FEATURE-BASED
CONTEXT-ORIENTED
SOFTWARE DEVELOPMENT

Benoit Duhoux

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Engineering Sciences and Technology

August 2022

ICTEAM
Louvain School of Engineering
Université catholique de Louvain
Louvain-la-Neuve

Belgium
Thesis Committee:
Pr. Kim Mens (Advisor) UCLouvain/ICTEAM, Belgium
Pr. Bruno Dumas (Advisor) UNamur, Belgium
Pr. Charles Pecheur (Chair) UCLouvain/ICTEAM, Belgium
Pr. Jean Vanderdonckt (Secretary) UCLouvain/ICTEAM, Belgium
Pr. Nicolas Cardozo UniAndes, Colombia

Pr. Kris Luyten UHasselt, Belgium

Feature-Based Context-Oriented Software Development
by Benoit Duhoux

© Benoit Duhoux 2022

ICTEAM

Université catholique de Louvain
Place Sainte-Barbe, 2

1348 Louvain-la-Neuve

Belgium

ABSTRACT

Context-oriented programming enables dynamic software evolution by sup-
porting the creation of software systems that dynamically adapt their be-
haviour depending on the context of their surrounding environment. Upon
sensing a new particular situation in the surrounding environment, which is
reified as a context, the system activates this context and then continues by
selecting and activating fine-grained features corresponding to that context.
These features, representing functionalities specific to that context, are then
installed in the system to refine its behaviour at runtime. Conceiving such
systems is complex due to their high dynamicity and the combinatorial ex-
plosion of possible contexts and corresponding features that could be active.

To address this complexity, we propose a feature-based context-oriented
software development approach to design and implement context-oriented
applications. This approach unifies context-oriented programming, feature
modelling and dynamic software product lines into a single paradigm. In
this novel paradigm we separate clearly and explicitly contexts and features
that we model in terms of a context model, a feature model and the mapping
between them. We also design an architecture, implement a programming
framework, and develop a supporting development methodology and two vi-
sualisation tools to help designers and programmers in their modelling, devel-
opment and debugging tasks. Furthermore we also develop a user interface
library in our approach to create applications with user interfaces that are
adaptive.

To validate our feature-based context-oriented software development ap-
proach, we designed five case studies and implemented three of them. Then

ii Abstract

we discussed the design qualities to evaluate our implementation of the pro-
gramming framework. We also assessed the usability of the programming
framework from our own perspective based on the cognitive dimensions of
notations framework. Finally we also conducted four user studies with real
users in which we asked them to play the role of designers and programmers
to validate the understandability, usefulness and usability of our approach.
The results we gathered from our participants are promising and provide us
several paths to enhance our approach.

ACKNOWLEDGMENTS

Tout d’abord, j’aimerais te remercier Kim M. pour la chance que tu m’as don-
née de faire ce doctorat. Tu m’as poussé en avant dans cette thése avec ton
pragmatisme afin que je puisse relever des défis qui me semblaient infran-
chissables. De plus, avec ton expérience, tu as pu m’encadrer d’'une maniére
que je ne pouvais espérer meilleure. C’était un réel plaisir de travailler avec
toi.

Jaimerais aussi te remercier Bruno D. pour I'intérét que tu as porté a ma
recherche. Tu m’as également appris énormément de ton domaine : I'interac-
tion homme-machine. Nos discussions étaient toujours trés intéressantes et
enrichissantes, méme si j'y ramenais tres souvent mon regard de génie logi-
ciel. Merci aussi a toi pour ce stage de recherche que tu m’as offert. Jai
pu y découvrir un nouvel environnement, faire mieux connaissance avec ton
équipe et d’autres chercheurs.

Ensuite, merci a vous, membres de mon jury, Nicolas C., Kris L., Jean V. et
Charles P., pour vos feedbacks pertinents lors de ma défense privée qui m’ont
permis d’améliorer mon manuscrit. Merci aussi a Nicolas C. et Jean V. pour
tous ces moments partagés ensemble.

J aimerais aussi remercier les personnes du département INGI pour cette
ambiance incroyable de travail, ainsi que pour toutes ces activités que nous
avons faites ensemble. Sans vous, cela n’aurait pas été pareil. J'aimerais
aussi remercier mes deux équipes de recherches ainsi que mes co-bureaux
pour toutes nos discussions. J'aimerais remercier en particulier, Guillaume
M. et Xavier G. pour toutes nos discussions toujours intéressantes, Gorby K.
et Mathieu]J. pour ce nouveau projet commun qu’était le Club INFO, Axel L.

1ii

iv Acknowledgments

pour ton investissement et ton écoute, Quentin D. pour ton template de thése,
qui, il faut ’avouer, m’a simplifié la vie lors de ’écriture de ma thése et Fabien
D. pour ta décoration sur la porte de mon bureau en cette fin de thése.

Mille mercis au personnel administratif et technique d’INGI et en parti-
culier a Vanessa M. pour ton aide inestimable a toutes mes questions concer-
nant ’administration et la logistique, Sophie R. pour ton aide sur mes ques-
tions comptables, Ludovic T. et Anthony G. pour votre réactivité a mes ques-
tions techniques.

J aimerais aussi remercier mes étudiants qui ont participé a nos différentes
études utilisateurs a travers les années, et sans qui nous n’aurions pu valider
notre approche de cette maniére. Merci aussi a mes mémorants qui m’ont
apporté différents points de vue sur les extensions de ce travail. Un merci
particulier a Pierre M., Hoo Sing L., Edwin D., Ho Yien T., Julien L. et Céline
N. pour vos contributions dans cette these.

Jaimerais également remercier tous mes amis qui m’ont soutenu durant
toute ma thése, et qui m’ont permis de m’évader : Isabelle, Frédérique, Chris-
tel, Ju, Nicolas, Michel, Dimitri, Sabrina, Nathalie, Laurent, Sébastien, Miche-
langelo, Jérémy, Wathy, Sébastien, Lionel, Alexandre, et tant d’autres...

Un tout grand merci Papy pour ton soutien a travers toutes ces années.

Enfin, j’aimerais te remercier Parrain (Vincent). Tu as cru en moi et m’as
soutenu, et sans cela, je n’aurais jamais réussi a évoluer de cette facon. Merci
aussi a tes parents, Jacques et Brigitte, qui m’ont également supporté dans
mes choix depuis ces longues années, ainsi que ta famille, Claude, Victoria,
Jean-Marc, Isabelle, Lucas et Daliane.

MERCI!

CONTENTS

Abstract

Acknowledgments

Table of Contents

I Prologue

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Setting thescope oL
Research questions
Contributions L
Supporting publications Lo oL
Running example: a smart messaging system
Roadmap

2 State of the art

2.1
2.2
2.3
2.4
2.5

Modelling
Implementation
User interface adaptation
Supportingtools L
Discussion 0000

iii

iv

vi Contents

II Approach and usage 35
3 Feature-based context-oriented programming paradigm 39
3.1 Principlesandconcepts oL, 39
311 Feature. 40

3.1.2 Featuremodel 41

313 Context 43

3.14 Contextmodel 44

3.1.5 Context-feature mapping 46

3.1.6 Mappingmodel Lo L 47

3.2 System architecture L. 48

3.3 Development methodology 50
33.1 Requirements 50

332 Design e 52

3.3.3 Implementation 52

334 Testing 53

3.3.5 Iterative methodology 53

34 Conclusion 53

4 Feature-based context-oriented programming framework 55
4.1 Defining the application classes 56

4.2 Declaring contexts and features 57

43 Defining features oL 58

44 Declaring the contextmodel 61

4.5 Declaring the feature model 64

4.6 Mapping contexts to features L. 66

4.7 Managing the activationorder 67

48 Activatingcontexts 70

49 Proceeding feature execution L., 71
4.10 Language versus framework 74
411 Conclusion 75

5 User interface adaptation library 77
5.1 Representation of user interfaces 78

52 Overview 79

5.3 APIandusage of the UIAlibrary 80

5.4 UlA library and features 87

55 Conclusion 90

6 Visualisation tools 91
6.1 CONTEXT AND FEATURE MODEL VISUALISER 91
6.1.1 Visualisation 92

6.1.2 Functionalities 92

Contents vii

6.2 FEATURE VISUALISER v v v v vt et e e e e e 98
6.2.1 Visualisation 98

6.2.2 Functionalities 101

63 Conclusion 105
III Implementation 107
7 Entities 111
7.1 Context and feature entities 111

7.2 Context and feature model declarations 117

7.3 Context and feature model definitions 118

7.4 Mapping model declaration L. 121

7.5 Mapping model definition L. 122

7.6 Conclusion 123

8 Modelling 125
8.1 Structure of an entity model 125

8.2 Satisfiability algorithm, 127

83 Conclusion 129

9 Architecture 131
9.1 Controlflow 131
9.1.1 CONTEXT ACTIVATION« v v v vt et e e 132

9.1.2 FEATURE SELECTION v v v v i o 133

9.1.3 FEATURE ACTIVATION« . v v v v v e o 134

9.14 FEATUREEXECUTION 135

9.2 Dynamic adaptation 136

9.3 Proceedmechanism 141

94 Conclusion 146

10 Tool support 149
10.1 Overview of the communication 150
10.2 TooLSUPPORT in the implementation architecture 151
10.2.1 CONTEXT AND FEATURE MODEL VISUALISER 153

10.2.2 FEATURE VISUALISER v v v v v iv e n . 153

10.2.3 CONTEXT SIMULATOR . . . « + v v v v v v ee e e e 154

10.3 Extensibility and evolution 154

104 Conclusion 155

viii Contents
IV Validation 157
11 Validating FBCOP’s expressiveness 161
11.1 Smart messaging system 162
11.2 Another smart messaging system 182
11.3 Smart risk information system 186
11.4 Smart meetings system L. 187
11.5 Smartcityguide L 193
11.6 Conclusion L 196
12 Validating FBCOP’s design 197
12.1 Design qualities 197
12.2 Cognitive dimensions framework 200
123 Conclusion L 206
13 Validating the FBCOP approach with users 207
13.1 Setup for alluser studies 208
13.2 Preliminary study of the FEATURE VISUALISER 208
13.3 Preliminary study of the CONTEXT AND FEATURE MODEL VI-
SUALISER v vttt it e e 215
13.4 First completeuserstudy 220
13.5 Second complete user study L. 238
V Epilogue 251
14 Future work 255
14.1 Improving FBCOP’s expressiveness 255
14.2 Adding sensory layer and context definitions 257
14.3 Improving and adding tools. 258
14.4 Performance and scalability issues 258
145 Otherconcerns. v v 259

15 Conclusion 261

Part1

Prologue

CHAPTER

1
INTRODUCTION

1.1 Setting the scope

In the vision of pervasive and ubiquitous computing, end-users can perform
any user action or task on any device at any moment of the day. For instance,
Benoit can read and answer a mail on his smartphone while waiting for the
bus to visit some friends. He can consult his agenda on his phone to fix a
lunch with his godfather while he is walking on the street, or control his
heart rate on his smartwatch while running. All these computing services
allow end-users to be connected everywhere and at any time. However they
could become even more powerful by taking into account any information the
system can collect about the surrounding environment in which the device of
the end-user runs. Assume someone is driving on the highway and receives
a message. It could be really dangerous to read and answer it. But knowing
he is driving, the service could adapt by reading the message out loud so
that he can keep his focus on the road. The system could also propose some
predefined messages to minimise the interaction the driver needs to have with
his phone, or it could redirect the messages to the car dashboard. Another
interesting example is when a researcher enters in a meeting room where she
must present her work. To avoid being disturbed by notifications from her
social networks, when her phone detects she enters the room, it can snooze
automatically her notifications from Instagram and Twitter. Even if these
examples are simple, we can immediately see the interest of such services
that are able to adapt depending on the surrounding environment in which

4 Chapter 1. Introduction

they run.

Sensing the environment of running systems dynamically and adapting
their behaviour at runtime depending on this sensed information allows the
creation of context-aware systems. This information is described as contexts,
representing either the user itself (the user’s preferences, ...), external ser-
vices (the weather, ambient noise), or internal sensors of the device on which
they run (connectivity, battery level). Developing systems that dynamically
adapt their behaviour depending on changing contexts can be more compli-
cated with traditional programming paradigms such as the object-oriented
programming paradigm due to the high-level of dynamicity of such systems.
To address these issues the context-oriented programming paradigm emerged
to build such context-aware systems. Context-oriented systems are able to
adapt their features whenever a change is detected by either adding, remov-
ing, replacing or refining some of their functionalities. When a new particular
situation is sensed, the system reifies this information as a context. Then it
selects the features that will be activated or deactivated depending on the
newly discovered context. Finally it installs or removes these features in the
system to adapt its behaviour at runtime.

Designing context-oriented systems can be quite complex however, be-
cause developers have to think about what features such a system should
have and to what contexts it should adapt their behaviour. The adapted com-
ponents can range from user interface components to core logic or even data
components. They should think carefully about which contexts trigger which
features. When modelling such systems, this leads to an interesting challenge
that is the exponential number of combinations we can have between the con-
texts, the features and how they are linked.

In this thesis we attempt to tackle the design and development issues to
help designers and developers of the context-oriented systems in their respec-
tive tasks with a new paradigm: feature-based context-oriented programming
(FBCOP, for short). This paradigm relies on the context-oriented program-
ming paradigm [HCNO08], the notion of feature modelling [Kan+90] and dy-
namic software product lines [HT08; Ach+09; COH14; Men+17]. The first is-
sue this novel paradigm tackles concerns the foundations of context-oriented
programming by proposing an explicit separation between contexts and fea-
tures. Taking inspiration from Hartmann and Trew [HTO08], this paradigm
models them as a separate context model and feature model, including a
mapping model between them. Then we propose a specific architecture and
programming framework for FBCOP. We also provide a first prototype of an
adaptive user interface library so that the FBCOP approach can be used to
create more realistic applications for users. Having a programming paradigm
without an accompanying development methodology may be useless. We
therefore propose a supporting development methodology for the FBCOP

1.2. Research questions 5

paradigm as a complete process to help designers and developers to create
such context-oriented programs. Finally we implement two visualisation tools
to help programmers of FBCOP systems in their development and debugging
tasks.

In addition to the case studies we will present and implement throughout
the thesis as proofs of concept of our approach, we will also discuss the design
qualities of the implementation of the programming framework, assess FB-
COP’s usability based on the cognitive dimensions of notations framework,
and perform user studies with potential designers and developers to assess
the comprehensibility and usability of the FBCOP approach.

Next, we will introduce more precisely the research questions that will be
addressed in this thesis.

1.2 Research questions

Context-oriented programming is not a novel programming paradigm. Much
work has been done to build its underlying principles, its programming lan-
guages and so on. But many areas of this paradigm are not yet covered from
either a technical or application point of view, such as the modelling, the in-
tegration of user interface adaptation, supporting tools to help designers and
developers and more. To contribute to the evolution of this paradigm we ex-
plore the maintainability and reusability of systems that adapt their behaviour
depending on the surrounding environment (i.e. contexts) in which they run.
This leads us to work on the following main research question: “how can we
build context-oriented systems in a more maintainable and reusable way?”. This
question is split in the following questions that will guide our research.

RQ1 How can we design the contexts and features of a context-oriented system
to promote the maintainability and reusability of these entities?

Contexts are a key notion [Cou+05] in a context-oriented system be-
cause they reify the particular situation of the surrounding environ-
ment in which the system runs. When changes are sensed in the en-
vironment, the system dynamically adapts its behaviour by adding or
removing features (also called behavioural adaptations). Different tech-
niques exist to design contexts and features. In the modelling area
they can be modelled either with an explicit separation [HT08; Ach+09;
COH14; Men+17] or together [Des+07]. In the implementation area
they are often designed without a clear and explicit separation between
both [Gon+11; Lin+11; SGP11]. We explore the potential of a single uni-
fied design bridging the areas of modelling and implementation.

6 Chapter 1. Introduction

RQ2 How can we build an architecture or architectural pattern to support the
designers and programmers in the conception of such context-oriented sys-
tems?

Much work has been done to design different architectures for context-
aware systems, i.e., systems that can adapt their behaviour depending
on the sensed contexts [BDR07; CGMO09]. Nevertheless such architec-
tures do not propose a clear separation of contexts and features to fa-
cilitate the maintainability and reusability of such notions.

RQ3 How can we design a programming language or framework to help pro-
grammers develop more maintainable and reusable context-oriented pro-
grams?

There are many context-oriented programming language implementa-
tions [CHO05; AHR08; CD08; HCH08; GPS10; AKM11; Gon+11; SGP12b;
SGP12a; PV12; Gon+13]. Most of these implement either a layer-based
approach or do not explicitly implement contexts and features. Nev-
ertheless we think an explicit and clear separation between these two
notions increases the maintainability and reusability of them when de-
veloping and designing context-oriented systems.

RQ4 How can we facilitate the development of adaptive user interfaces into our

approach?

Developing context-oriented systems without considering the user in-
terface aspect is limiting if one wants to create realistic context-oriented
applications. While the programming language community has mainly
worked on the context-oriented programming paradigm focussing on
the core logic, the human-computer interaction (HCI) community has
mainly worked on how adaptive systems change dynamically their user
interfaces (the presentation and interaction widgets). To address both
the core logic and the user interface aspect, how can we uniformly pro-
vide support to develop adaptive user interfaces into our approach?
Can we consider a user interface as another kind of ‘behaviour’ adap-
tation to simplify the architecture? How can we build dynamically such
user interfaces? Do we need to use a bottom-up or a top-down approach
to design and compose at runtime the user interface?

RQ5 How can we guide designers and developers when conceiving context-
oriented systems?

Designing and developing context-oriented systems is not a simple task.
Designers and developers should think about the features of the system,
to what contexts it should adapt, what contexts trigger what features
and how the features adapt the system. As they must think of all these

1.3. Contributions 7

things and how they interact, how can we guide them with an appro-
priate development methodology to design and develop such systems?

RQ6 How can we help context-oriented developers in their implementation and
debugging tasks?

Developing software systems with a new programming paradigm is
not straightforward. Context-oriented programming languages are de-
signed to help developers create systems that are able to adapt their be-
haviour depending on some particular situations (i.e. contexts). Given
that the developers need to provide the contexts, the features, a map-
ping describing what contexts trigger what features, it becomes quite
complex for them to keep a global overview of the system with the ex-
ponential number of combinations it may have. They must also think
about which features adapt which application classes of the system. It is
not so easy to visualise all these concepts and their interactions during
their development tasks. Since context-oriented systems have a highly
dynamic nature, visualising how such systems evolve at runtime re-
mains another daunting task for the programmers. Therefore how can
we support prorgammers while implementing and debugging?

Beyond these visualisation issues, other research can be explored to
help developers in their development and debugging tasks. For exam-
ple, can we build a dedicated testing methodology for context-oriented
systems that goes beyond traditional testing approaches?

1.3 Contributions

To design context-oriented systems in a more maintainable and reusable way,
we propose a feature-based context-oriented software development approach
that reconciles context-oriented programming [HCNO08; SGP12a; Car+14], fea-
ture modelling [Kan+90] and dynamic software product lines [HT08; Ach+09;
COH14; Mur+14; CHD15; Men+17]. This solution leads us to propose the
feature-based context-oriented programming paradigm. We define its under-
lying principles, its underlying architecture, an implementation of this pro-
gramming framework on top of the Ruby programming language, a library
to ease the development of adaptive user interfaces, a development method-
ology and two visualisation tools to help designers and developers in their
tasks. In this section we list our main contributions that address the research
questions raised in Section 1.2. For each contribution we precise which re-
search question it tackles.

8 Chapter 1. Introduction

C1 Explicit separation of contexts and features

Contexts and features (also known as behavioural adaptations) are key
notions in feature-based context-oriented programming. While con-
texts are characteristics of the surrounding environment in which a
system runs [Abo+99], features can be defined as “any prominent or
distinctive user-visible aspect, quality, or characteristic of a software sys-
tem” [Kan+90]. Contexts and features are complementary notions that
go hand in hand when building context-oriented systems that can adapt
their behaviour (described in terms of features) dynamically whenever
changes (reified as contexts) are detected in the surrounding environ-
ment. Notwithstanding their complementarity and differences, it has
been observed that the feature modelling notation that serves to model
features [Kan+90] can also be used to model contexts [Des+07]. Tak-
ing this observation and Hartmann and Trew’s multiple-product-line-
feature model [HT08] as inspiration, we propose to design both contexts
and features with feature modelling to model a context model and a fea-
ture model, respectively. To model how a set of contexts can trigger a
set of features, we also define a mapping between contexts and fea-
tures [HT08; COH14]. This contribution addresses research question
RQ1.

C2 Creation of a context-oriented architecture

We propose an architecture [MCD16] for context-oriented software sys-
tems that reconciles the practicality of encoding variations at the code
level in a context-oriented programming language, with the clarity pro-
vided by a high-level architecture for adaptive systems. The purpose
of our architecture is to cover the different phases required to enable
context-orientation in a software system, while making explicit which
parts are provided as part of the adaptation framework, and which are
to be coded by the application programmer. We concentrate our effort
in particular on the following phases: context activation, feature selec-
tion, feature activation and the deployment of the features in the system.
This contribution tackles research question RQ2.

C3 Implementation of a programming language

Based on our feature-based context-oriented architecture, we imple-
ment a FBCOP programming language [DMD19], which clearly sepa-
rates the notion of contexts from the notion of features. As a case study
for our architecture and to demonstrate its feasability we develop it in
the Ruby programming language to create a Ruby application frame-
work. This contribution answers research question RQ3.

1.3. Contributions 9

C4 Integration of user interface adaptation in our programming language

We also study how we can dynamically compose and adapt the user
interfaces without making our architecture complex. Much work tack-
les user interface adaptation using model-driven engineering [Cal+03a;
Lop+08] or other techniques [DCCO08; Yig+19], but integrating these
techniques seems to make our architecture more complex than needed.
To avoid this we investigate another research path by suggesting an ab-
straction of a user interface library in our application framework that
the programmer can use to create its user interfaces and let the sys-
tem manage the user interface composition in the same way as how
it dynamically composes the behaviour of core logic features. Such a
proposal allows considering user interfaces widgets and adaptations as
simple fine-grained features (like the core logic fine-grained features).
However this requires developers to be aware of how the composition
works and the way to define these adaptations becomes their respon-
sibility. This contribution addresses research question RQ4.

In this dissertation, when we will use the terms “user interface adapta-
tion library” or “adaptive user interfaces”, this thus means that we can
build user interfaces that are adaptive since the user interface library is
integrated into our FBCOP approach, which itself is adaptive.

C5 Design of a development methodology

Designing and developing a system is more straightforward with a ded-
icated methodology. In addition to proposing a new programming para-
digm we therefore also propose a dedicated development methodology
to help designers and developers better understand how we can use
our feature-based context-oriented approach to create context-oriented
systems. Without such a development methodology it could be more
tedious for them to create such systems due to the complexity of design-
ing and developing such systems. This contribution tackles research
question RQ5.

C6 Creation of visualisation tools

It comes as no surprise that designing and implementing such context-
oriented systems remains quite complex due to their highly dynamic
nature and the exponential number of combinations we can have be-
tween the contexts and features they adapt [Mur+14]. To help develop-
ers achieve this complex task we will create two separate visualisation
tools. The CONTEXT AND FEATURE MODEL VISUALISER [Duh+19b] pro-
vides a global overview of the system by exposing the system’s context
and feature model as well as the mapping between them, but also which

10 Chapter 1. Introduction

features adapt which classes of the system. This visualisation enables
developers to explore the active and inactive contexts and features of
the system by using filters to customise what information (contexts,
features, active, inactive) they like to see or hide in the visualisation.
The FEATURE VISUALISER [DMD18], on the other hand, is conceived
as an inspection tool to observe the dynamic behaviour of a context-
oriented system. It displays dynamically which contexts trigger which
features, how the features adapt the system (i.e., what classes of the sys-
tem) and in which order the features are activated. This contribution
answers research question RQ6.

C7 Validation of our feature-based context-oriented approach with real context-
oriented designers and developers

Designing a new approach proposing a solution to the designers and
developers of context-oriented systems must be validated by them to
assess its usability and usefulness. For that we conducted four user
studies with master-level students in computer science and engineering
enrolled in software engineering courses. Depending on the validation
they had to play the role of a context-oriented designer or a context-
oriented programmer.

The complete source code of this thesis is available on this accompanying
repository https://bitbucket.org/benoitduhoux/rubycop/.

1.4 Supporting publications
This dissertation is supported by the following primary publications.

[MCD16] In this paper “A Context-Oriented Software Architecture”, we pro-
pose a layered software architecture that reconciles the sensory input,
context discovery and activation, and the selection, activation, and exe-
cution of feature variants in a single implementation framework, which
can be customised by application programmers into actual context-
aware applications. This paper addresses the research questions RQ1
and RQ2 with the contributions C1 and C2 since this work allows to
better define and specify a clear separation of contexts and features and
proposes a complete architecture needed to design context-oriented ap-
plications.

[DMD18] This paper “Feature Visualiser: an Inspection Tool for Context-Ori-
ented Programmers” suggests a visualisation tool to help programmers
to inspect in detail what contexts trigger what features, and how the
feature parts adapt what application classes of the application. This

https://bitbucket.org/benoitduhoux/rubycop/

1.4. Supporting publications 11

paper also motivates a novel case study: a risk information system. This
paper tackles the research question RQ6 with the contribution C6. We
also conducted a preliminary user study to assess its usefulness and
understandability with real programmers (contribution C7).

[DMD19] This paper ‘Implementation of a Feature-Based Context-Oriented
Programming Language” shows the object-oriented architecture, design
and implementation issues of such a feature-based context-oriented
programming language, which we implemented on top of the Ruby pro-
gramming language as an application framework for context-oriented
programmers. We illustrate our language design with a small example
of a feature-based context-oriented program written in this language.
This paper answers the research questions RQ1 and RQ3 with the con-
tributions C1 and C3.

[Duh+19b] This paper “Dynamic Visualisation of Features and Contexts for
Context-Oriented Programmers” presents another visualisation tool that
is intricately related to the underlying architecture of a feature-based
context-oriented programming language, and the context and feature
models it uses. The visualisation confronts two hierarchical models (a
context model and a feature model) and highlights the dependencies
between them. This paper addresses the research questions RQ6 with
a contribution in C6. An initial user study of the visualisation tool is
performed to assess its usefulness and usability (contribution C7).

[Duh+19a] This paper “A Context and Feature Visualisation Tool for a Feature-
Based Context-Oriented Programming Language” is a longer version of
our previous paper [Duh+19b] in which we explain in more detail our
approach. This paper also tackles the research questions RQ1 and RQ2
with the contributions C1 and C2.

In addition to these primary publications, we have also secondary publi-
cations that help us to better define some aspects in this work:

[MDC17] This paper entitled “Managing the Context Interaction Problem: A
Classification and Design Space of Conflict Resolution Techniques in Dy-
namically Adaptive Software Systems” surveys a number of conflict res-
olution strategies, and proposes a design space in which to classify,
compare, and explain the differences between them. Moreover this pa-
per also addresses another case study: an home automation system.
This work allows us to better specify contexts and features of context-
oriented applications when designing such applications. For that it
helps us to better define the contributions C1 and C2 with respect to
the research questions RQ1 and RQ2.

12 Chapter 1. Introduction

[CDD19] This paper “Supporting Citizen Participation with Adaptive Public
Displays: A Process Model Proposal” suggests a process model destined
to serve as a guide for designers of adaptive public displays. We also
explore another running example: a voting system. This paper allows
us to better identify the needs for designers when designing dynamic
context-aware systems. As such it contributes to the research question
RQ5 and contribution C5.

Our FBCOP approach also serves as foundation and inspiration for other
research paths, such as:

[Mar+21] This paper entitled “Test Scenario Generation for Context-Oriented
Programs” proposes a methodology to automate the generation of test
scenarios for developers of feature-based context-oriented programs.
While this work addresses partially research question RQ5 by extend-
ing the contribution C5, it also partly tackles research question RQ6
by adding a new tool to help testers of such systems.

[Mar+22] This paper “Generating Virtual Scenarios for Cyber Ranges from
Feature-Based Context-Oriented Models: A Case Study” relies on feature-
based context-oriented modelling to generate relevant cyber range sce-
narios from an explicit user profile and exploits described in attack-
defence trees. This paper demonstrates our modelling approach can be
reused in another field to design variabilities in cyber ranges depending
on the user profiles (e.g., budget or users’ skills) and attacks or defences
they want to train.

Finally we also supervised many master theses that tackled some parts or
potential extensions of this dissertation. Duhoux [Duh16] implemented a first
prototype of a context-oriented software architecture including adaptive user
interfaces. In this architecture, contexts and features were already separated.
To simulate such applications, we also developed a simulation tool to run
different scenarios of such applications. Kithn [Kith17] reconciled context-
oriented programming and feature modelling and proposed a first prototype
of a conflict resolution strategy to solve some context-interaction problems.
Leung [Leu19] implemented the CONTEXT AND FEATURE MODEL VISUALISER
tool to get an overview of the context-feature model of FBCOP applications.
Van den Bogaert [Van20] explored the usage of a SAT solver to verify the
consistency of the (context and feature) models at runtime and detect model
anomalies at design time. Martin [Mar21a] suggested a novel prototype of
FBCOP to add flexibility and expressiveness in the mapping model in large
and complex systems, a transaction system to activate and deactivate con-
texts to the installation and removal of features in the system behaviour, and

1.5. Running example: a smart messaging system 13

an adaptation mechanism based on pointers. Martou [Mar21b] studied how
designers and programmers could test their context-feature model after de-
signing them by generating tests scenarios inspired by a combinatorial in-
teraction testing. Delhove and Tsang [DT22] explored how multimodality
can be integrated in FBCOP applications. Finally, Iglesias Garcia [Igl22] ex-
tended the FBCOP architecture to include sensor detection and simulation
and Mouligneaux [Mou22] integrated data into contexts to avoid to discre-
tise the different contexts and studied how these variables can be used in the
features.

1.5 Running example: a smart messaging system

Throughout this dissertation, we will use a case study that will serve as run-
ning example to exemplify the different notions in FBCOP. This running ex-
ample will also be used to illustrate all the code snippets we will provide. This
case study is a smart messaging system that allows users to communicate be-
tween them.

The messaging system’s main functionality consists of sending or receiv-
ing messages to and from other users through chat.

Messages can be of different types. By default, we assume the messages
are textual. However, messages can also be richer to include a picture, video,
emoticon, position and more, or even a combination of these different types.
Richer messages can be exchanged depending on the status of the Internet
connection. In fact, when a Wi-Fi connection is sensed, users can send and
receive any kind of messages. But when a cellular connection (e.g., 3G, 4G
or 5G), only textual messages or emoticons can be sent and received. The
(user) positions can be sent whatever the connection but only if the GPS is
activated. Furthermore, when users drive, users should have only the oppor-
tunity to send predefined messages to minimise their interactions with their
car dashboard. For that, a Bluetooth connection must be established between
the car dashboard and the smartphone.

The Internet connection type also affects the main features of sending and
receiving messages. In case users have no Internet connection, they cannot
send and receive messages. Nevertheless users can always write messages
that will be sent as soon as a new Internet connection is sensed.

Whenever users receive a new message, they are notified via a sound
alarm or their device’s vibration mode. What notification mode is used de-
pends on the user availability and the ambient noise level. However the noti-
fication system can be muted when the ambient noise level is quiet, so as not
to disturb the user, or when the user is occupied.

The device type (smartphone, car dashboard or desktop) adapts the layout
of the information being displayed. For that, the master/detail pattern is a

14 Chapter 1. Introduction

well-known pattern to address screen size issues. When the screen is too
small (like smartphones), the view displays either the list of user chats (i.e.
the master part) or the selected users chat (i.e. the detailed view). But when
screen sizes are larger, information are displayed side-by-side, i.e. the chats
list can appear on the left side of the layout and the selected chat can be
detailed in the right part of the layout.

Depending on the device, more or less information can also be explicitly
shown [TC99]. For example, when users open a chat on their smartphone,
users can only see the primary information such as the author and the content
of each message. But when users have larger screens, more information can
be displayed directly such as the sending date of the message. In this example,
we consider the sending date as a secondary information. This means that
such an information is still present but not directly visible on the device’s
screen if it is too small. In that case, users will have to interact with the
system to see such an information.

The application can also depend on the user age and disabilities. For users
having sight problems, texts are enlarged. Otherwise the texts are of normal
size. Children cannot upload a profile picture to preserve their identity. In
addition, filters are applied to censor inappropriate language in the children’s
chats.

1.6 Roadmap

In this section, we will outline the structure of this dissertation which is di-
vided in five parts: PROLOGUE, APPROACH AND USAGE, IMPLEMENTATION, VAL-
IDATION and EPILOGUE.

Prologue

This current chapter (Chapter 1) first set the scope of this thesis with a small
introduction. We then presented the research questions we will tackle in this
dissertation and described briefly its contributions that will answer to these
questions. We also listed the various supporting publications that we pub-
lished and that will be presented during this work. We also described the
running example we will use throughout this dissertation: a smart messag-
ing system.

Next, we will introduce the state of the art (Chapter 2) related to our work.
We will present related research to design and implement dynamically adap-
tive software systems in the research fields of modelling, implementation, user
interface adaptation and supporting tools. For each research field, we will po-
sition our proposal to its literature.

1.6. Roadmap 15

Approach and usage

After positioning ourselves, we will introduce the FBCOP programming para-
digm (Chapter 3) in which we will define the underlying principles and con-
cepts, the system architecture and its control flow and the supporting devel-
opment methodology.

Then we will introduce the FBCOP programming framework (Chapter 4)
that will illustrate how application programmers can implement context-ori-
ented applications with our approach.

Next we will describe and exemplify the user interface adaptation library
(Chapter 5) allowing programmers to create adaptive user interfaces in our
approach.

Finally we will present two FBCOP visualisation tools (Chapter 6). In this
chapter, we will describe the visualisation and functionalities of the CONTEXT
AND FEATURE MODEL VISUALISER and the FEATURE VISUALISER.

Implementation

After introducing and exemplifying the FBCOP approach, we will explain
how the FBCOP programming framework was implemented. We will first
describe how the contexts and features are declared and defined, as well as
the mapping (Chapter 7). We continue with how we integrated the modelling
in our programming framework (Chapter 8). Then we will explain how the
architecture is implemented (Chapter 9), i.e. its control flow, how the dynamic
adaptation alters the system at runtime and how the proceed mechanism, a
key notion in context-oriented programming [HCNO08], is implemented and
executed. Finally we will describe how we developed the tooling support
(Chapter 10) to easily create new tools to help application programmers.

Validation

In this part, we will demonstrate first that the FBCOP approach is sufficiently
expressive to create context-oriented applications (Chapter 11). We will show
that with the help of five case studies: two variants of the smart messaging
system, a smart risk information system, a smart meetings system and a smart
city guide. These case studies are either designed and or implemented by us
or by others. For each case study, we will illustrate its context-feature model,
its implementation and/or its execution according to what was done by the
authors.

Then we will assess FBCOP’s design (Chapter 12). We will discuss first
what design qualities (maintainability, extensibility, adaptability, readability
and scalability) we have or not as a consequence of our design choices in

16 Chapter 1. Introduction

FBCOP. We will then evaluate FBCOP’s usability based on the cognitive di-
mensions of notations framework.

Developing a complete approach that is not understandable, irrelevant
or unsuitable implies that this approach will be never used. Thus we must
also validate its usefulness and usability with real participants (Chapter 13).
For that we conducted four user studies in which we asked our participants
to play the role of designers and/or programmers depending on the study.
The two first user studies were preliminaries studies, each concerns one of
the visualisation tools which we developed. The two last user studies were
more complex user studies since we assessed the usefulness and usability of
the full FBCOP approach (i.e., including modelling, programming framework,
supporting development methodology and visualisation tools).

Epilogue

In this part, we will conclude this dissertation. We will first discuss the po-
tential improvements we can still make to complete our FBCOP approach
(Chapter 14) and finally conclude this dissertation (Chapter 15).

CHAPTER

2
STATE OF THE ART

Self-adaptive software systems are able to modify themselves automatically
in response to events occuring during their execution [ST09]. Such events
can be internal (e.g. failure) or external (e.g. user interaction) events of the
software system. Such systems are often conceived in terms of an adap-
tation loop, called MAPE-K, which decomposes the adaptation process into
Monitor, Analyse, Plan and Execute processes and which make use of a shared
Knowledge-base [ST09]. From the sensory input, the monitoring process aims
to gather sensed information and reify it in such a way that the analysis pro-
cess is able to interpret it and detect if a change to the system is required. Once
a change is needed, the planning process must decide what the changes are
and how they will be applied by the execution process. Finally, these changes
are executed by the system depending on what it is going on in its environ-
ment.

Context-aware systems can be regarded as a specific class of self-adaptive
systems. Krupitzer et al. [Kru+15] confirmed this statement by showing how
such self-adaptive systems can adapt themselves depending on their surround-
ing environment. Cardozo and Mens [CM22] also see context-oriented sys-
tems as a special kind of self-adaptive systems but relying on a different un-
derlying implementation technique.

Now that we know that context-oriented applications are self-adaptive
systems that adapt their behaviour depending on the surrounding environ-
ment, we will explore the literature on how we can conceive such context-

17

18 Chapter 2. State of the art

oriented applications. For that we will first review different modelling tech-
nologies to see how contexts and features can be modeled at design time
(Section 2.1). Next we will look at how such systems can be implemented
(Section 2.2). We will also discuss many approaches on how adaptive user
interfaces can be implemented (Section 2.3). We will also look at the liter-
ature for supporting tools that help designers and programmers when con-
ceiving context-oriented applications (Section 2.4). Finally we will conclude
this chapter with a discussion to make more explicit the connections between
our contributions and the state of the art (Section 2.5).

2.1 Modelling

Modelling software systems able to adapt their behaviour at specific times
(ie. at design-, compile-, configuration-, deployment-, or at run-time) has
been largely explored. As our work is about context-aware systems and more
specifically context-oriented systems, we focus in particular on approaches
that emphasise the modelling of both contexts and features to design such
systems. After quickly introducing our methodology to find papers that in-
terest us in the research literature, we compare the different approaches found
based on a set of questions that distinguish the key concepts underlying these
approaches. Finally, we will put in perspective our own approach to this re-
lated work.

In addition to approaches that emphasise the notions of context and fea-
ture, other approaches might also be suitable to model highly dynamic ap-
plications that are able to dynamically adapt their behaviour depending on
contexts, such as for example role-based modelling. In role-based modelling,
an instance’s behaviour is adapted by roles according to the current context
in which that instance runs. In other words, this means that the behaviour of
the instance can be different according to the role it plays for the particular
situation in which the instance is. Kithn et al. [Kith+14] investigate different
role-based modelling solutions to design such systems. Even if such a mod-
elling is also appropriate to build context-aware systems, we will focus our
research on the notion of context and feature since our lab has a valuable
expertise in these concepts.

Methodology We applied the following methodology to find articles of in-
terest. We looked for papers that contain at least the keywords “context-
oriented” or “context-aware” and the keyword “dynamic software product
line” in their title or abstract and that were published in the proceedings of
SPLC (Software Product Line Conference), VaMoS (Variability Modeling of
Software-intensive Systems) or SEAMS (Software Engineering for Adaptive
and Self-Managing Systems). From these papers, we conducted some snow-

2.1. Modelling 19

balling (discovering interesting missing papers from the references of the col-
lected papers) to get a larger vision of the existing work in this field. Some
additional references were provided by our network that envision this field
in their manner to complete our literature study.

We analysed all these papers through several questions:

= “what formalism do they use to model contexts?”,

= “what formalism do they use to model features?”,

= “are contexts and features explicitly separated in the modelling?”,
= “how is the mapping from contexts to features formalised?”,

= “does the approach enable dynamic reconfiguration and/or restructur-
ing of the models at runtime?”, and

= “do they discuss about a consistency checking mechanism when a re-
configuration occurs?”.

The results of this analysis are discussed next and summarised in Table 2.1.

Modelling approaches A software product line describes a family of soft-
ware systems that share a common set of features satisfying the specific needs
of a particular domain. Products (software systems) of that family are pro-
duced by selecting and composing a set of features (configuration) corre-
sponding to the needs of a particular client or variant of the system. Often
feature modelling [Kan+90] is used to describe the possible features, together
with their relations and constraints, of such a family. The features of a family
describe the commonalities (features always present) and variabilities (fea-
tures that may be present) of the different products/systems belonging to the
family. Dynamic software product lines (DSPL) try to address the need of
dynamic software adaptation to provide the flexibility required by more dy-
namic environments and users [Cap+14]. Their goal is that the product/soft-
ware adaptations can be selected even at runtime [BLH10]. To model these
systems feature modelling is often used. For self-adaptive systems to become
truly context-oriented, an alternative to extending feature models with ad-
ditional attributes that may contain contextual information, is to model ex-
plicitly the contexts, based on which the features need to be adapted dynam-
ically. Some research on software product lines has proposed to use feature
modelling not only to model the features of the systems in a product line,
but also to model the possible contexts, together with their relations and con-
straints, on which (the selection of) these features depend [Ach+09; SLR13;
COH14; Mur+14; CHD15; Men+17; Sou+17]. All these approaches are re-
lated directly or indirectly to the work of Hartmann and Trew [HT08] who

20 Chapter 2. State of the art

propose a multiple-product-line-feature model composed of two separate sub-
models: a context variability model (representing the contexts and their intra-
dependencies) and a traditional feature model. This allows them to model not
only what the common and variable features are, but also how contexts affect
what features should (not) become part of a product, by declaring explicit
dependencies from the context model to the feature model. A main differ-
ence between Hartmann and Trew’s work and other approaches [Ach+09;
SLR13; COH14; Mur+14; CHD15; Men+17; Sou+17] is that Hartmann and
Trew’s proposal is dedicated to the configuration time and not for the run-
time. Therefore Hartmann and Trew’s modelling allows to generate a product
but this product cannot reconfigure its behaviour dynamically when the sur-
rounding environment changes. Furthermore even if the mapping based on
the “excludes” and “requires” dependencies used by Hartmann and Trew are
mainly reused in many other approaches [SLR13; COH14; Mur+14; CHD15;
Men+17; Sou+17], Acher et al. [Ach+09] suggested to use propositional logic
to be more expressive in the mapping with event-condition-actions rules be-
tween the context and feature model.

In addition studying the interest of separating contexts and features in
two different models, Capilla et al. [COH14] also proposed another strategy
which aimed to model the context and non-context features as parts of a sin-
gle unified feature model. In this alternative strategy, they use labelling to
distinguish the context features in the feature model from the more tradi-
tional features. By comparing both approaches, they conclude that while the
strategy with a clear separation of (context and feature) models increases the
number of dependencies between the two models, is “more reusable when sev-
eral contexts are involved”, while the strategy using a single unified feature
model “simplifies the model and reduces the number of dependencies” between
the features [COH14].

All these approaches discussed above use feature modelling to formalise
both contexts and features. Other approaches rely on other techniques to
model contexts while maintaining feature modelling for the features [JLS10;
Mau+18]. For example, Jaroucheh et al. [JLS10] suggest to model contexts
with ontologies because such modelling offers a high expressiveness to de-
scribe the contexts and propose interesting reasoning techniques on con-
texts [BDRO7; Bet+10]. In brief, ontologies describe the contexts in a bottom-
up fashion with context primitives composed of context entities, attributes,
associations and rules [JLS10]. They also use the notion of “stereotypes” on
the ontology elements to express the mapping between the contexts primi-
tives and the context feature model [JLS10].

Mauro et al [Mau+18] propose to capture contextual information directly
within the feature model. They claim that such an approach is “less flexible,
modular and expressive” but addresses the maintainability issue of large soft-

2.1. Modelling 21

ware product lines [Mau+16]. They also add the notion of validity formulas
(propositional formulas defining some conditions) on each feature to ensure
the feature is selectable in some cases [Mau+16].

In addition to approaches that rely fully or partially on feature modelling
to model context-aware systems, other approaches exist that use other for-
malisms [Hal+06; Des+07; Ben+08a; Ben+08b; Mor+08; FWMO08; Car+15].
Hallsteinsen et al. [Hal+06] suggest to model the contexts and features simi-
larly with entity types since they consider “a software system and its context as
a system of interacting entities”. To link the contexts and features, they use the
concept of property annotations associated with ports to “reason on how well a
variant matches its context”. Desmet et al. [Des+07] suggest to model context-
aware systems through context-oriented domain analysis (CODA). CODA is
syntactically inspired by feature-oriented domain analysis [Kan+90] but with
a different semantics. Their approach models the system as an hierarchical
structure where the features compose the top of the model and are refined
by context-dependent adaptations on the bottom of the model. The context-
dependent adaptations are dynamically selected by the system if the condition
on the incoming edge is respected (i.e., if the contexts are respected for this
specific adaptation). Bencomo et al. [Ben+08a; Ben+08b] propose an approach
that relies on orthogonal variability modelling for the features and state mod-
elling for the contexts. The orthogonal variability model formalism allows to
model only the varibility points and variants of a system [PBV05]. In their ap-
proach, the system can evolve from one configuration to another with transi-
tions, where the transitions and the policies associated (in the form of “event-
do-actions”) represent the context variability and in which case the system
must reconfigure itself. Morin et al. [Mor+08] explore the modelling of fea-
tures with aspect-oriented modelling, where each apsect model is “composed
of a graft model (i.e., what to weave), an interface model (i.e., where to weave)
and a composition protocol describing how the graft model must be weaved into
the interface model”. To simplify the formalism of the context model, they use
a minimal representation of the different situations that occur in the envi-
ronment. Finally to map what contexts must trigger what features, they use
adaptation rules that link directly the values of the sensors to the dedicated
variants. Fernandes et al. [FWMO08; FWT11] propose to design separately the
feature model and the context feature model to avoid a loss of understand-
ability and readability. Both are modelled with an extended feature modelling
formalism: UbiFEX [FWMO08]. As they are split, they propose to use con-
text rules to relate the contexts and features. Finally, Cardozo et al. [Car13;
Car+15] suggested to formalise the contexts and their activation semantics
with petri nets. In their solution, the behavioural adaptations (features) are
directly attached to the contexts. Therefore they did not propose a modelling
for the features.

22 Chapter 2. State of the art

Dynamic reconfiguration and consistency checking Except for the pro-
posal of Hartmann and Trew [HTO08], all approaches in Table 2.1 allow dy-
namic reconfiguration. This means that the system is able to adapt its be-
haviour dynamically when contexts change. However such operations can
be unsafe and could lead to errors and inconsistencies if the system reaches
an invalid configuration, if we do not check the new proposed configuration
before deploying it. Even if many of the papers referenced did not discuss
explicitly about what mechanisms they implemented, they mainly claim that
they check the novel configuration before they deploy it. In case of invalid
configurations, they do no reconfigure the system. For example, Fernandes
et al [FWT11] use their own verification mechanism (UbiFEX-Simulation) to
ensure all constraints are respected. Other approaches can also be used such
as model checking [Sou+17], model checking and usage of a specific solver at
runtime [SLR13], automated decisions [Mur+14], Petri nets [Car13; Car+15],
constraint-programming solvers [Mau+16] or SMT (Satisfiability Modulo The-
ories) solvers [Mau+18].

Dynamic restructuring Going further, we can also adapt the structure of
the models by adding, replacing or removing new contexts or features du
to a new version of the system that was not designed previously. In the
approaches we analysed, some of them allow such a dynamic restructur-
ing [Hal+06; Ben+08a; SLR13; COH14; Mur+14; CHD15; Men+17; Mau+18].
However this evolution is a complex task [BQ15].

Positioning Our own approach is strongly inspired by the work of Hart-
mann and Trew [HT08]. Therefore we model the contexts and features with
feature modelling in terms of a separate context and feature model. We agree
with Capilla et al. [COH14] that a clear separation of the contexts and fea-
tures leads to a more maintainable and reusable approach. However we pro-
pose a simpler context-feature mapping than some other approaches, such as
for example Acher et al. [Ach+09], to reduce the complexity of our approach,
even if this comes at the cost of losing a bit in expressiveness. In our map-
ping, we can only express mapping relations where each relation is a list of
contexts triggering a list of features. With such an approach, we are able to
design context-aware systems that reconfigure or adapt dynamically their be-
haviour in response to contextual changes in their surrounding environment.
We also ensure consistency checking based on an algorithmic approach be-
fore adapting the behaviour by verifying that all the constraints of the models
are satisfied. However our approach does not support dynamic restructuring
of features or contexts that were not designed up front (though this could be
explored as part of future work).

23

2.1. Modelling

23pd jxau ay3 uo uoypNUIIUOd

sarouapuadap
I9A]OS pue Surmionrisar pue SIpNIX3 pue
Sunydayd [spoN uoneINSyu0day sarmbay S9K Surepowt aInjes] Surqepowt a1njea [eTyT1S]
[rrimd]
o04-py uoneIngyuoday So[I 3Xaqu0y SoK Xdd190n Xqd4n | [sowmdl
Sur[repouwt
- uonemgyuoday JEETACTER El TN sax Surepowr sxnjes,y [eo130[01uQ [o1s(]
- uoneINSYU0dY o13o1 reuonyisodorg S9K Surepowt aInjes| Surepowt aInjes] [60+YoV]
Surepouwx
- uoneIn3yuooay so[n1 uorjeldepy ON Pa1uaLIO-109dsy - [80-+101N]
sarouapuadap
.S9pNIXa, pue
- - Saxmbay S9K Surpepowr a1njea] Surpepour a1njea, [80LH]
Sur[repour
Surmionrisar pue Aqerrea [q80+uag]
- uoneI3yuooay SUOT}OR-0P-1UIA] ON [euo8oy11Q Surpepowt ajels | [ego+uag]
- uopemIYuody 20y-py ON vaod vaod | [Lo+sed]
Surmjonrisar pue suorjejouue
- uoreIn3yuoday Ayradoxg - ad4y Linuyg ad4y Linuyg [90+TeH]
Sunyatpd sajepdn WISI[eULIO] (pareredas WISI[eULIO] WIST[RULIOJ
Aouaysisuo)) orureuk g [Ppowr SaInjesy pue Surepow Surepow
Surddepy S]X9JU0D Iy ERNIER| JXa1U0))

‘1aded oy} 10J passnosip jou st uorysanb oy} yer) sueour [0 © ur
P91UaLI0-1X91u00 dAn3depe A[[edTureuAp urI sa.Injesj pue s3x93uo0d duryap o} sayoeordde Surffopour JuardgIp Jo Arewrwing :1°g 9[qeL

«

uaydAy uy ‘suraysAs

Chapter 2. State of the art

24

sarouapuadap
S9pNIXa pue

Sunyoayd [9poy uoneIndyuooay Saxmbay EE)S Surpepout a1njea] Surpepowt a1njea] [L1+n0g]

Surmjonrisax pue
I9A108 TINS uoneINSyu0day se[nuLIoy AJIpIfeA ON Suropowt aInjes] - [g1+neN]
Surmionrisal pue

I9AT0S dD uoneI3yuooay se[nuwiIoy AJIpIres ON Surpepour a1njea] - | [or+nen]

[s1+1e0]

19U 1119 uoneIndyuooay - ON - S19U 119 [e11e0]
SurpqeT +
sarouapuadap
Surmionrisar pue SIpNIX3 pue

UOISIOdp pajewiolny uoneINSYU0dY Sarmbay yog Surepowt aInjes] Surepowt aInjes] [F1+m]
SuraqeT +

sarouapuadap [L1+uoy]

Surmnjonisar pue SOpN[OX9 pue [sTaHD]

- uoneIn3yuooay Saxmbay ylog Surpepout a1njea] Surpepowt a1njea, [¥1HOD]

Sunyatpd sajepdn WISI[eULIO] (pareredas WISI[eULIO] WISI[RULIO]
Aouaysisuo)) orureuk g [Ppowr SaInjesy pue Surepow Surepow
Surddepy S]X9JU0D Iy ERNIER| JXa1U0))

‘roded a3 10 passnosip jou st uorisanb a1} Jeyy) sueowr [[90 € UI -, UIYdAY Uy ‘suraysAs
P91UaLI0-1X9]u0d dAn3depe A[[edTtreuAp Ul $9.IN)e3J pue $3X93u0 dUuTyap 0} sayoeordde Surffopour JuardIp Jo Arewrwng :1°g 9[qeL

2.2. Implementation 25

2.2 Implementation

Some of the modelling papers we discussed previously also introduce which
kind(s) of implementation approaches they used to implement context-aware
systems. We can find different approaches such as component-based ap-
proaches [Hal+06; FWMO08], model-driven approaches [Ben+08b], context-
oriented programming languages [Car13; Car+15; Men+17], context-aware
reconfiguration engines [Mau+18] or even combinations of component-based
and reflection approaches [Ben+08a], aspect-oriented programming with mod-
el-driven approaches [Mor+08] or a mix between model-driven and service
component approaches (that mix service-oriented and component-based ap-
proaches) [PBD09]. However, none of the papers that model contexts and
features with feature modelling discuss about which kind of implementation
mechanisms they use, except Mens et al. [Men+17] who explain they use a
dedicated context-oriented programming language.

From this quick overview and different surveys [BDR07; Car13; Kru+15],
we can already observe that many implementation solutions exist to imple-
ment context-aware systems. Among these solutions, some of them are based
on IFs-statements or design patterns such as the decorator, strategy, visitor,
chain of responsibility, or state pattern. Nonetheless we did not consider these
solutions to implement context-oriented applications because some imple-
mentation techniques are less maintainable such as the IFs-statements, and
those based on design patterns create too much boilerplate code due to the
additional structure introduced by these design patterns [CM22]. Other so-
lutions based on programming languages also exist to implement such sys-
tems, such as subject-oriented programming [HO93], role-oriented program-
ming [Her07; Kith+14] or context-oriented programming [HCNO08]. For sub-
ject-oriented programming and role-oriented programming, the notion of con-
text is replaced by a notion of subject or the role played by an object. How-
ever as they have been already surveyed and because our lab has a signifi-
cant expertise with context-oriented programming [GMCO08; Gon+11; PV12;
Gon+13], we mainly focus our analysis here on context-oriented program-
ming. In addition, Cardozo and Mens [CM22] claim that context-oriented
programming is a “viable option” for developing context-oriented systems.
They also explain that using such a language allows to preserve a clear sepa-
ration between the application and adaptation logic.

The context-oriented programming paradigm was explicitly conceived to
facilitate the implementation of context-aware systems [KR03; HCNO08]. This
programming paradigm provides dedicated programming language abstrac-
tions to adapt the behaviour of a software system dynamically upon changing
contexts. In context-oriented programming, contexts and behavioural adap-
tations (modelled as features in this dissertation) are first-class language en-

26 Chapter 2. State of the art

tities. The behavioural adaptations get (de)activated in the code whenever
their corresponding contexts become (de)activated. Nowadays many differ-
ent implementations of COP language prototypes exist [KR03; CH05; GMHO07;
LDNO07; AHR08; CD08; GMC08; HCH08; GPS10; Was+10; App+11; AKM11;
Gon+11; HIM11; KAM11; Lin+11; SGP11; SGP12b; SGP12a; PV12; Gon+13;
SMH17]. To implement the behavioural adaptations, many approaches are
based on a layer-based approach where each layer corresponds to a particular
context and contains the dedicated adaptations for this specific context. Yet
other approaches exist, many of which were implemented in our lab [GMHO07;
GMCO08; Gon+11; PV12; Gon+13] to manage the behavioural adaptations.
However, none of these approaches separate explicitly the contexts and fea-
tures from an implementation perspective. Preliminary work to emphasise
the behavioural adaptations as actual features in a context-oriented program-
ming approach has been proposed by Poncelet and Vigneron [PV12] and Car-
dozo et al. [Car+14] since contexts and features have similarities in their ded-
icated programming approaches [Car+11]. But none of them have an explicit
separation of contexts and features.

Positioning In this dissertation, we take this idea yet a step further and ex-
plicitly separate the features representing the behavioural adaptations from
the contexts that trigger them, even at the level of the implementation lan-

guage.

2.3 User interface adaptation

Adapting dynamically the features of an application aims to better fit them
to the end-users’ requirements depending on the status of the surrounding
environment in which they run. For a long time, the human-computer inter-
action (HCI) community has been investigating how user interfaces can be
adapted so that their usability is still preserved [TC99]. In the mindset of this
community, the first focus is on how users and tasks can be modelled [TC99;
CCTO01a; Cal+03b; Pat04; Van+05; Dem+07; DCC08; MVA08; Mar+17].

Thevenin and Coutaz [TC99] define adaptation with two different no-
tions: adaptivity and adaptability. While adaptivity is the fact that an adap-
tation is triggered by the system, adaptability is the fact that the human trig-
gers the adaptation. Since our FBCOP approach encompasses both kinds of
adaptation, we will use the keyword “adaptation” and the adjective “adaptive”
throughout this dissertation. These words capture both notions of Thevenin
and Coutaz [TC99].

Several various design spaces for user interface adaptation have been pro-
posed [TC99; Van+05; MV13]. For example, Thevenin and Coutaz’s design
space relies on four axes that model the actor, the target for adaptation, the

2.3. User interface adaptation 27

means and the time of the adaptation [TC99]. The actor represents who initi-
ates the adaptation (i.e. either the user or the system). The target for adapta-
tion stands for from what the adaptation is needed (i.e. the user, environment
or platform). The means of adaptation represents which aspect of the be-
haviour is adapted (e.g. the system task model, the rendering techniques or
the help subsystems). And the time denotes when the adaptation is made (i.e.
either statically or dynamically). Vanderdonckt et al. [Van+05] define a design
space for context-sensitive user interfaces based on seven axes that respond
each to a particular question: with respect to what?, what?, for what?, who?,
how many?, when? and with what?. These questions describe the entities
for which an adaptation must be done (e.g. the user, the device, the physical
environment, and so on), the aspects that will be adapted (e.g. the presenta-
tion, the dialog, and more), the steps considered for the adaptation (i.e. the
initiative, the proposal, the decision or the execution), the entity that trig-
gers the adaptation (i.e. the user, the system or both), the number of needed
reconfigurations to reach the expected adaptation, the time of the adapta-
tion (i.e. at design and/or run time), the kind of models used to perform the
adaptation (i.e. a passive, active or shared model), respectively. Other design
spaces [MV13; Bou+17] or conceptual reference frameworks [Abr+21] have
been also explored to define either the user interface adaptation or intelligent
user interface adaptation.

Since there exist so many design spaces with many different criteria, we
will only select some of them that are relevant for us to better relate our user
interface adaptation library to this large field. We mainly took inspiration
from Vanderdonckt et al’s design space [Van+05], but we use the perspective
of the work developed in this thesis to define a subset of their design space
based on our expertise of conceiving context-oriented systems. The criteria
of relevance answer to the following questions:

= what is the context of the adaptation (i.e. user, environment or physical
characteristics)?,

m what is the aspect (e.g. presentation, navigation, content, and so on)
being adapted?,

m how are the contexts and adaptations modelled?,
m when does the adaptation occur?, and
m which mechanisms are used to adapt the user interfaces?.
Context of adaptation Thevenin and Coutaz [TC99] define the concept

of plasticity in user interfaces as “the capactity of a user interface to with-
stand variations of both the system physical characteristics and the environment

28 Chapter 2. State of the art

while preserving usability”. Following this definition, plastic user interfaces
adapt their user interfaces to the environment and platform, but do not to
the user as context. Other approaches also target the platform and environ-
ment [CLCO5b].

A lot of approaches are only platform-based [EVP00; Con+03; MPS03;
Bal+04; CVC08; MVAO08; PSS09; KS15]. Nevertheless Kurz et al. [KPG04] pro-
pose an adaptation solution depending on the platform but do attempt to in-
clude the user.

Motti and Vanderdonckt [MV13] also surveyed many frameworks that
treat user interface adaptation and classified each of them by denoting which
contextual dimensions are used. Among these surveyed solutions, only this
of Dey et al. [DASO01] considers all kind of contexts (i.e. user, platform and en-
vironment). In addition to their survey, they also propose a conceptual frame-
work for context-aware adaptation (Triplet) that treats all types of contexts.
Other approaches also adapt the user interfaces to the user context, platform
and environment [Cal+03b; Lim+05; DCC08; Lop+08; Blo+11; Yig+20].

Aspects of adaptation Adaptation can be performed at many levels:

m presentation-level [EVP00; CLC05a; CLCO05b; Cle+07; CVC08; MVAOS;
PVMO09; Blo+11; Fis12; KS15],

= layout-level [Yig+19; Yig+20],

m style-level [Yig+19],

m navigation-level [Fis12; Yig+19; Yig+20],

m content-level [Mal+10; MVAOS; Fis12; Yig+19],
m data-level [Cle+07],

m modality-level [Yig+20],

m interation-level [Blo+11],

m dialog-level [EVP00; CLC05a; CLCO5b; Cle+07],
m widget-level [Cal+05]

m task-level [CLCO5a; Cle+07; Yig+20] and

m service-level [Cle+07; Yig+20].

We can observe that most work focusses on the presentation-level, that
most other levels are less discussed in literature.

2.3. User interface adaptation 29

Modelling of contexts and adaptations Many approaches model con-
texts with ontologies [Cal+03b; Cle+07; Sot+07; PVM09]. But other tech-
niques for context modelling are also used in the HCI community such as
profiles (CC/PP: composite capabilities/preferences profiles) [KPG04], prop-
erties [Blo+11], models [Lim+05], and ad-hoc solutions [Giu+19; Yig+20].
For the adaptations, this community often defines them through rules
that are triggered when the adaptation needs to occur [CCT01a; CLCO5b;
Lim+05; Sot+07; Lop+08; MV13; Yig+19]. Only a few approaches rely more on
software engineering mechanisms to model the adaptation, such as through
aspect-oriented modelling [Blo+11] or feature modelling [Mar+17].

Time of adaptation In the HCI community, the time at which the adap-
tation is done (e.g. design or run-time) is also important [Cal+03b; DCC08].
While the adaptive user interfaces and how these user interfaces evolve de-
pending on the contexts are defined and foreseen at design time, the user
interfaces are really adapted at runtime [Dem+07; Lop+08; Yig+19].

Implementation mechanisms for adaptation A lot of approaches rely
on the CAMELEON Reference Framework to adapt their interfaces dynami-
cally depending on the contexts [CCT01a; Cal+03b; Lim+05; Van+05; MVA0S;
Mar+17]. This CAMELEON Reference Framework [Cal+03a] is a top-down ap-
proach and is built on a four-layered approach. First, the designers define the
tasks and concepts of the system in order to design the different user inter-
actions. These user tasks are then reified into abstract user interfaces, which
are still independent of the concrete interaction modalities. After this trans-
formation, these abstract user interfaces are reified in turn as concrete user
interfaces to be interactor-dependent. Finally the concrete user interfaces are
reified a last time into final user interfaces that are platform-specific. Many
approaches following this framework use model-driven engineering as imple-
mentation mechanism [CCT01a; Cal+03b; Lim+05; MV13; Mar+17; Yig+20].
From their initial models (i.e. the user tasks), the different approaches trans-
form and reify them with rules into transient models to finally generate the
final code that is executable. In addition to relying on model-driven engineer-
ing, Martinez et al. [Mar+17] combine it with interactive genetic algorithms.

In addition to using model-driven engineering, Demeure et al. [Dem+07;
DCC08] propose an architecture that combines model-driven engineering and
interactors toolkits, and Sottet et al. [Sot+07] combine model-driven engi-
neering with a service-oriented approach. Other approaches are also based
on model-driven engineering [PS02; Con+03; CLC05a; PSS09]

However other implementation mechanisms also exist and are built on
machine learning [Bou+17; Joh+19], adaptive layouts [Bou+17], adaptation

30 Chapter 2. State of the art

engines [Lop+08], component-based approaches [Gab+11; KS15; Yig+19], gen-
erators [Luy+08; MVAO8], architectural solutions [KPG04; Cle+07; DCC08;
Blo+11], frameworks [Con+03; CLC05b], language solutions [CVC08], com-
binations of them [PVMO09], or ad-hoc solutions [VLC03; Giu+19]. More ap-
proaches were also surveyed by Motti and Vanderdonckt [MV13].

Positioning In our approach, we propose a prototype of a user interface
library integrated into FBCOP to develop adaptive user interfaces.

While all types of contexts are treated (with our FBCOP approach), in the
case studies we have considered so far the adaptations are mainly dedicated
to the presentation. But nothing prevents us from having other kinds of adap-
tations, such as those focusing on modalities and interactions for example.

In our approach, even if the user interface adaptation must be defined at
design time, user interface adaptation is executed at runtime as with the pre-
vious approaches. Therefore we also have adaptive user interfaces. However,
since we ask programmers to implement the user interface parts in the dif-
ferent features, our solution does not follow the “focus on specification instead
of coding” statement [MPV11] that we can find with model-driven engineer-
ing solutions. In our approach, we opt for a different specification approach
which translates closer to the coding. In addition, with our solution, we trans-
fer the responsibility to the programmers. This increases the expressiveness
to create user interface adaptations since we are not limited to the models and
adaptation rules.

Furthermore, with our approach, we advocate that programmers can also
ensure a good separation of concerns (between the user interfaces and core
logic) [Con+03; God08] since the adaptations of the user interface are sepa-
rated into the different feature parts.

2.4 Supporting tools

In our FBCOP software development approach, we propose a modelling and
programming framework to support FBCOP designers and programmers when
they conceive FBCOP applications. However others tools can also help them
in their different tasks, such as a development methodology, visualisation and
debugging tools or testing mechanisms.

Supporting tools are important to better understand the approach and
demystify its complexity. As stated by Hermans [Her21], programmers must
understand where to start when they must implement software systems. For
that, they must understand the different interactions that exist between the
different notions and components of the approach. By helping them with
supporting tools, programmers can rely on different tools to understand and
check whether what they have done is correct.

2.4. Supporting tools 31

As we propose a development methodology, two visualisation tools, and
a context simulator, we will briefly discuss for each of them the alternatives
we found in the literature that could be interesting to relate to our approach
or be inspired by it to create other visualisation tools.

Development methodology Rosenberger et al. [RGR18] introduce a pro-
cess model that helps designers to analyse the contextual requirements and
to define contextual functionalities. Three steps compose the process model:
activation determination, process definition and context elicitation. In the
initial step, designers must first determine the activities that must be con-
textualised in their application. They must then define how their application
should act when context changes are sensed. Finally they have to determine
the contexts of their applications.

Henricksen and Indulska [HI06] describe a generic software engineering
process that is composed of the following steps: analysis, design, implemen-
tation/programming, infrastructure customisation, and testing. This process
model seems traditional when conceiving applications but they extend some
steps to include aspects coming from the creation of context-aware applica-
tions. One interesting phase the authors develop is the analysis. In this phase,
designers must first define the features of their application. This inital step
is common when designing applications. But here, the authors extend the
analysis phase to include the contexts and the mapping on which context-
aware applications rely on to adapt their behaviour depending on contexts.
After defining the features, designers have to determine thus the contexts of
their application. Finally designers must refine features to relate them to their
corresponding contexts to define the mapping and continue to iterate till the
requirements are met.

From an analysis of 11 in-depth interviews conducted with designers of
context-aware systems, Bauer et al. [BNK14] also propose a process model in
four steps. In the process model, designers must first frame a design space
of contexts by determining what contexts are relevant for their applications.
Then designers have to encode the features triggered by the contexts. Next
they must unify and complete their solution by adding needed constraints to
better design their application. Finally they have to evaluate if their solution
meets initial requirements.

Visualisation tools There exist several visualisations or tools helping de-
velopers to manage the complexity of having contextual information, many
fine-grained features or contextual adaptations. For example, some tools help
to visualise models or interactions that features can have with the system’
classes.

32 Chapter 2. State of the art

Bobek et al. [Bob+15] suggest a ContextViewer tool that displays contex-
tual information to users to help them to better understanding context data.

Kistner et al. [Kas+09] propose the FeatureIDE tool to visualise feature
models, which is an open-source visualisation framework integrated in the
Eclipse development environment. For dealing with larger feature models,
Mendonca et al. [MBC09] tackle the scalability issue with a S.P.L.O.T. web-
based system that represents feature models in a much more compact tree-
like structure. Urli et al. [Url+15] present a visual and interactive blueprint
that enables software engineers to decompose a large feature model in many
smaller ones while visualising the dependencies among them.

Illescas et al. [ILE16] put forward four different visualisations that focus
on features and their interactions at source code level, and evaluate them
with four case studies. Apel and Beyer [AB11] present a visual clustering tool
that clusters program elements (like methods, fields and classes) based on the
features they belong to, as a way to assess the cohesiveness of the features.
Features whose elements form clusters are more cohesive than features whose
elements are scattered across the layout.

Interaction tools Furthermore others tools offering an interaction either
to design models or activate contexts to trigger adaptations exist.

Nieke et al. [NES17] created the DarwinSPL tool suite for integrating mod-
elling in context-aware software product lines. This tool helps developers to
model the three dimensions (spatial, contextual and temporal) of the variabil-
ities of such approaches.

Boucher et al. [BPH12] proposed to derive user interfaces from feature
models in order to let the users select the appropriate configuration of their
systems while ensuring the configuration remains valid.

In the domain of context-oriented programming, Duhoux [Duh16] pro-
posed tool support to simulate the execution of a context-oriented system
with many context-specific adaptations.

Positioning Taking inspiration from the Henricksen and Indulska’s pro-
cess model [HI06], we simplify the process model by removing the infras-
tructure customisation. In fact, this step serves to include new facts or situ-
ations in their management layers and generate scripts that manipulate the
databases. Since this is related to their architecture, we will remove it be-
cause we do not model our contexts with their modelling technique (context
modelling language).

In addition we better consolidate the importance that features and con-
texts must be thinking together through all our process model since we think
a strong relation exists between them.

2.5. Discussion 33

In the same perspective of Apel and Késtner [AK09], we build a process
model that traces the features during the different phases to more easily detect
inconsistencies between the models through the different phases, but adding
the notions of contexts and mapping (to get closer to our approach).

Furthermore we also described the different deliverables that must be re-
leased after each phase in order to prepare the next one.

Since we have a clear separation of contexts and features, no support-
ing visualisation tools in the presented papers cannot be directly compared
because these tools only treat one of them or both but without an explicit
separation of these both.

However all these tools and visualisations can be seen as complementary
to the ones proposed in this dissertation and stress the importance of tooling
support to manage complexity and increase understandability of designers
and programmers.

2.5 Discussion

In this chapter we explored the literature on how to develop context-oriented
applications through four perspectives: modelling, implementation, user in-
terface adaptation and tooling support. For each of them, we presented their
state of the art and how we positioned our work in relation to this related
work. We will now relate our own contributions to this state of the art.

To conceive highly dynamic applications that respond to their surround-
ing environment, we propose a feature-based context-oriented software de-
velopment approach.

In our approach we voluntarily separate contexts and features in design-
ing and implementation to simplify the conceptions of context-oriented ap-
plications, and also to gain in maintainability, reusability, and understand-
ability. This clear and explicit separation of both refers to the contribution
C1 that aims to define the underyling principles of the FBCOP approach.
When analysing the state of the art for this separation, only the modelling
topic addresses it while the others do not. This motivates us to strongly
take inspiration from the multiple-product-line-feature model of Hartmann
and Trew [HT08] in which the contexts and features are modelled into two
separate feature models with a mapping between both describing what con-
texts trigger what features.

Contribution C2 which proposes an architecture for such systems is novel
in the sense that no architecture introduces this clear separation between
contexts and features.

To implement such context-oriented systems, we also propose a program-
ming framework (contribution C3) to assist programmers in their implemen-
tation tasks. Again, as contexts and features are clearly distinguished in the

34 Chapter 2. State of the art

implementation with a context and feature model based on feature modelling,
we propose something new with respect to the context-oriented program-
ming literature.

To create applications with user interfaces, we differ our approach to the
literature. Instead of having a library or programming framework that treats
user interface adaptation, we develop an user interface library (contribution
C4) to help programmers to implement user interfaces. Since the user inter-
faces are implemented similarly to core logic components, they are adaptive
by definition.

Finally our supporting development methodology (contribution C5) and
visualisation tools (contribution C6), to help designers and programmers to
conceive FBCOP applications, are inspired by the literature but emphasise the
separation between contexts and features.

Therefore our FBCOP approach is a new software development approach
that revolves around context-oriented programming [HCN08], feature mod-
elling [Kan+90] and dynamic software product lines [HT08; Ach+09; COH14;
Men+17], with a clear and explicit separation between contexts and features.

Part II

Approach and usage

35

37

The first part of this dissertation set the scope of our research. In the
literature, we have observed that a lot of work has been done on how to
design and implement dynamic adaptive software systems, in the areas of
modelling, implementation, user interface adaptation and supporting tools.
However, all of this work addresses only some of these fields of research or
are dedicated to a specific concern (i.e., the core logic or the user interfaces) of
applications. Nevertheless a unified approach integrating all these areas and
concerns would be more efficient for designers and programmers of such sys-
tems since only one technology might be used to conceive them. Therefore,
this motivated us to propose a feature-based context-oriented software de-
velopment approach (FBCOP for short) that integrates context-oriented pro-
gramming [HCNO08], feature modelling [Kan+90], dynamic software product
lines [HT08; Ach+09; COH14; Men+17] in a unified approach to create and
develop dynamic software systems that are able to adapt their behaviour de-
pending on the contexts in which the systems run. In this approach, we also
integrate user interface adaptation (UIA) through a library to build and com-
pose dynamically the user interfaces at runtime. Finally we also develop a
supporting development methodology and visualisation tools to help design-
ers and programmers in their various tasks when conceiving such systems.

This second part thus aims to introduce our FBCOP approach through
a designers and programmers perspective on how they can use it to create
dynamically adaptive software systems. We will start by introducing the FB-
COP programming paradigm (Chapter 3) in which we will explain its under-
lying principles and concepts, its system architecture through a control flow
and a supporting development methodology. We will then describe how pro-
grammers can implement such applications with FBCOP (Chapter 4) and how
they can use our UIA library to implement their user interfaces (Chapter 5).
Finally we will present two visualisation tools (Chapter 6) we developed to
help programmers in their development and debugging tasks to create FBCOP
applications.

CHAPTER

3

FEATURE-BASED
CONTEXT-ORIENTED
PROGRAMMING PARADIGM

In this dissertation, we propose a feature-based context-oriented software de-
velopment approach (also called FBCOP approach) that reconciles the notions
of context-oriented programming [HCNO08], feature modelling [Kan+90] and
dynamic software product lines [HT08; Ach+09; COH14; CHD15; Men+17]
and unifies them into a single software development approach.

In this chapter we will first describe the principles and concepts under-
lying the FBCOP programming paradigm, then outline the control flow of its
system architecture, and explain the supporting development methodology
we suggest when conceiving FBCOP applications.

3.1 Principles and concepts

In this section, we will define and exemplify each notion needed to better
understand FBCOP. We will start by describing what is a feature and a feature
model. We will then explain what is a context and a context model. Finally
we will describe what is a context-feature mapping and the mapping model.

39

40 Chapter 3. Feature-based context-oriented programming paradigm

3.1.1 Feature

Kang et al. define a feature as “any prominent or distinctive user-visible aspect,
quality, or characteristic of a software system” [Kan+90].

Whereas the above definition is quite generic and applies to any kind of
software features or even non-software features (car production for example),
in this dissertation we will adopt a more specific definition of features.

Definition Features are implementation components, or parts thereof, that are
visible and distinguishable to the end-user and which may be relevant depending
on the particular user or usage context.

In our definition of feature we can further identify some properties or
design choices that can further clarify the kinds of features we are interested
in: the concern they address, their granularity and their binding time.

Concern The features we are interested in may include more core logic
components as well as user interface components, or parts thereof.! In other
words, a feature can be dedicated to one or many core logic components
and/or one or many user interface components. Therefore to ensure a good
separation of concerns, a feature is separated in feature parts, one for each
component. For example, in our smart messaging system, a feature is to send
a message to other people. Such a feature is dedicated to both concerns (i.e.,
core logic and user interface). Therefore this feature is composed by two fea-
ture parts. The first feature part is to add a ‘send’ button (user interface con-
cern) and the second feature part is to send the message through the Internet
network (core logic concern) when users click on the ‘send’ button.

Granularity Features can either be fine-grained or coarse-grained. Fine-
grained features only interact (i.e., adapt) with a few classes or methods.
When features only adapt a method, we will also say that these features are
variants for methods. An example of a fine-grained feature could be the fea-
ture to send or store the messages. In our smart messaging system, this fea-
ture only refines the behaviour of sending a message. At the opposite end of
the spectrum, if features interact with many components in the system, they
are considered as coarse-grained features since they adapt the behaviour of
many system classes. For instance, a feature that enlarges all the texts for vi-
sually impaired people is coarser-grained as it needs to interact with several
classes to change the size of all the UI objects.

! Another concern, that is not explored in this dissertation but could be explored in future
work, is a data concern focussing on what and how data is accessed and used by the system
to implement its core functionalities.

3.1. Principles and concepts 41

In our FBCOP approach, we want to promote features as fine-grained as
variants for methods or even parts thereof allowing to dynamically override
the behaviour of a simple method by a more specific one. With fine-grained
features, we promote the reusability of these features inside an application
itself or between other projects. Nevertheless it is not always possible to im-
plement only fine-grained features. This thus explains why we do not want
to rule out coarse-grained features, even if we think they should be limited.

Binding time A feature can have multiple binding times [Kan+90],
from a design binding time to a runtime binding time, through the compila-
tion or even the configuration one, for example. In our FBCOP approach, the
features are designed during the design time but are selected, activated and
(un)deployed at runtime since the features are triggered when new changes
appear in the surrounding environment.

3.1.2 Feature model

Kang et al. propose to model the features of a software system with a feature
model [Kan+90]. Such a model is often used in software product lines to
define a family of similar systems with many variations. This model captures
the commonalities and variabilities of a system. Commonalities represent the
features that need to be present in each instance of the system, while the
variabilities are features that may be present in some instances of the system
only.

Feature diagram One of the visual representations of feature models
are the feature diagrams. A feature diagram is a tree-like structure that can be
used to model different features of a system [Kan+90]. Figure 3.1 depicts an
excerpt of a feature diagram representing the feature model of our messaging
system. The nodes of such a diagram represent the features of the system
and the edges represent hierarchical constraints between a feature and its
parent feature such as: mandatory, optional, or and alternative constraints. A
mandatory constraint requires that the child feature and its parent are always
present in the system together. It is drawn as a black circle on the child in the
diagram. In our smart messaging system we have for example considered that
messages of type Text are always available whatever the current situation.
This means that the end-user will always write a textual message. An optional
constraint means that the child feature may be present if its parent is present
in the system. This constraint is drawn as a white circle on the child. For
example, the ability to Receive messages will not always be present in the
system: if the system has no connection, it cannot receive messages. Another
optional feature is for the system to provide Predefined messages that can for

42 Chapter 3. Feature-based context-oriented programming paradigm

example be selected by the user when driving a car, to avoid having to type
messages while driving. Alternative constraints enforce that exactly one child
feature is present in the system if the parent is. This constraint is drawn as
a white triangle on the parent. In our example, we can only have one direct
child feature of Send. When the device is connected, the Send Message feature
will be chosen to send messages over Internet. Otherwise the Store Message
feature is chosen that stores sent messages on the device while waiting for a
new connection to be established. The or constraint, drawn as a black triangle
on the parent, implies that at least one child feature is present in the system
if the parent is. If Rich (representing a richer messaging mode than pure text)
is present, we need to have either Picture or Position or both present in the
system.

Features Legend

Mandatory —e

Optional —o
or <4+

AN

Message i Store Send
Message Message

Alternative <(—

Text | Rich |
Predefined Picture Position

Figure 3.1: Feature diagram representing a simplified version of the feature
model of a messaging system. Dashed boxes are abstract features and solid
boxes are concretes features. Green boxes represent a valid configuration of
the feature model.

In addition to hierarchical constraints, the feature diagram may also link
nodes that are not in a parent-child relationship, through cross-tree con-
straints such as exclusion or requirement dependencies. The exclusion de-
pendency between features represents a mutual exclusion relation where the
features cannot be present in the system simultaneously. A requirement de-
pendency means the source feature can be present in the system if and only
if the target feature is already present in the system.

All these constraints are needed to determine what is a valid configuration
of the feature diagram. A valid configuration corresponds to a selection of
features that together satisfy the constraints imposed by the feature diagram.

3.1. Principles and concepts 43

Such a configuration in Figure 3.1 can be the selection of the features: Features,
Message, Messages Types, Text, Rich, Picture, Send, Send Message and Receive.
If the Picture feature is missing, this configuration is no longer valid since the
Rich feature is active and implies that at least one sub-feature is active.

Finally we can also distinguish abstract features from concrete ones in a
feature model. Whereas abstract features are mainly infrastructural and help
programmers group related finer-grained functionalities but have no actual
functionality associated to the abstract feature itself, concrete features con-
tain code that may affect existing system behaviour when they get selected.
In this dissertation we will draw the abstract features with a dashed box and
the concrete features with a solid box. For instance, in Figure 3.1, an abstract
feature is Message Types. This feature serves only to the designer to organise
the different types of messages the messaging system accepts to facilitate his
design. While Store Message is a concrete feature as it contains code to store
the unsent messages.

More information on a generic formalism of feature diagrams can be found
in the Schobbens et al’s work [SHT06].

3.1.3 Context

Based on our definition of a feature, the relevance and need for certain fea-
tures may depend on a particular user or context of use. This means that
the behaviour of the system may vary depending on the information sensed
in the surrounding environment in which it operates. This information can
take the form of user preferences (a user’s age, (dis)abilities), information
from external services (weather conditions), or internal data about the device
on which the system runs (remaining battery level or other sensor informa-
tion) [Abo+99; Cou+05].

Many definitions of the term “context” have been given and surveyed by
Abowd et al. [Abo+99]. They categorized different kinds of contexts based on
the famous “W” questions (“When”, “What”, “Who” and “Where”) to explain
“Why” the system needs to adapt its behaviour. According to these ques-
tions the contexts can be for example the time of the day (“When”), the entity
with which the system interacts (“What”), the kind of end-user using the sys-
tem (“Who”) or the location where the system runs (“Where”). Thevenin and
Coutaz [TC99] also mention the sources of the contexts for which adapta-
tions may be interesting can from the user, the (external) environment and
the physical characteristics of the system (i.e. the internal environment of
the running device). Coutaz et al. [Cou+05] state that “Context is key” in the
development of context-aware systems: the context is not only a state but is
part of a process where contexts serve as triggers to install or remove features
that refine the behaviour of the system.

44 Chapter 3. Feature-based context-oriented programming paradigm

Since many similar definitions of context exist in the literature we will not
list all of them in this dissertation but we will provide our own definition of
this term in feature-based context-oriented programming adhering to Coutaz
et al’s observations [Cou+05].

Definition Contexts reify any information sensed from the surrounding envi-
ronment, through user interaction, or information received from sensors describ-
ing the external conditions and internal state of the device on which the system
runs, to represent particular situations for which they trigger relevant features
to adapt the behaviour of the software system.

For example, contexts coming from the user could be the user’s age, (dis)-
abilities or even their intentions via the user interaction. Those coming from
external devices could be weather conditions, geolocalisation or any message
that a sensor can send over the network; while the contexts of internal devices
can be about the remaining battery level, memory usage of the device and
much more.

Before explaining how these contexts are connected to the features to
affect what and how features are chosen depending on the currently active
contexts, we will explain how the different contexts can be structured into a
combined context model that bears a lot of similarity with how features are
structured together in a feature model.

3.1.4 Context model

As for the features it is interesting to design the contexts in a structured way.
Desmet et al. [Des+07] suggest to model them through a kind of a feature
model in their context-oriented domain analysis approach. This approach
was suggested to better collect the requirements of context-aware systems
and is strongly inspired by feature-oriented domain analysis [Kan+90], even
if they are strongly different semantically. Hartmann and Trew also proposed
to use a feature modelling notation to design the context variability model of
their multiple-product-line-feature model in order to express the contexts that
will affect what features will become part of a product [HT08]. In addition,
other researches have shown interest in the idea to use feature modelling to
model the contexts of context-aware systems [Ach+09; JLS10; COH14]. Fol-
lowing this consensus [Des+07; HT08; Ach+09; COH14; CHD15; Men+17] we
also reuse feature modelling to design the contexts of our context-oriented
systems. Using feature modelling to model context models allows the FBCOP
designers to have a better visibility of the contextual knowledge and enhances
their reusability in other context-oriented projects to reduce the design com-
plexity of such systems if the context models are sufficiently generic [JLS10].

3.1. Principles and concepts 45

Context diagram Just like the feature model, the context model can
be represented with a context diagram. A context diagram is also a tree-like
structure, but where the nodes represent the contexts to which the system can
adapt its features and the edges are the hierarchical or cross-tree constraints
(also called dependencies) between the contexts of the diagram. Figure 3.2
depicts a context diagram of an excerpt of our messaging system.

Contexts

Positioning Driving
Low High Internet Bluetooth

A Legend

S Mandatory —e
No : Connection |

Connection | | Optional —o
A Or <+
WiFi Cellular Alternative <—

Figure 3.2: Context diagram representing a simplified version of the context
model of a messaging system. Green boxes represent a valid configuration
of the context model.

Examples of contexts are the abstract mandatory context Battery repre-
senting the battery level of the device on which the system is running with
two possible sub-contexts in an alternative constraint: either the battery is
Low or it is High. The context Connectivity is an abstract mandatory context
to structure the different kinds of connectivity the system may have and has
two sub-contexts designed with an or constraint: an abstract context Internet
or a concrete context Bluetooth. Internet serves here to organise if the device
has No connection or has a Wi-Fi or Cellular Connection. The last two con-
texts in our excerpt of the context model of Figure 3.2 are optional contexts
to describe if the device can geolocalize the user (Positioning) and if the user
is currently driving (Driving).

As for a feature diagram, a valid configuration of a context diagram is a se-
lection of contexts that are currently active and that ensures all the constraints
of the context model are satisfied. An example of such a valid configuration
is: Contexts, Battery, High, Connectivity, Internet, Connection, Wi-Fi.

46 Chapter 3. Feature-based context-oriented programming paradigm

3.1.5 Context-feature mapping

Now that we have defined what are features and contexts, we need to define
what is a context-feature mapping.

Definition A context-feature mapping is a set of relations from the contexts
to features to express what contexts trigger what features in order to adapt the
behaviour of the running system.

In our example of a messaging system, an example of a relation of the
mapping is a link between the context No connection to the feature Store mes-
sage since it is not possible to send a message over the Internet if we do not
have a connection. A more complex relation connects the contexts {Cellular,
Bluetooth and Driving} to the feature Predefined. In this specific situation, we
consider the end-user is driving and has a device with cellular connection
and Bluetooth to connect his car dashboard with his device so that when he
wants to answer a message he can select easily a predefined message when
he is driving to minimise interaction with his car dashboard.

In this mapping we do not allow relations from features to contexts be-
cause contexts should be the sole triggers of any adaptations. This design
choice also simplifies the mindset of the control flow that will be explained
in Section 3.2.

The mapping from contexts to features can be either implicit or explicit.
For example the mapping is mainly implicit in the implementation of the
layer-based context-oriented programming languages where the contexts are
layers that contain the adapted behaviour for those contexts [HCN08; SGP12a].
In their modelling of context-aware systems, Capilla et al. [COH14] also sug-
gest implicit mappings for a modelling strategy. They identify the contexts
through context features, that are features that may (de)activated when the
contexts are (de)activated and distinguish them from non-context features.

Hartmann and Trew [HTO08] on the other hand propose an explicit map-
ping. Their multiple-product-line-feature model designs several variants of a
same product depending on some contexts. As depicted schematically in Fig-
ure 3.3, they split the overall model in two separate submodels: a context vari-
ability model (representing the contexts and their intra-dependencies) and a
traditional feature model. This allows them to model not only what the com-
mon and variable features are, but also how contexts affect what features
should (not) become part of a product, by declaring explicit dependencies
from the context model to the feature model. With this, we can easily model
different products thanks to the variabilities in the context variability model.

As explained in the positioning of our FBCOP appoach (see Section 2.1),
we strongly believe that a clear separation between the contexts and features

3.1. Principles and concepts 47

Multiple-Product-Line-Feature
Model

Context
F
Variability A%Zg/e
Model

-)

Figure 3.3: Multiple-product-line-feature model suggested by Hartmann and
Trew [HTO08].

with an explicit mapping between them can help the designers of context-
oriented software systems when they model the contexts and features of their
systems. Therefore we decide to reuse Hartmann and Trew’s approach [HT08]
in our approach, to distinguish explicitly the context model and the feature
model and for which an explicit mapping between the contexts and features
is declared.

3.1.6 Mapping model

Now that we have explained the notion of the mapping between contexts
and features in context-oriented systems and why we focus on an explicit
mapping, we will describe in more detail how we can model this mapping.

Our mapping model consists of a conjunction of individual mappings,
each representing a N:N relation from contexts to features. Each individ-
ual mapping follows a key-value format where the keys are a set of contexts
and values are a set of features. The features of an individual mapping are all
activated if and only if all the contexts that identify this set of features are ac-
tivated. This means that if a context of an individual mapping is deactivated,
the features triggered by this set of contexts are deactivated. An example of
such a mapping is illustrated in Table 3.1.

In this example, assume that initially the device on which the system runs
has No Connection. The system cannot send nor receive any messages, and
all unsent messages are just stored on the users’ device while waiting for an
internet connection. As soon as the device senses a Wi-Fi connection, the
system activates the Wi-Fi context and deactivates the No connection context.
Because a mapping exists from context Wi-Fi to features Send Message and Re-

48 Chapter 3. Feature-based context-oriented programming paradigm

Contexts Features
No Connection Store Message
Wi-Fi Send Message, Receive Message
Cellular Send Message, Receive Message
Wi-Fi, High Picture
Wi-Fi, Positioning Position
Cellular, Bluetooth, Driving Predefined

Table 3.1: Excerpt of the mapping model of our messaging system.

ceive message the system thus activates the features Send Message and Receive
Message as well as it deactivates the feature Store Message. Nevertheless the
features Picture and Position are not activated yet since the contexts High and
Positioning are not activated yet. Later in the day, assume the user is driving
and his device senses a Cellular connection (and loses its Wi-Fi connection)
and has a Bluetooth connection to communicate with the car dashboard. The
system refines the interaction to send messages by proposing only Predefined
messages on the dashboard when he needs to answer someone, because such
a mapping exists. Since a connection is still sensed the features Send Message
and Receive Messages are not removed.

In addition to these explicit individual mappings we have also one implicit
individual mapping that selects all the mandatory features that must be acti-
vated and installed in the system. These features are automatically triggered
once by the root node of the context model when the application is launched.
Hiding this individual mapping helps the developers to not worry about such
features and to focus only on those contexts that dynamically trigger features.
Moreover we think it increases the readability of the mapping model.

As we consider our overall approach relatively complex, we deliberately
restricted ourselves to only allow such a simple mapping model in FBCOP,
even though it may limit the expressiveness of our mapping somewhat. An
example of such a limitation is we need to create an individual mapping for
each sensed connection (Wi-Fi and Cellular) as illustrated in Table 3.1. We
will see in future work (see Section 14.1) how we could enhance its expres-
siveness.

3.2 System architecture

So far, we described the underlying principles and concepts of FBCOP and
how these concepts interact together. Now we will detail the FBCOP’s system
architecture to provide a global overview of our approach.

The FBCOP approach revolves around our context-oriented software ar-

3.2. System architecture 49

chitecture [MCD16] and Hartmann and Trew’s multiple-product-line-feature
model [HTO08]. In essence, our architecture and this model propose to manage
and represent both the contexts to which the system adapts and the features
it adapts in terms of separate independent feature models, as we explained in
the previous section. Figure 3.4 presents its system architecture.

Context Model Mapping Model Feature Model Class Diagram

IL// -CIaSs -chss
N
Context Feature Feature Feature
Activation Selection Activation Execution

Figure 3.4: Overview of the FBCOP’s system architecture [DMD19].

The control flow of our system architecture goes as follows: whenever a
change is detected in the system’s surrounding environment, either by user
interaction or information received from external or internal sensors, the con-
textual information is reified as context objects. The CONTEXT ACTIVATION
component tries to activate or deactivate these reified contexts in the config-
uration of the context model, while respecting the constraints imposed by that
model. If the updated configuration does not satisfy the context model’s con-
straints the system rolls back to a previous valid configuration. Otherwise, the
updated configuration is kept, based on which the FEATURE SELECTION com-
ponent (un)selects the appropriate features thanks to a mapping model. The
FEATURE ACTIVATION component then attempts to (de)activate these features
in the configuration of the feature model, while ensuring that all constraints
imposed by that model remain satisfied. Again, if the updated configuration
does not satisfy the feature model’s constraints the system rolls back to a pre-
vious valid configuration. Finally when the features have been (de)activated,
the FEATURE EXECUTION component installs or removes the code of these
features in the system to refine and adapt its behaviour while the system is
running.

Now that we have explained the control flow of our system architecture,
let us exemplify it with a potential scenario of our messaging system. Assume
at the launch time the user has a device with a high level of battery and does
not sense any connection. The CONTEXT ACTIVATION component will try to
activate the contexts High and No Connection. Since all the constraints of
the context model are satisfied, this new configuration is kept. Based on the

50 Chapter 3. Feature-based context-oriented programming paradigm

newly activated contexts, the FEATURE SELECTION component picks up only
the Store Message feature to activate since no feature can be triggered only
by the High context, as mentioned in Table 3.1. The FEATURE ACTIVATION
component then tries to activate this feature in the feature model. As the
mandatory features are always activated at launch time, the features Message,
Text and Send are also active at the same time as the Store Message feature.
Again, as all the feature model’s constraints are satisfied, the configuration
of the feature model is updated. Finally the FEATURE EXECUTION installs and
deploys these newly features in the system.

Now imagine the system detects a Wi-Fi connection. The system reifies it
and then activates the Wi-Fi context and deactivates the No Connection con-
text (because when the system senses a new connection, the No Connection
context is no more valid). Once the activation and deactivation are executed,
it unselects the Store Message and selects the features Send Message, Store Mes-
sage and Picture. Then it deactivates and activates the corresponding features
in the feature model since all the constraints are still ensured. Finally the sys-
tem adapts its behaviour by first removing the Store Message feature and then
installing the features Send Message, Receive Message and Picture.

3.3 Development methodology

Due to their high run-time adaptivity in terms of active contexts and features,
conceiving FBCOP systems is hard. In addition to dedicated visualisation
tools and others (such as for example testing tools), designers and developers
of such systems can benefit from a supporting development methodology to
put them in the right mindset and tell them what to focus on in each step of
the life-cycle. This section present such a FBCOP-specific methodology.

At a high level, our methodology, summarised in Figure 3.5, is a typical
iterative development process consisting of four phases: Requirements analy-
sis, Design, Implementation and Testing.

3.3.1 Requirements

During the requirements analysis phase, by carefully analysing the domain
of the application, developers are asked to come up with a list of features of
the system and a list of contexts to which the system must adapt or refine
its behaviour. To avoid misunderstandings and misinterpretations, a lexicon
needs to be defined containing a description of each feature and context, as
well as a rationale to justify the less trivial features and contexts. Wireframes
must also be drawn to get a better idea of what the application or at least
some UI layouts look like. This aims to better understand the requirements
and to check if designers have well-understood the domain application.

51

3.3. Development methodology

weubeiqg sse;n

[opOy @injeo

Japoyy Buiddepy

uonejuawsajduwi "¢

<

[OPO IX8)U0D

Buiddew sse|p-ainjea -

Buiddew ainjea4-jxajuo) -

welbelp sse|) -

|epow ainjes -
|opow Jxajuo) -

)
¥

19POYy @injea-

1apoyy Buiddeyy

o
%/

19POY IX8}U0D

ubisaq 'z

uoneoldde

d0044
a|qenoexy

24 @injeaq / 20 X80 / 4
24 aimeaq 20 1X8ju0)
d 14 ainjeay / 10 X@juod ¢
suoyenoesp suopeAnoe suoyeAnoeap suopeAnoe oueusoS
ainjea ainjea x0JUu0D Xapu0)

Bunsa] ¥

uoynjeoldde
d00g4
palsa|

SOWEBIBIINN -
sainjesy Jo Isi -
SJX8)U0D JO IS -

uooIxeT -

A A

sjuswalinbay L

Overview of our FBCOP development methodology. The dashed

content has been added by the Martou et al

Figure 3.5

s work [Mar+21].

b

52 Chapter 3. Feature-based context-oriented programming paradigm

To get started, our methodology suggests to identify the main features of
the system first. Two main features of our case study are Sending and Receiv-
ing messages. Using these features as starting point, developers are suggested
to think about possible variants of these features and in what contexts these
particular variants would be triggered. For example, designers could identify
that the messages can be stored locally in the device if no Internet connection
(i.e., a Wi-Fi or Cellular connection) is sensed.

These contexts can then be used as a next step to think about what other
features or variants of existing features may be relevant to those or related
contexts. Having thought about how the Internet connection can influence
the feature Sending, designers could identify that different types of messages
can be sent or received depending on the kind of sensed connection. For
example, any type of messages (i.e., Text, Picture and more) can be sent or
received when a Wi-Fi connection is detected while only Textual messages
can be handled with a Cellular connection in order to save users’ mobile data.

This process is repeated until the designer is happy with the set of features
and contexts he has identified to include in a first version of the system to
implement.

3.3.2 Design

During the design phase, the developers organise the contexts and features
identified during the previous step in a context and feature model, respec-
tively. Additionally, in the context-feature mapping they need to declare
explicitly what contexts trigger what features. For the non-trivial relations
in this mapping it is advised to provide a rationale to justify their purpose.
Putting all these models together yields an overall model such as the one il-
lustrated in Figure 11.5 (in Section 11.1). What still needs to be added to this
model is what are the main application classes of the software system, in
terms of a kind of class diagram, and what features will adapt what applica-
tion classes.

3.3.3 Implementation

Now the programmers can finally start to implement their FBCOP applica-
tion. More information on how to do so can be found in Chapter 4. The most
important things to be implemented during this phase are the base application
classes and their class hierarchy, as well as the individual features that will
modify or add methods defined on these application classes or on previously
activated features. During this implementation phase, to help developers un-
derstand or inspect the behaviour of the system they are implementing, they
can make use of two supporting visualisation tools [DMD18; Duh+19b]. At
the end of this phase, an executable FBCOP system is delivered.

3.4. Conclusion 53

3.3.4 Testing

As for all software development methodologies, programmers must test their
FBCOP application. This explains why we added the testing phase.

During this step of the development methodology, designers and pro-
grammers may wonder what are the typical use scenarios of the system?,
whether the system exhibits the expected behaviour in these scenarios? They
may also ask whether the dynamic adaptations of the system are relevant,
useful and acceptable? With all these questions, designers and programmers
can release a list of typical usage scenarios, an assessment of the expected be-
haviour and an evaluation of the interest, relevance and acceptability of the
adaptations. All these deliverables aim to test their FBCOP application.

In this dissertation, we focus our effort on the first three steps.

Nevertheless, another PhD student, Pierre Martou, has started to study
this testing phase, and in particular how designers and programmers can gen-
erate a list of relevant test usage scenarios. Martou et al. [Mar+21] build their
solution upon a pairwise combinatorial interaction testing approach from the
domain of software product lines. They implement an algorithm to generate
automatically a small set of relevant test scenarios, ordered to minimise the
number of context activations between tests. This work explains the dashed
content that has been added in Figure 3.5.

3.3.5 Iterative methodology

As stated before, our proposed methodology is incremental. After having
done a first iteration through the four phases from requirements to testing,
via design and implementation, another iteration can be done to extend the
first version of the system with additional contexts and features.

3.4 Conclusion

In this chapter, we defined the underlying notions of the FBCOP approach.
While contexts reify any information to describe particular situations from the
surrounding environment in which the system runs, features are implementa-
tion components, or parts thereof, that are visible and distinguishable to the
end-user and which may be more or less relevant depending on the particular
user or usage context. Despite their duality they can be modelled in a sim-
ilar way thanks to the feature modelling notation to have a context model
and a feature model. In addition they are complementary since the contexts
trigger the features to adapt dynamically the behaviour of the system. This
complementary is characterized by the context-feature mapping in FBCOP.
With such an approach we can propose a clear separation between the

54 Chapter 3. Feature-based context-oriented programming paradigm

contexts and features. This aims to enhance the maintainability and reusabil-
ity of these notions in context-oriented systems.

We have then described the FBCOP’s system architecture and its control
flow through different components: CONTEXT ACTIVATION, FEATURE SELEC-
TION, FEATURE ACTIVATION and FEATURE EXECUTION.

The control flow of our approach goes as follows: when a context changes,
the CONTEXT ACTIVATION component gets informed about this new discov-
ery. It will then attempt to activate this context, taking into account the con-
straints imposed by the Context Model declared by the programmer. Once the
context activation is done, the FEATURE SELECTION component takes over,
selecting the features corresponding to the newly activated context(s) based
on the Mapping Model. The FEATURE ACTIVATION component, as its homo-
logue CoNTEXT AcTIVATION, will then try to activate the selected features
taking into account the constraints imposed by the Feature Model. Finally,
the FEATURE ExEcUTION component will deploy the activated features in the
classes of the currently running system. Similarly, when certain contexts be-
come inactive, the different components in the architecture will take care of
the necessary deactivations of contexts and their corresponding features and
code.

Finally we presented a supporting development methodology to help de-
signers and programmers to create their context-oriented applications with
FBCOP. This development methodology is composed of four phases: Require-
ments analysis, Design, Implementation and Testing.

CHAPTER

4

FEATURE-BASED
CONTEXT-ORIENTED
PROGRAMMING FRAMEWORK

Designing a FBCOP approach without proposing a supporting programming
language and framework is not really interesting for programemrs since they
cannot easily develop FBCOP systems that adapt their behaviour dynamically
to the context of their surrounding environment.

In this chapter, we introduce, explain and illustrate the usage of the FB-
COP programming language and framework. We describe what source code
the programmers need to write to create a FBCOP application.

As we implemented our framework and language on top of the Ruby pro-
gramming language, all the illustrated examples of our smart messaging sys-
tem case study will be developed in Ruby, or rather, in RubyCOP, our context-
oriented extension of Ruby.

An important part of RubyCOP’s language design is the explicit repre-
sentation of contexts and features in terms of hierarchical tree structures that
capture the structural constraints to be respected at runtime.

We will end this chapter with a discussion of whether RubyCOP should
be regarded from a FBCOP developer’s point of view as either a framework,
a language or a domain-specific language.

55

56 Chapter 4. Feature-based context-oriented programming framework

4.1 Defining the application classes

Because context-oriented programming (and RubyCOP in particular) is a pro-
gramming paradigm built on top of object-oriented programming (Ruby in
our case), the programmers first need to implement the application classes
of the application they want to develop. This corresponds to creating the
skeleton of the FBCOP application by providing the different classes of the
application. These application classes define the basic structure of the appli-
cation that may be extended or refined at run-time by different features upon
activation of certain contexts. Two examples of such application classes are
illustrated in Listings 4.1 and 4.2. The application class MessageModel rep-
resents the model of a message, while the application class MessageView is
the view of the message model. These application classes will implement a
traditional Model-View-Controller pattern to keep a good level of separation
of concerns of the implemented application to ease its maintainability.

class MessageModel
include Observable
end

Listing 4.1: Code snippet of the definition of the class MessageModel of our
messaging system.

class MessageView
end

Listing 4.2: Code snippet of the definition of the class Messageview of our
messaging system.

As opposed to traditional object-oriented programming practice, the pro-
grammers deliberately keep all the application classes as empty as possible.
This design choice allows them to put all the behaviour, even the default one,
in (mandatory) features, thus creating a kind of homogeneity between manda-
tory and non-mandatory features. The behaviour described by the mandatory
features will be installed in the application at launch time.

Finally, the developers must also include the framework module CodeEx -
ecutionAtLaunchTime in the metaclass of one application class (prefer-
ably the main class) of the system. This framework module executes the
default behaviour at the launch of the application after this behaviour has
been installed in the application classes. The default behaviour consists of
the mandatory features and those non-mandatory ones that are triggered by
the default context describing a default environment at launch time. Without
this framework module, the default behaviour of the system will not be exe-
cuted. Listing 4.3 shows how developers must include this module (Line 3) in
the application class SmartMessagingSystem of their messaging system.

o

4.2. Declaring contexts and features 57

class SmartMessagingSystem
class << self
include CodeExecutionAtLaunchTime
end
end

Listing 4.3: Code snippet of how developers include the module
CodeExecutionAtLaunchTime in the main class SmartMessagingSystem to
run the default behaviour of our messaging system.

4.2 Declaring contexts and features

Together with application classes (representing the system’s structure that
can be adapted dynamically), contexts and features are the primitive building
blocks of our language. Due to their different nature, each of these notions
is reified by a different class in our implementation framework: the class
Context and the class Feature. While a context is just identified by its
name, a feature is characterised by a name and a list of targeted application
classes, that is, the application classes of which this feature can adapt the be-
haviour. Each of these two framework classes inherit, respectively, from their
abstract counterpart AbstractContext and AbstractFeature. This ex-
tra abstraction level is motivated by the need to have both abstract contexts
and concrete ones in the context model (and similar for features). Abstract
contexts are just infrastructural entities to help structuring a context model,
whereas concrete contexts correspond to an actual situation that may occur
in the environment surrounding the application. Similarly, abstract features
are just there for helping to structure the tree hierarchy, but are not attached
to a particular application class that they can alter, as opposed to concrete
features.

Listing 4.4 illustrates how application developers can create concrete and
abstract contexts.

context :@no_connection, 'No connection’
abstract _context :@connection, ’Connection’
context :@wifi, Wi-Fi’

context :@cellular, *Cellular’

Listing 4.4: Code snippet of the definition of some concrete and abstract contexts of
our messaging system.

In this example (Listing 4.4) based on our messaging system, they need to
declare some contexts to reify the kind of connectivity the device senses. Here
the device can sense if it has No connection or a Wi-Fi or Cellular connectivity.
All these contexts are concrete. The context Connection, on the other hand, is

)

58 Chapter 4. Feature-based context-oriented programming framework

an abstract one since it serves to structure the different types of connectivity
the device can sense. In the context model, depicted in Figure 4.1, this abstract
context will serve as a parent context of the two contexts Wi-Fi and Cellular.

Listing 4.5 shows how concrete and abstract features of the feature model
shown in Figure 4.2 can be defined by application programmers. Based on
our messaging system, we define a concrete feature SendMessage that will
adapt the application class MessengerService with the behaviour of send-
ing messages on the Internet. We also create two concrete features dedicated
to different types of messages that can be handled by the messaging system.
The types of messages are Text and Picture. These features adapt the appli-
cation classes MessageModel and MessageView to modify the behaviour
(i.e. the model and the view) of a message so that a message can have a text
and a picture. Again to structure the feature model, we define an abstract
feature Rich that will group all the richer types of messages (i.e. all but pure
text messages) that application users can read and write.

feature :@send_message, ’SendMessage
— [:MessengerService]
feature :@text, 'Text’, [:MessageModel, :MessageView]

; abstract_feature :@rich, ’Rich’

feature :@picture, ’Picture’, [:MessageModel,
— :MessageView]

Listing 4.5: Code snippet of the definition of some concrete and abstract features of
our messaging system.

4.3 Defining features

We just showed how programmers can declare abstract and concrete contexts
and features. Nevertheless they also need to define how these contexts can
be reified when a change is sensed in the surrounding environment and the
source code that must be attached to features to create real context-oriented
programs. While we have not yet addressed the definition of the contexts in
our programming language and framework (see Section 14.2 for a discussion
of how we could implement them), we tackled the feature definitions.

In this section we then describe how the features need to be defined by
the programmers using our implementation framework to create FBCOP ap-
plications.

An important part in the declaration of a feature is that a concrete feature
needs to have a list of targeted application classes of which the feature can
adapt or refine the behaviour. This means that to such features we need to
attach some code that defines how to adapt or refine the behaviour of these
application classes when they are activated. Therefore, after having declared

1

4.3. Defining features 59

the concrete features!, the programmers need to implement each feature as a
trait (i.e. a module) in Ruby. The trait contains the code of the feature to be
installed in the application class(es) it adapts and must have the same name
as the name of the declared feature.

Listing 4.6 illustrates how developers can implement a feature. In this
example, we show the implementation code of the feature Text which adapts
the MessageModel and MessageView application classes.

module Text
module Model
can_adapt :MessageModel
def initialize ()
end

end

module View
can_adapt :MessageView

def create_message_widget (frame)
end

def update ()

end

end
end

Listing 4.6: Code snippet of a concrete feature definition of the feature Text of our
messaging system.

As defined in Subsection 3.1.1, a single feature can address several con-
cerns and thus can have several feature parts, such as for example a compo-
nent dedicated to the core logic of the application and a component for the
user interface component. For each feature part the programmer needs to
implement a module inside the trait, as illustrated on Lines 2 and 11 in List-
ing 4.6. The first feature part Model defines an adaptation of the core logic,
the other feature part View adds a refinement for the user interface.

The developers also need to state explicitly which application classes the
feature part adapts. This can be expressed by the method can_adapt. In List-

INote that for the abstract features there is no associated code as they are only used to
structure the feature model.

60 Chapter 4. Feature-based context-oriented programming framework

ing 4.6, the feature part Model adapts the application class MessageModel
as shown on Line 3. The feature part View on the other hand adapts the
behaviour of the application class MessageView as shown on Line 12. (In-
tuitively, such an adaptation means that the code of that feature part will be
textually included in that class, even though it is a bit more subtle and not
exactly implemented like that as we will see in Section 9.2.)

In addition, a feature (composed by its feature parts) can be reused to
adapt different application classes depending on the particular contexts in
which the application runs. For that the programmers must mention for each
feature part the other application classes that it can adapt with the method
can_adapt. They must then declare different features in their feature model
by precising which application classes will be really adapted or refined when
these features are activated. An example of this usage is illustrated in List-
ings 11.9 and 11.10 with a feature Name (see Section 11.1).

If the programmers do not precise an application class in the declara-
tion of the feature or in the list of potential application classes that a feature
part can adapt, our implementation framework raises an error to inform the
programmers the feature cannot adapt the declared application classes in its
declaration.

After that, the programmers can develop the entire behaviour of the fea-
ture, i.e. all the methods that compose each feature part of the feature, as
exemplified by the methods in Lines 5, 14 and 18 of Listing 4.6. (Since for
now our goal is mainly to show how the code is structured, we commented
out the body of the methods. A concrete example with real source code is
shown in Section 11.1.)

Installing features, i.e. their feature parts in the different application class-
es of the system, modifies the behaviour of such classes, but does not exe-
cute immediately this new behaviour. Such a behaviour will only get exe-
cuted the next time one of these installed methods gets called. Nevertheless
it is sometimes important to execute some code as soon as some features are
(de)activated. For example when the programmers need to update or remove
UI objects according to the new behaviour or when they need to initialise the
connection to a server when an Internet connection is sensed. To do that,
the programmers can set a prologue and an epilogue in the different feature
parts with the methods set_prologue and set_epilogue, respectively, as inspired
by Calvary et al. [CCT01a; CCT01b] and Lopez-Jaquero et al. [Lop+08]. This
prologue or epilogue takes a list of methods as argument to describe what
methods need to be executed at the activation or deactivation of the feature.
While the prologue is executed immediately after activation of the feature,
the epilogue is executed immediately before deactivation of the feature. The
declared methods are executed in the order in which they were declared in
the argument list. This means that programmers must pay attention to the

1

19

4.4. Declaring the context model 61

order of declaration of these methods in the prologue or epilogue so that they
are executed in the correct order. An example of how to set the prologue is il-
lustrated in Line 5 in Listing 4.7. (Again we commented out the body of these
methods.)

module SendMessage
module Behaviour

can_adapt :MessengerService
set_prologue :init_connection, :send_stored_messages
def init_connection ()
end
def send_message (message)
end
def send_stored_messages ()
end

end
end

Listing 4.7: Code snippet of a part of the feature definition of our messaging system
that uses a prologue to execute two methods immediately after the activation of the
feature SendMessage.

In the example of Listing 4.7, when the system activates the SendMessage
feature because it has sensed an Internet connection, we first need to ini-
tialise the connection to the server and then send all the stored messages the
user wanted to send before. The prologue allows to automatically trigger the
execution of these methods as soon as the feature gets activated.

4.4 Declaring the context model

Now that we have explained how programmers can declare individual con-
texts and features and define features, we show how programmers building a
FBCOP application can declare the context model of their application. To do
so, the programmers need to extend the framework class ContextModelDe-
claration of our programming framework. More information about the
framework class ContextModelDeclaration will be discussed later in
Section 7.2.

A code example of the context model declaration of our messaging sys-
tem, represented graphically in Figure 4.1, is shown in Listing 4.8, with the

1

62 Chapter 4. Feature-based context-oriented programming framework

application class AppContextModelDeclaration.

Legend

Contexts
l Mandatory

Optional

O_

2

x
o
54

Internet Bluetooth

No : P

. 1 Connection |

Connection | : '
Wi-Fi Cellular

Figure 4.1: Excerpt of the context model of our messaging system that we

declare in Listing 4.8.

class AppContextModelDeclaration <
— ContextModelDeclaration

include Singleton

def initialize ()
super ()
_define_connectivity_context ()
@root_context.relation :Mandatory, [@connectivity]

end

def _define_connectivity_context ()

abstract_context :@connectivity, 'Connectivity’
abstract_context :@internet, ’'Internet’

context :@no_connection, 'No connection’
abstract_context :@connection, ‘Connection’
context :@wifi, ‘Wi-Fi’

context :@cellular, ’“Cellular’

@connection. relation :0r, [@wifi, @cellular]
@internet. default @no_connection
@internet.relation :Alternative, [@no_connection,
< @connection |

context :@bluetooth, ’Bluetooth’
@connectivity . default @internet

4.4. Declaring the context model 63

@connectivity . relation :0r, [@internet, @bluetooth]
end

end

Listing 4.8: Code snippet of the context model declaration of our messaging system.

The programmers creating this application class must first define it as a
singleton, as illustrated in Line 3 of Listing 4.8, since a FBCOP application is
supposed to have only one context model.

Then they must implement the method initialize (Line 5). This method
must first call the super method (Line 6) which will initialise the root context,
then declare their contexts as shown in Listing 4.8%, and finally attach them
to the root context.

To relate contexts with a constraint to their parent context in the context
model, our language framework provides a method relation that takes two
arguments: the name of the constraint and a list of the contexts. Examples of
this usage are exemplified on Lines 9 and 20. The first example (Line 9) shows
how we can declare Connectivity as mandatory child of its parent Contexts (i.e.
the root context). A second example (Line 20) attaches the contexts Wi-Fi and
Cellular as children of the parent context Connection under an or constraint.

For uniformity reasons we impose that the mandatory features (i.e. the
commonalities) are also triggered by contexts, even if these features are only
activated once, at launch time and will never be deactivated during the entire
execution of the system. As a consequence of this design choice, we need
to define some default contexts that will automatically become active at the
launch time of the application. So we need to allow programmers to declare
some contexts as default when they declare their context model. First of all,
the root context named Contexts will always be active by default. For child
contexts, the programmers can precise which child context will be chosen by
default by the parent context. For that, they must assign what child context
is the default context of its parent context, as showed on Lines 21 and 24. In
the example shown on Listing 4.8, No Connection will be the default child of
Internet (Line 21). Internet will be default child of Connectivity (Line 24) and
this one is a mandatory child of Contexts, the root context which is activated
by default at launch time. So by propagating the subcontexts, Connectivity,
Internet and No Connection will always get activated at launch time. Declaring
some contexts as default is specific to the context model. It is not useful for the
feature model declaration since each feature needs to be triggered by at least
a context in our approach. So the way to ensure a certain feature is active by
default is to ensure that it is triggered by a context which is active by default.

2We partially commented out the declaration of the context model for conciseness.

64 Chapter 4. Feature-based context-oriented programming framework

We will come back to this discussion when we talk about the context-feature
mapping (Section 4.6).

4.5 Declaring the feature model

Similarly to the declaration of the context model, the programmers must de-
clare the feature model of their FBCOP application. For that they must create
an application class that extends the FeatureModelDeclaration frame-
work class and define it as a singleton since their application must have only
one feature model. This framework class has some infrastructural scaffolding
code just like its homologue ContextModelDeclaration for the context
model. More information about the FeatureModelDeclaration frame-
work class will be discussed later in Section 7.2.

An example of how programmers can declare the feature model of our
messaging system, as depicted in Figure 4.2, is illustrated in Listing 4.9.

Legend
Features
l Mandatory

Or

/\

! Message ! Store Send Q

Message Message Xor

Text Rich
Predefined Picture Position

Figure 4.2: Excerpt of the feature model of our messaging system that we
declare in Listing 4.9.

class AppFeatureModelDeclaration <
< FeatureModelDeclaration

include Singleton

def initialize ()
super ()
_define_send_features ()
_define_message_features ()

38

39

40

4.5. Declaring the feature model 65

@root_feature.relation :Mandatory, [@message, @send]
end

def _define_send_features ()

feature :@send, ’Send’, [:MessengerService]
feature :@store_message, 'StoreMessage’,

— [:MessengerService]
feature :@send_message, ’SendMessage’,

— [:MessengerService]

@send.relation :Alternative, [@store_message,
— @send_message]
end

def _define_message_features ()

feature :@message, ‘Message’ , [:MessageModel,
— :MessageView]

_define_message_types ()

@message . relation :Mandatory, [@message_types]
end

def _define_message_types ()
abstract_feature :@message_types, ‘MessageTypes’
feature :@text, ’Text’, [:MessageModel,
— :MessageView]
feature :@predefined, ’'Predefined’, [:MessageModel,
— :MessageView]
@text.relation :Optional, [@predefined]
abstract_feature :@rich, ’Rich’
feature :@picture, 'Picture’, [:MessageModel,
— :MessageView]
feature :@position, ’Position’, [:MessageModel,
— :MessageView]
@rich.relation :0r, [@picture, @position]
@message_types.relation :Mandatory, [@text]
@message_types.relation :Optional, [@rich]
end

end

Listing 4.9: Code snippet of the feature model declaration of our messaging system.

As for the context model declaration, the programmers have to imple-
ment the method initialize (Line 5) and create the root feature (Features) of
the model by calling the super method.

They must then declare all the features of the feature model and relate
them with the method relation as explained in Section 4.4. For example, in

66 Chapter 4. Feature-based context-oriented programming framework

Listing 4.9, the features StoreMessage and SendMessage are attached to the
parent feature Send as alternative child features (Line 18). This feature Send
itself is a mandatory child of the root feature as shown on Line 10.

4.6 Mapping contexts to features

In addition to declaring a context and feature model with all the contexts and
features of the application, the programmers still need to declare how the
system should react to contextual changes, i.e., which context (de)activations
trigger which feature (de)activations. To declare this mapping from contexts
to features, the programmers must extend the MappingModelDeclaration
framework class for which they need to initialise the mapping instance vari-
able.

This mapping is a hash data structure where the key is a list of contexts
and the value is a list of features. The reason for using a list structure for the
keys and the values is that the programmer cannot only create simple map-
pings (from one context to one feature) but also more complex ones®. Such
more complex mappings are relations from many contexts to many features,
indicating that if a set of contexts is simultaneously active, this would trigger
the activation of all corresponding features listed. If at least a context of this
set of contexts is deactivated, all the corresponding features of this mapping
are deactivated.

Listing 4.10 gives an example of an excerpt of the mapping declaration as
illustrated in Table 4.1. Note how such mapping model is declared as a single-
ton class, since just like the context and feature model, the FBCOP application
is supposed to have only a single mapping model.

1 class AppMappingModelDeclaration <
<— MappingModelDeclaration

3 include Singleton

s def initialize ()

6 contexts = AppContextModelDeclaration.instance
features = AppFeatureModelDeclaration.instance
8 @mapping = {

9 [contexts.no_connection ()] =>
— [features.store_message ()],

10 [contexts.wifi ()] => [features.send_message(),
— features.receive ()]

3Even more complex mappings than those currently proposed in our programming frame-
work could be envisaged (see Section 14.1). But, given the overall complexity of our approach,
for now we have preferred to keep the mapping relatively simple (i.e. just a N-N directional
mapping of sets of contexts to sets of features).

11

12

4.7. Managing the activation order 67

}

end

13 end

Listing 4.10: Code snippet of a mapping declaration of our messaging system

Contexts ‘ Features
No Connection Store Message
Wi-Fi Send Message, Receive Message

Table 4.1: Excerpt of the mapping model of our messaging system that we
declare in Listing 4.10.

In this mapping declaration, the programmers must use the generated ac-
cessors of the contexts and features to create the mapping from contexts to
features. In this particular mapping, when no connection is sensed, the con-
text No Connection would be active, which would imply the selection of the
feature Store Message, dedicated to temporarily store in memory all the mes-
sages the user would like to send to other people. However, when a Wi-Fi
connection is detected, the context Wi-Fi would become active, which would
imply the selection of the features Send Message and Receive Message, in order
to be able to send and receive messages to and from people. If a connection is
sensed, it means that the context No Connection must become inactive since
it does not reify the current state of the surrounding environment. We as-
sume that when a kind of connection is sensed (e.g. Wi-Fi), the sensors layer
triggers the activation of the context Wi-Fi and deactivation of the context
No Connection simultaneously. Such an activation and a deactivation of these
contexts trigger the activation of the features Send Message and Receive Mes-
sage and the deactivation of the feature Store Message.

4.7 Managing the activation order

An important thing we did not yet discuss is the activation order of contexts,
and consequently the order of activation of features in the application classes
since feature activation is triggered by context activation. In this section we
first explain how developers can order the activation of the default behaviour,
i.e., how the mandatory features and default behaviour that is triggered by the
default contexts are installed. Then we will describe how programmers can
order the activation of the features when contexts trigger them. Finally we
will also explain and exemplify how they can define the order in which the
feature parts must be activated.

68 Chapter 4. Feature-based context-oriented programming framework

Ordering default behaviour

As we have explained in Section 3.1.6, mandatory features are triggered by
the root context of the context model at the launch time of the application.
These features and their mandatory child features are installed according to
the order declared by the developers when they attach the features to the root
feature of their feature model. This order between all these mandatory fea-
tures is determined by the depth-first search algorithm. In Listing 4.9, the ac-
tivation order is defined on Line 10. This means that the feature Message will
be installed first in the application classes. Then, the feature Text is installed
in the application classes since it is a mandatory concrete feature of Mes-
sageTypes, a mandatory child feature of Message. The feature MessageTypes
is not considered since it is an abstract one that serves only to structure the
feature model. Finally the Send feature is installed in the application classes.
This activation order assumes that the concrete mandatory features compose
the full default behaviour, but it is rare. Therefore, when a mandatory feature
has a child feature (non-mandatory) as default behaviour triggered at launch
time by a default situation in the surrounding environment, this child feature
is directly installed after its parent. For example, based on the context model
declared in Listing 4.8 and the mapping model declared in Listing 4.10, the
feature Store Message is deployed in the system’s behaviour just after the fea-
ture Send. In this example, the features are thus activated in the following
order (from the first activated feature to the last one): Message, Text, Send and
Store Message. In a case where the feature Picture was also part of the default
behaviour, the activation order would be Message, Text, Picture, Send and Store
Message.

Ordering features in the mapping model

We have explained how programmers can order the installation of the de-
fault behaviour (i.e., the mandatory features and the features triggered by the
default situation at launch time). Nevertheless the programmers may also ma-
nipulate the feature activation order through the mapping model when the
features are triggered during the execution. To do that the programmers may
order the list of features in the mapping relation of the mapping model to
precise in which order the features must activated. The first declared feature
in the mapping relation will be the first feature deployed and the last feature
is the last deployed in the application classes. In Listing 4.10, if the context
Wi-Fiis activated, the feature Send Message will be installed first and then the
feature Receive Message.

4.7. Managing the activation order 69

Ordering feature parts

While the feature parts are deployed in their corresponding application class-
es, all feature parts of a feature are not always installed in the order in which
they are implemented in the feature definition. In addition, as the prologues
of the feature parts are executed following the order in which they are de-
ployed, this can sometimes lead to errors. An example of such an error arises
the execution of the behaviour of a feature part that uses an instance vari-
able that was not correctly instantiated because the feature that initialises
this variable was not executed yet. To avoid such issues, programmers can
provide the order of the activation of feature parts. For that the programmers
must define the order in which the feature parts are handled with the method
set_feature_part_order that takes the list of feature parts as argument. List-
ing 4.11 depicts this usage. Line 2 illustrates that the feature part Model will
be deployed first and the feature part View will be then deployed.

module Text
set_feature_part_order :Model, :View

module Model
end
module View

end
end

Listing 4.11: Code snippet of how programmers can define the order of the activation
of the feature parts in the module Text

Without specifying the order of how the feature parts must be activated,
all the feature parts will be executed in the order defined by the interpreter.

These different leverage points allow programmers to activate and deploy
the features (and consequently, the feature parts) in a certain order. This or-
der is not only used to deploy the features in their corresponding application
classes. It is also used to execute the existing prologues (some code of a fea-
ture that will be executed automatically after its installation) of the newly
deployed features. So it is crucial for the programmers to be aware of the ac-
tivation order because if the features are not installed in the correct order, the
system’s execution could be not as expected or could lead to errors because
certain methods do not exist yet.

70 Chapter 4. Feature-based context-oriented programming framework

4.8 Activating contexts

Now that we have introduced what the programmers need to provide to cre-
ate a FBCOP application, i.e., the context and feature model, the mapping, the
application classes and the code of the features, we will see how programmers
can use our FBCOP system architecture to (de)activate features depending on
the detection of certain situations in the surrounding environment. (For ex-
ample, by reading and interpreting the values of certain sensors. Note that,
currently, our implementation framework provides no direct support for ob-
taining sensor information yet, as this may be very platform specific and can
be considered as complementary to our approach. We will discuss about this
improvement in the future work in Section 14.2.)

To explicitly activate or deactivate some contexts, programmers can use
the methods activate and deactivate, respectively. These methods take a list
of contexts as argument.

Listing 4.12 depicts an example of an activation and a deactivation of some
contexts on Lines 1 and 6. In the example on Line 1, the system tries to activate
the contexts Bluetooth and Driving. Such a situation could mean that the user
is driving and has connected his smart device to his car dashboard through
Bluetooth. The example of the deactivation shown on Line 6 could mean that
the user has shut off his GPS on her device.

ContextActivation.instance.activate (
AppContextModelDeclaration.instance . bluetooth (),
AppContextModelDeclaration . instance . driving ()

)

; ContextActivation.instance.deactivate (
7 AppContextModelDeclaration.instance . positioning ()

)

Listing 4.12: Code snippet of an activation and a deactivation of contexts in our
messaging system.

As described in Section 3.2, when contexts are (de)activated in the context
model, based on the mapping model the system selects the features that need
to be (de)activated depending on these contexts and then tries to (de)activate
these features. Finally it installs or removes them in the application classes in
order to adapt or refine them.

As illustrated in Section 4.6, it could sometimes be useful to propose a
method to activate and deactivate some contexts simultaneously. To do that
our implementation framework proposes a method alter that takes at least
one context wrapped in an action to activate or deactivate this context. The
framework wrapper act serves to precise that the passed context must be
activated while the framework wrapper deact is to precise that the passed

o

4.9. Proceeding feature execution 71

context have to be deactivated. Listing 4.13 shows an example of the use of
the method alter. In this example, we want to activate the context Wi-Fi and
deactivate the context No Connection simultaneously.

contexts = AppContextModelDeclaration.instance

ContextActivation.instance . alter (
act(contexts.wifi()),
deact(contexts.no_connection ())

)

Listing 4.13: Code snippet of the activation of the context Wi-Fi and the deactivation
of the context No Connection simultaneously in our messaging system.

4.9 Proceeding feature execution

Context-oriented applications are systems that adapt dynamically their be-
haviour with features depending on some particular contexts of the surround-
ing environment in which the system runs. In our programming approach,
this means that the features adapt the application classes at runtime when
new changes in the environment are sensed. Allowing the programmers to
create features that only adapt the application classes could be really restric-
tive since the features aimed to adapt the behaviour of the application what-
ever its refinement or replacement. In addition, in our programing approach,
we ask programmers to use features to define the default application’s be-
haviour and that would mean the application could no more adapt it after
the launch time and this is not the desired behaviour. Therefore, we con-
sider that features can also refine or replace other features installed in a same
class and that a chain of previously installed features will be kept so that new
versions can build upon older ones, as proposed in context-oriented program-
ming [HCNO03].

When a feature refines the behaviour of a previous feature, it is sometimes
useful to build upon that previous behaviour to profit fully from the power
of dynamic adaptability and to obtain more reusable and extensible code. For
that, Hirschfeld et al. [HCN08] suggested a proceed mechanism in context-
oriented programming. Our language also implements such a proceed mech-
anism. Programmers can, inside a method of a feature, use a special keyword
proceed, which will call a previously installed method with the same name
provided by a previous feature. When the proceed is executed by a method of
an application class installed by some feature, the system retrieves the previ-
ous version of this method installed by a previous feature, installs it in this
application class, executes it, and then reinstalls the most recent version of
the feature again. With such a mechanism, the programmers can refine the
application’s behaviour incrementally through different features.

72 Chapter 4. Feature-based context-oriented programming framework

Let us illustrate this proceed mechanism with a create_message_widget
method to create the view of a message in the application class MessageView.
Assume a user can write text and upload a picture in the message. After ac-
tivations of the features Message, Text and Picture (in that order), the default
behaviour is installed by the feature Message. This behaviour is then refined
by the feature Text to add a text and finally, refined again by the feature Pic-
ture to add a picture to the message. As the last version of the method cre-
ate_message_widget comes from the feature Picture, when the system calls
create_message_widget, it executes the method of this feature. The activa-
tion order of features determines how features are chained together and thus
which features refine or replace previously installed features on a same ap-
plication class. Figure 4.3 graphically represents in what order the features
were installed in the application class MessageView.

Classes Features

Message Text Picture W

MessageView [-| -
create_message_widget create_message_widget create_message_widget

Figure 4.3: Activation order of the features Message, Text and Picture on the
class MessageView

The source code snippets of the different features Message, Text and Pic-
ture are shown in Listings 4.14, 4.15 and 4.16, respectively.

module Message
module View
can_adapt :MessageView
def create_message_widget (frame)
_frame =
return _frame
end

end

end

Listing 4.14: Code snippet of an example of a default behaviour (feature Message)
of the method create_message_widget of the application class MessageView of our
messaging system

1

13

2

3

5

6

13

4.9. Proceeding feature execution 73

module Text
module View
can_adapt :MessageView

def create_message_widget (frame)
_frame = proceed(frame)

—
return _frame
end

end

end

Listing 4.15: Code snippet of an example of a proceed mechanism to refine the view
of the message with a text (feature Text) in the application class MessageView of
our messaging system

module Picture
module View
can_adapt :MessageView

def create_message_widget (frame)

_frame = proceed(frame)
g
return _frame
end
end
end

Listing 4.16: Code snippet of an example of a proceed mechanism to refine the view
of the message with a picture (feature Picture) in the application class MessageView
of our messaging system

Assume now that each of these features have been installed in the order
depicted in Figure 4.3 and that we call the method create_message_widget on
an object of the application class MessageView. The control flow of this
method call then starts with the latter one, i.e., the method of the feature Pic-
ture, but the proceed call immediately delegates to the previously installed
feature Text, whereas the proceed call there delegates to the default version
of the method defined by the feature Message on the application class Mes-
sageView. After the execution of the method of Message is finished, the con-

74 Chapter 4. Feature-based context-oriented programming framework

trol flows back in opposite order to execute the remainder of each of those
methods. Figure 4.4 illustrates this execution flow.

create_message_widget create_message_widget

def create message W|dget(frame) (—J def create mgssage wmgel(frame) (—J def create_mgssage_widget(frame)

_frame = Lemmmmmm » _frame = proceed(frame) Lemmmmmm > _frame = proceed(frame)

create_message_widget

re1urn _frame --------" - return _frame --------" - return _frame
end end end Method call

Figure 4.4: Method call semantics in presence of the proceed mechanism in
our messaging system.

The result of this execution thus creates incrementally a message view
object with the author of the message, followed by the text of the message, and
followed by a picture. The result is visually represented in an incremental way
with wireframes, after executing each method of each feature, in Figure 4.5.

After execution After execution After execution
of the method : of the method : of the method
of the feature Message : of the feature Text : of the feature Picture
Benoit Benoit Benoit
Hi Kim, Hi Bruno Hi Kim, Hi Bruno

Figure 4.5: Wireframes drawing incrementally the result of the execution of
the method create_message_widget in our messaging system.

4.10 Language versus framework

We have not yet addressed the question if our programming approach is
rather a framework, a programming language, a library or even a domain-
specific language from a context-oriented developer’s point of view. We ar-
gue that our implementation should be seen as an application framework for
developers of FBCOP applications.

First of all, it proposes a generic implementation with some hotspots that
developers need to specialise when they implement their FBCOP application.
This generic implementation comprises a common architecture and struc-
ture for all FBCOP applications in order to facilitate the development of such
systems. This implementation is a framework as it applies the principle of

4.11. Conclusion 75

inversion of control to call application-specific code provided by the devel-
opers. For example, developers need to declare a context model but its actual
creation and usage when contexts need to be (de)activated are managed by
the framework. This is also the case for our other models such as the fea-
ture model and mapping model. Another example concerns the installation
or removal of feature definitions in the classes of the system. Whereas the
programmers need to implement the different features definitions, it is the
framework’s responsibility to install or remove them in the system’s classes
when they are activated or deactivated. This leads us to consider our imple-
mentation as a framework rather than a library. Even when the programmers
could call a framework-specific method to (de)activate certain contexts, we
can consider it as an entry point of our framework that is itself in charge of
selecting, (de)activating and (un)installing the features.

Even though we extended the Ruby programming language to add the
proceed mechanism which is key to context-oriented programming [HCN08],
we did not change the language or grammar of Ruby. Moreover we did not
have to update any components of the Ruby interpreter to implement our
FBCOP framework. We therefore cannot claim that our implementation is
a programming language; at best it is an extension of an existing program-
ming language, supported by a powerful implementation framework where
all the magic of dynamic context activation, feature activation, deployment
and execution happens.

Finally, although we occasionally introduce some syntactic sugar to make
it easier for programmers to use our framework, this is not key to using the
framework and more work needs to be done to make the syntax of using our
framework even more compact.

We therefore conclude that our programming approach is a programming
framework that helps programmers with all the abstractions we propose.

4.11 Conclusion

In this chapter we have explained what components programmers must im-
plement when using our FBCOP programming framework to create context-
oriented applications.

They need to implement the declaration of their context, feature and map-
ping model, as well as the feature definitions (i.e. the actual code of the con-
crete features that will be installed dynamically in the application classes)
and the basic application classes of the system. We exemplified all of these
components through snippets of source code.

We also described how they can manipulate the activation order through
different leverage points by ordering the (mandatory and) default behaviour,
the features in the mapping and the feature parts when they are triggered.

76 Chapter 4. Feature-based context-oriented programming framework

We also explained how the programmers can activate or deactivate con-
texts to trigger the installation or removal of features depending on these
contexts in order to adapt dynamically the behaviour of the system.

Finally we explained and illustrated the important proceed mechanism
we can find in context-oriented programming. With such a mechanism de-
velopers can incrementally build/refine the behaviour of their application at
runtime.

CHAPTER

5

USER INTERFACE
ADAPTATION LIBRARY

User interfaces are a must-have when conceiving applications for real users.
Without them, applications would not be accessible to a wide audience having
no knowledge in computer science, but only to experts for some specific tasks.
Therefore we extend the FBCOP approach with a user interface adaptation
(UIA) library to help programmers to build their user interfaces incrementally
and allow them to adapt dynamically depending on the current situation in
which the application runs.

Our UIA library relies on the FXRuby GUI library'. FXRuby is a library
that helps to create “powerful and sophisticated cross-platform graphical user
interfaces™ for Ruby applications.

In this chapter, first we describe how the user interfaces are represented
in a tree structure. Then we provide an overview of how a FBCOP applica-
tion, our UIA library and the FXRuby GUI library are interconnected. Next
we introduce the API we propose to build the user interfaces and exemplify
its usage. Finally we will illustrate this usage in the features of a FBCOP ap-
plication.

https://github.com/larskanis/fxruby
2https://larskanis.github.io/fxruby/

77

https://github.com/larskanis/fxruby
https://larskanis.github.io/fxruby/

78 Chapter 5. User interface adaptation library

5.1 Representation of user interfaces

A user interface is a composition of layouts and UI objects. Figure 5.1 illus-
trates a wireframe of a user interface of our messaging system where end-
users can see the different chats on the left and a chat content on the right.
In this example, the end-user has four different chats and opens Kim’s chat.

A layout is a container with specific constraints on how it displays its
different contained user interface objects (e.g., a vertical or horizontal layout).
For example, in Figure 5.1, a horizontal layout has been defined for the global
view, so that end-users can see a list of chats on the left and the content of
a chat on the right (see black box on the figure). A vertical layout has been
used to list all the chats so that the different chats are displayed from top to
bottom (see the left blue box on the figure). A vertical layout has been used
to show the messages of a given chat and the user interaction below (see the
right blue box on the figure). A vertical layout has also been used to show all
the messages inside a given chat (see the orange box above on the figure) and
a horizontal layout has been used to display the textfield and the button (see
the orange box below on the figure). Finally, a vertical layout is also used to
show the content of each message (see the yellow boxes on the figure).

A Ul object is a final element in a user interface, e.g., a button, a label,
and so on. For example, we have a button for each chat so that when end-
users click on a button of the chats list, the content of that chat opens on
the right part of the user interface. We also have many labels such as the
labels “Kim:” and “Can we discuss tomorrow about the LINGI2252 course?”,
an input textfield and a “send” button.

Parrain Kim:

Can we discuss tomorrow about the
LINGI2252 course?

Kim

Bruno

Benoit:

INGI
Of course. At 11 AM?

Figure 5.1: Wireframe drawing of a messaging system. Colours serve to show
the different containers.

To allow the programmers to compose their user interfaces, we reify the
user interfaces through a tree representation. This representation allows to

5.2. Overview 79

easily express different relations we can have between the user interface ob-
jects, such as sibling relations or hierarchical relations. Figure 5.2 is the tree
representation of the wireframe depicted in Figure 5.1.

Horizontal
layout

Button Horizontal Horizontal
separator layout
Parrain

INGI

Horizontal

‘ Vertical ‘ ‘ Vertical ‘
separator

Textfield Button
layout layout

Send

[[o e [o]

Horizontal
separator

Button
Kim: Can we discuss
tomorrow about
the LINGI2252

course?

Benoit: Of course. At 11
Kim

Horizontal
separator

Bruno

Figure 5.2: Tree representation of the user interface illustrated by the wire-
frame in Figure 5.1.

5.2 Overview

Before starting to explain how programmers can use our UIA library, it is im-
portant to know that programmers will never call directly the GUI library on
which we build our own library (i.e., FXRuby). In fact, our library is an inter-
mediary component between the FBCOP applications, and more specifically
the feature definitions provided by programmers of FBCOP applications, and
the real GUI library. Figure 5.3 depicts the overview of how a FBCOP appli-
cation, our library and the real Ul library are interconnected.

When programmers develop a FBCOP application, they implement the
feature definitions and split the different concerns into different feature parts.
Taking Figure 5.3, they implement two features, each having a feature part for
the core logic concern and another one for the UI concern.

When programmers create their user interfaces, they need to call the li-
brary class UIManager. This class then creates a new Ul object (instance of
UIObject) by using the single instance of the library class Factory that re-
lies itself on the FXRuby itself. To simplify the UIA library, we considered the
layouts and UI objects as instances of the library class UIObject. When they
want to update a property of a Ul object (e.g., changing the background color
of a layout or adding a new event on a button), programmers can indirectly
call the FXRuby library through the UI object created previously, as depicted

80 Chapter 5. User interface adaptation library

FBCOP application User interface adaptation library Real GUI library
Feature
Core logic ul calls uses
feature feature EET B EEREEE -» UIManager f--------- .
part part P ¥
J ' j
' ' calls
1 calls ! uses Factory ERE EEEEEEEE -» FXRuby
B ' M I B
Feature X :
Core logic ul —f o d ey UiOblect peeee e calls
feature feature Seq-peee-t
part part calls L

Figure 5.3: Overview of the interaction between the FBCOP application, our
user interface adaptation library and the underlying FXRuby GUI library on
which it relies.

in Figure 5.3. In fact, the UTObject library class has a method to delegate
any method call to the FXRuby library.?

The design choice to create a library as intermediate component between
the FBCOP applications and the real GUI library makes it easy to replace
the GUI library by another one. In addition, by implementing only a single
method in UIObject that delegates the method call to the real GUI library
allows to implement our UIA library easily on top of an existing one, so that
FBCOP application programmers could reuse as much as possible of what the
fully implemented and documented real GUI library (i.e., FXRuby) offers, such
as accessing and modifying the properties of a Ul object or attaching events
to create user interaction.

5.3 API and usage of the UIA library

In this section, we will describe the full API of our UIA library and exemplify
how programmers can implement their user interfaces with the UIA library.
We will voluntarily hide the notion of features for a better understanding of
the UIA library at this stage. We will explain in the next section how pro-
grammers can use it in the implementation of their context-specific features.

To create user interfaces, programmers must use the API of the class
UIManager of the Ul module. Using this API, programmers can create an
application, a main window, create a Ul object inside a container (i.e., a lay-
out) or in relation to another one (i.e., above/below or on the left/right of
another Ul object), remove a Ul object or all children of a UI object, and find

3Without entering in the details of the implementation, the Ruby programming language
proposes an hook method that catches each method call for which no method is defined in
the class. Thus, by overriding this hook method, we can easily delegate this method call to
the real GUI library. This behaviour can be easily implemented in other languages through
metaprogramming.

5.3. API and usage of the UIA library 81

a specific Ul object. Figure 5.4 depicts this API with the different methods it
proposes for all the actions mentioned previously.

UlManager

create_app(proc)

create_main_container(app, title, args)
create_ui_object_in(id, type, container, args)
create_ui_object_above(id, above, type, args)
create_ui_object_below(id, below, type, args)
create_ui_object_left_of(id, left_of, type, args)
create_ui_object_right_of(id, right_of, type, args)
remove_ui_object(ui_object)

remove_all_ui_children(ui_object)

find_ui_object(ui_object)

Figure 5.4: API of our UIA library.

Creating an application is a concept that comes from FXRuby to handle
the events loop [Lyl08]. Programmers must first create the application. Then
they must create a main window in the application to be able to attach Ul
objects to it later.

Listing 5.1 depicts how programmers can create the application. Line 1 il-
lustrates how programmers must access the instance of the class UIManager.
This class is a singleton class since we cannot have two Ul managers in a same
application. Lines 3 and 6 show how the programmers have to create and run
their application through our API, with the methods create_app and run. In
fact, the method run is a method not implemented in our UIA library. How-
ever, as explained in Section 5.2, this method will be called on the UI object
itself, that delegates in turn to the FXRuby GUI library.

ui_manager = Ul::UIManager.instance
app = ui_manager.create_app () do |app]|
SmartMessagingSystem .new (app)
5 end
, app.run ()

Listing 5.1: Code snippet illustrating how programmers can create the application.

Listing 5.2 depicts how programmers can create a main window with a
size of 800*600 and as title “Smart messaging application”. Line 1 depicts how
programmers must create and attach a main window to the application. This

82 Chapter 5. User interface adaptation library

is done with the method create_main_container that takes the application (i.e.,
the app variable), a title, and the arguments imposed by FXRuby. In this ex-
ample, the arguments we provide to FXRuby is the title, width and height.

ui_manager.create_main_container (app, "Smart messaging
— application", :width => 800, :height => 600)

Listing 5.2: Code snippet illustrating how programmers can create a main Ul window.

Next, let us illustrate step by step how programmers can build a user in-
terface with our library. Listing 5.3 shows how programmers can implement
the left part of the wireframe (i.e., the chats list) of Figure 5.1.

ui_manager = Ul::UlIManager.instance
chats_list_layout =
< ui_manager.create_ui_object_in (:list_of_chats ,

«— :FXVerticalFrame , main_window)

chat_ids = ["Parrain", "Kim", "Bruno", "INGI"]

; chat_ids.each do |chat_id|

chat_button =

< ui_manager.create_ui_object_in(chat_id.to_sym,
— :FXButton, chats_list_layout, chat_id, :opts =>
— LAYOUT_FILL_X|JUSTIFY_LEFT, :padLeft => 10,

— :padRight => 10, :padTop => 20, :padBottom => 20)
chat_button.backColor = "#FFFFFF"

chat_button.connect (SEL_ COMMAND) do
end
separator_id = "#{chat_id}-sep".to_sym

ui_manager.create_ui_object_in(separator_id ,
— :FXHorizontalSeparator, chats_list_layout)

s end

Listing 5.3: Code snippet illustrating how programmers can implement the chats list
on the left part of Figure 5.1.

To create a Ul object, programmers have to call the create_ui_object_in
method on the instance of UIManager. This method takes the following
arguments: an identifier, the type of UI object that programmers want, the
layout in which the object must be placed, and the arguments imposed by
FXRuby. With these arguments, the method creates a Ul object of the passed
type and delegates the creation of the UI object to FXRuby that needs the
different arguments to build correctly the object and put the Ul object in the

5.3. API and usage of the UIA library 83

passed layout. For example, programmers create a vertical layout (also known
as vertical frame in FXRuby) in the main window on Line 3.

With Lines 7 and 15, programmers create a button and a horizontal sepa-
rator for each chat identifier in chat_ids. In addition to providing its identifier,
type and the layout in which it must appear, they must also provide the differ-
ent arguments imposed by FXRuby, i.e., the text of the button, some options
(-opts) and the padding (e.g., :padLeft, ...).* Here, the options indicate that the
button must fill the space on the x-axis (LAYOUT FILL X) and that its text
must be placed to the left (JUSTIFY_LEFT).

To update some properties of a Ul object, we have exactly the same API
as proposed by FXRuby. For example, when programmers want to update
the background color of a Ul object, they must call the setter of the back-
Color property” as suggested by the FXRuby library. (More information on
the different methods available for the different objects are available in the
documentation of the FXRuby library.)

Finally, programmers can also attach behaviour when interactions are
added on buttons. Again, they can implement such interactions as described
in the FXRuby documentation. An example is shown on Line 10. Program-
mers must attach an event SEL_ COMMAND on the button with the method
connect and provide the behaviour that must be executed when the button is
clicked. (More information on the different interactions on the different Ul
objects can be found in the FXRuby documentation.)

Now that we have presented how programmers create UI objects, we will
explain how they can create Ul objects in relation to one another and what
the consequences of such creations are. For that, revisit the example of our
wireframe in Figure 5.1 and consider only how a message is displayed in a chat
(see the first yellow box in Figure 5.1). In this wireframe, only the author and
the message itself were displayed. We will now add the date of the message
to the right of the author, as depicted in Figure 5.5.

Kim: (21/10/21)

Can we discuss tomorrow about the
LINGI2252 course?

Figure 5.5: Wireframe illustrating how a message is displayed in a chat.

4More information on the arguments that take a button in FXRuby can be found on ht tps :
//larskanis.github.io/fxruby/Fox/FXButton.html.

5In this case, the setter is the method backColor=. But in Ruby, we can call the setter as if
we do a new assignement, as illustrated on Line 8.

https://larskanis.github.io/fxruby/Fox/FXButton.html
https://larskanis.github.io/fxruby/Fox/FXButton.html

84 Chapter 5. User interface adaptation library

Assume that programmers have already created a chat_layout to contain
all the messages. On Line 2 of Listing 5.4, they define a vertical layout attached
to chat_layout that contains the author and the content of the message with
Lines 3 and 6, respectively.

ui_manager = Ul:: UIManager.instance

> message_layout =

< ui_manager.create_ui_object_in (: message_layout_kim,
< :FXVerticalFrame , chat_layout)

; author =

< ui_manager.create_ui_object_in (: message_author,
— :FXLabel, message_layout, "Kim:")

content = "Can we discuss tomorrow about the LINGI2252
< course?"

; ui_manager.create_ui_object_in (: message_text, :FXLabel,

— message_layout, content)

ui_manager.create_ui_object_right_of (: message_date ,
< author, :FXLabel, "(21/10/21)")
end

Listing 5.4: Code snippet illustrating how programmers can implement the view of a
message by displaying the author, the date and the content of the message as depicted
in Figure 5.5.

If programmers want to show the date of the message to the right of
the author, they can do so by using the method create_ui_object_right_of, as
shown on Line 8. This method takes as arguments an identifier for the new Ul
object, the related Ul object (or the identifier of the related UI object), the type
of the new UI object and the imposed arguments from FXRuby. The method
creates the Ul object and puts it on right of the related Ul object (i.e., the label
“Kim:”). The usage of this method has the effect that our library generates a
horizontal layout, puts both Ul objects in the correct order in this new gener-
ated layout and puts the generated layout at the previous place of the related
UI object. This result is represented in Figure 5.6.

To create a Ul object on the left of another one, one may call the method
create_ui_object_left_of that behaves as the method create_ui_object_right_of;
except that the new Ul object is placed on the left of the related one. Figure 5.7
illustrates the result of the wireframe, shown in Figure 5.7b, when program-
mers want to put the date sending to the left of the author on the initial wire-
frame as depicted in Figure 5.7a. Figure 5.7c represents the tree of this Ul part
after executing the method. The generated layout is shown with its dashed
borders but no visual consequence on the real generated user interface. Sim-
ilarly, when programmers want to create UI objects above or below another
one, the new UI object is created above or below the related one in a gener-

5.3. API and usage of the UIA library 85

Vertical
layout
Horizontal Label
layout
Can we discuss
tomorrow about
Label Label the LINGI2252
course?
Kim: (21/10/21)

Figure 5.6: Tree representation of our second example illustrated in Fig-
ure 5.5.

ated vertical layout. Figure 5.8 illustrates the result of the wireframe, shown
in Figure 5.8b, when programmers want to put the date sending above the au-
thor on the initial wireframe as depicted in Figure 5.8a. Figure 5.8c represents
the tree of this Ul part after executing the method.

Vertical
layout
1 Horizontal
1 layout 1

= = = = = = = = =
N N ! Can we discuss
Kim: 1 (21/10/21) Kim:] {omorrow about
1R
course?
Can we discuss tomorrow about the Can we discuss tomorrow about the
LINGI2252 course? LINGI2252 course? (21/10/21) Kim:

(a) Initial wireframe of a (b) Wireframe after (c) Representation after

message. putting explicitly the date put explicitly the date
sending on the left of the sending on the left of the
author. author.
Figure 5.7: Illustration of the execution of the method cre-

ate_ui_object_left of where the date sending must be placed to the left
of the author, and its tree representation after executed the method in the
messaging system.

Now assume that programmers want to put another UI object to the right
of the author, as for example, an emoticon to describe the current status of the
profile, with another call to the method create_ui_object_right_of. Let us re-
visit the example of the wireframe in Figure 5.5. Since the author was already
moved to a generated horizontal layout, the method will no longer create a
new generated horizontal layout. Instead the method will insert the UI object
to the right place, i.e. directly to the right of the author and before the date
sending. Therefore its tree representation no longer contains two UI objects
but three Ul objects.

86 Chapter 5. User interface adaptation library

Vertical
layout
1 Vertical
I it
25

Can we discuss

i : tomorrow about

" crsor
____________ >
Can we discuss tomorrow about the Can we discuss tomorrow about the course
LINGI2252 course? LINGI2252 course? (21/10/21) Kim

(a) Initial wireframe of a (b) Wireframe after (c) Representation after
message. putting explicitly the date put explicitly the date
sending above the author. sending above the author.

Figure 5.8: Illustration of the execution of the method create_ui_object_above
where the date sending must be placed above the author, and its tree repre-
sentation after executed the method in the messaging system.

To summarise this creation of a Ul object in relation to another, the method
will create a new corresponding layout at the first call and then the method
will insert at the right place the new UI object if and only if the type of the
layout is the same. For example, if the programmers want to put a Ul object
to the right of a UI object, the method call generates a horizontal layout in
which both UI objects are correctly placed. Then, when they want to create
another UI object on the left/right of any UI object of this generated layout,
the UI object is added to this horizontal layout. But if the layout is another
type of layout (e.g. vertical), the method will consider that the UI object is
not yet attached to a generated corresponding layout. The method will thus
generate the new corresponding layout as we have seen previously.

To remove a Ul object or all the children of a UI object, programmers can
call the methods remove_ui_object and remove_all_ui_children, respectively.
These two methods take as argument a Ul object. Nevertheless, a specific
case appears in the method that removes a Ul object when it is called: if the
UI object was part of an auto-generated layout and its sibling remains alone,
the auto-generated layout is also removed and the sibling is reattached to the
parent of the auto-generated layout to take its place. Revisiting the wireframe
of a message, depicted in Figure 5.5. When the sending date is removed, the
generate layout contains only the author of the message. So the Ul object rep-
resenting the author is detached of the generated layout, this layout is also
removed and the UI object is reattached to the previous parent layout. Fig-
ure 5.9 depicts the representation of this UI part after removing the UI object
representing the date sending (and the generated layout). (As a reminder, the
initial tree representation was shown in Figure 5.6)

Finally the method to find a UI object is the method find_ui_object that
takes the identifier of a UI object.

5.4. UIA library and features 87

Vertical
layout
Label Label
Kim: Can we discuss
tomorrow about
the LINGI2252
course?

Figure 5.9: Tree representation after removing a Ul object and its generated
layout. The initial tree representation was shown in Figure 5.6.

5.4 UIA library and features

Now that we have exemplified the API of our UIA library, we will show how
programmers can build their user interfaces through the feature definitions.
Since each feature definition is on a specific concern, the user interface is
split into different feature parts. The complexity thus lies in the fact that we
must compose the user interface through dynamic binding and the proceed
mechanism. In this section we provide an example of how a user interface
can be built through the proceed mechanism.

To exemplify that, we revisit our example of how a message is incremen-
tally composed in the chat layout, as illustrated in Figure 5.5 and represented
as a tree in Figure 5.6.

Assume programmers have three features Message, Text and Date. Each of
these features has a feature part View that can adapt and refine the application
class MessageView. The feature Message is the default behaviour and creates
the layout in which all the data of the chat messages will be displayed through
UI objects. In addition, this feature also adds the author of the messageé.
The features Text and Date add the text content and the date of the message.
Listings 5.5, 5.6 and 5.7 show the code snippets of the features Message, Text
and Date, respectively.

1 module Message
: module View
3 can_adapt :MessageView

5 attr_accessor :main_window

def create_message_widget(layout)
8 ui_manager = Ul::UIManager.instance

%We should separate the author from the default behaviour to increase the modularity and
separation of concerns. But we decided to group them to simplify the example.

88 Chapter 5. User interface adaptation library

message_layout =
< ui_manager.create_ui_object_in (: message_layout_kim ,
< :FXVerticalFrame , layout)

@author_label =
< ui_manager.create_ui_object_in (: message_author,
— :FXLabel, message_layout,
— "#{@message_model.from}: ")
return message_layout
end

end

7 end

Listing 5.5: Code snippet of the feature part View of the feature Message adapting the
application class MessageView in which a message layout is created with a label
representing the author of the message in the messaging system.

module Text
module View
can_adapt :MessageView

def create_message_widget(layout)
message_layout = proceed(layout)

ui_manager = Ul:: UIManager.instance
ui_manager.create_ui_object_in (: message_text,
— :FXLabel, message_layout, @message_model. text)
return message_layout
end

end

5 end

Listing 5.6: Code snippet of the feature part View of the feature Text adapting the
application class MessageView in which the text is added to the message widget in
the messaging system. Notice how a proceed call is used to generate the layout with
the author of the message so that the text can be added to this layout.

module Date
module View
can_adapt :MessageView

def create_message_widget(layout)
message_layout = proceed(layout)

5.4. UIA library and features 89

ui_manager = Ul::UIManager.instance

< ui_manager.create_ui_object_right_of (: message_date,
<~ @author_label, :FXLabel,
— " (#{ @message_model. date})")
return message_layout
end

end

5 end

Listing 5.7: Code snippet of the feature part View of the feature Date adapting the
application class MessageView in which the date of the message is added to right
of the author of the message in the messaging system. Notice how a proceed call is
used to generate the layout with the author and the content of the message so that
the sending date can be added to the right of the author.

In this example, we assume the following activation order of these fea-
tures: Message, Text and Date. In other words, the MessageView application
class will be adapted first by Message, then by Text and finally Date. Whereas
the first two features are mandatory, the feature Date is considered as optional
because it could be hidden for small screens (e.g. smartphones).

Each View feature part implements the method create_message_widget
that takes as argument the layout in which the message UI object must be
part. As explained in Section 4.9, programmers can easily build in an in-
cremental way the widget thanks to the power of the proceed mechanism.
Figure 5.10 depicts the result of the incremental creation of this widget.

When the method create_message_widget is called, the version of the fea-
ture Date is first executed. When the proceed statement is encountered, the
control is given to the version of this method of the feature Text. Finally the
control is given to this method of the default behaviour (feature Message).
Then a message layout is created by calling the method create_ui_object_in
(Line 9 in Listing 5.5). The control flow continues by creating the label pre-
senting the author of the message (Line 11 in Listing 5.5). The result of this
execution is shown in Figure 5.10a. Once the default version of the method
has finished executing, the control flow returns to the version of the method
of the feature Text and creates the label that contains the text of the message
(Line 9 in Listing 5.6). Its result is illustrated in Figure 5.10b. Finally the con-
trol flow returns to the version of the method of the feature Date and creates
a label with the date of the message on right of the label of the author (Line 9
in Listing 5.7). Figure 5.10c shows the final result of this execution.

90 Chapter 5. User interface adaptation library

=

Kim: Kim: (21/10/21)

Can we discuss tomorrow about the Can we discuss tomorrow about the
LINGI2252 course? LINGI2252 course?

(a) After executing the be- (b) After executing the be- (c) After executing the be-
haviour of the feature Mes- haviour of the feature Text haviour of the feature Date
sage

Figure 5.10: Results showing how the message widget is created incremen-
tally by calling the method create_message_widget in our messaging system.

5.5 Conclusion

In this chapter, we first introduced how user interfaces can be represented in-
ternally to be easily manipulated. This representation is a tree-like structure
where the root is the main window, the leaves are the widgets and the inter-
mediate nodes are the different layouts that composes the user interfaces.

Then we provided an overview of how the components, i.e., a FBCOP
application are connected to the real GUI library (FXRuby) through our UIA
library.

Next, we introduced the API of the UIA library by showing how program-
mers can use it to create Ul objects in a layout, create Ul objects in relation to
others, as well as how they can remove and find UI objects.

Finally we exemplified how programmers can use the UIA library when
they define their features dedicated to the user interface concern. With the
combination of the proposed UIA library and the proceed mechanism, pro-
grammers are thus able to dynamically adapt the user interfaces (at runtime).

CHAPTER

6
VISUALISATION TOOLS

It comes as no surprise that designing and implementing FBCOP applications
remains quite complex due to their highly dynamic nature and the expo-
nential number of combinations we can have between the contexts and fea-
tures they adapt. To help programmers achieve this complex task we created
two separate visualisation tools: the CONTEXT AND FEATURE MODEL VIsu-
ALISER [Duh+19b] and the FEATURE VisUALISER [DMD18]. The former aims
to provide a global overview of the system by visualising the context model,
feature model, the system’s application classes and their interdependencies.
The second tool helps developers to inspect and visualise the complete pro-
cess starting from context activation, via feature selection and activation to
the actual deployment of those features in the system’s application classes.

In this chapter we describe and illustrate both visualisation tools. For each
tool, we detail its visualisation, present a meta-model, and explain its differ-
ent functionalities through snapshots of the tool running on our simplified
messaging system. Then we briefly explain why these visualisation tools can
be considered as complementary from a programmers’ point of view, when
developing and debugging FBCOP applications.

6.1 CONTEXT AND FEATURE MODEL VISUALISER

Keeping track of all possible contexts, features and their intra- and inter-
dependencies remains a daunting task for developers of FBCOP applications.

91

92 Chapter 6. Visualisation tools

Itis not easy for programmers to know what contexts or features are available,
are currently active, what are the consequences of activating or deactivating
them, or whether the system exhibits the intended behaviour in a particular
situation.

We therefore developed the CONTEXT AND FEATURE MODEL VISUALISER
tool [Duh+19b]. This visualisation tool was implemented by a master-level
student, Hoo Sing Leung, during his master thesis [Leul9] we supervised.
This visualisation tool can help developers to keep an overview of all existing
contexts and features, by displaying the context and feature models and their
dependencies. This tool allows a developer to examine how a hierarchical
model (the context model) can statically or dynamically interact with another
hierarchical model (the feature model). This visualisation also exposes which
features adapt which application classes of the system. Figure 6.1 shows a
snapshot of our CONTEXT AND FEATURE MODEL VISUALISER at work. To keep
the picture readable, we deliberately hid some information like for example all
inactive features, all non-impacted application classes, some of the impacted
application classes and all mapping relations from the inactive contexts and
features.

6.1.1 Visualisation

Figure 6.2 explains the structure of the CONTEXT AND FEATURE MODEL VIsu-
ALISER through its meta-model which emphasises the different entities (i.e.,
contexts, features and application classes) involved in this tool. It consists of
a context model containing nodes representing contexts and edges represent-
ing constraints between these contexts, as well as a feature model containing
nodes representing features and edges representing constraints between these
features. It also contains a mapping describing which contexts trigger which
features and a mapping indicating which features adapt which application
classes of the system. The tool will display only those application classes for
which at least one feature exists that adapts that application class. Finally the
visualisation indicates which contexts and features are active (i.e., selected) or
not in the running system, as well as which application classes are currently
adapted (i.e., refined) by a feature or not. Whereas the visualisation is mostly
static, showing this activation and adaptation status adds a dynamic element
to the visualisation.

6.1.2 Functionalities

Now that we have briefly introduced the CONTEXT AND FEATURE MODEL ViI-
SUALISER, we highlight the different design choices we took when creating
this tool, corresponding to different usage scenarios focussed on program-
mers building a context-oriented system using FBCOP. All these functional-

93

6.1. CONTEXT AND FEATURE MODEL VISUALISER

oL (:985) ysaujo1 yoea uoomiaq aunL.

slaqe|[4] slaqej|4]

sapuapuadap annde sapuapuadap aAndeu

s|aqe|/ 4| sapuapuadap ande[4] s|aqge|[4| sapuapuadap annde[4)

sasse|d pajoedwi-uou| | saineay aandeul yim saiduapuadap | sainjeaj pajeandeu) | sapuapuadap aAideul[| S1Xa3uod pajeAndeul|4]
sasse|d pajoedwi[4| sainjea) aAnde Ylim saldusapuadap/4 SaInjea) pajeAldy 4| salpuapuadap aAide 4| S]X2]U0D PAJRAIIY 4|

apow sasse[d aAndY| |
apow sainjeay Ay, |
2pou 53Xa3U0d ARV
apow aapdeu |

apow aAndY. |

apod apo)-sainjeagy sainjeaj Sa4njeaj-s}xajuod S3X33u0) apow a3(dwioy |
dois-hq da
E . SM3IA pazjwolisn) SM3IA pauysapaid
== -
uonemnbiyuog U]
=nennoe |
sidepe

_——
sidepe—sidepe: \ﬁhﬂm\

s sonsados
ﬁ:osunuﬂuz |spowabessam || sr1niosIebusssa

2pod _

noAe sjdwis

seameay

[3POW 31n1e3) pUE IXEIUOD

UONESI[eNSIA [SPOW 2INJe3) PUB 1X3IU0D

Snapshot of the CONTEXT AND FEATURE MODEL VISUALISER tool.

Figure 6.1

94 Chapter 6. Visualisation tools

Context Model Feature Model Code
constraints constraints
Context Feature Class

active (boolean) mapping active (boolean) adaptation adapted (boolean)

Figure 6.2: Meta-model of the CONTEXT AND FEATURE MODEL VISUALISER
tool. The nodes represent the system entities visualised by the tool (i.e., con-
texts, features and application classes). The edges define constraints between
contexts, constraints between features, a mapping from contexts to features,
and which features adapt which application classes.

ities are also illustrated in a demonstration video with a simpler version of
our messaging system!'.

Visualising statically the context and feature models

A first important usage scenario for a programmer is to get a global overview
of the system, in terms of the different contexts, features and application
classes of which it is composed. Figure 6.1 shows what such a visualisation
looks like in the tool’s Context and feature model widget. This static snapshot
can show all contexts, features and application classes of interest, regard-
less of whether they are currently active or not: the context model shown in
Figure 6.1 contains both active contexts (colored in green) and inactive ones
(colored in red). In this example, we can observe that the contexts Smart-
phone and No Connection are active in the context-oriented application while
the contexts Desktop and Cellular are not active in the application.

The idea of including application classes in the visualisation as well is
inspired by the FEATURE VISUALISER, presented in Section 6.2. Furthermore,
our tool allows programmers to inspect in more detail the actual behaviour
of features and application classes, as illustrated by yellow boxes inside some
features (e.g., Message and Text) in Figure 6.1. An example of detailing the
actual behaviour of the feature Text is shown in Figure 6.3. In its behaviour
we can see some methods for the user interface concern such as for example
the methods create_message_widget and update and some methods for the
core logic concern such as the methods text and text=.

Exploring the dynamics of a context-oriented system

In addition to providing a static overview of a context-oriented system, the
tool can support programmers in understanding and exploring the dynamic

! Available at https://www.youtube.com/watch?v=6XUrEkuvyaA.

https://www.youtube.com/watch?v=6XUrEkuvyaA

6.1. CONTEXT AND FEATURE MODEL VISUALISER 95

create_message widget()
update()

_get_data()
text()
text=()

Figure 6.3: Snapshot of the feature Text for which we detail its actual be-
haviour.

aspects of such a system. More specifically the tool can help them inspect
what contexts and features are currently active and how that affects the be-
haviour, in terms of what application classes are currently being adapted. For
example, suppose that during testing and simulation of the system program-
mers discover that, when the device has No Connection, the system can still
send and receive messages from and to other people. To understand such un-
desired behaviour they need to explore what contexts are currently active,
what features were triggered in response to that, and how the application
classes were then adapted by those features. A possible cause of this bug may
be for example a wrong mapping relation between the context No Connection
and its corresponding features.

The visualisation tool provides several ways of exploring the system dy-
namics. A first one, which was already mentioned above, is the use of colour-
ing to show active contexts, features and classes in green. A second one,
which will be explained next, is to use particular filters to show only activated
contexts, features, relations, and currently adapted application classes. The
final and probably most powerful functionality provided by the tool is to show
changes to the diagrams as they occur. To explore these dynamic changes, the
tool provides the ability to replay the changes step by step (by activating the
Step-by-step mode and using the Next step button in the Configuration widget),
so that programmers can inspect the state of the diagrams after each change.
Alternatively, the programmers can configure the tool to update the diagrams
automatically each x seconds (where a value of x = 0 would correspond to
a live visualisation of the changes as they occur, whereas a value of x > 0
would yield a delayed visualisation). These settings can be changed easily in
the tool’s Configuration widget, depicted in Figure 6.4, which is located in the
bottom right of the tool shown in Figure 6.1.

96 Chapter 6. Visualisation tools

Configuration
Color Skins (= EE
Black-and-white
Step-by-step on [next step |
Time between each refresh (sec.) 10 =

Figure 6.4: Snapshot of the Configuration widget of our CONTEXT AND FEA-
TURE MODEL VISUALISER.

Filtering and predefined views

To help programmers manage the complexity of understanding large systems
consisting of many different contexts and features, the tool also comes with
a set of filters and predefined views that programmers can select to focus on
particular concerns, as depicted in Figure 6.5. This widget is in the bottom
left of the tool as shown in Figure 6.1.

Pr views C i views

J‘C""‘p'ete :‘"de C C -Features Features Features-Code Code
vIActive mode

[Jinactive mode
JActive contexts mode

[JActive features mode

[JActive classes mode

[v/Activated contexts [v|active dependencies [vIActivated features [v]dependencies with active features [v]impacted classes
Inactivated contexts | Jinactive dependencies | Inactivated features [|dependencies with inactive features [non-impacted classes
[vlactive dependencies [Jlabels [v]active dependencies [Jlabels
[“linactive dependencies ["Jinactive dependencies
labels [Jlabels

Figure 6.5: Snapshot of the Filters widget of our CONTEXT AND FEATURE
MODEL VISUALISER.

These filters (called Customized views in the widget) allow programmers
to indicate whether they are more interested in the contexts, the features,
the application classes, or the dependencies (relations) between them, and
whether they are currently more interested in exploring the active or inactive
entities or dependencies. The filters can be combined in many different ways.
In addition to that a few predefined views are provided, which are predefined
combinations of filters that are often selected together. For example the Com-
plete mode selects all filters and shows all possible entities and dependencies,
whether they are active or not. Picking the Active mode shows all entities
and dependencies that are currently active, and Figure 6.6 illustrates what the
effect of applying this view is. Not surprisingly, after choosing this view only
green (meaning active) contexts, features and application classes remain.

Highlighting specific elements of interest

As the number of possible contexts, features, application classes and depen-
dencies can become quite large, in addition to filtering the diagrams to only

6.1. CONTEXT AND FEATURE MODEL VISUALISER 97

Figure 6.6: Snapshot of the Context and feature model widget in which we
apply the active mode of the predefined views of our CONTEXT AND FEATURE
MoDEL VISUALISER to visualise only all the active contexts, features, appli-
cation classes and the active dependencies.

show certain elements of interest, highlighting is another interesting way to
help programmers navigate through the diagrams, letting them trace the be-
haviour of a particular feature.

Suppose for example that programmers are trying to understand why a
particular feature, say the feature Store Message, does not seem to exhibit the
expected behaviour. By simply clicking on that feature, it will be highlighted
in yellow, together with the contexts that triggered its selection (by following
the dependencies that have this feature as target) and the application classes
it adapts (by following the dependencies that have this feature as source).
In this example, the contexts No Connection will be highlighted, as well as
the application class MessengerService. This highlighting is illustrated by the
yellow borders and yellow arrows in Figure 6.7.

~ Contexts “'Features

Contexts
v/

Store Message

Figure 6.7: Snapshot of the highlighting functionality of our CONTEXT AND
FEATURE MoODEL VISUALISER. (For readibility reasons, some non-relevant
contexts, features, application classes and dependencies for this figure have
been hidden.)

98 Chapter 6. Visualisation tools

Hiding and collapsing information

Finally, programmers can also customise their visualisation at an even more
fine-grained level through the actions of hiding and collapsing particular ele-
ments. For example, Figure 6.8a depicts a relatively dense feature model with
many subtrees, some of which go four levels deep. But perhaps the program-
mers are currently not interested in one of these subtrees, in which case they
can simply hide it by collapsing the children into its root node with the but-
ton at the bottom of that node and then clicking its X-button on the top-right
corner. Similarly, if they are not interested in any of the subfeatures of a given
feature they can collapse all nodes below it, by clicking on the collapse button
at the bottom of that feature. Similar buttons exist to collapse all nodes above
a certain node. Figure 6.8b shows a reduced version of Figure 6.8a obtained
by just hiding and collapsing some features.

6.2 FEATURE VISUALISER

Whereas the previously described visualisation tool helps developers get a
global overview of the context and feature model and its mapping, as well as
which features adapt which application classes, some key information is still
missing. It does not show in what order the different contexts and features
are activated and in what order the different features are deployed. It also
misses detail on which parts of which features adapt which application classes
of the system. The FEATURE VISUALISER tool [DMD18] attempts to address
these issues. A snapshot of the FEATURE VISUALISER applied to the messaging
system is shown in Figure 6.9.

6.2.1 Visualisation

Before sketching the functionalities of the FEATURE VISUALISER, we first de-
scribe its visualisation with its meta-model. Figure 6.10 shows the meta-
model of the different entities (contexts, features parts and application classes)
involved in this tool and in what order they would appear in the visualisa-
tion. As opposed to the previous one, this meta-model emphasises the more
dynamic aspects of the running system, as the purpose of this alternative vi-
sualisation is to show how the context-oriented system dynamically evolves
during its execution. The nodes of this model represent the different entities
that get dynamically activated, selected and adapted by the system: contexts,
feature parts and application classes.

This visualisation shows feature parts instead of features since a single
feature can be subdivided in different parts that can each adapt different appli-
cation classes to get a better separation of concern as explained in Section 4.3,
contrary to the previous visualisation.

6.2. FEATURE VISUALISER 99

= Features
(S x|

Features

@)
(53
Receive

Methods

Simple Layout

Stacked Reading

Predefined Picture Position
Methods Methads

(a) A feature model

“ Features

Receive
Methods

Send Message
Methods

Methods

V¥l

(b) Simplified feature model obtained by
hiding and collapsing some features

Figure 6.8: Tool support for hiding and collapsing nodes in a diagram.

The edges essentially correspond to the different phases of the FBCOP
system architecture described in Figure 3.4 in Section 3.2. Let us explain the
meta-model of Figure 6.10 in more detail based on the control flow of that
system architecture. When the system senses changes in the surrounding
environment, it reifies the newly sensed contextual information into context
objects that it tries to (de)activate, which are then visualised in the tool (deac-
tivated contexts are greyed out first, before they are removed from the visual-
isation as they are no longer active). The system then (un)selects the features
that these contexts trigger and relays this information to the visualisation tool
to display the feature parts of these features. This selection then triggers the

Chapter 6. Visualisation tools

100

(-298) ysayal yoea usamiaq awi)
dois-Aq-dors
siieiop Aeidsiq

sel00 Aedsia

uopeinByuoy

wed
ainyea)

paloales

< saps

sarehoe

wawop |

[apopaBESsayY SSEID U\ Ul [9PO:BInlg
Mo\ aBESSaYY SSEID BY) Ul MAIABINlg SINTEs) o

ssep oy uy ainea oy

pusbe

ssep iy aineay ay
[aPOp:8IMIg BINES) 94} o Uol

noueysg::abessapeiols o
(s)
Lnoneyag::ebessapjeiols]

sjosuoo INding

salenoe

MIIA:

somenioe

sarenioe

ELIVEISETESEN

suatu

Sitlepe

[9PON::2IMdId

sajenioe

uBIH

|9PON:11XaL REVEE]

salennoe - __ sidepe ~ x

silayur Simayyl

|opopabessay [l mainabessay

sajennoe

. s sareAnse

SsIXaIuo|

uopesiensin

Snapshot of the FEATURE VISUALISER tool.

Figure 6.9

6.2. FEATURE VISUALISER 101
Context Feature part
active (boolean) selected (boolean)

Feature part

l active (boolean)

(un)adaptation

(de)activation

(un)selection

(de)activation

(un)adaptation

Figure 6.10: Meta-model of the visualisation of the FEATURE VISUALISER tool.
The tool visualises how the FBCOP system architecture dynamically acti-
vates, selects and adapts the different system contexts, feature parts and ap-
plication classes during the system’s execution.

(de)activation of those feature parts. When a feature gets (de)activated, each
of its parts get (de)activated and visualised in the tool. Finally the system de-
ploys the code of the activated feature parts in the application classes they
adapt, and asks the tool to visualise this as well.

6.2.2 Functionalities

Now that the visualisation has been explained, we present the functionalities
of this tool. With such functionalities, programmers can visually inspect in
detail which active contexts trigger which active features parts (and by def-
inition which features), how the active feature parts adapt the application
classes of the system and in which order these feature parts are installed. All
of these are also illustrated in a demonstration video with a simpler version
of our messaging system?.,

Inspecting visually the dynamic aspect of the system

The main functionality of this tool is to inspect dynamically the system at
runtime. This can be done through the main widget: the Visualisation wid-
get. Figure 6.11 sketches a visualisation of our running messaging system
illustrating how programmers can inspect how the context-oriented messag-
ing system has dynamically evolved depending on the current surrounding
environment.

To start with, we can observe that by default (represented by the context
named Contexts), the system provides behaviour to send text messages, as
implemented among others by the feature parts Send::Behaviour that adapts
the application class MessengerService, Message::Model and Text::Model

2 Available at https: //www.youtube . com/watch?v=JuJc1f2Pmzk.

https://www.youtube.com/watch?v=JuJc1f2Pmzk

102 Chapter 6. Visualisation tools

High Wi-Fi

activates activatés activates activates

Contexts Picture::Model B / activates

activates __-adapts "~ ~activates aaapls aqaﬁts

[N »
m‘ activates activates ERUEE Text::Model SendMessage::Behaviour

AN ’ -
adapts adaits adapts

N - »
Message' :Model Send::Behaviour

adapls adapts adapls

MessageView |l MessageModel

|nhems inRerits inhefits

Figure 6.11: Snapshot of the Visualisation widget of our FEATURE Visu-
ALISER.

that adapt MessageModel and, Message::View and Text::View which adapt
MessageView. When a Wi-Fi connection is detected, the context Wi-Fi ap-
pears which activates both the feature parts SendMessage::Behaviour and Re-
ceive::Behaviour since having a Wi-Fi connection means that the system will
allow users to both send and receive text messages. If the context High (rep-
resenting a high battery level) is active as well, the system will allow users to
send and receive pictures too (Picture::Model and Picture::View). The develop-
ers can also observe that SendMessage::Behaviour and Receive::Behaviour fea-
ture parts adapt the default behaviour implemented by Send::Behaviour. Sim-
ilarly, they can observe that Picture::Model and Picture::View adapt the corre-
sponding Text::Model and Text::View parts to allow for pictures to be included
in the text messages.

To help the programmers in their inspection, the Legend widget has been
added as a mental reminder of what the different coloured nodes and edges
in the picture represent. Figure 6.12 shows the legend that this visualisation
uses and this widget is displayed in the bottom-middle of the tool as depicted
in Figure 6.9.

As for the previous visualisation tool, the developers can also configure
how they can explore the dynamic evolution of the application depending on
the contexts. The visualisation can be refreshed either manually by activat-
ing the Step-by-step mode and then by navigating through the steps with the
Next and Back buttons or automatically each x seconds. They can set the vi-
sualisation refresh in the Configuration widget, depicted in Figure 6.13, in the
bottom-right of the tool as shown in Figure 6.9.

1

2

3

8

6.2. FEATURE VISUALISER 103

Selected
Context ELER S feature
o part

activates
] —adapts
Active)
feature L adapts—m
part

Figure 6.12: Snapshot of the Legend widget of our FEATURE VISUALISER.

Tracing the dynamic evolution

Since this visualisation constantly changes when contexts and features get
(de)activated, it is sometimes difficult for the developers to keep track of all
these (de)activations. The Output console widget can help them by providing
a textual trace of all these activations and deactivations. This widget is on the
bottom-left of the tool as depicted in Figure 6.9.

A textual version of the Visualisation widget provides the benefit of keep-
ing a chronological trace of what contexts and features were activated or
deactivated before. This can provide valuable information to the developer
when debugging, for example to understand in what order certain features
were added or removed and upon what contexts. Reconsider the example of
the visualisation we have illustrated in Figure 6.11 when a Wi-Fi connection
is sensed. The textual version of Figure 6.11 is illustrated in Listing 6.1. In this
example, we can observe that before a Wi-Fi connection has been sensed, the
contexts No Connection and High were activated.

> (De)activation(s) of the following context(s):
- Activation of the context Wi-Fi

> (De)activation(s) of the following context(s):
- Deactivation of the context No Connection

> Selection of the following rules (contexts implies
features):
- [Wi-Fi] implies [SendMessage::Behaviour ,Receive::Behaviour]
- [Wi-Fi,High] implies [Picture:View ,Picture:Model]

> Unselection of the following rule (contexts implies
features):
— [No connection] implies [StoreMessage::Behaviour]

> (De)activation(s) of the following feature(s):
- Deactivation of the feature StoreMessage:Behaviour
- Activation of the feature SendMessage:Behaviour
- Activation of the feature Receive:Behaviour
- Activation of the feature Picture:View
- Activation of the feature Picture:Model

16

20

104 Chapter 6. Visualisation tools

> Deactivation of the feature StoreMessage:Behaviour in the
class MessengerService

7 > Activation of the feature SendMessage:Behaviour in the

class MessengerService
> Activation of the feature Receive:Behaviour in the class

MessengerService

> Activation of the feature Picture:View in the class
MessageView

> Activation of the feature Picture:Model in the class
MessageModel

Listing 6.1: Snippet of the trace of Figure 6.11 of our FEATURE VISUALISER.

Customising the visualisation

Finally, the Configuration widget, depicted in Figure 6.13, allows the develop-
ers to also customise the visualisation tool to his needs.

Configuration
Display contexts m

Display details Off
Time between each refresh (sec.) 10

Figure 6.13: Snapshot of the Configuration widget of our FEATURE Visu-
ALISER.

In this configuration, the programmers can decide whether to show the
contexts or not (if not, only the features and application classes will be shown),
or to show more detail on the behaviour (i.e., the methods) of the different
feature parts and application classes of the system. Figure 6.14 depicts an ex-
ample of an excerpt of the visualisation where the contexts are hidden and
the behaviour of the feature parts and application classes are detailed. In
this example, we can see how the application class MessageView is adapted
by the feature parts Message::View, Text::View and Picture::View in that order.
Considering the method create_message_widget, we can see that the feature
part Message::View has first adapted the behaviour of the application class
MessageView, then this version has been refined by the feature Text:View
to finally be adapted a last time by the feature part Picture::View. Therefore,
the application class MessageView contains in its behaviour the latest in-
stalled version of the method create_message_widget, i.e., the version of the
feature part Picture::View. For each method the tool precises from which latest

6.3. Conclusion 105

installed feature part the method is, as shown in Figure 6.14. This also illus-
trates in which order the proceed mechanism if existing must be executed.

Picture::View

create message widget
update -

Text::View

create message widget
update

Message::View

main_window
create_message_widget
update
main_window=

MessageView

(Message: :View) main window
(Picture::View) create message widget
(Picture::View) update
(Message: :View) main window=

Figure 6.14: Snapshot of an excerpt of the Visualisation widget of our FEA-
TURE VISUALISER for which we have hidden the contexts and detailed the
behaviour of the feature parts and application classes.

6.3 Conclusion

In this chapter we described two visualisation tools: the CONTEXT AND FEa-
TURE MODEL VISUALISER and the FEATURE VISUALISER.

With the CONTEXT AND FEATURE MODEL VISUALISER tool programmers
can visually analyse the different models of their FBCOP application, i.e., the
context model, the feature model, the mapping from the context model to the
feature model, as well as the application classes and by which features they
are adapted. Such a graphical representation allows them to quickly observe if
they declare correctly the models of their application. In addition to this static
visualisation, developers can also observe how the models evolve dynamically
during the execution of their FBCOP application. This dynamic aspect can be
useful for developers to better understand why a context or feature cannot be
(de)activated due to a constraint of their model that is not ensured. This tool
also contains some functionalities to facilitate the programmers’ exploration
of the models. For example they can filter or hide and collapse some less
relevant aspects of the models to focus on the more interesting ones. Finally
they can also highlight an entity to better see its sources and targets.

The FEATURE VISUALISER tool aims to help programmers to inspect in
more detail their FBCOP application since it displays the feature parts and not
the features as for the first visualisation tool. In this visualisation, they can

106 Chapter 6. Visualisation tools

see what contexts are activated, what feature parts are triggered by these con-
texts, what application classes they adapt and in which order the feature parts
are installed in the different application classes. In addition to this graphical
visualisation, a textual version keeps a history of all the (de)activations of the
different entities. This tool also helps to spot some errors in the order of the
(de)activations of the feature parts.

To conclude this chapter, even though we have introduced these two vi-
sualisation tools separetely, they can be considered as complementary for the
programmers when they implement or debug their context-oriented applica-
tion. Indeed, while the CONTEXT AND FEATURE MODEL VISUALISER proposes
a more static visualisation that focuses on the structure of the underlying
feature diagrams used by the context and feature model, the FEATURE Visu-
ALISER is more dynamic and more fine-grained and focusses on the activation
dynamics of the system. With both tools at hand developers using the FBCOP
programming framework could switch between both visualisations to exam-
ine in more detail the particular concerns of the system they are interested in
analysing.

Part III

Implementation

107

109

The previous part of this dissertation described the overall FBCOP ap-
proach. After having introduced its underlying key notions, we described its
system architecture and a supporting development methodology to guide de-
signers and programmers when they conceive FBCOP applications. Then we
explained and exemplified how programmers can develop such applications
with the FBCOP programming framework, including how they can build their
user interfaces such that they are also dynamically adaptive. Finally, to help
them in their development and debugging tasks, we introduced two visuali-
sation tools to explore and inspect how their applications dynamically evolve
at runtime.

The focus of this third important part of this dissertation will be on how
we implemented the FBCOP programming framework. We explain how we
implemented the building blocks of our programming framework (Chapter 7),
how we integrated the modelling of contexts and features from an implemen-
tation point of view (Chapter 8) and how the control flow was implemented
(Chapter 9). We also describe how we extended our programming framework
so that we can easily develop external tools to support programmers in their
various tasks when conceiving their FBCOP applications (Chapter 10).

We implemented our overall programming framework within the Ruby
programming language. Nevertheless, the choice of Ruby is not essential even
though we did rely on some of its powerful metaprogramming capabilities.
This Ruby implementation mainly serves as a proof of concept that demon-
strates how such a framework can be implemented it on top of any sufficient
powerful object-oriented programming language.

CHAPTER

7
ENTITIES

The key notions in our FBCOP approach are contexts, features and a context-
feature mapping. They capture the main kind of entities that programmers
need to declare and define: the contexts to which the application can adapt,
the features describing the application behaviour specific to certain contexts,
and the mapping declaring what specific behaviour is triggered by what par-
ticular contexts.

In this chapter we will explain the design choices we made to implement
each of these kinds of entities. To better visualise our design choices, Fig-
ure 7.1 shows a class diagram of the ENTITIES part of our implementation
architecture.

7.1 Context and feature entities

As explained in Section 4.2, since contexts and features are different con-
cepts, they have their own classes in the implementation framework. While
concrete contexts are instances of the framework class Context, concrete
features are instances of the framework class Feature.

In addition to these classes, the framework also implements the classes
AbstractContext and AbstractFeature, where the former is a gener-
alisation of Context and the latter is a generalisation of Feature. These
framework classes allow programmers to differentiate between concrete and
abstract contexts and features when they declare their context and feature

111

112 Chapter 7. Entities

«Module»
Activatable

committed_counter: int

pending_counter: int

ActionOnEntity can_be_activated?()
P
action: Symbol - entity \]/ 1 active?()
1 Entity act()
3 model_root 17| name: String deact()
% commit()
. s T
> efault_child rollback()
= EntityModelDefinition 1 | |
K
&
.‘% set_model_root(model_root) AbstractContext | AbstractFeature I%
@ <4
activate(entities) default(context) 2
L
deactivate(entities) Zﬁ ‘6“
o
alter(entities)
.) ' %I F
find_entity_by_name(entity_name) 1 Context | eature SCRRREEEEE
application_classes
A licati I

deployed: boolean

root_context

FeatureModelDefinition

bootstrapped_features

FeatureModelDeclaration

abstract_feature(var_name, feature_name) e E

feature(var_name, feature_name, application_classes)

ContextModelDefinition
ContextModelDeclaration

activate_mandatory_contexts_at_launch_time()

< abstract_context(var_name, context_name)

context(var_name, context_name)

E Use v

MappingModelDefinition LIl \
EntityModelDeclaration

contexts_features: Hash MappingModelDeclaration

- 0o generate_all_getters()
set_mapping_model(mapping_model) | Use mapping: Hash

features_from_context(context) attach_mandatory_features_to_root()

Figure 7.1: Class diagram of the ENTITIES part of our framework im-
plementation. Some information (constructors, getters and setters) is
voluntarily omitted for readability reasons. As the framework class
SatisfiabilityStrategy is not part of ENTITIES we greyed its box and the
arrow from this framework class. However we added it in this class diagram
to better understand our explanation about the (de)activation of entities.

models. As we ask programmers to define a default situation in the surround-
ing environment to initialise a default behaviour in the application (see the
explanation in Section 4.4), we add a reference to a default child context in
the framework class AbstractContext. This reference tells us which child
is the default one among the children. Such a reference is not relevant for
the features because the default behaviour is automatically triggered by the

7.1. Context and feature entities 113

default contexts.

Despite their conceptual difference, we consider (concrete or abstract)
contexts and features as a special kind of entity (i.e., an instance of the frame-
work class Entity), as illustrated in Figure 7.1. This framework class cap-
tures the fact that both contexts and features are simply entities among which
similar kinds of constraints and dependencies can be declared to create a con-
text and a feature model, respectively, as we will see in Chapter 8. In addition,
as each context or feature is identified by a name, we add an instance variable
name to their parent class Entity.

As developers must provide a list of each application class that a concrete
feature adapts, we add an instance variable to the features (instances of the
framework class Feature) to describe which application_classes they adapt.
This variable represents a I-N mapping from each feature to the application
classes it adapts. (Note that it is allowed for a same application class to be
adapted by different features.)

Inspired by the work of Cardozo et al. [Car+15], we also implement acti-
vation counters for any kind of entity. This is useful to recall how many times
an entity is activated. For that we implement a trait Activatable thatis in-
cluded in the framework class Entity. This trait has two instance variables:
committed_counter and pending_counter. The committed counters represent
the number of times an entity is really activated in the system. The pending
counters are auxiliary counters used when we try to (de)activate the entities
in the model. With these pending counters we can ensure, without breaking
the current configuration of the model, that all the constraints of the entity
model are satisfied when the system attempt to modify it. The usage of such a
pending status is also inspired by the work of Cardozo et al. [Car+15], where
they use such status to verify the consistency of their context models before
activating them. This Activatable trait also provides behaviour to query
and update the real state of an entity with the methods active?() and commit(),
respectively. For the pending status of an entity, the methods act(), deact() and
rollback() modify this pending status. The method can_be_activated?() returns
if the entity can be activated based on its current value of the pending counter.

Maintaining accurate counters for each entity guarantees that some fea-
tures are not inadvertently removed from the system behaviour. Consider an
excerpt of the design of our messaging system, depicted in Figure 7.2. In this
example, we can see that the activation of the context Wi-Fi triggers the acti-
vation of the features Send Message and Receive. But these same features can
also be activated when the context Cellular is activated.

Assume that both these contexts are activated. Users can send and receive
messages over the Internet. As the system keeps a trace on how many times
the features are present in the system, these features are activated twice, once
because they were triggered by the context Wi-Fi and once because they are

114 Chapter 7. Entities

Context Model Mapping Model Feature Model

Store
Message
. Send
i Message
o S .
Wi-Fi,

High Picture ’ Picture FD'

Figure 7.2: Excerpt of the context and feature model with their mapping from
our messaging system. Some arrows are voluntarily omitted for clarity rea-
sons.

Send
Wi-Fi Message,
Receive

Send
-1 Cellular Message,
: Receive

Features

Cellular

triggered by the Cellular context. (Note that even if the features are activated
many times, they are only installed once in the behaviour of the application.
The reason of this design choice is explained later in this section.) Imagine
that at some point, the Wi-Fi connection is no longer sensed. This implies
that the Wi-Fi context will get deactivated. Without the counters of the enti-
ties, we would then have to deactivate the features Send Message and Receive
since the context that triggered these features got deactivated. However this
would give rise to an unexpected behaviour since Cellular is still active and
thus we expect to still be able to send and receive messages. The purpose of
the counters is to avoid such unexpected behaviour. Rather than deactivat-
ing the features immediately, their counter decremented by one. Only when
their counter reaches zero will they actually be deactivated. A more detailed
explanation on how the (de)activation of entities works and how the counters
are managed will be given in Section 7.3.

Since entities can be activate multiple times, and features in particular, we
need to analyse what the impact of that will be. If a same feature gets activated
multiple times, could that inadvertently cause incorrect or wrong behaviour?
As it turns out the answer to that question is affirmative. A problematic issue
is illustrated in the next paragraph.

Consider an excerpt of the feature model of our messaging system dedi-
cated to the feature Message with all the MessageTypes a message can be, as
depicted in Figure 7.3. At launch time of the system, the system activates
and deploys the mandatory default behaviour, i.e., the features Message and
Text. The feature Message provides the author and receivers of the message.!
The feature Text adds a text to the message. As Text is a refinement of Mes-
sage, some methods of Text (e.g., the constructor and the method to display

!We merged the author and receivers into the feature Message for conciseness reasons, but
should split to increase the modularity in real application.

7.1. Context and feature entities 115

Message

: Message !

Text Rich
Predefined Picture Position

Figure 7.3: Excerpt of the feature model of our messaging system.

the information) uses the proceed mechanism to refine the default behaviour
of these methods in Message. This means that the corresponding application
class is first adapted by the feature Message and then by the feature Text. So
when a call is executed on a method of the feature Text, this feature delegates
at some point a part of its behaviour to the same method of the feature Mes-
sage. After the execution of the methods in Message is finished, the control
flow returns to the version of the method Text. Now, assume that users use
their devices with a High level of battery and are connected to a Wi-Fi con-
nection. In such a particular situation, the users can also add a picture to their
messages or receive pictures as described in the excerpt of the mapping model
shown in Table 7.1 and visually depicted in Figure 7.22.

Contexts ‘ Features

Wi-Fi, High | Picture

Table 7.1: Excerpt of the mapping model of our messaging system.

Therefore the activation of Wi-Fi and High triggers the activation of the
feature Picture. As the (de)activation of a feature triggers the (de)activation of
these parent features, the activation of Picture triggers the activation of the
features Rich, Message Types and Message. Because Rich and Message Types
are abstract features, they are not attached to a feature definition. So they
are activated in the feature model, but not installed in the system behaviour.
However, the parent feature Message is a concrete one and thus should be
activated and installed in its corresponding application classes. Therefore,

2For conciseness, we hide the features between the root feature Features and the feature
Picture. An example of the expanded version of this part of the feature model is illustrated in
Figure 7.3.

116 Chapter 7. Entities

Message (as a parent feature) would first be deployed a second time and then
Picture would refine Message in the corresponding application classes. In such
a case, the corresponding application classes will be adapted with the features
Message, Text, Message and Picture in that order, as illustrated in Figure 7.4.
However this raises an issue since Message will override the previously in-
stalled behaviour. Because Message is a default behaviour (i.e., no implemen-
tation of methods uses the proceed mechanism), when a method of Picture is
called, the method is called on the version of Picture, that calls in turn the
version of the same method of Message. After the execution of the method
of Message, the control statement comes back to the version of the method of
Picture. In such a case, it ignores the version of Text and the first deployed
version of Message, as illustrated in Figure 7.4. This leads to an undesired,
incorrect or erroneous behaviour because a part of the mandatory behaviour
(provided by the Text feature) is no more executed.

Text Message P:cture
create_message_\ W|dge(

create_message_widget create_message_widget creaie _message_\ W|dge|

dof create_message_widget(rame) <€) dof create_missage_widget(frame) %)delcreate meshage_\ widgel(rame) defcreate mebsage_widget(frame)

_frame = _.------> _frame = proceed(frame) _frame = proceed|(frame)

return _frame - --- - seeeeT return _frame return _frame ----- EEE return _frame
end end end end Method call

Figure 7.4: Example of how the features Message, Text and Picture would be
activated without the usage of the deployed status in the framework class
Feature.

A solution to avoid such issues is to activate a feature only once, even if
it has an activation counter higher than 1. This can be achieved by adding a
deployed status in the framework class Feature, as illustrated in Figure 7.1.
With such a boolean, the feature Message will not be deployed a second time
since it was already deployed in the system behaviour before. With this solu-
tion, only the feature Picture will be installed in its corresponding application
classes to adapt and refine the behaviour of the application. In that case, the
features Message, Text and Picture will be installed in that following order.
(Figure 4.3 depicts how these features are installed in a common application
class.)

This deployed status is also interesting to maintain properly the source
code of the application. Assume different contexts that can be activated to-
gether trigger the same set of features. In the example based on our messag-
ing system, when a connection is sensed, users can send and receive messages
over the Internet, as shown in Figure 7.2.

When a Wi-Fi is sensed and activated, the features Send Message and Re-
ceive are activated. After the activation, the features Send, Send Message and
Receive are installed in the system, as illustrated in Figure 7.5. (As the feature
Send provides some default behaviour for its children, it will installed first.)

7.2. Context and feature model declarations 117

Classes Features

MessengerService | - { Send]1---{ Send Message Jd---{ Receive]

Figure 7.5: Activation of the features Send, Send Message and Receive in the
application class MessengerService.

Now assume a Cellular connection is also sensed. This activates Cellular
and triggers the activation of the features Send Message and Receive a second
time. Without the deployed status, the system would have installed again
these features in the application class MessengerService. This application
class would then have had the following features installed in that order: Send,
Send Message, Receive, Send, Send Message and Receive. Even if the second fea-
ture Send Message relies on the second feature Send, Send and Receive provide
a default behaviour to send and receive messages, respectively. Therefore the
first features Send, Send Message and Receive are no more executed. Never-
theless the behaviour is still the expected one and we do not encounter the
same issue as explained previously. But keeping them in the application class
clutters our understanding of what is going on as the class would contain
several unused features. This could confuse programmers when they analyse
how their application classes are adapted and by what features in their debug-
ging tasks. Having this deployed status thus prevents to unnecessarily install
features again and to maintain a clear source code of the system behaviour.

7.2 Context and feature model declarations

When programmers build a FBCOP application they must declare the context
and feature model of their application. For that they need to extend the frame-
work classes ContextModelDeclarationand FeatureModelDeclara-
tion as explained in Sections 4.4 and 4.5. Each of these framework classes
creates the root node of their respective model. ContextModelDeclara-
tion creates the root node of the context model and FeatureModelDecla-
ration creates the root node of the feature model of the application. While
the root node of the context model is a concrete entity, the root node of the
feature model is an abstract entity, as shown in Figure 7.1. The reason for
the root context being concrete is to ensure that at least one context is acti-
vated and triggers the activation of the default behaviour of the application.
The root feature on the other part is an abstract feature. Although it may
seem counter-intuitive, having the root feature being abstract is linked to the
fact that we cannot develop application-specific behaviour for the context-

118 Chapter 7. Entities

oriented programmer and then attach code to the root feature. Furthermore
we think it will allow him to design the default behaviour of the application
in a good separation of concerns.

These framework classes propose some syntactic sugar to create concrete
and abstract nodes. ContextModelDeclaration offers the methods con-
text and abstract_context to create a concrete context and an abstract context,
respectively. Similar methods are available for the concrete and abstract fea-
tures with the methods feature and abstract_feature in FeatureModelDec-
laration. These four methods take a name used to create the instance vari-
able of the entity in the system and the name of the entity being created.
With such parameters we create dynamically an instance variable and assign
it the entity created with the corresponding framework class. An additional
parameter is added for the method feature. This last parameter allows pro-
grammers to describe which application classes this feature must adapt when
it is deployed in the system behaviour.

Just like the framework classes Context and Feature inherited from a
common ancestor framework class Entity, for consistency, the framework
classes ContextModelDeclaration and FeatureModelDeclaration
inherit from a common parent framework class EntityModelDeclara-
tion. This parent class contains some infrastructural scaffolding code that
can be applied to both models. An example of such scaffolding code is the
code that automatically generate getters for all the entities of the model so
that programmers have to use the getters of the different entities to create
the context-feature mapping model (as illustrated in Section 4.6).

7.3 Context and feature model definitions

Model definitions

At the instantiation of the programmers’ declared subclasses of Context-
ModelDeclaration (resp. FeatureModelDeclaration), acontext (resp.
feature) model definition, instance of the framework class ContextModel -
Definition (resp. FeatureModelDefinition), is created so that the
framework can interact with the model definition to (de)activate entities in
the model. This creation is made with the method set_model_root(model_root-
_node) accessible in the framework classes *ModelDefinition. Since we
cannot have multiple context (feature) model definition, these two framework
classes are singleton classes to ensure a single instance of each model defini-
tion at runtime.

We think this separation between the declarations and definitions leads
to a better separation of concerns in their corresponding behaviour. With it
we can easily distinguish the behaviour of declarations used by programmers

7.3. Context and feature model definitions 119

when they have to express (declare) their model of FBCOP applications and
the behaviour of definitions used by the framework to (de)activate entities in
the models.

As the behaviour of these *ModelDefinition framework classes is rel-
atively similar, again they inherit from a common parent framework class
EntityModelDefinition that contains the implementation of this com-
mon behaviour as illustrated in Figure 7.1. This framework class EntityMod-
elDefinition offers the methods activate(entities), deactivate(entities) and
alter(actions_on_entities). The first two methods are called when aiming to
attempt to activate or deactivate the list of the entities passed as argument.
The method alter(actions_on_entities) is a more generic method that tries to
activate and deactivate the passed entities. To know which action (activation
or deactivation) the framework must perform on each passed entity, an action
is associated to the entity. This can be expressed with the framework class
ActionOnEntity that contains an instance variable describing the action
the framework must execute on the other instance variable that is the entity
object. Finally a last method find_entity by name(entity name) returns the
real entity object that perfectly match the passed name of the entity.

In addition to this common behaviour, more specific behaviour is needed
for each of these *ModelDefinition framework classes.

For the framework class ContextModelDefinition, the framework
programmer must add a method to activate at launch time the default situ-
ation of the surrounding environment for which the system must run. The
method activate_mandatory_contexts_at_launch_time is thus used during the
bootstrap phase of the application.

The framework class FeatureModelDefinition on the other hand
contains the list of the features (bootstrapped_features) that are installed at
launch time. Because the objects are not yet created when the mandatory and
default features are installed in the system behaviour, these methods cannot
be executed at the deployment phase. Therefore these features are maintained
to be executed later when the objects are created. (More information on how
this instance variable is initialised will be discussed in Subsection 9.1.3.)

(De)activation of entities

These model definition framework classes serve as a bridge between the Ar-
CHITECTURE and MODELLING parts of our implementation architecture. When-
ever some component of our implementation architecture wants to activate
or deactivate an entity, it sends a message (e.g. with a call to the method acti-
vate(entities)) to the definition of this entity model. Then this model attempts
to activate or deactivate the entities with a transaction. This transaction en-
sures that the modifications in the model (i.e., a new configuration) satisfy all

120 Chapter 7. Entities

its imposed constraints before either committing or ignoring them.

Now we will explain in more detail how the activation of an entity works.
For each entity, we first increment or decrement its pending counter by one
when it is an activation or a deactivation, respectively. To maintain a co-
herence in the model, we must also propagate these changes in the pending
counters of all the parents of this entity. This ensures that the parents are also
(de)activated if their child is (de)activated since a child cannot exist without
its parents in a feature model. Through this explanation, we will ilustrate the
activation of an entity with the feature Picture in the simplified version of the
feature model shown in Figure 7.3. As a reminder, Picture is a richer message
type allowing users to add a picture in their messages or read a picture in
their chats.

Figure 7.6a depicts the initial configuration in which we will attempt to
activate Picture. In Figure 7.6, each box represents a feature (i.e., an entity)
and shows the committed counter and pending counter of the feature on the
bottom left and on the bottom right, respectively. In the initial configuration,
we can observe that the mandatory concrete features (Message and Text) have
already been activated. As Message has been activated first, its counters have
been incremented by one, as well as the counters of Features. Text has then
been activated. This implies that the counters of Text, Message Types, Message
and Features have also been incremented by one. As a result, the counters of
Text and Message Types are set to 1 and the counters of Message and Features
are set to 2.

From this initial configuration, we attempt to activate the feature Picture.
Therefore we increment by one its pending counter and all of its parents’
pending counters, i.e., the features Rich, Message Types, Message and Features.
These modifications are shown in orange in Figure 7.6b.

After updating the pending configuration, we must verify the satisfiabil-
ity of this model. This means that we must ensure that all the constraints are
still respected for this new configuration. We delegate this to a dedicated sat-
isfiability strategy as shown in Figure 7.1. More information on this current
implementation of the strategy will be discussed in Section 8.2. If this satis-
fiability strategy returns that the new configuration is valid, all the pending
counters of updated entities are committed. In other words, for each modi-
fied entities we set the committed counter to the value of its pending counter.
This results is shown in Figure 7.6¢ where the updated committed counters
are highlighted in green. Otherwise, if the new configuration is not valid, a
rollback is executed. In such a case, each pending counter of each updated
entity is reset to the current value of its committed counter.

Now that we described how an activation (and a deactivation since the
mechanism is the same) of a feature works, we will illustrate how a deacti-
vation can lead to a rollback. Suppose we try to deactivate the feature Text.

7.4. Mapping model declaration 121

Message

Message !

Text ! Rich Text ! Rich ! Text ! Rich
HE : HE o A K N
Predefined Picture Position Predefined Picture Position Predefined Picture Position
o] o o] o o] o oo o |4 o] o ofo VK oo

(a) Before trying to acti- (b) Trying to activate Pic- (c) After committing the
vate Picture ture activation of Picture

Figure 7.6: Example of activating the feature Picture in a simplified version
of the feature model of the messaging system. For each entity (feature in this
example), we precise its committed counter on the bottom left of the box and
pending counter on the bottom right of the box. Orange boxes highlight the
modified pending counters of the concerned features and green boxes show
the updated committed counters of these features.

From an initial configuration depicted in Figure 7.7a, we try to deactivate the
feature Text. For that the pending counter of each entity from Text to the
root entity Features is decreased by one. Figure 7.7b sketches such a scenario.
However, since Text cannot be deactivated due to the mandatory constraint,
this new configuration will be considered invalid by the satisfiability algo-
rithm. A rollback is thus executed to reset the pending counter of each up-
dated entity. This is illustrated in Figure 7.7c where the pending counters are
reset and highlighted in red in the figure.

7.4 Mapping model declaration

Similar as for the context and feature model, FBCOP programmers must de-
clare their context-feature mapping model by extending the framework class
MappingModelDeclaration. The programmer’s subclass must be a sin-
gleton class since only one mapping model must exist. As explained in Sec-
tion 4.6, programmers must set the mapping instance variable in their sub-
class. This instance variable is a hash data structure where the keys are lists
of contexts and the values are lists of features. A particularity in this hash
data structure is that the keys are compared by their identity. In other words,
this means that two different references pointing to equivalent objects are not

122 Chapter 7. Entities

Message :
i Types |

Text

R

5

Predefined Picture Position Predefined Picture Position Predefined Picture Position

0ofo ofo 0o]o o fo 0ofo 0o]o ofo ofo o fo

(a) Initial configuration (b) Trying to deactivate (c) After rolling back to the
Text initial configuration

Figure 7.7: Example of the deactivation of the feature Text that leads to a
rollback based on an excerpt of the feature model of the messaging system.
For each entity (feature in this example), we precise its committed counter
on the bottom left of the box and pending counter on the bottom right of the
box. Orange boxes highlight the modified pending counters of the concerned
features and red boxes show the reset pending counters of these features.

the same keys®. This ensures that we use the same entity objects declared by
feature-based context-oriented programmers.

At the creation of the mapping model declaration, the framework is able
to generate the implicit individual mapping from the root node of the context
model to the mandatory concrete features as described in Section 3.1.6. This
mapping relation serves to install the mandatory features at the bootstrap of
the application.

7.5 Mapping model definition

As for the context and feature model definitions, when the programmers’
mapping model declaration (MappingModelDeclaration) gets instanti-
ated, the mapping model is set in the framework class MappingModelDef1i-
nition by calling the method set_mapping_model(mapping model).

This framework class is used by the framework to find the features that
need to be activated (resp. deactivated) when contexts got activated (resp.
deactivated) with the method features_from_activation(contexts) (resp. fea-
tures_from_deactivation(contexts)). The method features_from_activation(con-
texts) is shown in Algorithm 1 through pseudo-code. The intuition of this

3https://apidock.com/ruby/v27575/Hash/comparefbyfidentity

https://apidock.com/ruby/v2_5_5/Hash/compare_by_identity

7.6. Conclusion 123

method is as follows. The method analyses the mapping model to find all
the potential mapping relations for which the passed contexts are implied.
Then the algorithm selects only the features for which all the contexts of
each mapping relation are active. This second part of the algorithm is illus-
trated in Algorithm 2. The union operator is used in both algorithms to avoid
duplicate features. Similarly, the method features_from_deactivation(contexts)
follows the same approach but returns only the features for which at least one
context in each mapping relation is inactive.

Algorithm 1 Main algorithm to find all the features to activate when contexts
got activated

Input: activated and deactivated contexts

Output: features

1: features « []

2: for all context € contexts do

3: _relations «— _FIND_POTENTIAL_RELATIONS(context)

4 features < features U _FIND_FEATURES_TO_ACTIVATE(_relations)

5. return features

Algorithm 2 Algorithm to find all the features to activate based on the fil-
tered mapping

Input: mapping relations
Output: features
1: features_to_activate « []
2: for all contexts, features € mapping_relations do
3: if _CONTEXTS_ARE_ALL_ACTIVE?(contexts) then
4 features_to_activate < features_to_activate U features

5: return features_to_activate

7.6 Conclusion

In this chapter, we discussed all the design choices we took for designing and
implementing the ENTITIES part of our framework implementation. We ex-
plained how we designed and implemented the building blocks of the FBCOP
programming framework, i.e., the contexts and features as well as the map-
ping between them. We also described how the context (feature and mapping)
model declaration are mapped to their context (feature and mapping) model.
Finally we also exemplified how we can (de)activate entities in its correspond-
ing entity model with a transaction.

CHAPTER

8
MODELLING

Now that we have explained how to implement the main building blocks of
our programming framework, i.e., the ENTITIES part of our implementation
architecture, we turn our attention to the MODELLING part. The main purpose
of this part is to provide a generic implementation architecture for building
context or feature models. Since both context and feature models will have
the same structure, we will refer them as entity models. Figure 8.1 shows the
class diagram for the MODELLING part of our implementation architecture. In
this chapter, we will present this part from two different angles: the structure
of an entity model (Section 8.1) and the satisfiability strategy to ensure a con-
figuration of such models respects all the constraints imposed by the model
(Section 8.2).

8.1 Structure of an entity model

As stated before, both context and feature models will be represented as fea-
ture diagrams. Since the entities on these diagrams can be either contexts or
features we will refer to them as entity models. An entity model is a tree-like
structure where the nodes are entities (i.e., contexts or features) and the edges
are relations between those entities. By including the trait' Node, an entity
can be part of the entity model as illustrated in Figure 8.1.

mplemented as a module in the Ruby programming language.

125

126 Chapter 8. Modelling

Mandatory

Optional

Constraint

Relation

DFSStrategy

sub_relations()

Alternative

Exclusion

evaluate()

Dependency

nodes

relations

: . Requirement
SatisfiabilityStrategy

1 | satisfy?() «Module»
Node

source

add_relation(type, entities)

parent

relation(type, entities)

model

root?!
0..1 0

leaf?()

satisfiability_strategy

mandatory_children()

Figure 8.1: Class diagram of the MODELLING part of our framework imple-
mentation. Some information (constructors, getters and setters) is voluntar-
ily omitted for readability reasons. Some parts are greyed out since they are
part of ENTITIES. However we reduced them to facilitate the understand-
ing of the interactions between the different classes on our implementation
framework.

When programmers create a context or feature model, they can link the
nodes through relations (instances of the framework class Relation). As
explained in Sections 4.4 and 4.5, they can use the method relation (an alias
for the method add_relation) of the trait Node to add a specific relation with
some other entities to the entity. Such relations can be either constraints or
dependencies.

Constraints, which are instances of the framework class Constraint,
represent a hierarchical constraint between an entity and its child entities.
These constraints can be instances of the framework classes Mandatory,
Optional, Or, or Alternative.

Cross-tree relations, also known as dependencies, are instances of the
framework class Dependency. They represent non-local dependencies be-
tween nodes in the tree that do not necessarily have a direct hierarchical

8.2. Satisfiability algorithm 127

relation. For reusable reasons, the target nodes are the nodes of the (depen-
dency) relation and we add a source node as an instance of the framework
class Dependency, as illustrated in Figure 8.1. Two types of such dependen-
cies are currently available in our programming language: Exclusion and
Requirement.

(As the meaning of these constraints and dependencies have already been
introduced in Section 3.1.2, we do not discuss them in more detail here.)
Other types of dependencies could also be implemented in the future (see
Section 14.1).

Each relation has two methods sub_relations() and evaluate(). More infor-
mation about these two methods will be provided in Section 8.2 since they
are used by the satisfiability strategy when the framework verifies whether
the new configuration is valid or not.

Furthermore each entity of the model, except the entity model’s root, has
a reference to its direct parent. This is useful when we must propagate an
entity’s (de)activation through the model since the propagation goes up to
the root of the entity model as explained in Section 7.3.

The trait Node also has the methods root?(), leaf?() and mandatory_chil-
dren() to query the entity of a model. These methods are mostly interesting
for the programmers of the programming framework. For example, manda-
tory_children() is used to find the direct mandatory sub-entities of an entity.
This method is useful when we must find the initial situation of the sur-
rounding environment through the context model. It also serves to get all
the mandatory features (from the root) to generate the implicit mapping re-
lation that must be triggered to activate the default behaviour at launch time
of the application (as expained in Section 3.1.6).

8.2 Satisfiability algorithm

As explained in Section 7.3, when we try to (de)activate entities in an entity
model, we first modify the pending status of the concerned entities to create
a new pending configuration. Then we must ensure that this new pending
configuration respects all the constraints imposed by the entity model. Finally
the new configuration is committed or ignored depending on the validity of
the configuration. Even though we already sketched this algorithm, we did
not yet explain how we verify the consistency of the constraints. This is what
we will discuss in this section.

To determine whether a new pending configuration of an entity model
is valid or not, the model (instance of EntityModelDefinition) uses its
instance variable satisfiability_strategy (instance of the framework class Sat -
isfiabilityStrategy). As a reminder, a valid configuration of an entity
model is a set of active and activated entities of the model that respects all

128 Chapter 8. Modelling

its constraints. Many mechanisms exist to verify the consistency of a model,
from using a depth-first search algorithm to the usage of sat solving [Bat05]
or constraint programming techniques [BTR05]. To keep things simple, we
decide to implement a depth-first search algorithm. It will visit the entire
model to ensure that each constraint is respected. Obviously when a con-
straint is no longer satified, the algorithm is stopped to avoid useless compu-
tations. To do that we implemented a DFSStrategy framework class as a
subclass of the framework class SatisfiabilityStrategy that overrides
the method satisfy?(). Such a design choice allows us to potentially extend
our implementation framework with other strategies. We will discuss about
other possible strategies in the future work (see Section 14.4).

A pseudo-code of the method satisfy?() of the DFSStrategy framework
class is shown in Algorithm 3. As we can see on Line 1, we initialise a boolean
variable with the pending status of the root node. If the root node can be
activated, the variable is set to true. Otherwise it is set to false. In other
words, if its pending counter is strictly greater than 0, this means that it can be
activated. This design choice implies the root node must be always activated
to get a valid configuration of the model. This is needed because of an entity
model has always a default valid configuration composed by a non-empty set
of entities of the model to describe either the default environment in which
the application runs or the default behaviour of the application.

Algorithm 3 Algorithm to verify an entity model’s consistency based on a
pending configuration

Input: /

Output: True/False
1: sat? < CAN_BE_ACTIVATED?(root node)
2: queue « relations attached to root node
3: visited « empty set
4: while sat? A queue is not empty do

5: relation « pop a relation of queue

6 if relation was not yet visited then

7 add relation in visited

8 sat? « sat? A EVALUATE(relation)

9 push sUB_RELATIONS(relation) in queue

10: return sat?

To ensure the model is valid, the framework must traverse the model
through the relations and not the nodes because of the constraints are on
the relations and not on the nodes. For that, we traverse the different rela-
tions with an iterative algorithm. This explains the usage of the queue data
structure on Lines 2, 4, 5 and 9. While the queue is not empty, we will con-

8.3. Conclusion 129

tinue to traverse the relations to evaluate them. An optimisation is still im-
plemented to avoid useless computations when the model is not longer valid,
as shown on Line 4. To feed this queue, the framework relies on the method
sub_relations() to get the direct relations under the nodes of the current ma-
nipulated relation, as depicted on Line 9.

From an algorithmic point of view, we must avoid infinite loops when vis-
iting the entity model. Such infinite loops can from errors in the declaration
of the entity model or from dependencies (i.e., cross-tree constraints). To do
so we ensure we visit only once each relation through the usage of a set of
visited relations on Lines 3, 6 and 7. When a relation has been evaluated, we
add it to the visited relations.

To verify whether a relation respects its constraint with the new pending
configuration, the algorithm delegates it to the relation itself by calling the
method evaluate() as depicted on Line 8. For that to work, we must implement
this method on each relation as illustrated in Figure 8.1. As we are interested
to verify the new pending configuration, we must check the pending counters
of the nodes of the relation to avoid breaking the current semantics of the
constraint.

A pseudo-code example of the method evaluate() of the framework class
Mandatory is illustrated in Algorithm 4. In this algorithm we ensure that all
the nodes of the relation can be activated. When a node cannot be activated,
we stop the computation by returning that the constraint is no more satisfied.
The semantics of all other constraints and dependencies have been already
illustrated in Section 3.1.2 and follow the same structure for their algorithms.

Algorithm 4 Algorithm to verify whether the mandatory constraint is re-
spected on a pending configuration

Input: /

Output: True/False

1: for node € nodes do

2 if —=CAN_BE_ACTIVATED?(node) then
3: return False

4: return True

As such we can verify if the new pending configuration is valid or not
since we visit all the constraints and check if they respect the semantics of
the model.

8.3 Conclusion

In this chapter, we first introduced how we implemented the structure of an
entity (i.e., context or feature) model. As each entity is considered as a node,

130 Chapter 8. Modelling

we can compose a model by connecting its nodes through relations. The re-
lations can either be constraints (i.e., mandatory, optional, or and alternative)
or dependencies (i.e., exclusion or requirement).

We also described a verification algorithm that ensures the consistency of
the semantics of the model is always respected. This algorithm is used each
time the framework tries to (de)activate entities in a model. We implemented
it as a depth-first search strategy algorithm. It allows to visit all the relations
of the model and check if the relations are still satisfied or not. After finishing
its traversal this algorithm can determine if the new pending configuration is
a valid or invalid one.

CHAPTER

9
ARCHITECTURE

In this chapter we explain how we implemented the control flow of our frame-
work from the (de)activation of the contexts to the (un)adaptation of the fea-
tures in the application behaviour, via the (un)selection and (de)activation of
the features triggered by those contexts. Then we discuss the mechanism we
implemented to adapt dynamically the application behaviour. Finally we de-
scribe how we implemented the proceed mechanism which is a key concept in
context-oriented programming, to achieve dynamic adaptation of previously
activated behaviour. As a summary of the overall architecture, Figure 9.1 il-
lustrates the class diagram for the ARCHITECTURE part.

9.1 Control flow

As the overall control flow of our framework has already been explained and
illustrated at multiple occasions throughout this dissertation, and in particu-
lar in Section 3.2, we emphasise here only the key design choices we made to
implement the different components of this control flow.

Each component of the control flow is implemented with a dedicated
framework class. The CONTEXT ACTIVATION, FEATURE SELECTION, FEATURE
AcTIvAaTION and FEATURE EXECUTION components each have their own frame-
work class: ContextActivation, FeatureSelection, FeatureActi-
vation, FeatureExecution. These four framework classes are singleton
classes to ensure that we have only one instance of each component in the

131

132 Chapter 9. Architecture

EmptyModule
0 : —
Use | A

AAA

FeatureExecution

proceeds_methods: Hash

alter_and_run(
actions_on_features_to_alter
)

ContextActivation FeatureSelection FeatureActivation
alter(action, feature_entity)
activate(contexts) || select features(contexts) | .. | alter(actions_on_features) | __] activate(current class,
deactivate(contexts) Calls | g4 features(action, Calls | find_concrete_features(Calls adaptation)
) - contexts) actions_on_features) _
alter(actions_on_contexts) proceed(current_instance,

current_classname,
current_method,
*args, &block)

Alteration)
look_up_method(current_instance,
feature_name current_class,

l<---m, current_method)

method_name

method_code Creates

Figure 9.1: Class diagram of the ARCHITECTURE part of our implementation.
Some information (constructors, getters and setters) is voluntarily omitted
for readability reasons. Some parts are greyed out since they are part of En-
TITIES. We reduced them to facilitate the understanding of the interactions
between the different classes of our implementation framework.

execution of a FBCOP application. Below we describe the design choices for
each of these different components and the order in which they are executed.

9.1.1 CONTEXT ACTIVATION

The framework class ContextActivation serves as entry point of the con-
trol flow to adapt the application behaviour when contexts change. For that,
this framework class proposes three methods activate(contexts), deactivate(-
contexts) and alter(actions_on_contexts).

As their names suggest, the methods activate(contexts) and deactivate(-
contexts) are used to try to activate or deactivate the contexts passed as ar-
gument. The method alter(actions_on_contexts) is more generic and either
activates or deactivates the different contexts passed as arguments according
to the kind of action associated for each context. As a reminder, Section 4.8
illustrated how we can call these three methods.

When one of these methods is called, the component first delegates the
activation or deactivation of the contexts to the context model definition of
the application, as explained in Section 7.3. For example, when the method
activate(contexts) is called, the component calls in turn the activate(contexts)
method on the context model definition. Then the component sends the con-

9.1. Control flow 133

texts that are activated and/or deactivated to the FEATURE SELECTION compo-
nent with the method select_features(contexts).
Algorithm 5 illustrates the pseudo-code of the method activate(contexts).

Algorithm 5 Algorithm of the method activate(contexts) in the

ContextActivation framework class.
Input: contexts to activate

Output: activated contexts

1: ContextModelDefinition.instance. ACTIVATE(contexts)
2: FeatureSelection.instance.SELECT_FEATURES({activated: contexts})

9.1.2 FEATURE SELECTION

The FEATURE SELECTION component aims to find the features that must be ac-
tivated and deactivated with the method select_features(contexts) called by the
ContextActivation framework class. This method is depicted in pseudo-
code in Algorithm 6.

Algorithm 6 Algorithm of the method select_features(contexts) in the
FeatureSelection framework class.

Input: activated contexts

Output: features to (de)activate or an error is raised

1: selection « _FIND_FEATURES(“activation”, activated_contexts)

2: unselection < _FIND_FEATURES(“deactivation”, deactivated_contexts)

3: REVERSE(unselection)

4: features_to_activate < _GENERATE_ACTIONS_ON_FEATURES(“activate”,
selection)

5: features_to_deactivate < _GENERATE_ACTIONS_ON_FEATURES(“deacti-
vate”, unselection)

6: features < features_to_deactivate + features_to_activate

7. FeatureActivation.instance.ALTER(f eatures)

The component first selects the features to activate and deactivate with
the method _find_features(action, contexts) as illustrated on Lines 1 and 2.

For that, the component delegates this query to the mapping model defini-
tion as explained in Section 7.5. The method _find_features returns either the
selected features or an empty list if no context has been (de)activated. While
we keep the order in which the features to activate are selected, we reverse
the list of the features to deactivate as shown on Line 3. This design choice
comes from the fact that we cannot remove a feature if the next feature relies
on it with a proceed statement. We consider this as a caution to preserve the

134 Chapter 9. Architecture

order in which the features must be deactivated. In addition it is more logic
to deactivate first the most recent feature.

For the lists of activated and deactivated features, we encapsulate each
feature into an instance of the framework class ActionOnEntity by as-
sociating each action that must be executed for this feature, as depicted on
Lines 4 and 5. Then we merge these two lists so that the new list contains
first the deactivated features followed by the activated features as illustrated
on Line 6. This design choice helps us to generalise the behaviour of the
(de)activation of the features in the FEATURE ACTIVATION component. Fi-
nally this merged list is sent to the FEATURE ACTIVATION component with the
method alter(actions_on_features).

9.1.3 FEATURE ACTIVATION

As opposed to its homologue, the framework class FeatureActivation
proposes only the method alter(actions_on_features) to (de)activate features.
This generic implementation is possible thanks to the manipulation we did
in the previous component. This allows us to keep only one method to do all
the actions.

The pseudo-code of this method is shown in Algorithm 7.

Algorithm 7 Algorithm of the method alter(actions_on_features) in the
FeatureActivation framework class.
Input: features to deactivate and activate

Output: (de)activated features

1: FeatureModelDefinition.instance.ALTER(actions_on_features)
2: actions_on_concrete_features < _FIND_CONCRETE_FEATURES(actions-

_on_features)
3: if = bootstrap_done? A —EmPTY(actions_on_concrete_features) then
4: bootstrapped_features < GET_ALL_FEATURES(actions_on_con-
crete_features)

5: FeatureExecution.instance.ALTER_AND_RUN(actions_on_concrete_fea-
tures)

The first step is to delegate the (de)activation of the features to the feature
model definition (Line 1).

As we can have concrete features in the parents or ancestors, we must
find all the concrete features (Line 2) that are (de)activated to ensure these
features are also (de)activated in the application behaviour by the FEATURE
ExEcUTION component. To do that, we traverse the list of the (de)activated
features and for each feature we look for potential concrete parent features.
If we encounter concrete parent features, we add them before (resp. after) the

9.1. Control flow 135

feature in the list in case of an activation (resp. a deactivation) to ensure that
they are deployed (resp. uninstalled) in the correct order in the next com-
ponent. This allow us to maintain the hierarchy between the features in the
feature model since parent concrete features contain more generic behaviour
while the child features refine/specialise it. To verify if the parent features
must be activated for an activation, we ensure that the parent feature was
not deployed yet (as described in Section 7.1). In the case of a deactivation,
we ensure that the parent feature is totally deactivated (i.e.,, its committed
counter is equal to zero) and its behaviour has been already deployed in the
application behaviour.

Before letting the framework adapt the application behaviour, we must
ensure that we store the mandatory and default behaviour that must be ex-
ecuted at the launch of the application (Lines 3-4). This is a crucial step for
bootstrapping the application. Without this, we will encounter runtime er-
rors at launch time. In fact, after the framework has deployed the features
thanks to the next component (i.e., FEATURE EXECUTION), it runs each neces-
sary method on the corresponding instances to create the user interface or to
load information, for example. Because the objects of the application are not
created yet at the first activation of features, the framework cannot execute
the different prologues on the inexisting application instances. Therefore we
must store this mandatory and default behaviour in the feature model defi-
nition. This behaviour will be executed later when the application will have
been launched thanks to the module CodeExecutionAtLaunchTime, as
described in Section 4.1.

Finally all the features, encapsulated as instances of the framework class
ActionOnEntity, are sent to the singleton instance of the framework class
FeatureExecution with the method alter_and_run(_actions_on_features).

9.1.4 FEATURE EXEcCUTION

The FEATURE EXECUTION component deploy and undeploy the features in the
application behaviour. Algorithm 8 sketches the method alter_and_run(ac-
tions_on_features) in pseudo-code.

For each feature passed to the method alter_and_run, the framework calls
a method alter(action, feature) on Line 7 that modifies the application be-
haviour by (de)activating the feature depending on its associated action. This
method loads all the feature parts (each dedicated to a specific concern to
increase modularity) of the passed feature. This method then installs or unin-
stalls each feature part in its corresponding application class defined by the
feature declaration depending on if the feature has to be activated or deacti-
vated. More information on how we propose to adapt dynamically the appli-
cation behaviour will be given in Section 9.2.

136 Chapter 9. Architecture

Algorithm 8 Algorithm of the method alter_and_run(actions_on_features in
the FeatureExecution framework class.
Input: actions on features

Output: /
1: active_features_to_execute < []
2: for action, feature € actions_on_features do
3: if action is a deactivation then
RUN_EPILOGUE(feature)
else
pusH(feature) on active_features_to_execute

4

5

6

7: ALTER(action, feature)

8 UPDATE_DEPLOYED_STATUS(action, feature)
9

. if bootstrap_done? then
10: for feature € active_features_to_execute do
11: RUN_PROLOGUE(feature)

Once the feature is installed in the application behaviour, we must up-
date its deployed status as illustrated on Line 8 for the reasons explained in
Section 7.1.

Last but not least, adapting the application behaviour implies the frame-
work must also run the prologue or epilogue of each feature part activated
or deactivated. For logical reasons, the framework must execute the epilogue
of each feature part before removing the feature of the application behaviour
(Line 4). Otherwise the epilogue could not be executed because the dedicated
source code will not longer be part of the dedicated application class. This
would raise a runtime error or an unexpected behaviour. For the prologue,
we decide to run all prologues after having activated all features for simplic-
ity reasons, as shown in Lines 10-11. This design choice also ensures that
the prologues are executed on a stable version of the source code, especially
when the prologues run methods using the proceed mechanism. This explains
the use of a list of active features to keep a trace of each activated feature on
Lines 1 and 6). Nevertheless the prologues can only be executed when the
application is already running as explained in Subsection 9.1.3. This justifies
why we guarded the execution of the prologue in Line 9.

9.2 Dynamic adaptation

Now we will explain how we treat the dynamic adaptation when features are
installed to or removed from the application behaviour. Many mechanisms
exist to implement such a dynamic adaptation. For example, we can see in
the literature, and more specifically in Cardozo and Mens’s work [CM22]

1

3

4

9.2. Dynamic adaptation 137

that some approaches rely on context-dependent method dispatch [CHO5;
GMH07; GMC08; HCNO08], metaprogramming [Gon+11; SMH17], or incre-
mental composition techniques [Gon+13].

In our implementation, we use an unbinding and binding methods mech-
anism through metaprogramming. This mechanism aims to retrieve the un-
bound methods of a feature part and then attach or remove them to the cor-
responding application class.

To illustrate this mechanism let us revisit the messaging system. Assume
we have two application classes, MessageModel and MessageView, that
represent the model and the view of a message, as depicted in Listing 9.1. We
also have a feature Message, shown in Listing 9.2, that provides the default be-
haviour of a message in our messaging system. (In this example, we reduced
the default behaviour for readability reasons.)

class MessageModel
include Observable
end

s class MessageView

6

1

end

Listing 9.1: Code snippet of the definition of the application classes MessageModel
and MessageView of the messaging system.

module Message
module Model
can_adapt :MessageModel

def initialize ()

end
def from ()

—
end

def from=()

end
end

module View
can_adapt :MessageView

def initialize ()

end
def create_message_widget (frame)

138 Chapter 9. Architecture

end
def update ()

s
end
end
end

Listing 9.2: Code snippet of the feature definition of the feature Message in the
messaging system.

When the feature Message is activated, we retrieve all the methods of
a feature part as unbound methods (since they are not longer attached to
a class or a module). In our example, for the feature part Model which is
the part of the feature Message that will be installed in the application class
MessageModel, we have three unbound methods: initialize, from, and from=.
The first method is the constructor and the two last methods represent the
getter and setter of the instance variable from!, respectively. Then we at-
tach these unbound methods to the corresponding application class. As a re-
minder, the application class is defined by the intersection of the targeted ap-
plication classes declared in the feature declaration (as shown on Listing 9.3)
and the macro can_adapt in the current feature part (as shown on Line 3 of
Listing 9.2). Therefore, the application class for the feature part Model in the
feature Message is the application class MessageModel. Then we continue
to iterate like this for each feature part of the activated feature to install com-
pletely the feature Message in the application behaviour. In particular, in this
example, the unbound methods initialize, create_message_widget and update
of the View feature part will get attached to the MessageVview application
class.

feature :@message, 'Message’ , [:MessageModel,
— :MessageView]

Listing 9.3: Code snippet of the declaration of the feature Message of our messaging
system.

Figure 9.2 illustrates incrementally how the behaviour of the applica-
tion classes is thus adapted when we activate the feature Message. Before
the activation of the feature in the behaviour, the two application classes
MessageModel and MessageView are empty, as depicted in Figure 9.2a.
Then after installing the feature part Model, the behaviour of the application

1To simplify the understanding of our dynamic adaptation mechanism, we have explicitly
written the getter and setter of the instance variable from. In real Ruby source code, however
we would use the Ruby macro, attr_accessor, to generate its getter and setter.

9.2. Dynamic adaptation 139

class MessageModel is updated with the three methods initialize, from and
from=, as shown in Figure 9.2b. Finally after installing the feature part View,
the behaviour of the application class MessageView is modified with the
methods initialize, create_message_widget, and update, as illustrated in Fig-
ure 9.2c. Figure 9.2c also represents the application behaviour available after
the full activation of the feature Message.

MessageModel MessageModel MessageModel
initialize() initialize()
from() from()
from=() from=()

MessageView MessageView MessageView
initialize()
create_message_widget(frame)
update()

(a) Before activating the (b) After activating the fea- (c) After fully activating the
feature Message. ture part Model of the fea- feature Message.
ture Message.

Figure 9.2: Example on how the application classes MessageModel and
MessageView are incrementally adapted by the feature Message when it gets
activated. The methods just activated are in italics.

The previous example explains how the application behaviour is adapted
when a feature is activated and for which the behaviour is a new one. But how
does our mechanism adapt the system behaviour when an activated method
has a new version or a refinement? To address this issue, we use the same
mechanism but we store a stack for each known method of each application
class and only the last adaptation (i.e., the adaptation on the top of the stack) is
installed in the application class so that when this method is called, the latest
version of the method is executed. To store all the variants of each method
of each application class, we use the hash data structure proceed_methods,
the instance variable of the framework class FeatureExecution, as shown
in Figure 9.1. In this data structure, the keys are identified by an identifier
composed of the name of the application class and the method name and the
values are a stack data structure that contains all the versions of the method.
Each version of the method is implement with a data class Alteration, that
contains the application class for which this method is an adaptation, the
name of the method and the (unbound) method itself, as shown in Figure 9.1.

Let us illustrate in more detail how this mechanism works based on our
messaging system. Assume we already installed the feature Message in the

140 Chapter 9. Architecture

application classes MessageModel and MessageView, as shown in Fig-
ure 9.3a. Let us now activate the feature Text, declared in Listing 9.4 and
defined in Listing 9.5, in the application behaviour.

1 feature :@text, 'Text’, [:MessageModel, :MessageView]

Listing 9.4: Code snippet of the declaration of the feature Text of our messaging
system.

1 module Text
s module Model
4 can_adapt :MessageModel

6 def initialize ()

8 end
9 def text ()

11 end
12 def text=()

14 end
16 end

18 module View
19 can_adapt :MessageView

21 def create_message_widget (frame)
—

23 end

24 def update ()

26 end

28 end

30 end

Listing 9.5: Code snippet of the feature definition of Text of our messaging system.

After the installation of the feature part Model of this Text feature, the be-
haviour of the application class MessageModel gets adapted by adding the
methods text and text= and have updating the constructor initialize with its
new version. When the feature part View has been installed, the behaviour
of the application class MessageView is also modified since the methods

9.3. Proceed mechanism 141

create_message_widget and update have been refined. The result of the acti-
vation of the feature Text in the application behaviour is shown in Figure 9.3b.
The method in italics are just activated and those in bold are a refinement or
a new adaptation of a previously installed adaptation for this method in the
application class.

MessageModel

MessageModel initialize()

from()
initialize()
from=()
from() toxt)

from=() text=()

MessageView .
g MessageView

initialize()

initialize()
create_message_widget(frame) create_message_widget(frame)
update() update()

(a) Before activating the (b) After fully activating
feature Text. the feature Text.

Figure 9.3: Example of how the application classes MessageModel and
MessageView are further adapted by the feature Text. In this example, we
assume the feature Message had already been activated before. The methods
in italics are just activated and those in bold are a refinement or a new adap-
tation of an already activated adaptation of this method in the application
class.

To better visualise how the adaptations are stored in the proceed_methods
data structure after the activation of the features Message and Text, Figure 9.4
displays what this structure contains. We can observe that for each method
of each application class, we keep a stack of all the alterations (i.e., all the
versions) of their method.

9.3 Proceed mechanism

Now that we have explained how our architecture can adapt the application
behaviour, we need to explain in more detail how it handles the proceed mech-
anism to incrementally adapt application behaviour.

As a reminder, when programmers want to refine an existing behaviour
by extending it, they must use the proceed mechanism as exemplified in Sec-
tions 4.9 and 5.4.

To ensure the proceed method is available at any place in the code for pro-
grammers, we add this method in the class Object of the programming lan-

142 Chapter 9. Architecture

MessageModel N Alteration Alteration
#initialize "1 (feature Message) (feature Text)
MessageModel N Alteration
#from "1 (feature Message)
MessageModel N Alteration
#from= “11 (feature Message)
MessageModel N Alteration
#text “11 (feature Message)
MessageModel N Alteration
#text= “11 (feature Message)
MessageView N Alteration
#initialize “11 (feature Message)
MessageView N Alteration Alteration
#create_message_widget “11 (feature Message) (feature Text)
MessageModel N Alteration Alteration
#update “11 (feature Message) (feature Text)

Figure 9.4: State of the proceed_methods variable when the Message and Text
features are activated (in that order) in the application behaviour.

guage. With that, this method is thus callable in each new instantiated object
since all instances inherit the behaviour from the class Object. This method
has the following parameters: the name of the application class within the
method is deployed and the list of arguments that represents the arguments
of the method in which the proceed is called. The name of the application
class is important since this serves to find the previous adaptation of the right
method. As a reminder, a method contains a stack of adaptations and it is
identified by the name of the application class and the name of the method.

Revisiting the feature part View of the feature Message that adapts the
application class MessageView. As a reminder, Listing 9.6 shows the code
snippet of this feature part. To use the proceed method, as illustrated on Line 1,
the application programmers must pass the argument layout, that is the pa-
rameter of the method create_message_widget. However they do not pass the
application class within the method is deployed. This argument is automat-
ically added when the method is deployed in its application class. Therefore
each proceed call is translated so that the name of the application class is
automatically added by the programming framework as the first argument.
Listing 9.7 shows the translation of the proceed call depicted on Line 6 of List-
ing 9.6. This translation is hidden for the programmers to avoid they must
mention at each time the application class when calling the proceed method,

1

2

14

9.3. Proceed mechanism 143

but it is the translated version that will really execute at runtime.

module Text
module View
can_adapt :MessageView

def create_message_widget(layout)
message_layout = proceed(layout)
ui_manager = Ul::UIManager.instance
ui_manager.create_ui_object_in (: message_text,
— :FXLabel, message_layout, @message_model.text)
return message_layout
end

end

end

Listing 9.6: Code snippet of the feature part View of the feature Text adapting the
application class MessageView in the messaging system.

message_layout = proceed("MessageView", layout)

Listing 9.7: Code snippet showing the translation of the proceed call shown on Line 6
of Listing 9.6.

The proceed method called by programmers is the method of the Object
class and not the method proceed of the FeatureExecution framework
class, while the real implementation of the proceed mechanism is developed
in the FEATURE EXECUTION component. We made this design choice because
it simplifies the proceed call from application programmers’ perspective and
is syntactically similar to the super method when programmers want to call
a generic version of their method. So, when a proceed call is executed at
runtime, the Object class intercepts the message, retrieves the needed re-
quired arguments of the real implementation of the proceed mechanism and
then delegates to the implementation of the proceed method of the framework
class FeatureExecution. As depicted in the class FeatureExecution
in Figure 9.1, the method proceed has the following parameters: the current
instance on which the method has been called, the name of the application
class, the name of the current method that calls the proceed mechanism and
the arguments of this current method. Algorithm 9 depicts the pseudo-code
of the proceed method of the Object class. On Line 1, the current method is
retrieved by inspecting the call stack for example, and the instance on which
the method is executed can be easily retrieved by the self instance as shown
in Line 2.

When the framework calls the proceed method in the FEATURE EXECUTION
component, the framework loads the application class passed as argument,

144 Chapter 9. Architecture

Algorithm 9 Algorithm of the method proceed of the class Object.
Input: classname, args
Output: Result of the proceed method

1: current_method < FIND_NAME_CURRENT_METHOD()
2: return FeatureExecution.instance.PROCEED(self, classname, cur-
rent_method, args)

finds the adaptation stack for the current method of the application class and
pops twice the stack to get first the current version and then the previous
adaptation. It then deploys the previous adaptation in the application class
to erase the latest version of the method and executes the previous version
of this method. After running the previous adaptation, it redeploys the latest
adaptation of the method and returns the result of the previous adaptation.
Algorithm 10 illustrates the pseudo-code of this proceed method in FEATURE
EXECUTION.

Algorithm 10 Algorithm of the proceed() method in the

FeatureExecution framework class.
Input: current_instance, classname, current_method, args

Output: Result of the previous adaptation

1: current_class < GET_cLASS(classname)

2: last_adaptation < POP_ADAPTATION(current_class, current_method)

3: previous_adaptation < POP_ADAPTATION(current_class, current-
_method)

4: ACTIVATE(current_class, previous_adaptation)

5. method_to_execute <« LOOK_UP_METHOD(current_instance, current-
_class, current_method)

6: result « method_to_execute.carL(args)

7. ACTIVATE(current_class, last_adaptation)

8: return result

Let us revisit again our example of the proceed mechanism of Section 5.4,
but we will only show how it works with the features Message and Text for
conciseness reasons. The implementation of the features Message and Text
are again shown in Listings 9.8 and 9.6, respectively.

1 module Message

2 module View

3 can_adapt :MessageView

!

5 attr_accessor :main_window
6

def create_message_widget(layout)

9.3. Proceed mechanism 145

ui_manager = Ul::UIManager.instance

message_layout =

ui_manager.create_ui_object_in (: message_layout_kim,
:FXVerticalFrame , layout)

@author_label =

ui_manager.create_ui_object_in (: message_author,

[

:FXLabel, message_layout,
"#{@message_model.from}: ")
return message_layout

end

rre

end
end

Listing 9.8: Code snippet of the feature part View of the feature Message adapting the
application class MessageView.

Figure 9.5 depicts how the adaptation stack evolves when proceed is called
in the method create_message_widget of the feature Text in the application
class MessageView. After installing these two features for the method cre-
ate_message_widget, we obtain the stack as described in Figure 9.5a. The last
adaptation of the method comes from the feature Text. When the proceed
statement is called, the stack of the method is empty, as illustrated in Fig-
ure 9.5b, after running the pop operations, as depicted on Lines 2-3 of Algo-
rithm 10. Then we activate the previous adaptation, as illustrated on Line 4
of Algorithm 10. This modifies the adaptation stack by adding the version of
the feature Message as depicted in Figure 9.5c. As a reminder, this feature is
the default behaviour and does not thus contain a proceed statement for the
method create_message widget. Finally, after executing the previous adapta-
tion, we reactivate the last adaptation, as shown on Line 7 of Algorithm 10.
This manipulation results to come back in the initial state, as shown in Fig-
ure 9.5d.

In this example, we show how the proceed mechanism works with two
features (a default behaviour and a refinement). When many refinements
adapt the default behaviour through the proceed mechanism, our algorithm
works recursively to handle these longer chains of proceed calls.

However a problem can arise if we run the previous method, as depicted
on Line 6 of Algorithm 10, on the current instance. Assume programmers de-
fine two application classes with hierarchy between these two classes, and the
behaviour of a method is build incrementally with a proceed mechanism in the
superclass. When the proceed statement is called, this algorithm activates the
previous adaptation and then reactivates the last adaptation in the superclass
correctly. However when the previous adaptation is executed on the current
instance, the method will be executed in the method of the subclass and not
the method of the superclass. With a super call, the method of the superclass

146 Chapter 9. Architecture

MessageView Alteration Alteration
#create_message_widget (feature Message) (feature Text)

Y

(a) State after activating the adaptation of create_message widget
of Message and Text.

MessageView
#create_message_widget

Y

(b) State after popping the two last adaptations.

MessageView - Alteration
L

#create_message_widget (feature Message)

(c) After activating the previous adaptation.

MessageView Alteration Alteration

3
>

#icreate_message_widget (feature Message) (feature Text)

(d) State after reactivating the last adaptation.

Figure 9.5: Example on how the adaptation stack evolves when the proceed
mechanism is called for the method create_message_widget of the application
class MessageView

will be then executed. Therefore an unexpected behaviour is raised since the
method of the subclass should not be executed at this moment.

To solve this issue, we ensure that we find the expected method in the
hierarchy of the application classes to execute the right method, without exe-
cuting the submethods. This is performed with the method look_up_method()
that takes as arguments the current instance, current class and the current
method that must be executed, as shown on Line 5 of Algorithm 10. In this
look_up_method method, we traverse the hierarchy of the application classes
for which they have the method as part of their behaviour till we reach the
method of the current application class passed as argument and we return
this method in order to execute the right method. With this solution, we can
easily manage some issues related to the hierarchy of application classes.

9.4 Conclusion

In this chapter we described how we implemented the control flow of our
architecture, the dynamic adaptation of the application when features get ac-
tivated, and the proceed mechanism.

We illustrated the implementation of each component in the control flow
of the framework’s architecture with pseudo-code and explained the design
choices we made to implement them.

Then we discussed unbinding and binding methods mechanism to adapt

9.4. Conclusion 147

dynamically the application behaviour. We exemplified this mechanism with
examples from the messaging system.

Finally we described how we implemented the proceed mechanism that
allows features to dynamically and incrementally adapt the behaviour of pre-
viously installed features.

CHAPTER

10
TOOL SUPPORT

So far we have discussed the implementation choices of the different parts
(ENTITIES, MODELLING and ARCHITECTURE) that compose our FBCOP appli-
cation development framework.

When building FBCOP applications, programmers can get lost in their
development and debugging tasks due to the inherent complexity of creat-
ing such applications. This complexity comes from the high dynamicity of
such systems but also from the exponential number of combinations when
designing the contexts, the features and the mapping between them.

To help programmers in their development and debugging tasks, there is
a need to provide them with dedicated programming support tools, such as
for example visualisation tools. In this thesis, we developed two such visuali-
sation tools, the CONTEXT AND FEATURE MODEL VISUALISER and the FEATURE
VISUALISER, which we presented in Chapter 6.

In this chapter, we explain how we extended our implementation archi-
tecture to make it easy to connect such tools to it. We start by showing an
overview of such connections at a high level. Then we explain how we im-
plemented the TooLSUPPORT part in the implementation architecture, and
how and when it communicates with our supporting tools. In addition to
discussing how we can communicate with the visualisation tools, we also in-
troduce a new command line tool (the CONTEXT SIMULATOR) and explain how
it can communicate with the implementation framework. Finally we discuss
the extensibility and evolution of this TooLSUPPORT component to support

149

150 Chapter 10. Tool support

other kind of tools we have experimented with throughout different master
theses.

10.1 Overview of the communication

Figure 10.1 sketches how the implementation architecture can communicate
with external supporting tools (whatever technologies and programming lan-
guages they use) through a server. With such a separation between the imple-
mentation architecture and the tools, we can easily evolve our approach. For
example we could rewrite the implementation architecture in another pro-
gramming language for some reason, without loosing our previous effort in
the development of the external tools. In addition we could also add new sup-
porting tools easily, to enrich the help we could provide to programmers with
a minimum effort in the implementation architecture.

4 Implementation architecture)
Proxy A Proxy B Proxy C
_ 4 A Y,
r Y \ 4 .
Server

A

[To:#1] [TooI#Z] [iool#z]

Figure 10.1: Overview of how external tools can communicate with the im-
plementation architecture through a server.

To facilitate the communication between both, we add the notion of com-
munication channels that are maintained by the server. Since we extend the
implementation architecture to send and receive information to and from
tools, the communication handling is decoupled from the implementation of
our FBCOP architecture for maintainability and evolution reasons. For that
we add a system of proxies in the implementation framework so that it can
communicate easily through communication channels to communicate with
the right tool.

To illustrate the different kinds of communication possible we exemplify
them with the different tools we implemented for FBCOP programmers.

Tool #1 (the FEATURE VISUALISER tool) helps programmers inspect how
the application classes are adapted by the features. When an application

10.2. TooLSuppORT in the implementation architecture 151

class is adapted by a feature part, proxy A sends what feature part has been
(de)activated for this class through a dedicated communication channel. The
server then relays this information to tool #1 so that it can refresh its visual-
isation.

Tool #2, a simple command line tool (called the CONTEXT SIMULATOR tool),
allows programmers to (de)activate some contexts to simulate particular sit-
uations to study how their application reacts at runtime. When programmers
send a (de)activation command, the server resends the information to the im-
plementation architecture through a communication channel for which the
proxy Bis a client. Then this proxy interprets and executes the command to
launch the process to (de)activate the passed contexts.

A more complex tool #3 (the CONTEXT AND FEATURE MODEL VISUALISER)
provides an overview of the different models and could allow the program-
mers to interact with it to (de)activate a set of contexts.! When the application
is launched, the proxy C sends the models to the visualisation of the tool #3,
via a dedicated communication channel. When programmers click on some
contexts and decide to (de)activate them, this information is sent to the proxy
C via the communication channel so that it can (de)activate the contexts in
the application.

These three examples are external tools we already implemented in the
FBCOP approach as supporting tools for programmers. We will also dis-
cuss other supporting tools that will use this proxy architecture later on Sec-
tion 10.3.

10.2 TooLSuPPORT in the implementation architecture

Now that we gave an overview of how the implementation architecture can
easily communicate with external tools, and inversely, we go deeper in the
implementation architecture to better describe how that communication is
designed. Figure 10.2 depicts the class diagram of the TOOLSUPPORT part.

As the supporting tools must communicate with the implementation ar-
chitecture through communication channels, each tool has its own frame-
work class. The CONTEXT AND FEATURE MODEL VISUALISER tool and the FEa-
TURE VISUALISER tool each have their own framework classes CFMVCommuni -
cation and FVCommunication, respectively. The CONTEXT SIMULATOR
tool also has its own framework class ContextSimulatorCommunication.
To be easier to understand, we thus have created three different tools with

! This interaction that programmers could have with this tool to activate and deactivate
contexts was not yet implemented in the tool but we could easily imagine this interaction as
a future work to improve the tool (see Section 14.3). Here, we mention this interaction only
to demonstrate that we can design tools that receive and send information from and to the
implementation architecture.

152 Chapter 10. Tool support

«Module»
Communication

socket

connect()
send_message(data)
recv_message(data)

| dev_env?()

<<includes>> A
<<includes>>

«Module» ToolsCommunication
—D ModellingProxy

-Use-- --Use--,
«Module» «Module» «Module» «Module»
C ivationProxy Featur i roxy FeatureActivationProxy FeatureExecutionProxy

<<includes>> <<includes>> <<includes>> <<includes>>
1 1 1 1

Figure 10.2: Class diagram of the TooLSUPPORT part of our implementation
architecture. Some information (constructors, getters and setters) was vol-
untarily omitted for readability reasons. Some parts are greyed since they
are not part of TooLSurPorT. However we added them to facilitate the un-
derstanding of the interations of the different framework classes.

three different communication channels.

Each of these communication classes defines a port on which they must
send or listen information. This port is an instance variable of their parent
framework class ToolsCommunication. This parent class itself includes
the trait Communication that creates the connection with the method con-
nect() and that allows to send and receive messages with the send_message(da-
ta) and recv_message(data) methods, respectively.

To help programmers visualise the models and adaptations with our two
visualisation tools, we define a specific environment ‘dev’. This allows us to
avoid sending messages dedicated to the visualisation tools when program-
mers are in production or automated testing stage, for example. Therefore we
implement the method dev_env?() in the trait Communication as a guard
that serves for our visualisation tools.

Next we will describe how and when the implementation architecture
sends/receives information to/from the supporting tools.

10.2. TooLSuppORT in the implementation architecture 153

10.2.1 CoNTEXT AND FEATURE MODEL VISUALISER

When visualising the models of a FBCOP application with the CONTEXT AND
FEATURE MODEL VISUALISER tool, all messages are sent through the frame-
work class CFMVCommunication via the proxy ModellingProxy, as illus-
trated in Figure 10.2.

When the context and feature model are created, for each entity and each
relation, a message is sent to the communication channel to inform the vi-
sualisation tool. For the entity, the message is sent when the method new is
called in the framework class Entity. For the relation, the message is sent
when the method add_relation in the trait Node is called.

To visualise the mapping between the contexts and features, the imple-
mentation architecture sends a message when the method set_mapping model
of the framework class MappingModelDefinition is executed. While we
inform explicitly the visualisation tool that a mapping between the contexts
and features exist, the mapping between the features and application classes
is naturally provided to the visualisation tool since each feature knows what
application classes it adapt. This design choice allows us to stay coherent with
the explicit mapping between the context and feature model and the implicit
mapping between the features and their application classes of our FBCOP
programming paradigm.

Finally, for each (de)activation of entities called through the methods ac-
tivate, deactivate and alter, a message is sent to inform the visualisation tool
when such a (de)activation occurs.

10.2.2 FEATURE VISUALISER

As Figure 10.2 depicts, each class of the ARCHITECTURE part of the FBCOP
framework has a corresponding trait to send information to our FEATURE Vi-
SUALISER tool.

For example, The framework class ContextActivation hasatrait Con-
textActivationProxy that tells the tool which contexts are (de)activated.
The framework class FeatureSelectionhasatrait FeatureSelection-
Proxy that sends to the tool what features are (un)selected. As its homologue
ContexActivation, The framework class FeatureActivation with its
trait FeatureActivationProxy tells the tool which features are (de)acti-
vated. Finally the framework class FeatureExecution, through the trait
FeatureExecutionProxy, tells the tool which application class is adapted
by which feature part.

154 Chapter 10. Tool support

10.2.3 CONTEXT SIMULATOR

When programmers execute their FBCOP application and want to simulate
some changes in the surrounding environment, they can use the CONTEXT
SIMULATOR tool to tell the application how the surrounding environment has
evolved. To do that, they send a context (de)activation command. This com-
mand is first verified syntactically. If valid, the command is sent to the imple-
mentation architecture. Otherwise the tool reports an error message to the
programmers and reinvites them to write another command.

When the implementation architecture receives a command to (de)activate
contexts, the framework class ContextSimulatorCommunication first
transforms the command into a list of instances of ActionOnEntity that
describes a list of actions to be performed on those contexts. For that, the
contexts are first reified into context objects with the find_entity by name
method of the framework class ContextModelDefinition. Then the com-
munication class forwards this list to the ContextActivation framework
class to (de)activate the passed contexts. However, if an error is detected ei-
ther due to a wrong name of a context or due to a model satisfiability issue,
currently no message is sent back to the CONTEXT SIMULATOR tool to inform
the programmers. However, this error message appears in the output console
of the application. Having better programmer feedback providing more ex-
plicit error handling could be an improvement to implement as future work
(see Section 14.3).

10.3 Extensibility and evolution

Up to now we have explained how our implementation architecture can com-
municate with three supporting tools that we have already implemented.
With three different tools we already demonstrated that our design allows
to easily add new tools that can help programmers in their different tasks
when they conceive FBCOP applications. To show that this design is really
powerful, we briefly mention some other supporting tools that some master
students explored during their master theses to enrich the toolbox we can
propose to programmers.

Interaction modality The first example is about the adaptation of the in-
teraction modality that can depend on the surrounding environment in which
the application runs. In fact, revisiting our messaging system, assume car
drivers who receive messages and want to answer them. In such a situation,
drivers may prefer to listen to these messages thanks to a vocal assistant, and
answer them with voice commands. Other modalities such as gestures can
also be explored. In the messaging system, we could imagine that end-users

10.4. Conclusion 155

could swipe (from right to left) to erase the message when the keyboard is
missing. Even if such tools addressing such modalities are not addressed for
the programmers, our master-level students illustrated in another case study
(see Section 11.4) that the tooling architecture discussed in this chapter can
be reused to implement supporting tools dedicated to end-users as well. With
such an architecture and design, they could easily reuse their tools in other
applications that deal with the same modalities. In addition they can more
easily decouple the complexity to implement such tools since they can more
easily build their solution incrementally. Finally it allows these external tools
to be more independent of the programming language on top of which we
build our architecture.

Sensor input In our system architecture, the control flow of our architec-
ture starts by (de)activating contexts. These contexts must be triggered by
something in the real world, such as sensors, for example. But how can we
catch easily the different information coming from sensors in a maintainable
and reusable way? To address this issue, with a master-level student, we pro-
pose to define a generic communication channel (following the architecture
presented in this chapter) to receive all messages from all interesting sensors.
This solution allows to easily receive information from the real world via the
server. Even if the programmers must still provide a way to reify this infor-
mation so that they can manipulate it more easily, the generic behaviour to
catch all messages through a single communication channel is already imple-
mented in the implementation architecture.

10.4 Conclusion

In this chapter we first introduced how the implementation architecture can
be easily connected with external tools through a server. We exemplified this
with our three supporting tools: the CONTEXT AND FEATURE MODEL Visu-
ALISER, the FEATURE VISUALISER and the CONTEXT SIMULATOR.

Then we presented the design choices we made to implement the Toor-
SupPORT component in the implementation architecture in a maintainable
way. We also detailed how each of our three tools are linked to the imple-
mentation architecture.

Then we discussed the extensibility and evolution of this component with
three other external tools. The examples prove that the design choices we
made for external tooling are interesting since we can easily extend our tool-
box with other kinds of tools, whatever the technologies used, and integrate
them into our FBCOP approach to enrich it.

Part1IV

Validation

157

159

The previous part illustrated how we have implemented the FBCOP pro-
gramming framework and explained which design choices we made to build
it. We have first explained how the building blocks of our programming
framework have been developed. We have then described how we have in-
tegrated feature modelling in our programming framework implementation.
Next we have also detailed the implementation choices we made to develop
the control flow of the architecture, the dynamic adaptation and the proceed
mechanism. Finally we have also explained how we can extend our approach
to easily integrate external tools support in order to help programmers in
their development and debugging tasks.

This fourth part aims to validate the FBCOP approach and its design. We
will first validate its expressiveness with the help of five case studies: two
variants of a smart messaging system, a smart risk information system, a smart
meetings system and a smart city guide (Chapter 11). Then we will evaluate its
design qualities and will discuss its usability with the cognitive dimensions
of notations framework (Chapter 12). Finally we will validate the usefulness
and usability of the FBCOP approach with real designers and programmers
that must create context-oriented applications (Chapter 13).

CHAPTER

11

VALIDATING FBCOP’S
EXPRESSIVENESS

In this chapter we will validate FBCOP’s expressiveness through five case
studies. Each case study will study various aspects of its expressivity.

1. The first case study (Section 11.1) is the smart messaging system which
we used throughout this dissertation to exemplify different concepts
notions and code snippets. We use this study to illustrate the concep-
tion of an application following the supporting development methodol-
ogy, from the requirements phase until the implementation phase. With
this we validate the feasability of our development methodology, the
modelling approach and the implementation framework.

2. The second case study (Section 11.2) is a variant of the smart messag-
ing system developed by two master-level students. This also validates
the FBCOP modelling and programming framework. We will describe
their variant and show some snapshots of it to demonstrate how they
succeeded to conceive a context-oriented application with FBCOP.

3. The third case study (Section 11.3) is a smart risk information system.
We will describe the system and explain its context-feature model. This
case study is another demonstration that we can design such dynamic
systems with our approach.

161

162 Chapter 11. Validating FBCOP’s expressiveness

4. The fourth case study (Section 11.4) is a smart meetings system, also de-
veloped by two other master-level students. We will describe their ap-
plication, show their context-feature model, and illustrate their work-
ing prototype with some snapshots. In addition to illustrating FBCOP
with another type of smart system, they demonstrate the extensibil-
ity of our approach by integrating multimodality interaction in their
FBCOP application and our approach.

5. The last case study (Section 11.5) is a smart city guide designed by Car-
dozo and Mens [CM22]. We will briefly describe the system, before
displaying its context-feature model. Again, this work serves to show
how FBCOP can be used to design another type of context-oriented
system.

Finally we will conclude this chapter (Section 11.6).

11.1 Smart messaging system

Throughout this dissertation we exemplified the different FBCOP concepts
and code snippets with a smart messaging system. Now we will design and
implement this smart messaging system following our supporting develop-
ment methodology as explained in Section 3.3. For each phase (i.e., require-
ments, design and implementation), we will show the results of our design and
implementation choices.!

This case study demonstrates the life-cycle and process of analysing the
requirements, designing and implementing a context-oriented application with
the FBCOP approach.

Requirements

As areminder, the smart messaging system allows users to exchange messages
and is smart in the sense that it can adapt or refine its behaviour depending
on some contextual situations.

In the requirements phase, we first define the vocabulary of such a system.
Table 11.1 shows the lexicon of the smart messaging system.

Then we elicit the contexts and features of the system, that are listed in
Tables 11.2 and 11.3.

1 As we did not work on testing for this dissertation, we will not perform the testing phase.
This is, in fact, the topic of another PhD dissertation on which is currently being conducted
in our research lab. However, we will test our application as end-users to verify if it exhibits
the expected behaviour.

11.1. Smart messaging system

163

Table 11.1: Lexicon of the smart messaging system.

Term Definition

User Person who uses the smart messaging system.

Chat Conversation between two or more persons and is
composed of messages.

Message Information that users send or receive. It has an au-

Message content

thor and a content. More information can be added
such as the date and time the message sent.

Content can be textual or richer such as a picture,
an emoticon, a video, a position, or a combination of
these elements.

Table 11.2: Contexts of the smart messaging system.
Context Definition
User age Users can be children, adults or elderly persons.
User disability Some users may have certain disabilities such as

User activity
Device

Internet
tion

connec-

Bluetooth

Positioning

Noise

sight problems, hearing problems and so on.

Users can be either occupied (i.e, in a meeting or
driving) or available.

Users may run the system on their smartphone, car
dashboard or desktop.

Users may or may not have an Internet connection.
Possible Internet connections are Wi-Fi, cellular or
both.

Users may have a Bluetooth connection so that their
smartphone can communicate with their car dash-
board, or with other devices.

Users may activate their GPS to obtain their exact
location.

Users may be in a quiet place, a place where the am-
bient noise is acceptable or in a very noisy place.

To simplify the case study, for this prototype we decided not to include
some other useful features, such as editing a chat (e.g., its name), removing a
user of a chat, or deleting a message.

Finally we draw some wireframes of the smart messaging system for which
we illustrate the scenario for each:

m Figure 11.1 illustrates what the desktop version should look like when

164 Chapter 11. Validating FBCOP’s expressiveness
Table 11.3: Features of the smart messaging system.

Term Definition

Send Users can send messages over the Internet.

Store Users may write messages that will be stored locally
when no Internet connection is sensed.

Receive Users may receive messages when they have an In-
ternet connection.

List chats Users may see the list of all ongoing or past chats.

Read chat Users may open a chat to read all its messages of this

Create chat

List members
Create message
Message
Message content

Sending date
User preferences

Profile picture

Text sizing
Notify

Layout

chat.

Users may create new chats with other selected
users. For each new chat, users must provide a name
to identify it.

Users may see the members of a chat.

Users may write a new message in a chat.

Messages have an author.

Messages can be of type text, picture, emoticon, and
more.

Messages have a date when the message was sent.
Users may provide their age, preferences and disabil-
ities (e.g. sight problems).

Users may have a profile picture.

The size of the text is either normal or enlarged.
When users receive new messages, notifications are
sent to the users through a sound alarm or vibration.
Notifications may be muted.

The main layout is stacked or side-by-side.

users have a cellular connection. The layout is a side-by-side view
where the chats list is on the left part of the layout and the selected
chat is displayed on the right part of the layout. In this example, Benoit
uses his desktop and opens his direct chat messages with Kim.

Figure 11.2 depicts what the smartphone version should look like when
users have a cellular connection. Taking the same example of Fig-
ure 11.1, we show its smartphone version. On the left, a first view
shows the list of all chats. When a chat is selected, a new view re-
places the previous one to display the chat content. This other view is
on the right of Figure 11.2. To let the users come back to the chats list,
a ‘back’ button is added on the top left of the view.

11.1. Smart messaging system 165

Parrain Kim:
Kim Can we discuss tomorrow about the
LINFO2252 course?
Bruno Benoit:
INGI Of course. At 11 AM?

[Sendj

Figure 11.1: Wireframe showing what the desktop version of a smart mes-
saging system should look like.

Parrain <::|

Kim:
Kim
Can we discuss
B tomorrow about
runo the LINFO2252
course?
INGI Benoit:
Of course. At 11
AM?

¢

Figure 11.2: Wireframe showing what the smartphone version of a smart
messaging system should look like.

= Now assume users launch the smart messaging system on their desktop.
With a Wi-Fi or ethernet connection, richer messages can be sent such
as a picture, an emoticon or a video. Figure 11.3 illustrates this scenario.
In this example, Benoit is on his laptop. After sending a picture, he
writes a new message.

» However, when the Internet connection is lost, users must be informed
that their messages will be sent only later when a new connection is
sensed. Figure 11.4 shows such a case. In this example, Benoit wants to

166

Chapter 11. Validating FBCOP’s expressiveness

Parrain

Kim

Bruno

INGI

PhD meeting

Benoit:

Can we meet next week to discuss
the research questions of my PhD?

Kim:
Yes. Next Monday?
Bruno:

Next Monday is fine.

Benoit:

Say 1 PM? CSendj

[Picture) Video]

Figure 11.3: Wireframe showing what the desktop version of a smart mes-
saging system should look like when users have a Wi-Fi connection.

send a message to Kim. But he temporarily lost his Internet connection,
s0 a new message appears in the chat to inform him that the message

will be sent later.

More wireframes were conceived during our analysis of the smart mes-
saging system. However we decided not to show all of them here since most
were similar to those we displayed here.

Design

After having completed the requirements phase, we now design the context-
feature model and sketch a class diagram which will serve as skeleton for
the application classes and their interactions. We also mention what features
adapt what application classes.

11.1. Smart messaging system 167

Parrain Kim:
Kim Can we discuss tomorrow about the
LINFO2252 course?
Bruno Benoit:
INGI Of course. At 11 AM?

Il The message will be sent when an Internet
connection will be sensed.

(sena)

Figure 11.4: Wireframe showing what the desktop version of a smart messag-
ing system should look like when users want to send messages while they do
not have a Wi-Fi connection.

Context-feature model Figure 11.5 depicts the context-feature model we
draw for this system based on the list of contexts and features we elicited af-
ter the requirements phase. In Figure 11.5, the context (resp. feature) model is
on the left (resp. right) and the mapping model is drawn with a table between
both models. To keep the image readable, we deliberately omitted many ar-
rows in the mapping model from context model to feature model.

As the description of this case study has been already detailed (see Sec-
tion 1.5), we will no longer explain this context-feature model.

Applications classes, interactions and features Next we draw a kind of
conceptual class diagram that shows the application classes with their inter-
actions of the smart messaging system, as shown in Figure 11.6. Since the full
behaviour is separated into features, we will also indicate what features may
adapt each application class instead of precising the attributes and methods
in each application class.

The main application class is the SmartMessagingSystem. This appli-
cation class may be adapted by the features Layout, Stacked and Side-by-side.
Layout is a structural implementation on which Stacked and Side-by-side rely
on to implement the master/detail pattern. The features Normalised and En-
larged may also adapt this application class and is in charge of adjusting the
text sizing. SmartMessagingSystemis also adapted by the features Create
chat and List chats to allows users to create a new chat and displays the list
all chats to the users in the main window. As SmartMessagingSystem is
in charge of the menu bar of the application, the different features (Name,

Chapter 11. Validating FBCOP’s expressiveness

168

sainjeay

* Buipues

uonelqIA
+ ApoN wiepy
anp - -
Ssuono obessow
p suopy —e 01D
b e o1 uonIso,
Uonewloul p Ius0D ainpig
obessap\ T
p sjuaidivay XaL paulepaid
b oyiny

NN

* jnoke

Buizis 1xa|

a|yoid

aby

SERIVEIEIEIN]
E

’

b owen

pusg -t e
T PR
p 1240 peoy |+ oNd T
suonoy » sieyo s
1eyd
¥ oeain
Gopewior] /] SPAWeN
e
120 » oweN
opis-Ag-apIg|
poyoelS [---""
pobiejug |€--------""" B
pasijewloN
anjoid It

uoneiqip | ea14 ‘pno
9914
i ‘|ewIoN
Ny PN €Tt
SINN oM
uonisod | Buiuonisoq
EREEEY]
‘pusg | BP0
~fanjold
‘anI909Y 14-1M
‘puss
[IRENER)
aI01S oN
opis-Ag-apis| dopisaq
(ooenig
pauyepald | ‘pJeogsyep
‘paxdels .
“‘Buiag o
payoels |euoyduews
pabiejug SOA (€.
posijew.IoN oN
ainjoid
Joluag
alyoid
ainpoid
slyoid py [----- -
Jayid PIYD [€------l

<- Buddepy —p 10 —> anneuss)ly 0— [euondo @— Alojepuepy pusber 7

suoyduews sasnbas Buluonisod

pno

[ewIoN

18IND

Buluonisod ¢

woolenig

dopisaq
pieoqysep
P ERllETe
auoydpewsg|
s0l4
e Buinug Y Ainoy
oM
1 S3,
* waigo.d L Aungesi P
Wb nngesia n
ON
Joluag
T npy Y oby
T PINO

asioN +

SIXeu0

Context-feature model of the smart messag

mappings arrows are vo

tem. Some

ing sys

luntarily omitted for readability reasons.

Figure 11.5

11.1. Smart messaging system 169

Age, ProfilePicture and Preferences) that compose the menu also adapt this
application class. (To simplify, we decided to create a menu item for each
attribute that the user can modify, but nothing prevents us to merge them
to create a menu item dedicated to the user profile in which they can update
their information.) To know the current user, SmartMessagingSystem has
an instance variable of the application class UserModel.

The UserModel is adapted by the features Name, Age and Preferences and
may be adapted by the feature Profile picture. Its view, UserView is adapted
by the same features and retains an instance variable to its model, an instance
of UserModel.

The application class ChatModel is used by SmartMessagingSystem
to create a chat or display the chats list. This ChatModel is adapted by the
features Chat information, Name, and Filter. The feature Chat information is
more a structural behaviour that provides the default behaviour of the ap-
plication class ChatModel. Name adds behaviour to this class to identify
the chat. Messages also adapts ChatModel to add an instance variable that
contain all the messages (instances of the application class MessageModel).
Nevertheless, Filter refines the behaviour of Read chat by censoring unap-
propriate words or sentences in ChatModel. Finally, the feature Members
adds an instance variable in ChatModel. As for the user view and its model,
ChatView is the view of ChatModel and has a reference to its model. This
ChatView class is also adapted by the feature Chat information to add the
structural default behaviour, the features Stacked and Side-by-side that read
the chat, the feature Messages and Members that allow to refresh the view
when a new message is created or a new member is added. The feature Read-
Chat also adapts this application class to display all the messages of the cur-
rent chat. Finally, the feature CreateMessage adds the user interaction to cre-
ate a new message and this feature is refined by the different types of message
auser can write (i.e., the features Text, Predefined, Picture, Position and ...). The
ChatView class uses the application class Userview to show the members
of the current chat model.

The application class MessageModel is naturally adapted by the features
Messagelnformation and Text that implements a structural default behaviour
and the default textual content that a message can have, respectively. In addi-
tion to Text, this class may also be adapted by the features Predefined, Picture,
Position and ... that refine the types of content a message can have. For each
message, a message must also have an author, an instance of the application
class UserModel and this behaviour is added by the features Author. The
application class MessageModel is also adapted by the features Sending date
to have a sending date in each message. Finally, the feature Filter also adapts
this application class to hide inappropriate keywords or sentences in the mes-
sage itself. Again, its view, i.e., the application class MessageView, retains

170 Chapter 11. Validating FBCOP’s expressiveness

. SmartMessagingSystem

E ; Layout
: ! | stacked : Uses !
1| Side-by-side v :
Lo CommunicationService :
i1 | Normalised NotificationService '
. Sending :
i1 | Enlarged Uses Mute !
N N Shbhl 1 Store promemeeeeeees \
: 1 | Create chat : Alarm |
. ! Send |
¢ 1 |Listchats : Vibration :
Vo H Receive T '
[Name H H H
: : ProfilePicture ! | Uses :
1| Preferences : oo : :
: : Age : : :
[: Author : :
. ; 1 -
bl ' Uses MessageModel -
: : 1 1y TR ! Message Information : :
P UserModel V Text Lo
. ChatModel : :
Vo Name Predefined ' !
o Members Chat information Messages H '
Lo Age Picture &< |
Vo 1.% Name 0.* H
' ' Preferences Position H
Lo Filter :
. ProfilePicture 1 !
E 1 Sending date :
Uses Filter '
: : ChatView :
' UserView ' H
H : Stacked H
| Name H H
H : Side-by-side MessageView :
: Age k< Y 9! ;
: Chat information Message Information |
: Preferences |
H . Members Text H
| ProfilePicture H
1 Messages U Predefined '
: : ses H
L GR e L L 4omssossnosooasoooooooo > Read chat === - m--- 1 Picture !
3 Create message Position :
3 Text '
i Predefined Sending date I
: Position Author :
: Picture : :

Figure 11.6: Kind of class diagram that shows the application classes and
their interactions of the smart messaging system. In each application class
or interaction, we indicate what features (may) adapt it.

1

11.1. Smart messaging system 171

its model (instance of MessageModel) and is adapted by almost all the same
features that MessageModel (i.e., Messagelnformation, Text, Predefined, Picture,
Position, Author, Sending date and ...). As for ChatView, MessageView uses
UserView to instantiate the author of the message.

When users want to create a message, the feature Create message in the
application class ChatView is executed to first create a MessageModel in-
stance, then to set the different information of the message and finally to
send it through the application class CommunicationService. This ex-
plains why Chatview uses CommunicationService. As its name sug-
gests, CommunicationService is adapted by Sending suggesting structural
code for its child features and may be adapted by the feature Store, Send and
Receive to store, send and receive messages.

On receipt of new messages, CommunicationService uses the appli-
cation class NotificationService to inform the users if this latter class
is adapted by the features Alarm or Vibration. The feature Mute may also
adapt NotificationService when it is needed. When a new message is
received, this new message is directly reified into a MessageModel instance.

The two application classes CommunicationService and Notifica-
tionService are naturally singleton classes since we do not need two dif-
ferent instances of each of these services.

Implementation

Now that we have designed the context-feature model and drew a kind of class
diagram to visualise which application classes we need, how these classes in-
teract together, and how they are adapted by what features, we will show
some code snippets to illustrate the implementation of the smart messaging
system. For length reasons, we only show how we implemented the version
for smartphones with a few selected of features. The full source code is avail-
able in the repository.

Listing 11.1 depicts the context model declaration in which the contexts
Smartphone and Desktop are declared under their parent context Device.

class AppContextModelDeclaration <
— ContextModelDeclaration
include Singleton

def initialize ()
super ()
_define_device_context ()

@root_context.relation :Mandatory, [@device]
end

20

21

172

private

def _define_device_context ()

abstract_context :@device, ’Device’
context :@desktop, Desktop’
context :@smartphone, ’'Smartphone’

@device . default @smartphone
@device. relation :Alternative , [@desktop,
— @smartphone]
end

end

Listing 11.1: Snippet of the context model declaration of the smart messaging system.

A part of the feature model declaration is shown in Listing 11.2.

class AppFeatureModelDeclaration <

< FeatureModelDeclaration
include Singleton

def initialize ()
super ()
_define_layout_features ()
_define_chat_features ()
_define_message_features ()

@root_feature.relation :Mandatory, [@layout, @chat,
< @message |
end

private
def _define_layout_features ()
feature :@layout, 'Layout’, [:SmartMessagingSystem]
feature :@stacked, ’*Stacked’,
< [:SmartMessagingSystem , :ChatView]
feature :@side_by_side, ’SideBySide’,
— [:SmartMessagingSystem , :ChatView]
@layout. relation :Alternative, [@stacked,
— @side_by_side]

end

def _define_chat_features ()
abstract feature :@chat, ’Chat’
_define_chat_information_features ()
_define_chat_actions_features ()
@chat. relation :Mandatory, [@chat_information,
< @chat_actions]
end

Chapter 11. Validating FBCOP’s expressiveness

40

11.1. Smart messaging system

def _define_chat_information_features ()
feature :@chat_information, “ChatIlnformation ,
< [:ChatModel, :ChatView]
feature :@chat_name, ’Name’ , [:ChatModel]
feature :@chat_messages, 'Messages’ , [:ChatModel,
< :ChatView]
@chat_information.relation :Mandatory, [@chat_name,
— @chat_messages]
end

def _define_chat_actions_features ()
abstract_feature :@chat_actions, ChatActions’
feature :@list_chats, 'ListChats’,
— [:SmartMessagingSystem]
feature :@read_chat, ’ReadChat’, [:ChatView]
feature :@filter_messages, 'FilterMessages’,
< [:ChatModel, :MessageModel]
@chat_actions.relation :Mandatory, [@list_chats,
< @read_chat]
@chat_actions.relation :Optional, [@filter_messages]
end

def _define_message_features ()
abstract_feature :@message, ’Message’
_define_message_actions_features ()
_define_message_information_features ()
@message. relation :Mandatory, [@message_actions,
— @message_information]

end

def _define_message_actions_features ()
abstract_feature :@message_actions, ’MessageActions’
feature :@create_message, ’CreateMessage’ ,
< [:ChatView]

@message_actions. relation :Mandatory,

— [@create_message]

end

def _define_message_information_features ()
feature :@message_information,
— ’Messagelnformation’, [:MessageModel,
— :MessageView]
feature :@author, *Author’, [:MessageModel,
— :MessageView]
_define_content_message_features ()
@message_information. relation :Mandatory, [@author,

173

70

174 Chapter 11. Validating FBCOP’s expressiveness

— @content_message]
end

def _define_content_message_features ()
abstract_feature :@content_message, ’Content’
feature :@text, ’Text’, [:MessageModel,

< :MessageView, :ChatView]
@content_message . relation :Mandatory, [@text]

end

end

Listing 11.2: Snippet of the feature model declaration of the smart messaging system.

In this feature model, we declare the three main features: Layout, Chat
and Message.

The feature Layout has two child features Stacked or SideBySide. All these
three features adapt the application class SmartMessagingSystem to im-
plement the main layout and more precisely the master part. The detail part
is implemented in the application class ChatView by the child features (i.e.,
Stacked or SideBySide).

The feature Chat has two child features Chat Information and Chat Ac-
tions. Chat Information is refined by the features Name and Messages. These
three features adapt the application class ChatModel, and the features Chat
Information and Messages adapt the application class ChatVview. Chat Actions
is an abstract feature that has three child features Lists Chats, Read Chat and
Filter. Lists Chats adds a behaviour in the class SmartMessagingSystemas
entry points to visually list all the chats. Read Chat is a feature adapting the
application class ChatView. Filter adapts the application classes ChatModel
and MessageModel.

The feature Message is again specialised with its actions (Message Actions)
and information (Message Information). Message Actions has the feature Cre-
ateMessage that adapts ChatView to add the user interaction in order to
create a new message. Message Information contains a feature Author and
a feature Content that is refined by the feature Text. The feature Messageln-
formation adapts the application classes MessageModel and MessageView
to implement the structural code on which we can build a message and its
view. The feature Author refines the behaviour of these classes by adding the
concept of author in a message. Text adapts logically the application classes
MessageModel and MessageView to add a textual content in a message.
This feature also adapts the application class ChatView to add the interac-
tion to create a new textual message.

Almost all the features we presented in Listing 11.2 are mandatory. Nev-
ertheless, the kind of layout must be different depending on the device. List-

11.1. Smart messaging system 175

ing 11.3 illustrates how we declared the fact that the context Desktop trig-
gers the feature SideBySide and the context Smartphone triggers the feature
Stacked.

class AppMappingModelDeclaration <
— MappingModelDeclaration
include Singleton

def initialize ()

contexts = AppContextModelDeclaration.instance
features = AppFeatureModelDeclaration.instance
@mapping = {

[contexts.desktop ()] => [features.side_by_side()],
[contexts.smartphone()] => [features.stacked ()],

}

end
end

Listing 11.3: Snippet of the mapping model declaration of the smart messaging system.

Listing 11.4 depicts the main application class of the smart messaging sys-
tem.

class SmartMessagingSystem
class << self
include CodeExecutionAtLaunchTime

attr_reader :instance
def run ()

if @instance.nil?()
app = Ul::UIManager.instance.create_app () do

| app |
@instance = SmartMessagingSystem .new (app)
end
app.run ()
else
return @instance
end
end

end

def initialize (app)
@main_window =
< UIl::UIManager.instance.create_main_container (app,
< "Smart messaging application", :width => 500,
< :height => 500)

23

176 Chapter 11. Validating FBCOP’s expressiveness

@main_window . show (PLACEMENT_SCREEN)
end

end

Listing 11.4: Snippet of the application class SmartMessagingSystem of the smart
messaging system.

Listings 11.5 and 11.6 show what the skeleton of the application classes
ChatModel and ChatView look like. These classes are empty because the
default behaviour is designed in the features as the variability points.

class ChatModel
include Observable
end

Listing 11.5: Snippet of the application class ChatModel of the smart messaging
system.

class ChatView

2 end

1

Listing 11.6: Snippet of the application class ChatVview of the smart messaging
system.

The application classes MessageModel and MessageView follow the
same empty structure that this shown in Listings 11.5 and 11.6.

Listing 11.7 illustrates the Stacked feature definition. This definition con-
sists of two feature parts: MainLayout and ReadChat. The MainLayout feature
part adds its behaviour in the application class SmartMessagingSystemto
create a vertical frame that will be used later when we must list all the chats.
The ReadChat is the default behaviour in the application class Chatview
when users read a chat. This default behaviour depends on the device. As a
reminder, when users read a chat, we must replace all the Ul objects by others
for smartphones whereas only a part of the user interface must be replaced
for desktop.

module Stacked
set_feature_part_order :MainLayout, :ReadChat

module MainLayout
can_adapt :SmartMessagingSystem

def list_all_chats ()

ui_manager = Ul::UIManager.instance

return
< ui_manager.create_ui_object_in (:list_of_chats ,
— :FXVerticalFrame , @main_window, :opts =>

— LAYOUT_FILL)

11.1. Smart messaging system 177

end
end

module ReadChat
can_adapt :ChatView

def read_chat ()

ui_manager = Ul::UIManager.instance

_content_layout =
< ui_manager.find_ui_object (: content_layout)
ui_manager.remove_all_ui_children(_content_layout)
@chat_layout =
ui_manager.create_ui_object_in (: chat_layout,
:FXVerticalFrame , _content_layout, :opts =>
LAYOUT_FILL)
back_button =
ui_manager.create_ui_object_above (: back_button,
@chat_layout, :FXButton, ’'<- Back’)
back_button.connect (SEL COMMAND) do
ui_manager.remove_all_ui_children(_content_layout)

SmartMessagingSystem . instance . list_chats ()
end

(s

—
—

end
end

end

Listing 11.7: Snippet of the feature Stacked adapting the application classes
SmartMessagingSystem and ChatView of the smart messaging system.

Listing 11.8 depicts the implementation of the feature ListChats with two
features parts. Its feature part Model serves to fetch all the chats in SmartMes-
sagingSystem. Its feature part View refines the default behaviour installed
previously by the feature part MainLayout of the feature Stacked in the ap-
plication class SmartMessagingSystem. When calling the list_all chats
method, it executes first this method of the feature Stacked. Because the first
statement is a proceed call (Line 18), the system calls the previous version of
this method (i.e., the version of the method of the feature part MainLayout
of Stacked). This execution of this proceed call results in the creation of a
vertical frame (see Lines 7-10 of Listing 11.7). After the proceed call is over,
the control flow returns to the version of the method of the feature part View
of the feature ListChats. It then creates the different Ul objects that will be
attached to this vertical frame. This separation of concern for the method
list_all chats allows having a default behaviour that differs from the type of
device and only one implementation to list all chats.

178 Chapter 11. Validating FBCOP’s expressiveness

1 module ListChats
set_feature_part_order :Model, :View

+ module Model
5 can_adapt :SmartMessagingSystem
6 set_prologue :load_chats

8 def load_chats ()

9 @chat_models = _create_chat_models ()
10 end

11 end

13 module View
14 can_adapt :SmartMessagingSystem
15 set_prologue :list_chats

17 def list_chats ()

18 _list_chats_layout = proceed ()

19

20 ui_manager = Ul::UIManager.instance

21 @chat_models.each do

2 | chat_model |

2 chat_view = ChatView.new(chat_model)
24 chat_view .main window = @main_window
25 chat_id = chat_model.name.to_sym

26 chat_name_ label =

< ui_manager.create_ui_object_in (chat_id,
< :FXButton, _list_chats_layout, chat_model.name,
< :opts => LAYOUT FILL X |JUSTIFY _LEFT, :padLeft =»
— 10, :padRight => 10, :padTop => 20, :padBottom =>
— 20)

27 chat_name_label.backColor = ’#FFFFFF’

28

29 chat_name_label. connect (SEL_COMMAND) do

30 chat_view.read_chat ()

31 end

32

33 separator_id = "#{chat_model.name}-sep".to_sym

34 ui_manager.create_ui_object_in (separator_id,
< :FXHorizontalSeparator, _list_chats_layout)

35 end

36 end
end

33 end

Listing 11.8: Snippet of the feature ListChats adapting the application class
SmartMessagingSystem of the smart messaging system.

1

2

11.1. Smart messaging system 179

When the system creates the UI object of a chat name by displaying the
name of the chat, it assumes that the system has already activated the feature
Name in the application class ChatModel. The implementation of the feature
Name is shown in Listing 11.9.

module Name
module Model
can_adapt :UserModel, :ChatModel

attr_accessor :name

def initialize ()
proceed ()
@name =
end
end

end

Listing 11.9: Snippet of the feature Name adapting the application class ChatModel
of the smart messaging system.

As we can observe, this feature Name can also adapt the application class
UserModel (Line 3 of Listing 11.9). This allows to define only one feature def-
inition for several adaptations in different application classes. Therefore, this
improves the reusability of this feature definition. However, programmers
must declare in the feature model declaration for which application class the
feature definition must adapt, as illustrated in Listing 11.10. While the first
feature declaration adapts the application class UserModel with the feature
Name, the other declaration adapts the application class ChatModel with the
same feature.

feature :@username, 'Name’ ', [:UserModel]

feature :@chat_name, 'Name’ , [:ChatModel]

Listing 11.10: Snippet of the feature model declaration to illustrate we can reuse the
same feature definition in the smart messaging system.

Listing 11.11 exposes the implementation of the feature ReadChat that
adapts the application class ChatView. In the feature part View, the method
read_chat refines the default behaviour installed by the feature part ReadChat
of the feature Stacked (or SideBySide). Again, we use the proceed mechanism
to build this view.

module ReadChat
module View
can_adapt :ChatView

180 Chapter 11. Validating FBCOP’s expressiveness
def read_chat ()
proceed ()
@chat_model . messages.each do
| message_model |
message_view = MessageView .new(message_model)
message_view.create_message_layout(@chat_layout)
end
self.create_new_message_layout ()
end
end
end

Listing 11.11: Snippet of the feature ReadChat adapting the application class
ChatView of the smart messaging system.

With this design and implementation of how we built the view to list all

chats or this view to read a chat, we can implement the features ListChats and
ReadChat so that they are independent of the type of device, since they refine

the

default behaviour added by the feature corresponding to the layout.
As already explained above, the feature Messagelnformation adds the struc-

tural code of the application classes MessageModel and MessageView, as
shown in Listing 11.12.

module Messagelnformation
module Model

can_adapt :MessageModel

def initialize ()
end

end

module View

can_adapt :MessageView
attr_accessor :main window

def initialize (message_model)

@message_model = message_model
@message_model.add_observer(self)
end

def create_message_layout(layout)

ui_manager = Ul::UIManager.instance

return ui_manager.create_ui_object_in (: Message,
— :FXVerticalFrame , layout, :opts => LAYOUT_FILL_X)
end

24

1

22

11.1. Smart messaging system 181

end
end

Listing 11.12: Snippet of the feature Messagelnformation adapting the application
class MessageView of the smart messaging system.

Listing 11.13 shows the implementation of the feature Text that adapts the
application classes MessageModel and MessageView. In the feature part
Model that adapts MessageModel, we only add the instance variable @text.
In fact, the full behaviour is build incrementally with the different features
with the proceed mechanism. The feature part View, adapting MessageView,
aims to only display the text of the message in the layout creating originally
by the feature part View of the feature Messagelnformation. Again, we use
the proceed mechanism to create incrementally this user interface in order to
have a good separation of concerns. In addition, this feature Text has a last
feature part to refine the user interaction to create a textual message. (We
omitted this last feature part for conciseness.)

module Text
module Model
can_adapt :MessageModel
attr_accessor :text
def initialize ()

proceed ()
@text = nil
end

end

module View
can_adapt :MessageView
attr_accessor :main_window
def create_message_layout(layout)
_layout = proceed(layout)
ui_manager = Ul::UIManager.instance
ui_manager.create_ui_object_in (: MessageText ,
— :FXLabel, _layout, @message_model.text, :opts =>
— self.position_message_content())
return _layout
end
end
end

Listing 11.13: Snippet of the feature Text adapting the application classes
MessageModel and MessageView of the smart messaging system.

182 Chapter 11. Validating FBCOP’s expressiveness

Execution

Now that we implemented the smart messaging system, we will show some
snapshots of its execution. (These snapshots are from an intermediate ver-
sion, but a more complete version is available by running the latest source
code.)

Figure 11.7 shows how the application behaves for users use their smart-
phone. Assume Benoit launches the application on his smartphone. As his
smartphone has a small screen, he first sees his list of chats, as depicted in
Figure 11.7a. When he opens a chat (here, the chat identified with the name
‘Benoit-Bruno’), he sees all the messages of this chat, as shown in Figure 11.7b.
If Benoit wants to return on its list of chats, he can click on the ‘<- Back’ but-
ton on top of the window.

r

Smart messaging application Smart messaging application
<- Back
Benoit-Kim
Benoit:
Hello Bruno
Benoit-Bruno Bruno:

Hello :)

Send

(a) Snapshot of the master part that (b) Snapshot of the detail part that
displays all the chats. displays a chat.

Figure 11.7: Execution of our implementation of the smart messaging system
when users use their smartphone.

Later in the day, Benoit turns on his desktop and launches the application.
Figure 11.8 illustrates what the application looks like on his desktop.

11.2 Another smart messaging system

In the previous section we have conceived our own smart messaging system.
Now we will show a variant smart messaging system designed and imple-
mented by two master-level students, Julien Lienard and Céline Nardi, during

11.2. Another smart messaging system 183

Smart messaging application

Benoit:

Benoit-K i Kim. pi i
enoit-kim Hi Kim, ping me when you are available

Kim:
Benoit-Bruno Pong

Benoit:

I launch the call
Kim:
Okay, | will take a coffee. | am back in 2 minutes

Benoit:

Okay. Fais comme chez toi ;)

Send

Figure 11.8: Execution of our implementation of the smart messaging system
when users use their desktop.

a user study in which they participated (see Section 13.5).

As we already detailed a design and implementation of the smart messag-
ing system, we will only describe their interpretation of a smart messaging
system, and then we will show an execution of their application with some
snapshots.

This case study aims to demonstrate that other designers and program-
mers can use the FBCOP approach to create context-oriented applications.

Description

In their smart messaging system, users can send and receive messages to and
from other users.

The default type of message are text. Depending on the users’ activity,
other types of message can be enabled such as audio, video or picture. When
users are in a meeting or in a library, users can also send and receive pictures
and videos, but cannot send and receive audio messages. If the users are
driving, they can only send predefined or audio messages and receive audio
messages. But when users are available, they can send and receive any type
of message.

184 Chapter 11. Validating FBCOP’s expressiveness

On receipt of a new message, the system notifies textually the users. In
addition, it can also inform the users in a different way according to their
activities. They can be notified with a vibration while they are in a library.
When users are driving or are available, a sound is played and a vibration is
emitted.

Depending on their users’ activities, different inputs are enabled. For ex-
ample, the voice is allowed when users drive while a keyboard is shown when
users are in a library or during a meeting. If the user is available, the voice
and the keyboard are allowed as input.

Depending on the time of day, the application can be either in a light
mode or in a dark mode. During the night, the application is in a dark mode
to make reading less painful in nighttime.

Finally, the type of keyboard can be different depending on the language
set in the user’s preferences. For example, the azerty keyboard is available
when users set a Latin language while the gwerty keyboard is for users having
set a Germanic language in their preferences.

Execution

Now we have a rough idea of their design of a smart messaging system, we will
illustrate its execution with some snapshots in Figure 11.9. These snapshots
have been provided to us by these two students.

Assume a user called Benoit uses this application in the daytime during
his free time. After launching the application, Benoit sees his lists of chat, as
depicted in Figure 11.9a. Then he clicks to open the chat called ‘Club Info’
because he must check an information about the next meeting they have for
his club. Figure 11.9b shows what Benoit sees when he opens this chat. After
finding his information, he wants to return to the main window (i.e., the win-
dow that display the list of chats) and clicks on the ‘<- Back’ button on top of
the window.

Later in the day, Benoit wants to send a message to his advisors about a
new question he has for is research. Then he adds his advisors with the ‘Add
contact’ button on top of the window of Figure 11.9a. A dialog box is thus
displayed to add a new contact, as shown in Figure 11.9c.

During the evening, Benoit wants to share some new information with the
‘Club Info’, then he opens again this chat. As he uses the application during
the nighttime, the application switches the mode to dark mode, as illustrated
in Figure 11.9d.

This scenario illustrates only a subset of what their application can do.

11.2. Another smart messaging system 185

smart messaging application & & & Smart messaging application & @ &

Add contact

<- Ba(kl Club Info
Remove cﬂntactl

Gorby: =
Club Info Salut!

Benoit:

Salut, regardez ca!

G000 QUESTIONS

Rannit: |
Send

(a) Snapshot of their application (b) Snapshot of their application
showing the list of chats. showing an opened chat.

Add contact m

Club Info
Remove (untactl
Gorby: [
Add contact \
Club Info Salut!

Contact name Benoit:

Salut, regardez ca!

5000 GUESTIONS

. -

Send

(c) Snapshot of their application (d) Snapshot of their application
showing how to add a contact. showing an opened chat in a dark
mode.

Figure 11.9: Some snapshots of the execution of the smart messaging system
designed and implemented by Julien Lienard and Céline Nardi.

186 Chapter 11. Validating FBCOP’s expressiveness

11.3 Smart risk information system

In addition to the smart messaging system, we also designed a smart risk in-
formation system with FBCOP.

As we already provided a complete design based on the supporting devel-
opment methodology for the smart messaging system, we will summarise the
smart risk information system without detail all the deliverables expected in
the FBCOP development methodology. Therefore we will first provide a de-
scription of what is a risk information system. To better understand this sys-
tem and to define its functionalities, we met with business experts, and more
specifically with experts working at the Belgian Crisis Centre? of the Federal
Public Service of the Interior. Combining their expertise on such systems and
our expertise on context-oriented systems, we could create a prototype of a
smart risk information system. We will then show the context-feature model
we designed for this case study.

This case study aims to demonstrate that we can design another context-
oriented applications with FBCOP.

Description

A smart risk information system is a system for informing citizens about on-
going emergencies such as earthquakes or floods, providing them with in-
structions on how to act in such emergencies.

Ongoing emergencies are defined with characteristics that are informa-
tion on them, such as for example its severity and its location. For example,
the severity for an earthquake emergency is computed using the Richter scale
and its location is defined as a circular impact zone with a certain epicentre.
For a flood emergency, the severity may be indicated as low, medium or high
and its location may be described by a polygon impact zone.

The instructions given to citizens in case of an emergency can depend on
many contexts: the user’s age, the weather, the status of the emergency and
so on. The status of an emergency describes whether the emergency is about
to happen, is ongoing or is finished. According to this status, an instruction
could for example be “Limit journeys and avoid the danger zones” if a flood
is happening or “Ventilate rooms adequately, but also heat them adequately to
dry off the moisture” when the flood is over.? For an earthquake, an instruc-
tion could be “Hide under a table, desk, bed or any sturdy piece of furniture” if
an earthquake is happening or “Be prepared for after-shocks” when the earth-
quake is over.* Such instructions could be given in textual form for adults, or

zhttps://ibz.be/fr/centre—de—crise.
Shttps://www.info-risques.be/en/hazards/naturals-hazards/floods
4https ://www.info-risques.be/en/hazards/naturals-hazards/earthquake

https://ibz.be/fr/centre-de-crise
https://www.info-risques.be/en/hazards/naturals-hazards/floods
https://www.info-risques.be/en/hazards/naturals-hazards/earthquake

11.4. Smart meetings system 187

using pictograms when the citizen is a child.

At all times, the citizens can also consult the instructions on actions they
must undertake in case an emergency occurs, even if there is currently no
emergency warning. In that case, the system provides all instructions for the
selected emergency type.

Context-feature model

Now that we have described what a smart risk information system has to offer,
we show the context-feature model for a smart risk information system, as
depicted in Figure 11.10.

Based on the description, we can easily detect the two main contexts: User
profile and Emergency.

For the User profile context, we have some specific contexts that allow to
define the current user, such as the user’s Age, its Location or for what Risks
concerns the user is interested. The Age context allows to adapt the display
of the instructions. While pictograms will be shown for children, the text of
instructions will be enlarged for seniors. The Location context allows to acti-
vate the GPS so that the system can determine if the user is in the impacted
zone of the emergency. The Risk concerns context is a user’s preference that
indicates to the system that the user is interesting to find out more informa-
tion on a risk and instructions to follow in case of it will happen, occurs and
when it is finished.

About the Emergency context, some information of an emergency can also
be contextualised. The contexts Type (i.e., Earthquake or Flood) and Status
(i.e., Before, During and After) define what kind of emergency is coming soon,
occurs or is finished. Depending on the Status, only the instructions for this
specific time and for the specific emergency will be displayed depending on
the user’s Age. In addition more information of the current emergency is
also displayed to the users as for example its severity and impacted zone.
Finally the severity of the emergency will also adapt how users are notified.
For example, when the severity is High, the system alerts the users through
different channels communications, as for example a SMS, via the application
and more. For a Medium severity, users are warned only by the application. In
case of a Low severity, users are not notified but if they open their application,
a dialog box appears to inform them about the minor emergency.

11.4 Smart meetings system

During their master thesis [DT22], two master-level students, Erwan Delhove
and Ho Yien Tsang, have designed and implemented a smart meetings system
with the FBCOP approach.

Chapter 11. Validating FBCOP’s expressiveness

188

Buung

<

axenbypes <]

0 @se0 Ul
suononysu|

suononysul
Asiy

uonipe
a|yoid

shiels

AnoN

_ salnjea

uonebineN

AlpuaLly .
Jolusg K N
MSUSS SUI9OUOD
aby Alpuaiy sty
o T NN
_ uoneso apyoud Jesn |0
auoz | /0 Tl
poedwr P
auoz .
pajoeduwi K obv
auoz /
mous .
joeduwy pIUD
uonew.oul uobBAjod I
Aousbiawg
Rusonos | sowony |
Aeydsig piepuelg

I _ < - Buddey —p 10 —> aaneuls)y o— [euondo e— Aiojepuely pusbe _
dAY

Context-feature model of the smart risk information system.

Some mappings arrows are voluntarily omitted for readability reasons.

Figure 11.10

11.4. Smart meetings system 189

We will start this section by describing their smart application, then will
show their context-feature model and finally will display some snapshots of
their application.

In addition to demonstrate the feasability to conceive another context-
oriented application with FBCOP, they also shown that the FBCOP approach
can be extended to treat the multimodal interaction that has not been explored
before in our approach.

Description

A smart meetings system is an application that allows users to manage their
remote meetings. When users have a meeting, they can create a virtual meet-
ing, add and remove participants, and define the time allotted for it. Further-
more they can also send and receive messages in the dedicated chat. Once the
meeting is finished, users can no longer modify the meeting but can always
open it to see the exchanged conversation during the meeting.

This application is also smart in the sense that the input interaction can
be different depending on the surrounding environment. In a normal envi-
ronment where a mouse and a keyboard are sensed, users can perform all
the actions through them. But, when a micro is added, users can also pro-
vide commands using voice to write, send or delete a message, and to add
or remove participants of a meeting. Another considered modality is gesture
when a camera is added to the system. For example, users can delete un-
sent messages by a swiping gesture from right to left. In addition these both
modalities can be combined to write a message by telling the message content
in the finger pointing textfield.

The output modality has been also a bit worked in their application. The
feedback is either displayed through a screen for users having no vision trou-
bles or dictated by a vocal assistant for blind users. The vocal features require
that speakers have been added.

Context-feature model

The context-feature moded they designed is depicted in Figure 11.11. Their
model has been redrawn with some renaming while preserving all their de-
sign choices.

Depending on the vision of users, a different Set color palette will be cho-
sen. If users are Daltonian, text is adapted with Daltonian safe colors. Other-
wise the Default color palette is applied.

The interaction can vary according to the Users, Environment and avail-
able peripherals (i.e.,, the different hardwares added to the system in order to
provide Output and Input). For example, when users are Blind and Speak-

Chapter 11. Validating FBCOP’s expressiveness

190

|EO0A
9010\

% lepowniniy

uonoeIBjU|

Bunum

ain)se

20IAap
leusa)x3

9010\

noke| 1eq
Bunesy

sainjea

SIS
Bunespy

Bunespy

ndino
|eo0A

«- Buiddepy —p 10 —> anneussyy o— |euondo @— Alojepuepy pusba]

|

Ayisuaju|

uoneuLoul
aiow
apInOId

¥oeqpasy
abeuepy

%oeqpas)
apinold

Hnejed

ajes
ueluojeq

apeled
1002 }8S

ainjoid

uonduosaq

pulg
awnjon | ‘sieseads
awnjon ubIH ‘Jeep JleH
ubiH ‘wien
wmch“._%> \ awnpon |, uc__ma
! N \ jeunony |, SIHPECS
\ N4 ‘wiey
awnjon w‘_wxmonw
~ uBIH ‘ASION
i ‘pullg
[e20A c,__mo ‘oI
9107 sioyeads
) ‘pullg
RN ainjsab . OlIN
...... eewe)
90107 ;
wiey
ainysan eewe)
Bunum pieoghay
ERIEN) o
|eusa)xg wiod
wiey
LN ‘oo
ndino sioyeads
|BOOA ‘pullg
BInjold FRENEN
‘uonduosaq@| ‘usalog
a21nold ueluojeq
‘uonduoseq| ‘usalog
10j00 oous
............................. Jnejeq Raped
Jes UBIUO} (B
ueluojleq tuoeq

Jaju10d

SIXe)u0D

Jeap jleH

Redrawn context-feature model of the smart meetings sys-

tem designed and implemented by Delhove and Tsang for their master the-

Figure 11.11

[DT22]. Some mapping arrows are voluntarily omitted for readability

reasons.

sis

11.4. Smart meetings system 191

ers are added, the Vocal output is applied to read the messages and provide
feedback through a vocal assistant.

The inputs are more complex. When a Microis added and the Environment
is Calm, users may interact with the system through Voice. Users may write
on the application if a Keyboard is added and may use Gesture when a Camera
is added. The Pointer refers here to the mouse that users can use and defined
as External device. However the feature External device is more a feature to
interact with a laser since the mouse behaviour is handled by the computer.

In addition to these modalities, users can also take benefits of the multi-
modality. The Voice gesture feature simulates the well-known Put-That-There
paradigm [Bol80]. With it, users can write something in the pointed textfield
by telling what they want to write. For that, the environment must be Calm
and the system must have a Camera and Micro. Another Voice vocal feature is
dedicated for Blind users in a Calm environment with a Micro and Speakers.

However the Intensity of the Audio can also be set to a Normal volume
or a High volume depending on the Audition disability of Blind users (i.e.,
either a Full or Half deaf audition) and if they are in a place that is Calm or
Noisy. If the place is Noisy or users are Half deaf, the volume will be set to
a Higher volume. Whereas the volume will be set to Normal for users having
Full audition if the place is Calm. However this feature implies Speakers are
added to the system.

Finally, the feedback provided can also enrich with a Description or a Pic-
ture when a Screen is added and users have a Sufficient vision (i.e., Daltonian
or Perfect).

Execution

After designing their context-feature model, they also implemented a proto-
type to validate the expressiveness of the FBCOP programming framework.
We show some snapshots of their application in this subsection.

Figure 11.12 depicts the creation of a new meeting entitled ‘Meeting’. The
user with a Sufficient vision is in a Calm place and has a Micro and a Screen.
In this creation, the user sends a vocal command to add a new participant
‘Benoit’. In the box on top of the window, the user sees what the system un-
derstood (here, ‘add Benoit’) and the feedback on the execution of this com-
mand (here, ‘Participant called Benoit has been added’). The execution of
this command also results by adding the participant ‘Benoit’ in the window
‘Create new meeting’.

Figure 11.13 illustrates that the user dictates a message in the textfield
in the ‘Chat’ box. Again, the user sees what the system understood and the
feedback of this command on top of the window. Furthermore the message is
written in the textfield in the ‘Chat’ box. The situation in which this execution

192 Chapter 11. Validating FBCOP’s expressiveness

More

Here is what | understood :
Participant called Benoit has been added

Meeting Title W

Meeting time limitation(set O for no limit) [0 = : |0 |

Participants
Add|
Benoit ﬂ

Cancel| Start

Create New Meeting‘

Figure 11.12: Snapshot of the smart meetings system where users create a new
meeting.

runs is similar that the previous snapshot.

More
Here is what | understood : writing 1 th thield
Message written in chat textfield
View
Details
Start Time End Time Status
02/05/22 14:31 / tarted
Chat Participants
There is actually no participant in the meeting
Add
writing a message on the textfield Send
Leave meeting

Figure 11.13: Snapshot of the smart meetings system where users dictate mes-
sage.

Assume that an additional Camera has been added that allows the user
to communicate via gestures. Figure 11.14 shows how the system has been
adapted. First, a new Ul object has been added on the top-right of the win-

11.5. Smart city guide 193

dow to return to the user which kind of gesture the system understood. This
feedback is displayed through a picture that represents the type of gesture
(i.e., pointing or swiping from right to left). The scenario of this snapshot is
that the user wants to add a new participant in the participants list of the new
meeting. But the user does a mistake in the name of the participant. To erase
the wrong name, the user swipes from right to left the participant’s name.
We can observe that the gesture understood by the system is the correct one
as shown in the dedicated box in Figure 11.14.

More
Here is what | understood : .
Movement understood: {3

Feedbacks \ Meetings |

Q@ Gesture commands are enabled TJ

Gesture commands are now possible.
Pay attention to stay in the range of the hand-tracking device to be sure to have all your commands being understood by the application

() Voice commands are activated W

Voice commands are now possible. Good ca Create New Meeting vill be displayed in red.
Some commands are said to be "two round

(that is a command thay needs two voice in Meeting Title |Meeting

Meeting time limitation(set O for no limit) [0 <[: |0 +|

Participants
[Add]
Benoit &
Cancel| Start
Create New Meeting

Figure 11.14: Snapshot of the smart meetings system where users use a swipe
movement (from right to left) to erase the content of a textfield.

11.5 Smart city guide

The FBCOP approach has also been used to model a smart city guide in the
work of Cardozo and Mens [CM22].

In this section, we will describe what is a smart city guide for the authors
and then describe their context-feature model.

This demonstrates again the feasability to design one more dynamically
adaptive software system with FBCOP.

Description

A smart city guide is an application that offers guided tours of points of inter-
est (POIs) that allow users to discover the beauty and history of a city. Users
can choose between two different tours: a guided city tour or a free tour. The

194 Chapter 11. Validating FBCOP’s expressiveness

guided city tour suggests different circuits stored in the system. The free tour
allows users to walk around the city. However, the free tour indicates when
certain interesting POIs are close to the users and can guide them to reach
these POlIs.

In addition to the selection of POIs by users, the application is smart in
that it adapts its behaviour according to the users’ preferences and the envi-
ronment in which the application runs. For example, POIs can be different
depending on the time of day in the guided tour (taking into account their
opening hours). The time of day can also change the figures of the POlIs.
Navigation depends on the type of tour and whether a compass or GPS is
activated. Finally the users’ preferences and users’ age can also adapt the in-
formation that is displayed for the different POIs. More contexts and features
will be discuted in the context-feature model.

Context-feature model

After giving a rough idea of what their application could offer, we will analyse
their context-feature model [CM22], shown in Figure 11.15. As illustrated
everywhere in this dissertation, the context model is on the left part of the
figure and the feature model is on the right part of it.

Users may choose a GuidedTour or FreeTour. Depending on the Memo-
ryLevel of the device, the Itineraries could be different. More the memory
level is High (resp. Low), more the itineraries are large (resp. small) and/or
contain more (resp. less) information.

The POIs information can display in English or French according to the
preferred user’s language or the language of the current country. Further-
more the description of each POI can be simplified for Children or complexi-
fied for Adults. Another context that can adapt POIs is the TimeOfDay. Dur-
ing the Day (resp. Night), all figures are daytime (nighttime) pictures. For
that, the authors define a feature DownloadStrategy that will chosen the right
pictures according the TimeOfDay.

The DownloadStrategy feature is also used to load additional information
for POIs when a Wi-Fi connection is sensed.

Depending on some peripherals, the navigation is also adapted. For ex-
ample, when a Compass is activated, the application displays a Map for users
and if the GPSAntenna is activated, users can follow the provided Directions.

Finally the BatteryLevel can also have an impact on the displayed infor-
mation, the Navigation, and the DownloadStrategy. More the BatteryLevel is
High (Less), more (resp. less) options are available for users.

195

11.5. Smart city guide

7

f

TN

-

sajenRoY, Sojenoy

xo|dwo: adwig (4 xajdwo! d | s
I) lauis I 0 dlauWIS | -
NL

sejentoy

75 To:&u; 7 sIbug 7 ——
/]

/i unpy
ool

brenjoy.

o |

‘_:o._.wm‘_m:So._.uou_soi 7] : wm:omwﬁO:

uopeoysseln : uonduoseqlod 7

\

— |

7 AKeidsialod 7

ssienoy.

sepenoy

S00UBIBRI4IOSN

\ ReqjoowiL 7

A
E 7 BerenigpeOjUMOQ
0 X

)

salnjeaq

|epow ainjeay

SpenoY.

N -
A -
—
serenoY:)(

srenoy.

uoneolddy

apinnAuopews

|epow 1xaju0)

Taken

Context-feature model of the smart city guide.

Figure 11.15

from [CM22].

196 Chapter 11. Validating FBCOP’s expressiveness

11.6 Conclusion

In this chapter, we validated the expressiveness of the FBCOP approach with
five case studies: two variants of a smart messaging system, a smart risk infor-
mation system, a smart meetings system and a smart city guide. Each of these
case studies was conceived either by us or by others.

Through this validation, we can conclude that FBCOP has an interest-
ing expressiveness to create high dynamic adaptive software systems, and
in particular context-oriented applications. Indeed, all the five case studies
show that designers can model their context-oriented applications with the
expressiveness of the FBCOP modelling. Three case studies, both smart mes-
saging system and the smart meetings system, demonstrate that programmers
can implement their context-oriented applications with the expressiveness of
the FBCOP programming framework. Three case studies show that the sup-
porting development methodology of FBCOP is enough expressive to analyse
the requirements, design and implement context-oriented applications. Even
if we only detailed once this development methodology in this validation, the
two case studies developed by our master-level students (i.e., the second vari-
ant of a smart messaging system and the smart meetings system) claimed that
they followed it to create their prototypes.

Although the expressiveness of FBCOP is therefore sufficient for design-
ing and implementing systems, we could improve some parts of its expres-
siveness, such as the mapping model, keywords in the programming language
for feature definitions, and more, as discussed in Section 14.1.

CHAPTER

12
VALIDATING FBCOP’S DESIGN

Previously we validated FBCOP’s expressiveness through five case studies.
Now we will examine the design of our approach. First we will discuss the
design qualities of our programming framework to demonstrate if its imple-
mentation is maintainable, extensible, adaptable, readable and scalable. Then
we will position the programming framework based on the cognitive dimen-
sions of notations framework [GP96; Bla+01] in order to assess its usability.
This allows us to present our point of view on its usability before evaluating
it with real users.

12.1 Design qualities

In this section, we demonstrate that the implementation of our programming
framework is maintainable, extensible, adaptable and readable. Then we ex-
plain why we think it may not be scalable to very large and complex case
studies.

Maintainability We consider that our implementation is maintainable for
the following reasons.

First we emphasise the modularity of our implementation. Indeed we di-
vided the implementation of our programming framework into four separate
parts (ENTITIES, MODELLING, ARCHITECTURE and TOOLSUPPORT) to decrease
the coupling between them (i.e., the entities, modelling, control flow and tool-

197

198 Chapter 12. Validating FBCOP’s design

ing support). For example, the ARCHITECTURE part is not directly connected
to the MODELLING part. When a component of the ARCHITECTURE part wants
to update or query the context and feature model, it sends a message to the
model in the ENTITIES part, that delegates itself the message to the Mop-
ELLING part. Then the result is returned first to the ENTITIES part, that returns
it to the component of the ARCHITECTURE part.

We also increased the cohesion of each concern with this separation. In-
deed, all the entities (contexts, features and mapping), the declarations and
definitions of the different models are in a same part (ENTITIES). All the
needed framework classes to create a generic feature model are also imple-
mented in a separate part (MODELLING). Finally, all the components of the
control flow have their dedicated part (ARCHITECTURE) and all the framework
classes for the communication between the implementation framework and
the different supporting tools compose their own part (TOoOLSUPPORT).

For the ENTITIES part, we also separated the model declaration from the
model definition to better ease the understandability of what (context and
feature) model is provided by FBCOP’s programmers and used by the system.

For the ARCHITECTURE part, each component is implemented in its own
folder. To get a more maintainable code, we also separate the core logic of
each component from its proxy or bridge that only sends relevant information
to the dedicated supporting tool.

In addition we used several other concepts and mechanisms to ensure a
good maintainability in our implementation such as inheritance, polymor-
phism, and design patterns (of which the proxy and bridge mentioned above
are but one example).

We used the concept of inheritance to implement the different relations
between the contexts and features in the context and feature model. Another
example of the use of inheritance is the implementation of an abstraction of
the similar state and behaviour of contexts and features.

As for design patterns, we used the singleton design pattern for the frame-
work classes that require exactly one instance, the strategy design pattern to
implement the satisfiability algorithm (in order to be able to allow for mul-
tiple variant implementations of that algorithm), the proxy or bridge design
pattern to send relevant information from the implementation architecture to
the supporting tools, and more.

Extensibility Our programming framework is also extensible.

In addition to provide a programming framework that programmers must
specify and use in the creation of their models, they could also extend the
behaviour of the framework classes depending on their needs. For example,
they could add more relations (i.e., constraints or dependencies) in the context
and feature model as suggested by Cardozo et al. [Car+15] or implement a

12.1. Design qualities 199

new satisfiability strategy based on SAT(isfiability) solvers [Bat05].

Furthermore, they could also extend the TooLSUPPORT part of the envi-
ronment by adding for additional external tools to assist either programmers
or end-users. We already demonstrated its feasability for the programmers
with our two different visualisation tools and the CONTEXT SIMULATOR tool.
Some master-level students also extended this part to add new tools, dedi-
cated for end-users, as discussed in Section 10.3.

Finally, with minor changes, programmers can also extend the other com-
ponents of the programming framework such as the CONTEXT ACTIVATION
component or others.

Adaptability Our approach is adaptable by definition since it allows to
modify the application behaviour at runtime depending on the surrounding
environment. The behaviour of FBCOP applications is by purpose adaptable
so that the different application classes are adapted according to the features
that must be active for a particular situation. Moreover, nothing prevents
even the framework classes to be adapted by features depending on some
particular situations. But for that programmers have to implement a partic-
ular feature for the framework class and precise what contexts trigger this
feature. For example, assume programmers want a different logging system
according to the current mode (e.g., development, testing and production) in
which they are. For that, they must implement the different contexts, fea-
tures, mapping and which framework classes are adapted by these features.
Then, once the application is launched, they can precise in which mode they
are, and the framework classes are refined to adapt the logging system.

Readability We also consider that our implementation is readable for fu-
ture programmers that want to extend our approach. To guarantee the read-
ability of our code, we did our best to divide all the code into small methods,
where each method is responsible of one small and single task. In addition
we named our methods by giving them an intention-revealing name to de-
scribe their real intention. The modularity explained above could reduce the
readability of our code somewhat. But, as we used clear names for the in-
stance variables, the local variables, the methods and the framework classes,
we consider that the modularity does not decrease the readability of our im-
plementation. We also drew the different class diagrams to support program-
mers in their reading. Finally we implemented many design patterns which
also increases the readability of our code for programmers who know these
patterns. Nonetheless metaprogramming may reduce the readability of the
code due to its high level of abstraction. Nevertheless, this cannot be avoided
as it is a need to perform some operations (e.g., adding or removing a new
method in an application class).

200 Chapter 12. Validating FBCOP’s design

Scalability Our approach is certainly viable for small applications that have
tens of contexts and features, as proven by our case studies.

However it may not be scalable for industrial case studies with much
larger and more complex context-feature models.

A first reason for this is the satisfiability strategy we used. With our
depth-first search strategy we must traverse the entire model in the worst-
case, even for small changes in the configuration. For that we think that our
approach is less scalable than others with better optimisations. But this prob-
lem could perhaps be solved, at least partly, by implementing a more efficient
satisfiability solver.

Another problem with scalability is that it becomes tedious to implement
large and complex applications due to the number of application classes and
features that programmers must create. Nevertheless it would be a problem
anyway regardless of the approach.

Finally a last problem is the scalability of the visualisation tools. Their
visualisations were not designed to display so many entities. Alternative vi-
sualisation should be thought of to scale up to industrial-sized systems.

12.2 Cognitive dimensions framework

Now that we have explained the design qualities of our programming frame-
work, we will debate its usability from a programmers’ perspective accord-
ing to the cognitive dimensions of notations framework [GP96; Bla+01]. For
that we will discuss the following cognitive dimensions: viscosity, visibil-
ity, premature commitment, hidden dependencies, role-expressiveness, error-
proneness, abstraction, secondary notation, closeness of mapping, consis-
tency, diffuseness, hard mental operations, provisionality and progressive
evaluation.

Viscosity The viscosity of a system is the resistance to refactor an imple-
mentation for changes. In other words, the more viscous a system is, the more
changes must be made to add, remove or modify a functionality.

The viscosity in FBCOP is intrinsically related to the type of changes that
FBCOP programmers must perform.

For example, to add or remove a context, update a constraint or move
a context in the context model, programmers only have to update the con-
text model declaration. While for renaming a context they have to propagate
changes in the context and mapping model declarations.

To add or remove a feature, they must modify the feature model declara-
tion and also implement or delete its feature definition. Updating a feature
depends on the kind of change that a programmer wants to make. For refac-
toring a constraint in the feature model or moving a feature in the feature

12.2. Cognitive dimensions framework 201

model, only the feature model declaration should be updated. If the modi-
fication is about the feature definition (i.e., the source code of the feature),
programmers should update its definition. Renaming a feature declaration
means programmers must update the feature and mapping model declara-
tions. Renaming a feature definition or changing an application class adapted
by the feature means that they have to update the feature declaration and
feature definition.

For the application classes, adding a new application class implies that
programmers must create a new class. Then they must reference it when
declaring and defining the features that adapt this application class.

In addition to being able to easily refactor the code of FBCOP applications,
programmers do not have repetition in changes because of the clear separa-
tion of contexts and features. But some repetition could appear when they
implement the context and feature model declarations because these models
follow the same notation.

We thus conclude that our programming framework is not viscous since
the changes do not imply big changes.

Visibility Visibility is when the information or components are easily vis-
ible. For example, less the information is encapsulated, more the information
is visible.

In FBCOP, while the separation of contexts, features and application class-
es has some advantages (e.g., to ease the maintainability and evolution of the
source code), programmers may lose in visibility when some information is
spread over various components. For example, when programmers have to
inspect what application classes are adapted by what features in a particular
situation (i.e., a context), they must analyse the different entities (i.e., at least
the context, mapping and feature models). Another example is about the pro-
ceed mechanism for which they must inspect the different features parts that
compose the full behaviour of a functionality.

Despite this visibility reduction, our visualisation tools help programmers
to increase it. For example, to visualise what contexts have an impact on what
application classes, our two visualisation tools help programmers in this task.
For the chain of proceeds, programmers can use the FEATURE VISUALISER tool
to visually inspect this chain.

Therefore we conclude that the visibility of FBCOP is reduced due to its
clear and explicit separation between the different components, but the visu-
alisation tools partially address this issue.

Premature commitment Some decisions need to be made early on by de-
signers or programmers. This dimension is called premature commitment.

202 Chapter 12. Validating FBCOP’s design

In FBCOP, programmers must already think about the application classes
at the design step to know which application classes they need. Since they
have to take such decisions before the implementation step, we consider that a
case of premature commitment. Another example of premature commitment
is the activation order. Because many features refine features representing
the default behaviour, the activation order of the features is also important.
For example, a refinement cannot be installed before the default behaviour,
otherwise the system will raise an unexpected behaviour or error. Nonethe-
less these premature commitments are intrinsically related to the approach
and domain problem of conceiving such systems.

We thus conclude that FBCOP has some premature commitments, but
they are necessary to develop context-oriented applications.

Hidden dependencies Relevant dependencies between entities might be
hidden, such as for example class hierarchies that are too complex. But this
makes it more difficult to read and understand the application’s source code.

An example of such hidden dependencies in FBCOP is the chain of pro-
ceeds between the features to compose a functionality. But our visualisation
tools, and in particular the FEATURE VISUALISER tool, help programmers to
visualise these hidden dependencies since the different chain of calls are ex-
plicitly visualised in the FEATURE VISUALISER, even if it could be done at an
even more fine-grained level.

Role-expressiveness Assessing how programmers can easily infer the pur-
pose of an entity refers to the role-expressiveness dimension.

With the different concepts in FBCOP and building blocks (i.e., context,
feature, mapping, and application class) in the programming framework, pro-
grammers can easily infer the meaning and distinguish the role of each con-
cept. Nevertheless some keywords at the implementation level could be more
role-expressive, such as a feature definition or a feature part. These two con-
cepts are defined with a same keyword “module” (as defined in the Ruby pro-
gramming language) which may lead to some confusion.

We therefore conclude that FBCOP is mostly role-expressive, but could
still be improved.

Error-proneness Error-proneness is when the notation of a programming
language or framework may invite to errors. But the system can inform pro-
grammers about the problem as a preventive measure.

In FBCOP, designing context-feature models may lead to design errors.
Such design errors may arise from the complexity of previewing the com-
plete model before execution. But the CONTEXT AND FEATURE MODEL Visu-
ALISER tool allows to overview the complete model to assist designers and

12.2. Cognitive dimensions framework 203

programmers. Furthermore the test generation tool proposed by Martou et
al. [Mar+21] also helps to detect design errors or inconsistencies before im-
plementation.

Implementing the context and feature models may also invite errors due
to their repetitive structure. For example, when programmers have to declare
a context model, they must declare contexts and link them together to create
the model. But programmers may write more easily errors for large models
due to a lack of attention. Indeed, they might easily link a context to another
one while these contexts must not be linked together. Again, the CONTEXT
AND FEATURE MODEL VISUALISER also helps programmers to visualise their
model declaration to ensure their models are well-declared.

When implementing FBCOP systems, the context and feature interaction
problems may also lead to errors. An example of this problem is when two
different contexts trigger two different features that have incompatible be-
haviour. For example, assume in a home automation system a feature that
must trigger the sprinklers and another feature that turns off the main water
supply. In case of the activation of the two features, the sprinklers cannot
continue to extinguish a fire if the main water supply is turned off. Such
issues may arise from the high dynamicity of such systems because it is te-
dious to visualise all the interactions between the components and how the
system dynamically evolves. These errors are then instrinsically related to
the problem domain. But our visualisation tools may partially help to better
understand such errors.

Another kind of errors may also arise from the activation order if the
features are not installed in the right order. Indeed, if a feature is a refinement
of a default behaviour but the latter is deployed after the former, an error is
logically raised.

We conclude that FBCOP is error-prone, but our visualisation tools partly
help programmers to detect some errors.

Abstraction This dimension concerns the abstraction level that a program-
ming language or framework can have, through notations such as types, data
structures or more.

FBCOP has different abstractions for the contexts, features and applica-
tion classes and this is needed because the concepts are different by nature.
These abstractions allow programmers to better understand the different con-
cepts when they use them. Whereas too many abstractions may become hard
to understand and may confuse programmers, our abstractions are relatively
straightforward since they are intrinsically related to the approach and the
problem. Moreover we do not have too many abstractions which simplifies
its understandability.

204 Chapter 12. Validating FBCOP’s design

Therefore we consider our programming framework is abstract enough
without leading to confusion or difficulties.

Secondary notation This dimension discusses additional information that
programmers can provide to better understand what they are making. An
example of a secondary notation are comments in a programming language.

FBCOP has the lexicon and rationale of contexts, features and mapping
as secondary notations. These notations are useful to justify some design
choices that are made during the requirements and design phases. With that,
designers and programmers may understand more easily or remember the
design choices made for the project. Nonetheless these notations are not yet
integrated into the programming framework itself, which means that such
information is decoupled from the implementation. Therefore, it might be
interesting to extend the model declarations or add annotations in the feature
definitions to be able to explicitly document this information as part of the
code.

Another secondary notation available in FBCOP are the comments that
programmers can write to describe their source code. This notation is natu-
rally present in FBCOP since the programming framework is built on top of
the Ruby programming language that proposes such a feature.

We thus conclude that we could improve the secondary notation in FB-
COP to help programmers to better understand their code and remember their
design choices.

Closeness of mapping The closeness of mapping is a dimension to explain
how close the notations of the programming language are to the problem
domain.

The FBCOP notations are really close to the problem domain. We have
contexts that represent a particular situation and features that describe the
behaviour of the system. With these notations, we followed the same ideol-
ogy proposed by context-oriented programming, without forgetting that we
clearly separate both to get closer to the problem domain.

Consistency A notation is consistent when a same syntax is used for a
same semantics.

FBCOP propose a similar notation to ease the modelling and implemen-
tation of both the context and feature models.

We are thus consistent for the similar semantics in our approach.

Diffuseness The verbosity of a programming framework may also be eval-
uated with the cognitive dimensions of notations framework. This dimension
is called diffuseness.

12.2. Cognitive dimensions framework 205

FBCOP is somewhat verbose in the declaration of the context and feature
models, but also in the declarations and definitions of features. For example,
programmers have to express what application classes the feature must adapt
when declaring a feature and make explicit which application classes a fea-
ture part can adapt when defining it. Such a redundancy may be verbose for
programmers.

Hard mental operations The dimension about hard mental operations as-
sesses which user actions may be cognitively complex to perform.

We observe mostly two complex tasks in FBCOP.

The first one is about the development of such high dynamic systems.
It may be tedious for programmers to overview all the different interactions
between all the concepts.

The other one is related to the proceed mechanism and its chains of calls.
Indeed programmers must do cognitive effort to visualise the different chains
of proceed calls and in the right order. It is not straightforward to keep in mind
how a functionality is composed through the different feature parts because
they are split in fine-grained features to obtain a better maintainability and
reusability.

Nevertheless both of these hard mental operations are intrinsically re-
lated to the problem of conceiving such context-oriented applications. Fur-
thermore, programmers may rely on our visualisation tools to help them for
these complex tasks.

Provisionality It is sometimes useful to make premature commitments to
move ahead with the conception of applications. This is called provisionality.

FBCOP developers must foresee some design choices at the modelling
level that will have an impact at the implementation level. Indeed they must
think up front what contexts trigger what features, in what order and for
what application classes.

We thus conclude that some premature commitments must be provisioned
in FBCOP to move ahead with the project.

Progressive evaluation This dimension assesses to what extent the de-
signers and programmers may evaluate their progress at any moment when
using an approach, a programming framework or language.

In FBCOP, designers and programmers can progressively evaluate their
progress if they follow the incremental and iterative methodology we pro-
posed (see Subsection 3.3.5) to get frequent releases of their application.

Based on this cognitive dimensions of notations framework, we can con-
clude that our approach and programming framework seems usable with the

206 Chapter 12. Validating FBCOP’s design

help of our visualisation tools. Some dimensions are good or excellent in our
approach, such as the viscosity, role-expressiveness, abstraction, closeness of
mapping, and consistency. The dimension of progressive evaluation is neutral
since this depends on the methodology that designers and programmers will
follow for their conception. Other dimensions are lesser but our supporting
visualisation tools partially help programmers in their actions. These dimen-
sions are the visibility, hidden dependencies, error-proneness and hard mental
operations. Some dimensions could be improved such as the visibility, role-
expressiveness, error-proneness, secondary notation, and diffuseness. Finally
other dimensions may be problematic such as the premature commitment,
hard mental operations and provisionality. But these last dimensions are in-
trinsically related to the problem of conceiving context-oriented systems that
are highly dynamic.

12.3 Conclusion

In this chapter we discussed which design qualities our implementation of the
programming framework has. We can conclude that our implementation is
maintainable, extensible, adaptable and readable. However it is not yet fully
scalable.

Then we evaluated the usability of our programming framework follow-
ing the cognitive dimensions of notations framework. We can say that our
programming framework is usable with the help of our visualisation tools
based on the different dimensions. However some dimensions could be en-
hanced to make life easier for programmers and yet other dimensions are
complex but this complexity is intrinsically related to the problem of devel-
oping context-oriented applications. However, even if we consider our pro-
gramming framework as usable, we need to evaluate its usability with real
users, and this will be the purpose of the next chapter.

CHAPTER

13

VALIDATING THE FBCOP
APPROACH WITH USERS

The previous chapter reviewed the design qualities of the implementation of
our programming framework and the usability of our approach through the
cognitive dimensions of notations framework. However our own apprecia-
tion of its usability and the overall approach is not necessary the same as that
of real users. (Even if we are also real users of our approach, we are mainly the
developers of the FBCOP approach.) So, besides the various technical chal-
lenges we had to confront when creating a new approach, there are also the
challenges that users of the approach have to face, such as its learning com-
plexity, its comprehensibility, its usefulness and its usability. Having a rich
and powerful approach is really interesting, but if users cannot understand
and cannot use it, this new approach will be never used. Therefore, in this
chapter, we will assess the FBCOP approach with real designers and program-
mers in order to evaluate its usefulness and usability. For that we conducted
four user studies over the years.

We first evaluated our two visualisation tools as preliminary user studies
in order to get a first indication on how programmers may perceive FBCOP
through these visualisation tools and whether these tools help them in un-
derstanding FBCOP. The first preliminary study concerns the FEATURE Visu-
ALISER (Section 13.2) and the second preliminary study is of the CONTEXT AND
FEATURE MODEL VISUALISER (Section 13.3). Analysing these preliminary user

207

208 Chapter 13. Validating the FBCOP approach with users

studies on the visualisation tools, we observed that FBCOP seems interesting
and understandable for users. However, in these two first user studies, we
did not evaluate the complete FBCOP approach we have built, i.e., we did not
assess whether the modelling and programming framework are useful and
usable for users designing and implementing FBCOP applications, nor did we
evaluate the supporting development methodology and visualisation tools
in detail that we suggest to help them when conceiving such applications.
Therefore we conducted a first complete user study (Section 13.4) with par-
ticipants to evaluate whether our complete approach was useful and usable
for real designers and programmers. To confirm or not and to better under-
stand the strengths and weaknesses of our approach, we conducted another
complete user study (Section 13.5) the following year with another group of
participants. In this last complete user study, we updated the previous user
study to gather more feedback by asking them to justify their answers and
simplify some parts of the questionnaires to avoid they had to face an over-
load of work.

In this chapter, we will first present the setup we followed for all the user
studies (Section 13.1). Next, for each user study, we will follow the same
structure: we will first introduce the user study, followed by a description of
the user study itself we conducted with the participants, then we will show
the raw results we gathered and we will finally discuss them and conclude
with the lessons we have learnt with the user study.

13.1 Setup for all user studies

Each user study was conducted with master-level students in computer sci-
ence and engineering enrolled in a software engineering course. Since the
participants were students enrolled in a course, we explicitly and repeatedly
clarified that this user study was not taken into account for their course eval-
uation but only dedicated to research. Furthermore, the studies were com-
pletely anonymous to limit potential bias.

For each user study we performed, the full list of questions and responses
of our (pairs of) participants are available on this accompanying repository
https://github.com/bduhoux/PhDThesisUserStudiesData.

13.2 Preliminary user study of the FEATURE VISUALISER

This section presents a first qualitative study of the FEATURE VISUALISER tool
that supports developers to visually inspect the dynamics of the FBCOP appli-
cation they develop. The goal of this evaluation was to gather feedback from
potential developers on the tool’s overall understandability and relevance, as
well as feedback for further improvement.

https://github.com/bduhoux/PhDThesisUserStudiesData

13.2. Preliminary study of the FEATURE VISUALISER 209

We presented it to a set of master-level students with significant program-
ming experience and collected their feedback using a questionnaire. In the re-
mainder of this section, we will start by describing the user study itself, then
will present the raw results of this study before analysing and interpreting
these results. Finally we will conclude this preliminary study of the FEATURE
VISUALISER tool.

User study

The participants of this study carried out in 2018 were 25 master-level stu-
dents aged between 21 and 27 years old. During a two-hour classroom ses-
sion, the students were asked to play the role of a potential developer using
our programming approach and tool.

The user study was conducted as follows. We first provided a set of ques-
tions to gather information on the participants’ software development skills.
After this first set of questions, we briefly explained the idea of FBCOP and
introduced the case study of a risk information system.

We then explained and illustrated the dynamic feature adaptation of our
approach when their contexts get activated using a small scenario taken from
the case study. In this scenario, we assumed an earthquake was detected and
that the authorities announced its severity and its location (i.e., its epicenter
and radius). For this scenario, we showed the program code and its execution
but not yet the visualisation tool. This was to avoid a bias in the understand-
ing of our approach and in the perception of the visualisation tool before
assessing it.

We then extended this scenario into a didactic scenario to assess the un-
derstandability of our programming approach. In this extended scenario, be-
fore setting the severity and location of the earthquake, we assume that an
adult end user wants to consult information on what to do in case of an earth-
quake. For this second scenario, we again showed the code but not the visu-
alisation tool. The participants had to answer some questions regarding the
expected behavior of this scenario. After having answered these questions,
we explained and showed them the results of the second scenario. The main
purpose of this scenario was to ensure that the participants had a good com-
prehension of the underlying language approach, before showing them the
visualisation tool.

Once the participants had understood the second scenario, finally we pre-
sented the FEATURE VISUALISER tool and ran the two first scenarios again, but
now with the visualisation tool running.

We then applied the FEATURE VISUALISER tool to a more realistic third
scenario. In this scenario, the user was a child and the scenario involved a
generic instruction followed by an early earthquake warning. Messages were

210 Chapter 13. Validating the FBCOP approach with users

tailored to different age populations, including children. For this scenario,
we asked the same set of questions as for the second scenario, but now the
participants could see not only the program code but also the visualisation
rendered by the tool. The main purpose of this scenario was to crash test the
participants’ ability to understand more complex programs built using our
approach, thanks to the visualisation support.

After having assessed their understanding of the approach using each of
these three scenarios, finally we asked the participants for their feedback on
our tool via a questionnaire. Participants were to rate the dynamic repre-
sentation, usability, usefulness for program understanding and usefulness for
debugging purposes of the visualisation tool on five-level Likert scales. Two
optional open-ended questions allowed participants to leave additional feed-

back if needed.

Raw results

Our questionnaire was composed of five sections: an introductory page, ques-
tions about the participants’ background knowledge, questions about the sce-
nario without use of the visualisation tool, with use of it, and finally feedback
on the tool.

Divergent stacked bars All closed questions were phrased in such a way
that the participants could answer whether they agreed or not on a five-level
Likert scale (ranging from “strongly disagree” to “strongly agree”, or syn-
onyms). We followed this approach for all the closed questions in the different
surveys we gave to the participants throughout all our user studies. In order
to easily see a tendency in the participants responses to these questions, we
summarise them using divergent stacked bar charts, such as depicted for ex-
ample in Figure 13.1. In addition to showing the frequency of each possible
response to a question, as opposed to traditional stacked bar charts, divergent
stacked bars position the replies horizontally. Negative responses are stacked
to the left of a vertical baseline and coloured red (dark red for ‘strongly dis-
agree’, pale red for ‘disagree’). Positive responses are stacked to the right of
the vertical baseline and coloured blue (dark blue for ‘strongly agree’, pale
blue for ‘agree’). Neutral responses are wrapped symmetrically around the
vertical baseline and coloured grey.

Participants’ background Figure 13.1 summarises the answers regard-
ing the participants’ background knowledge. For each question, participants
were to state their skill on a five-level Likert scale (from “non-expert” status to
“expert” status). All 25 participants responded to each of these questions. We
can see that our participants had some skills in programming in general (44%

13.2. Preliminary study of the FEATURE VISUALISER 211

with positive values against 4% of negative answers.) and were really confi-
dent with object-oriented programming (80% of positive values and 0 negative
answer). Despite these skills, they were not at all comfortable with the Ruby
programming language (80% of negative values) and not really with feature
modelling (56% of negative values against 12% of positive ones).

Programming in general 1 13 10 I

Object-oriented programming

Ruby programming language _ 2

Feature Modelling I 13

20

Questions

3

) T T T T T T T T 1
-100-80 -60 -40 -20 20 40 60 80 100
Responses (percentage)

ot ® - & - & -

Figure 13.1: Divergent stacked bar presenting the background of our 25 par-
ticipants. For each question we indicate the absolute frequency of each an-
swer textually.

Participants’ comprehension Figure 13.2 collects the results of the 25
participants’ comprehension of our FBCOP approach, based on the simpler
second scenario without access to the visualisation tool yet. For this didactic
scenario, we asked three open-ended questions, which focussed on whether
the participants understood which features were activated (Figure 13.2a) and
in which order (Figure 13.2b), as well as if they could ascertain the execu-
tion of the program at a given point (Figure 13.2c). We evaluated and divided
the participants’ answers in four categories: incorrect answers (Fail), many
inaccuracies because of missing information (Many), mostly correct answers
with some errors only (Some) and completely correct answers (Success). Par-
ticipants who did not answer at all were considered as having given an incor-
rect answer. We can see that many of them understood well what features are
active (76% of them succeeded or made some errors only) for this didactic sce-
nario. A similar tendency (68%) is true for the activation order and expected
execution questions. Going further by correlating the different answers, we
observed that 12 participants succeeded or made only some errors for the
three questions while 7 participants failed or made many errors in one of the
three questions.

Figure 13.3 then collects the results of the participants’ comprehension,
but now with use of the visualisation tool, based on the more complex third
scenario. The same three open-ended questions were asked as for the sim-
pler second scenario, to assess whether the visualisation helped participants
to understand what is going on, thanks to the visualisation, on a realistic sce-

212 Chapter 13. Validating the FBCOP approach with users

Fail

Fail
Fail

8
6
4
2
lff olff
5
2
5

Many
Some-
Success:
Many
Some
Some.

=

Success:
Success:

(a) Active features (b) Order of activation (c) Expected execution

Figure 13.2: Participants’ comprehension of the FBCOP approach on a didac-
tic scenario, without use of the FEATURE VISUALISER tool. The graph depicts
how well our 25 participants answered the comprehension questions asked:
failure, many errors, only some errors or success.

nario. For this harder exercise, we can see that only 60% (counting only the
blue bars) answered correcly for the question “which features are currently ac-
tivated?”. While for the other questions, the results were worse: 64% failed or
made many errors wen they had to predict the activation order of the features
and 88% gave wrong answers for the expected execution. All participants for
this exercise failed or made many errors for at least one of the three questions.

6 6 6
4 4 4
2 2 2
0

Fail
Many
Some
Fail
Many
Some-|
Fail
Many-|
Some

o
Success -
-

Success
Success-{

(a) Active features (b) Order of activation (c) Expected execution

Figure 13.3: Participants’ comprehension of the FBCOP approach on a more
complex and more realistic scenario, with use of the FEATURE VISUALISER
tool. The graph depicts how well our 25 participants answered the compre-
hension questions asked: failure, many errors, only some errors or success.

Participants’ feedback Finally, Figure 13.4 summarises the participants’
feedback on our tool. This was evaluated through four questions assessing
the tool’s dynamic representation of feature (de)activation, whether the visu-
alisation could help to understand or help to debug a program, and its ease of

13.2. Preliminary study of the FEATURE VISUALISER 213

use. In their answers we can see that they (80% with only positive values)
appreciated the dynamic representation of the (de)activation of the features.
They also considered that this tool helped them to understand our proposed
programming approach (80% taking only positive values). 68% (with only pos-
itive values) believed that the tool could be valuable for debugging purposes
(help to debug). 72% (taking only positive values) of all also claimed that our
tool were easy to use.

Dynamic representation 1 4 13 -
1
)
5 Help to understand 5 10 -
z .
3
3 Help to debug 1 7 15 I
o 1
Easy to use 7 13 -
T T T T T T T T T T 1
—-100-80 -60 -40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.4: Divergent stacked bar presenting the participants’ feedback on
the FEATURE VISUALISER tool.

Two additional open questions were asked regarding what functionalities
offered by the visualisation tool could or should be improved in order to en-
hance a developer’s experience with our programming approach. In the next
subsection we provide a detailed analysis of the raw results and the partici-
pants’ responses to all other questions.

Discussion

Although the participants of our study were students, they were master stu-
dents in computer science and computer science engineering, following a
study program with a strong emphasis on programming skills. Despite they
had been exposed to a variety of programming languages of which the most
important are Java, C and Python, they had some difficulties with Ruby. This
could be explained by the fact that they were not familiar with its syntax.
At first glance, from Figure 13.4 we could derive that the FEATURE Visu-
ALISER tool is rather comprehensible and useful for developers of our novel
programming approach. The lower value for debugging is likely due to the
fact that none of our scenarios included a debugging activity. Since our vi-
sualisation tool is only a first prototype, we were quite satisfied with this
perceived positive feedback. In the responses to the open questions, we also
received some suggestions and constructive feedback to further improve the
relevance and usability of the tool for developers. They suggested us to im-
prove the FEATURE VISUALISER tool by adding some filters to display only

214 Chapter 13. Validating the FBCOP approach with users

some specific behaviour or only a specific feature. Another request was the
addition of a ‘back’ button to enable to rollback the visualisation without re-
launching the tool to inspect what was happening previously. Finally they
also proposed to improve the automatic layout algorithm to get a smoother
visual experience.

Nevertheless this positive feedback is mitigated strongly by the more neg-
ative results of Figure 13.3, which seems to show that the participants still had
a hard time understanding the approach even when using the visualisation
tool. In fact, the results were even more negative than without using the visu-
alisation tool. It should not be forgotten, however, that the third scenario was
significantly more complex than the second one, which was of more didactic
of nature and contained only a very limited amount of features. The results
of Figure 13.3 can and should thus not be compared directly with the results
of Figure 13.2. Where the purpose of the second scenario was just to have
a kind of ‘green light’ check to verify that the participants understood the
approach before showing them the visualisation tool, the third scenario was
deliberately made more complex to have a more realistic scenario in which
the visualisation would show its real value. In that sense we are content that
the more negative results of Figure 13.3 seem to be compensated by the more
positive results of Figure 13.4, where the participants do confirm they believe
in the value of such a visualisation tool, even though this feedback was given
after their more negative experience with scenario 3.

Conclusion

This user study to assess the FEATURE VISUALISER tool was conducted with
the help of 25 participants.

Based on the Ledo et al’s work [Led+18], we assessed our visualisation
tool with the following evaluation strategies: demonstration and usage. Our
demonstration strategy relied on a risk information system as example to illus-
trate the FBCOP approach and visualisation tool. In addition we also used the
‘how to’ scenarios technique to explicit the different steps of our visualisation
tool. We also conducted a small usability study with a Likert scale question-
naire. To be sure they understood how they could use the visualisation tool,
we also did a walkthrough demonstration to explain its functionalities.

We conclude that the FEATURE VISUALISER tool has at least the potential to
help developers better understanding and debugging programs written in our
FBCOP approach. However such a user study was insufficient to really assess
the real usability and usefulness of our visualisation tool. Indeed such a tool
should have been used more deeply by participants, for example by asking
them to really implement and debug a full context-oriented application with
our tool. But for that we should have taken more time to better explain our

13.3. Preliminary study of the CONTEXT AND FEATURE MODEL VISUALISER 215

FBCOP approach and then trained them more extensively before conducting
this user study. Therefore, even if some of the preliminary results have a
positive tendency, we need to confirm it by conducting another more complex
user study.

13.3 Preliminary user study of the CONTEXT AND FEATURE
MODEL VISUALISER

After the previous preliminary user study of the FEATURE VISUALISER tool, we
also conducted preliminary user study to get an initial insight in the usability
and usefulness of our CONTEXT AND FEATURE MODEL VISUALISER tool.

This user study was carried out in 2019 with all new participants. The
subjects of our study were 34 master-level students, aged 20 to 27 years old.
To evaluate this second visualisation tool, we asked them to play the role of
programmers working on a FBCOP system.

As we felt that we did not take enough time to introduce the different
underlying technologies in the past, we organised two preparatory sessions
of two hours each to initiate and train our participants to Ruby and our FBCOP
approach, respectively. Then we started the user study itself.

In the remainder of this section, we first describe the user study itself,
present the raw results we gathered through the study, discuss the results
and conclude this study.

User study

We performed the user study during a two-hour session where the students
were asked to assess the usability and usefulness of our CONTEXT AND FEa-
TURE MODEL VISUALISER tool. Participants were first asked to report some in-
formation about themselves: their age, general background in programming,
knowledge of object-oriented programming, context-oriented programming
and so on.

Then we asked them to perform two tasks during a 25-minute time slot.
These tasks aimed to extend the earthquake-specific variant of the risk infor-
mation system (see previous user study) with a new kind of risk and emer-
gency: that of floods. Task I concerned the characteristics of a flood. In this
task, they had to implement some fine-grained features. Task 2 was about
implementing the flood-specific instructions (either static or dynamic) that
citizens must follow before, during or after a flood.

We split the programmers in two separate groups (A and B) to perform
their first assigned task. Group A had to start implementing Task 1 whereas
group B had to develop Task 2. During their first task, they were not allowed to
use the visualisation tool. Afterwards they were asked to answer three ques-

216 Chapter 13. Validating the FBCOP approach with users

tions about the task they performed, to verify if they understood well what
was asked of them. The questions for both tasks have the same structure, i.e.,
introducing a scenario followed by a question. Through these questions we
evaluated whether they could list the contexts that are currently activated,
the features that are triggered (i.e., selected) and the features that are cur-
rently activated. While the first question about what contexts are activated
suggested a different scenario, the two other questions followed the same sce-
nario. For example for the Task 1, the questions are the following: “Assume a
citizen wants to consult instructions about an earthquake risk (when no earth-
quake is currently occurring), can you tell us which context(s) is(are) active at
that moment?”, “When the government announces the occurrence of a flood, it
will inform the citizens about its characteristics (i.e. its severity and impacted
zone). Can you indicate which feature(s) will be selected thanks to the context-
feature mapping?” and “When a citizen launches the application, it detects that
a new flood is active and receives information about this flood. This information
describes that the severity is medium and its impacted zone is near the river.
The system informs the citizen about the characteristics of the flood. Can you
indicate all features in the feature diagram that are currently active?”.

Next, they received a quick introduction to the CONTEXT AND FEATURE
MoDEL VISUALISER tool as a preparation for their second task. To train them
we asked them to answer the three same questions for the same task but with
the visualisation tool now.

Then we switched the tasks for this second exercise. Group A now had to
develop Task 2 while group B had to implement Task 1. Again, both groups
received at most 25 minutes to finish this task and then had to answer two
new questions to verify their understanding of the task. These questions are
the same questions we asked to the other group for their first assigned task.
However we focussed only on the questions about what features are selected
and which features are currently activated.

Finally, all subjects were asked to answer some questions regarding how
they perceived the usability and usefulness of the visualisation tool.

Raw results

We now present the results of this user study. Figure 13.5 illustrates the back-
ground knowledge of our participants at the start of our user study. For each
of these questions, they had to assess their skills on a five-level Likert scale
(From “no expertise” to “expert”). Despite only 33 participants (of 34) an-
swered to this part of the survey, we can clearly see that our participants
had a good background in programming in general (almost 50% of positive
responses) and in object-oriented programming (~55% of positive answers).
However they (~94% of negative values) did not consider to be expert in the

13.3. Preliminary study of the CONTEXT AND FEATURE MODEL VISUALISER 217

Ruby programming language. They also were not confident about their skills
in feature modelling (~64% of negative answers versus ~12% of positive re-
sponses), context-oriented programming (~70% of negative values versus ~12%
of positive values) and in our FBCOP approach (~73% of negative answers
versus ~6% of positive responses).

Programming in general 5 12 13 l
1
Object-oriented programming 4 11 15 l
1
Ruby programming language _ 8 11

Questions

Feature modelling I 19 4

1
8
1
Context-oriented programming - 10 6 4
1
FBCOP - 15 72
] T T T 1

r T T T T T
-100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Figure 13.5: divergent stacked bar diagram summarising the results of our
closed questions about the background knowledge of our 33 participants.

To assess if they understood our approach, we asked them some ques-
tions. As opposed to the previous user study, we noticed that almost all of
them failed by comparing their responses with the correct ones. This is true
for the first exercise without using the tool, but also for the other questions
when they had to use our tool. Having observed these results still indicating a
lack of understanding of the complexity of the underlying FBCOP approach,
at this point we adapted the goals of the user study to only assess the usability
and usefulness of our CONTEXT AND FEATURE MODEL VISUALISER tool (and no
more on the underlying approach). For that we showed them our solution in-
cluding the implementation of the two tasks. Then we asked them to explore
and understand our solution with the tool. As such we tried to still get some
preliminary results about the CONTEXT AND FEATURE MODEL VISUALISER tool
and if it could help them to better understand our approach.

Their opinions about our visualisation tool are depicted in Figure 13.6. All
34 participants answered this part of the survey. We see that the static and
dynamic representations offered by the tool are understandable for our partic-
ipants (static representation: ~59% of positive values against ~20% of negative
values; dynamic representation: ~59% of positive values against ~26% of neg-
ative values). The five values ranged from “hard to understand” to “easy to
understand”. But they had a preference for the dynamic visualisation (~50%
counting the positive responses) over the static one (~21% counting the neg-
ative answers). When asked the following question “Does such a visualisation

218 Chapter 13. Validating the FBCOP approach with users

tool help you to better understand such an approach when you develop context-
aware programs?”, a positive tendency (~56% of positive values) was emerging
(against ~15% of negative values). Finally the feelings were more mixed about
the ease of use of our CONTEXT AND FEATURE MODEL VISUALISER tool. While
~38% found it easy to use, there were still ~26% that disagreed and ~35% that
had no opinion about that.

5

Static representation

Dynamic representation

Static vs. Dynamic . 3 10 10 -
Better understanding l2 10 13 -
Easy to use I 7

f T T T T 1 T
—-100-80 —-60 -40 -20 0 20 40 60 80 100
Responses (percentage)

\,
-0 -~
-
o

Questions

Figure 13.6: divergent stacked bar diagram presenting the results of our
closed questions about the usability and the usefulness of our visualisation
tool.

Discussion

Even if our participants had good knowledge of programming and object-
oriented programming in particular, they were not comfortable with more
dynamic approach such as context-oriented programming and feature-based
context-oriented programming. Their weak knowledge of the Ruby program-
ming language can be justified by the fact that only a few of the students had
prior experience (beyond what they saw in a two-hour preparatory session)
in Ruby. Despite we taught them the feature modelling notion during the
course, they were not confident with this modelling. This could be explained
by the complexity of this new modelling to which they are not yet accus-
tomed. In addition, as the lecture and exercises about feature modelling were
given at the beginning of the semester and the study was conducted at the
end of it, maybe they did not yet revise or revisit this notion yet. (The study
was carried out before the exam session where they had to study the material
in more depth.)

Regarding the fact that nearly all of them failed the questions to assess
their understanding of our approach, we can infer that our underlying ap-
proach was not well-understood yet. This problably stems from a poor prepar-
ing phase due to timing constraints. In addition to the missing time, our FB-

13.3. Preliminary study of the CONTEXT AND FEATURE MODEL VISUALISER 219

COP approach remains intrinsically complex. Such an approach with many
new notions (as the contexts, features, mapping and so on) can be heavy to
learn and probably too complex to get fully acquainted with in only a two-
hour session.

Nevertheless, despite the perceived difficulty of our approach, our partici-
pants did seem to be interested by how this visualisation tool could help them
understand our approach and how FBCOP applications are implemented. Fur-
thermore, they found the visualisation strategy interesting and liked its dy-
namic aspect. In the open-ended question about which functionality of the
tool was regarded as most useful, many participants answered that the ability
to replay Step-by-step changes dynamically was a strength of the tool and was
really useful.

However two weaknesses were raised as well. The first one is that it
missed a button to step back in the dynamic visualisation. The second is that
our current visualisation does not really scale well to support larger context
and feature models.

Finally the mixed results on the ease of use of our tool can probably be
explained by the high complexity of the underlying approach as well. Indeed,
assessing the usability of such a visualisation tool is intrinsically linked to
the understandability of the underlying programming approach. Therefore,
when they had to learn how to use our tool and our underlying approach
simultaneously, they could be a bit confused on its ease of use. The distinction
between ease of use of the underlying programming approach and ease of use
of the visualisation tool may have been hard to make in their minds.

Conclusion

To assess the usability and usefulness of our CONTEXT AND FEATURE MODEL
VISUALISER tool, 34 programmers participed to this user study

Similar to the previous user study, we used the same evaluation strategies
(i.e., demonstration and usage) to perform our user study [Led+18]. However
this user study did not go as planned. Therefore we provided our solution and
asked them to understand it to still provide their feelings about the visualisa-
tion tool. For this user study, they had to answer a Likert scale questionnaire.

Despite the clear complexity of our FBCOP approach, the participants in
this study did seem to agree that our visualisation tool can be useful for devel-
opers when learning our approach. However, as for the previous preliminary
user study which we conducted on our other visualisation tool, it is clear that
we should perform a more elaborate user evaluation in which the participants
will deeply use the visualisation tool in their implementation and debugging
tasks. However, when doing so we should put much more effort in teaching
and training our participants to better understand this new paradigm, before

220 Chapter 13. Validating the FBCOP approach with users

asking them to evaluate the visualisation or other tools that support it.

13.4 First complete user study

Despite the limited initial evaluations of both of our visualisation tools, we
considered they had not yet been sufficiently validated from a usability and
usefulness point of view. We came to the conclusion after these initial valida-
tions that the participants of our studies still needed a better understanding
of FBCOP as well as some specific clarifications on our approach. Indeed,
we observed that the results from these initial validations were not only in-
fluenced by the usability and usefulness of the tools, but also biased by the
participants’ core understanding (or lack thereof) of the underlying FBCOP
software development approach. Furthermore, in these initial studies both
tools were evaluated in isolation by different participants in different years.
Yet, we believe that both tools are complementary in the sense that each visu-
alisation completes the other one. Finally the focus of both initial studies was
solely on the visualisation tools, but we never validated our entire FBCOP
approach itself in the past.

Therefore we decided to conduct a first more complete user study with
master-level students, during a software engineering course in the year 2020.
As for the previous user studies, the participants played the role of FBCOP
designers and developers to create a context-oriented application with our
approach.

From 41 participants, a large majority (35 out of the 41 students) was aged
between 20 and 25 years old. The others were just a bit younger or older.

In the next subsections we will first describe the set-up of our user study.
Then we will present the gathered results before analysing and discussing
them. To conclude this section we will summarise this user study.

User study

Before starting to introduce any FBCOP concept, we collected the partici-
pants’ background to assess their prior design and modelling skills, how com-
fortable they are with object-oriented programming and who had already
heard about (feature-based) context-oriented programming before.

Next, regardless of their background, to avoid our participants having
insufficient understanding of the underlying FBCOP programming paradigm,
they received 27 hours of training (both theoretical lectures and hands-on
sessions) over several weeks. Contrary to the past user evaluations where
dedicated only a limited amount of time to teach our approach, for the current
study we entirely oriented the course around it. Table 13.1 summarises the

13.4. First complete user study 221

different topics we taught and how many hours were spent on each topic, for
both theory and practice sessions.

Table 13.1: Time spent to introduce background material to participants in
the user study of 2020.

Topic Theory Practice
Feature modelling 2 2
Introduction to COP and FBCOP 3 6
Programming in Ruby 2 4
Feature-based context-oriented programming 3 5
Total 10 17

For the entire user study (except the participants’ background question-
naire), we asked the participants to work in pairs, doing pair programming
to build the case study, but also when completing the questionnaires we gave
them. This allowed them to solve some of the problems they encountered by
themselves without us having to intervene and thus risk biasing the results.

Throughout this study several questionnaires were taken from our par-
ticipants to gather their feedback. We always ensured that all the notions
assessed in the questionnaire were previously presented and worked on to
guarantee that our participants had the minimal required background before
responding to the questionnaire.

As our approach relies on feature modelling, we first taught this mod-
elling approach and gave a practical session on it. Then we introduced the
context-oriented programming and FBCOP paradigms. We followed this lec-
ture with a quick questionnaire to assess whether our participants understood
well what is a context-oriented system, a context and a feature. We concluded
it by asking them to explain what is the difference between context-oriented
programming and FBCOP.

After this introduction, we organised a context-feature modelling work-
shop. In this workshop, they had to design two context-feature models for
two assigned case studies. For each model, they had to define and structure
the contexts, features and define the mapping between the contexts and fea-
tures.

For the first context-feature modelling exercise, we assigned a case study
and asked them to model it without any guidance, i.e., without our supporting
development methodology. Half of the pairs were asked to model a smart
calculator system while the other half were to model a smart messaging system.

For the second modelling exercise, they had to design the other case study
but following our development methodology which we presented to them be-

222 Chapter 13. Validating the FBCOP approach with users

fore asking to complete the exercise. To avoid bias because they already knew
the application domain of their previous assigned case study, we swapped the
case study between the groups. The pairs who had to model a smart calculator
system before now had to design a smart messaging system and inversely.

After each modelling exercise, we asked them to complete a questionnaire
to collect their feelings about the complexity of designing such systems with-
out or with the help of our proposed development methodology. In this work-
shop, we focussed only on the design of the context-feature model without
paying attention yet to how the features should adapt the application classes.

Once the modelling workshop was finished, we taught our participants
the Ruby programming language and gave them some exercises on the spe-
cific language constructs they should understand and use during the study.

Then we introduced the FBCOP programming language with a toy ex-
ample. We followed this exercise by asking them to use it to implement the
last case study they designed (i.e., either their smart messaging system or their
smart calculator system). During this implementation workshop, we also pre-
sented how they should build and compose at runtime their user interfaces
with the UIA library. At the end of this implementation workshop, we asked
our participants to respond to a questionnaire to gather their feedback about
the expressivity and complexity of our programming language.

Finally we introduced both of our visualisation tools to assess their us-
ability and usefulness. Before filling in the questionnaire on our tools, each
pair of participants had to perform several tasks to learn how to use and ex-
ploit these tools. We first asked them to use the tools to inspect a toy example
we gave them. Later we asked them to use our tools again, but now on their
implemented case study to examine whether all contexts and features got
activated when expected, but also whether the features adapted the correct
application classes of their system and the system changed its behaviour as
desired.

Then we asked them to find and explain two bugs that we had purpose-
fully introduced in an extension of our toy example. The first bug concerned
the ordering of the adaptations of an application class: a same method of
a same application class was adapted by two different features, but because
these adaptations were not applied in the correct order the behaviour was
not as desired. The second bug was a design error related to the fact that a
context could not get activated correctly, since another context was already
active and these contexts were in an alternative constraint. We designed the
bugs in such a way that the we expected the FEATURE VISUALISER tool to be
more useful to find the former bug and the CONTEXT AND FEATURE MODEL
VisuAaLIskR for the latter. Nevertheless, we did not provide this hint to the
participants, and they were allowed to use either tool at will to look for the

bugs.

13.4. First complete user study 223

Once they finished these tasks, each group had to fill in a questionnaire
about the usability and usefulness of both visualisation tools. For that we
used the System Usability Scale (SUS) [Bro96], a widely used ten-items ques-
tionnaire measuring generic aspects of usability. The disadvantage of using
a SUS questionnaire was that the questions were not specific to our particu-
lar approach. We therefore complemented the questionnaire with additional
more specific closed questions, dedicated to our approach, using a Likert scale.
To avoid interpretation bias of these closed questions we made sure to pro-
vide open-ended questions as well to allow participants to elaborate on their
answers.

Finally, we interviewed six volunteers' to better understand their opinion
of the tools.

Raw results

Now that we have described how we set up this user study, we show the
results we collected through the different questionnaires. We first show the
background of our participants, followed by their understanding of the dif-
ferent notions of FBCOP paradigm. Next, we summarise their feedback about
our development methodology, our programming framework and finally our
visualisation tools.

Also note that, whereas 41 students participated in the background sur-
vey, they worked in pairs for the remaining user study. Therefore the num-
ber of responses for the other questionnaires is divided by two: we thus had
maximum 21 answers for these questionnaires (not all pairs of participants
answered all questionnaires).

Participants’ background Figure 13.7 summarises the background of our
41 participants. For both questions about their skills on design and modelling
and in object-oriented programming, they had to answer on a five-item Likert
scale (in the range from “no expertise” to “expert”). When we asked them
the question “what is your level of expertise in designing and modelling object-
oriented applications?”, only ~30% (counting only positive values) considered
that they had a good level in design and modelling. But for the question
“what is your level of expertise in object-oriented programming (regardless of
your preferred object-oriented programming language)?”, almost half (~46%
taking only positive values) said that they had good knowledge of object-
oriented programming. When asked whether they had already heard about
context-oriented programming, only ~20% claimed that they had, but when

ISince keeping anonymity was impossible during these oral interviews, we only worked
with students who volunteered to partake in the interview, and we did not conduct any inter-
views before having fully encoded and analysed the anonymous questionnaires.

224 Chapter 13. Validating the FBCOP approach with users

asked to explain it in a few sentences, only ~15% of them managed to define
it correctly.

R .
5 Design and modelling I 6 22 12
= 1
2
g Object-oriented programming 3 19 18 I
f T T T T T T T T T 1
—-100-80 -60 -40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.7: Divergent stacked bar presenting the background of our 41 in-
dividual participants.

Comprehension of FBCOP notions For the questionnaire on their un-
derstanding of important FBCOP concepts, we received 20 responses. The
questions for which they had to explain what is a context-oriented system,
contexts and features they mainly succeeded. Even if the definitions they pro-
vided were sometimes not totally exact, it was clear that they understood the
different concepts. The last question about the difference between context-
oriented programming and feature-based context-oriented programming was
a bit more tricky. In many responses the main difference was not mentioned.

Design methodology After a first context-feature modelling exercise with-
out using a specific design methodology, we asked their feeling about the per-
ceived difficulty of designing a context-oriented system for a first time. All 21
pairs answered to this question through a five-item Likert scale (from “very
complex” to “very easy”). Figure 13.8 shows their feelings and no clear ten-
dency emerges. While ~28% found it easy, ~24% suffered from the complexity
of designing such an application and ~48% did not have a specific opinion.

Design complexity (WITHOUT) 5 10 6

Question

I T T T T ‘\ T T T T 1
—-100-80 -60 —-40 -20 0 20 40 60 80 100
Responses (percentage)

Figure 13.8: Divergent stacked bar presenting the participants’ feelings about
the perceived difficulty of a first experiment in designing a context-oriented
application without any supporting design methodology.

As we did not propose a particular design methodology yet, we asked
them an extra question to describe the kind of structured approach or series of
steps they used to come up to design their first context-oriented application.
In their responses, we can observe two different methodologies.

13.4. First complete user study 225

A first methodology was to start by designing the contexts. Once the con-
texts were defined, they followed their application design with the features.
During this step or afterwards, they also defined the mapping to describe for
which contexts which features had to be present in the system. The time
when the context (feature) model was built depended on the groups. Some
pairs designed the context model after defining the contexts and before con-
tinuing with the features. Other pairs preferred to list the relevant contexts
and features before they modelled them into a context and feature model, re-
spectively. The methodology to start by designing the contexts was used by
5 pairs. While one pair found it was complex to design their first application,
the other pairs (4) did not have a clear opinion.

The other methodology was the opposite, i.e., they started thinking about
the features before thinking about the contexts. 8 pairs applied this method-
ology. As opposed to the previous approach, the opinions were more clear.
While 3 pairs found it was complex to design an application like this, 4 groups
found it was easy with this methodology. One pair who found it was complex
explained in their response that they did not quite understand how they could
relate the contexts and the features. On the other hand, another pair who
stated that designing such a system was easy said that with such a method-
ology “the mapping between the two felt natural’.

The 8 remaining pairs did not follow a specific methodology. However
one of these pairs explained that they played the role of users to discuss about
the features and what different users could want such a system. But they did
not explicitly describe in which order they tackled the problem, i.e., if they
started with the contexts or the features. Nevertheless, they found it was
easy to design a first context-oriented application.

Table 13.2 summarises the ad-hoc methodologies we can observe from
our participants’ feedback to the open-ended question. For each of these
methodologies used, we show how the participant pairs felt (complex, no opin-
ion, easy) about using their ad-hoc methodology to design their first context-
oriented application.

Table 13.2: Summary of the different approaches our participant pairs used
to design their first context-oriented application, and how they experienced
this approach.

Complex No opinion Easy

No specific approach 1 5 2
Starting with contexts 1 4 0
Starting with features 3 1 4
Total 5 10 6

226 Chapter 13. Validating the FBCOP approach with users

Next we asked them to design another context-oriented application but
now using our specific design methodology (cf. the requirements and design
phases of our development methodology). After this they again had to answer
a questionnaire on the design methodology we suggested. Figure 13.9 sum-
marises the answers of the 21 participant pairs to the closed questions on a
five-item Likert scale. For the question “did the proposed development method-
ology help you as context-oriented designers to better elicit the contexts and fea-
tures of your context-oriented system?”, ~52% (positive values only) confirmed
that our methodology allows a better (contexts / features) elicitation against
~24% (negative values only). However they did not have a clear opinion about
the relevance of explaining contexts and features rationale. A positive ten-
dency appears for the question whether our design methodology allowed to
better structure the models. While ~70% (positive values) of the pairs agreed
with this statement, only ~19% (negative values) disagreed. ~52% (positive
values) stated that it also helped them to define the mapping model against
~28% (negative values). Many pairs (~66% positive values) found the com-
plexity of our design methodology easy, while only ~10% (negative values) did
not. As they could compare the design of an application without and with
a provided design methodology, we asked the question “how do you assess
the complexity of designing a context-oriented system without using our de-
velopment methodology?”. Unfortunately from their responses we cannot
infer if it is more easy or more complex to design a context-oriented system
with or without our provided design methodology. Nevertheless there is a
clear tendency that our methodology helped them to better comprehend our
underlying approach (~66% in favour versus ~10% against).

O |

T T T T T T T T 1
—-100-80 —-60 -40 -20 20 40 60 80 100
Responses (percentage)

Better comprehension I1

Contexts / features elicitation 5 5 9 l
1
Contexts / features rationale . 5 8 4 l
1
” Models structure . 12 12 .
c i
0
2 Mapping definition . 3 4 10 I
g i
(o4 .
Methodology complexity 2 5 10
l
Design complexity (WITHOUT) 6 9 6
1
5
1
0

Figure 13.9: Divergent stacked bar showing the results of our closed ques-
tions regarding the design methodology (the requirements and design phases
of our development methodology).

13.4. First complete user study 227

When asked “can you mention one or more positive aspects of our pro-
posed development methodology?”, they often responded that our methodol-
ogy helped to structure and organise their ideas in order to save time. One
group using the methodology by starting designing the contexts for the first
exercise also claimed it was more easier to start by designing the features to
discover the contexts then. Another pair using the methodology by starting
to think about the features for the first exercise said “it really enabled us to
structure our thoughts in a more rigorous and natural way”. A last pair that
answered many times with a “not at all” answer (worst value) to our closed
questions justified their choices by the fact that they already followed a sim-
ilar methodology instinctively (i.e., by starting to think about the features).
Therefore using our methodology had not a real added value for this pair. Yet
they did confirm that our methodology is an ‘easy-to-follow methodology’.
When asked to mention some less interesting aspects, they mainly answered
that describing a rationale for all contexts and features was painful. (In this
first version of our methodology, we asked to provide a rationale for all con-
texts, features and mapping relations.)

Going in more depth, when we correlate the answers of the questions
about the complexity to design a context-oriented system without using our
methodology (in Figures 13.8 and 13.9), only 8 pairs changed their opinion
after using our methodology. For these pairs, 4 pairs found that it is easier
to design without a methodology (even if they agreed that our methodology
is easy). In the open-ended questions, 3 of these pairs explained that they
already followed such a methodology before we provided it and thus saw little
added value in using that methodology. Nevertheless they explicitly agreed
that our supporting methodology did provide a more formal process and a
“clear cut path to follow”. The 4 other pairs said it is more complex to design
such a system without a methodology. They explained that our methodology
adds more formalism and clear steps to follow. One group precised that it
allows to better structure the information to facilitate the integration of new
stakeholders in the project.

Programming framework After their design and modelling tasks our par-
ticipant pairs had to implement an application with our programming frame-
work, followed by another questionnaire. The purpose of this questionnaire
was to assess the expressivity and complexity of our programming frame-
work. For this questionnaire, 18 pairs of participants provided their feedback.

Figure 13.10 displays the responses for the closed questions. Many pairs
(~77%) appreciated the expressiveness to declare a context and feature model.
They also liked the expressivity of how to declare a mapping model (~83%).
Their feeling was different for the expressiveness of our programming frame-
work to define the features and application classes of a system. While ~39%

228 Chapter 13. Validating the FBCOP approach with users

found it was not expressive enough, only ~28% considered the expressive-
ness sufficient to define them. When asked to evaluate the file structure when
creating a context-oriented system and if it is readable enough for them to
know which files must be modified, a clear negative tendency was sketched
(~55% negative values versus ~11% positive values). ~66% also found that
our programming language was complex to use to create a context-oriented
application (against ~11% of positive values). Finally when we asked about
the potential complexity to develop such a system without using our program-
ming framework, half of our pairs thought it would be complex whereas only
~11% thought it would be easier.

Context / feature model 1 3
1
Mapping model 12
1
")
g Feature definitions / classes I 6 6 5
- !
o
3 File structure . 7 6 1I
o’ 1
Language complexity . 9 4 2
1
Dev. complexity (WITHOUT) - 4 7 2
T T T T T T T T T T 1
—100-80 -60 -40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.10: Divergent stacked bar showing the results of our closed ques-
tions regarding the programming framework used during the implemention
phase.

In the open-ended questions, when asked about the positive points of our
framework many pairs mentioned the simplicity to declare the context and
feature model. They liked it since they could simply translate their designed
model with our programming framework. One pair precised that with our
programming framework “the source code of applications, once they are built,
is clean and readable” and added that “the decomposition of responsibilities by
feature makes it easier to create an application”.

The questionnaire also asked what aspects of our programming frame-
work could be enhanced. One main remark was that the learning curve for
learning such a new framework was steep. It takes time to get into the right
mindset and even after a practical session, it is sill complex to use. One pair
said explicitly that they suffered “to represent the global application and to
know how it works”. Another important comment was that sufficient docu-
mentation was lacking. Furthermore, two pairs found that the error messages
were not suited for their debugging tasks. Two other pairs precised that keep-
ing all the features in the same folder (without splitting them into subfolders)

13.4. First complete user study 229

was not suitable for building larger applications. Finally two groups did not
like the underlying Ruby programming language and some others found that
some functionalities were missing from our UIA library. (This UIA library
they used was a first prototype we already evolved it after getting their feed-
back.)

Visualisation tools At the end of the user study, we introduced our visu-
alisation tools. To assess our participants’ understanding we asked them to
find and explain two bugs we deliberately created in the toy example. De-
spite all pairs did the exercise, only 18 responded to the questionnaire on the
visualisation tools.

CONTEXT AND FEATURE MODEL VISUALISER Figure 13.11 outlines
the participants’ answers to a SUS (System Usability Scale) survey about the
usability of the CONTEXT AND FEATURE MODEL VISUALISER tool. In a SUS sur-
vey, positively phrased questions like “Tlike to use this system more often” are
alternated with negative ones like “I find this system to be more complicated
than it should be”. For each positive question, we got high score. ~67% of the
pairs would like to use this visualisation tool frequently, ~95% found the tool
easy to use, ~72% found the functions well integrated, ~83% would imagine
that most people would learn to use it very quickly, and ~72% felt very con-
fident using it. Their positive answers were confirmed by the fact that they
responded negatively to most negatively phrased questions. ~67% disagreed
that the visualisation tool was unnecessarily complex. All pairs thought that
no support from a technical person is needed to use this tool. ~78% confirmed
that there was not too much inconsistency in our visualisation tool. ~72% did
not find our tool very cumbersome to use. ~83% did not need to learn a lot of
things before they could get going with this visualisation tool thus indication
a low learning curve for the visualisation tool.

In addition to the standardised SUS questions we asked more specific
questions to better highlight the strengths of our CONTEXT AND FEATURE
MobpEL VISUALISER tool and points we should improve. Whereas this tool
shows mostly a static representation of the contexts, features and application
classes and the dependencies between them, it also features some dynamic as-
pects by indicating which of those are currently activated, selected or adapted.
Figure 13.12 displays a divergent stacked bar of the participants’ answers to
the additional closed questions.

The first two questions asked wether the static or dynamic representa-
tion of the visualisation is understandable; for the third the participants were
asked whether they considered the static (negative answers) or dynamic (pos-
itive answers) aspects as more interesting to visualise. We can clearly ob-
serve that both aspects were largely considered as understandable. Never-

230 Chapter 13. Validating the FBCOP approach with users

-

Frequently use I 2
7

Unnecessarily complex

- O - W -

Easy to use

Need support - 10

-

9

Functions well integrated

Too much inconsistency

Questions

Quick learning

8

8 -
Very cumbersome to use
Very confident 2 -

7
High learning curve . 12
T T T 1

1I
r T T T T T
—100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

-
F o - w - - - -

Figure 13.11: Divergent stacked bar presenting the results gathered from the
SUS questions about the CONTEXT AND FEATURE MODEL VISUALISER tool.

Static representation \ 6

")

g Dynamic representation 11 8

5 .

2

g' Static versus Dynamic I 4 3 6 -

1
Better comprehension 2 1 8 -

) T T T T II T T T T 1
-100-80 -60 -40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.12: Divergent stacked bar showing the results of our additional
closed questions regarding the CONTEXT AND FEATURE MODEL VISUALISER
tool.

theless the dynamic aspect was considered as more interesting (~56% of pos-
itive responses versus ~28% against). To our final question asking whether
this tool would help them better understand the approach when developing
feature-based context-oriented programs, the response was also largely pos-
itive (~83%).

Finally, analysing the gathered answers to the more open-ended questions
we can observe the following strengths for this visualisation tool. The tool

13.4. First complete user study 231

is considered useful since it helps to better understand and see explicitly the
different models and how they evolve dynamically throughout the execution
of a FBCOP application. Several groups stated that this tool is “easy to use”
and “intuitive”. Some participants clarified that it helped them to spot quickly
errors in the models or when a context or feature is (de)activated while it
should not be (de)activated. They also indicated that the dynamic aspect of the
visualisation was more interesting to see the evolution of the configuration of
the models at runtime. Some participants said that they liked the Step-by-step
navigation for inspecting dynamically in what order the different contexts
and features got (de)activated.

Nevertheless they did identify two weaknesses of this tool. The first con-
cerns the scalability of this visualisation, causing readability issues when the
diagrams become too large. The other issue was that the mapping between
the contexts and the features was considered hard to read, because of the
many overlapping links from the context model to the feature model. A same
remark was made for the links between the feature model and the application
classes.

FEATURE VISUALISER Figure 13.13 presents the participants’ answers
to the SUS survey about the usability of the FEATURE VIsUALISER tool. As for
the previous tool we can immediately observe that the tendencies are alter-
nating for each question; Again, this is encouraging as it means that positive
questions gather more positive answers while negatively phrased questions
collect more negative answers. ~61% would like to use this visualisation tool
frequently when developing FBCOP systems. They (~61%) found the functions
in our tool well integrated and only some (~11%) found there was too much
inconsistency in our visualisation tool. Most (~78%) found our tool easy to use.
This was confirmed by the fact that ~72% disagreed that our tool was unnec-
essarily complex and ~89% thought that no support is needed from a technical
person to be able to use it. ~83% of our pairs could imagine that this tool can
be quick to learn to use it. And ~67% thought they did not need to learn a
lot of things before they could get going with it (learning curve). Half of our
pairs confirmed that our visualisation tool was not very cumbersome to use.
However we did get a more mixed result when asking they felt very confident
using it. Only ~45% were very confident, but ~22% had the opposite feeling.

One group had the feeling that using this tool for small programs was “too
much”, because they found that our architecture was already sufficiently easy
to understand. So these participants considered the tool as too cumbersome
to use as well. Nevertheless, the same group claimed that such a tool could
be “more beneficial” when applied to larger programs and thus still believed
in the potential of using our tool on larger cases.

In addition to this SUS survey, again we polled in more depth for the main

232 Chapter 13. Validating the FBCOP approach with users

Frequently use I 5

Unnecessarily complex

Easy to use

1
1
1

E

1

Functions well integrated I 1

Too much inconsistency

8

Questions

Quick learning

Very cumbersome to use

7

A - -0 -2 - b -0 -
)

Very confident I 3
10

High learning curve .
T

r T T T T T
—100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Figure 13.13: Divergent stacked bar presenting the results gathered from the
SUS questions about the FEATURE VISUALISER tool.

strengths and weaknesses of the FEATURE VISUALISER tool, through additional
closed and open-ended questions. Figure 13.14 shows a divergent stacked bar
that summarises the participants’ answers to the closed questions. The dy-
namic representation of the activated entities (contexts, features, ...) in the
visualisation was mostly understandable. Responses were more mixed to the
question whether this visualisation made the control flow of the FBCOP ar-
chitecture sufficiently clear. The two last questions asked if this visualisation
tool could help them, either to better understand a program developed using
this programming approach, or to help to debug such a program. They nearly
unanimously confirmed this to be the case.

Overall, the participants to the user study agreed to say that the FEATURE
VisuALISER tool is useful. They confirmed that it helps to easily visualise what
feature parts adapt what application classes and in which order the feature
parts are (de)activated. They also felt that with the help of this tool they could
easily spot errors in the order of the (de)activations of the features.

Again, scalability was considered as the first weakness of this visualisa-
tion tool as the current layout may not be the most appropriate when dealing
with larger programs consisting of many contexts, features parts and appli-
cation classes. Another issue that was mentioned concerning the layout was
the jiggling effect on the entire visualisation whenever the visualisation is

13.4. First complete user study 233

Dynamic representation 5 1 9 .

1

»

g Control flow 7 4 4 .

=] |

2

g Better understanding 1 11 -
i

Help to debug 1 13 -

) T T T T T T T T T 1
—100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Figure 13.14: Divergent stacked bar showing the results of our additional
closed questions regarding the FEATURE VISUALISER.

refreshed. Some also considered that it displays too many entities without
giving clear visual clues about new ones being added when the visualisation
is updated. The participants also regretted that the visualisation did not allow
them to move objects around, for example to fix or avoid crosscutting edges.
Finally, participants regretted the absence of a ‘back’ button in the visuali-
sation because this would really have improved their user experience when
navigating through this visualisation. (This ‘back’ button was implemented
later than this user study.)

Complementarity and usefulness of the visualisation tools We fi-
nally polled our participants’ opinion about the complementarity and useful-
ness of both visualisation tools. As can be seen in Figure 13.15 there was a
positive tendency (50% of positive values versus ~22% of negative values) for
considering that both tools were complementarity. Some participants, how-
ever, considered the tools too similar and suggested combining them in a sin-
gle integrated tool. Whereas these participants agreed on the usefulness of
our visualisation tools, they did not find an interest in the separation of their
functionalities into two different tools.

Complementarity 4 5 4 -

T T T T T
—-100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Question

Figure 13.15: Divergent stacked bar exposing the results of more closed-
questions about the complementarity of both visualisation tools.

For ~89% of the pairs, these tools were useful to get a better comprehension
of our FBCOP approach as depicted in Figure 13.16. Out of curiosity, we also
asked their opinion about whether we should have provided them access to

234 Chapter 13. Validating the FBCOP approach with users

these visualisation tools earlier in their development process. Figure 13.16
shows their feedback. ~61% of our pairs thought that they could have gotten a
better comprehension (early use) of our architecture and approach if we would
have provided them earlier. However the complexity of using them could
have been harder, looking at the results (tools complexity (early use)). Despite
the slightly positive tendency, only ~39% would have considered them as easy
to use while ~22% disagreed with that.

" Better comprehension 11 9 -

c 1

]

4 Better comprehension (early use) I 2 4 8 .

5 |

Tools complexity (early use) 4 7 4

f T T T T Y T T T T 1
-100-80 -60 —-40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.16: Divergent stacked bar exposing the results of more closed-
questions about the usefulness of both visualisation tools.

Discussion

Now that we have shown the raw results from our participants, we will dis-
cuss and interpret them.

Design methodology Generally speaking, we do get the feeling that our
methodology helped our participants to design their applications. Firstly,
our proposal to start by designing the features and continuing with contexts
seems a bit more intuitive. Almost an half of the pairs (10 pairs) followed
it naturally for their first task. 8 pairs explicitly stated it and 2 more pairs
claimed later that they followed a similar methodology for their first task.
Many of them also agreed to say that this approach served to better struc-
ture their modelling. Moreover three pairs that did not instinctively follow
our methodology (for the first task) did precise that our design methodology
would allow them to save time and effort. Of course these results must be
taken with caution because they already had a first experience on modelling
such systems without following our methodology.

Nevertheless the complexity of designing a context-oriented application
without using a specific methodology seems to be relatively constant before
and after using our design methodology. Maybe this unexpected result could
be intrinsically related to the complexity of designing such applications that
were novel for them. It is true that when learning a new paradigm, it often
takes time and experience before we get sufficiently confident to go beyond
the initial perceived complexity.

13.4. First complete user study 235

Finally as our methodology was only a first prototype we must continue
to improve it to simplify some of its less interesting aspects. For example we
should define the rationale only for non-trivial contexts, features and map-
ping relations. In addition, even if it is a risk to complexify the methodology
we must also integrate the design of application classes and how they are
adapted by what features. Without forgetting that we should also draw rough
wireframes of the user interface aspects to get a more complete analysis and
design methodology. Many of these aspects were not addressed yet by the
methodology.

Programming framework When we analyse the results we got for our
programming framework, we observed a negative tendency. While the ex-
pressiveness of our programming framework to declare the models seems
really good, the complexity appears when our participants had to code con-
cretely the features and application classes. This can be explained by the
complexity to learn a new programming approach in a restricted amount of
time, the different features not yet fully present in our suggested program-
ming framework, and the fact that we used a new programming language
with which they were not fully comfortable yet.

A first reason that could explain the perceived complexity to implement
feature definitions and application classes is they did not work on the design
of these classes (with a kind of class diagram or similar). In addition they did
not yet think about what features could adapt what application classes. This
design step was not tackled in this user study due to time constraints because
of the number of sessions we have already used for the study.

Another reason could be the steep learning curve of our programming
framework. This seemed really complex for our participants despite the in-
troduction and the tasks we gave them. But this does not seem too surprising
because harnessing a new programming paradigm is not straightforward at
all. This takes time and requires gaining experience through practice. For
example one does not become an expert in object-oriented programming by
just studying the theory. Maybe we would have been spent even more time
on the practice of using our approach before asking them to use it. However
we were limited in the time since we did this user study as part of a course
during a semester.

To better help future developers, we must first take into account our par-
ticipants’ comments to further improve our programming framework, such as
proposing a more complete documentation with concrete and specific exam-
ples. With such examples they would have concrete code snippets to better
understand our programming framework and mimick them. We should also
improve the error messages so that they can better understand the different
errors they can encounter.

236 Chapter 13. Validating the FBCOP approach with users

Another way to help them during their implementation stage could be to
provide our visualisation tools earlier. They stated the providing these tools
earlier could help them to better understand our architecture and approach.
One pair also precised that such visualisation tools could have helped them to
better find and understand the errors. For example, when they met an error in
the (context and feature) models due to an unsatisfied constraint of the model
at the (de)activation of some entities. With our visualisation tool, they could
have pinpointed directly the problem without having to waste time to try and
understand the error. However another pair warned that such visualisation
tools should not be provided too early otherwise they would not see “how and
why they are useful”.

Another explanation about the complexity to implement feature defini-
tions and application classes could from the Ruby programming language
on top of which we built our programming framework. Despite their good
skills in object-oriented programming and in programming languages in gen-
eral (they mainly had expertise in the Java, C and Python programming lan-
guages), using a new programming language can be another obstacle in the
implementation of software systems. This could come from the new syntax
or the language constructs that are less familar to them (such as for example
Ruby’s mixin modules). We could observe they were not really comfortable
with Ruby because many pairs criticised the fact that the folder containing
the features definitions could become quickly large for bigger applications. If
they would have been more fluent in Ruby, they could have quickly observed
that they could solve this problem by splitting this folder in sub-folders with
a minimal modification in an application file. So, even if we taught the basics
of Ruby during a lecture and provided them some exercises, we could have
gone further in the teaching of Ruby to our participants or offering more doc-
umentation with concrete examples to help them in their implementation of
their context-oriented application.

Despite this negative tendency, we can conclude that our programming
framework remains interesting to reduce the complexity of implementing
context-oriented systems with our programming framework. Indeed an half
of the pairs thought it would have been more complex to develop them with-
out using our programming framework. This seems to suggest that the pro-
gramming framework can be of help in creating such systems and that much
of the perceived complexity comes from the intrinsic complexity of such con-
text-oriented applications. This could also be explained by the different ab-
stractions and tools the framework offers them, such as for example the ver-
ification of the consistency of the different models.

Visualisation tools To assess the usefulness of our visualisation tools, we
relied on the System Usability Scale (SUS) [Bro96]. A system that is considered

13.4. First complete user study 237

usable according to this usability scale will exhibit the alternating tendencies
that are clearly present on Figure 13.11 for the CONTEXT AND FEATURE MODEL
VisUALISER tool and on Figure 13.13 for the FEATURE VISUALISER tool. All
positively phrased questions tend to have a largely positive tendency in the
responses received, meaning that the respondents agreed with the statement.
Conversely, most participants tend to disagree with the negatively phrased
questions.

In addition to this visual representation of the alterning results, we can
also compute a score [Bro96] to determine how usable our visualisation tools
are. Following this computation, we obtained an overall SUS score of 76.4
for the CONTEXT AND FEATURE MODEL VISUALISER tool. According to Bangor
et al’s adjective rating scale [BKM09], this score can be interpreted as some-
where between good and excellent. This means that we can indeed consider
that our tool is usable from a developer’s point of view. Nevertheless our par-
ticipants found two weaknesses. To deal with the scalability issue, the tool
offers various filters and provides ways of hiding and collapsing contexts or
features so that the developer can focus only on specific parts of the models
he is interested in. Nevertheless, this functionality did not seem to suffice to
address the perceived scalability issue, even for this smaller case study. Other
graphical representations could be considered to attempt to solve this issue
as future work. By changing its visual representation, the other issue about
the visualisation of the different mappings could be also tackled. To recall
this issue is about the readability of the mapping between the contexts and
features, and between the features and application classes.

The positive assessment seems more mitigated for the FEATURE Visu-
ALISER tool. When we calculate the SUS score for this tool , we get a score
of only 69. Nevertheless, even with this lower score, according to Bangor et
al. [BKMO09] and Sauro [Saull], we can still conclude that this visualisation
tool is usable. The lower score of this tool as compared to the previous one is
related to the fact that more participants considered this tool as cumbersome
to use and felt less confident using it. Another reason to explain this lower
score could be the fact that this tool had an implicit visual representation
of our underlying architecture as opposed to CONTEXT AND FEATURE MODEL
VisuALISER. We can also notice that the responses were more mixed when
they assessed if the visualisation of the control flow of our architecture was
sufficiently clear or not (see Figure 13.14), in spite of the additional training
they received. This could perhaps mean that our programming architecture
was still not fully understood by some participants. We are aware that our
phased architecture is somewhat complex and since this visualisation is more
technical and strongly linked to our architecture, their understanding of the
tool may have been hindered if they did not fully understand the architecture
and its flow. This might also explain why they found this tool less usable. The

238 Chapter 13. Validating the FBCOP approach with users

participants also considered an issue in the FEATURE VISUALISER view about
too many entities without clear visual clues about new ones being added. To
address this issue we proposed a console showing textually what happened
upon each update. However the tool users wanted an animation on the new
visualised contexts, feature parts and application classes, so that their atten-
tion gets drawn to these new entities.

Finally even if they had a slight preference for the CONTEXT AND FEATURE
MOoDEL VISUALISER tool, when asked again whether both visualisation tools
are helpful to better understand our feature-based context-oriented approach,
a large majority of the participants replied affirmatively.

Conclusion

We conducted a first complete user study with 21 participant pairs to assess
our FBCOP design methodology, programming framework and visualisation
tools.

Again, we followed the same evaluation strategies (i.e., demonstration and
usage) for this user study [Led+18]. However we better applied the ‘how to’
scenarios technique since we clearly divided the different steps of our wokflow
to conceive a FBCOP application.

By analysing this user study, we can conclude that our approach seemed
to be interesting to design and implement FBCOP applications. Its strengths
seems to be in the design of context-feature models and the visualisation tools
we suggested to help the FBCOP programmers. However some aspects must
be enhanced and added to simplify its comprehension and usage, as for ex-
ample the proposed programming framework. We also noticed that our ap-
proach is intrinsically complex for our participants. Despite the effort we
made to teach our approach to our participants (with respect to the previous
user studies), this could have from its novelty and the different technologies
in which we rely on to build it. This could have a potential reason of why
its learning curve is steep. Finally, even if we gathered interesting results
with this user study, we need to conduct other similar user studies to better
identify the strengths and weaknesses of our approach.

13.5 Second complete user study

After the first complete user study which we conducted with many partic-
ipants, we improved the design methodology and programming framework
of our FBCOP approach. For the design methodology, we included a step
to think about application classes and how they are adapted by the features.
We also revised the rationale that the designers must describe. About the
programming framework, we upgraded it by enhancing the modelling aspect

13.5. Second complete user study 239

and fixing some bugs that were reported during the last user study. Since we
improved our FBCOP software development approach, we wanted to reassess
it. This new user study allowed us to confirm the previous observations of
the first study and to better identify where the complexity of our FBCOP ap-
proach lies.

This new study was conducted in 2021 with all new participants, aged
between 20 and 25 years old. Based on the feedback we collected from the
previous study, we updated the new study of 2021 to reduce the workload for
our participants. Indeed the user study of 2020 was considered heavy due to
the work we asked them. We also adapted the user study to avoid having too
many questionnaires as was the case for the previous user study. Finally, we
deliberately skipped doing another full user study of our visualisation tools
(i.e., we did not conduct other SUS evaluations), but we still asked small ques-
tions without going deeply in the assessment of their usability.

As previously, we asked our participants to play the role of FBCOP design-
ers and programmers to conceive a highly dynamic software system using our
approach. There were 36 students (of 45) who participed voluntarily to this
user study.

This section will follow the same structure used for the previous user
studies. We first explain the study itself. We then present the raw results we
collected and discuss these results. Finally we conclude this new user study.

User study

At the start of the user study, we gathered the participants’ background. We
evaluated their expertise level in design and modelling object-oriented appli-
cations, and in implementation skills to develop object-oriented applications.
We also verified whether they have already heard about the context-oriented
programming paradigm.

Regardless of their background, to ensure all our participants had a com-
parable knowledge about context-oriented programming and FBCOP, we gave
them 26 hours of lectures and practical sessions over many weeks. Table 13.3
outlines the different topics we taught and the time we spent on each topic.
In this table we emphasise in bold the changes we did with regard to to the
previous user study in 2020.

Again we asked them to work in pairs for the rest of the user study. To
simplify how we gathered their feedback, we provided them only one ques-
tionnaire at the end of the user study.

We started the user study by introducing the domain modelling concept
in which we present feature modelling, followed by a hands-on session. In
this practical session they had to design a feature model of a case study that
served as toy example. Then we taught context-oriented programming, FB-

240 Chapter 13. Validating the FBCOP approach with users

Table 13.3: Time spent to introduce background material to participants in
the user study of 2021. We emphasise in bold what are the updates with
regard to the time we spent in 2020. (The old values are in parentheses.)

Topic Theory Practice
Feature modelling 2 2
Introduction to COP and FBCOP 4(3) 6
Programming in Ruby 2 2(4)
Feature-based context-oriented programming 3 5
Total 11(10) 15 (17)

COP modelling and our supporting methodology. To ensure they understood
the key notions of our approach, we took one hour more to explain all these
topics. We followed this lecture with a context-feature modelling workshop
that was a bit different from the previous one. As a first exercise, we asked
them to extend their feature model of the toy example with a context model
and a mapping between the models in a two-hour session. This exercise aimed
to better understand our context-feature modelling approach. After that we
asked them to design a context-feature model of a smart messaging system
from scratch during two sessions of two hours. This choice to model only
one case study allowed them to better think about their design since they had
more time. The other difference is that we asked them to use directly our
supporting design methodology. Finally we also asked them to think about
the application classes (with a conceptual class diagram) and what features
should adapt what application classes.

As previously, we followed this modelling workshop by introducing the
Ruby programming language. Instead of four hours, we only dedicated a two-
hour session to practice Ruby due to timing constraints. Then we presented an
upgraded version of our feature-based context-oriented programming frame-
work (with regards to the previous user study). This upgraded version added
more expressivity to the (context and feature) modelling and fixed some errors
reported by our past participants. We also presented and showed a demon-
stration of our two visualisation tools to help them in their implementation
phase. These visualisation tools also aimed to reduce the number of times we
had to intervene to solve simple bugs as they could visualise with our tools.
After giving them some time to understand how our programming frame-
work and visualisation tools work, we presented a new version of our UIA
library to help them build their dynamic user interfaces.

At the end of the experiment, we provided our participants a question-
naire to assess our design methodology, programming framework and UIA
library. We also asked some questions about our visualisation tools to un-

13.5. Second complete user study 241

derstand whether they used them and why they were useful in their cases.
In addition to these questions, we also asked our participants to justify their
answers in open-ended questions.

Raw results

We now present the raw results collected in this user study. We first show the
background of our participants. We then present their answers to the closed
questions about our design methodology, programming framework and user
interface library.

Participants’ background On a five-level Likert scale (ranging from “no
expertise” to “expert”), before the user study and before their 27 hours of
training, we asked the participants to rate their object-oriented design, mod-
elling and programming skills. As summarised in Figure 13.17, only ~18% of
the participants agreed to have some or strong skills in design and modelling.
Almost half of the participants affirmed they have some or strong expertise in
object-oriented programming. Only ~22% of them claimed that they already
had heard about context-oriented programming, but when asked to explain
it in a few sentences, only ~11% described correctly what is context-oriented
programming,.

" ,
g Design and modelling I 13 22 8
= 1
2
g Object-oriented programming 2 22 18 I
T T T T T T T T T T 1
—-100-80 -60 —-40 -20 0 20 40 60 80 100

Responses (percentage)

Figure 13.17: Divergent stacked bar presenting the background of our 45 po-
tential participants.

Whereas 45 students participated in this participants’ background survey,
only 36 students eventually participated in the main user study, working in
pairs, which explains why we will only have 18 responses in total for our
next questions. Furthermore we also removed the neutral answers for the
next questions to force them to take a decision.

Design and development methodology Figure 13.19 presents the gath-
ered feedback of our 18 pairs of participants to the closed questions. We ob-
serve a positive tendency for our design methodology. They were ~90% to
say that this methodology helped them to better elicit the contexts and fea-
tures. Furthermore, ~78% confirmed it helped them allowed to better struc-
ture the models. And ~72% found it helped to define the mapping definition

242 Chapter 13. Validating the FBCOP approach with users

from contexts to features. Nevertheless, despite our effort to reduce the ra-
tionale they had to describe, half of the pairs found it was not relevant to
provide rationale for each non-trivial context, feature and mapping relation.
In the open-ended questions they confirmed this took much time. They also
mentioned that creating the lexicon was time-consuming and redundant and
should be postponed later in the design phase. Even if we can see that our
proposed design methodology helped them in the requirements and design
phases, they suffered to design a conceptual class diagram in which they had
to sketch the interactions between the application classes and how they are
adapted by which features. They were also mixed about the complexity of
using our development methodology (including the implementation phase) to
design FBCOP systems (as opposed to not using such a methodology). As
shown in Figure 13.18 , ~55% assessed it as easy to use and ~45% did not. De-
spite this mitigated result, we can observe in the open-ended questions they
confirmed our supporting development methodology was interesting since
it guided them incrementally towards a solution. Some also claimed that it
forced them to think about the requirements before taking actions. However
some groups were a bit confused when they had to continue to the implemen-
tation phase because we did not propose enough guidance for this transition.
Similarly, one group thought their efforts during the design phase were not
rewarded for the implementation phase because their features were not well-
modelled (i.e., they got bad interaction between the features and had useless
features in real-world usages).

Contexts / features elicitation 2 13

Rationale relevance . 6
Models structure I 3
Mapping definition . 3
Usage complexity . 6
T T

) T T T T T T 1
-100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Questions

7

Figure 13.18: Divergent stacked bar showing the results of our closed ques-
tions regarding the design and development methodology.

Programming framework Figure 13.19 depicts the results of the closed
questions about the programming framework.

As we can observe, ~83% agreed that our programming framework has
a good expressiveness to declare a context and feature model; ~77% found it

13.5. Second complete user study 243

Context / feature model I 2 9 -
Mapping model I 3 4 _

)
g Feature definitions 8 4
=
o
3 File structure complexity I 6 5 -
o

Overall complexity - 9 4

Intrinsic without accidental I 4 8
T

I T T T T T T T 1
—-100-80 -60 -40 =20 0 20 40 60 80 100
Responses (percentage)

Figure 13.19: Divergent stacked bar showing the results of our closed ques-
tions regarding the programming framework used during the implementa-
tion phase.

was also sufficiently expressive to declare the mapping model. They found the
syntax was clear, short and easy to write. Nevertheless two groups mentioned
that such a code could quickly become very long.

They had a more mixed feeling regarding the implementation of the fea-
ture definitions. While ~44% considered that the implementation of feature
definitions was easy, ~56% did not agree with this statement. This could be
explained by the fact that implementing feature definitions was complex for
large applications. It took time to understand how they had to code the feature
definitions. Some groups precised that it was not straightforward to under-
stand the proceed mechanism and the variable scoping with the interactions
between the features and the application classes.

A positive trend was observed for the file structure complexity. Indeed,
~60% found the file structure of a FBCOP application was easy to understand
and suggested a good and coherent structure. The others considered that it had
too many files and they could get lost in all the files. Furthermore three groups
did not find intuitive the name of the folder (“Skeleton”), that is supposed to
contain all the application classes of the application.

Even if some points are encouraging, we can see a negative trend (~80%)
about the overall complexity after they implemented a first FBCOP applica-
tion. The main issues they raised were about the error messages, the Ruby
programming language, the debugging, the documentation and the learn-
ing curve. They considered the error messages were not explicit enough for
the (de)activation of entities in the different models. Six groups found that
the Ruby programming language on which we have built our programming
framework was complex. Furthermore a few groups mentioned that the de-
bugging could become really complex due to the many interactions they could

244 Chapter 13. Validating the FBCOP approach with users

have between the features and application classes. One group precised that
such an approach required much effort when they had to debug a feature be-
cause they also had to develop its contexts, mapping and all the links between
these entities. Some also considered we did not provide enough documenta-
tion and some more elaborate examples were missing to better illustrate how
they could develop some concerns. They also precised that the learning curve
was very steep. However some positive comments were also received about
our programming framework. For example, one group said that our approach
“makes FBCOP possible”. Two groups precised that our approach allowed to
have good practices in their implementation with a well-structured code and
a natural code cut across several files. Two groups found that Ruby was not
a barrier at all to implement such systems.

Despite the overall complexity of our approach for implementing FBCOP
applications, ~70% considered the complexity was intrinsic for developing
such systems. Some groups precised our programming framework was com-
plex but necessary. Other groups specified that the complexity to write such
systems was reduced thanks to our programming framework, especially with
the abstractions to (de)activate the contexts and features, to verify the model
consistency, but also with the proceed mechanism. In the same spirit, one
group said “If we had to start from scratch, it would be very complex to connect
all the modules together”. However one group did not agree with this at all
and found that letting everything in the hands of the developer could cause
accidental complexity. For example, when they had to name a feature in its
declaration, they had to name its definition with the same name since without
a perfect match between both, an error was raised.

User interface adaptation For our integrated UIA library to help them
build and compose user interfaces, the results were clearly mixed. When we
asked our participants whether the library was sufficiently usable and easy to
use, only two pairs confirmed this statement. They explained this complexity
by a lack of documentation and that they lose much time to understand how
to use it. From an implementation perspective they found that each method
of the library took too many arguments. However some more positive points
were also highlighted. Some of them found it was useful and usable for sim-
ple user interfaces. They liked the fact that our library was itself based on
a well-documented GUI library. Furthermore some groups claimed that the
proceed mechanism was really interesting to compose and build the user in-
terfaces: “The proceed mechanism is a neat way to enable modifications of the
user interface based on contexts.”. Finally 50% of the pairs considered that the
proposed application programming interface was complete while the other
50% did not have the same feeling, as illustrated in Figure 13.20.

13.5. Second complete user study 245

-

T T T T T 1
—-100-80 -60 -40 -20 0 20 40 60 80 100
Responses (percentage)

Sufficiently complete I 8

Question

Figure 13.20: Divergent stacked bar showing the result of our closed question
regarding our UIA library dedicated for building user interfaces.

Visualisation tools As opposed to the first full user study, we did not as-
sess our visualisation tools in detail since we already assessed them deeply
and due to timing constraints. But as we introduced them to our participants
in order to help them in their development and debugging tasks, we asked
to explain in which situations they used these tools. Eleven pairs exploited
our CONTEXT AND FEATURE MODEL VISUALISER tool and only three groups
used the FEATURE VISUALISER tool. For those using the CONTEXT AND FEA-
TURE MODEL VISUALISER, they used it to visualise the interactions between
the different models and if they declared correctly their models. They also
took benefit of this visualisation to try to understand when an (de)activation
was ignored (due to an invalid configuration). Even if it is not the main goal
of this tool, two groups precised they used it to see the activation order of the
contexts and features. The usage of the FEATURE VISUALISER tool was more
used to inspect if the (de)activation has been done and to see the connection
between the contexts and features. One group claimed that this tool proposes
“a clear view of which application classes are adapted”. Unfortunately some in-
formation was missing in the FEATURE VISUALISER tool for a group but they
did not explain which kind of information was missing. One group regretted
that no tutorial was provided for the FEATURE VISUALISER tool, which could
also explain why only three groups used that tool.

Discussion

We will now discuss all results we collected via our questionnaire.

Development methodology As for the previous user study, our develop-
ment methodology seemed to interest our FBCOP designers and program-
mers when they had to conceive their application. It allowed them to save
time if we analyse their answers to the open-end questions. It also guided
them incrementally through the development process, from the requirements
to the implementation, via the design of their application. This could be prob-
ably explained by the clear workflow we attempted to propose them to create
FBCOP systems.

Even if we simplified the description of rationale in the design method-

246 Chapter 13. Validating the FBCOP approach with users

ology for this last user study, half of our pairs were still doubtful about its
relevance. In addition they considered this step as time-consuming. This mit-
igated result could perhaps be explained by the simplicity and limited size
of the case study (a smart messaging system). Therefore we can understand
this task could take much time for a small project. However we think this
step would remain useful for complex and larger FBCOP applications and for
which many stakeholders (e.g., designers and programmers) have to inter-
act together during a long time (due to the complexity of the project), which
was not the case for our participants since they only worked in pairs. Such
rationale should aim to ensure that all non-trivial contexts, features and map-
ping relations could be understood by any stakeholder at any moment of the
project once they were defined. But such a claim remains to be tested with a
large and complex application with many stakeholders.

Several pairs also suffered to design a conceptual class diagram of their
application and to define what features had to adapt what application classes.
This could be explained by the fact that we did not instruct and guide them for
this step in our design methodology. Even if only a few confirmed they were
comfortable in designing and modelling object-oriented applications, we as-
sumed they had enough skills to design small and simple object-oriented ap-
plications since this was part of their cursus at the university. In addition
to the timing constraints, we did not really explore this part in the design
methodology since we thought that object-oriented modelling was sufficient
to do this step. Since it was not the case, we will have to extend this part in our
design methodology in the future. For that we could imagine we explain that
this part of the design relies on object-oriented modelling and provide an ex-
ample of how an application can be modelled with object-oriented modelling
and with FBCOP. Thus we would emphasise that the modelling mindset is the
same but the state and behaviour of each application class should be separated
into features to ensure a good separation of concerns. As soon as an applica-
tion class is split into features, these features should adapt these application
classes since they contain a fragment of the original application class.

Finally, the complexity to use our development methodology could also
come from the instrinsic complexity to create such applications as already
explained previously. So based on this discussion, we believe that we can
state that our development methodology, in spite of its complexity and of
the improvements we could make, was still interesting for conceiving FBCOP
applications.

Programming framework Similar to the previous full user study, our par-
ticipants found the expressiveness of how they had to declare the different
models (context, feature and mapping model) was good. However two pairs
found that such a declaration source code become rapidly very long. This

13.5. Second complete user study 247

could lead to reduce the readability of such a code. To facilitate its readabil-
ity, we would have to more insist to split the declaration of each model in
methods.

Again the implementation difficulty resided in the implementation of the
feature definitions. One possible explanation for this is the source code had to
be split into several features. This complexifies probably the global overview
of how this application is coded for new programmers. In addition, even if
we explained the proceed mechanism in the lecture and in hands-on sessions,
some pairs found this concept complex. For future user studies, we could
probably illustrate this construct with more examples and show it with the
help of our visualisation tools, and in particular with the FEATURE VISUALISER
tool. Some groups also raised a misunderstanding of how the variables are
used through the different features and application classes. For that we should
be probably better describe how the features adapt the application classes and
explain that the variables are finally simply used like object-oriented applica-
tions, as for example the usage of an instance variable in an application class
can be used normally through its different features that adapt it.

For the file structure we got an interesting positive tendency even if we
gathered the same feedback about the many files we could have in the folder
containing the feature definitions for larger applications. However, during
the user study, one pair asked us if they could reorganise this feature def-
initions folder into sub-folders to get a better readability in this folder and
enhance its code. We answered that they could make such modifications if
they considered it was an improvement for them.

Despite this positive tendency, they agreed to say that the overall com-
plexity of our approach was not simple. As for the previous full user study,
they explained that this complexity could come from the steep learning curve,
missing documentation, lack of concrete examples, error messages that could
be more explicit and the Ruby programming language. About Ruby, one pair
said: “Tdo not know if it helps tackling the complexity of building such an appli-
cation, but it being in a language we did not get used to before hand definitely
did not help”. This could explain why some groups who were not comfortable
with Ruby had more difficulties to implement FBCOP applications with our
programming framework. In spite of our effort to give lectures and practical
sessions, we can thus infer our approach is intrinsically complex. Neverthe-
less, in spite of the complexity of our programming framework they agreed to
say that our approach and programming framework could help them to build
FBCOP applications. Finally we received an interesting comment from a pair
of participants who thought that our FBCOP approach could be interesting for
implementing other kinds of applications, such as Internet of Things (IoT) ap-
plications: “seeing that this framework is trying to emulate what object-oriented
programming did (eliminating ‘if” conditions to check for a ‘type’ change) and is

248 Chapter 13. Validating the FBCOP approach with users

trying to eliminate conditions checking every time we change contexts, it opened
my mind to the possibilities of the language for IoT applications’.

User interface adaptation The mitigated results could be explained by the
fact that our version of the UIA library was still a prototype. In fact, as they
experienced it was not yet usable for building complex user interfaces. We
also did not provide enough concrete examples on its usage, and an elabo-
rated documentation of our application programming interface was missing.
Nevertheless, even if we did not provide a full documentation of our libray, it
relies on a well-documented GUI library to build user interface widgets. And
some pairs considered this as a strength of our design choice. Another reason
could be we provided this UIA library at the end of the user study and they
probably did not have enough time to better explore it to build more interest-
ing user interfaces. But adding this complexity at the beginning could be a
real barrier to learn correctly the programming approach since it was already
complex for our participants. In general, when we learn a new programming
approach, we have the tendency to first study the basics of it. And once we
have some expertise, we deeply study more aspects as for example how we
can build the user interfaces.

About the incompleteness of our API, they were right in the sense that
more behaviour should be added to have a more interesting API for building
user interfaces. Examples of such missing methods were: a method adding a
user interface widget on top of all the other widgets,and methods to move a
user interface to another place.

Despite some of this negative feedback, we can still observe that our first
prototype for this UIA library can be promising since it allowed them to cre-
ate simple user interfaces. Furthermore we can also see that our way to build
and compose the user interfaces fits well in the context-oriented program-
ming paradigm, and specifically with the proceed mechanism to build user
interfaces.

Supporting tools By analysing our visualisation tools, we can observe that
our CONTEXT AND FEATURE MODEL VISUALISER tool was perceived more use-
ful than our FEATURE VISUALISER tool. This could be explained by the fact that
the former has a similar visualisation to how we present our system architec-
ture and to how they had to design their application. Surprisingly, a few pairs
mentioned that our CONTEXT AND FEATURE MODEL VISUALISER tool was also
useful to visualise the activation order of the different entities. In fact, even
if it was not the main goal of this visualisation, the activation order of the
different entities can be inspected step-by-step. However, once they are acti-
vated, this information is lost as opposed to the FEATURE VISUALISER tool. In
addition one pair also said that some documentation was missing for the FEa-

13.5. Second complete user study 249

TURE VISUALISER tool. Despite our introduction and demonstration of both
visualisation tools, we will have to put more effort to explain the interest of
our FEATURE VISUALISER tool with examples in which it could be interesting
since it seemed less useful according to our participants.

In addition to our proposed visualisation tools, they also mentioned other
tools that they would have liked during the experience. A first one is a tool
helping to generate the source code of the model declarations to save time
and avoid easy bugs. We could imagine a kind of tool to generate the different
context, feature and mapping model from a visual representation of them to
save time. Going further, we could also create the skeleton of the feature
definition for each feature declaration, as well as an empty structure of each
application class used in the different features. They would have also liked a
script that allowed to launch the server and different tools simultaneously to
avoid to launch separately the server and then the supporting tools.

Conclusion

For this user study, we focussed on assessing some aspects we evaluated less
with real designers and programmers in the previous user studies. There were
36 participants grouped in pairs to answer the questionnaire.

We again followed the demonstration and usage evaluation strategies as
proposed in this user study [Led+18].

Despite their limited knowledge of designing and modelling and their
good skills in object-oriented programming, we can observe that our full ap-
proach remains relatively complex for new designers and programmers when
they had to conceive FBCOP applications. Despite its intrinsic complexity
they appreciated our design methodology. For our programming framework
and user interface adaptation, we got mixed results due to the learning curve
to understand how they had to implement such applications. Finally they
confirmed our visualisation tools were useful for their development and de-
bugging tasks, and preferred the CONTEXT AND FEATURE MODEL VISUALISER
in particular.

PartV

Epilogue

251

253

The previous part presented the validation of our approach. We first as-
sessed FBCOP’s expressiveness through five case studies we or other persons
have designed and implemented. From this first validation we can say that
FBCOP’s expressiveness is enough to design and implement context-oriented
applications, even if some points could be improved. Then we evaluated FB-
COP’s design to demonstrate that our implementation of the programming
framework is maintainable, extensible, adaptable and readable, but not yet
scalable. We also assessed the usability of our programming framework based
on the cognitive dimensions of notations framework. Finally we carried out
four user studies with real users, master-level students who were asked to
play the role of designers and programmers using FBCOP to conceive context-
oriented applications. Through the different user studies, we noticed that one
of the main problems is the steep learning curve causing a more complex un-
derstanding on how they had to implement such applications with FBCOP.
However, to overcome this problem partly, our visualisation tools were nicely
apppreciated in their development and debugging tasks.

The fifth and last part of this dissertation is the epilogue. We provide first
some potential future work (Chapter 14). Finally we conclude this dissertation
with a global overview of our contributions and a small discussion on the
industrial viability of our FBCOP approach (Chapter 15).

CHAPTER

14
FUTURE WORK

In this chapter we provide a potential list of future work we may carry out to
improve and complete the FBCOP approach. We argue how we can enhance
FBCOP’s expressiveness, how we can add a sensory layer in order to create
real applications, and how we can improve visualisation tools to provide a
better help to our programmers. We discuss how performance and scalability
may be potentially improved for some parts of our implementation. Finally
we will briefly cite some other concerns we did not tackle or simply men-
tioned upon passing in this dissertation since they are not the main part of
this work. The future work is not exclusive to these potential areas, however.

14.1 Improving FBCOP’s expressiveness

We saw that FBCOP’s expressiveness is sufficient to design and implement
FBCOP applications. However it has some limitations and future work that
we discuss in this section.

Context data Our contexts do not have information. The only informa-
tion we have is that contexts are active or inactive. This design choice im-
plies that application programmers must discretise the contexts in their con-
text model. Such an example is illustrated with the context (user) Age and
its child contexts Child, Adult and Senior (see the context-feature model of
the smart messaging system depicted in Figure 11.5). However this design is

255

256 Chapter 14. Future work

still limited to model some contexts, such as the localisation of the user. In-
deed, to model the position of the user, we must model each possible location.
This could be very restrictive. Discretisation of many different situations also
increases the number of contexts. So, by extending contexts with data, appli-
cation programmers could model some contexts easier and naturally reduce
the number of contexts. For example, they could model the exact position
with a single context Localisation by adding the latitude and longitude as at-
tributes so that the user language could be adapted according to the position,
for example. Therefore, adding data in contexts could improve the expres-
siveness to model the contexts. Nevertheless such future work also means
that the mapping model must be extended to perform some computations to
treat the different data or data ranges. Also, mechanisms should be devised
so that features could be access the data stored in the contexts that trigger
them. Finally, this raises many issues regarding persistence, accessibility, and
synchronisation of that data.

Propositional logic for the mapping We voluntarily implemented a sim-
ple mapping model from contexts to features (see Section 4.6). However this
mapping has some limitations in its expressiveness. For example, when the
activation or deactivation of two different sets of contexts triggers the acti-
vation or deactivation of the same set of features, application programmers
must define a mapping relation for each set of context. This increases the
mapping model and programmers can lose in readability.

A potential improvement is to extend the existing mapping model’s ex-
pressiveness by using propositional logic [Ach+09]. As we have already im-
plemented the and operator, by adding the operators or and not, we could en-
hance its expressivity significantly. Indeed, application programmers could
then merge two mapping relations that (de)activate the same set of features.
By writing a new mapping relation with an or operator between the contexts
to express that at least one of both sets of contexts must be activated to trig-
ger these features. Furthermore, the not operator would also allow to express
mapping relations dedicated to a deactivation.

Keywords in the programming framework We could add additional
keywords in the programming framework to ease the readability of FBCOP
applications when implementing. For example, when programmers develop
the features definitions (i.e., the features and feature parts), currently they
must use the keyword module for both.

To improve the readability, we could add the keywords feature and part
in the programming framework, as illustrated in Listing 14.1.

14.2. Adding sensory layer and context definitions 257

feature ListChats
part Model

end
part View

end
end

Listing 14.1: Code snippet of the structure of the feature ListChats of the smart
messaging system with new keywords in the language. (The original code is depicted
in Listing 11.8.)

Other dependencies in the context and feature model In addition to
the constraints and dependencies we have, we could also add additional de-
pendencies as proposed by Cardozo et al. [Car+15] such as the causality or
the implication.

Usage of the UIA library We should improve the API of the UIA library
we proposed by adding methods, such as methods to move a Ul object to
another place or in relation to another one, to replace a Ul object by another
one and much more.

We could also improve the domain-specific language of our UIA library
to facilitate the implementation of user interfaces in the different feature def-
initions.

14.2 Adding sensory layer and context definitions

In our previous work, Mens et al. [MCD16] propose a more complete ap-
proach in which the sensory layer was integrated. As the work of this disser-
tation is strongly inspired by this context-oriented software architecture, the
next step is to include the sensory layer. With this layer, application program-
mers could develop real applications that are able to adapt their behaviour de-
pending the contexts that are (de)activated according to sensed information
from the real world.

To implement the sensory layer, we could implement a new tooling sup-
port that catches all messages sent to the server from different sensors. Then
the application programmers should have to implement context definitions
that will reify the contextual raw data into context objects to finally send them
to the CONTEXT ACTIVATION component in order to propagate the changes
into the system behaviour. Nonetheless the context definitions should also

258 Chapter 14. Future work

contain some filters to prevent information flooding that could lead to many
useless computations or adaptations.

14.3 Improving and adding tools

We should enhance first our existing visualisation tools to include error mes-
sages in the visualisation tools to better inform programmers when an error
is raised in the application or programming framework.

We could also add interactions on the context model displayed in the
CONTEXT AND FEATURE MODEL VISUALISER in order to (de)activate contexts
through the visualisation tool. For this tool, we could also envisage to imple-
ment the ‘back’ button that is missing for now.

Furthermore other tools can also be developed, such as for example a de-
bugging tool to better help application programmers to find errors when ex-
ecuting their FBCOP application.

Other kind of tools can also be conceived to enrich our current toolbox,
such as tools dedicated to test FBCOP modelling or implementation or simu-
lators to run FBCOP application in particular situations. Testing tools also
include static analysis tools that allows to detect anomalies [Mau21] in a
context-feature model. In the perspective to enrich the toolbox, Martou et
al. [Mar+21] already proposed a generation tool to create relevant test sce-
narios of FBCOP applications. This tool generates test scenarios from the
context-feature model that allow to test the design of the context-feature
model before implementing it. Duhoux [Duh16] also proposed a visual con-
text simulator that allow to test FBCOP appplications in a controlled sur-
rounding environment.

14.4 Performance and scalability issues

For this dissertation, we mainly focussed our effort on the usefulness, usabil-
ity and understanding of the FBCOP approach to designers and programmers.
We did not address performance or scalability issues per se. Theses aspects
are thus another area for improvement. In this section, we discuss these is-
sues.

Performance issue An improvement could be made to the satisfiability al-
gorithm (see Section 8.2). Indeed, optimisations could be integrated or other
algorithms could be used to be more efficient than our depth-first search algo-
rithm. Other algorithms, such as SAT(isfiability) solvers [Bat05] or constraint
programming techniques [BTRO05], could be used to replace our satisfiability
strategy. Without benchmarking the different suggestions on different types
of models, we cannot infer which one is the most efficient. This will depend

14.5. Other concerns 259

on the kind of models, complexity of the context and feature models (i.e., the
number of contexts, features, and mapping relations) and the contexts and
features that are/must be activated or deactivated.

Scalability issue An example of a scalability issue is our dynamic adap-
tation mechanism. Indeed, we can easily observe an overhead with our un-
binding and binding methods mechanism when proceed calls are executed (see
Section 9.3). For each proceed call, we must undeploy the last adaptation of
the method, then deploy its previous adaptation, uninstall it after execution,
and finally redeploy the most recent adaptation in the system. Therefore this
dynamic adaptation mechanism has a cost when if must execute a proceed
call.

To solve this, we could imagine a mechanism to deploy all adaptations
of a method in the application class and then use pointers to access directly
the right adaptation. During a master thesis [Mar21a], a master-level student
explored this solution and showed that the overhead drastically decreased the
execution time of the proceed calls.

14.5 Other concerns

Other concerns were not addressed or only mentioned during this dissertation
in the FBCOP approach such as the data layer, testing, context-interaction
problem, multimodality and feedback for end-users.

Data layer To create applications for real users, designers and program-
mers would like to design and implement such applications with a core logic,
user interfaces and a data persistence layer to save the data. Nonetheless we
only focussed our effort on the concerns that address the core logic and user
interfaces. However the data concern may also be contextualised in order to
adapt the data manipulation and querying. The research question to be inves-
tigated could be how we can integrate the data layer in the FBCOP approach.

Testing We have already mentioned Martou et al’s work [Mar+21] in which
we generate relevant test scenarios to find design errors or inconsistencies
in context-feature models. This work tackles partially the modelling field.
However the implementation field was not addressed in detail yet. How can
we automate testing of FBCOP applications to ensure their behaviour is the
expected one in a particular situation? Is unit/integration testing sufficient?
Should we explore other approaches like mutation testing or concolic testing?

260 Chapter 14. Future work

Context- and feature-interation problem Adapting software systems
can raise some issues at runtime, such as for example the context-interaction
problem [MDC17]. This problem comes from unforeseen interactions be-
tween contexts and features, that leads to some conflicts when two incom-
patible features must adapt the behaviour. To illustrate such a problem, con-
sider a home automation system able to dynamically detect fires and water
leaks and adapt its behaviour to halt the emergency. In the case of a fire, the
system must trigger the sprinklers and send an alarm to the fire brigade. In
the case of a water leak, it must turn off the main water supply. When only
one event occurs, the system is aware of which action it must undertake. But
how should the system react when these two events occur simultaneously?
Should it turn of the main water supply and let the house burn down? Or
should it extinguish the fire but flood the house? In order to help designers
and programmers think about such issues, we already proposed a classifica-
tion and design space of conflict resolution techniques [MDC17], but we did
not implement yet them in the FBCOP approach.

Multimodality We explained that two master-level students explored the
integration of multimodality in a FBCOP application (see Section 11.4). This
is a first proof of concept that the development of FBCOP applications includ-
ing multimodality is feasible. Going further, we could analyse other types of
applications where multimodality can be of interest (either as inputs or out-
puts) so that it can ease accessibility of certain functionalities to people with
disabilities.

Feedback for users Systems that dynamically adapt their behaviour to the
environment without informing or asking for confirmation from end-users
can confuse them. Although we need to assess this statement, it seems to
make sense because it means that end-users lose control over their systems.

Therefore, another avenue to explore is how to help end-users better un-
derstand and accept that their applications adapt their behaviour at runtime.

CHAPTER

15
CONCLUSION

In this dissertation, we proposed a feature-based context-oriented software
development (FBCOP) approach to conceive context-oriented systems, that
unifies context-oriented programming [HCNO08], feature modelling [Kan+90]
and dynamic software product lines [HT08; Ach+09; COH14; Men+17] into a
single software development approach. This approach consists of a modelling
technique, an architecture, a programming framework, a user interface adap-
tation (UIA) library, a supporting development methodology and visualisation
tools to help designers and programmers when designing and implementing
systems that must adapt their behaviour depending on the contexts in which
they run.

The contributions are the following:

m We proposed a clear and explicit separation of contexts and features
since they are different by nature. While contexts represent particular
situations in which the system runs, features compose the functional-
ities of the system behaviour. This separation strengthens the main-
tainability of our approach when designing and implementing context-
oriented applications, as well as the reusability through different pro-
jects that fit some part of the requirements.

m Despite this separation, a common modelling notation allows to design
contexts and features in a similar way. With feature modelling we de-
signed contexts and features to have a context and feature model. This

261

262

Chapter 15. Conclusion

single notation eases the modelling of contexts and features for design-
ers.

We also created an architecture that abstracts the full mechanism to im-
plement context-oriented systems, while keeping this clear separation
between contexts and features. This lets programmers develop their
FBCOP applications without having to consider the complexity to treat
the context (de)activation, feature (un)selection, feature (de)activation
and dynamic adaptation to (un)deploy the features in order to adapt
or refine the behaviour. Again, this increases the maintainability since
the intrinsic complexity of such a programming approach is separated
from the application code. In addition, it promotes the modularity by
explicitly separating the different concerns (core logic and user inter-
face concern). Furthermore programmers can also create a set of fea-
tures that can be reused inside a same project or within other projects,
and so increase the reusability of their applications.

We also implemented a FBCOP programming framework that provides
building blocks and language constructs to help programmers in their
implementation. Even if this programming framework is developed on
top of the Ruby programming language, Ruby only served as a proof of
concept since this architecture and programming framework could be
implemented in any object-oriented programming language that pro-
vides a sufficiently powerful reflective API.

We also provided a UIA library to help programmers to create the user
interfaces in the FBCOP approach. Since the user interfaces must be im-
plemented as fine-grained features just like the core logic components,
they are adaptive by definition.

We also provided a supporting development methodology and two vi-
sualisation tools, the CONTEXT AND FEATURE MODEL VISUALISER and
the FEATURE VISUALISER, in the perspective to help designers and pro-
grammers for their different tasks. The development methodology sug-
gested an incremental methodology to guide the stakeholders in the
conception of systems with our approach. The two visualisation tools
aimed to help programmers in their development and debugging tasks.

In addition to these contributions to design, create and implement a FB-

COP approach to help designers and programmers conceive FBCOP appli-
cations that have a high dynamic nature, we also validated our approach as
follows.

m We assessed FBCOP’s expressiveness with the help of five case stud-

ies: two variants of a smart messaging system, a smart risk information

263

system, a smart meetings system and a smart city guide. Through this
validation, we observed that our approach is sufficiently expressive to
conceive such systems, from a modelling or implementation perspec-
tive. An interesting point was that other persons used our approach to
design and/or implement their context-oriented systems. This proved
its usefulness and usability.

m We also evaluated FBCOP’s design by discussing its design qualities.
We pointed out its maintainability, extensibility, adaptability and read-
ability. However, much work still needs to be done to have a scalable
programming framework.

We have also evaluated its usability by arguing our own point of view
on its usability based on a cognitive dimensions of notations frame-
work.

m We also conducted four user studies to evaluate the usability, usefulness
and understanding of the FBCOP approach. For each user study, we
carried out a study with a group of 25-40 master-level students whom
we asked to play the role of designers and/or programmers of context-
oriented systems. Through these user studies, we observed that the
FBCOP approach seemed interesting to them to design and implement
such dynamic applications, and the visualisation tools seemed really
useful and usable. However the programming framework was more
complex to use due to the steep learning curve. This result seems co-
herent since we cannot expect someone to become an expert in a new
programming paradigm in only 25-30 hours of lectures and practical
sessions.

To conclude this dissertation, we will discuss whether our approach is vi-
able in the industry. At this stage, this approach still needs much work before
industrial adoption because specific concerns or aspects are not yet addressed
in detail, such as the sensory layer, the data layer or the testing, for example.
But the results are promising and encouraging, which should be a motivation
to continue to develop it. However, may the intrinsic complexity underlying
our approach be an obstacle for industry? We do not believe that the intrin-
sic complexity of FBCOP can be an obstacle. With the advent of the Internet
of Things and (self-)adaptive systems, industry will probably encounter the
same problems that we have encountered and for which we have provided
answers. It might therefore be more interesting to spend time learning a new
existing approach than to fully investigate a new solution, as the latter op-
tion would probably take longer. Although the learning curve will be steep,
it is not impossible because for every new challenge for which the industry is
unfamiliar, a new technology must be learned. So whatever the problem, e.g.

264 Chapter 15. Conclusion

the creation of new web applications, dynamic applications or other kinds of
applications, the learning curve will generally always be difficult and takes

time.

[AB11]

[Abo+99]

[Abr+21]

[Ach+09]

[AHR08]

BIBLIOGRAPHY

S. Apel and D. Beyer. “Feature Cohesion in Software Product
Lines: An Exploratory Study”. In: Proceedings of 33rd Interna-
tional Conference on Software Engineering. ICSE "11. ACM, 2011,
pp. 421-430. ISBN: 978-1-4503-0445-0.

G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles. “Towards a Better Understanding of Context and
Context-Awareness”. In: Handheld and Ubiquitous Computing.
Springer, 1999, pp. 304-307. 1SBN: 978-3-540-48157-7.

S. Abrahao, E. Insfran, A. Slujters, and J. Vanderdonckt. “Model-
based intelligent user interface adaptation: challenges and fu-
ture directions”. In: Software and Systems Modeling 20.5 (2021),
pp. 1335-1349.

M. Acher, P. Collet, F. Fleurey, P. Lahire, S. Moisan, and].-P.
Rigault. “Modeling Context and Dynamic Adaptations with Fea-
ture Models”. In: 4th International Workshop Modelsrun.time at
Models 2009 (MRT’09). Oct. 2009, p. 10.

M. Appeltauer, R. Hirschfeld, and T. Rho. “Dedicated Program-
ming Support for Context-Aware Ubiquitous Applications”. In:
The Second International Conference on Mobile Ubiquitous Com-
puting, Systems, Services and Technologies. IEEE, 2008, pp. 38-
43.

265

266

[AK09]

[AKM11]

[App+11]

[Bal+04]

[Bat05]

[BDRO07]

[Ben+08a]

[Ben+08b]

[Bet+10]

[BKMO09]

BIBLIOGRAPHY

S. Apel and C. Késtner. “An Overview of Feature-Oriented Soft-
ware Development”. In: Journal of Object Technology 8 (July 2009),
pp- 49-84.

T. Aotani, T. Kamina, and H. Masuhara. “Featherweight EventC]J:
A Core Calculus for a Context-oriented Language with Event-
based Per-instance Layer Transition”. In: Proceedings of the 3rd
International Workshop on Context-Oriented Programming. COP
’11. ACM, 2011, 1:1-1:7. 1SBN: 978-1-4503-0891-5.

M. Appeltauer, R. Hirschfeld, M. Haupt, and H. Masuhara. “Con-
text]: Context-oriented Programming with Java”. In: Journal of
Information Processing 6 (2011), pp. 399-419.

L. Balme, A. Demeure, N. Barralon, J. Coutaz, and G. Calvary.
“CAMELEON-RT: A Software Architecture Reference Model for
Distributed, Migratable, and Plastic User Interfaces”. In: Am-
bient Intelligence. Springer, 2004, pp. 291-302. 1SBN: 978-3-540-
30473-9.

D. Batory. “Feature Models, Grammars, and Propositional For-
mulas”. In: Software Product Lines. Springer, 2005, pp. 7-20. ISBN:
978-3-540-32064-7.

M. Baldauf, S. Dustdar, and F. Rosenberg. “A Survey on Context-
Aware Systems”. In: International Journal of Ad Hoc and Ubiqui-
tous Computing 2.4 (June 2007), pp. 263—-277. 1SSN: 1743-8225.

N. Bencomo, G. S. Blair, C. A. Flores-Cortés, and P. Sawyer. “Re-
flective Component-based Technologies to Support Dynamic
Variability.” In: VaMoS. 2008, pp. 141-150.

N. Bencomo, P. Sawyer, G. Blair, and P. Grace. “Dynamically
Adaptive Systems are Product Lines too: Using Model-Driven
Techniques to Capture Dynamic Variability of Adaptive Sys-
tems.” In: DSPL ’2008. Jan. 2008, pp. 23-32.

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas,
A. Ranganathan, and D. Riboni. “A survey of context modelling
and reasoning techniques”. In: Pervasive and Mobile Computing
6.2 (2010), pp. 161-180. 1ssN: 1574-1192.

A. Bangor, P. Kortum, and J. Miller. “Determining What Indi-
vidual SUS Scores Mean: Adding an Adjective Rating Scale”. In:
Journal of Usability Studies 4.3 (May 2009), pp. 114-123. IsSN:
1931-3357.

BIBLIOGRAPHY 267

[Bla+01]

[BLH10]

[Blo+11]

[BNK14]

[Bob+15]

[Bol8o]

[Bou+17]

[BPH12]

A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G.
Kadoda, M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C.
Roast, C. Roe, A. Wong, and R. M. Young. “Cognitive Dimensions
of Notations: Design Tools for Cognitive Technology”. In: Cog-
nitive Technology: Instruments of Mind. Springer, 2001, pp. 325-
341. 1SBN: 978-3-540-44617-0.

N. Bencomo, J. Lee, and S. Hallsteinsen. “How dynamic is your
dynamic software product line?” In: Proceedings of the 14th Inter-
national Software Product Line Conference. SPLC ’10. Lancaster
University, 2010, pp. 61-67.

A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, and J.-M.
Jézéquel. “Combining Aspect-Oriented Modeling with Property-
Based Reasoning to Improve User Interface Adaptation”. In: Pro-
ceedings of the 3rd ACM SIGCHI Symposium on Engineering In-
teractive Computing Systems. EICS *11. ACM, 2011, pp. 85-94.
ISBN: 9781450306706.

J. S. Bauer, M. W. Newman, and J. A. Kientz. “What Designers
Talk About When They Talk About Context”. In: Human—-Com-
puter Interaction 29.5-6 (2014), pp. 420-450.

S. Bobek, S. Dziadzio, P. Jaciéw, M. Slazynski, and G. J. Nalepa.
“Understanding Context with ContextViewer - Tool for Visu-
alization and Initial Preprocessing of Mobile Sensors Data”. In:
Modeling and Using Context - Proceedings of 9th International and
Interdisciplinary Conference. Vol. 9405. Lecture Notes in Com-
puter Science. Springer, 2015, pp. 77-90.

R. A. Bolt. ““Put-That-There”: Voice and Gesture at the Graphics
Interface”. In: Proceedings of the 7th Annual Conference on Com-
puter Graphics and Interactive Techniques. SIGGRAPH ’80. ACM,
1980, pp. 262-270. 1SBN: 0897910214

S.Bouzit, G. Calvary, J. Coutaz, D. Chéne, E. Petit, and J. Vander-
donckt. “Design space exploration of adaptive user interfaces”.
In: 11th Int. Conference on Research Challenges in Information Sci-
ence RCIS. IEEE, 2017.

Q. Boucher, G. Perrouin, and P. Heymans. “Deriving Config-
uration Interfaces from Feature Models: A Vision Paper”. In:
Proceedings of the Sixth International Workshop on Variability
Modeling of Software-Intensive Systems. VaMoS ’12. ACM, 2012,
pp. 37-44. 1sSBN: 9781450310581.

268

[BQ15]

[Bro96]

[BTRO5]

[Cal+03a]

[Cal+03b]

[Cal+05]

[Cap+14]

[Car+11]

[Car+14]

BIBLIOGRAPHY

L. Baresi and C. Quinton. “Dynamically Evolving the Structural
Variability of Dynamic Software Product Lines”. In: 10th Inter-
national Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS °15. IEEE, 2015, pp. 57-63.

J. Brooke. “SUS: a quick and dirty usability”. In: Usability evalu-
ation in industry 189 (1996).

D. Benavides, P. Trinidad, and A. Ruiz-Cortés. “Automated Rea-
soning on Feature Models”. In: Advanced Information Systems
Engineering. Springer, 2005, pp. 491-503. 1SBN: 978-3-540-32127-
9.

G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q. Limbourg, L.
Marucci, F. Paterno, C. Santoro, N. Souchon, D. Thevenin, and J.
Vanderdonckt. “The CAMELEON reference framework, deliver-
able 1.1, version V1. 1, CAMELEON project (2002)”. In: Proceed-
ings of XML Europe. 2003.

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt. “A Unifying Reference Framework for multi-
target user interfaces”. In: Interacting with Computers 15.3 (June
2003), pp. 289-308. 1SsN: 0953-5438.

G. Calvary, J. Coutaz, O. Daassi, L. Balme, and A. Demeure. “To-
wards a New Generation of Widgets for Supporting Software
Plasticity: The "Comet””. In: Engineering Human Computer In-
teraction and Interactive Systems. Springer, 2005, pp. 306-324.
ISBN: 978-3-540-31961-0.

R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, and M. Hinchey.
“An overview of Dynamic Software Product Line architectures
and techniques: Observations from research and industry”. In:
Journal of Systems and Software 91 (2014), pp. 3—-23. 1SsN: 0164-
1212.

N. Cardozo, S. Giinther, T. D’Hondt, and K. Mens. “Feature-Ori-
ented Programming and Context-Oriented Programming: Com-
paring Paradigm Characteristics by Example Implementations”.
In: Proceedings of the International Conference on Software Engi-
neering Advances. ICSEA *11. IARIA, 2011, pp. 130-135.

N. Cardozo, K. Mens, S. Gonzalez, P.-Y. Orban, and W. De Meuter.
“Features on Demand”. In: Proceedings of the Eighth International
Workshop on Variability Modelling of Software-Intensive Systems.
VaMoS ’14. ACM, 2014. 1sBN: 9781450325561.

BIBLIOGRAPHY 269

[Car+15]

[Car13]

[CCTo1a]

[CCTO1b]

[CD08]

[CDD19]

[CGM09]

[CHO5]

[CHD15]

N. Cardozo, S. Gonzalez, K. Mens, R. Van Der Straeten, J. Valle-
jos, and T. D’Hondt. “Semantics for consistent activation in con-
text-oriented systems”. In: Information and Software Technology
58 (2015), pp. 71-94. 18sN: 0950-5849.

N. Cardozo. “Identification and Management of Inconsistencies
in Dynamically Adaptive Software Systems”. PhD thesis. 2013,
p. 313.

G. Calvary, J. Coutaz, and D. Thevenin. “A Unifying Reference
Framework for the Development of Plastic User Interfaces”. In:
Engineering for Human-Computer Interaction. ECHI ’01. Springer,
2001, pp. 173-192. 1SBN: 978-3-540-45348-2.

G. Calvary, J. Coutaz, and D. Thevenin. “Supporting Context
Changes for Plastic User Interfaces: A Process and a Mecha-
nism”. In: People and Computers XV—Interaction without Fron-
tiers. Springer, 2001, pp. 349-363. 1SBN: 978-1-4471-0353-0.

P. Costanza and T. D’Hondt. “Feature Descriptions for Context-
oriented Programming”. In: Proceedings of 12th International Soft-
ware Product Lines Conference. Second Volume (Workshops). SPLC
’08. Lero Int. Science Centre, 2008, pp. 9-14.

A. Clarinval, B. Duhoux, and B. Dumas. “Supporting Citizen
Participation with Adaptive Public Displays: A Process Model
Proposal”. In: Proceedings of the 31st Conference on I’'Interaction
Homme-Machine: Adjunct. THM ’19. ACM, 2019. 1SBN: 978-1-4503-
7027-1.

A. Cadiz, S. Gonzalez, and K. Mens. “Orchestrating Context-
aware Systems: A Design Perspective”. In: Proceedings of the
First International Workshop on Context-aware Software Technol-
ogy and Applications. CASTA °09. ACM, 2009, pp. 5-8. 1SBN: 978-
1-60558-707-3.

P. Costanza and R. Hirschfeld. “Language Constructs for Context-
Oriented Programming: An Overview of ContextL”. In: Proceed-
ings of the 2005 Symposium on Dynamic Languages. DLS ’05.
ACM, 2005, pp. 1-10. 1sSBN: 9781450378161.

R. Capilla, M. Hinchey, and F. J. Diaz. “Collaborative Context
Features for Critical Systems”. In: Proceedings of the Ninth Inter-
national Workshop on Variability Modelling of Software-Intensive
Systems. VaMoS "15. ACM, 2015, pp. 43-50. 1sBN: 9781450332736.

270

[CLCoO5a]

[CLCO5b]

[Cle+07]

[CM22]

[COH14]

[Con+03]

[Cou+05]

[CVC08]

[DASO1]

BIBLIOGRAPHY

T. Clerckx, K. Luyten, and K. Coninx. “DynaMo-AID: A Design
Process and a Runtime Architecture for Dynamic Model-Based
User Interface Development”. In: Engineering Human Computer
Interaction and Interactive Systems. Springer, 2005, pp. 77-95.
ISBN: 978-3-540-31961-0.

T. Clerckx, K. Luyten, and K. Coninx. “Generating Context-Sen-
sitive Multiple Device Interfaces from Design”. In: Computer-
Aided Design of User Interfaces IV. Springer, 2005, pp. 283-296.
ISBN: 978-1-4020-3304-9.

T. Clerckx, C. Vandervelpen, K. Luyten, and K. Coninx. “A Proto-
type-Driven Development Process for Context-Aware User In-
terfaces”. In: Task Models and Diagrams for Users Interface De-
sign. Springer, 2007, pp. 339-354. 1SBN: 978-3-540-70816-2.

N. Cardozo and K. Mens. “Programming language implementa-
tions for context-oriented self-adaptive systems”. In: Informa-
tion and Software Technology 143 (2022), p. 106789. 1SsN: 0950-
5849.

R. Capilla, O. Ortiz, and M. Hinchey. “Context Variability for
Context-Aware Systems”. In: Computer 47.2 (Feb. 2014), pp. 85—
87. 1ssN: 0018-9162.

K. Coninx, K. Luyten, C. Vandervelpen, J. Van den Bergh, and
B. Creemers. “Dygimes: Dynamically Generating Interfaces for
Mobile Computing Devices and Embedded Systems”. In: Human-
Computer Interaction with Mobile Devices and Services. Springer,
2003, pp. 256-270. 1SBN: 978-3-540-45233-1.

J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. “Context is
Key”. In: Communications of the ACM 48.3 (Mar. 2005), pp. 49—
53. 1ssN: 0001-0782.

B. Collignon, J. Vanderdonckt, and G. Calvary. “Model-Driven
Engineering of Multi-target Plastic User Interfaces”. In: Proceed-
ings of Fourth International Conference on Autonomic and Au-
tonomous Systems. ICAS ’2008. IEEE, 2008, pp. 7-14.

A. K. Dey, G. D. Abowd, and D. Salber. “A Conceptual Frame-
work and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications”. In: Human—Computer Interaction
16.2-4 (2001), pp. 97-166.

BIBLIOGRAPHY 271

[DCCO8]

[Dem+07]

[Des+07]

[DMD18]

[DMD19]

[DT22]

[Duh+19a]

[Duh+19b]

[Duh16]

A.Demeure, G. Calvary, and K. Coninx. “COMET(s), A Software
Architecture Style and an Interactors Toolkit for Plastic User In-
terfaces”. In: Interactive Systems. Design, Specification, and Veri-
fication. Springer, 2008, pp. 225-237. 1SBN: 978-3-540-70569-7.

A. Demeure, G. Calvary, J. Coutaz, and J. Vanderdonckt. “The
Comets Inspector: Towards Run Time Plasticity Control Based
on a Semantic Network”. In: Task Models and Diagrams for Users
Interface Design. Springer, 2007, pp. 324-338. 1SBN: 978-3-540-
70816-2.

B.Desmet, J. Vallejos, P. Costanza, W. De Meuter, and T. D’Hondt.
“Context-Oriented Domain Analysis”. In: Modeling and Using

Context: Proceedings of the 6th International and Interdisciplinary
Conference. CONTEXT ’07. Springer, 2007, pp. 178—191. 1SBN:

978-3-540-74255-5.

B. Duhoux, K. Mens, and B. Dumas. “Feature Visualiser: An In-
spection Tool for Context-Oriented Programmers”. In: Proceed-
ings of the 10th International Workshop on Context-Oriented Pro-
gramming: Advanced Modularity for Run-Time Composition. COP
’18. ACM, 2018, pp. 15-22. 1sBN: 9781450357227.

B. Duhoux, K. Mens, and B. Dumas. “Implementation of a Fea-
ture-Based Context-Oriented Programming Language”. In: Pro-
ceedings of the Workshop on Context-Oriented Programming. COP
’19. ACM, 2019, pp. 9-16. 1SBN: 9781450368636.

E. Delhove and H. Y. Tsang. “Adaptive applications with multi-
modal user interfaces”. MA thesis. Université catholique de Lou-
vain, 2022.

B. Duhoux, B. Dumas, K. Mens, and H. Leung. “A context and
feature visualisation tool for a feature-based context-oriented
programming language”. In: Proceedings of the Seminar Series on
Advanced Techniques & Tools for Software Evolution. SATToSE
’19. CEUR-WS, July 2019.

B. Duhoux, B. Dumas, H. S. Leung, and K. Mens. “Dynamic Vi-
sualisation of Features and Contexts for Context-Oriented Pro-
grammers”. In: Proceedings of the ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. EICS ’19. ACM, 2019.
ISBN: 9781450367455.

B. Duhoux. “L’intégration des adaptations interfaces utilisateur
dans une approche de développement logiciel orientée contexte”.
MA thesis. Université catholique de Louvain, 2016.

272

[EVP00]

[Fis12]

[FWMO08]

[FWT11]

[Gab+11]

[Giu+19]

[GMC08]

[GMHO07]

[Godo08]

BIBLIOGRAPHY

J. Eisenstein, J. Vanderdonckt, and A. R. Puerta. “Adapting to
mobile contexts with user-interface modeling”. In: Proceedings
of 3rd Workshop on Mobile Computing Systems and Applications.
WMCSA ’00). IEEE, 2000, p. 83.

G. Fischer. “Context-Aware Systems: The ‘right’ Information,
at the ‘Right’ Time, in the ‘Right’ Place, in the ‘Right’ Way, to
the ‘Right’ Person”. In: Proceedings of the International Working
Conference on Advanced Visual Interfaces. AVI ’12. ACM, 2012,
pPp- 287-294. 1sBN: 9781450312875.

P. Fernandes, C. M. L. Werner, and L. G. P. Murta. “Feature Mod-
eling for Context-Aware Software Product Lines”. In: Proceed-
ings of the Twentieth International Conference on Software Engi-
neering & Knowledge Engineering. SEKE *08. Knowledge Systems
Institute Graduate School, 2008, pp. 758-763.

P. Fernandes, C. M. L. Werner, and E. Teixeira. “An Approach for
Feature Modeling of Context-Aware Software Product Line”. In:
Journal of Universal Computer Science 17.5 (2011), pp. 807-829.

Y. Gabillon, M. Petit, G. Calvary, and H. Fiorino. “Automated
Planning for User Interface Composition”. In: Proceedings of the
2nd International Workshop on Semantic Models for Adaptive In-
teractive Systems of the 2011 International Conference on Intelli-
gent User Interfaces. SEMAIS ’11. Feb. 2011.

T. Giuffrida, S. Dupuy-Chessa, J. Poli, and E. Céret. “Fuzzy4U: A
fuzzy logic system for user interfaces adaptation”. In: Proceed-
ings of the 13th International Conference on Research Challenges
in Information Science. RCIS *19. IEEE, 2019, pp. 1-12.

S. Gonzalez, K. Mens, and A. Cadiz. “Context-Oriented Program-
ming with the Ambient Object System”. In: Journal of Universal
Computer Science 14.20 (Nov. 28, 2008), pp. 3307-3332.

S. Gonzalez, K. Mens, and P. Heymans. “Highly Dynamic Be-
haviour Adaptability through Prototypes with Subjective Mul-
timethods”. In: Proceedings of the 2007 Symposium on Dynamic
Languages. DLS ’07. ACM, 2007, pp. 77—88. ISBN: 9781595938688.

S. Goderis. “On the Separation of User Interface Concerns - A
Programmer’s Perspective on the Modularisation of User Inter-
face Code”. PhD thesis. Vrije Universiteit Brussel, 2008.

BIBLIOGRAPHY 273

[Gon+11]

[Gon+13]

[GP96]

[GPS10]

[Hal+06]

[HCHO8]

[HCN08]

[Her07]

[Her21]

S. Gonzélez, N. Cardozo, K. Mens, A. Cadiz, J.-C. Libbrecht, and
J. Goffaux. “Subjective-C”. In: Proceedings of the 3rd International
Conference on Software Language Engineering. SLE ’10. Springer,
2011, pp. 246-265. 1SBN: 978-3-642-19440-5.

S. Gonzalez, K. Mens, M. Colacioiu, and W. Cazzola. “Context
Traits: Dynamic Behaviour Adaptation Through Run-time Trait
Recomposition”. In: Proceedings of the 12th Annual International
Conference on Aspect-oriented Software Development. AOSD ’13.
ACM, 2013, pp. 209-220. 1SBN: 978-1-4503-1766-5.

T. Green and M. Petre. “Usability Analysis of Visual Program-
ming Environments: A ‘Cognitive Dimensions’ Framework”. In:
Journal of Visual Languages and Computing 7.2 (1996), pp. 131-
174. 1ssN: 1045-926X.

C. Ghezzi, M. Pradella, and G. Salvaneschi. “Programming Lan-
guage Support to Context-aware Adaptation: A Case-study with
Erlang”. In: Proceedings of 2010 ICSE Workshop on Software En-
gineering for Adaptive and Self-Managing Systems. SEAMS ’10.
ACM, 2010, pp. 59-68. 1sBN: 978-1-60558-971-8.

S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. “Using Product
Line Techniques to Build Adaptive Systems”. In: Proceedings of
the 10th International on Software Product Line Conference. SPLC
*06. IEEE, 2006, pp. 141-150. 1SBN: 0769525997.

R. Hirschfeld, P. Costanza, and M. Haupt. “An Introduction to
Context-Oriented Programming with ContextS”. In: Generative
and Transformational Techniques in Software Engineering IL
GTTSE °07. Springer, 2008, pp. 396—407. 1SBN: 978-3-540-88643-
3.

R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-Oriented
Programming”. In: Journal of Object Technology (2008), pp. 125-
151.

S. Herrmann. “A Precise Model for Contextual Roles: The Pro-
gramming Language ObjectTeams/Java”. In: Applied Ontology
2.2 (Apr. 2007), pp. 181-207. 1s5N: 1570-5838.

F. Hermans. The Programmer’s Brain: What every programmer
needs to know about cognition. Simon and Schuster, 2021. 1SBN:
9781617298677.

274

[HI06]

[HIM11]

[HO93]

[HTO08]

[Igl22]

[ILE16]

[JLS10]

[Joh+19]

[KAM11]

BIBLIOGRAPHY

K. Henricksen and J. Indulska. “Developing context-aware per-
vasive computing applications: Models and approach”. In: Per-
vasive and Mobile Computing 2.1 (2006), pp. 37-64. IsSN: 1574-
1192.

R. Hirschfeld, A. Igarashi, and H. Masuhara. “ContextFJ: A Mini-
mal Core Calculus for Context-Oriented Programming”. In: Pro-
ceedings of the 10th International Workshop on Foundations of
Aspect-Oriented Languages. FOAL ’11. ACM, 2011, pp. 19-23.
ISBN: 9781450306447.

W. Harrison and H. Ossher. “Subject-Oriented Programming: A
Critique of Pure Objects”. In: Proceedings of the Eight Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications. OOPSLA °93. ACM, 1993, pp. 411-428. 1SBN:
0897915879.

H. Hartmann and T. Trew. “Using Feature Diagrams with Con-
text Variability to Model Multiple Product Lines for Software
Supply Chains”. In: Proceedings of 12th International Software
Product Line Conference. SPLC °08. IEEE, 2008, pp. 12-21. ISBN:
978-0-7695-3303-2.

J. Iglesias Garcia. “Sensor detection and simulation in feature-
based context-oriented programming”. MA thesis. Université ca-
tholique de Louvain, 2022.

S. Illescas, R. E. Lopez-Herrejon, and A. Egyed. “Towards Vi-
sualization of Feature Interactions in Software Product Lines”.
In: IEEE Working Conference on Software Visualization. VISSOFT
’16. IEEE. Oct. 2016, pp. 46-50.

Z.Jaroucheh, X. Liu, and S. Smith. “Mapping Features to Context
Information: Supporting Context Variability for Context-Aware
Pervasive Applications”. In: 2010 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology.
Vol. 1. WI’10. IEEE, Aug. 2010, pp. 611-614.

V. Johnston, M. Black, J. Wallace, M. Mulvenna, and R. Bond. “A
Framework for the Development of a Dynamic Adaptive Intel-
ligent User Interface to Enhance the User Experience”. In: Pro-
ceedings of the 31st European Conference on Cognitive Ergonomics.
ECCE ’19. ACM, 2019, pp. 32-35. 1sBN: 9781450371667.

T. Kamina, T. Aotani, and H. Masuhara. “EventCJ: A Context-
Oriented Programming Language with Declarative Event-Based
Context Transition”. In: Proceedings of the Tenth International

BIBLIOGRAPHY 275

[Kan+90]

[Kas+09]

[KPG04]

[KR03]

[Kru+15]

[KS15]

[Kith+14]

[Kith17]

[LDN07]

Conference on Aspect-Oriented Software Development. AOSD ’11.
ACM, 2011, pp. 253-264. 1SBN: 9781450306058.

K. C.Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Tech. rep. Carnegie-Mellon University Software Engineering In-
stitute, Nov. 1990.

C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wiel-
gorz, and S. Apel. “FeatureIDE: A Tool Framework for Feature-
oriented Software Development”. In: Proceedings of the 31st In-
ternational Conference on Software Engineering. ICSE *09. IEEE,
2009, pp. 611-614. 1SBN: 978-1-4244-3453-4.

B. Kurz, I. Popescu, and S. Gallacher. “FACADE - a framework
for context-aware content adaptation and delivery”. In: Proceed-
ings of the Second Annual Conference on Communication Net-
works and Services Research. CNSR *04. IEEE, 2004, pp. 46-55.

R. Keays and A. Rakotonirainy. “Context-Oriented Program-
ming”. In: Proceedings of the 3rd ACM International Workshop on
Data Engineering for Wireless and Mobile Access. MobiDE *03.
ACM, 2003, pp. 9-16. 1sBN: 1581137672.

C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker.
“A Survey on Engineering Approaches for Self-Adaptive Sys-
tems”. In: Pervasive and Mobile Computing 17 (Feb. 2015), pp. 184~
206. 1SSN: 1574-1192.

E. Karuzaki and A. Savidis. “Yeti: Yet Another Automatic Inter-
face Composer”. In: Proceedings of the 7th ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems. EICS ’15.
ACM, 2015, pp. 12-21. 1SBN: 9781450336468.

T. Kithn, M. Leuthiuser, S. Gotz, C. Seidl, and U. Aflmann. “A
Metamodel Family for Role-Based Modeling and Programming
Languages”. In: Proceedings of the 7th International Conference on
Software Language Engineering. SLE *14. Springer, 2014, pp. 141-
160. 1SBN: 978-3-319-11245-9.

A.Kiihn. “Reconciling Context-Oriented Programming and Fea-
ture Modeling”. MA thesis. Université catholique de Louvain,
2017.

M. von Lowis, M. Denker, and O. Nierstrasz. “Context-Oriented
Programming: Beyond Layers”. In: Proceedings of the 2007 Inter-
national Conference on Dynamic Languages: In Conjunction with

276

[Led+18]

[Leu19]

[Lim+05]

[Lin+11]

[Lop+08]

[Luy+08]

[Lylog]

[Mal+10]

[Mar+17]

BIBLIOGRAPHY

the 15th International Smalltalk Joint Conference 2007. ICDL *07.
ACM, 2007, pp. 143-156. 1SBN: 9781605580845.

D. Ledo, S. Houben, J. Vermeulen, N. Marquardt, L. Oehlberg,
and S. Greenberg. “Evaluation Strategies for HCI Toolkit Re-
search”. In: Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. CHI ’18. ACM, 2018, pp. 1-17.
ISBN: 9781450356206.

H. S. Leung. “Visualisation of Contexts and Features in Context-
Oriented Programming”. MA thesis. Université catholique de
Louvain, 2019.

Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, and V.
Lopez-Jaquero. “USIXML: A Language Supporting Multi-path
Development of User Interfaces”. In: Engineering Human Com-
puter Interaction and Interactive Systems. Springer, 2005, pp. 200—
220. 1SBN: 978-3-540-31961-0.

J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. “An open
implementation for context-oriented layer composition in Con-
text]S”. In: Science of Computer Programming (2011), pp. 1194-
1209. 1ssN: 0167-6423.

V. Lépez-Jaquero, J. Vanderdonckt, F. Montero, and P. Gonzalez.
“Towards an Extended Model of User Interface Adaptation: The
Isatine Framework”. In: Engineering Interactive Systems. Springer,
2008, pp. 374-392. 1SBN: 978-3-540-92698-6.

K. Luyten, J. Meskens, J. Vermeulen, and K. Coninx. “Meta-Gui-
Builders: Generating Domain-Specific Interface Builders for Mul-
ti-Device User Interface Creation”. In: CHI °08 Extended Abstracts
on Human Factors in Computing Systems. CHIEA ’08. ACM, 2008,
pp- 3189-3194. 1sBN: 9781605580128.

J. Lyle. EXRuby: create lean and mean GUIs with Ruby. Raleigh,
2008.

D. Malandrino, F. Mazzoni, D. Riboni, C. Bettini, M. Colajanni,
and V. Scarano. “MIMOSA: context-aware adaptation for ubiq-
uitous web access”. In: Personal and ubiquitous computing 14.4
(2010), pp. 301-320.

J. Martinez, J.-S. Sottet, A. G. Frey, T. Ziadi, T. Bissyandé, J. Van-
derdonckt, J. Klein, and Y. Le Traon. “Variability Management
and Assessment for User Interface Design”. In: Human Centered
Software Product Lines. Springer, 2017, pp. 81-106. ISBN: 978-3-
319-60947-8.

BIBLIOGRAPHY 277

[Mar+21] P. Martou, K. Mens, B. Duhoux, and A. Legay. “Test Scenario
Generation for Context-Oriented Programs”. In: Computing Re-
search Repository abs/2109.11950 (2021).

[Mar+22] P. Martou, K. Mens, B. Duhoux, and A. Legay. “Generating Vir-
tual Scenarios for Cyber Ranges from Feature-Based Context-
Oriented Models: A Case Study”. In: Proceedings of the Inter-
national Workshop on Context-Oriented Programming and Ad-
vanced Modularity. COP ’22. ACM, 2022.

[Mar21a] P.-O.Martin. “Context-Specific Composition of Features in Con-
text-Oriented Programming”. MA thesis. Université catholique
de Louvain, 2021.

[Mar21b] P.Martou. “Towards a Testing Approach for Feature-Based Con-
text-Oriented Programming Systems”. MA thesis. Université ca-
tholique de Louvain, 2021.

[Mau+16] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu. “Context Aware Re-
configuration in Software Product Lines”. In: Proceedings of the
Tenth International Workshop on Variability Modelling of Software-
Intensive Systems. VaMoS ’16. ACM, 2016, pp. 41-48. 1SBN: 978-
1-4503-4019-9.

[Mau+18] J. Mauro, M. Nieke, C. Seidl, and 1. Chieh Yu. “Context-aware
reconfiguration in evolving software product lines”. In: Science
of Computer Programming 163 (2018), pp. 139-159. 1ssN: 0167-
6423.

[Mau21] J. Mauro. “Anomaly Detection in Context-Aware Feature Mod-
els”. In: 15th International Working Conference on Variability Mod-
elling of Software-Intensive Systems. VaMoS’21. ACM, 2021. 1SBN:
9781450388245.

[MBCO09] M. Mendonca, M. Branco, and D. Cowan. “S.P.L.O.T.: Software
Product Lines Online Tools”. In: Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications. OOPSLA ’09. ACM,
2009, pp. 761-762. 1SBN: 978-1-60558-768-4.

[MCD16] K. Mens, N. Cardozo, and B. Duhoux. “A Context-Oriented Soft-
ware Architecture”. In: Proceedings of the 8th International Work-
shop on Context-Oriented Programming. COP ’16. ACM, 2016,
pp. 7-12. 1sBN: 978-1-4503-4440-1.

278

[MDC17]

[Men+17]

[Mor+08]

[Mou22]

[MPS03]

[MPV11]

[Mur+14]

[MV13]

[MVAO08]

BIBLIOGRAPHY

K. Mens, B. Duhoux, and N. Cardozo. “Managing the Context
Interaction Problem: A Classification and Design Space of Con-
flict Resolution Techniques in Dynamically Adaptive Software
Systems”. In: Companion to the First International Conference on
the Art, Science and Engineering of Programming. Programming
’17. ACM, 2017. 1SBN: 9781450348362.

K. Mens, R. Capilla, H. Hartmann, and T. Kropf. “Modeling and
Managing Context-Aware Systems’ Variability”. In: IEEE Soft-
ware 34.6 (Nov. 2017), pp. 58—63. 1SsN: 0740-7459.

B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V.
Dehlen, and G. Blair. “An Aspect-Oriented and Model-Driven
Approach for Managing Dynamic Variability”. In: In Proceedings
of ACM/IEEE 11th International Conference on Model Driven Engi-
neering Languages and Systems. Vol. 5301. MoDELS ’08. Springer,
2008, pp. 782-796.

H. Mouligneaux. “Context-Oriented State”. MA thesis. Univer-
sité catholique de Louvain, 2022.

G. Mori, F. Paterno, and C. Santoro. “Tool Support for Design-
ing Nomadic Applications”. In: Proceedings of the 8th Interna-
tional Conference on Intelligent User Interfaces. IUI ’03. ACM,
2003, pp. 141-148. 1SBN: 1581135866.

G. Meixner, F. Paterno, and J. Vanderdonckt. “Past, Present, and
Future of Model-Based User Interface Development”. In: i-com
10.3 (2011), pp. 2-11.

A. Murguzur, R. Capilla, S. Trujillo, O. Ortiz, and R. E. Lopez-
Herrejon. “Context Variability Modeling for Runtime Configu-
ration of Service-based Dynamic Software Product Lines”. In:
Proceedings of the 18th International Software Product Line Con-
ference: Companion Volume for Workshops, Demonstrations and
Tools - Volume 2. SPLC "14. ACM, 2014, pp. 2-9. 1SBN: 978-1-4503-
2739-8.

V. G. Motti and J. Vanderdonckt. “A computational framework
for context-aware adaptation of user interfaces”. In: IEEE 7th In-
ternational Conference on Research Challenges in Information Sci-
ence. RCIS "13. IEEE, 2013, pp. 1-12.

F. Martinez-Ruiz, J. Vanderdonckt, and J. Arteaga. “Context-
Aware Generation of User Interface Containers for Mobile De-
vices”. In: 2008 Mexican International Conference on Computer
Science. ENC *08. IEEE, 2008, pp. 63-72.

BIBLIOGRAPHY 279

[NES17]

[Pat04]

[PBD09]

[PBV05]

[PS02]

[PSS09]

[PV12]

[PVM09]

[RGR18]

[Sau11]

M. Nieke, G. Engel, and C. Seidl. “DarwinSPL: An Integrated
Tool Suite for Modeling Evolving Context-Aware Software Prod-
uct Lines”. In: Proceedings of the Eleventh International Workshop
on Variability Modelling of Software-Intensive Systems. VAMOS
’17. ACM, 2017, pp. 92-99. 1sBN: 9781450348119.

F. Paterno. “ConcurTaskTrees: an engineered notation for task
models”. In: The handbook of task analysis for human-computer
interaction (2004), pp. 483-503.

C. Parra, X. Blanc, and L. Duchien. “Context awareness for dy-
namic service-oriented product lines”. In: Proceedings of the 13th
International Software Product Line Conference. Vol. 446. SPLC
’09. ACM, 2009, pp. 131-140.

K. Pohl, G. Bockle, and F. Van Der Linden. Software product line
engineering: foundations, principles, and techniques. Vol. 1.
Springer, 2005. 1SBN: 978-3540243724.

F. Paternd and C. Santoro. “One Model, Many Interfaces”. In:
Computer-Aided Design of User Interfaces IIl: Proceedings of the
Fourth International Conference on Computer-Aided Design of User
Interfaces. Springer, 2002, pp. 143-154. 1sBN: 978-94-010-0421-3.

F. Paterno, C. Santoro, and L. D. Spano. “MARIA: A Universal,
Declarative, Multiple Abstraction-Level Language for Service-
Oriented Applications in Ubiquitous Environments”. In: ACM
Transactions on Computer-Human Interaction 16.4 (Nov. 2009).
ISSN: 1073-0516.

T. Poncelet and L. Vigneron. “The Phenomenal Gem: Putting
Features as a Service on Rails”. MA thesis. Université catholique
de Louvain, 2012.

S. Pietschmann, M. Voigt, and K. Meifiner. “Dynamic Composi-
tion of Service-Oriented Web User Interfaces”. In: 2009 Fourth
International Conference on Internet and Web Applications and
Services. ICIW ’09. IEEE, 2009, pp. 217-222.

P.Rosenberger, D. Gerhard, and P. Rosenberger. “Context-Aware
System Analysis: Introduction of a Process Model for Industrial
Applications.” In: Proceedings of the 20th International Confer-
ence on Enterprise Information Systems. Vol. 2. ICEIS *18. Science
and Technology Publications, 2018, pp. 368-375.

J. Sauro. A Practical Guide to the System Usability Scale: Back-
ground, Benchmarks & Best Practices. Measuring Usability LLC,
Apr. 2011.

280

[SGP11]

[SGP12a]

[SGP12b]

[SHTO6]

[SLR13]

[SMH17]

[Sot+07]

[Sou+17]

[ST09]

BIBLIOGRAPHY

G. Salvaneschi, C. Ghezzi, and M. Pradella. “JavaCtx: Seamless
Toolchain Integration for Context-oriented Programming”. In:
Proceedings of 3rd International Workshop on Context-Oriented
Programming. COP ’11. ACM, 2011, 4:1-4:6. 1SBN: 978-1-4503-
0891-5.

G. Salvaneschi, C. Ghezzi, and M. Pradella. “Context-oriented
programming: A software engineering perspective”. In: Journal
of Systems and Software 85.8 (2012), pp. 1801-1817. 1ssN: 0164-
1212.

G. Salvaneschi, C. Ghezzi, and M. Pradella. “ContextErlang: In-
troducing Context-oriented Programming in the Actor Model”.
In: Proceedings of the 11th Annual International Conference on
Aspect-oriented Software Development. AOSD ’12. ACM, 2012,
pp. 191-202. 1SBN: 978-1-4503-1092-5.

P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. “Feature Dia-
grams: A Survey and a Formal Semantics”. In: Proceedings of 14th
IEEE International Requirements Engineering Conference. RE *06.
IEEE, 2006, pp. 139-148.

K. Saller, M. Lochau, and I. Reimund. “Context-Aware DSPLs:

Model-Based Runtime Adaptation for Resource-Constrained Sys-
tems”. In: Proceedings of the 17th International Software Product

Line Conference Co-Located Workshops. SPLC ’13. ACM, 2013,

pp- 106—113. 1SBN: 9781450323253.

M. Springer, H. Masuhara, and R. Hirschfeld. “A Layer-based
Approach to Hierarchical Dynamically-scoped Open Classes”.
In: Journal of Information Processing 25 (2017), pp. 296-307.

J.-S. Sottet, V. Ganneau, G. Calvary, J. Coutaz, A. Demeure, J.-M.
Favre, and R. Demumieux. “Model-Driven Adaptation for Plastic
User Interfaces”. In: Human-Computer Interaction — INTERACT
2007. Springer, 2007, pp. 397-410. ISBN: 978-3-540-74796-3.

I. de Sousa Santos, M. L. de Jesus Souza, M. L. Luciano Carvalho,
T. Alves Oliveira, E. S. de Almeida, and R. M. de Castro Andrade.
“Dynamically Adaptable Software Is All about Modeling Con-
textual Variability and Avoiding Failures”. In: IEEE Software 34.6
(2017), pp. 72-77.

M. Salehie and L. Tahvildari. “Self-Adaptive Software: Landscape
and Research Challenges”. In: ACM Transactions on Autonomous
and Adaptive Systems 4.2 (May 2009). 1ssN: 1556-4665.

BIBLIOGRAPHY 281

[TC99]

[Url+15]

[Van+05]

[Van20]

[VLC03]

[Was+10]

[Yig+19]

[Yig+20]

D. Thevenin and J. Coutaz. “Plasticity of User Interfaces: Frame-
work and Research Agenda.” In: Human-Computer Interaction
INTERACT ’99: IFIP TC13. Vol. 99. I0S Press, 1999, pp. 110-117.

S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet, and S. Mosser.
“A visual support for decomposing complex feature models”. In:
Proceedings of the 3rd Working Conference on Software Visualiza-
tion. VISSOFT ’15. IEEE. Sept. 2015, pp. 76—85.

J. Vanderdonckt, D. Grolaux, P. Van Roy, Q. Limbourg, B. Macgq,
and B. Michel. “A Design Space for Context-Sensitive User In-
terfaces.” In: Proceedings of the 14th International Conference on
Intelligent and Adaptive Systems and Software Engineering. ISCA
’14. ISCA, 2005, pp. 207-214.

A. Van den Bogaert. “Consistency Management of Contexts and
Features in Context-Oriented Programming Language with SAT
Solving”. MA thesis. Université catholique de Louvain, 2020.

J. Van den Bergh, K. Luyten, and K. Coninx. “A run-time sys-
tem for context-aware multi-device user interfaces”. In: Human-
Computer Interaction: Theory and Practice 2 (2003), p. 308.

B.H. Wasty, A. Semmo, M. Appeltauer, B. Steinert, and R. Hirsch-
feld. “ContextLua: Dynamic Behavioral Variations in Computer
Games”. In: Proceedings of the 2nd International Workshop on
Context-Oriented Programming. COP "10. ACM, 2010. 1SBN: 978-
1-4503-0531-0.

E. Yigitbas, K. Josifovska, I. Jovanovikj, F. Kalinci, A. Anjorin,
and G. Engels. “Component-Based Development of Adaptive
User Interfaces”. In: Proceedings of the ACM SIGCHI Symposium
on Engineering Interactive Computing Systems. EICS ’19. ACM,
2019. 1sBN: 9781450367455.

E. Yigitbas, I. Jovanovikj, K. Biermeier, S. Sauer, and G. Engels.
“Integrated model-driven development of self-adaptive user in-
terfaces”. In: Software and Systems Modeling 19.5 (2020), pp. 1057-
1081.

