 illustrates the process of data sharing between users User_s1 and User_rl
from two different organizations (called sender and receiver). The sender organization
and the receiver organization can also represent the same organization if both users
belong to the same organization. Datasets can be shared by as a replicaset or the
respective replicasetID.

Algorithm 2 describes the data sharing procedure executed by the Obidos instance
of the receiver organization. It takes as input: a replicaset (or its replicasetID) received
from another user, the identification of users that created/sent and received the repli-
caset, and an optional object known as accessSender (line 1). A null value for the
accessSender object indicates that the shared datasets should be accessed from the
data sources. A non-null value indicates that the datasets need to be accessed directly
from the sender instance. The accessSender object consists of relevant access mech-
anisms such as the access key to the integrated data repository of the sender instance.

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 283

Data Data Data
Source_1 Source_2 Source_n I o
Replicaset_s1
Data Data g::an -----------
Set_1 Set 2 | _|
et_’ et_: =

Access
Data Share

Users User_r1
SOOI ()

& plicaset_r1

plicaset_s1

Integrated Data Repository_s Integrated Data Repository_r

Obidos Instance_s: Sender Organization Obidos Instance_r: Receiver Organization

Fig.3 Data sharing with Obidos

Algorithm 2 Data Sharing via a Replicaset

1: procedure SHAREREPLICASET(replicaset, sender, receiver, accessSender)
2: if (replicaset.isURI())

3 replicaset «— sender.get(replicaset) then
4 end if

5 if (accessSender != NULL)

6: sender.access(replicaset) then

7 else

8 receiver.selectiveLoad(replicaset, NULL)
9: end if

10: end procedure

If a replicasetID is received, the replicaset is retrieved from the sender instance
first (lines 2—4). Since the replicaset was initially created by a user of the sender
organization, the datasets or the virtual proxies pointed by the replicaset would be
present in the sender organization. Therefore, if the accessSender is set to a non-null
value (line 5), the datasets pointed by the replicaset are accessed directly from the
sender instance, by the receiver organization (line 6). Otherwise, the shareReplicaset
procedure selectively loads the datasets pointed by the replicaset into the receiver
instance, from the data sources (line 8). As there is no user query defined in a shared
replicaset, the selectiveLoad procedure is invoked with a null value in place of the
user query.

@ Springer

284 Distributed and Parallel Databases (2019) 37:273-295

3 Implementation

We built Obidos with several composable data services, including data cleaning, load-
ing, and sharing. Obidos consists of data structures, APIs, and software components
that enable chaining of these data services for its execution. Thus, Obidos builds its
hybrid ETL process with data sharing, effectively as a distributed ETL process beyond
organizational boundaries.

3.1 Data structures

The Replicaset Holder stores the replicasets in a minimal tree-like data structure, to
offer efficient search and indexing capabilities. Figure 4 illustrates the data structures
of the Replicaset Holder and the data representation of Obidos. The Replicaset Holder
consists of a few instances of the multi-map data structure, where a set of items is
stored as the value in the map, against a given key. As each user composes several
replicasets, the userMap stores a list of replicasets against the identification of the
users (userID) that created them.

Each entry in the list of values of the userMap represents a replicaset of a user.
Each such entry in the userMap points to a replicasetMap, which includes the virtual
replicas belonging to each replicaset, and whether the replicasets have already been
integrated and loaded to the integrated data repository. A replicasetID is a globally
unique random value generated by appending a random string generated via the Java’s
random UUID generator (using UUID.randomUUID().getLeastSignificantBits()) to

userMap (E) replicasetMap (ﬂj)
Key (UseriD) | Vaiue (instances of repiicasetMap) Key (replicasetlD) Value (List of Sources)
O = ﬂf_ O [CaMic, $3, Local, .]
O @O @ = = O [Box, TCIA,.]

O] O [S3, TCIA, .]

Maps for Granularity, Boolean Array for

Key Value (List Data Source (eg: for TCIA)
(replicasetlD) = of Entries) /collections Patients | Studies | Series

Maps for Granularity,

Maps for Granularity,
Key Value (List

Key Value (List Key Value (List (replicasetiD) of Entries)
(replicasetlD) of Entries) (replicasetlD) = of Entries)

" 0 O

Maps for Granularity,

Fig.4 Data structures of the Replicaset Holder

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 285

the URL of the Obidos deployment. The replicasetMap employs the replicasetID as
its key and the list of data source names contributing data to a replicaset as the value.
Thus, each replicasetMap stores the relevant data sources for each of the replicaset.

n maps internally represent each data source belonging to a replicaset. In a hierar-
chical data storage format such as DICOM, each of the n maps represents one of the
granularity levels in the data source. Such a format facilitates seamless integration of
virtual proxies into the metadata. A boolean array A, of length n is used to represent
the replicaset in a bit-map like manner. Each element A[i] of the array represents the
existence of a non-null entry in the ith map of granularity. Thus, the boolean flags in
Ay indicate the presence (or lack thereof) of the dataset in a particular granularity. If
an entire level of granularity is included in the replicaset by the user, the relevant flag
is set to true.

Replicasets include pointers to datasets from various data sources as virtual replicas.
It leads to several maps: one map for each granularity of the data sources (for example,
collections, patients, studies, and series for DICOM images). Each of these maps stores
replicasetIDs as their keys and list of the entries as their values, in the given granularity
(shown as Granularityy, Granularity;). Figure 4 represents an illustrative use case
for a hierarchical data storage. It considers cancer images of DICOM format stored
in data repositories such as TCIA, S3 buckets, directories in Box.com, and a local
folder/file hierarchy. For these cancer images of DICOM format, n = 4. Thus, a
map represents each of its four granularity levels—collections, patients, studies, and
series, with an array of length 4 pointing to each of the four maps. The hierarchical
data representation enables incremental loading and virtual proxies through its indexed
data structure.

3.2 Service-based APIs

The Obidos APls are designed as CRUD (Create, Retrieve, Update, and Delete) func-
tions on replicasets. Its functions are exposed as RESTful services, POST, GET, PUT,
and DELETE. Obidos offers a data sharing API to share scientific research datasets,
by sharing the replicasets. Replicasets can also be shared outside Obidos, through other
communication media such as email. The data sharing method is typically one-to-one,
meaning that a user shares data with another user in the same or different organization.
However, it can also be listed for the public to be freely accessed.

The user accesses, queries, integrates, and loads the relevant data from the data
sources by invoking the create replicaset procedure. This procedure creates a repli-
caset and initiates the selective data integration and loading process. When retrieve
replicaset is invoked, the data corresponding to the given replicaset is retrieved from
the integrated data repository. Furthermore, Obidos checks for updates from the data
sources pointed by the replicaset, if the data corresponding to the replicaset has already
been integrated and loaded. Metadata of the replicaset is compared against that of the
data sources for any corruption or local changes. The user deletes existing replicasets
by invoking the delete replicaset. When a replicaset is deleted, the Replicaset Holder
is updated immediately to avoid loading updates to the deleted replicasets. The user
updates an existing replicaset to increase, decrease, or alter its scope, by invoking

@ Springer

286 Distributed and Parallel Databases (2019) 37:273-295

the update replicaset. Thus, the update process may, in turn, invoke parts of create
and delete processes, as new data may be loaded while existing parts of data may be
removed.

The Replicaset Holder associates each dataset to a user, through its data structures
such as the userMap. While each user has her own virtually isolated space in memory,
the integrated data repository consists of a data storage shared among all the users of the
organization. Hence, before deleting a data entry from the integrated data repository,
the data should be confirmed to be an ‘orphan’ with no replicasets referring to them
from any of the users. Deleting data from the integrated data repository is designed
to be initiated by a background task, rather than its regular users. When the storage
is abundantly available in a cluster, Obidos advocates keeping orphan data in the
integrated data repository rather than immediately initiating the cleanup process, and
repeating it too frequently.

3.3 Obidos software components

Obidos architecture consisting of its data structures and interfaces is generic and can
even be exploited for the integration of data from data sources other than the medical
research data. We exploit several open source frameworks as major dependencies in
our Obidos prototype. Apache Hadoop Distributed File System (HDFS) [33] is used as
the core of the integrated data repository, due to its scalability and support for storing
unstructured and semi-structured, binary and textual data. Obidos executes on a cluster
of Infinispan [25] in-memory data grid. Consequently, the Data Management Layer
stores its data structures in an Infinispan cluster. The metadata of the binary data in
HDFS is stored in tables hosted in Apache Hive [31] metastore based on HDFS. The
Hive tables consisting of the metadata are indexed with the Metadata Index for users
to query and locate the data from the integrated data repository efficiently.

Apache Drill enables SQL queries on structured, semi-structured, and unstructured
data. Therefore, the Query Rewriter unifies and accesses the storages seamlessly by
leveraging Apache Drill [11]. Thus, Obidos supports SQL queries on unstructured data
stored in HDFS, through the Metadata Index stored in Hive. This approach allows effi-
cient queries to the data, partially or wholly loaded into the integrated data repository.
Thus, Obidos provides unified and scalable access to the data in the integrated data
repository and the data sources.

Oracle Java 1.8 is used as the programming language in developing Obidos. Apache
Velocity 1.7 [10] is leveraged to generate the application templates of the Obidos
web interface. Hadoop 2.7.2 stores the integrated data along with its corresponding
metadata and virtual proxies, while the Metadata Index is stored in Hive 1.2.0. Hive-
jdbc package writes the Metadata Index into the Hive metastore through its JDBC
bindings to Hive. SparkJava 2.5 [30] compact Java-based web framework is leveraged
to expose the Obidos APIs as RESTful services. The APIs are managed and made
available to the relevant users through API gateways. API Umbrella is deployed as
the default API gateway. Obidos incorporates authorization to its shared data from the
integrated data repository through the use of API keys, leveraging the API gateway.

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 287

Thus, one can only access the data shared with them, and only with the API key that
belongs to them.

Embedded Tomcat 7.0.34 is used to deploy Obidos as a web application. Infinis-
pan 8.2.2 is used as the In-Memory Data Grid where its distributed streams support
distributed execution of the hybrid ETL processes across the Obidos clustered deploy-
ment. The data structures of the Data Management Layer are represented by instances
of the Infinispan Cache class, which is a Java implementation of distributed HashMap.
Drill 1.7.0 is exploited for the SQL queries on the integrated data repository, with drill-
jdbe offering JDBC API to interconnect with Drill from the Query Rewriter.

While the architecture and design are generic and can be extended for various
data sources, our prototype implementation narrows down its focus to the medical
research data, including textual and binary data that adhere to formats such as DICOM.
We separate the implementation from the interface to ensure the reusability of the
framework.

4 Evaluation

We benchmarked Obidos against the implementations of eager ETL and lazy ETL
approaches, using microbenchmarks derived from medical research queries on cancer
imaging and clinical data.
Evaluation environment and benchmark analysis: An Obidos prototype, implemented
as described above, has been deployed to integrate medical data from various hetero-
geneous data sources including The Cancer Imaging Archive (TCIA) [8], DICOM
imaging data hosted in Amazon S3 buckets, medical images accessed through caMi-
croscope [5], clinical and imaging data hosted in local data sources including relational
and NoSQL databases, and file system with files and directories along with CSV files
as metadata. The core data used in the evaluations are DICOM images. They are stored
as collections of various volume as shown in Fig. 5. The data consists of large-scale
binary images (in the scale of a few thousand GB, up to 10,000 GB) along with a
smaller scale textual metadata (in the range of MBs).

Figure 6 illustrates the number of patients, studies, series, and images in each of
the collection. Collections are sorted according to their total volume. Each collection

10000 ¢ + 4
=~ 1000 ¢ v
o i
) 100 F ++H’ *H’FH'H#’H_F 4
g +++#+++#*+
3 10 ¢ +++F++H_"*'H+++]
> RS aa

b 1
+
++
0.1 E L L L L L L 3
0 10 20 30 40 50 60 70

Collection ID

Fig.5 Evaluated DICOM imaging collections (sorted by total volume)

@ Springer

288 Distributed and Parallel Databases (2019) 37:273-295

0 10 20 30 40 50 60 70
Collection ID

Images Studies
Series —»— Patients —6—

Fig.6 Various entries in evaluated collections (sorted by total volume)

consists of multiple patients, each patient has one or more studies, each study has
one or more series, each series has numerous images. We defined replicasets at these
different levels of granularity. The varying pattern of Fig. 6, when compared against
that of Fig. 5 shows that the total volume of a collection does not necessarily reflect
the number of entries in it.

4.1 Performance of integrating and loading data

Obidos was benchmarked for its performance and efficiency in integrating and loading
the data. Obidos integrates and loads data from the scientific research data sources
spanning the globe. Therefore, the performance of loading the data will be influenced
by the bandwidth. To avoid this influence, first, we replicated the data sources such as
TCIA to data sources hosted on the local servers.

We integrated and loaded data from different total volumes of data sources for the
same replicasets of the user. We measured the volume of the data sources by the total
number of studies in them. Figure 7 shows the data load time of Obidos against that
of lazy ETL and eager ETL approaches. Since Obidos selectively loads the metadata
of only the data corresponding to the replicaset, the loading time remained constant
independent of the increasing total volume of data in the data sources. However, since
lazy ETL and eager ETL approaches query the entire data sources, the increase of
volume leads to a larger time to integrate and load them. Eager ETL always took more
time as it has to integrate and load the entire metadata and data. Since lazy ETL loads
only the metadata eagerly, it loads faster than eager ETL.

Furthermore, for smaller volumes of data, eagerly loading the entire metadata can
be faster than the selective loading by Obidos, as Obidos executes the query on the
data source and loads the virtual proxies, creating and updating the constructs such
as the Metadata Index and the Replicaset Holder. Therefore, Obidos took longer for
the data integration and loading compared to the lazy ETL for smaller volumes of
data. However, as the total volume of data grows, the data loaded by Obidos remained
the lowest, compared to both eager ETL and lazy ETL. Moreover, for repeating user
queries, both eager ETL and Obidos outperformed the lazy ETL due to the availability

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 289

10000 T
@ 1000
v]
E 100 3
> ——]
10 1 1 1
5000 10000 15000 20000
Total Volume of Data (Number of Studies)
Eager ETL Lazy ETL —— Obidos =M=

Fig.7 Data load time: change in total volume of data sources (same user query and same replicaset)

of the integrated data repository in both eager ETL and Obidos, and the storing of
query answers in Obidos.

The experiment was repeated for a constant total volume of data sources while
increasing the number of studies of interest in the replicaset. Figure 8 shows the time
taken by Obidos, lazy ETL, and eager ETL to integrate and load the data from the data
sources. Since the total volume remained constant, the lazy ETL and eager ETL had
the same data integration and loading time, as they are oblivious to the change in the
number of studies of interest. However, the performance of Obidos depends heavily
on how the replicasets are defined. Therefore, with the growth of the replicaset, the
loading time of Obidos increased. Eventually, the data integration and loading time of
Obidos converged with the time taken by the lazy ETL approach, as the replicaset was
defined to cover all the studies in the data sources (thus, making it eagerly loading the
metadata).

Finally, datasets were integrated and loaded directly from the remote data sources
(such as TCIA and S3 buckets) through their web service APIs, to evaluate the effects
of data downloading and bandwidth consumption associated with it. We changed the
total volume of data in the data sources by adding more data to the data sources while
keeping the replicaset unchanged. Figure 9 shows the time taken for Obidos, lazy ETL,
and eager ETL. Eager ETL performed poor as binary data had to be downloaded over
the network. Lazy ETL too performed slowly for large volumes as it must eagerly load
the metadata (which itself grows with scale) over the network.

10000 F T

© 1000 F

v I

E 100 F ,

S——
10 P) | h
5000 10000 15000 20000
Number of Studies of Interest in the Replicaset

Eager ETL Lazy ETL —+— Obidos ==

Fig.8 Data load time: varying number of studies of interest in the replicaset (same user query and constant
total data volume)

@ Springer

290 Distributed and Parallel Databases (2019) 37:273-295

100000 ¢

0 3000 6000 9000
Data Volume (GB)

Obidos

Eager ETL Lazy ETL

Fig.9 Load time from the remote data sources

As with the case of Fig. 7, Fig. 9 too illustrates a fixed time for Obidos data inte-
gration and loading. As the data was integrated and loaded over the Internet from
the data sources, the time taken grew linearly for eager ETL and lazy ETL. How-
ever, lazy ETL consumed much lower time compared to the eager ETL. As only the
datasets corresponding to the replicaset are accessed, integrated, and loaded, Obidos
uses bandwidth conservatively, loading no irrelevant data or metadata. Regardless of
the growth of the increasing total volume of data in the data sources, Obidos integrated
and loaded the data at the same time as the replicaset and the user query remained the
same. Therefore, the human-in-the-loop contributed positively to the integration and
loading performance of Obidos by narrowing down the search space from the data
sources.

4.2 Performance of querying the integrated data repository

Obidos was then benchmarked for its efficiency in querying the data and integrated
data repository against the eager ETL. Query completion time depends on the number
of entries in the queried data rather than the size of the entire integrated data repository.
Hence, varying amounts of data, measured by the number of studies, were queried.
Figure 10 depicts the query completion time of Obidos and eager ETL. Obidos showed
a speedup compared to the eager ETL, which we attribute to the efficient indexing
of the integrated data repository with the binary data with Metadata Index and the
efficiency of the Data Management Layer in managing the storage and execution. The
unstructured data in HDFS was efficiently queried as in a relational database through
the distributed query execution of Drill with its SQL support for NoSQL data sources.

Typically, lazy ETL approaches do not consist of an integrated data repository.
Therefore, we avoid comparing the query performance on the Obidos integrated data
repository against the lazy ETL. Eager ETL could outperform Obidos for queries that
access data not yet loaded in Obidos, as eager ETL would have constructed an entire
data warehouse beforehand. However, with the domain knowledge of the medical data
researcher, the relevant datasets are loaded timely, and only those. The time required
to construct a complete data warehouse would preclude any benefits of eager loading
from being prominent. If data is also not loaded beforehand in eager ETL, it will
consume much longer to construct the entire data warehouse before actually starting
the processing of the user query. Moreover, loading everything beforehand may be

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 291

100 T T T
80 f B!
60 B!
40 - J
0l //a

0 1 1 1
0 5000 10000 15000

No. of Studies

Time (s)

Eager ETL Obidos

Fig. 10 Query completion time for the integrated data repository

irrelevant, impractical, or even impossible for scientific research studies due to the
scale and distribution of the data sources.

Overall, in all the relevant use cases, lazy ETL and Obidos significantly outper-
formed eager ETL as the need to build a complete data warehouse is avoided in them.
As Obidos loads only the relevant subsets of metadata, and does not eagerly load even
the metadata, for large volumes Obidos also significantly outperformed lazy ETL in
its integration and loading.

4.3 Sharing efficiency of medical research data

Various image series of an average uniform size are shared between users inside
an Obidos instance and across multiple instances. Figure 11 benchmarks the data
shared in these Obidos data sharing approaches against the typical binary data trans-
fers regarding its bandwidth efficiency. Obidos can share data by sharing either the
replicasetID or replicaset. ReplicasetIDs are very small and are fixed in size. Repli-
casets are minimal in size as pointers to actual data. However, they grow linearly when
more data of the same level of granularity is shared. Negligible overhead was added
in both cases as compared to sharing actual data. The Obidos data sharing approach
also avoids the need for manually sharing the locations of the datasets, which is an
alternative bandwidth-efficient approach to sharing the integrated data. As the pointers
are shared, no actual data is copied and shared. This enables data sharing with zero
redundancy.

100 T T

1x10° F ' 9
P~ E 4 o
s 10 = 10000 1
= ©
= 1r 18 100t R
)
8 oif 13 Lh, i
3 e
£ 001p 1 2 o01f 1
< n HH KK
v 0.001 KKKk Bl 0.0001 L L
)) 10 100 1000
0.000%000 10000 100000 Volume of the Image Series (GB)
) Number of Shared Series) Replicating and Sharing Data
_ Obidos: Data Sharing via a Replicaset —+— _ Obidos: Data Sharing via a Replicaset ——
Obidos: Data Sharing via a ReplicasetlD —%— Obidos: Data Sharing via a ReplicasetlD —%—

(a) With changing number of shared series (b) With changing volume of shared images

Fig. 11 Volume of data shared in Obidos data sharing use cases versus in regular binary data sharing

@ Springer

292 Distributed and Parallel Databases (2019) 37:273-295

The data sharing process of Obidos is designed to have minimal data replication
across multiple organizations, avoiding repetitive ETL efforts. Through its support
for sharing datasets through a globally identifiable replicasetID, the data sharing is
made efficient with minimal bandwidth overhead. Even sharing the replicaset itself
was more bandwidth efficient than actually replicating and sharing the data. Fur-
thermore, by limiting unauthorized access to the integrated data repository (through
authorization mechanisms such as API keys), Obidos avoids accidental sharing of
confidential scientific research data. When the receiver does not have access to the
integrated data repository of the sender organization, the datasets pointed by the
replicaset are integrated and loaded into the receiver organization’s integrated data
repository.

5 Related work

Service-based data integration: OGSA-DAI (Open Grid Services Architecture-Data
Access and Integration) [2] facilitates federation and management of various data
sources through its web service interface. The Vienna Cloud Environment (VCE)
[4] offers service-based data integration of clinical trials and consolidates data from
distributed sources. VCE provides data services to query individual data sources and
to provide an integrated schema atop the distributed datasets. The use of a unified
schema to virtually integrate data is similar to the Obidos approach. However, Obidos
offers a complete hybrid ETL approach and supports sharing of data with minimal
data replication.

EUDAT [21] is a platform to store, share, and access multidisciplinary scientific

research data. EUDAT hosts a service-based data access feature B2FIND [34], and
a sharing feature B2SHARE [3]. When researchers access these cross-disciplinary
research data sources, they already know which of the repositories they are interested
in, or can find them by the search feature. Similar to the motivation of Obidos, loading
the entire data from all the sources is irrelevant in EUDAT. Hence, choosing and
loading certain sets of data is supported by these service-based data access platforms.
Obidos can be leveraged to load related cross-disciplinary data from the eScience data
sources such as EUDAT.
Lazy ETL: Lazy ETL [17] demonstrates how metadata can be efficiently used for study-
specific queries without actually constructing an entire data warehouse beforehand, by
using files in SEED [1] standard format for seismological research. The hierarchical
structure and metadata of SEED are similar to that of DICOM medical imaging data
files that are accessed by the Obidos prototype. Thus, we note that while we prototype
Obidos for medical research, the approach is also applicable to various research and
application domains.

LigDB [26] is similar to Obidos as both focus on a query-based integration approach
as opposed to having an entire data warehouse constructed as the first step, and it
efficiently handles unstructured data with no schema. However, Obidos differs as it
indeed has a scalable integrated data repository, and does not periodically evict the
stored data, unlike LigDB. The incremental and selective integration and loading

@ Springer

Distributed and Parallel Databases (2019) 37:273-295 293

approach enable Obidos to load complex metadata faster than the current lazy ETL
approaches.

Medical research data integration: Leveraging Hadoop ecosystem for management
and integration of medical data is not entirely new, and the previous work [24] indeed
motivates our design choices. However, the existing approaches fail to extend the
scalable architecture offered by Hadoop and the other big data platforms to create an
index to the unstructured integrated data, manage the data in-memory for quicker data
manipulations, and share results and datasets efficiently with peers. Obidos attempts
to address these shortcomings with its novel hybrid ETL approach and architecture,
designed for reproducible scientific research.

Research has proposed several enhancements to data integration such as virtual data
integration approaches [20] and human-in-the-loop data integration [23]. Similarly,
there have been proposals such as distributed data sharing [35] aim at improving the
efficiency of data sharing. However, these research approaches do not focus on big
data integration for scientific research, that has its limitations as well as constraints.
We narrow down our focus to scientific research, and further aim at the biomedical
big data integration and sharing. Thus, we efficiently resolve the challenges in data
integration and sharing, specific to the reproducible scientific research, by leveraging
the human-in-the-loop.

6 Conclusion

Obidos is an on-demand data integration system with human-in-the-loop for scientific
research. It selectively integrates and loads the data and metadata in a scalable inte-
grated data repository. By implementing and evaluating Obidos for medical research
data, we demonstrated the efficiency of the Obidos hybrid ETL process. We presented
the Obidos data sharing approach to share scientific research datasets with minimal
replication.

We built our case on the reality that data sources are proliferating, and cross-
disciplinary researches, such as medical data research, often require access and
integration of datasets spanning across the multiple data sources on the Internet. We
further presented how a selective ETL approach driven by users fits well for the repro-
ducible scientific research. Obidos leverages the respective APIs offered by the data
sources in accessing and loading the data while providing its RESTful APIs to access
its integrated data repository. We further envisioned that various organizations with
an Obidos instance would be able to collaborate and coordinate to construct and share
the integrated datasets internally and between one another.

As a future work, we aim to deploy Obidos approach to consuming data from vari-
ous scientific research data repositories such as EUDAT to find and integrate research
data. Thus, we will be able to conduct a usability evaluation of Obidos based on various
scientific research domains and data sources. We also propose to leverage the network
proximity among the data sources and the Obidos instances for efficient data integra-
tion and sharing, in the future work. Thus, we aim to build virtual distributed data
warehouses—data partially replicated and shared across various research institutes.

@ Springer

294 Distributed and Parallel Databases (2019) 37:273-295

Acknowledgements This work was supported by NCI UO1 [ITUO1CA187013-01], Resources for develop-
ment and validation of Radiomic Analyses & Adaptive Therapy, Fred Prior, Ashish Sharma (UAMS, Emory),
National funds through Fundacdo para a Ciéncia e a Tecnologia with reference UID/CEC/50021/2013,
PTDC/EEI-SCR/6945/2014, a Google Summer of Code project, and a PhD grant offered by the Erasmus
Mundus Joint Doctorate in Distributed Computing (EMJD-DC) under grant agreement 2012-0030.

References

1. Ahern, T., Casey, R., Barnes, D., Benson, R., Knight, T.: SEED Standard for the Exchange of Earthquake
Data Reference Manual Format Version 2.4. Incorporated Research Institutions for Seismology (IRIS),
Seattle (2007)

2. Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Chue Hong, N.P,, Collins, B., Hardman, N.,
Hume, A.C., Knox, A., Jackson, M.: The design and implementation of Grid database services in
OGSA-DALI. Concurr. Comput. Pract. Exp. 17(2—4), 357-376 (2005)

3. Ardestani, S.B., Hakansson, C.J., Laure, E., Livenson, L., Strandk, P., Dima, E., Blommesteijn, D., van de
Sanden, M.: B2SHARE: an open e-Science data sharing platform. In: 2015 IEEE 11th International
Conference on e-Science (e-Science), pp. 448-453. IEEE (2015)

4. Borckholder, C., Heinzel, A., Kaniovskyi, Y., Benkner, S., Lukas, A., Mayer, B.: A generic, service-
based data integration framework applied to linking drugs and clinical trials. Procedia Comput. Sci.
23,24-35 (2013)

. caMicroscope: caMicroscope (2018). http://camicroscope.org

6. Caparlar, C.0., Donmez, A.: What is scientific research and how can it be done? Turk. J. Anaesthesiol.
Reanim. 44(4), 212 (2016)

7. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. ACM SIGMOD
Rec. 26(1), 65-74 (1997)

8. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt,
D., Pringle, M.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information
repository. J. Digit. Imaging 26(6), 1045-1057 (2013)

9. Dong, X.L., Srivastava, D.: Big data integration. In: 2013 IEEE 29th International Conference on Data
Engineering (ICDE), pp. 1245-1248. IEEE (2013)

10. Gradecki, J.D., Cole, J.: Mastering Apache Velocity. Wiley (2003)

11. Hausenblas, M., Nadeau, J.: Apache Drill: interactive ad-hoc analysis at scale. Big Data 1(2), 100-104
(2013)

12. Heinzlreiter, P., Perkins, J.R., Tirado, O.T., Karlsson, T.J.M., Ranea, J.A., Mitterecker, A., Blanca, M.,
Trelles, O.: A cloud-based GWAS analysis pipeline for clinical researchers. In: CLOSER, pp. 387-394
(2014)

13. Hey, T., Trefethen, A.E.: Cyberinfrastructure for e-Science. Science 308(5723), 817-821 (2005)

14. HL7: FHIR (2018). https://www.h17.org/fhir/

15. Huang, Z.: Data integration for urban transport planning. Citeseer (2003)

16. Kadadi, A., Agrawal, R., Nyamful, C., Atiq, R.: Challenges of data integration and interoperability in
big data. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 38—40. IEEE (2014)

17. Kargin, Y., Ivanova, M., Zhang, Y., Manegold, S., Kersten, M.: Lazy ETL in action: ETL technology
dates scientific data. Proc. VLDB Endow. 6(12), 1286—-1289 (2013)

18. Kathiravelu, P, Chen, Y., Sharma, A., Galhardas, H., Van Roy, P., Veiga, L.: On-demand service-based
big data integration: optimized for research collaboration. In: VLDB Workshop on Data Management
and Analytics for Medicine and Healthcare, pp. 9-28. Springer (2017)

19. Krishnan, S., Haas, D., Franklin, M.J., Wu, E.: Towards reliable interactive data cleaning: a user survey
and recommendations. In: Proceedings of the Workshop on Human-in-the-Loop Data Analytics, p. 9.
ACM (2016)

20. Langegger, A., Wo6B, W., Blochl, M.: A semantic web middleware for virtual data integration on the
web. In: European Semantic Web Conference, pp. 493-507. Springer (2008)

21. Lecarpentier, D., Wittenburg, P., Elbers, W., Michelini, A., Kanso, R., Coveney, P., Baxter, R.: EUDAT:
a new cross-disciplinary data infrastructure for science. Int. J. Digit. Curation 8(1), 279-287 (2013)

22. Lee, G., Doyle, S., Monaco, J., Madabhushi, A., Feldman, M.D., Master, S.R., Tomaszewski, J.E.: A
knowledge representation framework for integration, classification of multi-scale imaging and non-

W

@ Springer

http://camicroscope.org
https://www.hl7.org/fhir/

Distributed and Parallel Databases (2019) 37:273-295 295

23.
24.

25.
26.
27.
28.
29.
30.

31.

32.

33.
. Widmann, H., Thiemann, H.: EUDAT B2FIND: a cross-discipline metadata service and discovery

35.

imaging data: preliminary results in predicting prostate cancer recurrence by fusing mass spectrometry
and histology. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,
pp. 77-80. IEEE (2009)

Li, G.: Human-in-the-loop data integration. Proc. VLDB Endow. 10(12), 2006-2017 (2017)

Lyu, D.M,, Tian, Y., Wang, Y., Tong, D.Y., Yin, W.W., Li, J.S.: Design and implementation of clin-
ical data integration and management system based on Hadoop platform. In: 2015 7th International
Conference on Information Technology in Medicine and Education ITME), pp. 76-79. IEEE (2015)
Marchioni, F., Surtani, M.: Infinispan Data Grid Platform. Packt Publishing Ltd., Birmingham (2012)
Milchevski, E., Michel, S.: LigDB—online query processing without (almost) any storage. In: EDBT,
pp. 683-688 (2015)

Mildenberger, P., Eichelberg, M., Martin, E.: Introduction to the DICOM standard. Eur. Radiol. 12(4),
920-927 (2002)

Reichman, O.J., Jones, M.B., Schildhauer, M.P.: Challenges and opportunities of open data in ecology.
Science 331(6018), 703-705 (2011)

Scality: ~ Scality RING (2018). http://storage.scality.com/rs/963-KAl-434/images/Scality
9%?20Technical %20Whitepaper.pdf

Spark: Spark Framework: An Expressive Web Framework for Kotlin and Java (2018). http://sparkjava.
com/

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.:
Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626-1629
(2009)

Vassiliadis, P.: A survey of Extract-transform-Load technology. Int. J. Data Warehous. Min. 5(3), 1-27
(2009)

White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc, Sebastopol (2012)

portal. In: EGU General Assembly Conference Abstracts, vol. 18, p. 8562 (2016)

Zhang, Q., Zhang, X., Zhang, Q., Shi, W., Zhong, H.: Firework: big data sharing and processing in
collaborative edge environment. In: 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pp. 20-25. IEEE (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Pradeeban Kathiravelu'?3@® . Ashish Sharma’ - Helena Galhardas? -
Peter Van Roy? - Luis Veiga?

Ashish Sharma
ashish.sharma@emory.edu

Helena Galhardas
helena.galhardas @tecnico.ulisboa.pt

Peter Van Roy
peter.vanroy @uclouvain.be

Luis Veiga

luis.veiga@inesc-id.pt

Emory University School of Medicine, Atlanta, USA

INESC-ID Lisboa/Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Université catholique de Louvain, Louvain-la-Neuve, Belgium

@ Springer

http://storage.scality.com/rs/963-KAI-434/images/Scality%20Technical%20Whitepaper.pdf
http://storage.scality.com/rs/963-KAI-434/images/Scality%20Technical%20Whitepaper.pdf
http://sparkjava.com/
http://sparkjava.com/
http://orcid.org/0000-0002-0335-0458

	On-demand big data integration
	A hybrid ETL approach for reproducible scientific research
	Abstract
	1 Introduction
	2 Óbidos: an on-demand big data integration platform
	2.1 Hybrid ETL process
	2.2 Human-in-the-loop ETL process
	2.3 Data sharing process

	3 Implementation
	3.1 Data structures
	3.2 Service-based APIs
	3.3 Óbidos software components

	4 Evaluation
	4.1 Performance of integrating and loading data
	4.2 Performance of querying the integrated data repository
	4.3 Sharing efficiency of medical research data

	5 Related work
	6 Conclusion
	Acknowledgements
	References

