
Université catholique de Louvain

Quasi-Newton Methods with
Provable Efficiency Guarantees

Anton Rodomanov

Thesis submitted in partial fulfillment
of the requirements for the degree of
Docteur en Sciences de l’Ingénieur

Dissertation committee:

Prof. Yurii Nesterov (Université catholique de Louvain, Advisor)
Prof. Pierre-Antoine Absil (Université catholique de Louvain)
Prof. Volkan Cevher (École Polytechnique Fédérale de Lausanne)
Prof. François Glineur (Université catholique de Louvain)
Prof. Michael L. Overton (New York University)

August, 2022

To my dear wife Julia and daughter Alisa

Abstract

Quasi-Newton methods are very popular in Optimization. They have a
long, rich history, and perform extremely well for solving real-life problems.
However, almost nothing is known about theoretical efficiency guarantees
for these methods.

The goal of this work is the advancement of the theory of quasi-Newton
methods. This includes both obtaining new convergence estimates for the
already existing algorithms and developing new methods with provable ef-
ficiency guarantees.

In this thesis, we present our results in several directions. First, we pro-
vide a new theoretical analysis of local superlinear convergence of classical
quasi-Newton methods and establish explicit and non-asymptotic bounds on
their rate of convergence. Then, we develop and analyze new quasi-Newton
methods which have some advanced features. Specifically, we propose a
new family of greedy quasi-Newton methods for which, apart from local su-
perlinear convergence, it is also possible to guarantee the convergence of
Hessian approximations. Finally, we study one algorithm which is related
to classical quasi-Newton methods, namely, the Ellipsoid Method, and de-
velop a new variant of this method, which has a better dependency on the
dimensionality of the problem than the standard one.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my
advisor, Professor Yurii Nesterov, for his guidance, for all our meetings and
fruitful discussions, for giving me the freedom to explore various research
topics and always being open to new ideas and suggestions, for being a
constant source of inspiration. It has been a real pleasure to work with
him, and I am very grateful for his kindness and continuous support.

I am also extremely grateful to the members of my dissertation commit-
tee, Professors Pierre-Antoine Absil, Volkan Cevher, François Glineur, and
Michael L. Overton, for their valuable time and efforts spent on reviewing
this thesis. Their feedback was very useful and greatly helped to improve
the quality of the presentation.

Many thanks to my friends and colleagues, Nikita Doikov, Geovani
Nunes Grapiglia, Radu-Alexandru Dragomir, Alexander Gasnikov, Pavel
Dvurechensky, Evgeniia Vorontsova, Masoud Ahookhosh, Mihai Florea, and
Valentin Leplat, for numerous discussions and the time we spent together.

Special thanks to the administrative staff at UCLouvain, in particular,
to Marie-Christine Joveneau, Pascale Premereur, Margaux Hubin, Nancy
Guillaume, Marie Gonze, Etienne Huens, and Catherine Germain, for al-
ways being there ready to help.

I would also like to extend my sincere gratitude to my bachelor’s and
master’s advisors, Dmitry Vetrov and Dmitry Kropotov, who introduced
me to science and who taught me a lot. Without them, I would not be
writing this thesis.

Last but not least, I am extremely thankful to my wife Julia for her
constant support and understanding.

This thesis has received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No. 788368).

Contents

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 Historical Overview . 4

1.2.1 Quasi-Newton Methods 4
1.2.2 Evolution of Optimization Theory 7
1.2.3 Ellipsoid Method . 12

1.3 Contributions of this Thesis 13
1.4 Overview of Main Results . 15

2 Background 19
2.1 Notation and Generalities . 19

2.1.1 Vector Spaces . 19
2.1.2 Adjoint Operator . 21
2.1.3 Order Between Self-Adjoint Operators 22
2.1.4 Derivatives . 23
2.1.5 Norms . 24
2.1.6 Relative Eigenvalues and Eigenvectors 26
2.1.7 Trace Product . 28
2.1.8 Determinant Product 31
2.1.9 Relative Volume . 33

2.2 Standard Function Classes . 36
2.2.1 Convex Functions . 36
2.2.2 Strongly Convex Functions 37
2.2.3 Smooth Functions . 39
2.2.4 Nonsmooth Convex Functions 42

2.3 Gradient Method . 43

vii

CONTENTS

2.4 Newton’s Method . 48
2.4.1 Classical Newton’s Method 48
2.4.2 Globally Convergent Variants 55

2.5 Quasi-Newton Methods . 58
2.5.1 General Scheme . 59
2.5.2 Updating Formulas . 60
2.5.3 Convergence Results 72

2.6 Subgradient Method . 75
2.7 Ellipsoid Method . 80

2.7.1 General Cutting Plane Scheme 81
2.7.2 Ellipsoid Method . 85

3 Classical Quasi-Newton Methods 91
3.1 Convex Broyden Class . 92
3.2 Unconstrained Quadratic Minimization 102
3.3 Strongly Self-Concordant Functions 109
3.4 Minimization of General Functions 113
3.5 Discussion . 125
3.A Appendix . 127

3.A.1 Proof of Lemma 3.1.1 127
3.A.2 Auxiliary Operator Inequality 129

4 Greedy Quasi-Newton Methods 131
4.1 Greedy Quasi-Newton Updates 133
4.2 Unconstrained Quadratic Minimization 139
4.3 Minimization of General Functions 144
4.4 Comparison with Classical Methods 154
4.5 Numerical Experiments . 157

4.5.1 Regularized Log-Sum-Exp 157
4.5.2 Logistic Regression . 164

4.6 Discussion . 165

5 Subgradient Ellipsoid Method 167
5.1 Convex Problems and Accuracy Certificates 170

5.1.1 Description and Examples 170
5.1.2 Establishing Convergence of Residual 174

5.2 General Algorithmic Scheme 176
5.3 Main Instances of General Scheme 183

5.3.1 Subgradient Method 183

viii

CONTENTS

5.3.2 Standard Ellipsoid Method 185
5.3.3 Ellipsoid Method with Preliminary Semicertificate . . 186
5.3.4 Subgradient Ellipsoid Method 189

5.4 Constructing Accuracy Semicertificate 193
5.4.1 Augmentation Algorithm 193
5.4.2 Methods with Preliminary Certificate 194
5.4.3 Standard Ellipsoid Method 195

5.5 Implementation Details . 197
5.5.1 Explicit Representations 197
5.5.2 Computing Support Function 199
5.5.3 Computing Dual Multipliers 200
5.5.4 Time and Memory Requirements 202

5.6 Discussion . 203
5.A Proof of Lemma 5.3.2 . 204
5.B Support Function and Dual Multipliers: Proofs 208

5.B.1 Auxiliary Operations 208
5.B.2 Computation of Dual Multipliers 210

6 Conclusions 213
6.1 Summary . 213
6.2 Directions for Future Research 214

Bibliography 217

ix

Chapter 1

Introduction

1.1 Motivation

Optimization methods are among the most important numerical algorithms
in Computational Mathematics. They are used for solving the problems of
minimizing or maximizing a certain function subject to certain constraints.
Such problems often arise in different applications from Machine Learn-
ing, Statistics, Economics, Transport Modeling, Telecommunications, Sig-
nal Processing, etc. [14].

One of the simplest optimization methods is the Gradient Method, which
can be traced back to Cauchy [31]. Each iteration of this method requires
computing only the gradient of the objective function and is usually rel-
atively cheap. However, the convergence of the Gradient Method may be
very slow if the problem is ill-conditioned, which is often the case in practice.

For ill-conditioned problems, a much more efficient algorithm is New-
ton’s Method. It has a very fast quadratic convergence and is insensitive
to the conditioning of the problem. However, compared to the Gradient
Method, each iteration of Newton’s Method is much more expensive: in
addition to the gradient, one also needs to compute the Hessian matrix and
solve a linear system with this matrix.

A natural idea is to combine the Gradient and Newton methods together.
This leads to quasi-Newton methods, which have a reputation of the most
efficient numerical schemes for solving large-scale optimization problems.
Quasi-Newton methods can be seen as an approximation of the standard
Newton’s Method, in which the exact Hessian is replaced by some matrix,

1

Chapter 1. Introduction

which is updated in iterations according to certain low-rank formulas in-
volving the gradients of the objective function.

There exist numerous quasi-Newton methods that differ mainly in the
rules of updating Hessian approximations. The three most popular variants
are the DFP [39, 62], BFGS [18, 19, 59, 70, 169] and SR1 [17, 39] meth-
ods. From the computational experience point of view, BFGS is typically
regarded as the most efficient quasi-Newton scheme [144].

Unfortunately, from the theoretical point of view, very little is known
about convergence guarantees for quasi-Newton methods. Despite a large
amount of research in the area, the main theoretical results about quasi-
Newton methods are still the old results which were obtained several decades
ago. These results state, in one form or another, that, under suitable as-
sumptions, certain quasi-Newton methods eventually converge to a solution
and that the rate of convergence is locally superlinear: the ratio of successive
residuals tends to zero when the number of iterations goes to infinity.

However, there are no concrete efficiency estimates or complexity bounds
for quasi-Newton methods. The main problem is that the aforementioned
theoretical results are all asymptotic and nonexplicit in nature: they do not
provide us with any particular inequalities which can be used to estimate
the number of iterations required to achieve a certain accuracy. Note that
we cannot really blame the authors for this since, in that time, the majority
of convergence results in Optimization were indeed asymptotic. On the
contrary, it was a great achievement of that time when the corresponding
works on convergence results for quasi-Newton methods first appeared.

Nevertheless, since then, Optimization Theory has advanced a lot. There
has been a shift in the paradigm. A central place in Optimization Theory
is now occupied by Complexity Theory, which originated from the work of
Yudin and Nemirovski [193]. In this theory, it is not enough to simply have
results of the form that “the method eventually converges” or “a certain
limit is zero”. Instead, for each method, it is customary to obtain explicit
efficiency estimates, discuss how these estimates depend on the parameters
of the problem class, compare different methods with each other not only
in terms of the type of convergence (linear, superlinear, etc.) but also in
terms of the complexity bounds, etc.

Strangely enough, during all these years, the theory of quasi-Newton
methods has not caught up with the shift in the paradigm. It seems as if
most of the recent research in the area was concerned more with generalizing
or adapting existing methods and ideas to different problem formulations
and settings.

2

1.1. Motivation

Thus, there is a clear need in developing and modernizing the theory
of quasi-Newton methods. This includes, in particular, obtaining explicit
efficiency estimates, investigating lower complexity bounds, finding optimal
methods, etc. Note that, in general, this is a vast and difficult topic, so
we can only hope to cover part of it. In this thesis, our focus will be on
local efficiency estimates (meaning that the method starts with a sufficiently
good initial point).

In addition to the classical quasi-Newton methods, discussed above,
there exist other methods which are closely related. The most famous of
them is probably the Ellipsoid Method. In this method, there is also some
scaling matrix which is updated at each iteration according to a certain
low-rank formula involving the (sub)gradient of the objective function. In
this regard, the Ellipsoid Method can also be considered a quasi-Newton
method, even though it was not originally constructed with the goal of
approximating Newton’s Method.

As opposed to classical quasi-Newton methods, the Ellipsoid Method
has always had a solid theoretical foundation. In fact, it was developed
by its authors exactly with the purpose of constructing an implementable
method with the complexity bound close to the optimal one. Therefore,
there has never been a question about explicit efficiency estimates for the
Ellipsoid Method.

Nevertheless, there are still some issues with the Ellipsoid Method that
have not been solved up to now. One of these issues, which we address
in this thesis, is that the Ellipsoid Method does not withstand the passage
to the limit when the dimension of the space goes to infinity: it stops
converging at all. As a result, the method has poor performance on problems
of large dimension and, in particular, it can even be slower than the basic
(Sub)Gradient Method.

Our interest in studying the Ellipsoid Method is twofold. On the one
hand, as was already mentioned, it is a method of quasi-Newton type, for
which there already exist some efficiency estimates. Therefore, the ideas
and tools used in the analysis of the Ellipsoid Method could be helpful for
developing the theory of classical quasi-Newton methods and constructing
new algorithms with theoretical guarantees. On the other hand, all improve-
ments in the Ellipsoid Method are valuable in themselves as they could lead
to more efficient approaches for solving various applied problems.

The main goal of this thesis is the advancement of the theory of quasi-
Newton methods. This includes the analysis of already existing methods as
well as the development of new methods with provable efficiency guarantees.

3

Chapter 1. Introduction

1.2 Historical Overview
In Section 1.2.1, we review the history of quasi-Newton methods and some
recent trends. In Section 1.2.2, we review the main advancements in the
theory of Optimization (mostly related to Complexity Theory) which have
been made since the invention of quasi-Newton methods. In Section 1.2.3,
we review the history of the Ellipsoid Method and its role in Optimization.

1.2.1 Quasi-Newton Methods
The main references on quasi-Newton methods are arguably the monographs
by Nocedal and Wright [144], Fletcher [61], and Dennis and Schnabel [47], as
well as the 1977 paper by Dennis and Moré [46]. The historical development
of quasi-Newton methods and, in particular, BFGS, is covered in detail in
the recent survey by Papakonstantinou [145].

The first quasi-Newton method for minimizing nonlinear functions was
proposed by Davidon in 1959 [39] under the name of a “variable metric
method”. Davidon’s method was further studied and improved by Fletcher
and Powell in 1963 [62]. This method has been known as the Davidon–
Fletcher–Powell (DFP) Method since then.

For the problem of solving a system of nonlinear equations, first quasi-
Newton methods were developed by Broyden in 1965 [16]. He proposed
two new algorithms for approximating the Jacobian matrix which are now
commonly known as the Good Broyden and Bad Broyden methods. The
main feature of these methods is that they produce Jacobian approximations
which are, in general, not symmetric.

An important step in the history of quasi-Newton methods was made
in 1970 by Broyden [18, 19], Fletcher [59], Goldfarb [70] and Shanno [169]
who discovered the celebrated Broyden–Fletcher–Goldfarb–Shanno (BFGS)
Method. It is very interesting that the four authors independently arrived
at the same formula from different considerations.

In the same year, Powell [148] proposed a special technique for sym-
metrizing the Good Broyden update. He obtained a new quasi-Newton
algorithm for optimization problems, which has subsequently been referred
to as the Powell Symmetric Broyden (PSB) Method. Powell’s technique
was later used by Dennis in 1971 [42] to show that almost all well-known
quasi-Newton methods could be derived using the same approach.

The Symmetric Rank-One (SR1) formula was first presented by Davidon
in the appendix of his 1959 report [39]. However, it was later rediscovered

4

1.2. Historical Overview

several times by different authors.
An interesting idea that quasi-Newton updates can be derived from vari-

ational considerations using the least change principle was first formulated
by Greenstadt in 1970 [81]. It was exactly this idea that Goldfarb used to ar-
rive at the BFGS formula [70]. In 1977, Dennis and Moré [46] demonstrated
that many other popular quasi-Newton updates could also be derived by us-
ing the same principle.

First convergence guarantees for quasi-Newton methods for nonlinear
problems were obtained by Powell in 1971 [149]. He considered the DFP
Method with exact line search, applied to minimizing a strongly convex func-
tion, and showed that this method has global convergence and that asymp-
totically the rate of convergence is superlinear. A year later, Dixon [49, 50]
extended this result to BFGS, SR1 and many other methods by establish-
ing a remarkable result that all quasi-Newton algorithms from Broyden’s
family [17] coincide under exact line search.

In 1973, Broyden, Dennis and Moré [20] showed that, for the purposes
of local convergence, there is no need to apply any line search in quasi-
Newton methods, as one can simply use unit step sizes, similarly to Newton’s
Method. For DFP, BFGS and several other quasi-Newton methods, they
proved superlinear convergence under the assumption that both the starting
point and the initial Hessian (or Jacobian) approximation are sufficiently
good. The analysis was based on the “bounded deterioration” principle,
introduced earlier by Dennis [43, 44].

The superlinear convergence proofs obtained by Powell and by Broyden,
Dennis and Moré were later unified by Dennis and Moré in 1974 [45]. They
established a necessary and sufficient condition for superlinear convergence
of quasi-Newton methods. They also showed that, for DFP and BFGS,
the superlinear convergence automatically follows from the assumption that
the sequence of residuals is summable, provided that the method eventually
switches to unit step sizes. This result was further extended to the entire
convex Broyden class by Griewank and Toint in 1982 [83].

In 1976, Powell [150] proved that BFGS with an inexact line search,
based on Wolfe conditions, has global convergence on strongly convex func-
tions. His analysis was based on studying the evolution of the trace and
determinant of Hessian approximation matrices. He also showed, applying
the tools of Dennis and Moré, that asymptotically the rate of convergence
is superlinear, provided that the method always chooses the unit step size
when it is admissible by the line search. Powell’s results were later extended
by Byrd, Nocedal and Yuan [25] to all methods from the convex Broyden

5

Chapter 1. Introduction

class excluding DFP. In 1989, Byrd and Nocedal [24] simplified Powell’s
original analysis by introducing a special potential function which combines
the trace and the logarithm of determinant. They also made an interesting
observation that the new potential function provides an alternative way for
proving superlinear convergence, compared to the standard Dennis–Moré
approach.

Another line of research is related to convergence of Hessian approx-
imation matrices constructed by quasi-Newton methods. One impressive
result, proved by Ge and Powell in 1983 [66], is that the matrices, pro-
duced by BFGS and DFP methods, are actually convergent, even though
their limit may be different from the true Hessian of the objective func-
tion. Later, Stoer [175] generalized this result onto other methods from the
convex Broyden class. In 1991, Conn, Gould and Toint [34] showed that,
whenever a certain uniform linear independence assumption is satisfied, the
SR1 Method generates Hessian approximations that do converge to the true
Hessian. A similar assumption was used by Boggs and Tolle in 1994 [11] in
their analysis of Broyden’s class.

In order to apply quasi-Newton methods for solving large-scale prob-
lems and overcome the need for storing the Hessian approximation matri-
ces in memory, a number of approaches were proposed, known as limited-
memory quasi-Newton methods. These methods originated with the works
of Perry [147] and Shanno [170] and are based on the idea of combining
quasi-Newton and nonlinear conjugate gradient methods together. Cur-
rently, the most popular algorithm of this type is the L-BFGS Method,
presented by Liu and Nocedal in 1989 [113].

For large-scale problems possessing a certain structure, there exist other
techniques for reducing memory requirements of quasi-Newton methods.
One of the most important examples is given by sparse problems. The
research on sparse quasi-Newton methods started with the work of Schubert
in 1970 [167] who proposed a version of Broyden’s update for solving a
sparse system of nonlinear equations. Symmetric quasi-Newton updates,
taking into account the sparsity pattern of the Hessian, were later developed
by Toint [184–188], Shanno [171], and Fletcher [60]. A slightly different
approach was taken by Griewank and Toint [84] who introduced partitioned
quasi-Newton methods for partially separable problems [82].

The growing popularity of quasi-Newton methods for unconstrained op-
timization quickly lead to the extension of these algorithms to the problems
of constrained optimization under the frameworks of Sequential Quadratic
Programming (SQP) and Augmented Lagrangian methods. The first steps

6

1.2. Historical Overview

in this direction were made in the late 1970s by Garcia-Palomares and Man-
gasarian [64], Han [87–89], Powell [151, 152] and Tapia [177]. A subsequent
study and further development of these ideas was carried out by Coleman
and Conn [33], Nocedal and Overton [143], Tapia [178], and Byrd, Tapia
and Zhang [27], among many others.

Although quasi-Newton methods were originally designed for smooth
optimization, they also turn out to be quite efficient for nonsmooth problems,
even without any special modifications. This phenomenon was first studied
by Lewis and Overton [109] and later by Guo [86]. Nevertheless, in general,
there are almost no theoretical guarantees, and there are indeed examples
of nonsmooth problems for which classical quasi-Newton methods do fail.
To address this issue, various approaches have been proposed [35–37, 192].

First extensions of quasi-Newton methods to Riemannian optimization
were developed by Gabay already in 1982 [63]. However, a significant in-
terest in such methods has emerged only recently due to several important
applications. A number of new algorithms have been proposed in the last
decade [15, 90–92, 154, 163]. For a general introduction to optimization on
manifolds, see excellent monographs by Absil et al. [1] and Boumal [13].

In recent years, there has also been a large amount of research on op-
timization methods for the problems of stochastic and finite-sum optimiza-
tion, which often arise in Machine Learning. In these problems, the direct
computation of the gradient is an expensive operation and should be avoided
as much as possible. Many quasi-Newton methods have been proposed for
this kind of problems [26, 71, 73, 116, 117, 119, 166, 174, 190].

1.2.2 Evolution of Optimization Theory
After the invention of quasi-Newton methods, Optimization Theory has
advanced a lot. Let us briefly review some major achievements in this
area which are mainly related to Complexity Theory and have served as a
motivation for our research.

Complexity Theory for numerical optimization methods was developed
by Nemirovski and Yudin in their famous monograph in 1979 [126]. Al-
though it was not widely recognized at first, eventually, it has had a major
effect on the field of Optimization. By introducing the notion of an oracle,
Nemirovski and Yudin formalized the concept of an optimization method
and its complexity for a given class of problems. For many general classes
of optimization problems, they obtained lower complexity bounds and found
optimal methods. One of the most important results of this work was jus-

7

Chapter 1. Introduction

tification of the fact that convex optimization problems are the ones which
admit efficient algorithms, in contrast to nonconvex ones, which are, in
general, unsolvable (at least with provable guarantees of efficiency).

A major event which happened in Optimization in the 1980s and 1990s
was the so-called Interior-Point Revolution. It started in 1984 when Kar-
markar [95] invented the first interior-point method. Specifically, Kar-
markar developed a new polynomial-time algorithm for solving Linear Pro-
gramming (LP) problems. At that time, there already existed one polyno-
mial algorithm for LP by Khachiyan [97], which was based on the Ellipsoid
Method. However, in practice, this algorithm was no match for the Sim-
plex Method, which had been the main algorithm for solving LP back then.
Even though it was known that the Simplex Method could work expo-
nentially slowly in certain theoretical scenarios, in real practice, it always
worked much better than was expected in the worst case. However, the sit-
uation with Karmarkar’s algorithm was completely different: not only was
it efficient in theory, but it was also competitive with the Simplex Method
in practice. Naturally, Karmarkar’s discovery sparked a lot of interest in
interior-point methods among many researchers. An important step was
made by Renegar in 1988 [156] when he presented the first path-following
interior-point method for LP, which was based on the classical scheme of
logarithmic barrier methods. Later, Nesterov and Nemirovski discovered
which properties of the logarithmic barrier for LP were responsible for ef-
ficiency of the associated interior-point methods. More importantly, they
showed that, for many other problems, there exist easily computable bar-
riers with the same properties. They called such barriers self-concordant.
The work of Nesterov and Nemirovski, carried out in the late 1980s and
reflected in their 1994 monograph [139], significantly extended the scope
of interior-point methods to many classes of convex nonlinear optimization
problems. This work forms the foundation of the modern theory of interior-
point methods.

Starting from the 2000s, many optimization problems, arising in vari-
ous applications, became too big and out of reach of powerful interior-point
methods. The only methods which could be applied for solving these prob-
lems were gradient methods with simple iterations. Naturally, the focus of
the optimization community changed to studying and improving such meth-
ods. A lot of progress has been made since then, especially in connection
with Structural Optimization.

The first milestone was the invention of Smoothing Technique by Nes-
terov in 2005 [128]. He noticed that many nonsmooth problems from real-

8

1.2. Historical Overview

world applications possess a certain saddle structure, which could be ex-
plicitly used for efficiently approximating such problems with smooth ones.
Applying the Fast Gradient Method [127] to the corresponding smooth ap-
proximation, one obtains a method for solving the original problem whose
complexity is much better than that of standard black-box subgradient
methods. A closely related discovery, based on completely different con-
siderations, was made slightly later by Nemirovski [123] when he proposed
the Mirror-Prox Method for solving smooth saddle-point problems. This
method has almost the same scope of application and the same complexity
as Nesterov’s Smoothing Technique.

Another major advancement was the discovery of efficient methods for
the problems of Composite Optimization. In these problems, the objective
function is the sum of two components: a smooth one, given by a black-
box oracle, and a general convex function with simple structure (e.g., the
indicator of a set or a certain regularizer). In 2013, Nesterov [132] showed
that, despite the absence of good properties of the sum, such problems can
be efficiently solved by special gradient methods with efficiency typical for
the smooth part of the objective.

Significant progress has been made in the development of methods for
solving the problems of Stochastic Optimization and its particular but very
important case of Finite-Sum Optimization. A modern comprehensive treat-
ment of the Stochastic Gradient Method, including its complexity analysis,
was given by Nemirovski et al. in 2009 [124]. Computation of accuracy
certificates for this method was studied by Lan, Nemirovski and Shapiro
in 2012 [103]. In the same year, Lan [101] presented an accelerated version
of the Stochastic Gradient Method, which was later improved by Ghadimi
and Lan [67, 68]. Adaptive stochastic gradient methods, which are prov-
ably more efficient than their nonadaptive counterparts in certain favorable
situations, were proposed by Duchi, Hazan and Singer in 2011 [56], by
Kingma and Ba in 2014 [98], by Levy, Yurtsever and Cevher in 2018 [108],
by Kavis et al. in 2019 [96], and by Alacaoglu et al. in 2020 [3], among
others. An important group of algorithms, especially suited for Finite-Sum
Optimization, is variance-reduced methods. These methods originated with
the works of Le Roux, Schmidt and Bach (2012) [105, 164], and John-
son and Zhang (2013) [93], and are currently among the best methods for
minimizing large sums of functions. Lower complexity bounds for Finite-
Sum Optimization were established by Lan and Zhou [104], by Arjevani
and Shamir [5], and by Woodworth and Srebro [191]. For more details
on stochastic optimization and variance-reduced methods, including their

9

Chapter 1. Introduction

history, see the monograph by Lan [102] and the recent survey by Gower
et al. [75].

Special attention should be given to randomized coordinate descent meth-
ods. The first complexity analysis of these methods for general functions
was carried out by Nesterov in 2012 [131]. He demonstrated that random-
ized coordinate descent algorithms possess good efficiency estimates and
can outperform standard gradient methods in a variety of applications. He
also presented an accelerated version of randomized coordinate descent with
uniform sampling for unconstrained problems. This method was later im-
proved and generalized to composite problems by Lu and Xiao [114], by
Fercoq and Richtárik [58], and by Lin, Lu and Xiao [111]. It was also
shown, by Lee and Sidford in 2013 [106], by Allen-Zhu et al. [4] in 2016,
and by Nesterov and Stich in 2017 [141], that, for unconstrained problems,
further acceleration could be achieved by using nonuniform sampling strate-
gies. An important contribution of Lee and Sidford’s work [106], among
other things, is that they proposed a special technique which can be used
for getting rid of full-dimensional operations, arising in standard imple-
mentations of accelerated coordinate descent. The first extension of coordi-
nate descent to composite optimization problems was described by Richtárik
and Takáč in 2014 [157] for the basic non-accelerated method. Primal-dual
coordinate descent algorithms were developed by Shalev-Shwartz and Zhang
in 2013 [168], by Lin, Lu and Xiao in 2015 [112], by Qu et al. in 2016 [155],
by Tran-Dinh, Fercoq and Cevher in 2018 [189], and by Alacaoglu, Fercoq
and Cevher in 2020 [2]. An interesting variant of coordinate descent, which
can solve linearly constrained convex problems over networks, was proposed
by Necoara, Nesterov and Glineur in 2017 [120]. The first nonuniform strat-
egy of coordinate sampling, suitable for composite problems, was developed
by Perekrestenko, Cevher and Jaggi [146].

While a large part of the optimization community has been interested in
first-order methods, some major advancements have been made for second-
order methods. First global efficiency estimates for second-order methods
were obtained by Nesterov and Polyak in 2006 [140] for the cubic regular-
ization of Newton’s Method (also known as the Cubic Newton Method). An
adaptive variant of this algorithm was developed by Cartis, Gould and Toint
in 2011 [28, 29]. The first accelerated version of the Cubic Newton Method
was proposed by Nesterov in 2008 [129]. Another accelerated version with
a better iteration complexity bound was described by Monteiro and Svaiter
in 2013 [118]. Universal variants, automatically adapting to the actual level
of smoothness of the objective function, were first proposed by Grapiglia

10

1.2. Historical Overview

and Nesterov in 2017 [76] and then further accelerated and generalized to
composite optimization problems by the same authors in 2019 [77]. An in-
teresting result, justifying the superiority of the Cubic Newton Method over
the Gradient Method on the class of strongly convex functions with Lipschitz
continuous gradient, was established by Doikov and Nesterov in 2021 [54]
(see also the discussion at the end of Section 2.4.2).

Tensor methods are based on the natural idea of further accelerating
second-order methods by using higher-order derivatives. These methods
have been known in Optimization for a long time (see, e.g., [12, 165]). The
first complexity analysis of tensor methods for convex problems was carried
out by Baes in 2009 [7]. For nonconvex problems, these methods were stud-
ied, among others, by Birgin et al. in 2017 [9], by Martínez in 2017 [115]
and by Cartis et al. in 2019 [30]. However, up until recently, the practical
applicability of tensor methods was really questionable due to the hard-
ness of minimizing nonconvex multivariate polynomials. This situation was
changed after the seminal paper by Nesterov [135]. Specifically, he showed
that the auxiliary problems arising in tensor methods for minimizing convex
functions are themselves convex (for an appropriate choice of the regulariza-
tion parameter). Furthermore, he demonstrated that third-order methods
can be efficiently implemented at virtually the same cost as second-order
methods [135, 138]. This discovery sparked significant interest in tensor
methods for convex optimization. Inexact versions of these methods were
proposed by Grapiglia and Nesterov [78, 80], by Nesterov [134], and by
Doikov and Nesterov [52]. Accelerated variants with nearly optimal com-
plexities were studied by Gasnikov et al. in 2019 [65]. Universal versions
were developed by Grapiglia and Nesterov in 2020 [79]. Local convergence of
tensor methods for composite optimization problems was studied by Doikov
and Nesterov in 2021 [53].

Recently, there has been a growing interest in computer-assisted analysis
of optimization methods. This approach originated from the work of Drori
and Teboulle in 2014 [55] and relies on semidefinite programming perfor-
mance estimation framework. For more details, see the works by Taylor,
Hendrickx and Glineur [180–183] and by De Klerk, Glineur and Taylor [41].

Another interesting research direction is the study of the influence of in-
exact information on the performance of optimization methods. This topic
was extensively studied, among others, by d’Aspremont in 2008 [38], by
Dvurechensky and Gasnikov in 2016 [57], by Necoara, Patrascu and Glineur
in 2019 [121], by Kamzolov, Dvurechensky and Gasnikov in 2020 [94], and
by Stonyakin et al. in 2021 [176]. Special attention is deserved by the 2014

11

Chapter 1. Introduction

work of Devolder, Glineur and Nesterov [48], where the authors introduced
the notion of inexact first-order oracle and provided many interesting ex-
amples.

1.2.3 Ellipsoid Method
The Ellipsoid Method was invented by Yudin and Nemirovski in 1976 [193]
for solving general convex programming problems. Their original motiva-
tion was related to Complexity Theory. After studying lower complexity
bounds for black-box optimization methods, they came to the conclusion
that the Center-of-Gravity Method, proposed by Levin [107] and New-
man [142] in 1965, was optimal in terms of the oracle calls. However, each
iteration of that method required computing the center of gravity of a con-
vex polytope—an operation whose arithmetical complexity is potentially
exponential in the dimension. In an attempt to make the Center-of-Gravity
Method practical, Yudin and Nemirovski proposed a modified version of
this algorithm, in which the polytopes were replaced by ellipsoids. They
showed that the oracle complexity of the resulting method was close to the
optimal one.

Later, it turned out that the Ellipsoid Method was a particular instance
of the general scheme of subgradient methods with space dilation, introduced
by Shor in 1970 [172]. This point was clarified by Shor in his 1977 pa-
per [173], where he presented the Ellipsoid Method in a simpler form, similar
to that of quasi-Newton methods.

In 1979, Khachiyan [97] used the Ellipsoid Method for proving his fa-
mous result on polynomial solvability of Linear Programming. More pre-
cisely, he indicated how the standard Ellipsoid Method could be modified
for checking the feasibility of a system of linear inequalities with integer
data in polynomial time. This was a major event in Theoretical Computer
Science, which sparked a lot of interest in the Ellipsoid Method (for more
details, see [10]). Inspired by Khachiyan’s result, in 1981, Grötschel, Lovász
and Schrijver [85] applied the Ellipsoid Method for establishing polynomial
solvability of a number of important problems arising in Combinatorial Op-
timization.

Soon after the invention of the Ellipsoid Method, it became clear that
this method could also be applied for solving general problems with convex
structure, such as saddle-point problems, Nash equilibrium problems, vari-
ational inequalities, etc. However, for a long time, there was one difficulty
with this approach. Specifically, the procedure for generating approximate

12

1.3. Contributions of this Thesis

solutions to such problems required solving an auxiliary piecewise linear
optimization problem (see, e.g., Sections 5 and 6 in [122]). Although this
auxiliary computation did not use any additional calls to the oracle, it was
still computationally expensive and, in some cases, could take even more
time than the Ellipsoid Method itself. In 2010, Nemirovski, Onn and Roth-
blum [125] successfully resolved this difficulty by proposing an efficient tech-
nique for computing approximate solutions.

For more details and historical remarks on the Ellipsoid Method, see the
monographs by Nemirovski [122] and by Ben-Tal and Nemirovski [8]; also
see an excellent survey by Bland, Goldfarb and Todd [10].

1.3 Contributions of this Thesis

Let us briefly summarize the main contributions of this thesis.

Superlinear Rates for Classical Quasi-Newton Methods

In Chapter 3, we study the local convergence of classical quasi-Newton
methods for nonlinear optimization. Although it was well established a
long time ago that asymptotically these methods converge superlinearly,
the corresponding rates of convergence were still remaining unknown. We
address this problem. We obtain first explicit non-asymptotic rates of su-
perlinear convergence for the standard quasi-Newton methods, which are
based on the updating formulas from the convex Broyden class. In partic-
ular, this class includes the famous DFP and BFGS methods. The main
parameters in the corresponding efficiency estimates are the dimension of
the problem and its condition number.

The contents of this chapter is based on the following articles [160, 161]:

• A. Rodomanov and Y. Nesterov. New Results on Superlinear Conver-
gence of Classical Quasi-Newton Methods. Journal of Optimization
Theory and Applications, 188:744–769, 2021.

• A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for
classical quasi-Newton methods. Mathematical Programming, 194:159–
190, 2022.

13

Chapter 1. Introduction

Greedy Quasi-Newton Methods

In Chapter 4, we study greedy variants of quasi-Newton methods. They
are based on the updating formulas from a certain subclass of the Broyden
family. In particular, this subclass includes the well-known DFP, BFGS,
and SR1 updates. However, in contrast to the classical quasi-Newton meth-
ods, which use the difference of successive iterates for updating the Hessian
approximations, our methods apply basis vectors, greedily selected so as to
maximize a certain measure of progress. For greedy quasi-Newton methods,
we establish an explicit non-asymptotic bound on their rate of local super-
linear convergence, as applied to minimizing strongly convex functions with
Lipschitz continuous gradient and Hessian. The established superlinear con-
vergence rate contains a contraction factor which depends on the square of
the iteration counter. We also show that greedy quasi-Newton methods
produce Hessian approximations whose deviation from the exact Hessians
linearly converges to zero.

The contents of this chapter is based on the following article [159]:

• A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods with
Explicit Superlinear Convergence. SIAM Journal on Optimization,
31(1):785–811, 2021.

Subgradient Ellipsoid Method

In Chapter 5, we present a new ellipsoid-type algorithm for solving non-
smooth problems with convex structure. Examples of such problems in-
clude nonsmooth convex minimization problems, convex-concave saddle-
point problems and variational inequalities with monotone operator. The
new algorithm can be seen as a combination of the standard Subgradient
and Ellipsoid methods. However, in contrast to the latter one, the proposed
method has a reasonable convergence rate even when the dimensionality of
the problem is large. For generating accuracy certificates in our algorithm,
we propose an efficient technique which improves upon the previously known
one [125].

The contents of this chapter is based on the following article [162]:

• A. Rodomanov and Y. Nesterov. Subgradient ellipsoid method for
nonsmooth convex problems. Mathematical Programming, 2022.

14

1.4. Overview of Main Results

1.4 Overview of Main Results
Let us provide a quick overview of the main results presented in this thesis.

First, in Chapter 3, we obtain explicit and nonasymptotic rates of local
convergence for classical quasi-Newton methods from the convex Broyden
class, as applied to unconstrained minimization of a smooth function. The
function class which we consider is strongly convex functions with Lipschitz
continuous gradient and Hessian. The following table displays our results
for the two most important members of the convex Broyden class—BFGS
and DFP methods.

Classical quasi-Newton methods (Algorithm 3.4.1)

Method τk
Convergence rate

(new)
Starting moment

(new)
Convergence
to Hessian

BFGS 0 [κn/k − 1]k/2√κ n lnκ No
DFP 1 [κ(κn/k − 1)]k/2√κ nκ lnκ No

In this table, k is the iteration counter; κ is the condition number of
the objective function; n is the dimension of the space; the convergence
rate is presented in terms of the inaccuracy measure λk/λ0, where λk is
the local norm of the gradient, defined in (3.4.5); “Starting moment” is
the starting moment of superlinear convergence; “Convergence to Hessian”
reflects whether the Hessian approximations constructed by the method are
guaranteed to converge to the exact Hessian. For the sake of simplicity, we
have also omitted several absolute constants (for more precise formulas, see
Theorem 3.4.8 and the accompanying discussion).

According to our results, BFGS has a much better convergence rate
than DFP. In particular, its starting moment of superlinear convergence is
almost insensitive to the condition number κ (it is under the logarithm).
On the other hand, we see that classical quasi-Newton methods do not
guarantee the convergence to the exact Hessian.

We address the latter problem in Chapter 4. Specifically, we show that
we can replace the classical rule for selecting the update direction in stan-
dard quasi-Newton methods with a new greedy rule, and obtain new greedy
quasi-Newton methods that do guarantee the convergence of Hessian ap-
proximations to the exact Hessian. These new methods also have another
interesting element—a special correction procedure—ensuring that the Hes-
sian approximations constructed by the method are actually upper approx-

15

Chapter 1. Introduction

imations. As a result, it becomes possible to work with a subclass of the
Broyden family, which is larger than the classical convex Broyden class and
includes, in particular, not only BFGS and DFP updates, but also SR1.
We summarize the convergence properties of greedy quasi-Newton methods
in the table below, where we use the same notation as before and omit all
absolute constants (for more precise formulas, see Theorem 4.3.8 and Sec-
tion 4.4); χBFGS

k is the special value1 corresponding to the BFGS update.

New greedy quasi-Newton methods (Algorithm 4.3.1)

Method χk Convergence rate Starting moment Convergence
to Hessian

GrSR1 0
exp
(
−k2/(nκ)

)
(nκ)k nκ ln(nκ) YesGrDFP 1

GrBFGS χBFGS
k

As we can see, for greedy quasi-Newton methods, we have a worse start-
ing moment of superlinear convergence than for the classical methods. How-
ever, the rate of convergence of greedy methods is asymptotically faster, and
their Hessian approximations are more accurate. For a more detailed com-
parison of greedy methods with the classical ones, see Section 4.4.

In the final part of this thesis (Chapter 5), we develop a new Subgradient
Ellipsoid Method (Algorithm 5.2.1) for solving general nonsmooth problems
with convex structure. The new method can be seen as an attempt to
improve the classical Ellipsoid Method by correcting its behavior in the
case when the dimension of the space is large. Below we present the global
convergence rate of the Subgradient Ellipsoid Method (in terms of a special
“gap” measure δk defined in Section 5.1.2) and compare it with those of the
standard Subgradient and Ellipsoid methods.

Algorithms for nonsmooth convex problems

Algorithm Convergence rate Withstands limiting
passage n→∞

Subgradient Method 1/
√
k Yes

Ellipsoid Method exp(−k/n2) No
Subgr. Ellipsoid Method (new) min∗{1/

√
k, exp(−k/n2)} Yes

1Specifically, χBFGS
k

:= 〈∇2f(xk+1)uk, uk〉/〈G̃kuk, uk〉, see (4.1.5).

16

1.4. Overview of Main Results

In the above table, k is the iteration counter; n is the dimension of the
space; for simplicity, all absolute constants (andR) are omitted; min∗{ak, bk}
is a certain expression which coincides with min{ak, bk} for all values of k
except a “small” interval between n2 and n2 lnn (see Section 5.3.4 for more
details). The conclusion is that the rate of the Subgradient Ellipsoid Method
is virtually the best among those of the standard Subgradient and Ellipsoid
methods.

17

Chapter 2

Background

In this chapter, we first introduce our general notation and review some
important definitions and facts which we will use throughout this thesis.
We then review several standard optimization methods and discuss their
convergence guarantees. Altogether, the results presented in this chapter
serve as a foundation for our future developments.

The contents of this chapter is mostly based on several classical mono-
graphs such as [8, 61, 102, 122, 133, 144]. For the reader’s convenience,
we also present all accompanying proofs unless they are too long or too
technical.

2.1 Notation and Generalities

2.1.1 Vector Spaces

Everywhere in this thesis, if not stated explicitly, we denote by E an arbi-
trary finite-dimensional real vector space. Its dual space, composed of all
linear functionals on E, is denoted by E∗. Note that these spaces are of the
same dimension: dimE = dimE∗. The value of a linear functional s ∈ E∗,
evaluated at a point x ∈ E, is denoted by 〈s, x〉. The form 〈·, ·〉, defined in
this way, is bilinear and nondegenerate, and is called the (canonical) dual
pairing between E and E∗.

Of course, the most important example is E = Rn. In this case, we usu-
ally make an identification E∗ = Rn in such a way that the dual pairing 〈·, ·〉

19

Chapter 2. Background

corresponds to the standard dot product:

〈s, x〉 =
n∑
i=1

sixi, ∀s, x ∈ Rn, (2.1.1)

where si and xi are the coordinates of s and x, respectively.

In principle, no generality would be lost if we assumed that E = E∗ = Rn,
as we can always choose a basis in E and identify every element of E with
its coordinate representation. However, in general, it is better to work more
abstractly without fixing any particular coordinate system and by keeping
distinction between E and its dual E∗, as this approach less obscures the
fundamental geometric and algebraic structure underlying the main objects
we work with.

Note that, in contrast to E∗, the double dual space E∗∗, resulting by
taking the dual of E∗, can always be naturally identified with E (without
fixing any coordinate representations):

E∗∗ = E, (2.1.2)

in the sense that the transformation x̃ : E→ E∗∗, that maps each x ∈ E to
x̃ ≡ x̃(x) ∈ E∗∗, defined by 〈x̃, s〉 = 〈s, x〉 for all s ∈ E∗, is a bijection.

Sometimes, we work with two or more finite-dimensional real vector
spaces at the same time. In this case, unless explicitly mentioned, we usually
denote them by E1, E2, etc.

The vector space of all linear operators from E1 to E2 is denoted by

L(E1,E2) := {A : E1 → E2 | A is a linear operator}.

In this notation, E∗ = L(E,R).

When E1 = Rn and E2 = Rm, each linear operator A : E1 → E2 is
usually identified with a real m × n matrix, and L(E1,E2) corresponds to
the space Rm×n of real m× n matrices.

For more details about abstract finite-dimensional vector spaces, their
properties and duality, we refer the reader to [99].

20

2.1. Notation and Generalities

2.1.2 Adjoint Operator
For a linear operator A : E1 → E∗2, its adjoint1 A∗ : E2 → E∗1 is the unique
linear operator satisfying

〈Ax1, x2〉 = 〈A∗x2, x1〉, ∀x1 ∈ E1, ∀x2 ∈ E2. (2.1.3)

A linear operator A : E→ E∗ is called self-adjoint2 if A = A∗. The space
of all self-adjoint linear operators from E to E∗ is denoted by

S(E,E∗) := {A ∈ L(E,E∗) : A = A∗}.

Note that S(E,E∗) is a linear subspace of L(E,E∗).
In the special case when E1 = E∗1 = Rn and E2 = E∗2 = Rm (with the

standard identification of operators with matrices), the adjoint is the matrix
transpose: A∗ = AT . Similarly, when E = E∗ = Rn, each self-adjoint linear
operator A : E→ E∗ is just a symmetric matrix, and S(E,E∗) is the space Sn
of real symmetric n× n matrices.

Sometimes, in the formulas involving products of linear operators, it is
convenient to treat s ∈ E∗ as the linear operator s : R→ E∗ defined by

sα := αs, ∀α ∈ R.

Under the standard identification R∗ = R, the adjoint of this operator is
1Recall that the spaces E1 and E2 are allowed to be arbitrary. Therefore, this defi-

nition is actually more general than it may seem at a first glance. In particular, com-
bined with (2.1.2), it allows us to naturally define the adjoint for any operator not only
from L(E1,E∗2), but also from L(E∗1,E2), L(E1,E2) and L(E∗1,E∗2). For example, to define
the adjoint of an operatorH : E∗1 → E2, we can consider the spaces E′1 := E∗1 and E′2 := E∗2.
Then, H can be naturally identified with H̃ : E′1 → (E′2)∗ defined by H̃s1 := x̃2(Hs1),
where x̃2 : E2 → E∗∗2 is the canonical isomorphism between E2 and E∗∗2 . For such an
operator, (2.1.3) provides us with the definition of the adjoint H̃∗ : E′2 → (E′1)∗, or
more explicitly, H̃∗ : E∗2 → E∗∗1 . This operator, in turn, can be naturally identified with
H∗ : E∗2 → E1 defined by H∗s2 := x̃−1

1 (H̃∗s2), where x̃1 : E1 → E∗∗1 is the canonical
isomorphism between E1 and E∗∗1 . In the end, we obtain, for any s1 ∈ E∗1 and s2 ∈ E∗2,

〈s2, Hs1〉 = 〈x̃2(Hs1), s2〉 = 〈H̃s1, s2〉 = 〈H̃∗s2, s1〉 = 〈s1, x̃
−1
1 (H̃∗s2)〉 = 〈s1, H

∗s2〉.

In other words, the adjoint of an operator H : E∗1 → E2, is the operator H∗ : E∗2 → E1
defined by 〈s2, Hs1〉 = 〈s1, H∗s2〉 for all s1 ∈ E1 and s2 ∈ E2. Similarly, one can
show that the adjoints of operators U : E1 → E2 and T : E∗1 → E∗2 are, respectively,
the operators U∗ : E∗2 → E∗1 and T ∗ : E2 → E1 defined by 〈s2, Ux1〉 = 〈U∗s2, x1〉 and
〈Ts1, x2〉 = 〈s1, T ∗x2〉 for any s1 ∈ E∗1, s2 ∈ E∗2, x1 ∈ E1 and x2 ∈ E2.

2As in Footnote 1, replacing E with E∗ and using (2.1.2), we obtain the natural
definition of self-adjointness for an operator H : E∗ → E. A similar remark applies to
many other subsequent definitions in the current and the following sections.

21

Chapter 2. Background

then s∗ : E→ R defined by

s∗x := 〈s, x〉, ∀x ∈ E.

In particular, for any s1 ∈ E∗1 and s2 ∈ E∗2, the product s1s
∗
2 can be treated

as the rank-one linear operator from L(E1,E∗2):

(s2s
∗
1)x1 = 〈s1, x1〉s2, ∀x1 ∈ E1.

For us, the following result will be especially useful, as it provides an
explicit formula for the inverse operator of a rank-one perturbation.

Proposition 2.1.1 (Sherman–Morrison formula). Let A : E1 → E∗2 be a
nondegenerate linear operator and let s1 ∈ E∗1, s2 ∈ E∗2. Then,

(A+ s2s
∗
1)−1 = A−1 − A−1s2s

∗
1A
−1

1 + 〈s1, A−1s2〉
, (2.1.4)

provided that 1 + 〈s1, A
−1s2〉 6= 0.

Proof. This formula can be easily verified by multiplying the right-hand
side of (2.1.4) by A + s2s

∗
1 and checking that the result is the identity

operator.

2.1.3 Order Between Self-Adjoint Operators
The partial order for any A1, A2 ∈ S(E,E∗) is defined in the standard way:

A1 � A2 ⇐⇒ 〈A1x, x〉 ≤ 〈A2x, x〉, ∀x ∈ E. (2.1.5)

Similarly, we can define the strict order :

A1 ≺ A2 ⇐⇒ 〈A1x, x〉 < 〈A2x, x〉, ∀x ∈ E \ {0}.

An operator A ∈ S(E,E∗) is called positive semidefinite if A � 0, and
positive definite if A � 0. The cone of all self-adjoint positive semidefinite
linear operators from E to E∗ is denoted by

S+(E,E∗) := {A ∈ S(E,E∗) : A � 0}.

The interior of this cone is formed by positive definite operators:

S++(E,E∗) := {A ∈ S(E,E∗) : A � 0}.

22

2.1. Notation and Generalities

In the case when E = E∗ = Rn (with the standard identification of oper-
ators with matrices), S+(E,E∗) and S++(E,E∗) are the spaces Sn+ and Sn++
of symmetric positive semidefinite and symmetric positive definite real n×n
matrices, respectively.

2.1.4 Derivatives

Let T : Q→ E2 be a mapping, defined on a set Q ⊆ E with intQ 6= ∅. Then,
T is called differentiable at a point x ∈ intQ if there exists an operator
DT (x) ∈ L(E,E2), called the derivative of T at x, such that3

T (x+ h) = T (x) +DT (x)h+ o(‖h‖) (2.1.6)

for all sufficiently small h ∈ E, where ‖·‖ is an arbitrary norm in E. Note
that the derivative does not depend on the particular choice of the norm, as
all norms in a finite-dimensional space generate the same topology. Given
a set Q′ ⊆ intQ, we call T differentiable on Q′ if T is differentiable at every
point from Q′.

The derivative DT is itself a mapping from a certain set Q′ ⊆ intQ ⊆ E,
on which T is differentiable, to a certain vector space, namely, L(E,E2). If
intQ′ 6= ∅ and DT is differentiable at a point x ∈ intQ′, we say that f is
twice differentiable at x, and define the second derivative of T at x, denoted
by D2T (x), as the derivative of DT at x. Given a set Q′′ ⊆ intQ′, we call T
twice differentiable on Q′′ if T is twice differentiable at any point from Q′′.
Similarly, we can define the notions of differentiability and derivative of
order 3, 4, etc.

Thus, for each point x ∈ intQ, at which T is differentiable as many
times as necessary, the derivatives of T at x are certain linear operators of
the following form:

DT (x) ∈ L(E,E2) =: L1,

D2T (x) ∈ L(E,L1) =: L2,

D3T (x) ∈ L(E,L2) =: L3,

· · · .

(2.1.7)

If T is p ≥ 1 times differentiable at x ∈ intQ, then, for any integer 1 ≤ k ≤ p

3Here we use the standard notation o(‖h‖) to denote an arbitrary element ∆(h) ∈ E2
satisfying ‖∆(h)‖/‖h‖ → 0 as h→ 0. In other words, (2.1.6) is equivalent to the following
statement: ‖T (x+ h)− T (x)−DT (x)h‖/‖h‖ → 0 as h→ 0.

23

Chapter 2. Background

and any h1, . . . , hk ∈ E, we denote

DpT (x)[h1, . . . , hk] := DpT (x)h1 . . . hk. (2.1.8)

The mappingDpT (x)[·, . . . , ·], defined in this way, is a symmetric multilinear
operator from Ek to Lp−k (with L0 := E2). When all arguments in (2.1.8)
are the same, i.e., h1 = · · · = hk ≡ h, we use the abbreviation DpT (x)[h]k.

When dealing with a functional, i.e., a mapping of the form f : Q→ R,
where Q ⊆ E is a set with intQ 6= ∅, we usually prefer to call the first two
derivatives Df and D2f (provided, of course, they exist) the gradient and
the Hessian of f , respectively, and use the following notation for them:

∇f := Df, ∇2f := D2f.

In this particular case, according to (2.1.7) and the definition of E∗, for
any x ∈ intQ, for which the corresponding derivatives exist, we have

∇f(x) ∈ E∗, ∇2f(x) ∈ L(E,E∗).

Also, by (2.1.8) and the definition of 〈·, ·〉, for all h, h1, h2 ∈ E, we have

Df(x)[h] = 〈∇f(x), h〉, D2f(x)[h1, h2] = 〈∇2f(x)h1, h2〉. (2.1.9)

Since the form D2f(x)[·, ·] is symmetric, the Hessian is actually self-adjoint:

∇2f(x) ∈ S(E,E∗).

In the case E = E∗ = Rn, the gradient and Hessian are given by the vec-
tor of partial derivatives and the (symmetric) matrix of second-order partial
derivatives, respectively: ∇f(x) =

(∂f(x)
∂xi

)n
i=1 and ∇2f(x) =

(∂2f(x)
∂xi∂xj

)n
i,j=1.

2.1.5 Norms

Any norm ‖·‖ in E naturally induces the following4 conjugate norm in E∗:

‖s‖∗ := max
h
{|〈s, h〉| : ‖h‖ = 1}, ∀s ∈ E∗. (2.1.10)

4The absolute value in (2.1.10) is optional, as we can always replace h with −h.

24

2.1. Notation and Generalities

This definition ensures the Cauchy–Schwarz inequality:

|〈s, h〉| ≤ ‖s‖∗‖h‖, ∀s ∈ E∗, ∀h ∈ E. (2.1.11)

In this thesis, we usually work with Euclidean norms. Any such a norm
is generated by a certain operator B ∈ S++(E,E∗) according to

‖h‖B := 〈Bh, h〉1/2, ∀h ∈ E. (2.1.12)

The conjugate norm for ‖·‖B is also Euclidean and is generated by B−1:

‖s‖∗B = 〈s,B−1s〉1/2, ∀s ∈ E∗. (2.1.13)

Furthermore, the Cauchy–Schwartz inequality (2.1.11) becomes an equality
iff s and Bh are collinear.

In particular, when E = E∗ = Rn and B = I (the identity matrix),
both (2.1.12) and (2.1.13) coincide with the standard Euclidean norm in Rn.

Given a function f : Q→ R defined and twice differentiable on an open
set Q ⊆ E, and a point x ∈ Q with ∇2f(x) � 0, we prefer to use the
following notation:

‖·‖x := ‖·‖∇2f(x), ‖·‖∗x := ‖·‖∗∇2f(x), (2.1.14)

provided that there is no ambiguity with the reference function f .

Recall from (2.1.7) that, for a function f : Q→ R defined on a set Q ⊆ E
and differentiable as many times as necessary at a point x ∈ intQ, the
derivatives of f at x are certain linear operators:

Dpf(x) ∈ Lp, p ≥ 1,

where Lp is a certain vector space, defined recursively by

L0 := R, Lp := L(E,Lp−1), p ≥ 1. (2.1.15)

Therefore, to measure the size of derivatives of f and of their various com-
binations, we need to define a suitable norm on the space Lp for any p ≥ 1.

Any norm ‖·‖ in E naturally induces a certain operator norm in Lp
for any p ≥ 1. We have already seen the corresponding definition for the
space L1 ≡ E∗—this is the conjugate norm (2.1.10). Similarly, we can

25

Chapter 2. Background

recursively define5, for any p ≥ 1 and any Mp ∈ Lp,

‖Mp‖ := max
h∈E
{‖Mph‖ : ‖h‖ = 1}, (2.1.16)

with the convention that ‖t‖ := |t| for any t ∈ R. This definition is compat-
ible with that in (2.1.10) (when p = 1), and ensures that, for any integer
p ≥ 1, any Mp ∈ Lp and any h ∈ E, we have the following inequality:

‖Mph‖ ≤ ‖Mp‖‖h‖. (2.1.17)

Unrolling recursive definition (2.1.16), we come to the following more
explicit expression that works for any p ≥ 1 and any Mp ∈ Lp:

‖Mp‖ = max
h1,...,hp∈E

{|Mp[h1, . . . , hp]| : ‖h1‖ = · · · = ‖hp‖ = 1}, (2.1.18)

where Mp[h1, . . . , hp] := Mph1 . . . hp ∈ R is the multilinear form induced by
the operator Mp. In the important special case when the form Mp[·, . . . , ·]
is symmetric and the norm ‖·‖ in E is Euclidean, it turns out that the
maximum in (2.1.18) can be achieved when all h1, . . . , hp coincide, and
therefore the following simpler expression could be used (see Appendix 1
in [139]):

‖Mp‖ = max
h∈E
{|Mp[h]p| : ‖h‖ = 1}. (2.1.19)

Throughout this thesis, we always assume that the norm in the oper-
ator spaces (2.1.15) is exactly the operator norm defined in (2.1.18), until
explicitly stated otherwise.

In the particular case when p = 2 and E = E∗ = Rn (with the standard
choice of ‖·‖), the norm, defined in (2.1.16), is the standard spectral norm
of a matrix (maximal singular value).

2.1.6 Relative Eigenvalues and Eigenvectors
Given two linear operators A ∈ S(E,E∗) and B ∈ S++(E,E∗), and a
scalar λ ∈ R, we call λ a (relative) eigenvalue of A w.r.t. B (also known as

5Note that we use the same notation ‖·‖ to denote different norms in different spaces.
However, in most cases, this should not cause any problems since the precise meaning of
the norm can usually be inferred from the context based on the “type” of the variable.
For example, since Mp ∈ Lp, ‖Mp‖ is the norm in the space Lp; since Mph ∈ Lp−1,
‖Mph‖ is the norm in the space Lp−1; since h ∈ E, ‖h‖ is the norm in the space E, etc.
Should there arise any ambiguity, we can always clarify the meaning of the norm either
with words, or by adding the particular space as an index of the norm (e.g., ‖·‖Lp).

26

2.1. Notation and Generalities

a generalized eigenvalue or an eigenvalue of the pencil (A,B) in some texts)
if there exists x ∈ E \ {0} such that

Ax = λBx. (2.1.20)

The vector x in this definition is called a (relative) eigenvector of A w.r.t. B
corresponding to the (relative) eigenvalue λ. The set of all eigenvalues of A
w.r.t. B is referred to as a (relative) spectrum of A w.r.t. B.

Of course, each relative eigenvalue λ of A w.r.t. B is a standard eigen-
value of B−1A ∈ L(E,E), and vice versa. However, usually, it is better
to keep A and B separately, as the operator B−1A is, in general, not self-
adjoint.

In the special case E = E∗ = Rn (with the standard identification of
linear operators with matrices), the eigenvalues of A w.r.t. B are precisely
the usual eigenvalues of the matrix B−1/2AB−1/2 ∈ Sn, where B−1/2 ∈ Sn++
is the inverse square root of B.

From (2.1.5) and (2.1.20), it is easy to see that there is a direct corre-
spondence between operator inequalities and uniform bounds on the relative
spectrum: for any A ∈ S(E,E∗), B ∈ S++(E,E∗) and α ∈ R, we have

αB � A [resp. A � αB] ⇐⇒ α ≤ λ [resp. λ ≤ α]

for all eigenvalues λ of A w.r.t. B. Similar relationships hold for strict
inequalities.

The following result from Linear Algebra is of fundamental importance.
It shows that, for any linear operators A ∈ S(E,E∗) and B ∈ S++(E,E∗),
it is possible to construct an orthonormal basis in the space E consisting
entirely of eigenvectors of A w.r.t. B.

Proposition 2.1.2 (Spectral theorem). Let A ∈ S(E,E∗), B ∈ S++(E,E∗),
and let n := dimE. Then, there exist λ1, . . . , λn ∈ R and u1, . . . , un ∈ E,
such that

Aui = λiBui, 1 ≤ i ≤ n,

and

〈Bui, uj〉 =
{

1, if i = j,

0, if i 6= j,
1 ≤ i, j ≤ n.

Proof. Although this particular formulation of the spectral theorem is not
common, it immediately follows from a more classical one, e.g., the spectral
theorem for an operator in a Euclidean space (see Theorem 2.8.5 in [99]).

27

Chapter 2. Background

Indeed, by introducing the inner product (x, y) := 〈Bx, y〉, we can convert E
into a Euclidean space, in which the operator S := B−1A ∈ L(E,E) is
actually self-adjoint (i.e., (Sx, y) = (x, Sy) for all x, y ∈ E), and then apply
the standard spectral theorem.

The eigenvalues λ1, . . . , λn, given by Proposition 2.1.2, are, in fact,
unique (up to a reordering), and are referred to as the (relative) eigen-
values of A w.r.t. B. Note, however, that λ1, . . . , λn are not necessarily
distinct, as certain eigenvalues may be repeated multiple times according to
their multiplicity.

2.1.7 Trace Product

For any linear operator S : E → E, the trace of S, denoted by tr(S) (∈ R),
is defined as the trace of the matrix representation of S w.r.t. an arbitrarily
chosen basis in E (recall that the trace of a square matrix is the sum of its
diagonal elements). It is important that the result is independent of the
particular choice of the basis since different bases generate similar matrices
(for more details, see Section 1.4.9 in [99]).

Note that the same construction does not work properly for a more
general linear operator which acts from one vector space to another. For
example, if one attempts to define the trace of a linear operator A : E→ E∗

as the trace of the matrix representation of A w.r.t. an arbitrarily chosen
pair of bases in E and E∗, then the result will no longer be basis-independent
(even if the basis in E∗ is dual6 to the one in E).

Nevertheless, given two linear operators H : E∗1 → E2 and A : E1 → E∗2,
we can properly define their trace product:

〈H,A〉 := tr(H∗A). (2.1.21)

The operator H∗A in this definition acts from E1 to E1, therefore, its trace
is well-defined and is basis-independent.

When E1 = E∗1 = Rn and E2 = E∗2 = Rm (with the standard identi-
fication of linear operators with matrices), the trace product is the usual
Frobenius inner product: 〈H,A〉 = tr(HTA).

6Recall that a basis f := (f1, . . . , fn) in E∗ is called dual to a basis e := (e1, . . . , en)
in E if, for any 1 ≤ i, j ≤ n, we have 〈fi, ej〉 = δi,j , where δi,j = 1 whenever i = j,
and δi,j = 0 whenever i 6= j. In fact, for any basis e in E, the dual basis is unique and
given by 〈fi, x〉 := x̄i for any x ∈ E and 1 ≤ i ≤ n, where x̄i is the ith coordinate of the
vector x in the basis e (see Section 1.3.9 in [99]).

28

2.1. Notation and Generalities

Observe that the mapping 〈·, ·〉, defined in (2.1.21), is a nondegenerate
bilinear form on L(E∗1,E2)×L(E1,E∗2). Therefore, it allows us to make the
following identification of the dual space of the linear operator space:

[L(E1,E∗2)]∗ = L(E∗1,E2), (2.1.22)

in the sense that the transformation that sends each H ∈ L(E∗1,E2) into
H̃ ∈ [L(E1,E∗2)]∗, defined by 〈H̃, A〉 = 〈H,A〉 for all A ∈ L(E1,E∗2), is a
bijection.

Inheriting the bilinear form 〈·, ·〉, defined in (2.1.21), onto the subspace
S(E∗,E)× S(E,E∗), we can also make the following identification:

[S(E,E∗)]∗ = S(E∗,E), (2.1.23)

which is consistent with that from (2.1.22).

Proposition 2.1.3. The trace product has the following properties:

(i) For any A ∈ L(E1,E∗2) and any x1 ∈ E1, x2 ∈ E2,

〈Ax1, x2〉 = 〈x2x
∗
1, A〉. (2.1.24)

(ii) If A ∈ S(E,E∗) is invertible, then

〈A−1, A〉 = n, (2.1.25)

where n = dimE.

(iii) For any A ∈ S+(E,E∗) and any H1, H2 ∈ S(E∗,E),

H1 � H2 =⇒ 〈H1, A〉 ≤ 〈H2, A〉.

Similarly, for any H ∈ S+(E∗,E) and any A1, A2 ∈ S(E,E∗),

A1 � A2 =⇒ 〈H,A1〉 ≤ 〈H,A2〉.

(iv) If A ∈ S(E,E∗) and B ∈ S++(E,E∗), then

〈B−1, A〉 =
n∑
i=1

λi,

where n = dimE and λ1, . . . , λn ∈ R are the eigenvalues of A w.r.t. B.

29

Chapter 2. Background

Proof. All these properties follow directly from their matrix counterparts.
For example, let us show in detail how to prove (i). Denote

H := x2x
∗
1 ∈ L(E∗1,E2). (2.1.26)

Then, according to (2.1.21), we have

〈x2x
∗
1, A〉 = 〈H,A〉 = tr(H∗A). (2.1.27)

Denote n1 := dimE1 and n2 := dimE2. Let us fix arbitrary bases e1
and e2 in the spaces E1 and E2, respectively, and let f1 and f2 be the
corresponding dual bases in E∗1 and E∗2, respectively. Let H̄, Ā ∈ Rn2×n1

be the matrices of the operators H and A, respectively, in the pairs of
bases (f1, e2) and (e1, f2), respectively. From Linear Algebra, it is known
that the matrix of the adjoint operator in a pair of dual bases is the transpose
of the corresponding matrix of the operator itself (see Section 1.7.4 in [99]).
Therefore, the matrix of H∗ ∈ L(E∗2,E1) in the pair of bases (f2, e1) is
H̄T ∈ Rn1×n2 . Also, it is known that the matrix of the composition of linear
operators is the product of the corresponding matrices (see, Section 1.4.7
in [99]). Hence, the matrix of H∗A ∈ L(E1,E1) is H̄T Ā ∈ Rn1×n1 . Thus,
according to our definition of trace, we have

tr(H∗A) = tr(H̄T Ā), (2.1.28)

where the trace in the right-hand side is the standard matrix trace.
Let x̄1 ∈ Rn1 and x̄2 ∈ Rn2 be the coordinate representation of x1 and x2

in the bases e1 and e2, respectively. It is not difficult to see from (2.1.26)
that the matrix of the operator H is given by

H̄ = x̄2x̄
T
1 .

Hence, by standard matrix calculus,

tr(H̄T Ā) = tr([x̄2x̄
T
1]T Ā) = tr(x̄1x̄

T
2 Ā)

= tr(x̄T2 Āx̄1) = 〈Āx̄1, x̄2〉Rn = 〈s̄2, x̄2〉Rn ,
(2.1.29)

where
s̄2 := Āx̄1 ∈ Rn2 ,

and 〈·, ·〉Rn is the standard dot product in Rn (see (2.1.1)).
From Linear Algebra, we know that s̄2 is exactly the coordinate repre-

30

2.1. Notation and Generalities

sentation of
s2 := Ax1 ∈ E∗2

in the dual basis f2 (see Section 1.4.4 in [99]). Also, we know that the
dual pairing 〈·, ·〉 corresponds to the standard dot product of the coordi-
nate representations w.r.t. an arbitrary choice of the pair of dual bases (see
Section 1.7.3 in [99]). Therefore,

〈s̄2, x̄2〉Rn = 〈s2, x2〉 = 〈Ax1, x2〉. (2.1.30)

Putting together (2.1.27)–(2.1.30), we obtain (2.1.24). The other prop-
erties can be proved in the same way.

2.1.8 Determinant Product

Another important characteristic of a linear operator S : E → E is its de-
terminant, denoted by det(S) (∈ R), and defined as the determinant of the
matrix representation of S w.r.t. an arbitrarily chosen basis in E. Similarly
to the trace, the determinant of such an operator is basis-independent (see
Section 1.4.9 in [99]).

For any linear operators H : E∗ → E and A : E→ E∗, we can define their
determinant product7 by

det(H,A) := det(HA). (2.1.31)

The operator HA in this definition acts from E to E, therefore its determi-
nant is well-defined and is basis-independent.

In the special case when E = E∗ = Rn (with the standard identification
of operators with matrices), the determinant product actually corresponds
to the product of determinants: det(H,A) = det(H) det(A). In general,
however, this formula makes no sense, as there are no well-defined notions
of det(H) and det(A) for H ∈ L(E∗,E) and A ∈ L(E,E∗).

Proposition 2.1.4. The determinant product has the following properties:

(i) If A ∈ L(E,E∗) is invertible, then

det(A−1, A) = 1.
7In principle, this definition can be introduced for a more general pair of linear oper-

ators H : E∗2 → E1 and A : E1 → E∗2. However, in this thesis, we will be interested only
in the particular case when E1 = E2.

31

Chapter 2. Background

(ii) For any H ∈ L(E∗,E), any A ∈ L(E,E∗), and any δ ∈ R,

det(H, δA) = det(δH,A) = δn det(H,A),

where n = dimE.

(iii) For any H1, H2 ∈ L(E∗,E) and any A1, A2 ∈ L(E,E∗),

det(H1, A1) det(H2, A2) = det(H1, A1H2A2) = det(H1A1H2, A2).

(iv) If H ∈ L(E∗,E) and A ∈ L(E,E∗) are invertible, then

det(A−1, H−1) = [det(H,A)]−1

with det(H,A) 6= 0.

(v) For any A ∈ S+(E,E∗) and any H1, H2 ∈ S(E∗,E),

H1 � H2 =⇒ det(H1, A) ≤ det(H2, A).

Similarly, for any H ∈ S+(E∗,E) and any A1, A2 ∈ S(E,E∗),

A1 � A2 =⇒ det(H,A1) ≤ det(H,A2).

(vi) If A ∈ S(E,E∗) and B ∈ S++(E,E∗), then

det(B−1, A) =
n∏
i=1

λi,

where n = dimE and λ1, . . . , λn ∈ R are the eigenvalues of A w.r.t. B.

Proof. All the properties are simple extensions of their matrix counterparts,
and can be justified in the same way as in the proof of Proposition 2.1.3.

For computing determinant products involving rank-one perturbations,
the following result is often useful.

Proposition 2.1.5. Let A ∈ S++(E,E∗), s ∈ E∗ and α ∈ R. Then,

det(A−1, A+ αss∗) = 1 + α〈s,A−1s〉.

32

2.1. Notation and Generalities

Proof. Indeed, the operator A+αss∗ has the following eigenvalues w.r.t. A:
λ1 = 1 +α〈s,A−1s〉 (with the eigenvector A−1s) and λ2 = · · · = λn = 1. It
remains to apply Proposition 2.1.4(vi).

2.1.9 Relative Volume

Given two compact sets Q,Q0 ⊆ E with intQ0 6= ∅, we can define the
relative volume of Q w.r.t. Q0 as the ratio of the volumes of their coordinate
representations w.r.t. to an arbitrarily selected basis:

vol(Q/Q0) := vol Q̄
vol Q̄0

, (2.1.32)

where Q̄, Q̄0 ⊆ Rn are the coordinate representations of Q and Q0, respec-
tively, in a certain (arbitrarily chosen) basis in E, and vol Q̄ and vol Q̄0
are the standard volumes / Lebesgue measures (in Rn) of Q̄ and Q̄0, re-
spectively. Note that vol Q̄0 6= 0 since Q0 is assumed to have a nonempty
interior.

Contrary to the “usual volume volQ”, which could be tentatively defined
as the volume of the coordinate representation of Q w.r.t. an arbitrarily
chosen basis, the relative volume is a basis-independent notion.

Proposition 2.1.6. The relative volume, defined in (2.1.32), is independent
of the particular choice of basis.

Proof. Indeed, let e and e′ be two bases in E. Let Q̄e, Q̄e0, Q̄e
′
, Q̄e

′

0 ⊆ Rn be
the coordinate representations of Q and Q0 in the bases e and e′, respec-
tively. From Linear Algebra, we know that these coordinate representations
are linked as follows8:

Q̄e = T ee′Q̄
e′ , Q̄e0 = T ee′Q̄

e′

0 ,

where T ee′ ∈ Rn×n is the corresponding change-of-basis (nondegenerate)
matrix (see Section 1.4.8 in [99]). Hence, by the standard formula for the
volume change under a linear transformation (in Rn), we have

vol Q̄e = |detT ee′ |(vol Q̄e
′
), vol Q̄e0 = |detT ee′ |(vol Q̄e

′

0),

8Here we use the following standard notation: for a matrix T ∈ Rn×n and a
set Q̄ ⊆ Rn, by TQ̄ := {Tx : x ∈ Q̄} ⊆ Rn, we denote the image of Q̄ under the
linear transformation defined by T .

33

Chapter 2. Background

where detT ee′ is the usual matrix determinant. Thus, we conclude that
vol Q̄e/ vol Q̄e0 = vol Q̄e′/ vol Q̄e′0 .

Let us state some basic properties of the relative volume.

Proposition 2.1.7. Let Q,Q0 ⊆ E be compact sets with intQ0 6= ∅. Then:

(i) vol(Q/Q0) is invariant w.r.t. arbitrary translations of Q and Q0.

(ii) For any compact set Q′ ⊆ E:

Q ⊆ Q′ =⇒ vol(Q/Q0) ≤ vol(Q′/Q0).

(iii) If intQ 6= ∅, then
vol(Q/Q) = 1.

(iv) For any δ > 0, we have

vol
(
(δQ)/Q0

)
= vol

(
Q/(δ−1Q0)

)
= δn vol(Q/Q0),

where n = dimE.

(v) For any compact set Q1 ⊆ E with intQ1 6= ∅, we have

vol(Q/Q0) = vol(Q/Q1) vol(Q1/Q0). (2.1.33)

Proof. All the properties are rather straightforward consequences of defini-
tion (2.1.32). For instance, let us show how to justify Proposition 2.1.7(v).
For this, let us fix an arbitrary basis e in E. Let Q̄, Q̄0, Q̄1 ⊆ Rn be the
coordinate representations of Q, Q0 and Q1, respectively, in the basis e.
Then, according to (2.1.32),

vol(Q/Q0) = vol Q̄
vol Q̄0

= vol Q̄
vol Q̄1

vol Q̄1

vol Q̄0
= vol(Q/Q1) vol(Q1/Q0),

which is exactly (2.1.33). The other properties can be proved similarly.

The following result will be particularly important for us.

Proposition 2.1.8. Let Q and Q0 be two ellipsoids:

Q := {x ∈ E : ‖x− x̂‖G ≤ 1}, Q0 := {x ∈ E : ‖x− x̂0‖G0 ≤ 1},

34

2.1. Notation and Generalities

where x̂, x̂0 ∈ E and G,G0 ∈ S++(E,E∗). Then,

vol(Q/Q0) = [det(G−1
0 , G)]−1/2 = [det(G−1, G0)]1/2. (2.1.34)

Proof. In view of Proposition 2.1.7(i), we can assume that x̂ = x̂0 = 0.
Thus, according to (2.1.12),

Q = {x ∈ E : 〈Gx, x〉 ≤ 1}, Q0 = {x ∈ E : 〈G0x, x〉 ≤ 1}. (2.1.35)

Let us fix (arbitrarily) a pair of dual bases (e, f) in the spaces E and E∗.
Let Ḡ, Ḡ0 ∈ Rn×n be the corresponding matrix representations of G and G0,
respectively (n := dimE). Note that the matrices Ḡ and Ḡ0 are symmetric
and positive definite: Ḡ, Ḡ0 ∈ Sn++ (since G,G0 ∈ S++(E,E∗)). Further, for
any x ∈ E, we have 〈Gx, x〉 = 〈Ḡx̄, x̄〉Rn and 〈G0x, x〉 = 〈Ḡ0x̄, x̄〉Rn , where
x̄ ∈ Rn is the coordinate representation of x in the basis e, and 〈·, ·〉Rn is the
standard dot product in Rn (defined in (2.1.1)). Using this observation, it
is easy to see from (2.1.35) that the ellipsoids Q and Q0 have, respectively,
the following matrix representations in the basis e:

Q̄ = {x̄ ∈ Rn : 〈Ḡx̄, x̄〉Rn ≤ 1}, Q̄0 = {x̄ ∈ Rn : 〈Ḡ0x̄, x̄〉Rn ≤ 1}.

Let Ḡ1/2, Ḡ
1/2
0 ∈ Sn++ be the matrix square roots of Ḡ and Ḡ0, respec-

tively, and let B̄ be the standard Euclidean ball in Rn:

B̄ := {x̄ ∈ Rn : ‖x̄‖Rn ≤ 1},

where ‖·‖Rn := 〈·, ·〉1/2Rn is the standard Euclidean norm in Rn. Using this
notation, we can represent each of the sets Q̄ and Q̄0 as the image of B̄
under a linear transformation:

Q̄ = Ḡ−1/2B̄, Q̄0 = Ḡ
−1/2
0 B̄,

where Ḡ−1/2 and Ḡ−1/2
0 are the inverse matrices of Ḡ1/2 and Ḡ1/2

0 .

Applying now the classical formula for the volume change under a linear
transformation (in Rn), we obtain

vol Q̄ = det(Ḡ−1/2) vol B̄, vol Q̄0 = det(Ḡ−1/2
0) vol B̄.

35

Chapter 2. Background

Combining this with (2.1.32) and using standard matrix calculus, we get

vol(Q/Q0) = vol Q̄
vol Q̄0

= det(Ḡ−1/2)
det(Ḡ−1/2

0)
=
[

det Ḡ
det Ḡ0

]−1/2

= [det(Ḡ−1
0 Ḡ)]−1/2 = [det(G−1

0 , G)]−1/2,

where the last identity is due to definition (2.1.31) and the fact that Ḡ−1
0 is

exactly the matrix of the operator G−1
0 w.r.t. our chosen pair of bases (f, e)

(see Section 1.4.7 in [99]). This proves the first identity in (2.1.34). The
second identity follows from the first one using Proposition 2.1.4(iv).

2.2 Standard Function Classes

Let us review some standard function classes which we will be using through-
out this thesis.

2.2.1 Convex Functions

Most of the time, we be working with convex functions and convex sets.

Definition 2.2.1 (Convex set). A set Q ⊆ E is called convex if, for all
x, y ∈ Q and all α ∈ [0, 1], we have

(1− α)x+ αy ∈ Q.

Definition 2.2.2 (Convex function). A function f : Q → R, defined on a
convex set Q ⊆ E, is called convex (on Q) if, for any x, y ∈ Q and any
α ∈ [0, 1], we have

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y).

If this inequality is strict whenever x 6= y and α ∈ (0, 1), then the function f
is called strictly convex.

For differentiable functions, we have the following equivalent characteri-
zations of convexity (see Definition 2.1.2 and Theorems 2.1.2–2.1.4 in [133]).

Proposition 2.2.3. Let f : Q→ R be a function, where Q ⊆ E is an open
convex set.

36

2.2. Standard Function Classes

(i) Suppose f is differentiable on Q. Then, f is convex on Q iff, for any
x, y ∈ Q, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉.

(ii) Suppose f is differentiable on Q. Then, f is convex on Q iff, for any
x, y ∈ Q, we have

〈∇f(x)−∇f(y), x− y〉 ≥ 0.

(iii) Suppose f is twice differentiable on Q. Then, f is convex on Q iff,
for any x ∈ Q, we have

∇2f(x) � 0.

Sometimes, it is convenient to work with extended real-valued convex
functions, which are defined on the whole space but are allowed to take
infinite values at certain points.

A function f : E→ R ∪ {+∞} is called convex if its effective domain

dom f := {x ∈ E : f(x) < +∞}

is a convex set, and the restriction of f onto dom f is a convex function in
the sense of Definition 2.2.2: for all x, y ∈ dom f and all α ∈ [0, 1], we have

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y).

Clearly, every real-valued convex function f : Q→ R, defined on a con-
vex set Q ⊆ E, can always be treated (by a slight abuse of notation) as
an extended real-valued convex function f : E → R ∪ {+∞} by defining f
as +∞ outside Q. Conversely, every extended real-valued convex function
f : E → R ∪ {+∞} can be treated as a usual real-valued convex function
f : dom f → R with the domain dom f .

2.2.2 Strongly Convex Functions
Very often, we need to additionally require that a convex function is suffi-
ciently curved and quantify somehow its curvature. The most common way
to do this is by using the following definition.

Definition 2.2.4 (Strongly convex function). Let f : Q→ R be a function,
defined on a convex set Q ⊆ E, and let ‖·‖ be a norm in E. The function f

37

Chapter 2. Background

is called strongly convex (on Q) with constant µ > 0 (w.r.t. the norm ‖·‖)
if, for any x, y ∈ Q and any α ∈ [0, 1], we have

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2α(1− α)‖x− y‖2.

Note that any strongly convex function is necessarily strictly convex and,
in particular, convex. Also, the property of a function being strongly convex
is independent of the particular choice of the norm, as any two norms in
a finite-dimensional space are equivalent. However, the constant of strong
convexity depends on the norm.

Similarly to Proposition 2.2.3, for differentiable functions, we have equiv-
alent characterizations of strong convexity in terms of first and second
derivatives (see Definition 2.1.3 and Theorems 2.1.9 and 2.1.11 in [133]).

Proposition 2.2.5. Let f : Q→ R be a function, where Q ⊆ E is an open
convex set, and let ‖·‖ be a norm in E.

(i) Suppose f is differentiable on Q. Then, f is strongly convex on Q

with constant µ > 0 (w.r.t. ‖·‖) iff, for any x, y ∈ Q, we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2.

(ii) Suppose f is differentiable on Q. Then, f is strongly convex on Q

with constant µ > 0 (w.r.t. ‖·‖) iff, for any x, y ∈ Q, we have

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2.

(iii) Suppose f is twice differentiable on Q. Then, f is strongly convex
on Q with constant µ > 0 (w.r.t. ‖·‖) iff, for any x ∈ Q and any
h ∈ E, we have

〈∇2f(x)h, h〉 ≥ µ‖h‖2.

In particular, if ‖·‖ := ‖·‖B is the Euclidean norm, induced by some
operator B ∈ S++(E,E∗), then f is strongly convex on Q with con-
stant µ > 0 (w.r.t. ‖·‖) iff, for all x ∈ Q, we have

∇2f(x) � µB. (2.2.1)

Sometimes, the following result is useful (see Theorem 2.1.10 in [133]).

38

2.2. Standard Function Classes

Proposition 2.2.6. Let f : Q→ R be a function which is differentiable on
an open convex set Q ⊆ E, and let ‖·‖ be a norm in E. Suppose that f is
strongly convex with constant µ > 0 (w.r.t. ‖·‖). Then, for all x, y ∈ Q,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ 1
2µ‖∇f(y)−∇f(x)‖2∗.

2.2.3 Smooth Functions
We will also need some smoothness assumptions. Usually, they are expressed
in terms of the Lipschitz continuity of the function and/or its derivatives.

In what follows, we make a convenient definition that D0f ≡ f and
‖t‖ := |t| for any t ∈ R.

Definition 2.2.7 (Lipschitz continuous derivatives). Let f : Q → R be a
function, defined on an open convex set Q ⊆ E, let ‖·‖ be a norm in E, and
let p ≥ 0 be an integer. The function f is said to have Lipschitz continuous
derivative of order p (on Q) with constant Lp ≥ 0 (w.r.t. ‖·‖) if f is p times
differentiable on Q, and, for any x, y ∈ Q, it holds9

‖Dpf(x)−Dpf(y)‖ ≤ Lp‖x− y‖. (2.2.2)

Depending on the particular value of p in Definition 2.2.7, we use the
following terminology. When p = 0, we say that f is a Lipschitz continuous
function. If p = 1, we call f a function with Lipschitz continuous gradient.
The case p = 2 corresponds to a function with Lipschitz continuous Hessian.

Similarly to strong convexity, the property of a function to have Lipschitz
continuous derivative of a certain order does not depend on the particular
choice of the norm. However, the corresponding Lipschitz constant does.

The Lipschitz continuity of a certain derivative can be equivalently char-
acterized as the uniform boundedness of its next derivative.

Proposition 2.2.8. Let f : Q → R be a function which is p + 1 times
differentiable on an open convex set Q ⊆ E for some integer p ≥ 0, and
let ‖·‖ be a norm in E. Then, the pth derivative of f is Lipschitz continuous
on Q with constant Lp ≥ 0 (w.r.t. ‖·‖) iff, for all x ∈ Q, we have

‖Dp+1f(x)‖ ≤ Lp. (2.2.3)
9Recall from the discussion in Sections 2.1.4 and 2.1.5 that Dpf(x) −Dpf(y) ∈ Lp,

where Lp is the space of linear operators defined in (2.1.15). Therefore, the norm in the
left-hand side of (2.2.2) is the operator norm (2.1.18). In particular, for p = 1, this is
exactly the dual norm (2.1.10).

39

Chapter 2. Background

In particular, if the norm ‖·‖ is Euclidean, then the pth derivative of f
is Lipschitz continuous on Q with constant Lp ≥ 0 (w.r.t. ‖·‖) iff, for all
x ∈ Q and all h ∈ E, it holds

|Dp+1f(x)[h]p+1| ≤ Lp‖h‖p+1.

Proof. i. Let us prove that (2.2.2) =⇒ (2.2.3). Let x ∈ Q and h ∈ E be
arbitrary such that ‖h‖ = 1. Since the set Q is open, there exists τ̄ > 0
such that x+ τh ∈ Q for all τ ∈ (0, τ̄). According to (2.2.2), for all such τ ,

‖Dpf(x+ τh)−Dpf(x)‖ ≤ Lp‖τh‖ = Lpτ.

Dividing both sides by τ and passing to the limit as τ → 0 (taking into
account the definition of the derivative (2.1.6)), we obtain

‖Dp+1f(x)[h]‖ ≤ Lp.

In view of (2.1.16), this proves (2.2.3) since the unit vector h ∈ E and the
point x ∈ Q were arbitrary.

ii. Now let us show that (2.2.3) =⇒ (2.2.2). Let x, y ∈ Q be arbitrary.
By the fundamental theorem of calculus, we have

Dpf(y)−Dpf(x) =
∫ 1

0
Dp+1f(x+ τ(y − x))[y − x]dτ. (2.2.4)

Hence, by the triangle inequality for integrals, (2.1.17) and (2.2.3),

‖Dpf(y)−Dpf(x)‖ ≤
∫ 1

0
‖Dp+1f(x+ τ(y − x))[y − x]‖dτ

≤ ‖y − x‖
∫ 1

0
‖Dp+1f(x+ τ(y − x))‖dτ

≤ Lp‖y − x‖.

This proves (2.2.2) since x, y ∈ Q were arbitrary.
iii. The second part of the claim (about the Euclidean norm) follows from

the first one using (2.1.19) and the homogeneity of Dp+1f(x)[·]p+1.

Let us also present Proposition 2.2.8 in an equivalent but more explicit
form for the special case p = 1 which corresponds to the Lipschitz continuous
gradient. For this, we can use the definition of the operator norm (2.1.18)
and (2.1.9).

40

2.2. Standard Function Classes

Corollary 2.2.9. Let f : Q → R be a twice differentiable function on an
open convex set Q ⊆ E, and let ‖·‖ be a norm in E. Then, the gradient
of f is Lipschitz continuous on Q with constant L ≥ 0 (w.r.t. ‖·‖) iff, for
all x ∈ Q and all h1, h2 ∈ E, we have

〈∇2f(x)h1, h2〉 ≤ L‖h1‖‖h2‖.

In particular, if ‖·‖ := ‖·‖B is the Euclidean norm, induced by some oper-
ator B ∈ S++(E,E∗), then the gradient of f is Lipschitz continuous on Q

with constant L ≥ 0 (w.r.t. ‖·‖) iff, for all x ∈ Q, it holds

−LB � ∇2f(x) � LB.

The following result provides a useful bound on the quality of the first-
order Taylor approximation of the derivative of a smooth function.

Proposition 2.2.10. Let f : Q → R be a function defined on an open
convex set Q ⊆ E, let ‖·‖ be a norm in E, and let p ≥ 0 be an integer.
Suppose that f has Lipschitz continuous derivative of order p + 1 (on Q)
with constant Lp+1 ≥ 0 (w.r.t. ‖·‖). Then, for all x, y ∈ Q, we have

‖Dpf(y)−Dpf(x)−Dp+1f(x)[y − x]‖ ≤ Lp+1

2 ‖y − x‖2.

Proof. Let x, y ∈ Q be arbitrary. By the fundamental theorem of calculus,

Dpf(y)−Dpf(x)−Dp+1f(x)[y − x]

=
∫ 1

0

(
Dp+1f(x+ τ(y − x))−Dp+1f(x)

)
[y − x]dτ.

Applying now the triangle inequality for integrals and using (2.1.17) and
Lipschitz continuity of Dp+1f , we get

‖Dpf(y)−Dpf(x)−Dp+1f(x)[y − x]‖

≤
∫ 1

0
‖
(
Dp+1f(x+ τ(y − x))−Dp+1f(x)

)
[y − x]‖dτ

≤ ‖y − x‖
∫ 1

0
‖Dp+1f(x+ τ(y − x))−Dp+1f(x)‖dτ

≤ Lp+1‖y − x‖2
∫ 1

0
tdτ = 1

2Lp+1‖y − x‖2.

41

Chapter 2. Background

Putting everything together, we obtain the claim.

2.2.4 Nonsmooth Convex Functions

Sometimes, we also need to work with convex functions which are not dif-
ferentiable at certain points. For such functions, there exists a standard
notion of a generalized derivative (cf. Proposition 2.2.3(i)).

Definition 2.2.11 (Subgradient). Let f : E→ R∪{+∞} be a convex func-
tion, and let x ∈ dom f be a point. A vector g ∈ E∗ is called a subgradient
of f at the point x if, for all y ∈ dom f , we have

f(y) ≥ f(x) + 〈g, y − x〉.

The set of all possible subgradients of the function f at the point x is called
the subdifferential of f at x, and is denoted by ∂f(x).

From the definition, it readily follows that, for any x ∈ dom f , the
subdifferential ∂f(x) is a closed convex set (as the intersection of a certain
collection of closed half-spaces). In principle, it may happen that ∂f(x) = ∅
for some x ∈ dom f (e.g., look at ∂f(0) for the function f : R→ R∪ {+∞}
defined by f(x) := −

√
x whenever x ≥ 0, and f(x) := +∞ whenever x < 0).

However, such pathological situations can only occur at the boundary of the
effective domain: one of the basic results in Convex Analysis states that,
for any x ∈ int dom f , the set ∂f(x) is nonempty and bounded (see, e.g.,
Theorem 3.1.15 in [133]).

If f is differentiable at a point x ∈ int dom f , then ∂f(x) = {∇f(x)}, i.e.,
the gradient ∇f(x) is a unique subgradient at x. Conversely, if, at a point
x ∈ int dom f , the subdifferential ∂f(x) is a singleton, then f is differentiable
at x, and the unique element of ∂f(x) is exactly the gradient ∇f(x) (see
Theorem 25.1 in [158]).

For nonsmooth convex functions, we have the following counterpart of
Proposition 2.2.8 for the case p = 0.

Proposition 2.2.12. Let f : E → R ∪ {+∞} be a convex function, let
Q ⊆ int dom f be an open convex set, and let ‖·‖ be a norm in E. Then,
f is Lipschitz continuous on Q with constant M ≥ 0 (w.r.t. ‖·‖) iff, for all
x ∈ Q and all f ′(x) ∈ ∂f(x), we have

‖f ′(x)‖∗ ≤M. (2.2.5)

42

2.3. Gradient Method

Proof. i. Let us prove that Lipschitz continuity implies (2.2.5). Let x ∈ Q,
h ∈ E and f ′(x) ∈ ∂f(x) be arbitrary such that ‖h‖ = 1. Since the set Q
is open, there exists τ > 0 such that x + τh ∈ Q. By the definition of
subgradient and Lipschitz continuity of f , we have

〈f ′(x), τh〉 ≤ f(x+ τh)− f(x) ≤M‖τh‖ = Mτ.

Dividing this inequality by τ , we get 〈f ′(x), h〉 ≤M . According to (2.1.10),
this proves (2.2.5) since the unit vector h ∈ E and the point x ∈ Q were
arbitrary.

ii. Now let us show that (2.2.5) implies Lipschitz continuity. Let x, y ∈ Q
be arbitrary. Take10 an arbitrary f ′(x) ∈ ∂f(x). Then, by the definition of
subgradient, (2.1.11) and (2.2.5), we have

f(x)− f(y) ≤ 〈f ′(x), x− y〉 ≤ ‖f ′(x)‖∗‖x− y‖ ≤M‖x− y‖.

Since x, y ∈ Q were arbitrary, we can interchange them and obtain the
corresponding reverse inequality. This proves that f is Lipschitz continuous
on Q with constant M .

2.3 Gradient Method
Consider the following unconstrained optimization problem:

min
x∈E

f(x), (2.3.1)

where f : E→ R is a differentiable function.
We assume that, the objective function in problem (2.3.1) is strongly

convex with some constant µ > 0 and its gradient is Lipschitz continuous
with some constant L > 0, i.e., for all x, y ∈ E, we have (see Proposi-
tion 2.2.5(ii) and Definition 2.2.7)

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2, (2.3.2)
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, (2.3.3)

where ‖·‖ is a Euclidean norm, generated by some B ∈ S++(E,E∗):

‖x‖ := ‖x‖B := 〈Bx, x〉1/2. (2.3.4)
10Note that ∂f(x) 6= ∅ since x ∈ intQ.

43

Chapter 2. Background

An important characteristic of such a function is its condition number :

κ := L

µ
≥ 1. (2.3.5)

Note that, in view of our assumptions, a solution of problem (2.3.1) exists
and is unique. Let us denote the corresponding optimal value by f∗.

Consider the simplest Gradient Method with constant step size for solv-
ing problem (2.3.1).

Algorithm 2.3.1: Gradient Method with
Constant Step Size

Input: Initial point x0 ∈ E.

Iteration k ≥ 0: Compute the new point

xk+1 := xk −
1
L
B−1∇f(xk).

In this method, we assume that the Lipschitz constant L is known. The
operator B can be thought of as a certain “preconditioner”. By choosing
it appropriately, we may improve the condition number (2.3.5) of the func-
tion f . However, at the same time, B should be sufficiently simple so that
we can efficiently compute B−1∇f(xk) at every iteration.

Let us present a standard efficiency bound for Algorithm 2.3.1.

Theorem 2.3.1. In Algorithm 2.3.1, for all k ≥ 0, we have

f(xk)− f∗ ≤ (1− κ−1)k[f(x0)− f∗]. (2.3.6)

Proof. Let k ≥ 0 be arbitrary. Applying Proposition 2.2.10 and using the
definition of xk+1 from Algorithm 2.3.1, we obtain

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L

2 ‖xk+1 − xk‖2

= f(xk)− 1
2L‖∇f(xk)‖2∗.

At the same time, since ∇f(x∗) = 0, by Proposition 2.2.6, we have

f(xk)− f∗ ≤ 1
2µ‖∇f(x)‖2∗.

44

2.3. Gradient Method

Combining the above two inequalities and using (2.3.5), we obtain

f(xk)− f(xk+1) ≥ 1
2L‖∇f(xk)‖2∗ ≥ κ−1[f(xk)− f∗].

Thus,
f(xk+1)− f∗ ≤ (1− κ−1)[f(xk)− f∗],

and (2.3.6) follows since k ≥ 0 was arbitrary.

According to Theorem 2.3.1, Algorithm 2.3.1 has a global linear rate of
convergence with constant depending only on the condition number of the
problem. From (2.3.6), we can easily estimate the number of iterations to
obtain a point x̄ ∈ E such that f(x̄)− f∗ ≤ ε for some 0 < ε ≤ f(x0)− f∗:

κ ln f(x0)− f∗

ε
. (2.3.7)

The main factor in this complexity bound is the condition number κ.

In practice, instead of using the constant step size 1/L, it might be
better to use a certain adaptive line search procedure which tunes the step
size automatically at each iteration. This is useful for two reasons. First,
the actual value of L may be unknown or difficult to estimate. Second,
even if L is known, it might still better to use line search because, for some
iterations, it may find better local estimates of the Lipschitz constant L and
thus make bigger steps.

Let us present a version of the Gradient Method with line search. As
input, it takes some initial point x0 and some initial estimate L̃0 of the
actual Lipschitz constant L.

45

Chapter 2. Background

Algorithm 2.3.2: Gradient Method with Line Search

Input: Initial point x0 ∈ E and Lipschitz estimate L̃0 ∈ (0, L].

Iteration k ≥ 0:
1. Set Lk,0 := L̃k.
2. Iterate for i ≥ 0:
a) Compute the new trial point

xk+1,i := xk −
1
Lk,i

B−1∇f(xk).

b) Check if the trial point is good enough:

f(xk)− f(xk+1,i) ≥
1

2Lk,i
‖∇f(xk)‖2∗.

If yes, set ik := i and break the loop.
c) Set Lk,i+1 := 2Lk,i.

3. Set xk+1 := xk+1,ik , L̃k+1 := Lk,ik/2.

Note that, in contrast to an upper bound on the actual Lipschitz con-
stant L, a lower bound L̃0 > 0 on L can be easily computed. For example,
one can take any point x′0 ∈ E, different from x0, and set

L̃0 := ‖∇f(x′0)−∇f(x0)‖∗
‖x′0 − x0‖

.

Then, L̃0 ∈ (0, L] in view of (2.3.3) and (2.3.2).
Note also that the inner loop (Step 2) in Algorithm 2.3.2 is always finite.

Indeed, in the worst case, at some moment, the estimate Lk,i will become
greater or equal than the actual Lipschitz constant L, and so the condition
at Step 2b will be satisfied in view of Proposition 2.2.10.

Theorem 2.3.2. For all k ≥ 0, in Algorithm 2.3.2, we have

f(xk)− f∗ ≤
(
1− (2κ)−1)[f(xk)− f∗]. (2.3.8)

Moreover, for any k ≥ 1, the total number of line search iterations during
the course of the first k iterations of Algorithm 2.3.2 is

k−1∑
t=0

(it + 1) ≤ 2k + log2(L/L̃0). (2.3.9)

46

2.3. Gradient Method

Proof. First, let us show, by induction, that, for all k ≥ 0, we have

L̃k ≤ L. (2.3.10)

Clearly, (2.3.10) is satisfied when k = 0 in view of the assumption on L̃0 in
Algorithm 2.3.2. Now suppose that (2.3.10) has been proved for all indices
from 0 up to some k ≥ 0. In view of Proposition 2.2.10, the condition at
Step 2b is definitely satisfied once Lk,i ≡ 2iL̃k becomes greater or equal
than L. Combining this observation with the fact that L̃k ≤ L and ik ≥ 0
is the first integer for which the condition at Step 2b is satisfied, we obtain
Lk,ik ≤ 2L. Therefore, L̃k+1 ≡ Lk,ik/2 ≤ L, which proves (2.3.10) for the
next index k + 1. Thus, (2.3.10) is now proved for all indices.

Let k ≥ 0 be arbitrary. From (2.3.10), it follows that

Lk,ik ≡ 2L̃k+1 ≤ 2L.

Combining this with the condition at Step 2b, we obtain

f(xk)− f(xk+1) ≥ 1
2Lk,ik

‖∇f(xk)‖2∗ ≥
1

4L‖∇f(xk)‖2∗.

On the other hand, since ∇f(x∗) = 0, we have f(xk)− f∗ ≤ 1
2µ‖∇f(xk)‖2∗

by strong convexity (see Proposition 2.2.6). Thus,

f(xk)− f(xk+1) ≥ (2κ)−1[f(xk)− f∗],

and (2.3.8) follows.
It remains to prove (2.3.9). Note that, for any k ≥ 0, we have

L̃k+1 = Lk,ik/2 = (2ik L̃k)/2 = 2ik−1L̃k.

Therefore, for all k ≥ 0,

ik − 1 = log2(L̃k+1/L̃k).

Consequently, for all k ≥ 1,

k−1∑
t=0

(it + 1) = 2k + log2(L̃k/L̃0).

Applying (2.3.10), we obtain (2.3.9).

47

Chapter 2. Background

Theorem 2.3.2 shows that the worst-case efficiency estimate of the Gra-
dient Method with line search from Algorithm 2.3.2 is the same (up to an
absolute constant) as that of the basic method from Algorithm 2.3.1, which
uses the constant step size 1/L. Moreover, the line search does not add
any significant overhead since the average number of auxiliary line search
iterations (spent inside each “outer” iteration k of the method) quickly ap-
proaches the constant 2. In practice, however, in the majority of cases, the
Gradient Method with line search is much faster than that with constant
step size.

2.4 Newton’s Method

A natural idea to accelerate the Gradient Method is to additionally use
the second derivatives of the objective function. This leads us to Newton’s
Method.

In this section, we consider the following unconstrained optimization
problem:

min
x∈E

f(x), (2.4.1)

where f : E → R is a twice differentiable convex function. We assume that
problem (2.4.1) has a solution and denote the corresponding optimal value
by f∗.

2.4.1 Classical Newton’s Method

Newton’s Method is based on the simple idea of approximating the function
with its quadratic Taylor model around the current iterate xk,

f(x) ≈ f(xk) + 〈∇f(xk), x− xk〉+ 1
2 〈∇

2f(xk)(x− xk), x− xk〉,

and then choosing the next point xk+1 as a minimizer of this model. In
order for this minimizer to exist and be unique, one should require that
the Hessian of f is strictly positive definite. With this assumption, xk+1 is
well-defined and can be computed in the closed form.

48

2.4. Newton’s Method

Algorithm 2.4.1: Newton’s Method

Input: Initial point x0 ∈ E.

Iteration k ≥ 0: Compute the new point
xk+1 := xk − [∇2f(xk)]−1∇f(xk).

Comparing Algorithm 2.4.1 with Algorithm 2.3.1, we see that Newton’s
Method can be considered a variant of the Gradient Method in which the
fixed “preconditioning” operator B is replaced with the Hessian at the cur-
rent point and the step size 1/L equals 1.

Let us present standard efficiency estimates for Newton’s Method. For
this, we need to introduce additional regularity assumptions about the ob-
jective function f in problem (2.4.1).

Standard Analysis

The classical assumptions for the analysis of Newton’s Method are as fol-
lows: f is strongly convex with constant µ > 0 and its Hessian is Lipschitz
continuous with constant11 L2 > 0, i.e., for all x, y ∈ E, we have

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖2, (2.4.2)
‖∇2f(x)−∇2f(y)‖ ≤ L2‖x− y‖, (2.4.3)

where ‖·‖ is some Euclidean norm in E.
Under these assumptions, we can easily establish the following key in-

equality for Newton’s Method.

Lemma 2.4.1. In Algorithm 2.4.1, for all k ≥ 0, we have

‖∇f(xk+1)‖∗ ≤
L2

2µ2 ‖∇f(xk)‖2∗.

Proof. Let k ≥ 0 be arbitrary. By the definition of xk+1, we have

∇f(xk) +∇2f(xk)(xk+1 − xk) = 0.

11The case L2 = 0 is not really interesting since then the function f is quadratic and
Newton’s Method finds an exact solution of problem (2.4.1) after one step.

49

Chapter 2. Background

Combining this with Proposition 2.2.10, we obtain

‖∇f(xk+1)‖∗ = ‖∇f(xk+1)−∇f(xk)−∇2f(xk+1)(xk+1 − xk)‖∗

≤ L2

2 ‖xk+1 − xk‖2.

It remains to note that, by strong convexity, we have

‖xk+1 − xk‖ = ‖[∇2f(xk)]−1∇f(xk)‖ ≤ 1
µ
‖∇f(xk)‖∗.

Indeed, if B ∈ S++(E,E∗) is the operator, defining ‖·‖, then, by (2.2.1), we
have ∇2f(xk) � µB, and so [∇2f(xk)]−1B[∇2f(xk)]−1 � µ−2B−1.

From Lemma 2.4.1, it follows that Newton’s Method has local quadratic
convergence.

Theorem 2.4.2. Suppose that, in Algorithm 2.4.1, the initial point x0 is
sufficiently good:

L2

2µ2 ‖∇f(x0)‖∗ ≤
1
2 . (2.4.4)

Then, for all k ≥ 0, we have

L2

2µ2 ‖∇f(xk)‖∗ ≤ 2−2k

. (2.4.5)

Proof. DenoteM := L2/(2µ2) and gk := ‖∇f(xk)‖∗ for all k ≥ 0. According
to Lemma 2.4.1, for all k ≥ 0, we have

Mgk+1 ≤ (Mgk)2.

Unrolling this recurrence, we obtain, for all k ≥ 0,

Mgk ≤ (Mg0)2k

,

and (2.4.5) follows since Mg0 ≤ 1
2 in view (2.4.4).

Theorem 2.4.2 gives us the rate of the convergence of Newton’s Method
in terms of the norm of the gradient. However, from this result, we can
easily obtain the corresponding rate for function values. Indeed, applying

50

2.4. Newton’s Method

Proposition 2.2.6 and (2.4.5), we obtain, for all k ≥ 0,

f(xk)− f∗ ≤ 1
2µ‖∇f(xk)‖2∗ ≤

1
2µ

(2µ2

L2
2−2k

)2
= 2µ3

L2
2

2−2k+1
.

Consequently, to find a point x̄ ∈ E such that f(x̄) − f∗ ≤ ε, Newton’s
Method requires at most the following number of iterations:

log2 log2
2µ3

L2
2ε

(2.4.6)

(assuming that 0 < ε < 2µ3/L2
2). We see that the accuracy ε and all

the parameters of the problem class enter this estimate under the double
logarithm. This is an extremely fast convergence rate. Nevertheless, it is
important to remember that complexity bound (2.4.6) is valid only under
the assumption that the initial point x0 in Newton’s Method is sufficiently
good, as specified in (2.4.4).

Self-Concordant Analysis

Despite the apparent naturalness and simplicity of the standard local con-
vergence analysis of Newton’s Method, presented above, it has one hid-
den flaw. Observe that the final complexity estimate (2.4.6) for Newton’s
Method, as well as its region of local convergence, described in (2.4.4), are
expressed in terms of a certain Euclidean norm ‖·‖. In particular, both con-
stants µ and L2 depend on the norm ‖·‖ (see (2.4.2) and (2.4.3)). At the
same time, Newton’s Method (Algorithm 2.4.1) itself does not depend on
the choice of the norm ‖·‖. Thus, we have a very strange situation when the
analysis of a method is written in terms of some norm which has nothing
to do with the method itself. Note that, for the Gradient Method (Algo-
rithm 2.3.1), there is no such problem since the method explicitly depends
on the operator B, which defines the norm ‖·‖.

The aforementioned deficiency in the standard analysis of Newton’s
Method was first noticed and addressed by Nesterov and Nemirovski [139].
Instead of measuring derivatives of the objective function f is some ar-
bitrary Euclidean norm, they proposed measuring them in the Euclidean
norm, induced by the function itself. This idea lead them to the definition
of self-concordant functions.

Definition 2.4.3 (Self-concordant function). Let f : E → R ∪ {+∞} be a

51

Chapter 2. Background

closed12 convex function with open effective domain dom f . Suppose that
f is three times differentiable on dom f and its Hessian is nondegenerate
on dom f . Then, f is called self-concordant with constant M ≥ 0 if, for all
x ∈ dom f and all h ∈ E, we have

D3f(x)[h]3 ≤ 2M‖h‖3x, (2.4.7)

where ‖h‖x := ‖h‖∇2f(x).

Comparing inequality (2.4.7) with a similar inequality from Proposi-
tion 2.2.8 for functions with Lipschitz continuous Hessian, we see that self-
concordance can be viewed as local Lipschitz continuity of the Hessian,
measured w.r.t. the local Euclidean norm ‖·‖x. The constant 2M plays the
role of the local Lipschitz constant of the Hessian. Note that there is no
need to define the similar version of local strong convexity since it is satis-
fied automatically with constant 1: for any x ∈ dom f and any h ∈ E, we
have 〈∇2f(x)h, h〉 ≡ ‖h‖2x (cf. Proposition 2.2.5(iii)).

The simplest and most important example of a self-concordant function
is the negative logarithm: f(x) := − ln x with dom f := (0,+∞). More
generally, it is known that many standard operations on convex functions
preserve self-concordance: weighted sum, composition with affine mapping,
partial minimization, etc. For more details and other examples of self-
concordant functions, see, e.g., Chapter 5 in [133].

Another interesting example of a self-concordant function is given by a
strongly convex function with Lipschitz continuous Hessian.

Lemma 2.4.4. Let f : E→ R be a three times differentiable function. Sup-
pose that f is strongly convex with constant µ > 0 and its Hessian is Lips-
chitz continuous with constant L2 ≥ 0 (w.r.t. to a certain norm ‖·‖). Then,
f is self-concordant with constant

M := L2

2µ3/2 .

12Recall that the function f : E → R ∪ {+∞} is called closed if its epigraph epi f :=
{(x, t) ∈ E × R : f(x) ≤ t} is a closed set. It is not difficult to see that, in the case
when dom f is open and f is continuous on dom f , the closedness of f is actually equiv-
alent to the barrier property: for any x̄ ∈ ∂(dom f), it holds that f(x) → +∞ as
x→ x̄;x ∈ dom f , where ∂(dom f) is the boundary of dom f .

52

2.4. Newton’s Method

Proof. Indeed, applying Propositions 2.2.8 and 2.2.5(iii), we obtain

D3f(x)[h]3 ≤ L2‖h‖3 ≤
L2

µ3/2 ‖h‖
3
x

since ‖h‖2x ≡ 〈∇2f(x)h, h〉 ≥ µ‖h‖2 by Proposition 2.2.5(iii).

Thus, self-concordant functions form a bigger class than strongly convex
functions with Lipschitz continuous Hessian, which we studied earlier.

Let us present a local convergence analysis for Newton’s Method (Algo-
rithm 2.4.1) for minimizing a self-concordant function f : E → R ∪ {+∞}
with parameter M > 0.

Similarly to our previous analysis, it will be convenient to measure the
progress of Newton’s Method in terms of the norm of the gradient. However,
now we will use a local norm:

λf (x) := ‖∇f(x)‖∗x, x ∈ dom f.

For self-concordant functions, we have the following key inequality for
one step of Newton’s Method (cf. Lemma 2.4.1).

Proposition 2.4.5 (see Theorem 5.2.2 in [133]). Consider iteration k ≥ 0
of Algorithm 2.4.1. Suppose that xk ∈ dom f and Mλf (xk) < 1. Then,
xk+1 ∈ dom f and

λf (xk+1) ≤
Mλ2

f (xk)
(1−Mλf (xk))2 .

From Proposition 2.4.5, we obtain the following local efficiency estimate
for Newton’s Method, applied for minimizing a self-concordant function.

Theorem 2.4.6. Let the initial point x0 ∈ dom f in Algorithm 2.4.1 be
sufficiently good:

Mλf (x0) ≤ ρ := 2−
√

3 (≈ 0.267 . . .). (2.4.8)

Then, for all k ≥ 0, we have xk ∈ dom f and

Mλf (xk) ≤ (2ρ)2−2k

(≤ ρ). (2.4.9)

Proof. Denote λk := λf (xk) for all k ≥ 0. Let us prove by induction that
(2.4.9) holds (with xk ∈ dom f) for all k ≥ 0. When k = 0, this follows from
our assumptions. Now suppose that we have already proved the inductive

53

Chapter 2. Background

hypothesis for all indices from 0 up to some k ≥ 0. Then, from (2.4.9),
it follows that Mλk ≤ ρ < 1. Applying Proposition 2.4.5 and (2.4.9), we
obtain xk+1 ∈ dom f and

Mλk+1 ≤
(Mλk)2

(1−Mλk)2 ≤
(Mλk)2

(1− ρ)2 ≤
(2ρ

1− ρ

)2
2−2k+1

= (2ρ)2−2k+1

since (1−ρ)2 = (
√

3−1)2 = 2ρ by the definition of ρ in (2.4.8). This proves
that (2.4.9) is also valid for the next index k + 1.

In order to obtain a more meaningful convergence guarantee for New-
ton’s Method in terms of function value, we need to relate the local norm
of the gradient with the functional residual. This can be done using the
following result (see Theorem 5.2.1 and Lemma 5.1.5 from [133]).

Proposition 2.4.7. Let f : E → R ∪ {+∞} be a self-concordant function
with constant M ≥ 0. Let x ∈ dom f be such that Mλf (x) < 1, and let f∗
be the minimal value of f . Then,

f(x)− f∗ ≤
λ2
f (x)

2(1−Mλf (x)) .

Combining Proposition 2.4.7 and Theorem 2.4.6, we obtain, for all k ≥ 0,

M2[f(xk)− f∗] ≤ (Mλf (xk))2

2(1− ρ) ≤ (2ρ)2

2(1− ρ)2−2k+1
= 2ρ2

1− ρ2−2k+1
.

Thus, to find x̄ ∈ dom f such that f(x̄) − f∗ ≤ ε, Newton’s Method needs
at most the following number of iterations:

log2 log2O
(1
M2ε

)
, (2.4.10)

where O(·) hides a certain absolute constant, namely, 2ρ2/(1−ρ) = 0.196 . . .
Note that, at this point, we have two different local analyses of Newton’s

Method, applied for minimizing a µ-strongly convex function f with L2-
Lipschitz continuous Hessian. First, we can apply the “old” analysis from
the previous section. Alternatively, according to Lemma 2.4.4, we can treat
the function f as self-concordant with parameter

M = L2

2µ3/2 ,

54

2.4. Newton’s Method

and apply the “new” analysis for general self-concordant functions. Let us
show that the latter approach is better. Indeed, according to the “old” anal-
ysis, the final complexity estimate for obtaining an ε-approximate solution
in terms of the functional residual is as follows (see (2.4.6)):

log2 log2O
(µ3

L2
2ε

)
(2.4.11)

The “old” description of the region of local convergence is (see (2.4.4)):

‖∇f(x0)‖∗ ≤ O
(µ2

L2

)
. (2.4.12)

According to the “new” analysis, the final complexity estimate, given by
(2.4.10), is exactly the same as the “old” one from (2.4.11) (up to an absolute
constant). However, the “new” description of the region of local convergence
is much better (see (2.4.8)):

‖∇f(x0)‖∗x0
≤ O

(µ3/2

L2

)
. (2.4.13)

Indeed, by strong convexity, we have

‖∇f(x0)‖∗x0
≡ 〈∇f(x0), [∇2f(x0)]−1∇f(x0)〉1/2 ≤ 1

√
µ
‖∇f(x0)‖∗.

Therefore, any point x0, belonging to the “old” region (2.4.12), also belongs
to the “new” region (2.4.13), but not vice versa. In other words, the “new”
region of convergence is larger than the “old” one. This is another confir-
mation that, for the analysis of the classical Newton’s Method, it is better
to work with the class of self-concordant functions and in terms of local
norms.

2.4.2 Globally Convergent Variants
Unfortunately, the Classical Newton’s Method is not globally convergent: it
may fail to converge if the initial point is not sufficiently good (even under
assumptions (2.4.2) and (2.4.3), see, e.g., Example 1.4.3 in [51]). However,
there exist other variants of Newton’s Method which are free of this flaw.
Let us discuss two of them. Our presentation will be brief since, as we
already explained in Section 1.1, in this thesis, our focus is mainly on local
efficiency estimates.

55

Chapter 2. Background

Damped Newton’s Method

The simplest strategy is to use the Damped Newton’s Method:

xk+1 := xk − hk[∇2f(xk)]−1∇f(xk), k ≥ 0, (2.4.14)

where hk > 0 is a certain step size parameter, which can be tuned using
line search. It is important that the line search eventually switches to the
unit step size hk ≡ 1 in order for method (2.4.14) to have local quadratic
convergence.

Under the assumption that the objective function f is µ-strongly convex
and has L-Lipschitz continuous gradient, one can prove that, in order to find
an ε-approximate solution (in terms of function value) to problem (2.4.1),
Damped Newton’s Method (equipped with a certain line search strategy for
choosing hk) requires at most the following number of iterations:

O
(
κ2 ln f(x0)− f∗

ε

)
, (2.4.15)

where κ := L/µ ≥ 1 is the condition number (see, e.g., Section 1.4.2 in [51]).

Comparing bound (2.4.15) with the corresponding bound (2.3.7) for the
Gradient Method, we see that it is worse: now the complexity is propor-
tional to κ2 instead of κ. However, despite such a pessimistic theoretical
conclusion, in practice, the Damped Newton’s Method is much faster than
the Gradient Method. This can be partly explained as follows. First, we
should keep in mind that, in contrast to the Gradient Method, the Damped
Newton’s Method is affine-invariant13: it does not depend on the particular
norm ‖·‖, which is used for defining the constants µ and L. In other words,
the condition number κ in complexity bound (2.4.15) can be taken w.r.t.
an arbitrary norm, and therefore can potentially be much smaller than the
corresponding condition number for the Gradient Method. Second, once
the Damped Newton’s Method reaches the region of local convergence of
the Classical Newton’s Method, it automatically accelerates to a quadratic
convergence rate, which does not happen with the Gradient Method.

13Here we implicitly assume that the rule for choosing step sizes hk in (2.4.14) is
also affine-invariant, which is typically the case for any standard line search procedure
(working with the local norm ‖·‖xk).

56

2.4. Newton’s Method

Cubic Newton’s Method

Another approach for globalizing Newton’s Method is based on the idea of
Cubic Regularization of the second-order Taylor model, used in the Classical
Newton’s Method.

Let us introduce the following auxiliary function for each x, y ∈ E and
each H > 0:

f̂H(x, y) := f(x) + 〈∇f(x), y − x〉

+ 1
2 〈∇

2f(x)(y − x), y − x〉+ H

6 ‖y − x‖
3,

where ‖·‖ is a Euclidean norm. If f has L2-Lipschitz continuous Hessian,
then, for any H ≥ L2, this auxiliary function provides us with a global upper
bound on the objective function f : for all x, y ∈ E, we have

f(y) ≤ f̂H(x, y).

The Cubic Newton’s Method successively minimizes this upper bound:

xk+1 = argmin
x∈E

f̂Hk
(xk, x), k ≥ 0, (2.4.16)

where Hk > 0 are certain “step size” parameters, which can be automati-
cally tuned using “line search” (similarly to Algorithm 2.3.2).

Iteration (2.4.16) corresponds to solving the following system of nonlin-
ear equations:

xk+1 = xk − [∇2f(xk) + 1
2HkrkB]−1∇f(xk),

rk = ‖xk+1 − xk‖,
(2.4.17)

where B ∈ S++(E,E∗) is the operator, defining the norm ‖·‖. In this form,
the Cubic Newton’s Method can be seen as a variant of the Levenberg–
Marquardt Method,

xk+1 = xk − [∇2f(xk) + λkB]−1∇f(xk), k ≥ 0,

with an implicit rule for choosing the regularization parameter λk.
Recently, it was proved that, for finding an ε-approximate solution in

terms of the function value, the Cubic Newton’s Method, applied for mini-
mizing a µ-strongly convex function f with L-Lipschitz continuous gradient,

57

Chapter 2. Background

needs at most
O
(
κ ln f(x0)− f∗

ε

)
(2.4.18)

iterations, where κ := L/µ is the condition number (see [54]).

Comparing bound (2.4.18) with the corresponding bound (2.3.7) for the
Gradient Method, we see that they are identical. Thus, the Cubic Newton’s
Method is at least as fast as the Gradient Method14. In fact, it turns out to
be strictly faster. Indeed, a more refined analysis from [54] reveals that, in-
stead of the usual “first-order” condition number κ in (2.4.18), there should
be a certain “second-order” condition number κ̂ ≤ κ, which is insensitive to
any quadratic parts of the objective function. More precisely, the addition
of any convex quadratic function (even highly ill-conditioned) to the objec-
tive function can only improve κ̂, which is not the case for κ. Furthermore,
similarly to the Classical Newton’s Method, the Cubic Newton’s Method
has local quadratic convergence.

2.5 Quasi-Newton Methods

We have seen that Newton’s Method is much more efficient than the Gra-
dient Method. However, each iteration of Newton’s Method requires com-
puting the Hessian and solving a linear system with it, which can be very
expensive for large-scale problems. Quasi-Newton methods aim at approx-
imating Newton’s Method without the need for computing the Hessian.

In this section, we consider the same problem as before, namely,

min
x∈E

f(x), (2.5.1)

where f : E→ R is a twice continuously differentiable function with strictly
positive definite Hessian.

14Here we are speaking about analytical complexities (the number of oracle calls) of the
two methods. Of course, the corresponding arithmetical complexities (the total number
of arithmetical operations) might be quite different depending on a particular problem
under consideration. Nevertheless, in many real-world problems of moderate dimension,
a significant improvement in the analytical complexity often leads to an improvement in
the arithmetical complexity as well.

58

2.5. Quasi-Newton Methods

2.5.1 General Scheme
Quasi-Newton methods are based on the following iteration:

xk+1 = xk − hkG−1
k ∇f(xk), k ≥ 0, (2.5.2)

where hk ≥ 0 is a step size, and Gk ∈ S++(E,E∗) is a positive definite linear
operator, which approximates the Hessian at the current point:

Gk ≈ ∇2f(xk).

The goal is to update Gk at each iteration to ensure that it becomes an in-
creasingly accurate approximation of the actual Hessian. However, the cost
of the corresponding update should be much lower than that of computing
the exact Hessian.

Note that, in principle, for efficiently implementing iteration (2.5.2), we
do not really need the Hessian approximations Gk themselves. What we
actually need is their inverses:

Hk := G−1
k ≈ [∇2f(xk)]−1.

Therefore, instead of updating Gk and then explicitly inverting it, it makes
sense to directly update the inverse Hessian approximation Hk.

We thus come to the following general scheme of a quasi-Newton method.

Algorithm 2.5.1: General Scheme of a
Quasi-Newton Method

Initialization: Choose x0 ∈ E and H0 ∈ S++(E∗,E).

Iteration k ≥ 0:
1. Compute a step size hk ≥ 0.
2. Compute xk+1 := xk − hkHk∇f(xk).
3. Update Hk into Hk+1.

For computing the step size hk at each iteration of Algorithm 2.5.1, there
exist several standard approaches based on the line search in the direction

dk := Hk∇f(xk). (2.5.3)

Specifically, one attempts to find a sufficiently large step size hk ≥ 0, for

59

Chapter 2. Background

which the function value at the new point, f(xk+1) ≡ f(xk − hkdk), is
sufficiently smaller than that at the current point.

One particular line search strategy, which is especially popular in the
context of quasi-Newton methods, prescribes selecting a step size hk ≥ 0
which satisfies the Wolfe conditions:

f(xk − hkdk) ≤ f(xk)− c1hk〈∇f(xk), dk〉,
〈∇f(xk − hkdk), dk〉 ≤ c2〈∇f(xk), dk〉,

(2.5.4)

where 0 < c1 < c2 < 1 are certain parameters. In order to achieve local
superlinear convergence, it is important to always try the unit step size
hk ≡ 1 first and accept it whenever it satisfies conditions (2.5.4). For more
information about the Wolfe conditions and an efficient algorithm, which
can be used for finding a step size, satisfying them, we refer the reader to
Sections 3.1 and 3.5 in [144].

Another popular procedure, which can be used for computing the step
size hk in Algorithm 2.5.1, is the following backtracking line search.

Algorithm 2.5.2: Backtracking Line Search

Input: Constants c1 ∈ (0, 1) and 0 < τ ≤ τ ′ < 1.

1. Set h := 1.
2. Until f(xk − hdk) ≤ f(xk)− c1h〈∇f(xk), dk〉
is not satisfied, select a new h ∈ [τh, τ ′h].
3. Return hk := h.

The simplest version of Algorithm 2.5.2 corresponds to choosing the new h at
Step 2 by halving the previous one: τ := τ ′ := 0.5. A more advanced variant
of this procedure chooses the new h by minimizing a certain interpolation
polynomial for the function h → f(xk − hdk) on the interval [τh, τ ′h] (for
more details, see Section 3.5 in [144]).

2.5.2 Updating Formulas
The main question about the general quasi-Newton scheme is, of course,
how to update Hessian approximations Gk (or their inverses Hk) at each
iteration k. Needless to say, there are many ways to do this, each of which
leads to a specific quasi-Newton method. Let us review the three most
popular updating formulas, namely, SR1, DFP and BFGS.

60

2.5. Quasi-Newton Methods

In what follows, we consider the update at one particular iteration k ≥ 0.
To simplify our notation, we drop the index k everywhere and denote

x := xk, G := Gk, H := Hk,

x+ := xk+1, G+ := Gk+1, H+ := Hk+1.

Our goal is to describe how to update the self-adjoint positive definite
linear operators

G ≈ ∇2f(x) and H ≡ G−1 ≈ [∇2f(x)]−1

into new self-adjoint positive definite linear operators

G+ ≈ ∇2f(x+) and H+ ≡ G−1
+ ≈ [∇2f(x+)]−1

by using the first-order information about f gathered at x and x+:

∇f(x) and ∇f(x+).

Note that the point x+ is already known at the moment when G+ and H+
are being computed.

Secant Equation

In classical quasi-Newton methods, the new Hessian approximation G+ is
required to satisfy the secant equation:

G+δ = γ, (2.5.5)

where
δ := x+ − x, γ := ∇f(x+)−∇f(x). (2.5.6)

The motivation stems from the fact that, for a quadratic function f , the
secant equation is satisfied by the exact Hessian A := ∇2f(x+) (= ∇2f(x)
for all x ∈ E), i.e., Aδ = γ. For a general f , the secant equation is satisfied
by the integral Hessian

J :=
∫ 1

0
∇2f(x+ tδ)dt (2.5.7)

which locally approximates ∇2f(x+).
Note that the secant equation (2.5.5) alone is not enough to completely

61

Chapter 2. Background

specify G+. Therefore, some other considerations are needed. One reason-
able idea is to require that the difference between G+ and G has low rank.
In this case, one can cheaply compute H+ using H without the need for
explicitly inverting G+.

SR1 Update

The simplest option is to require that G+ differs from G by a rank-one
self-adjoint linear operator and, at the same time, satisfies the secant equa-
tion (2.5.5). As it turns out, there exists only one formula, satisfying these
requirements, namely, the SR1 formula:

G+ = SR1(G, δ, γ) := G− (Gδ − γ)(Gδ − γ)∗

〈Gδ − γ, δ〉
, (2.5.8)

which is defined whenever 〈Gδ − γ, δ〉 6= 0. More precisely, we have the
following result.

Lemma 2.5.1. Suppose that G does not satisfy the secant equation (2.5.5),
i.e., Gδ 6= γ. Then, among all self-adjoint rank-one corrections of G, there
exists one, which satisfies the secant equation (2.5.5), iff 〈Gδ − γ, δ〉 6= 0.
When such a correction exists, it is unique and given by the SR1 for-
mula (2.5.8).

Proof. Consider an arbitrary self-adjoint rank-one correction of G:

G+ := G− αss∗, (2.5.9)

where s ∈ E∗ and α ∈ R. Suppose it satisfies the secant equation (2.5.5):

γ = G+δ = Gδ − α〈s, δ〉s.

Then,
α〈s, δ〉s = Gδ − γ. (2.5.10)

Since Gδ − γ 6= 0, we have α〈s, δ〉 6= 0. Thus, s is proportional to Gδ − γ:

s = t(Gδ − γ) (2.5.11)

for some t ∈ R. Substituting this representation into (2.5.10) and using the
fact that Gδ − γ 6= 0, we obtain

αt2〈Gδ − γ, δ〉 = 1. (2.5.12)

62

2.5. Quasi-Newton Methods

This is possible only if 〈Gδ− γ, δ〉 6= 0, in which case, from (2.5.9), (2.5.11)
and (2.5.12), we obtain

G−G+ = αss∗ = αt2(Gδ − γ)(Gδ − γ)∗ = (Gδ − γ)(Gδ − γ)∗

〈Gδ − γ, δ〉
.

This is exactly the SR1 formula (2.5.8).

Using the Sherman–Morrison identity, we can easily obtain the updating
formula for the inverse Hessian approximation, which corresponds to the
SR1 update from (2.5.8).

Lemma 2.5.2. The inverse update, corresponding to (2.5.8), is

H+ = SR1−1(H, δ, γ) := H + (δ −Hγ)(δ −Hγ)∗

〈γ, δ −Hγ〉
, (2.5.13)

which is defined whenever 〈γ, δ −Hγ〉 6= 0.

Proof. Indeed, by Proposition 2.1.1, applied to (2.5.8), we have

H+ = H + H(Gδ − γ)(Gδ − γ)∗H
〈Gδ − γ, δ〉

[
1− 〈Gδ − γ,H(Gδ − γ)〉

〈Gδ − γ, δ〉

]−1

= H + (δ −Hγ)(δ −Hγ)∗

〈Gδ − γ,Hγ〉
= H + (δ −Hγ)(δ −Hγ)∗

〈γ, δ −Hγ〉
,

where we have used the fact that H ≡ G−1 and H+ ≡ G−1
+ .

The SR1 updating formula is quite efficient in practice. However, it is
not particularly stable since the denominator in (2.5.8) and (2.5.13) may
approach zero during the iterations of the method. Another drawback of
the SR1 formula is that it does not preserve positive definiteness of Hes-
sian approximations, which is highly desirable to guarantee that the di-
rection (2.5.3), produced by the quasi-Newton method, can be used for
decreasing the function value.

Least Change Principle

More stable updating formulas, which also preserve positive definiteness,
can be obtained by considering rank-two corrections. In contrast to rank-
one corrections, there exist a whole class of such formulas. Let us present
one general approach which can be used for deriving them.

63

Chapter 2. Background

The approach, that we are going to present, is called the least change
principle. The idea is to choose the new Hessian approximation G+ in such a
way that, on the one hand, it satisfies the secant equation (2.5.5), and, on the
other hand, it is as close as possible to the current Hessian approximation G.
This is indeed reasonable since, in this case, the second-order information,
already accumulated in G, will not be completely destroyed, and the update
will simply slightly correct it by adding some new second-order information,
obtained from the current secant equation.

Denoting by β(G,G+) the “distance” between the current Hessian ap-
proximation G and some trial one G+, we thus come to the following Least
Change Problem (LCP):

min
G+∈dom d

{β(G,G+) : G+δ = γ}, (2.5.14)

where dom d is a certain feasible set in the space S(E,E∗), in which Hes-
sian approximations are allowed to vary. Depending on the choice of the
“distance” function β, we can obtain different specific formulas for the new
Hessian approximation G+ as the solutions of the LCP (2.5.14).

One way to define a meaningful and rather general notion of a “distance”
is by using the Bregman divergence. Specifically, let us fix a certain function

d : S(E,E∗)→ R ∪ {+∞}

with open effective domain dom d, on which d is differentiable and strictly
convex. In what follows, we call such a function d a prox function. The
Bregman divergence, generated by d, is the function β : dom d×dom d→ R,
defined by

β(G,G+) := d(G+)− d(G)− 〈∇d(G), G+ −G〉. (2.5.15)

Since d is strictly convex, the Bregman divergence β(G,G+) is nonnegative
for any G,G+ ∈ dom d, and equals zero if and only if G = G+. Thus, the
value of β(G,G+) can be seen as a certain “distance” between G,G+ ∈
dom d. However, it is not a distance in the strict sense since the Bregman
divergence, in general, is not symmetric.

Note that, by construction, β(G, ·) is strictly convex for any G ∈ dom d.
Therefore, the LCP (2.5.14) is a convex optimization problem which admits
at most one solution.

Let us present an optimality condition for the LCP (2.5.14).

64

2.5. Quasi-Newton Methods

Lemma 2.5.3. An operator G+ ∈ dom d is a solution of the LCP (2.5.14)
iff there exists λ ∈ E such that

∇d(G+) = ∇d(G) + λδ∗ + δλ∗, G+δ = γ.

Proof. This is a simple corollary of the Lagrange multiplier rule. Indeed,
let L : dom d× E→ R be the Lagrange function

L(G+, λ) := β(G,G+)− 2〈λ,Gδ − γ〉. (2.5.16)

Then, G+ ∈ dom d is a solution of LCP (2.5.14) iff G+δ = γ and there exists
λ ∈ E such that ∇1L(G+, λ) = 0, where ∇1L denotes the partial derivative
of L w.r.t. its first argument. Recall that we work in the space S(E,E∗),
therefore ∇1L(G+, λ) ∈ [S(E,E∗)]∗ = S(E∗,E) (see (2.1.23)). Differentiat-
ing (2.5.16) and using (2.5.15), we obtain

∇1L(G+, λ) = ∇d(G+)−∇d(G)− λδ∗ − δλ∗

for any G+ ∈ dom d and any λ ∈ E.

Now let us consider two specific examples of the prox function d, which
lead to the most popular rank-two quasi-Newton updating formulas, namely,
DFP and BFGS.

DFP Update

First, let us choose the Euclidean prox function

d(G) := 1
2‖G‖

2
F(A) ≡

1
2 〈A

−1GA−1, G〉, dom d ≡ S(E,E∗), (2.5.17)

where ‖G‖F(A) is the Frobenius norm of G w.r.t. a certain fixed scaling
operator A ∈ S++(E,E∗). For this function, we have

∇d(G) = A−1GA−1, (2.5.18)

and

β(G,G+) = 1
2‖G+‖2F(A) −

1
2‖G‖

2
F(A) − 〈A

−1GA−1, G+ −G〉

= 1
2‖G+‖2F(A) − 〈A

−1GA−1, G+〉+ 1
2‖G‖

2
F(A)

65

Chapter 2. Background

= 1
2‖G+ −G‖2F(A).

Thus, the Bregman divergence is simply the squared Euclidean distance
between G and G+ (w.r.t. A).

Lemma 2.5.4. The solution of the LCP (2.5.14) for the Euclidean prox
function (2.5.17) is given by the following formula:

G+ = G− (Gδ − γ)δ∗A+Aδ(Gδ − γ)∗

〈Aδ, δ〉
+ 〈Gδ − γ, δ〉
〈Aδ, δ〉2

Aδδ∗A, (2.5.19)

assuming that δ 6= 0.

Proof. According to Lemma 2.5.3 and (2.5.18), G+ ∈ S(E,E∗) is a solution
of LCP (2.5.14) iff there exists λ ∈ E such that

A−1G+A
−1 = A−1GA−1 + λδ∗ + δλ∗, G+δ = γ,

or, equivalently,

G+ = G+Aλδ∗A+Aδλ∗A, G+δ = γ. (2.5.20)

Substituting the formula for G+ from the first equation into the second one,
we obtain

γ = Gδ + 〈Aδ, δ〉Aλ+ 〈Aλ, δ〉Aδ = Gδ +Aδλ, (2.5.21)

where Aδ := 〈Aδ, δ〉A+Aδδ∗A. By the Sherman–Morrison formula (Propo-
sition 2.1.1), we have

A−1
δ = A−1

〈Aδ, δ〉
− δδ∗

2〈Aδ, δ〉2 .

Thus, equation (2.5.21) has a unique solution, namely,

λ = −A−1
δ (Gδ − γ) = 〈Gδ − γ, δ〉δ2〈Aδ, δ〉2 − A−1(Gδ − γ)

〈Aδ, δ〉
. (2.5.22)

Substituting (2.5.22) into the first part of (2.5.20), we obtain (2.5.19).

To make the updating formula from Lemma 2.5.4 easily computable, we
need to choose A in such a way so that Aδ is easily computable. At the
same time, it is reasonable to make the resulting formula affine-invariant.

66

2.5. Quasi-Newton Methods

Arguably, the most natural way to ensure that both these requirements
are satisfied is to demand that the scaling operator A satisfies the secant
equation:

Aδ = γ. (2.5.23)

For concreteness, we can assume that A is the integral Hessian from (2.5.7).
Combining Lemma 2.5.4 with our assumption (2.5.23), we come to the

DFP formula:

G+ = DFP(G, δ, γ)

:= G− (Gδ − γ)γ∗ + γ(Gδ − γ)∗

〈γ, δ〉
+ 〈Gδ − γ, δ〉

〈γ, δ〉2
γγ∗

= G− Gδγ∗ + γδ∗G

〈γ, δ〉
+
(〈Gδ, δ〉
〈γ, δ〉

+ 1
) γγ∗

〈γ, δ〉
,

(2.5.24)

which is well-defined whenever 〈γ, δ〉 > 0.
Note that, in contrast to the SR1 formula (2.5.8), the denominator in the

DFP formula (2.5.24) is always guaranteed to be positive whenever δ 6= 0:

δ 6= 0 =⇒ 〈γ, δ〉 > 0.

This follows from the definitions of γ and δ in (2.5.6) and our assumption,
made at the beginning of Section 2.5, that the Hessian of f is strictly positive
definite. The case δ = 0 is not especially interesting and corresponds to the
situation when x+ is an exact minimizer of f .

An important property of the DFP update is that it preserves positive
definiteness, even though it was not explicitly required by our choice of the
prox function (2.5.17). One simple way to see this is to rewrite the DFP
update (2.5.24) in the following form:

DFP(G, δ, γ) =
(
IE∗ −

γδ∗

〈γ, δ〉

)
G
(
IE −

δγ∗

〈γ, δ〉

)
+ γγ∗

〈γ, δ〉
, (2.5.25)

where IE and IE∗ are the identity operators in E and E∗, and 〈γ, δ〉 > 0.
To obtain the update for the inverse Hessian approximation, correspond-

ing to the DFP formula, one can, in principle, apply the Sherman–Morrison
formula twice to the representation (2.5.20) (where λ is given by (2.5.22)
and A satisfies (2.5.23)). However, the corresponding computations are
rather cumbersome. On the other hand, given a specific formula, it is quite
easy to verify that it is indeed the correct inverse formula by doing a direct

67

Chapter 2. Background

multiplication.

Lemma 2.5.5. The inverse update, corresponding to (2.5.24), is

H+ = DFP−1(H, δ, γ) := H − Hγγ∗H

〈γ,Hγ〉
+ δδ∗

〈γ, δ〉
, (2.5.26)

provided that15 〈γ, δ〉 > 0.

Proof. Denote G+ := DFP(G, δ, γ) and H+ := DFP−1(H, δ, γ). Let us
prove that G+H+ = IE∗ assuming that H = G−1. From (2.5.26), it follows
that H+γ = δ. Combining this with (2.5.25), we obtain

G+H+ =
(
IE∗ −

γδ∗

〈γ, δ〉

)
G
(
H+ −

δδ∗

〈γ, δ〉

)
+ γδ∗

〈γ, δ〉

=
(
IE∗ −

γδ∗

〈γ, δ〉

)
G
(
H − Hγγ∗H

〈γ,Hγ〉

)
+ γδ∗

〈γ, δ〉
= IE∗ ,

where the second identity follows from (2.5.26).

BFGS Update

Now consider the log-det prox function16:

d(G) := − ln det(A−1, G), dom d := S++(E,E∗), (2.5.27)

where A ∈ S++(E,E∗) is a fixed scaling operator. The actual choice of A is
not especially important since the resulting Bregman divergence turns out
to be independent of A. Indeed, differentiating, we obtain

∇d(G) = −G−1. (2.5.28)

Therefore, in view of (2.5.15) and Propositions 2.1.4(iii) and 2.1.4(iv),

β(G,G+)
= − ln det(A−1, G+) + ln det(A−1, G)− 〈−G−1, G+ −G〉
= 〈G−1, G+ −G〉 − ln det(G−1, G+).

(2.5.29)

Observe that, in contrast to the Euclidean prox function (2.5.17), which
was defined on the entire space S(E,E∗), the log-det prox function is defined

15Recall that H is assumed to be positive definite. Hence, 〈γ,Hγ〉 > 0 whenever
〈γ, δ〉 > 0.

16Recall that det(·, ·) is the determinant product defined in (2.1.31).

68

2.5. Quasi-Newton Methods

only on the cone S++(E,E∗) of positive definite linear operators. Thus, now
the solution of the LCP (2.5.14) is explicitly required to be positive definite
by our choice of the prox function.

Let us present the resulting updating formulas.

Lemma 2.5.6. Suppose that 〈γ, δ〉 > 0. Then, the solution of LCP (2.5.14)
with the log-det prox function (2.5.27) is given by the BFGS formula17:

G+ = BFGS(G, δ, γ) := G− Gδδ∗G

〈Gδ, δ〉
+ γγ∗

〈γ, δ〉
. (2.5.30)

The corresponding inverse update is given by

H+ = BFGS−1(H, δ, γ)

:= H − Hγδ∗ + δγ∗H

〈γ, δ〉
+
(
〈γ,Hγ〉
〈γ, δ〉

+ 1
)
δδ∗

〈γ, δ〉
.

(2.5.31)

Proof. According to Lemma 2.5.3 and (2.5.28), G+ ∈ S++(E,E∗) is a solu-
tion of LCP (2.5.14) iff there exists u ∈ E such that18

−G−1
+ = −G−1 − uδ∗ − δu∗, G+δ = γ.

Rewriting these equations in terms of H ≡ G−1 and H+ ≡ G−1
+ , we obtain

H+ = H + uδ∗ + δu∗, H+γ = δ.

Note that this system of linear equations has exactly the same structure as
the one in (2.5.20). Substituting the formula for H+ from the first equation
into the second one and solving it, we find that

u = 〈γ,Hγ − δ〉δ2〈γ, δ〉2 − Hγ − δ
〈γ, δ〉

.

Therefore,

H+ = H − (Hγ − δ)δ∗ + δ(Hγ − δ)∗

〈γ, δ〉
+ 〈γ,Hγ − δ〉

〈γ, δ〉2
δδ∗,

and (2.5.31) follows after rearranging. To prove (2.5.30), one can apply a
similar argument to that from the proof of Lemma 2.5.5.

17Recall that G is assumed to be positive definite.
18In the notation of Lemma 2.5.3, u = −λ.

69

Chapter 2. Background

Comparing the BFGS and DFP updating formulas, we see that they are
dual to each other: the direct BFGS formula (2.5.30) coincides with the
inverse DFP formula (2.5.26) under the formal change of variables

G↔ H, G+ ↔ H+, δ ↔ γ, (2.5.32)

and vice versa. In this sense, the SR1 formula is self-dual.

Directly Approximating Inverse Hessian

Let us briefly provide the duality relations, which we observed above, with
one more interpretation.

Note that, instead of posing the LCP for the Hessian approximations,
as we did in (2.5.14), we could, in fact, do the same directly for the inverse
Hessian approximations:

min
H+∈dom d∗

{β∗(H,H+) : H+γ = δ}, (2.5.33)

where d∗ : S(E∗,E) → R ∪ {+∞} is a certain prox function, and β∗ is the
corresponding Bregman divergence:

β∗(H,H+) := d∗(H+)− d∗(H)− 〈H+ −H,∇d∗(H)〉. (2.5.34)

As we see, LCP (2.5.33) is completely analogous to that from (2.5.14)
under the formal change of variables (2.5.32) and the formal change of the
prox function d ↔ d∗. Therefore, the following result should not be too
surprising.

Lemma 2.5.7. Suppose that 〈γ, δ〉 > 0. Then:

(i) The solution of LCP (2.5.33) for the Euclidean prox function

d∗(H) := 1
2‖H‖

2
F(A) ≡

1
2 〈H,AHA〉, dom d∗ := S(E∗,E), (2.5.35)

where A ∈ S++(E,E∗) is a fixed scaling operator, satisfying secant
equation (2.5.23), is given by the BFGS formula (2.5.31).

(ii) The solution of LCP (2.5.33) for the log-det prox function

d∗(H) := − ln det(H,A)− n, dom d∗ := S++(E∗,E), (2.5.36)

70

2.5. Quasi-Newton Methods

where A ∈ S++(E,E∗) is an arbitrary scaling operator, is given by the
DFP update (2.5.26).

Note that the constant term “−n” in (2.5.36) does not play any sig-
nificant role since it is cancelled inside the Bregman divergence (2.5.34).
However, by keeping it, we obtain an interesting relation between the prox
functions d∗ from (2.5.35) and (2.5.36) and the corresponding prox func-
tions d from (2.5.17) and (2.5.27), considered earlier. Specifically, they turn
out to be duals: for any H ∈ S(E∗,E), we have

d∗(H) = sup
G∈dom d

{〈−H,G〉 − d(G)}.

Thus, d∗ is the standard Fenchel conjugate function of d up to a minor
change in the sign in front of the argument. Note also that the Euclidean
norm, defined in (2.5.35), is actually conjugate to the one in (2.5.17).

Broyden Class

The SR1, DFP and BFGS updates, considered earlier, are all members of
a more general one-parameter family of updating formulas. This family is
called the Broyden class, and can be defined as the linear combination of
the BFGS and DFP updates:

Broydϕ(G, δ, γ) := (1− ϕ) BFGS(G, δ, γ) + ϕDFP(G, δ, γ), (2.5.37)

where ϕ ∈ R is a parameter.
Obviously, the BFGS and DFP updates correspond to ϕ = 0 and ϕ = 1,

respectively. The SR1 update corresponds to

ϕSR1 := − 〈γ, δ〉
〈Gδ − γ, δ〉

,

provided that 〈Gδ− γ, δ〉 6= 0. Indeed, denoting GSR1
+ := BroydϕSR1(G, δ, γ)

and using (2.5.30) and (2.5.24), we obtain

GSR1
+ = 〈Gδ, δ〉

〈Gδ − γ, δ〉

[
G− Gδδ∗G

〈Gδ, δ〉
+ γγ∗

〈γ, δ〉

]
− 〈γ, δ〉
〈Gδ − γ, δ〉

[
G− Gδγ∗ + γδ∗G

〈γ, δ〉
+
(〈Gδ, δ〉
〈γ, δ〉

+ 1
) γγ∗

〈γ, δ〉

]
= G− Gδδ∗G− (Gδγ∗ + γδ∗G) + γγ∗

〈Gδ − γ, δ〉

71

Chapter 2. Background

= G− (Gδ − γ)(Gδ − γ)∗

〈Gδ − γ, δ〉
,

which is exactly the SR1 formula (2.5.8).
Note that any member of the Broyden class (2.5.37) satisfies the secant

equation (2.5.5) since so do the BFGS and DFP updates. However, in
general, the Broyden update does not preserve positive definiteness.

An important subclass of the Broyden class (2.5.37) corresponds to the
values of ϕ ∈ [0, 1]. It consists of all convex combinations of the BFGS
and DFP updates, and is called the convex Broyden class. Every member
of this class satisfies the secant equation (2.5.37), preserves positive defi-
niteness and has other interesting properties which we will study further in
Section 3.1. Note that the SR1 update, in general, does not belong to the
convex Broyden class.

2.5.3 Convergence Results

Let us now state the classical convergence results about the BFGS and DFP
methods, i.e., the instances of the general quasi-Newton scheme from Algo-
rithm 2.5.1, resulting by using the BFGS and DFP formulas, respectively,
for updating the inverse Hessian approximation at each iteration. Recall
that our problem under consideration is (2.5.1).

Algorithm 2.5.3: BFGS/DFP Method

Initialization: Choose x0 ∈ E and H0 ∈ S++(E∗,E).

Iteration k ≥ 0:
1. Choose a step size hk ≥ 0.
2. Set xk+1 := xk − hkHk∇f(xk).
3. Compute δk := xk+1 − xk and γk := ∇f(xk+1)−∇f(xk).
4. Update inverse Hessian approximation:

(BFGS Method) Hk+1 := BFGS−1(Hk, δk, γk).
(DFP Method) Hk+1 := DFP−1(Hk, δk, γk).

The first result is about local convergence and is due to Broyden, Dennis
and Moré [20].

72

2.5. Quasi-Newton Methods

Theorem 2.5.8. Suppose19 that the function f is strongly convex and has
Lipschitz continuous Hessian. Consider either the BFGS or DFP Method
from Algorithm 2.5.3 with unit step sizes:

hk ≡ 1, k ≥ 0.

Then, for every ρ ∈ (0, 1), there exist δ1, δ2 > 0 such that, for any initial
point x0 and any initial inverse Hessian approximation H0, satisfying

‖x0 − x∗‖ ≤ δ1, ‖H0 − [∇2f(x∗)]−1‖ ≤ δ2,

where x∗ is the solution of (2.5.1), we have, for all k ≥ 0,

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖.

Moreover, the rate of convergence is asymptotically superlinear:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

The assumptions in Theorem 2.5.8 are quire similar to those which are
used in the classical analysis of Newton’s Method (see Section 2.4.1). The
main difference is that now one requires that both the initial point x0 and the
initial inverse Hessian approximation H0 are sufficiently good. The latter
assumption was redundant in Newton’s Method since, in that algorithm,
the closeness of H0 = [∇2f(x0)]−1 to [∇2f(x∗)]−1 automatically followed
from the closeness of x0 to x∗.

For the BFGS Method, we also have the following global convergence
result. The version with the Wolfe conditions was first proved by Pow-
ell [150], while the version with the backtracking line search is due to Byrd
and Nocedal [24].

Theorem 2.5.9. Suppose that the function f is strongly convex and has
Lipschitz continuous gradient and Hessian. Consider the BFGS Method
from Algorithm 2.5.3, which uses any of the following line search strategies
for choosing the step size hk at each iteration k ≥ 0:

1. either the line search, satisfying the Wolfe conditions (2.5.4),
19In fact, it suffices to assume that ∇2f(x∗) is nonsingular and the Hessian of f is

Lipschitz continuous only w.r.t. the fixed point x∗, i.e., ‖∇2f(x)−∇2f(x∗)‖ ≤ L2‖x−x∗‖
for some L2 ≥ 0 and all x from a certain neighborhood of x∗. However, for the sake of
simplicity, we slightly relax these assumptions.

73

Chapter 2. Background

2. or the backtracking line search from Algorithm 2.5.2.

Then, for any initial point x0 and any initial inverse Hessian approxima-
tion H0, the sequence xk converges to the solution x∗ of (2.5.1):

lim
k→∞

xk = x∗.

Moreover, the rate of convergence is asymptotically superlinear:

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0.

Interestingly, there is no counterpart of Theorem 2.5.9 for the DFP
Method, and it is currently unknown whether the DFP Method with an
inexact line search is globally convergent at all. Nevertheless, there exists
an extension of Theorem 2.5.9 to the entire convex Broyden class except
the DFP Method [25].

Looking at Theorems 2.5.8 and 2.5.9, we see that they are only qualita-
tive in that they do not provide us with any explicit estimates of the rate
of convergence. As a consequence, we cannot really use these theorems for
deriving the iteration complexity bounds for obtaining an ε-approximate so-
lution to problem (2.5.1) by the BFGS and DFP methods, similar to those
bounds we had for Newton’s Method in Section 2.4. This is exactly the rea-
son why we criticized these classical results in Section 1.1. We will return
to this issue and address it in more detail in Chapter 3.

Note that the requirements in Theorem 2.5.8 are quite strong: both
the initial point and the initial Hessian approximation must be sufficiently
good. At the same time, Theorem 2.5.9 works for any initial point and any
initial Hessian approximation. However, in contrast to Theorem 2.5.8, it is
assumed that the method uses line search. In Chapter 3, we will present
some intermediate result, namely, a version of Theorem 2.5.8 with a much
weaker assumption on the initial Hessian approximation.

Finally, let us mention that, for the SR1 Method, no convergence re-
sults, similar to those from Theorems 2.5.8 and 2.5.9, have been established.
However, in Chapter 4, we will see that for a certain version of this method,
which uses a special correction strategy for keeping the Hessian approxima-
tion above the actual Hessian, it is still possible to prove local superlinear
convergence.

74

2.6. Subgradient Method

2.6 Subgradient Method
Now we switch our attention to a different problem formulation:

min
x∈Q

f(x), (2.6.1)

where Q ⊆ E is a closed convex set, and f : E → R is a general nonsmooth
convex function. We assume that problem (2.6.1) has a solution x∗ and
denote by f∗ the corresponding optimal value.

Our main assumption about the objective function in problem (2.6.1) is
that it is Lipschitz with some constant M > 0, i.e., for all x, y ∈ E,

|f(x)− f(y)| ≤M‖x− y‖, (2.6.2)

where ‖·‖ is a Euclidean norm, generated by some B ∈ S++(E,E∗):

‖x‖ := ‖x‖B := 〈Bx, x〉1/2, x ∈ E.

Let us consider the Subgradient Method for solving (2.6.1). It uses the
following projection operator onto the set Q:

πQ(x) := argmin
y∈Q

‖x− y‖, x ∈ E.

Note that πQ(x) is well-defined and unique for any x ∈ E since the set Q is
assumed to be closed and convex.

Algorithm 2.6.1: Subgradient Method

Input: Initial point x0 ∈ Q.

Iteration k ≥ 0:
1. Compute an arbitrary subgradient gk ∈ ∂f(xk).
2. Choose a step size hk > 0.
3. Compute xk+1 := πQ(xk − hkB−1gk/‖gk‖∗).

We assume that the set Q and the operator B, defining the norm ‖·‖,
are sufficiently simple so that both the inverse operator B−1 and the projec-
tion πQ(x) can be efficiently computed for any x ∈ E. Further, without loss
of generality, we assume that gk 6= 0 for all k ≥ 0 in Algorithm 2.6.1. The
“unlikely” case when gk = 0 for some k ≥ 0 corresponds to the situation

75

Chapter 2. Background

when Algorithm 2.6.1 has “accidentally” found a global minimizer xk of the
function f .

The approximate solution to problem (2.6.1) generated by the Subgra-
dient Method after k ≥ 1 iterations is defined as the search point with the
best function value found so far20:

x∗k := argmin
{
f(x) : x ∈ {x0, . . . , xk−1}

}
(∈ Q). (2.6.3)

Let us present efficiency estimates for the Subgradient Method. We start
with a general bound, which is valid for an arbitrary choice of step sizes.

Lemma 2.6.1. Suppose21 that ‖x0 − x∗‖ ≤ R. Then, for all k ≥ 1,

f(x∗k)− f∗ ≤M
R2 +

∑k−1
i=0 h

2
i

2
∑k−1
i=0 hi

. (2.6.4)

Proof. Let 0 ≤ i < k be arbitrary integers. Using the fact that the projec-
tion is a contraction and denoting x̃i+1 := xi − hiB−1gi/‖gi‖∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖x̃k+1 − x∗‖2

= ‖xi − x∗‖2 − 2hi‖gi‖−1
∗ 〈gi, xi − x∗〉+ h2

i .

Since gi ∈ ∂f(xi) and in view of Proposition 2.2.12, we have

f(xi)− f∗ ≤ 〈gi, xi − x∗〉 and ‖gi‖∗ ≤M.

Thus,

‖xk+1 − x∗‖2 ≤ ‖xi − x∗‖2 − 2hiM−1[f(xi)− f∗] + h2
i . (2.6.5)

Summing up these inequalities for all i from 0 to k − 1, we obtain

2M−1
k−1∑
i=0

hi[f(xi)− f∗] ≤ ‖x0 − x∗‖2 +
k−1∑
i=0

h2
i ≤ R2 +

k−1∑
i=0

h2
i .

It remains to use the fact that f(x∗k) ≤ f(xi) for all 0 ≤ i ≤ k − 1 in view
of (2.6.3).

20Any possible ties in this definition are assumed to be resolved arbitrarily.
21Here x∗ can be an arbitrary solution to (2.6.1). In other words, in the case when

the solution set X∗ of (2.6.1) is not a singleton, instead of ‖x0 − x∗‖ ≤ R, it suffices to
assume that infx∗∈X∗‖x0 − x∗‖ ≤ R. The same remark applies throughout this section.

76

2.6. Subgradient Method

Let us now consider several standard strategies, which can be used for
selecting the step sizes in Algorithm 2.6.1. The simplest one is the constant
step strategy, which comes from minimizing the right-hand side in (2.6.4)
w.r.t. h0, . . . , hk−1 for any fixed value of k ≥ 1.

Theorem 2.6.2. Suppose that ‖x0 − x∗‖ ≤ R for some R > 0. Consider
Algorithm 2.6.1 with the constant step sizes:

hk := h := R√
K
, 0 ≤ k ≤ K − 1,

where K ≥ 1 is some predefined number of iterations, which the method is
going to perform. Then,

f(x∗K)− f∗ ≤ MR√
K
.

Proof. This is a simple consequence of Lemma 2.6.1.

In order to avoid doing a predefined number of iterations, one can choose
time-varying step sizes. Then, the resulting convergence rate estimate will
be slightly worse, but only by a logarithmic factor. To show this, let us first
prove an auxiliary result.

Lemma 2.6.3. Let 0 ≤ k0 < k be integer. Then,

k∑
i=k0+1

1√
i
≥ k − k0√

k
,

k∑
i=k0+1

1
i
≤ ln k

k0
(2.6.6)

(assuming k0 > 0 for the second inequality). Consequently,

k∑
i=1

1√
i
≥
√
k,

k∑
i=1

1
i
≤ ln k + 1. (2.6.7)

Proof. The first inequality in (2.6.6) easily follows from the fact that i ≤ k
for any k0 + 1 ≤ i ≤ k. The second inequality is a consequence of the
standard integral bound:

k∑
i=k0+1

1
i
≤

k∑
i=k0+1

∫ i

i−1

dτ

τ
=
∫ k

k0

dτ

τ
= ln k

k0
.

Substituting k0 = 0 into the first inequality in (2.6.6) gives us the first

77

Chapter 2. Background

inequality in (2.6.7). To prove the second inequality, substitute k0 = 1 into
the second inequality in (2.6.6) and add 1 to both sides.

Equipped with Lemma 2.6.3, we are now ready to present the efficiency
estimate for Algorithm 2.6.1 with time-varying step sizes.

Theorem 2.6.4. Suppose that ‖x0 − x∗‖ ≤ R for some R > 0. Consider
Algorithm 2.6.1 with step sizes

hk := R√
k + 1

, k ≥ 0. (2.6.8)

Then, for all k ≥ 1, we have

f(x∗k)− f∗ ≤ 2 + ln k
2
√
k

MR.

Proof. Indeed, according to (2.6.8) and Lemma 2.6.3, for any k ≥ 1,

k−1∑
i=0

h2
i = R2

k∑
i=1

1
i
≤ R2(1 + ln k),

k−1∑
i=0

hi = R

k∑
i=1

1√
i
≥ R
√
k.

It remains to apply Lemma 2.6.1.

In the important special case, when the feasible set Q in problem (2.6.1)
is bounded, it becomes possible to get rid of the additional logarithmic factor
altogether at the cost of replacing the constant R with a certain bound D
on the “radius” of the set Q.

Theorem 2.6.5. Suppose that Q is bounded: for some D > 0, we have

‖x− x∗‖ ≤ D, ∀x ∈ Q. (2.6.9)

Consider Algorithm 2.6.1 with step sizes

hk := D√
k + 1

, k ≥ 0. (2.6.10)

Then, for all k ≥ 1, we have

f(x∗k)− f∗ ≤ (1 + ln 3)MD√
k
. (2.6.11)

78

2.6. Subgradient Method

Proof. For any k ≥ 1, in view of (2.6.2), (2.6.3) and (2.6.9), we have

f(x∗k)− f∗ ≤M‖x∗k − x∗‖ ≤MD.

Therefore, it suffices to prove (2.6.10) only for k ≥ 3 (say).
Let 0 < k0 < k be arbitrary integers with k ≥ 3. Repeating the proof of

Lemma 2.6.1, but now summing up (2.6.5) from k0 (instead of 0) to k − 1,
we obtain

2M−1
k−1∑
i=k0

hi[f(xi)− f∗] ≤ ‖xk0 − x∗‖2 +
k−1∑
i=k0

h2
i ≤ D2 +

k−1∑
i=k0

h2
i ,

where the second inequality follows from (2.6.9) and the fact that xk0 ∈ Q.
Combining this result with (2.6.3), we get

f(x∗k)− f∗ = min
0≤i≤k−1

f(xi)− f∗

≤ min
k0≤i≤k−1

f(xi)− f∗ ≤M
D2 +

∑k−1
i=k0

h2
i

2
∑k−1
i=k0

hi
.

(2.6.12)

Further, according to (2.6.10) and Lemma 2.6.3, we have

k−1∑
i=k0

hi = D

k∑
i=k0+1

1√
i
≥ k − k0√

k
D,

k−1∑
i=k0

h2
i = D2

k∑
i=k0+1

1
i
≤ D2 ln k

k0
.

Let us choose k0 := bk/2c. Then, (k − 1)/2 ≤ k0 ≤ k/2, and hence

k − k0√
k
≥ 1

2
√
k,

k

k0
≤ 2 k

k − 1 ≤ 3

since k ≥ 3. Thus,

k−1∑
i=k0

hi ≥
1
2D
√
k,

k−1∑
i=k0

h2
i ≤ D2 ln 3.

Substituting these inequalities into (2.6.12), we obtain (2.6.11).

According to Theorem 2.6.5, to find an ε-approximate solution (in terms

79

Chapter 2. Background

of function value) to problem (2.6.1), the Subgradient Method requires at
most the following number of iterations:

O
(M2D2

ε2

)
, (2.6.13)

where M is the Lipschitz constant of the objective function and D is an
upper bound on the diameter of the feasible set Q.

2.7 Ellipsoid Method
Let us now review the Ellipsoid Method. We consider the same problem as
before, namely,

min
x∈Q

f(x), (2.7.1)

where Q ⊆ E is a closed convex set, and f : E → R is a general convex
function. However, now we additionally assume that the feasible set Q is
bounded and has nonempty interior. Thus, Q is a solid (compact convex set
with nonempty interior). Note that, under our assumptions, the solution
set in problem (2.7.1) is nonempty. We denote the corresponding optimal
value by f∗.

Throughout this section, all efficiency estimates will be presented, among
others, in terms of the following two parameters of problem (2.7.1):

• Dimensionality of the space:

n := dimE. (2.7.2)

• Variation of the objective function on the feasible set:

V := max
x∈Q

f(x)− f∗. (2.7.3)

The function f in problem (2.7.1), may, in general, be nonsmooth. We
assume that it is represented by the standard First-Order Oracle: given any
point x ∈ E, it returns an arbitrary subgradient f ′(x) of f at x.

In contrast to the Subgradient Method from Section 2.6, in which all the
iterates automatically belong to the feasible set Q, thanks to the projection,
the Ellipsoid Method may sometimes produce points which lie outside Q.
To handle such infeasible points, it uses a special Separation Oracle for the

80

2.7. Ellipsoid Method

set Q: given any point x ∈ E, this oracle can check whether x ∈ intQ, and
if not, it reports a vector gQ(x) ∈ E∗ \ {0} which separates x from Q:

〈gQ(x), x− y〉 ≥ 0, ∀y ∈ Q. (2.7.4)

For example, in the case when the set Q is specified by a certain general
convex function g : E→ R, i.e., Q := {x ∈ E : g(x) ≤ 0}, it is not difficult to
see that, for any x ∈ E, a separator is given by gQ(x) = g′(x), where g′(x)
is an arbitrary subgradient of g at x.

Thus, we have two oracles representing problem (2.7.1). For the sake of
convenience, let us unite them into one: for any x ∈ E, define

G(x) :=
{
f ′(x), if x ∈ intQ,
gQ(x), otherwise.

(2.7.5)

To avoid considering certain degenerate cases all the time, from now on,
we will assume that the oracle (2.7.5) never returns zero. This is indeed
the case for any point x /∈ intQ by the definition of the Separation Oracle.
Should it happen that G(x) = 0 for some x ∈ intQ, we can always stop the
method and return x as the exact solution of problem (2.7.1).

The Ellipsoid Method is a particular instance of a more general family
of algorithms, known as cutting plane methods. Let us briefly review the
general scheme of these algorithms before presenting the Ellipsoid Method
itself. For more details, we refer the reader to [122].

2.7.1 General Cutting Plane Scheme

The general cutting plane scheme for solving problem (2.7.1), equipped with
oracle (2.7.5), is based on the idea of localization. Specifically, let x∗ be a
solution to problem (2.7.1). Then, for any x ∈ E, we have

〈G(x), x− x∗〉 ≥ 0. (2.7.6)

Indeed, if x ∈ intQ, then G(x) = f ′(x), and hence

〈G(x), x− x∗〉 = 〈f ′(x), x− x∗〉 ≥ f(x)− f∗ ≥ 0

since f ′(x) ∈ ∂f(x) and f∗ is the minimal value of f on Q. If x /∈ intQ, then
G(x) = gQ(x) is a separator of x from Q, and (2.7.6) immediately follows
from (2.7.4) since x∗ ∈ Q.

81

Chapter 2. Background

Inequality (2.7.6) has a simple geometric meaning. It tells us that, for
any point x ∈ E, the oracle output G(x) provides us with a hyperplane,
which divides the space E into two parts, only one of which contains the
solution set of problem (2.7.1). This leads us to the following natural idea.
Suppose that we already have a certain localizer Ω— a solid containing
the solution set. Let us choose somehow a point x̄ ∈ Ω and then “cut”
our localizer Ω with the hyperplane, passing through x̄ with the normal
vector G(x̄). As we already know, only one “half” of Ω will be containing
the solution set. Therefore, it makes sense to take this “half” as the new
localizer and repeat the procedure.

Formalizing the above considerations, we arrive at the following algo-
rithmic scheme.

Algorithm 2.7.1: General Cutting Plane Scheme

Initialization: Choose a solid Ω0 ⊇ Q.

Iteration k ≥ 0:
1. Choose a point xk ∈ Ωk.
2. Query the oracle to obtain gk := G(xk).
3. Choose a solid Ωk+1 ⊇ Ω̂k+1 := {x ∈ Ωk : 〈gk, xk − x〉 ≥ 0}.

By definition, the approximate solution to problem (2.7.1), generated by
Algorithm 2.7.1 after k ≥ 1 iterations, is the best among all feasible search
points produced so far:

x∗k := argmin
{
f(x) : x ∈ {x0, . . . , xk−1} ∩ intQ

}
. (2.7.7)

If all points x0, . . . , xk−1 are infeasible (/∈ intQ), we leave x∗k undefined.
In the “pure” cutting plane scheme, the initial localizer is Ω0 = Q, and

the new localizer Ωk+1, at each iteration k ≥ 0, is chosen to be exactly Ω̂k+1
(the “half” of the current localizer Ωk). However, in general, to keep the
iteration cost at a reasonable level, it makes sense to keep the localizers Ωk
in some simple form, e.g., ellipsoids.

Algorithm 2.7.1 is a general scheme since it does not describe how exactly
the points xk and the localizers Ωk are chosen at each iteration k ≥ 0. By
specifying these rules, we obtain a particular instance of the cutting plane
scheme. In general, the goal is to choose xk and Ωk in such a way so that
the “size” of the localizers Ωk goes to zero sufficiently fast.

82

2.7. Ellipsoid Method

Of course, there exist many ways how one can measure the “size” of lo-
calizers. However, for any particular “size” we decide to work with, we need
to be able to conclude that, whenever the “size” of a localizer is sufficiently
small, the approximate solution (2.7.7), produced by Algorithm 2.7.1, is
well-defined and is nearly optimal for problem (2.7.1). One rather general
family of “sizes” which satisfies this requirement is as follows.

Definition 2.7.1. Let size : Q → (0,+∞) be a strictly positive function,
defined on the collection Q of all solids in E. Then, size is called a size
function if it satisfies the following two requirements:

(i) (Monotonicity) For any Ω1,Ω2 ∈ Q, such that Ω1 ⊆ Ω2, we have

size(Ω1) ≤ size(Ω2).

(ii) (Homogeneity w.r.t. homotheties) For any Ω ∈ Q, x ∈ Ω, α ∈ (0, 1),

size((1− α)x+ αΩ) = α size(Ω).

The simplest example of a size function is the standard diameter :

diam Ω := max
x,y∈Ω

‖x− y‖,

where ‖·‖ is an arbitrary norm in E. Another important example is the
so-called average radius22:

avrad Ω := [vol(Ω/B0)]1/n, (2.7.8)

where B0 an arbitrary solid (e.g., the unit ball/cube) in the space E. The
monotonicity of the average radius follows from Proposition 2.1.7(ii), and
the homogeneity—from Propositions 2.1.7(i) and 2.1.7(iv).

We are ready to present the main result about the general cutting plane
scheme.

Theorem 2.7.2. Consider some iteration k ≥ 1 of Algorithm 2.7.1. Sup-
pose that, for a certain size function, we have

δk := size Ωk
sizeQ < 1.

22Recall that vol(·/·) is the relative volume defined in (2.1.32).

83

Chapter 2. Background

Then, the approximate solution (2.7.7) is well-defined and

f(x∗k)− f∗ ≤ δkV. (2.7.9)

Proof. Let δ ∈ (δk, 1) and let x∗ be a solution to (2.7.1). Consider the set

Qδ := (1− δ)x∗ + δQ.

By the homogeneity and strict positivity of the size function, we have

size(Qδ) = δ sizeQ > δk sizeQ = size Ωk.

Therefore, by the monotonicity, Qδ cannot be a subset of Ωk:

Qδ * Ωk.

In other words, there exists x ∈ Q such that

z := (1− δ)x∗ + δx /∈ Ωk. (2.7.10)

Note that z ∈ Q since Q is a convex set and x, x∗ ∈ Q. Hence,

〈gi, xi − z〉 < 0 (2.7.11)

for some 0 ≤ i ≤ k − 1 (otherwise, a simple inductive argument shows that
z ∈ Ωk which contradicts (2.7.10)). Clearly, for this index i, we must have
xi ∈ intQ (otherwise, (2.7.10) contradicts the separation property (2.7.4)
since z ∈ Q). Thus, the approximate solution (2.7.7) is well-defined and
gi = f ′(xi) ∈ ∂f(xi). Consequently, from (2.7.11) and the definition of the
subgradient, we obtain

f(xi) < f(xi) + 〈f ′(xi), z − xi〉 ≤ f(z).

Thus, by (2.7.10), convexity of f and (2.7.3) (with the fact that x ∈ Q),

f(xi)− f∗ ≤ f
(
(1− δ)x∗ + δx

)
− f∗ ≤ δ[f(x)− f∗] ≤ δV.

Since this inequality is valid for some 0 ≤ i ≤ k − 1, such that xi ∈ intQ,
we have, in view of (2.7.7),

f(x∗k)− f∗ ≤ δV.

84

2.7. Ellipsoid Method

Taking now the limit in this inequality as δ → δk, we obtain (2.7.9).

2.7.2 Ellipsoid Method

The Ellipsoid Method is a particular implementation of the general cutting
plane scheme, in which the localizers are ellipsoids, i.e., sets of the form

E(x̄, G) := {x ∈ E : ‖x− x̄‖G ≤ 1}, (2.7.12)

where x̄ ∈ E and G ∈ S++(E,E∗) are certain parameters. It is based
on the following key result which describes how to implement Step 3 in
Algorithm 2.7.1 efficiently.

Lemma 2.7.3. Let E := E(x̄, G) be an ellipsoid, where x̄ ∈ E and G ∈
S++(E,E∗), and let g ∈ E∗ \ {0}. Then, the “half-ellipsoid”

Ē := {x ∈ E : 〈g, x̄− x〉 ≥ 0},

resulting by cutting E with a hyperplane, passing through its center x̄, is
contained in another ellipsoid,

Ē ⊆ E+ := E(x̄+, G+), (2.7.13)

with a sufficiently smaller relative volume:

vol(E+/E) ≤ exp
(
−1/(2n)

)
. (2.7.14)

The ellipsoid E+ is given by23

x̄+ := x̄− 1
n+ 1

G−1g

‖g‖∗G
, (2.7.15)

G+ := n2 − 1
n2

(
G+ 2

n− 1
gg∗

(‖g‖∗G)2

)
. (2.7.16)

Proof. To simplify the computations, we can assume without loss of gener-
ality that ‖g‖∗G = 1. Let x ∈ E be arbitrary. Using (2.7.16), we obtain

‖x̄+ − x‖2G+
= n2 − 1

n2

(
‖x̄+ − x‖2G + 2

n− 1 〈g, x̄+ − x〉2
)
.

23Hereinafter, we assume that n ≥ 2.

85

Chapter 2. Background

Further, in view of (2.7.15),

‖x̄+ − x‖2G = ‖x̄− x‖2G −
2

n+ 1 〈g, x̄− x〉+ 1
(n+ 1)2 ,

〈g, x̄+ − x〉2 = 〈g, x̄− x〉2 − 2
n+ 1 〈g, x̄− x〉+ 1

(n+ 1)2 .

Thus,

‖x̄+ − x‖2G+
= n2 − 1

n2

(
‖x̄− x‖2G −

2
n− 1 〈g, x̄− x〉

+ 2
n− 1 〈g, x̄− x〉

2 + 1
n2 − 1

)
.

Now assume that x ∈ Ē. Then, ‖x̄ − x‖G ≤ 1 and 〈g, x̄ − x〉 ≥ 0. In
particular, 〈g, x̄− x〉 ≤ 1 and

−〈g, x̄− x〉+ 〈g, x̄− x〉2 = −〈g, x̄− x〉(1− 〈g, x̄− x〉) ≤ 0.

Thus, for any x ∈ Ē, we have

‖x̄+ − x‖2G+
≤ n2 − 1

n2

(
1 + 1

n2 − 1

)
= 1.

This proves the inclusion in (2.7.13).

Let us prove (2.7.14). Using first Proposition 2.1.8 and then applying
Propositions 2.1.4(ii) and 2.1.5 to the representation (2.7.16), we obtain

[vol(E+/E)]−1/2 = det(G−1, G+) =
(n2 − 1

n2

)n n+ 1
n− 1

=
(n2 − 1

n2

)n−1(n+ 1
n

)2
=
(

1− 1
n2

)n−1(
1 + 1

n

)2
.

It remains to show that [vol(E+/E)]−1/2 ≥ exp(1/n). For this, it suffices
to prove that, for any α ∈ (0, 1), we have

ξ(α) := (α−1 − 1) ln(1− α2) + 2 ln(1 + α) ≥ α. (2.7.17)

But this is simple. Indeed, differentiating, we find that, for any α ∈ (0, 1),

ξ′(α) = −α−2 ln(1− α2)− 2α(α−1 − 1)
1− α2 + 2

1 + α

86

2.7. Ellipsoid Method

= −α−2 ln(1− α2) ≥ 1,

where the inequality follows from the concavity of the logarithm. This
proves (2.7.17) since ξ(α)→ 0 as α→ 0.

A more involved argument shows that the ellipsoid E+ in Lemma 2.7.3
is, in fact, optimal: among all ellipsoids, containing Ē, the ellipsoid E+ has
the smallest relative volume.

To finish the description of the Ellipsoid Method, it remains to specify
how to choose the initial ellipsoid. For this, let us fix, as usual, some
sufficiently simple operator B ∈ S++(E,E∗) and use it define the Euclidean
norm in the space E,

‖x‖ := ‖x‖B := 〈Bx, x〉1/2, x ∈ E, (2.7.18)

and the corresponding system of Euclidean balls:

B(x̄, r) := {x ∈ E : ‖x− x̄‖ ≤ r}, x̄ ∈ E, r > 0. (2.7.19)

Now, given any initial point x0 ∈ E, we can choose the initial ellipsoid as a
Euclidean ball B(x0, R) of a sufficiently large radius R, such that it covers
the whole feasible set Q.

Thus, we come to the following explicit scheme of the Ellipsoid Method.

Algorithm 2.7.2: Ellipsoid Method

Input: x0 ∈ E and R > 0 such that Q ⊆ B(x0, R).

Initialization: Set H0 := R2B−1.

Iteration k ≥ 0:
1. Query the oracle to obtain gk := G(xk).
2. Compute the center of the new ellipsoid:

xk+1 := xk −
1

n+ 1
Hkgk

〈gk, Hkgk〉1/2
.

3. Compute the operator of the new ellipsoid:

Hk+1 := n2

n2 − 1

(
Hk −

2
n+ 1

Hkgkg
∗
kHk

〈gk, Hkgk〉

)
.

Remark 2.7.4. Note that the rules for updating centers and operators at
Steps 2 and 3 of Algorithm 2.7.2 are exactly the same as the rules, given by

87

Chapter 2. Background

(2.7.15) and (2.7.16), with the only difference that, instead of updating the
“primal” operators Gk, we directly update their inverses Hk ≡ G−1

k to keep
the iteration cost at the level of O(n2).

Let us present an efficiency estimate for the Ellipsoid Method. Similarly
to the general cutting plane scheme, the approximate solution to prob-
lem (2.7.1), produced by Algorithm 2.7.2 after k ≥ 1 iterations, is defined
as the best among all feasible search points, generated so far:

x∗k := argmin
{
f(x) : x ∈ {x0, . . . , xk−1} ∩ intQ

}
. (2.7.20)

If all points x0, . . . , xk−1 are infeasible (/∈ intQ), we leave x∗k undefined.

Theorem 2.7.5. Consider iteration k ≥ 1 of Algorithm 2.7.2. Suppose

δk := exp
(
−k/(2n2)

)R
r
< 1,

where r > 0 is the largest of the radii of Euclidean balls (of the form (2.7.19))
contained in Q. Then, the approximate solution (2.7.20) is well-defined, and

f(x∗k)− f∗ ≤ δkV.

Proof. In view of (2.7.12), (2.7.18) and (2.7.19), B(x0, R) = E(x0, R
−2B).

Combining this observation with Lemma 2.7.3 and Remark 2.7.4, we con-
clude that Algorithm 2.7.2 is an instance of the general cutting plane scheme
(Algorithm 2.7.1) with the localizers Ωk := E(xk, H−1

k) satisfying

vol(Ωk+1/Ωk) ≤ exp
(
−1/(2n)

)
(2.7.21)

for all k ≥ 0.
Let avrad be the average radius size function from (2.7.8), defined w.r.t.

the solid B0 := Ω0. Let k ≥ 1 be arbitrary. Then,

δ′k := avrad Ωk
avradQ =

[
vol(Ωk/Ω0)
vol(Q/Ω0)

]1/n
. (2.7.22)

From (2.7.21), we obtain, using Proposition 2.1.7(v), that

vol(Ωk/Ω0) =
k−1∏
i=0

vol(Ωi+1/Ωi) ≤ exp
(
−k/(2n)

)
. (2.7.23)

Now let us estimate vol(Q/Ω0) from below. By our assumptions, there

88

2.7. Ellipsoid Method

exists x̄ ∈ E such that

Br := B(x̄, r) ≡ E(x̄, r−2B) ⊆ Q.

Therefore, by Propositions 2.1.7(ii), 2.1.8, 2.1.4(ii) and 2.1.4(i), we have

vol(Q/Ω0) ≥ vol(Br/Ω0) = [det(r2B−1, R−2B)]1/2 =
(r
R

)n
. (2.7.24)

Substituting (2.7.23) and (2.7.24) into (2.7.22), we obtain

δ′k ≤ exp
(
−k/(2n2)

) r
R

= δk.

It remains to apply Theorem 2.7.2 with the avrad size function.

According to Theorem 2.7.5, for generating an ε-approximate solution
(in terms of function value) to problem (2.7.1), the Ellipsoid Method re-
quires at most the following number of iterations:

2n2 ln RV
rε

(2.7.25)

(provided that 0 < ε < V). The main factor in complexity estimate (2.7.25)
is the dimensionality of the space. All other problem parameters enter this
estimate under the logarithm.

Note that, in principle, we can always estimate the variation V (defined
in (2.7.3)) from above using the Lipschitz constant M > 0 of f on the set Q
and the simple bound on the diameter of Q: diamQ ≤ 2R (which follows
from the fact that Q ⊆ B(x0, R)). Then, we obtain the following estimate:

2n2 ln 2MR2

rε
. (2.7.26)

Comparing estimate (2.7.26) with the corresponding estimate (2.6.13)
for the Subgradient Method, we see that the Ellipsoid Method has a much
better dependency on the target accuracy ε, Lipschitz constant M , and
the diameter of the feasible set D := 2R. However, we also see that the
complexity estimate of the Ellipsoid Method grows unboundedly with the
dimensionality of the space n, which does not happen with the Subgradient
Method. In other words, the Ellipsoid Method does not, in general, have
better guarantees than the Subgradient Method (even in terms of the num-
ber of oracle calls, not considering arithmetical complexities), which seems

89

Chapter 2. Background

to be rather strange. We will return to this issue and address it in more
detail in Chapter 5, where we will also consider the Ellipsoid Method in a
broader context of solving general problems with convex structure, such as
saddle-point problems, variational inequalities, etc.

90

Chapter 3

Classical Quasi-Newton
Methods

One of the main theoretical results about classical quasi-Newton methods
for smooth optimization is their local superlinear convergence. Specifically,
it is known that the ratio of successive residuals1 rk in these methods tends
to zero as the iteration counter k goes to infinity:

lim
k→∞

rk+1

rk
= 0.

Nevertheless, it is important that this result is only qualitative. It sim-
ply states that the superlinear convergence will eventually occur without
specifying neither the rate of this superlinear convergence, nor its starting
moment. In particular, it is unknown how exactly these quantities depend
on the parameters of the problem. It is therefore important to obtain some
explicit inequalities, describing the superlinear convergence of quasi-Newton
methods.

In this chapter, we address this problem. We consider classical quasi-
Newton methods from the convex Broyden class, which includes the most
popular BFGS and DFP algorithms. For these methods, we present some
explicit and non-asymptotic bounds on the rate of their local superlinear
convergence under the standard assumption that the objective function is
strongly convex with Lipschitz continuous gradient and Hessian. The main

1This could be the distance from the current iterate xk to the optimum x∗, or the
norm of the gradient ∇f(xk).

91

Chapter 3. Classical Quasi-Newton Methods

parameters in our estimates are the problem dimension and its condition
number.

Contents

The outline of this chapter is as follows. First, in Section 3.1, we study
the convex Broyden class and establish a number of important properties
of quasi-Newton updates from this class. Then, in Section 3.2, we analyze
the standard quasi-Newton scheme, based on the updating rules from the
convex Broyden class, as applied to minimizing a quadratic function. On
this simple example, where the Hessian is constant, we illustrate the main
ideas of our analysis. To extend the analysis onto more general nonlinear
functions, we first introduce, in Section 3.3, the definition of a strongly self-
concordant function and study some of its properties. The new definition
provides us with a convenient affine-invariant alternative to the standard
assumption of the Lipschitz continuous Hessian. In Section 3.4, we consider
the general nonlinear unconstrained optimization problem and the corre-
sponding classical quasi-Newton scheme for solving it. We show that, for
this scheme, it is possible to prove absolutely the same results as for the
quadratic function, provided that the starting point is sufficiently good.

This chapter mainly follows [160], and contains several auxiliary results
that were originally presented in [161]. Apart from some minor changes
in notation, we have additionally made a few small modifications, com-
pared to [160]. First, we have introduced a new term “operator-revealing
form” to distinguish between the special representation of quasi-Newton
updates, used in this chapter, and the classical one from Section 2.5. We
have also clarified the equivalence of the two representations. Second, in
Section 3.2, we have added the comparison of the efficiency estimates of
BFGS and DFP. Finally, we have included a new Section 3.3 containing the
definition of strongly self-concordant functions and their main properties
that were first presented in [159]. We have also added new Lemma 3.3.3
and Proposition 3.3.4 together with the accompanying discussion.

3.1 Convex Broyden Class
In this section, we establish several important properties of quasi-Newton
updates from the convex Broyden class, which will be needed in our con-
vergence analysis.

92

3.1. Convex Broyden Class

Let us start by introducing our notation. Everywhere in this chap-
ter, it will be convenient for us to represent quasi-Newton updates in the
special operator-revealing form. Specifically, given two positive definite op-
erators A,G ∈ S++(E,E∗) and a direction u ∈ E \ {0}, we define the BFGS
and DFP updates of G w.r.t. A along u by, respectively,

BFGS(A,G, u) := G− Guu∗G

〈Gu, u〉
+ Auu∗A

〈Au, u〉
, (3.1.1)

DFP(A,G, u) := G− Auu∗G+Guu∗A

〈Au, u〉
+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉
. (3.1.2)

Comparing these formulas with the ones from (2.5.30) and (2.5.24), we
see that they indeed correspond to the standard BFGS and DFP updates,
which we discussed in Section 2.5, for δ = u and γ = Au. Note that, in
the classical BFGS and DFP methods for minimizing a twice differentiable
strongly convex function f , at each iteration, given the current iterate x
and the new one x+, we choose u as their difference and A as the integral
Hessian on the segment [x, x+]:

u = x+ − x, A :=
∫ 1

0
∇2f(x+ tu)dt.

Of course, for implementing the corresponding BFGS and DFP updates, we
do not actually need to compute A as we only need the product

Au = ∇f(x+)−∇f(x).

The representation of an update in the operator-revealing form is more
convenient than the standard one when we need to explicitly emphasize the
target operator A which we are trying to approximate by doing the update.

The Broyden class of quasi-Newton updates is defined as follows: for
any A,G ∈ S++(E,E∗), u ∈ E \ {0} and τ ∈ R, we set

Broydτ (A,G, u) := (1− ϕτ) BFGS(A,G, u) + ϕτ DFP(A,G, u), (3.1.3)

where ϕτ := ϕτ (A,G, u) is the following linear fractional function of τ :

ϕτ := τ
〈Au, u〉

〈AG−1Au, u〉

[
τ
〈Au, u〉

〈AG−1Au, u〉
+ (1− τ) 〈Gu, u〉

〈Au, u〉

]−1
. (3.1.4)

In the case when the expression in the brackets in (3.1.4) is zero, we leave

93

Chapter 3. Classical Quasi-Newton Methods

both ϕτ and Broydτ (A,G, u) undefined. For the sake of convenience, we
also define Broydτ (A,G, u) := G when u = 0.

It is not difficult to see that (3.1.3) and (3.1.4) is just an alternative dual
parametrization of the standard Broyden class (2.5.37), which we introduced
in Section 2.5.2. Specifically, the transformation, defined in (3.1.4), is a
bijection, and its range is the whole real line except, possibly, one singular
point ϕ∞ (corresponding to τ = ±∞), for which the Broyden update (3.1.3)
results in a degenerate operator. For us, the dual parametrization will be
more convenient as it corresponds to a simple linear parametrization of the
inverse update.

Lemma 3.1.1. Let A,G ∈ S++(E,E∗), u ∈ E \ {0} and τ ∈ R be such that
G+ := Broydτ (A,G, u) is well-defined. Then, G+ is invertible, and

G−1
+ = (1− τ) BFGS−1(A,G, u) + τ DFP−1(A,G, u), (3.1.5)

det(G−1
+ , G) = (1− τ) 〈Gu, u〉

〈Au, u〉
+ τ

〈Au, u〉
〈AG−1Au, u〉

, (3.1.6)

where

BFGS−1(A,G, u) := G−1 − G−1Auu∗ + uu∗AG−1

〈Au, u〉

+
(〈AG−1Au, u〉

〈Au, u〉
+ 1
) uu∗

〈Au, u〉
,

(3.1.7)

DFP−1(A,G, u) := G−1 − G−1Auu∗AG−1

〈AG−1Au, u〉
+ uu∗

〈Au, u〉
. (3.1.8)

Proof. See Section 3.A.1.

Remark 3.1.2. Formulas (3.1.7) and (3.1.8) are exactly the inverse BFGS
and DFP updates from (2.5.31) and (2.5.26), respectively, written in the
operator-revealing form.

In this chapter, we will be interested only in the convex Broyden class,
which is described by the values of τ ∈ [0, 1]. Note that, for all such τ , the
expression in the brackets in (3.1.4) is always positive for any u 6= 0, so
both ϕτ and Broydτ (A,G, u) are well-defined; moreover, ϕτ ∈ [0, 1]. The
two extreme members of this class, corresponding to the values of τ = 0
and τ = 1, are the BFGS and DFP updates, respectively.

A basic property of an update from the convex Broyden class—a convex
Broyden update—is that it preserves the bounds on the eigenvalues w.r.t.

94

3.1. Convex Broyden Class

the target operator.

Lemma 3.1.3. Let A,G ∈ S++(E,E∗) and ξ, η ≥ 1 be such that

ξ−1A � G � ηA.

Then, for any u ∈ E and any τ ∈ [0, 1], we have

ξ−1A � Broydτ (A,G, u) � ηA. (3.1.9)

Proof. We can assume that u 6= 0 since otherwise the claim is trivial. Since
ϕτ ∈ [0, 1] in (3.1.3), it suffices to prove (3.1.9) only for the DFP and BFGS
updates independently.

Note that the DFP update can be written in the following form:

DFP(A,G, u) =
(
IE∗ −

Auu∗

〈Au, u〉

)
G
(
IE −

uu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉
,

where IE, IE∗ are the identity operators in the spaces E, E∗, respectively.
From this representation, it follows that

DFP(A,G, u) � η
(
IE∗ −

Auu∗

〈Au, u〉

)
A
(
IE −

uu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= η
(
A− Auu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= ηA− (η − 1)Auu
∗A

〈Au, u〉
� ηA,

DFP(A,G, u) � ξ−1
(
IE∗ −

Auu∗

〈Au, u〉

)
A
(
IE −

uu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= ξ−1
(
A− Auu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= ξ−1A+ (1− ξ−1)Auu
∗A

〈Au, u〉
� ξ−1A.

For the BFGS update, we apply Lemma 3.A.1:

BFGS(A,G, u) = G− Guu∗G

〈Gu, u〉
+ Auu∗A

〈Au, u〉

� η
(
A− Auu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= ηA− (η − 1)Auu
∗A

〈Au, u〉
� ηA,

95

Chapter 3. Classical Quasi-Newton Methods

BFGS(A,G, u) = G− Guu∗G

〈Gu, u〉
+ Auu∗A

〈Au, u〉

� ξ−1
(
A− Auu∗A

〈Au, u〉

)
+ Auu∗A

〈Au, u〉

= ξ−1A+ (1− ξ−1)Auu
∗A

〈Au, u〉
� ξ−1A.

Combining the above results, we obtain the claim.

Remark 3.1.4. Lemma 3.1.3 was first established by Fletcher [59] in a
slightly stronger form and using a different argument. He also demonstrated
that one of the relations in (3.1.9) may no longer be valid when the Broyden
update is not convex.

Let us define, for any A,G ∈ S++(E,E∗) and u ∈ E \ {0}, the following
measure of closeness of G to A along the direction u:

ν(A,G, u) := ‖(G−A)u‖∗G
‖u‖A

. (3.1.10)

Our next goal is to show that, by iterating convex Broyden updates,
we can force the measure ν to converge to zero. For this, we will study
how certain potential functions change after one convex Broyden update,
and estimate the corresponding improvement from below by a certain non-
negative monotonically increasing function of ν, vanishing at zero.

First, let us consider the log-det barrier potential function2:

V (A,G) := ln det(A−1, G), (3.1.11)

defined for any A,G ∈ S++(E,E∗). It will be useful only when we can
guarantee that A � G, and hence V (A,G) ≥ 0.

Lemma 3.1.5. Let A,G ∈ S++(E,E∗) and η ≥ 1 be such that

A � G � ηA.

Then, for any τ ∈ [0, 1], u ∈ E \ {0} and G+ := Broydτ (A,G, u), we have

V (A,G)− V (A,G+) ≥ ln
(
1 + (τη−1 + 1− τ)ν2(A,G, u)

)
. (3.1.12)

2Recall that det(·, ·) is the determinant product defined in (2.1.31).

96

3.1. Convex Broyden Class

Proof. Using Lemma 3.1.1, we obtain

V (A,G)− V (A,G+) = ln det(G−1
+ , G)

= ln
(
τ
〈Au, u〉

〈AG−1Au, u〉
+ (1− τ) 〈Gu, u〉

〈Au, u〉

)
= ln

(
1 + τ

〈A(A−1 −G−1)Au, u〉
〈AG−1Au, u〉

+ (1− τ) 〈(G−A)u, u〉
〈Au, u〉

)
.

(3.1.13)
Since3 0 � G−A � (1− η−1)G, we have

(G−A)G−1(G−A) � (1− η−1)(G−A)
� (1 + η−1)−1(G−A) � G−A.

(3.1.14)

Therefore, denoting ν := ν(A,G, u), we can write that

〈(G−A)u, u〉
〈Au, u〉

(3.1.14)
≥ 〈(G−A)G−1(G−A)u, u〉

〈Au, u〉
(3.1.10)= ν2,

and, since A(A−1 −G−1)A = G−A− (G−A)G−1(G−A), that

〈A(A−1 −G−1)Au, u〉
〈AG−1Au, u〉

= 〈(G−A− (G−A)G−1(G−A))u, u〉
〈AG−1Au, u〉

(3.1.14)
≥ η−1 〈(G−A)G−1(G−A)u, u〉

〈AG−1Au, u〉

≥ η−1 〈(G−A)G−1(G−A)u, u〉
〈Au, u〉

(3.1.10)= η−1ν2.

Substituting these two inequalities into (3.1.13), we obtain (3.1.12).

Now consider another potential function, the augmented log-det barrier :

ψ(G,A) := ln det(A−1, G)− 〈G−1, G−A〉 (≥ 0), (3.1.15)

defined for any A,G ∈ S++(E,E∗). Note that this function is, in fact, the
Bregman divergence generated by the log-det prox function (see (2.5.15),
(2.5.27) and (2.5.29)). Therefore, ψ(G,A) is indeed nonnegative for any
A,G ∈ S++(E,E∗). As a result, this potential function is more universal

3This is obvious when G−A is non-degenerate. The general case follows by continuity.

97

Chapter 3. Classical Quasi-Newton Methods

than the previous one as we can work with it even when the condition A � G
is violated.

Remark 3.1.6. It is worth mentioning that, instead of ψ(G,A), it is possible
to study the evolution of ψ(A,G), or, in other words, to center the Bregman
divergence at the target operator A instead of its current approximation G.
This is indeed a reasonable approach. However, as it turns out, in the end, it
leads to slower rates of superlinear convergence (for more details, see [161]).

In order to relate the improvement in our new potential function ψ with
the directional measure of closeness ν, we need an auxiliary inequality.

Lemma 3.1.7. For any real α ≥ β > 0, we have α+ β−1 − 1 ≥ 1, and

α− ln β − 1 ≥
√

3
2 +
√

3
ln(α+ β−1 − 1) ≥ 6

13 ln(α+ β−1 − 1). (3.1.16)

Proof. We only need to prove the first inequality in (3.1.16) since the second
one follows from it and the fact that

√
3 + 2√

3
= 1 + 2√

3
≤ 1 + 7

6 = 13
6 .

Let β > 0 be fixed, and let ζ1 : (1− β−1,+∞)→ R be the function

ζ1(α) := α−
√

3
2 +
√

3
ln(α+ β−1 − 1).

Note that the domain of ζ1 includes the point α = β since β ≥ 2 − β−1 >

1− β−1. Let us show that ζ1 increases on the interval [β,+∞). Indeed, for
any α ≥ β, we have

ζ ′1(α) = 1−
√

3
2 +
√

3
1

α+ β−1 − 1

> 1− 1
α+ β−1 − 1 = α+ β−1 − 2

α+ β−1 − 1 ≥
β + β−1 − 2
α+ β−1 − 1 ≥ 0.

Thus, it is sufficient to prove (3.1.16) only in the case when α = β. Equiv-
alently, we need to show that the function ζ2 : (0,+∞)→ R defined by

ζ2(α) := α− lnα− 1−
√

3
2 +
√

3
ln(α+ α−1 − 1)

98

3.1. Convex Broyden Class

is nonnegative. Differentiating, we find that, for all α > 0, we have

ζ ′2(α) = 1− α−1 −
√

3
2 +
√

3
1− α−2

α+ α−1 − 1

= (1− α−1)
(

1−
√

3
2 +
√

3
1 + α−1

α+ α−1 − 1

)
= (1− α−1)α+ α−1 − 1− (2

√
3− 3)(1 + α−1)

α+ α−1 − 1

= (1− α−1)α− 2(
√

3− 1) + (
√

3− 1)2α−1

1 + α−1 − 1

= (1− α−1) (
√
α− (

√
3− 1)/

√
α)2

α+ α−1 − 1 .

Hence, ζ ′2(α) ≤ 0 for 0 < α ≤ 1, and ζ ′2(α) ≥ 0 for α ≥ 1. Thus, the
minimum of ζ2 is attained at α = 1. Consequently, ζ2(α) ≥ ζ2(1) = 0 for
all α > 0.

Using Lemma 3.1.7, we can now show that the improvement in the
augmented log-det barrier potential function can be bounded from below
by exactly the same logarithmic function of ν (up to an absolute constant),
which we had for our first potential function.

Lemma 3.1.8. Let A,G ∈ S++(E,E∗) and ξ, η ≥ 1 be such that

ξ−1A � G � ηA.

Then, for any τ ∈ [0, 1], u ∈ E \ {0} and G+ := Broydτ (A,G, u), we have

ψ(G,A)− ψ(G+, A) ≥ 6
13 ln

(
1 + (τ [ξη]−1 + 1− τ)ν2(A,G, u)

)
.

Proof. According to Lemma 3.1.1, we have

〈G−1 −G−1
+ , A〉

= τ

[
〈AG−1AG−1Au, u〉
〈AG−1Au, u〉

− 1
]

+ (1− τ)
[
〈AG−1Au, u〉
〈Au, u〉

− 1
]
,

det(G−1
+ , G) = τ

〈Au, u〉
〈AG−1Au, u〉

+ (1− τ) 〈Gu, u〉
〈Au, u〉

.

99

Chapter 3. Classical Quasi-Newton Methods

Thus, in view of (3.1.15),

ψ(G,A)− ψ(G+, A)
= 〈G−1 −G−1

+ , A〉+ ln det(G−1
+ , G)

= τα1 + (1− τ)α0 + ln
(
τβ−1

1 + (1− τ)β−1
0
)
− 1

= α− ln β − 1,

(3.1.17)

where we denote

α1 := 〈AG
−1AG−1Au, u〉
〈AG−1Au, u〉

, β1 := 〈AG
−1Au, u〉
〈Au, u〉

,

α0 := 〈AG
−1Au, u〉
〈Au, u〉

, β0 := 〈Au, u〉
〈Gu, u〉

,

α := τα1 + (1− τ)α0, β := (τβ−1
1 + (1− τ)β−1

0)−1.

Note that α1 ≥ β1 and α0 ≥ β0 by the Cauchy-Schwartz inequality. At the
same time, τβ1 + (1 − τ)β2 ≥ β by the convexity of the inverse function
t 7→ t−1. Hence, we can apply Lemma 3.1.7 to estimate the right-hand side
in (3.1.17) from below. It remains to note that

α+ β−1 − 1

= τ
〈(A+AG−1AG−1A)u, u〉

〈AG−1Au, u〉
+ (1− τ) 〈(AG

−1A+G)u, u〉
〈Au, u〉

− 1

= 1 + τ
〈(G−A)G−1AG−1(G−A)〉

〈AG−1Au, u〉

+ (1− τ) 〈(G−A)G−1(G−A)u, u〉
〈Au, u〉

≥ 1 + (τ [ξη]−1 + 1− τ) 〈(G−A)G−1(G−A)u, u〉
〈Au, u〉

= 1 + (τ [ξη]−1 + 1− τ)ν2(A,G, u).

Putting everything together, we obtain the claim.

The measure ν, defined in (3.1.10), is the ratio of the norm of (G−A)u
measured w.r.t. G, and the norm of u measured w.r.t. A. Let us show how
we can change the corresponding norms to those, induced by G+ and G,
respectively.

100

3.1. Convex Broyden Class

Lemma 3.1.9. Let A,G ∈ S++(E,E∗) and ξ > 0 be such that

ξ−1A � G. (3.1.18)

Then, for any τ ∈ [0, 1], u ∈ E \ {0}, and G+ := Broydτ (A,G, u), we have

ν(A,G, u) ≥ (1 + ξ)−1/2 ‖(G−A)u‖∗G+

‖u‖G
.

Proof. From (3.1.5), it is easy to see that G−1
+ Au = u. Hence,

〈(G−A)G−1
+ (G−A)u, u〉
〈Gu, u〉

=
〈GG−1

+ Gu, u〉
〈Gu, u〉

+
〈Au,G−1

+ Au〉
〈Gu, u〉

− 2
〈Gu,G−1

+ Au〉
〈Gu, u〉

=
〈GG−1

+ Gu, u〉
〈Gu, u〉

+ 〈Au, u〉
〈Gu, u〉

− 2.

(3.1.19)

Since 1− t ≤ t−1 − 1 for all t > 0, we further have, in view of (3.1.5),

〈GG−1
+ Gu, u〉
〈Gu, u〉

= τ

[
1− 〈Au, u〉2

〈Gu, u〉〈AG−1Au, u〉
+ 〈Gu, u〉
〈Au, u〉

]
+ (1− τ)

[(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)
〈Gu, u〉
〈Au, u〉

− 1
]

≤
(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)
〈Gu, u〉
〈Au, u〉

− 1.

(3.1.20)

Denote ν := ν(A,G, u). According to (3.1.10),

ν2 = 〈(G−A)G−1(G−A)u, u〉
〈Au, u〉

= 〈Gu, u〉
〈Au, u〉

+ 〈AG
−1Au, u〉
〈Au, u〉

− 2. (3.1.21)

Consequently, in view of (3.1.18), (3.1.21) and (3.1.20),

(1 + ξ)ν2 ≥
(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)
ν2

=
(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)
〈Gu, u〉
〈Au, u〉

+ 〈AG
−1Au, u〉2

〈Au, u〉2
− 〈AG

−1Au, u〉
〈Au, u〉

− 2

101

Chapter 3. Classical Quasi-Newton Methods

≥
〈GG−1

+ Gu, u〉
〈Au, u〉

+ 〈AG
−1Au, u〉2

〈Au, u〉
− 〈AG

−1Au, u〉
〈Au, u〉

− 1,

Combining this with (3.1.19), we obtain

(1 + ξ)ν2 −
〈(G−A)G−1

+ (G−A)u, u〉
〈Gu, u〉

= (1 + ξ)ν2 −
〈GG−1

+ Gu, u〉
Gu, u〉

− 〈Au, u〉
〈Gu, u〉

+ 2

≥ 〈AG
−1Au, u〉2

〈Au, u〉2
− 〈AG

−1Au, u〉
〈Au, u〉

− 〈Au, u〉
〈Gu, u〉

+ 1

≥ 〈AG
−1Au, u〉2

〈Au, u〉2
− 2 〈AG

−1Au, u〉
〈Au, u〉

+ 1 ≥ 0,

where we the penultimate inequality is due to the Cauchy–Schwartz inequal-
ity 〈Au,u〉〈Gu,u〉 ≤

〈AG−1Au,u〉
〈Au,u〉 .

3.2 Unconstrained Quadratic Minimization
Let us study the convergence properties of the classical quasi-Newton meth-
ods from the convex Broyden class, as applied to minimizing the following
strongly convex quadratic function:

f(x) := 1
2 〈Ax, x〉 − 〈b, x〉, (3.2.1)

where A ∈ S++(E,E∗) and b ∈ E∗.
Let us fix some operator B ∈ S++(E,E∗) which will be used for ini-

tializing the methods. Denote by µ > 0 the strong convexity parameter
of f , and by L > 0 the Lipschitz constant of the gradient of f , both mea-
sured w.r.t. the Euclidean norm, induced by B (see Proposition 2.2.5(iii)
and Corollary 2.2.9):

µB � A � LB. (3.2.2)

The corresponding condition number is defined as usual:

κ := L

µ
(≥ 1). (3.2.3)

Consider the following standard quasi-Newton scheme for minimizing
the quadratic function (3.2.1). For the sake of simplicity, we assume that

102

3.2. Unconstrained Quadratic Minimization

the constant L is known.

Algorithm 3.2.1: Convex Broyden Method
for Quadratic Function

Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:
1. Update xk+1 = xk −G−1

k ∇f(xk).
2. Set uk = xk+1 − xk and choose τk ∈ [0, 1].
3. Compute Gk+1 = Broydτk

(A,Gk, uk).

Remark 3.2.1. We present Algorithm 3.2.1 in a rather specific form which
is convenient for its theoretical analysis. In an actual implementation of
this method, in order to keep the iteration cost at the level of O(n2), in-
stead of the Hessian approximations Gk, it is typical to work directly with
their inverses Hk := G−1

k . The corresponding update of Hk into Hk+1
can be efficiently implemented in O(n2) operations using the formulas from
Lemma 3.1.1.

Note that Algorithm 3.2.1 starts with G0 = LB. Therefore, its first
iteration is identical to that of the standard Gradient Method with constant
step size (see Algorithm 2.3.1):

x1 = x0 −
1
L
B−1∇f(x0).

For measuring the rate of convergence of Algorithm 3.2.1, it will be
convenient to use the norm of the gradient, induced by the Hessian:

λk := ‖∇f(xk)‖∗A = 〈∇f(xk), A−1∇f(xk)〉1/2, k ≥ 0.

This measure of optimality is directly related to the functional residual.
Indeed, denoting by x∗ = A−1b the minimizer of f , and by f∗ the corre-
sponding minimal value, we obtain, for any k ≥ 0,

f(xk)− f∗ = 1
2 〈A(xk − x∗), xk − x∗〉 = 1

2 〈Axk − b, A
−1(Axk − b)〉

= 1
2 〈∇f(xk), A−1∇f(xk)〉 = 1

2λ
2
k.

Let us show that Algorithm 3.2.1 has global linear convergence, and that
the corresponding rate is at least as good as that of the standard Gradient

103

Chapter 3. Classical Quasi-Newton Methods

Method (cf. Theorem 2.3.1).

Theorem 3.2.2. In Algorithm 3.2.1, for all k ≥ 0, we have

A � Gk � κA, (3.2.4)
λk ≤ (1− κ−1)kλ0. (3.2.5)

Proof. For k = 0, (3.2.4) follows from the fact that G0 = LB and (3.2.2).
For all other k ≥ 1, it can be justified by induction using Lemma 3.1.3.

Let us prove (3.2.5). Let k ≥ 0 be arbitrary. By the definitions of uk
and xk+1 in Algorithm 3.2.1, and the fact that f is a quadratic function
with Hessian A, we have

Gkuk = −∇f(xk), Auk = ∇f(xk+1)−∇f(xk).

Hence,
λ2
k = 〈GkA−1Gkuk, uk〉,

λ2
k+1 = 〈(Gk −A)A−1(Gk −A)uk, uk〉.

(3.2.6)

Note, from (3.2.4), that

0 � A−1 −G−1
k � (1− κ−1)A−1.

Therefore,

(Gk −A)A−1(Gk −A) = Gk(A−1 −G−1
k)A(A−1 −G−1

k)Gk
� (1− κ−1)2GkA

−1Gk.

Consequently, according to (3.2.6),

λk+1 ≤ (1− κ−1)λk.

This proves (3.2.5) since k ≥ 0 was arbitrary.

Now let us establish the superlinear convergence of Algorithm 3.2.1.
According to Theorem 3.2.2, for the quadratic function, we have A � Gk
for all k ≥ 0. Therefore, in our analysis, we can use both potential functions:
the log-det barrier and the augmented log-det barrier. Let us consider both
options. We start with the first one.

In what follows, for each k ≥ 1, we denote by κk the following trans-
formation of the original condition number κ, corresponding to the first k

104

3.2. Unconstrained Quadratic Minimization

iterations of Algorithm 3.2.1:

κk :=
k−1∏
i=0

(τiκ−1 + 1− τi)−1/k (≥ 1). (3.2.7)

Recall that τi ∈ [0, 1] are the “parameters” of Algorithm 3.2.1 responsible
for the choice of the particular “type” of the Hessian approximation update.
For the two most important examples, BFGS and DFP, we have τi ≡ 0
and τi ≡ 1, respectively, and thus

κBFGS
k ≡ 1, κDFP

k ≡ κ. (3.2.8)

In general, however, both τk and κk are allowed to change at each iteration k
(although we do not really explore this possibility any further).

Theorem 3.2.3. In Algorithm 3.2.1, for all k ≥ 1, we have

λk ≤
[
2κk

(
κn/k − 1

)]k/2√κ λ0. (3.2.9)

Proof. Without loss of generality, we can assume that ui 6= 0 for all 0 ≤
i ≤ k. Denote Vi := V (A,Gi) ≥ 0, νi := ν(A,Gi, ui), pi := τiκ−1 + 1 − τi,
gi := ‖∇f(xi)‖∗Gi

for any 0 ≤ i ≤ k. By Lemma 3.1.5 and (3.2.4), for all
0 ≤ i ≤ k − 1, we have

ln(1 + piν
2
i) ≤ Vi − Vi+1.

Summing up these inequalities for all 0 ≤ i ≤ k − 1, we obtain

k−1∑
i=0

ln(1 + pkν
2
k) ≤ V0 − Vk ≤ V0 = V (A,LB)

(3.1.11)= ln det(A−1, LB)
(3.2.2)
≤ ln det

(
(µB)−1, LB

)
= n lnκ.

(3.2.10)

Hence, by the convexity of function t 7→ ln(1 + et), from (3.2.10), we get

n lnκ
k
≥ 1
k

k−1∑
i=0

ln(1 + piν
2
i) = 1

k

k−1∑
i=0

ln
(
1 + exp{ln(piν2

i)}
)

≥ ln
(

1 + exp
{1
k

k−1∑
i=0

ln(piν2
i)
})

= ln
(

1 +
[k−1∏
i=0

piν
2
i

]1/k)
.

(3.2.11)

105

Chapter 3. Classical Quasi-Newton Methods

But, for all 0 ≤ i ≤ k − 1, we have

ν2
i ≥ 2−1 〈(Gi −A)G−1

i+1(Gi −A)ui, ui〉
〈Giui, ui〉

= 2−1 g
2
i+1
g2
i

in view of Lemma 3.1.9 and (3.2.4), and since Giui = −∇f(xi) while Aui =
∇f(xi+1)−∇f(xi). Hence,

k−1∏
i=0

ν2
i ≥ 2−k g

2
k

g2
0
,

and so, from (3.2.11), it follows that

n lnκ
k
≥ ln

(
1 + (2κk)−1

[gk
g0

]2/k)
,

where κk :=
∏k−1
i=0 p

−1/k
i . Rearranging, we obtain

gk ≤
[
2κk

(
κn/k − 1

)]k/2
g0.

It remains to note that λk ≤
√
κ gk and g0 ≤ λ0 in view of (3.2.4).

Remark 3.2.4. As can be seen from (3.2.10), the factor n lnκ in (3.2.9) can
be improved up to ln det(A−1, LB) =

∑n
i=1 ln(L/λi), where λ1, . . . , λn are

the eigenvalues of A w.r.t. B (see Proposition 2.1.4(vi)). This improved
factor can be significantly smaller than the original one if the majority of
the eigenvalues λi are much larger than µ.

Let us discuss the efficiency estimate from Theorem 3.2.3. Note that its
minimal value over all τi ∈ [0, 1] is achieved at τi ≡ 0 (see (3.2.7)). This
corresponds to the BFGS Method, for which we have, according to (3.2.8),

λk ≤
[
2
(
κn/k − 1

)]k/2√κ λ0. (3.2.12)

Although this bound is formally valid for all k ≥ 1, it becomes useful4 only
when the expression in front of λ0 in the right-hand side of (3.2.12) is less or
equal than 1. The smallest integer k = K̂BFGS

0 ≥ 1 for which this happens
can be thought of as the starting moment of the superlinear convergence of

4Indeed, from Theorem 3.2.2, we know that λk ≤ λ0 for all k ≥ 0.

106

3.2. Unconstrained Quadratic Minimization

the BFGS Method, according to estimate (3.2.12). Let us show that5

K̂BFGS
0 ∼ n lnκ,

or, more precisely, that

K̄BFGS
0 := d2n lnκe ≤ K̂BFGS

0 ≤ d4n lnκe =: KBFGS
0 . (3.2.13)

Indeed, since exp(t) > 1 + t for any t > 0, we have, for all 1 ≤ k < K̄BFGS
0 ,

2(κn/k − 1) = 2
(
exp([n lnκ]/k)− 1

)
> 2n lnκ

k
≥ 1.

This proves that K̂BFGS
0 ≥ K̄BFGS

0 . On the other hand, using the inequality
exp(t) ≤ (1− t)−1 = 1 + t/(1− t), which is valid for any t < 1, we obtain,
for all k ≥ KBFGS

0 ,

exp([n lnκ]/k)− 1 ≤ (n lnκ)/k
1− (n lnκ)/k ≤

4
3
n lnκ
k

.

Further, for all k ≥ KBFGS
0 ,

√
κ = exp

(1
2 lnκ

)
≤ exp

(1
8k
)

=
[
exp
(1

4

)]k/2
≤
(3

2

)k/2
.

Combining these inequalities with (3.2.12), we obtain, for all k ≥ KBFGS
0 ,

λk ≤
(8

3
n lnκ
k

)k/2√
κ λ0 ≤

(
4n lnκ

k

)k/2
λ0 (≤ λ0). (3.2.14)

This proves that K̂BFGS
0 ≤ KBFGS

0 .

In contrast, the maximal value of the efficiency estimate from Theo-
rem 3.2.3 over all τi ∈ [0, 1] is achieved at τi ≡ 1 (see (3.2.7)). This corre-
sponds to the DFP Method, for which we have, according to (3.2.8),

λk ≤
[
2κ
(
κn/k − 1

)]k/2√κ λ0 (3.2.15)

for all k ≥ 1. Repeating the same reasoning as above, we can easily obtain
that the starting moment K̂DFP

0 of the superlinear convergence of DFP,

5Hereinafter, we assume that µ < L. Otherwise, in view of Theorem 3.2.2, the method
finds the exact solution after one iteration.

107

Chapter 3. Classical Quasi-Newton Methods

according to (3.2.15), is
K̂DFP

0 ∼ nκ lnκ,

or, more precisely,

K̄DFP
0 := d2nκ lnκe ≤ K̂DFP

0 ≤ d4nκ lnκe =: KDFP
0 .

In particular, for all k ≥ KDFP
0 , we have

λk ≤
(

4nκ lnκ
k

)k/2
λ0 (≤ λ0).

According to our estimates, the BFGS Method is almost insensitive to
the condition number κ since this quantity enters the principal efficiency
estimates (3.2.13) and (3.2.14) under the logarithm. The DFP Method, on
the contrary, is very sensitive to the condition number. Compared to BFGS,
its superlinear convergence begins κ times later, and the corresponding rate
is much slower.

Let us briefly present another approach for justifying the superlinear
convergence rate of the form (3.2.9) for Algorithm 3.2.1. This approach
is based on our second potential function, namely, the augmented log-det
barrier.

Theorem 3.2.5. In Algorithm 3.2.1, for all k ≥ 1, we have

λk ≤
[
2κk

(
κ13n/(6k) − 1

)]k/2√κ λ0, (3.2.16)

where κk is defined in (3.2.7).

Proof. Without loss of generality, we can assume that ui 6= 0 for all 0 ≤ i ≤
k. Denote ψi := ψ(Gi, A), νi := ν(A,Gi, ui) and pi := τiκ−1 + 1− τi for all
0 ≤ i ≤ k. By Lemma 3.1.8 and (3.2.4), for all 0 ≤ i ≤ k − 1, we have

6
13 ln(1 + piν

2
i) ≤ ψi − ψi+1.

Summing up these inequalities for 0 ≤ i ≤ k − 1, we obtain

6
13

k−1∑
i=0

ln(1 + piν
2
i) ≤ ψ0 − ψk

(3.1.15)
≤ ψ0 = ψ(LB,A)

(3.1.15)= ln det(A−1, LB)− 〈(LB)−1, LB −A〉
(3.2.2)
≤ n lnκ.

(3.2.17)

108

3.3. Strongly Self-Concordant Functions

Now we can continue exactly as in the proof of Theorem 3.2.3.

Comparing our new efficiency estimate (3.2.16) with the previous one
from (3.2.9), we see that they differ only in an absolute constant under the
exponent. Thus, for the quadratic function, we do not gain anything by
working with the augmented potential function instead of the usual one.
Nevertheless, our second proof turns out to be more universal and, in con-
trast to the first one, can be extended onto general nonlinear functions, as
we will see in Section 3.4. But first let us introduce a certain assumption
on the objective function, which will be convenient in our future analysis.

3.3 Strongly Self-Concordant Functions
Traditionally, the convergence analysis of quasi-Newton methods for gen-
eral nonlinear minimization problems is done under the assumptions that
the objective function is strongly convex and has Lipschitz continuous gra-
dient and Hessian (see, e.g., Theorems 2.5.8 and 2.5.9). However, as we
already discussed in Section 2.4.1, the corresponding constants in all these
assumptions are, in general, not affine-invariant, since they depend on the
particular norm, which we use for measuring them. As a result, the classical
strong convexity and Lipschitz continuity assumptions are badly suited for
the analysis of affine-invariant methods such as Newton’s Method.

As we already know from Section 2.4.1, for Newton’s Method, a better
assumption about the objective function is that of self-concordance. Since
quasi-Newton methods aim at approximating Newton’s Method, it is there-
fore reasonable to use something similar for them as well. Unfortunately,
the ideal goal of having only affine-invariant constants in the analysis of
quasi-Newton methods is, in general, unreachable since, in these methods,
there is an initial Hessian approximation which, in principle, can be arbi-
trary. Nevertheless, as we will see, it is possible to get a little closer to
our ideal goal. Specifically, we can replace one of the three classical as-
sumptions, namely, the Lipschitz continuity of the Hessian, with a certain
self-concordance assumption in which the constant is affine-invariant.

Definition 3.3.1 (Strongly self-concordant function). A function f : E→ R
is called strongly self-concordant if it is twice differentiable with strictly
positive definite Hessian, and there exists a constant M ≥ 0 (parameter of
strong self-concordance) such that, for all x, y, z, w ∈ E,

∇2f(x)−∇2f(y) �M‖x− y‖z∇2f(w), (3.3.1)

109

Chapter 3. Classical Quasi-Newton Methods

where ‖ · ‖z is the norm induced by ∇2f(z).

Note that strongly self-concordant functions form a subclass of self-
concordant functions. Indeed, let us choose arbitrarily a point x ∈ E,
direction h ∈ E, and scalar t > 0. Then, from (3.3.1), it follows that

∇2f(x+ th)−∇2f(x) �Mt‖h‖x∇2f(x).

Hence, according to (2.1.12) and (2.1.14),

〈[∇2f(x+ th)−∇2f(x)]h, h〉 ≤Mt‖h‖3x.

Dividing this inequality by t and computing the limit as t→ 0, we obtain

D3f(x)[h]3 ≤M‖h‖3x.

Thus, f is self-concordant with constant M/2 (see Definition 2.4.3).
The simplest example of a strongly self-concordant function is a strictly

convex quadratic function, for which we have M = 0. A more general
example is given by a strongly convex function with Lipschitz continuous
Hessian (cf. Lemma 2.4.4).

Lemma 3.3.2. Let f : E → R be a µ-strongly convex function with L2-
Lipschitz continuous Hessian, where both constants µ > 0 and L2 ≥ 0
are measured w.r.t. a certain Euclidean norm. Then, f is strongly self-
concordant with parameter

M = L2

µ3/2 .

Proof. We assume that the constants µ and L2 are measured w.r.t. to the
Euclidean norm ‖·‖ := ‖·‖B with B ∈ S++(E,E∗). According to Proposi-
tion 2.2.5(iii), for all x ∈ E, we have

∇2f(x) � µB.

Combining this inequality with the Lipschitz continuity of the Hessian, we
obtain, for all x, y, z, w ∈ E,

∇2f(x)−∇2f(y) � L2‖x− y‖B = L2〈B(x− y), x− y〉1/2B

� L2

µ3/2 ‖x− y‖z∇
2f(w),

and the claim follows.

110

3.3. Strongly Self-Concordant Functions

Lemma 3.3.2 shows that, under the extra assumption of strong convexity,
the Lipschitz continuity of the Hessian implies strong self-concordance. It
turns out that the reverse implication is also true but under a different extra
assumption, namely, the Lipschitz continuity of the gradient.

Lemma 3.3.3. Let f : E → R be a strongly self-concordant function with
parameter M ≥ 0. Suppose that the gradient of f is Lipschitz continuous
with constant L ≥ 0 (w.r.t. a certain Euclidean norm). Then, the Hessian
of f is also Lipschitz continuous (w.r.t. the same norm) with constant

L2 = ML3/2.

Proof. We assume that the constant L is measured w.r.t. to the Euclidean
norm ‖·‖ := ‖·‖B with B ∈ S++(E,E∗). According to Proposition 2.2.8, for
all x ∈ E, we have

∇2f(x) � LB.

Combining this with (3.3.1), we obtain, for all x, y ∈ E,

∇2f(x)−∇2f(y) �M〈∇2f(x)(x− y), x− y〉1/2∇2f(x)

�ML3/2‖x− y‖B.

The claim follows.

Putting Lemmas 3.3.2 and 3.3.3 together, we see that, under the extra
assumptions of strong convexity and Lipschitz continuity of the gradient,
the strong self-concordance is, in fact, equivalent to the Lipschitz continuity
of the Hessian. In other words, the following statement holds.

Proposition 3.3.4. The class of strongly convex and strongly self-concordant
functions with Lipschitz continuous gradient is exactly the same as the class
of strongly convex functions with Lipschitz continuous gradient and Hessian.

According to Proposition 3.3.4, on the qualitative level, studying the
traditional class of strongly convex functions with Lipschitz continuous gra-
dient and Hessian is equivalent to studying the class of strongly convex
and strongly self-concordant functions with Lipschitz gradient. However,
on the quantitative level, the latter class may be better to work with, since
the strong self-concordance parameter is affine-invariant, in contrast to the
Lipschitz constant of the Hessian6.

6See also Section 4.5.1 for an example of a function with a “small” strong self-
concordance parameterM but a “large” Lipschitz constant L2 (w.r.t. the standard norm).

111

Chapter 3. Classical Quasi-Newton Methods

Let us conclude this section by establishing several simple relations be-
tween the Hessians of a strongly self-concordant function, which will be
useful in our subsequent analysis.

Lemma 3.3.5. Let f : E → R be a strongly self-concordant function with
parameter M ≥ 0, and let x, y ∈ E. Denote r := ‖y − x‖x. Then,

(1 +Mr)−1∇2f(x) � ∇2f(y) � (1 +Mr)∇2f(x). (3.3.2)

Further, for J :=
∫ 1

0 ∇
2f
(
x+ t(y − x)

)
dt and any v ∈ {x, y}, we have

(1 + 1
2Mr)−1∇2f(v) � J � (1 + 1

2Mr)∇2f(v). (3.3.3)

Proof. Denote h := y − x. Taking z = w = x in (3.3.1), we obtain

∇2f(y)−∇2f(x) �Mr∇2f(x),

which gives us the second relation in (3.3.2) after moving ∇2f(x) into the
right-hand side. Interchanging now x and y in (3.3.1) and taking z = x,
w = y, we get

∇2f(x)−∇2f(y) �Mr∇2f(y),

which gives us the first relation in (3.3.2) after moving ∇2f(x) into the
right-hand side and then dividing by 1 +Mr.

Let us now prove (3.3.3) for v = x (the proof for v = y is similar).
Choosing y = x+ th in (3.3.1) for t > 0, and w = z = x, we obtain

∇2f(x+ th)−∇2f(x) �M‖th‖x∇2f(x) = Mrt∇2f(x).

This proves the second relation in (3.3.3) after integrating for t from 0 to 1
and moving ∇2f(x) into the right-hand side. Interchanging x and y in
(3.3.1) and taking y = x+ th for t > 0, z = x, while leaving w arbitrary, we
get

∇2f(x)−∇2f(x+ th) �M‖−th‖x∇2f(w) = Mrt∇2f(w).

Hence, by integrating for t from 0 to 1, we see that

∇2f(x)− J � 1
2Mr∇2f(w).

112

3.4. Minimization of General Functions

Taking now w = x+ th and integrating again, we obtain

∇2f(x)− J � 1
2Mr

∫ 1

0
∇2f(x+ th)dt = 1

2MrJ,

and the first inequality in (3.3.3) follows after moving J to the right-hand
side and dividing by 1 + 1

2Mr.

3.4 Minimization of General Functions

In this section, we consider the general unconstrained minimization prob-
lem:

min
x∈E

f(x), (3.4.1)

where f : E → R is a twice differentiable function. We assume that the
function f is strongly convex, strongly self-concordant and its gradient is
Lipschitz continuous, i.e., there exist µ,L > 0 and M ≥ 0 such that, for all
x, y, z, w ∈ E, it holds

µB � ∇2f(x) � LB, (3.4.2)
∇2f(x)−∇2f(y) �M‖x− y‖z∇2f(w), (3.4.3)

where B ∈ S++(E,E∗) is a certain fixed operator. For convenience, we also
introduce the following condition number of problem (3.4.1):

κ := L

µ
(≥ 1). (3.4.4)

Remark 3.4.1. Since we are mostly interested in local convergence guar-
antees, it is possible to relax our assumptions by requiring that (3.4.2)
and (3.4.3) hold only in a certain neighborhood of a solution x∗ to prob-
lem (3.4.1). For this, it suffices to assume that the Hessian of f is Lipschitz
continuous in this neighborhood, and ∇2f(x∗) is nonsingular, which are
exactly the standard assumptions used in many classical works on local
convergence of quasi-Newton methods (see, e.g., [46]). However, to avoid
excessive technicalities, we do not do this.

Our goal is to study the convergence properties of the following standard
quasi-Newton scheme for solving problem (3.4.1).

113

Chapter 3. Classical Quasi-Newton Methods

Algorithm 3.4.1: Convex Broyden Method

Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:
1. Update xk+1 = xk −G−1

k ∇f(xk).
2. Set uk = xk+1 − xk and choose τk ∈ [0, 1].
3. Denote Jk =

∫ 1
0 ∇

2f(xk + tuk)dt.
4. Set Gk+1 = Broydτk

(Jk, Gk, uk).

Remark 3.4.2. Similarly to Remark 3.2.1, we present Algorithm 3.4.1 in a
rather specific form which is convenient for its theoretical analysis. When
implementing this method, it is common to work directly with the inverse
Hessian approximations Hk := G−1

k instead of Gk in order to keep the
iteration cost at the level of O(n2). Also, note that it is not necessary
to compute the integral Hessian Jk explicitly since, for implementing the
corresponding inverse Hessian approximation update at Step 4, one only
needs the product

Jkuk = ∇f(xk+1)−∇f(xk),

which is just the difference of two successive gradients.

Remark 3.4.3. Recall that the operator B is allowed to be arbitrary. There-
fore, in principle, instead of setting G0 = LB in Algorithm 3.4.1 and as-
suming (3.4.2) and (3.4.4), we could equivalently say that the initial Hessian
approximation G0 is an arbitrary positive definite linear operator such that

κ−1G0 � ∇2f(x) � G0

for some κ ≥ 1 and all x ∈ E. This actually corresponds to measuring
the parameter of strong convexity and the Lipschitz constant of the gradi-
ent of f w.r.t. the norm ‖·‖G0 , with κ being the corresponding condition
number. However, we prefer to work in terms of B in order to keep the
notation consistent and draw some parallels with the Gradient Method (Al-
gorithm 2.3.1).

For measuring the convergence rate of Algorithm 3.4.1, we use the local
gradient norm:

λk := ‖∇f(xk)‖∗xk
= 〈∇f(xk), [∇2f(xk)]−1∇f(xk)〉1/2. (3.4.5)

114

3.4. Minimization of General Functions

The local convergence analysis of Algorithm 3.4.1 is, in general, the same
as the corresponding analysis in the quadratic case. However, it is much
more technical due to the fact that, in the nonlinear case, the Hessian is no
longer constant. This causes a few problems.

First, there are now several different ways how one can treat the Hessian
approximation Gk. One can view it as an approximation to the Hessian
∇2f(xk) at the current iterate xk, to the Hessian ∇2f(x∗) at the mini-
mizer x∗, to the integral Hessian Jk etc. Of course, locally, due to strong
self-concordance, all these variants are equivalent since the corresponding
Hessians are close to each other. Nevertheless, from the viewpoint of tech-
nical simplicity of the analysis, some options are slightly more preferable
than others. We find it to be the most convenient to always think of Gk as
an approximation to the integral Hessian Jk.

The second issue is as follows. Suppose we already know the connec-
tion between our current Hessian approximation Gk and the actual integral
Hessian Jk, e.g., in terms of the relative eigenvalues and the value of the
augmented log-det barrier potential function (3.1.15). Naturally, we want
to know how these quantities change after we update Gk into Gk+1 at Step 4
of Algorithm 3.4.1. For this, we apply Lemma 3.1.3 and Lemma 3.1.8, re-
spectively. However, the problem is that both of these lemmas will provide
us only with the information on the connection between the update result
Gk+1 and the current integral Hessian Jk (which was used for performing
the update), not the next one Jk+1. Therefore, we need to additionally take
into account the errors, resulting from approximating Jk+1 by Jk.

For estimating the errors, which accumulate as a result of approximating
one Hessian by another, it is convenient to introduce the following quanti-
ties7:

rk := ‖uk‖xk
, ξk := exp

(
M

k−1∑
i=0

ri

)
(≥ 1), k ≥ 0, (3.4.6)

where M is the constant of strong self-concordance from (3.4.3). The
quantity ξk will be helpful for upper bounding various products of the
form

∏k−1
i=0 (1 + Mri). Despite the presence of the exponent in its defi-

nition, ξk will not actually be too large, as the sum M
∑k−1
i=0 ri turns out to

be uniformly bounded by a certain “small” absolute constant whenever the
initial point x0 is sufficiently good.

7We follow the standard convention that the sum over the empty set is defined as 0,
so ξ0 = 1. Similarly, the product over the empty set is defined as 1.

115

Chapter 3. Classical Quasi-Newton Methods

We analyze Algorithm 3.4.1 in several steps. The first step is to establish
the bounds on the relative eigenvalues of the Hessian approximations w.r.t.
the corresponding Hessians.

Lemma 3.4.4. For all k ≥ 0, we have

ξ−1
k ∇

2f(xk) � Gk � ξkκ∇2f(xk), (3.4.7)
ξ−1
k+1Jk � Gk � ξk+1κJk. (3.4.8)

Proof. For k = 0, (3.4.7) follows from (3.4.2) and the fact that G0 = LB

and ξ0 = 1. Now suppose that k ≥ 0, and that (3.4.7) has already been
proved for all indices up to k. Then, combining Lemma 3.3.5 with (3.4.7),
we obtain

[ξk(1 + 1
2Mrk)]−1Jk � Gk � (1 + 1

2Mrk)ξkκJk. (3.4.9)

Since (1 + 1
2Mrk)ξk ≤ ξk+1 by (3.4.6), this proves (3.4.8) for the index k.

Applying Lemma 3.1.3 to (3.4.9), we get

[ξk(1 + 1
2Mrk)]−1Jk � Gk+1 � (1 + 1

2Mrk)ξkκJk.

Combining this with Lemma 3.3.5 and (3.4.6), we obtain

Gk+1 � (1 + 1
2Mrk)2ξkκ∇2f(xk+1) � ξk+1κ∇2f(xk+1),

Gk+1 � [(1 + 1
2Mrk)2ξk]−1∇2f(xk+1) � ξ−1

k+1∇
2f(xk+1).

This proves (3.4.7) for the index k+1, and we can continue by induction.

Corollary 3.4.5. For all k ≥ 0, we have

rk ≤ ξkλk. (3.4.10)

Proof. Indeed, using the definitions of rk, uk and λk (see (3.4.6), Algo-
rithm 3.4.1, and (3.4.5)), we obtain

rk = ‖uk‖xk
= 〈∇f(xk), G−1

k ∇
2f(xk)G−1

k ∇f(xk)〉1/2

≤ ξk〈∇f(xk),∇2f(xk)−1∇f(xk)〉1/2 = ξkλk,

where the inequality follows from (3.4.7).

The second step in our analysis is to establish a preliminary version of

116

3.4. Minimization of General Functions

the linear convergence theorem for Algorithm 3.4.1.

Lemma 3.4.6. For all k ≥ 0, we have

λk ≤
√
ξk λ0

k−1∏
i=0

qi, (3.4.11)

where
qi := max{1− (ξi+1κ)−1, ξi+1 − 1}. (3.4.12)

Proof. Let k, i ≥ 0 be arbitrary. By Taylor’s formula and the definitions of
Ji and ui in Algorithm 3.4.1, we have

∇f(xi+1) = ∇f(xi) + Jiui = Ji(J−1
i −G−1

i)∇f(xi).

Hence, in view of (3.4.5) and Lemma 3.3.5,

λ2
i+1 = 〈∇f(xi+1),∇2f(xi+1)−1∇f(xi+1)〉
≤ (1 + 1

2Mri)〈∇f(xi+1), J−1
i ∇f(xi+1)〉

≤ (1 + 1
2Mri)〈∇f(xi), (J−1

i −G−1
i)Ji(J−1

i −G−1
i)∇f(xi)〉.

(3.4.13)

According to (3.4.8),

−(ξi+1 − 1)J−1
i � J−1

i −G−1
i � [1− (ξi+1κ)−1]J−1

i .

Therefore, by (3.4.12) and Lemma 3.3.5,

(J−1
i −G−1

i)Ji(J−1
i −G−1

i) � q2
i J
−1
i � q2

i (1 + 1
2Mri)∇2f(xi)−1.

Thus, in view of (3.4.13) and (3.4.5), λi+1 ≤ (1+ 1
2Mri)qiλi. Consequently,

λk ≤ λ0

k−1∏
i=0

(1 + 1
2Mri)qi ≤ λ0

k−1∏
i=0

exp(1
2Mri)qi

(3.4.6)=
√
ξk λ0

k−1∏
i=0

qi.

Next, we establish a preliminary version of the theorem on superlin-
ear convergence of Algorithm 3.4.1. The proof uses the augmented log-det
barrier potential function and is essentially a generalization of the corre-
sponding proof of Theorem 3.2.5.

Lemma 3.4.7. For all k ≥ 1, we have

λk ≤
[
(1 + ξk)κk

(
(ξξk+1
k+1 κ)13n/(6k) − 1

)]k/2√
ξkκ λ0, (3.4.14)

117

Chapter 3. Classical Quasi-Newton Methods

where κk :=
∏k−1
i=0 (τiξ−2

i+1κ−1 + 1− τi)−1/k.

Proof. Without loss of generality, assume that ui 6= 0 for all 0 ≤ i ≤
k. Denote ψi := ψ(Gi, Ji), ψ̃i+1 := ψ(Gi+1, Ji), νi := ν(Ji, Gi, ui), pi :=
τiξ
−2
i+1κ−1 + 1− τi, and gi := ‖∇f(xi)‖∗Gi

for any 0 ≤ i ≤ k.

Let 0 ≤ i ≤ k − 1 be arbitrary. By Lemma 3.1.8 and (3.4.8), we have

6
13 ln

(
1 + piν

2
i

)
≤ ψi − ψ̃i+1 = ψi − ψi+1 + ∆i, (3.4.15)

where

∆i := ψi+1 − ψ̃i+1
(3.1.15)= 〈G−1

i+1, Ji+1 − Ji〉+ ln det(J−1
i+1, Ji). (3.4.16)

Note that, in view of Lemma 3.3.5,

Ji � (1 + 1
2Mri)−1∇2f(xi+1) � (1 + 1

2Mri)−1(1 + 1
2Mri+1)−1Ji+1.

In particular,

Ji � exp
(
− 1

2M(ri + ri+1)
)
Ji+1 �

(
1− 1

2M(ri + ri+1)
)
Ji+1.

Combining this with (3.4.8) and (3.4.6), we obtain

k−1∑
i=0
〈G−1

i+1, Ji+1 − Ji〉

≤ 1
2M

k−1∑
i=0

(ri + ri+1)〈G−1
i+1, Ji+1〉 ≤ 1

2nM

k−1∑
i=0

ξi+2(ri + ri+1)

≤ 1
2nMξk+1

k−1∑
i=0

(ri + ri+1) ≤ nMξk+1

k∑
i=0

ri = nξk+1 ln ξk+1.

Consequently, according to (3.4.16),

k−1∑
i=0

∆i ≤ nξk+1 ln ξk+1 + ln det(J−1
k , J0). (3.4.17)

118

3.4. Minimization of General Functions

Summing up (3.4.15), we thus obtain

6
13

k−1∑
i=0

ln(1 + piν
2
i) ≤ ψ0 − ψk +

k−1∑
i=0

∆i

(3.1.15)
≤ ψ0 +

k−1∑
i=0

∆i

(3.1.15)= ln det(J−1
0 , LB)− 〈(LB)−1, LB − J0〉+

k−1∑
i=0

∆i

(3.4.17)
≤ ln det(J−1

k , LB)− 〈(LB)−1, LB − J0〉+ nξk+1 ln ξk+1
(3.4.2)
≤ n lnκ + nξk+1 ln ξk+1 = n ln(ξξk+1

k+1 κ).

By the convexity of the function t 7→ ln(1 + et), it follows that

13
6
n

k
ln(ξξk+1

k+1 κ)

≥ 1
k

k−1∑
i=0

ln(1 + piν
2
i) = 1

k

k−1∑
i=0

ln(1 + exp{ln(piν2
i)})

≥ ln
(

1 + exp
{1
k

k−1∑
i=0

ln(piν2
i)
})

= ln
(

1 +
[k−1∏
i=0

piν
2
i

]1/k)
.

(3.4.18)

At the same time,

ν2
i ≥ (1 + ξi+1)−1 〈(Gi − Ji)G

−1
i+1(Gi − Ji)ui, ui〉
〈Giui, ui〉

= (1 + ξi+1)−1 g
2
i+1
g2
i

in view of Lemma 3.1.9 and (3.4.8), and since Giui = −∇f(xi) while Jiui =
∇f(xi+1)−∇f(xi). Hence, we can write

k−1∏
i=0

ν2
i ≥

g2
k

g2
0

k−1∏
i=0

(1 + ξi+1)−1
(3.4.6)
≥ (1 + ξk)−k g

2
k

g2
0
.

Consequently, according to (3.4.18),

13
6
n

k
ln(ξξk+1

k+1 κ) ≥ ln
(

1 + [(1 + ξk)κk]−1
[gk
g0

]2/k)
,

where κk :=
∏k−1
i=0 p

−1/k
i . Rearranging, we obtain

gk ≤
[
(1 + ξk)κk

(
(ξξk+1
k+1 κ)13n/(6k) − 1

)]k/2
g0.

119

Chapter 3. Classical Quasi-Newton Methods

But λk ≤
√
ξkκ gk by (3.4.7), and g0 ≤ λ0 in view of (3.4.2) and the fact

that G0 = LB.

In the quadratic case (M = 0), we have ξk ≡ 1 (see (3.4.6)), and
Lemmas 3.4.4 and 3.4.6 reduce to the already known Theorem 3.2.2, and
Lemma 3.4.7 reduces to the already known Theorem 3.2.3. In the general
case, the quantities ξk can grow with iterations. However, as we will see
in a moment, by requiring the initial point x0 in Algorithm 3.4.1 to be
sufficiently close to the solution, we can still ensure that ξk stay uniformly
bounded by a sufficiently small absolute constant. This allows us to recover
all the main results of the quadratic case.

To write down the region of local convergence of Algorithm 3.4.1, we
need to introduce one more quantity, related to the starting moment of
superlinear convergence8:

K0 :=
⌈
(τ 4

9κ
−1 + 1− τ)−18n ln(2κ)

⌉
, τ := sup

k≥0
τk (≤ 1). (3.4.19)

For DFP (τk ≡ 1) and BFGS (τk ≡ 0), we have respectively

KDFP
0 = d18nκ ln(2κ)e, KBFGS

0 = d8n ln(2κ)e. (3.4.20)

Now we are ready to prove the main result of this section.

Theorem 3.4.8. Suppose that, in Algorithm 3.4.1, we have9

Mλ0 ≤
ln(3/2)
(3/2)3/2 max{(2κ)−1, (K0 + 9)−1}. (3.4.21)

Then, for all k ≥ 0,

2
3∇

2f(xk) � Gk � 3
2κ∇

2f(xk), (3.4.22)

λk ≤
(
1− (2κ)−1)k√ 3

2 λ0, (3.4.23)

and, for all k ≥ 1,

λk ≤
[5

2κk
(
(2κ)13n/(6k) − 1

)]k/2√ 3
2κ λ0, (3.4.24)

8Hereinafter, dte for t > 0 denotes the smallest positive integer greater or equal to t.
9Recall that M is the parameter of strong self-concordance defined in (3.4.3). In

particular, according to Lemma 3.3.2, M ≤ L2/µ3/2, where µ and L2 are, respectively,
the strong convexity parameter and the Lipschitz constant of the Hessian of f .

120

3.4. Minimization of General Functions

where κk :=
∏k−1
i=0 (τi 4

9κ
−1 + 1− τi)−1/k.

Proof. Let us prove by induction that, for all k ≥ 0, we have

ξk ≤
3
2 . (3.4.25)

Clearly, (3.4.25) is satisfied for k = 0 since ξ0 = 1. It is also satisfied for
k = 1 since

ξ1
(3.4.6)= exp(Mr0)

(3.4.10)
≤ exp(ξ0Mλ0) (3.4.6)= exp(Mλ0)

(3.4.21)
≤ 3

2 .

Now let k ≥ 0, and suppose that (3.4.25) has already been proved for all
indices up to k+ 1. Then, applying Lemma 3.4.4, we obtain (3.4.22) for all
indices up to k + 1. Applying now Lemma 3.4.6 and using for all 0 ≤ i ≤ k
the relation

qi
(3.4.12)= max{1− (ξi+1κ)−1, ξi+1 − 1}

(3.4.25)
≤ max{1− (3

2κ)−1, 1
2} ≤ 1− (2κ)−1,

we obtain (3.4.23) for all indices up to k+1. Finally, if k ≥ 1, then, applying
Lemma 3.4.7 and using that, according to (3.4.25),

ξ
ξi+1
i+1 ≤

(3
2

)3/2
= 3

2

√
3
2 ≤

3
2

(
1 + 1

4

)
= 15

8 ≤ 2

for all 0 ≤ i ≤ k, we obtain (3.4.24) for all indices up to k. Thus, at this
moment, (3.4.22) and (3.4.23) are proved for all indices up to k + 1, while
(3.4.24) is proved only up to k.

To finish the inductive step, it remains to prove that (3.4.25) is satisfied
for the index k + 2, or, equivalently, in view of (3.4.6), that

M

k+1∑
i=0

ri ≤ ln 3
2 .

Since

M

k+1∑
i=0

ri ≤M
k+1∑
i=0

ξiλi ≤
3
2M

k+1∑
i=0

λi

121

Chapter 3. Classical Quasi-Newton Methods

in view of (3.4.10) and (3.4.25), it suffices to show that

3
2M

k+1∑
i=0

λi ≤ ln 3
2 .

In view of (3.4.23), we have

3
2M

k+1∑
i=0

λi ≤
(3

2

)3/2
Mλ0

k+1∑
i=0

(
1− (2κ)−1)i ≤ (3

2

)3/2
2κMλ0. (3.4.26)

Therefore, if we could prove that

3
2M

k+1∑
i=0

λi ≤
(3

2

)3/2
(K0 + 9)Mλ0, (3.4.27)

then, combining (3.4.26) and (3.4.27), we would obtain

3
2M

k+1∑
i=0

λi ≤
(3

2

)3/2
min{2κ,K0 + 9}Mλ0

(3.4.21)
≤ ln 3

2 ,

which is exactly what we need. Let us prove (3.4.27). If k ≤ K0, then, in
view of (3.4.23), we have

3
2M

k+1∑
i=0

λi ≤
(3

2

)3/2
(k + 2)Mλ0 ≤

(3
2

)3/2
(K0 + 2)Mλ0,

and (3.4.27) follows. Therefore, from now on, we can assume that k ≥ K0.
Then, using (3.4.23), we obtain10

3
2M

k+1∑
i=0

λi = 3
2M

(K0−1∑
i=0

λi + λk+1

)
+ 3

2M
k∑

i=K0

λi

≤
(3

2

)3/2
(K0 + 1)Mλ0 + 3

2M
k∑

i=K0

λi.

10We will estimate the second sum using (3.4.24). However, recall that, at this moment,
(3.4.24) is proved only up to the index k. This is the reason why we move λk+1 into the
first sum.

122

3.4. Minimization of General Functions

It remains to show that

3
2M

k∑
i=K0

λi ≤
(3

2

)3/2
8Mλ0.

We can do this using (3.4.24).

First, let us make some estimations. Clearly, for all 0 < t < 1, we have

exp(t) =
∞∑
j=0

tj

j! ≤ 1 + t+ t2

2

∞∑
j=0

tj = 1 + t
(

1 + t

2(1− t)

)
.

Hence, for all 0 < t ≤ 1, we obtain

exp
(13t

48

)
− 1 ≤ 13t

48

(
1 + 13/48

2(1− 13/48)

)
= 13t

48 ·
83
70 ≤

13t
48 ·

6
5 = 13t

40 ,

and so [
5
2t

(
exp
{13t

48

}
− 1
)]1/2

≤
√

5
2t ·

13t
40 =

√
13
16 ≤

11
12 . (3.4.28)

Further, since K0 ≥ 8 ln(2κ) in view of (3.4.19), we have(11
12

)K0√
κ = exp

{
K0 ln 11

12

}√
κ ≤ exp

{
− 1

12K0

}√
κ

≤ exp
{
−2

3 ln(2κ)
}√

κ = 2−2/3κ−1/6 ≤ 2−2/3 ≤ 2
3 .

(3.4.29)

Thus, for all K0 ≤ i ≤ k, and p := τ 4
9κ
−1 +1−τ ≤

∏i−1
j=0(τi 4

9κ
−1 +1−τi)1/i

(see (3.4.19)), we have

λi
(3.4.24)
≤

[5
2p
−1(exp{ 13

6 i
−1n ln(2κ)} − 1

)]i/2√ 3
2κ λ0

(3.4.19)
≤

[5
2p
−1(exp{ 13

48p} − 1
)]i/2√ 3

2κ λ0
(3.4.28)
≤ (11

12)i
√

3
2κ λ0

= (11
12)i−K0(11

12)K0

√
3
2κ λ0

(3.4.29)
≤ (11

12)i−K0 2
3

√
3
2 λ0.

Hence,

3
2M

k∑
i=K0

λi ≤
(3

2

)3/2
Mλ0 ·

2
3

k∑
i=K0

(11
12

)i−K0
≤
(3

2

)3/2
8Mλ0.

123

Chapter 3. Classical Quasi-Newton Methods

Comparing Theorem 3.4.8 with Theorems 3.2.2 and 3.2.3, we see that,
in the general nonlinear case, we have obtained exactly the same efficiency
estimates as in the quadratic case, up to some absolute constants. The only
principal difference between these two cases is that, in the nonlinear case,
we have to additionally require that the initial point x0 is sufficiently good
in the sense that (3.4.21) holds.

Interestingly, the region of local convergence, specified by (3.4.21), de-
pends on the maximum of two quantities: κ−1 and K−1

0 . For DFP, the K−1
0

part in this maximum is, in fact, redundant, and the size of the corre-
sponding region of local convergence is simply inversely proportional to the
condition number:

Mλ0 ≤ O(κ−1).

However, for BFGS, the K−1
0 part does not disappear, and we obtain the

following region of local convergence:

Mλ0 ≤ O(1) max
{
κ−1, [n ln(2κ)]−1}.

Clearly, the latter region can be much bigger than the former when the
condition number κ is significantly larger than the dimension n.

Example 3.4.9. Consider the functions

f(x) := f0(x) + µ

2 ‖x‖
2, f0(x) := ln

(m∑
i=1

exp(〈ai, x〉+ bi)
)
, x ∈ E,

where ai ∈ E∗, bi ∈ R, i = 1, . . . ,m, µ > 0, and ‖ · ‖ is a Euclidean norm.
Let γ > 0 be such that

‖ai‖∗ ≤ γ, i = 1, . . . ,m.

Define

πi(x) := exp(〈ai, x〉+ bi)∑m
j=1 exp(〈aj , x〉+ bj)

, x ∈ E, i = 1, . . . ,m.

Clearly,
∑m
i=1 πi(x) = 1, πi(x) > 0 for all x ∈ E, i = 1, . . . ,m. It is not

difficult to check that, for all x, h ∈ E, we have

〈∇f0(x), h〉 =
m∑
i=1

πi(x)〈ai, h〉 ≤ γ,

124

3.5. Discussion

〈∇2f0(x)h, h〉 =
m∑
i=1

πi(x)〈ai −∇f0(x), h〉2

=
m∑
i=1

πi(x)〈ai, h〉2 − 〈∇f0(x), h〉2 ≤ γ2‖h‖2,

D3f0(x)[h]3 =
m∑
i=1

πi(x)〈ai −∇f0(x), h〉3

≤ 2γ‖h‖〈∇2f0(x)h, h〉 ≤ 2γ3‖h‖3.

Thus, f0 is a convex function with γ2-Lipschitz gradient and (2γ3)-Lipschitz
Hessian. Consequently, the function f is µ-strongly convex with L-Lipschitz
gradient, (2γ3)-Lipschitz Hessian, and, in view of Lemma 3.3.2, M -strongly
self-concordant, where

L := γ2 + µ, M := 2γ3µ−3/2.

Let the regularization parameter µ be sufficiently small, namely, such
that

κ̄ := γ2

µ
≥ 1.

Then,
κ̄ ≤ κ ≤ 2κ̄, M = 2κ̄3/2,

where κ := L/µ. Hence, according to (3.4.21), the region of local conver-
gence of BFGS can be described as follows:

λ0 ≤ O(1) max
{
κ̄−5/2, [nκ̄3/2 ln(4κ̄)]−1}.

3.5 Discussion
We have obtained explicit rates of local superlinear convergence for the
classical quasi-Newton methods from the convex Broyden class. The main
parameters in these rates are the dimension n of the problem and its con-
dition number κ.

For the important BFGS and DFP methods, the principal factors in
the corresponding complexity estimates are as follows (up to some absolute
constants):

BFGS: n lnκ,
DFP: nκ lnκ. (3.5.1)

125

Chapter 3. Classical Quasi-Newton Methods

According to these estimates, BFGS is almost insensitive to the condition
number, and its efficiency mainly depends on the dimension of the prob-
lem. In contrast, for the DFP Method, the condition number is outside
the logarithm, which means that DFP may have poor performance on ill-
conditioned problems. This theoretical conclusion confirms the well-known
empirical superiority of the BFGS Method over DFP.

Note that the results, presented in this chapter, are local, i.e., they are
valid under the assumption that the starting point is sufficiently close to the
minimizer. In particular, there is no contradiction between these results and
the fact that DFP is not known to be globally convergent with inexact line
search (see, e.g., [25]).

To conclude, let us mention some open questions. First, looking at the
complexity estimate (3.5.1) for the BFGS Method, in addition to the dimen-
sion of the problem, we see the presence of the logarithm of its condition
number. Although typically such logarithmic factors are considered small,
it is still interesting to understand whether this factor can be completely
removed.

Second, in all the methods we have considered, the initial Hessian ap-
proximation G0 was LB, where L is the Lipschitz constant of the gradient,
measured w.r.t. the operator B. We always assume that this constant is
known. Of course, it is interesting to develop some adaptive algorithms
(similar to Algorithm 2.3.2), which could start from any initial guess L0 for
the constant L, and then somehow dynamically adjust the Hessian approx-
imations in iterations, yet retaining all the original efficiency estimates.

Finally, it is also interesting whether the results obtained in this chap-
ter can be applied to limited-memory quasi-Newton methods such as L-
BFGS [113]. Unfortunately, it seems that the answer is negative. The main
problem is that we cannot say anything interesting about just a few iter-
ations of, say, the standard BFGS. Indeed, according to our main result,
after k iterations of the method, the initial residual is contracted by the
factor of the form [κn/k − 1]k. For all values of k ≤ n lnκ, this contraction
factor is, in fact, bigger than 1, so the estimate is practically useless.

126

3.A. Appendix

3.A Appendix

3.A.1 Proof of Lemma 3.1.1

i. Denote ϕ := ϕτ (A,G, u) and

G0 := G− Guu∗G

〈Gu, u〉
+ Auu∗A

〈Au, u〉
, s := Au

〈Au, u〉
− Gu

〈Gu, u〉
. (3.A.1)

According to (3.1.3), (3.1.2) and (3.1.1), we have

G+ = G0 + ϕ

[
〈Gu, u〉Auu∗A
〈Au, u〉2

+ Guu∗G

〈Gu, u〉
− Auu∗G+Guu∗A

〈Au, u〉

]
= G0 + ϕ〈Gu, u〉ss∗.

(3.A.2)

ii. Let us compute det(G−1, G0). Let M := G+ Auu∗A
〈Au,u〉 . Note that

Mu = Gu+Au, MG−1Au =
(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)
Au, (3.A.3)

and G0 = M − Guu∗G
〈Gu,u〉 . Applying Proposition 2.1.5 twice, we obtain

det(G−1,M) = 1 + 〈AG
−1Au, u〉
〈Au, u〉

,

det(M−1, G0) = 1− 〈GM
−1Gu, u〉
〈Gu, u〉

(3.A.3)= 1− 〈Gu−GM
−1Au, u〉

〈Gu, u〉

= 〈GM
−1Au, u〉
〈Gu, u〉

(3.A.3)=
(
〈AG−1Au, u〉
〈Au, u〉

+ 1
)−1 〈Au, u〉

〈Gu, u〉
.

Thus,

det(G−1, G0) = det(G−1,M) det(M−1, G0) = 〈Au, u〉
〈Gu, u〉

. (3.A.4)

iii. Let us show that

G−1
0 =

(
IE −

uu∗A

〈Au, u〉

)
G−1

(
IE∗ −

Auu∗

〈Au, u〉

)
+ uu∗

〈Au, u〉
, (3.A.5)

where IE and IE∗ are the identity operators in E and E∗, respectively. In-
deed, denote the right-hand side in (3.A.5) by H0. Using that G0u = Au,

127

Chapter 3. Classical Quasi-Newton Methods

we obtain

H0G0 =
(
IE −

uu∗A

〈Au, u〉

)
G−1

(
G0 −

Auu∗A

〈Au, u〉

)
+ uu∗A

〈Au, u〉

=
(
IE −

uu∗A

〈Au, u〉

)
G−1

(
G− Guu∗G

〈Gu, u〉

)
+ uu∗A

〈Au, u〉
= IE.

iv. From (3.A.1), it follows that

〈s, u〉 = 0, (3.A.6)

〈Au,G−1s〉 = 〈AG
−1Au, u〉
〈Au, u〉

− 〈Au, u〉
〈Gu, u〉

. (3.A.7)

Combining (3.A.5)–(3.A.7) and (3.A.1), we obtain

〈Au, u〉G−1
0 s = 〈Au, u〉G−1s− 〈Au,G−1s〉u

= 〈Au, u〉G−1s−
(
〈AG−1Au, u〉
〈Au, u〉

− 〈Au, u〉
〈Gu, u〉

)
u

= G−1Au− 〈AG
−1Au, u〉
〈Au, u〉

u,

(3.A.8)

Consequently, in view of (3.A.6) and (3.A.7),

〈Au, u〉〈s,G−1
0 s〉 = 〈Au,G−1s〉 = 〈AG

−1Au, u〉
〈Au, u〉

− 〈Au, u〉
〈Gu, u〉

. (3.A.9)

Applying now Proposition 2.1.5 to (3.A.2) and using (3.A.9), we get

det(G−1
0 , G+) = 1 + ϕ〈Gu, u〉〈s,G−1

0 s〉

= 1 + ϕ
〈Gu, u〉
〈Au, u〉

(
〈AG−1Au, u〉
〈Au, u〉

− 〈Au, u〉
〈Gu, u〉

)
= 〈Gu, u〉
〈Au, u〉

[
ϕ
〈AG−1Au, u〉
〈Au, u〉

+ (1− ϕ) 〈Au, u〉
〈Gu, u〉

]
=
[
τ
〈Au, u〉

〈AG−1Au, u〉
+ (1− τ) 〈Gu, u〉

〈Au, u〉

]−1
,

(3.A.10)

where the last identity follows from the definition of ϕ in (3.1.4).

Combining (3.A.4) and (3.A.10), we conclude that

det(G−1, G+) = det(G−1, G0) det(G−1
0 , G+)

128

3.A. Appendix

=
[
τ
〈Au, u〉

〈AG−1Au, u〉
+ (1− τ) 〈Gu, u〉

〈Au, u〉

]−1
.

This proves (3.1.6).
v. Applying Proposition 2.1.1 to (3.A.2), we obtain

G−1
+ = G−1

0 −
ϕ〈Gu, u〉

1 + ϕ〈Gu, u〉〈s,G−1
0 s〉

G−1
0 ss∗G−1

0 .

From (3.A.10) and (3.1.4), we see that

ϕ〈Gu, u〉
1 + ϕ〈Gu, u〉〈s,G−1

0 s〉

= ϕ〈Gu, u〉 〈Au, u〉
〈Gu, u〉

[
τ
〈Au, u〉

〈AG−1Au, u〉
+ (1− τ) 〈Gu, u〉

〈Au, u〉

]
= τ

〈Au, u〉2

〈AG−1Au, u〉
.

Thus,

G−1
+ = G−1

0 − τ
〈Au, u〉2

〈AG−1Au, u〉
G−1

0 ss∗G−1
0 .

Substituting (3.A.8), we get

G−1
+ = G−1

0 − τ
[
G−1Auu∗AG−1

〈AG−1Au, u〉
− G−1Auu∗ + uu∗AG−1

〈Au, u〉

+ 〈AG
−1Au, u〉uu∗

〈Au, u〉2

]
.

Using now (3.A.5) and grouping the terms, we obtain (3.1.5).

3.A.2 Auxiliary Operator Inequality

Lemma 3.A.1. Let A,B ∈ S++(E,E∗) be such that

A � B. (3.A.11)

Then, for any u ∈ E \ {0}, we have

A− Auu∗A

〈Au, u〉
� B − Buu∗B

〈Bu, u〉
.

129

Chapter 3. Classical Quasi-Newton Methods

Proof. Indeed, for all h ∈ E, we have

〈Ah, h〉 − 〈Au, h〉
2

〈Au, u〉
= min

α∈R

[
〈Ah, h〉 − 2α〈Ah, u〉+ α2〈Au, u〉

]
= min

α∈R
〈A(h− αu), h− αu〉

≤ min
α∈R
〈B(h− αu), h− αu〉

= min
α∈R

[
〈Bh, h〉 − 2α〈Bh, u〉+ α2〈Bu, u〉

]
= 〈Bh, h〉 − 〈Bu, h〉

2

〈Bu, u〉
,

where the inequality follows from (3.A.11).

130

Chapter 4

Greedy Quasi-Newton
Methods

In Chapter 3, we have studied the local convergence of classical quasi-
Newton methods for smooth optimization. The main property responsible
for their superlinear convergence is that the Hessian approximations pro-
duced by the methods converge to the true Hessians along search directions.
However, in some situations1, it is desirable to have the convergence of Hes-
sian approximations to the exact Hessians in the traditional sense, i.e., along
any direction. Unfortunately, classical quasi-Newton methods, in general2,
are not able to ensure such convergence (see, e.g., [45]).

In this chapter, we propose new greedy quasi-Newton methods which are
free of this drawback. Specifically, they generate Hessian approximations
whose deviation from the exact Hessians converges to zero at a linear rate.
Furthermore, the rate of superlinear convergence of greedy quasi-Newton
methods is asymptotically faster than that of the classical ones.

The main difference between greedy and classical quasi-Newton meth-
ods is the choice of the direction in the update formula for Hessian approx-
imation. In classical methods, this direction is chosen as the difference of
successive iterates, while, in greedy methods, this is instead chosen as a
certain basis vector, greedily selected to optimize some measure of progress.

It is worth mentioning that the idea of using basis vectors in quasi-
1One example could be the application of quasi-Newton methods for solving auxiliary

subproblems arising in path-following interior-point methods.
2However, it is worth mentioning that there are some settings in which the standard

SR1 Method indeed yields convergence to the true Hessian (for more details, see [34]).

131

Chapter 4. Greedy Quasi-Newton Methods

Newton methods for approximating the Hessian goes back at least to so-
called methods of dual directions3 (see [153]). For these methods, it is also
possible to prove both local superlinear convergence of the iterates and con-
vergence of Hessian approximations. However, as in standard quasi-Newton
methods, the corresponding results are only asymptotic. Nevertheless, de-
spite the fact that the greedy quasi-Newton methods, presented in this
chapter, are based on a similar idea, their construction and analysis are
significantly different. In particular, methods of dual directions do not use
updating formulas from the Broyden class, and work with Hessian approx-
imations that may not be self-adjoint.

One should also mention that some randomized variants of quasi-Newton
algorithms have been proposed recently, which also use nonstandard direc-
tions for updating Hessian approximations [73, 74, 100].

Contents
This chapter is organized as follows. In Section 4.1, we discuss a class of
quasi-Newton updating rules for approximating a self-adjoint positive defi-
nite linear operator. We present a special greedy strategy for selecting an
update direction, which ensures a linear convergence rate in approximating
the target operator. In Section 4.2, we analyze greedy quasi-Newton meth-
ods, applied to the problem of minimizing a quadratic function. We show
that these methods have a global linear convergence rate, comparable to
that of standard gradient descent, and also a superlinear convergence rate,
which contains a contraction factor depending on the square of the iteration
counter. In Section 4.3, we show that similar results also hold in a more
general setting of minimizing a strongly convex and strongly self-concordant
function with Lipschitz gradient, provided that the starting point is chosen
sufficiently close to the solution. The main difficulty here, compared to the
quadratic case, is that the Hessian of the objective function is no longer
constant, resulting in the need to apply a special correction strategy to keep
Hessian approximations under control. In Section 4.4, we compare the effi-

3One particular method of this type suggests approximating the Hessian ∇2f(xk) at
each iteration k with an operator Gk whose action on each basis vector ej (1 ≤ j ≤ n)
approximates that of ∇2f(x̂k,j) on ej , where x̂k,j ∈ {xk−n+1, . . . , xk} is one of the
previous n points. More specifically, Gk is chosen as the solution of the following system
of linear equations: Gkrk−i = δk−i, where rt := e(t mod n)+1 for any t ≥ 0 is the cyclic
repetition of basis vectors, and δt := [∇f(xt +htrt)−∇f(xt)]/ht for any t ≥ 0 is a finite
difference approximation of ∇2f(xt)rt with a certain “discretization step” ht > 0 (such
that ht → 0 as t → ∞). In the end, Gk+1 differs from Gk by a rank-one operator, and
thus G−1

k+1 can be efficiently computed from G−1
k

.

132

4.1. Greedy Quasi-Newton Updates

ciency estimates we have for the greedy quasi-Newton methods with those of
the classical methods. Finally, in Section 4.5, we present some preliminary
computational results.

The contents of this chapter is based on [159], with the following mi-
nor modifications. First, we have introduced a new name “extended convex
Broyden class” (and slightly different notation) for the special subclass of
the Broyden family, defined in Section 4.1 and used throughout this chapter.
Second, we have removed the definition of strongly self-concordant functions
and the discussion of their properties, as this material was already presented
in Section 3.3. Third, we have included a new Section 4.4 with the compar-
ison of the efficiency estimates of greedy quasi-Newton methods with those
of the classical ones.

4.1 Greedy Quasi-Newton Updates

In this chapter, we will be working with a certain subclass of the Broyden
family, which is bigger than the standard convex Broyden class, and which,
in particular, includes all three most famous quasi-Newton updates: SR1,
BFGS and DFP. However, in order to handle such a large class properly, we
will need to make a certain extra assumption on the relation between the
target operator and its quasi-Newton approximation.

Let us present the main definitions. As in Chapter 3, in this chapter,
we work with the operator-revealing form of quasi-Newton updates. Let
A ∈ S++(E,E∗) be the target operator which we want to approximate,
and let G ∈ S++(E,E∗) be its current approximation. Our main extra
assumption is that G is an upper approximation of A:

A � G. (4.1.1)

In what follows, we always assume that (4.1.1) is satisfied.

Consider the following class of quasi-Newton updates of G w.r.t. A along
a direction u ∈ E \ ker(G−A), parametrized by a scalar χ ∈ R:

EBroydχ(A,G, u) := (1− χ) SR1(A,G, u) + χDFP(A,G, u), (4.1.2)

where SR1(A,G, u) and DFP(A,G, u) are, respectively, the SR1 and DFP

133

Chapter 4. Greedy Quasi-Newton Methods

updates of G w.r.t. A along u:

SR1(A,G, u) := G− (G−A)uu∗(G−A)
〈(G−A)u, u〉 , (4.1.3)

DFP(A,G, u) := G− Auu∗G+Guu∗A

〈Au, u〉
+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉
. (4.1.4)

Note that, under our main assumption (4.1.1), for any u ∈ E \ ker(G−A),
the denominators in (4.1.3) and (4.1.4) are nonzero and therefore all the
updates in (4.1.2)–(4.1.4) are well-defined. For the sake of convenience, we
also set EBroydχ(A,G, u) := G for any u ∈ ker(G−A).

By definition, the family (4.1.2) is a line passing through the SR1 and
DFP updates. However, as we know from Section 2.5.2, this line is actually
the Broyden class. Thus, (4.1.2) is an alternative parametrization of the
usual Broyden class.

In this chapter, our interest will be in the subclass of (4.1.2) described
by the values of χ ∈ [0, 1]. In what follows, we will refer to this subclass as
the extended convex Broyden class. Let us emphasize once again that we
consider this class exclusively under the extra assumption (4.1.1).

Geometrically, the extended convex Broyden class is a segment between
the SR1 and DFP updates. The name comes from the fact that this segment
also contains the BFGS update, and hence the whole convex Broyden class.
Indeed, for

χBFGS := 〈Au, u〉
〈Gu, u〉

(4.1.1)
∈ (0, 1), (4.1.5)

we have, according to (4.1.2)–(4.1.4),

EBroydχBFGS
(A,G, u)

= G− 〈(G−A)u, u〉
〈Gu, u〉

(G−A)uu∗(G−A)
〈(G−A)u, u〉

+ 〈Au, u〉
〈Gu, u〉

[
−Auu

∗G+Guu∗A

〈Au, u〉
+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉

]
= G− (G−A)uu∗(G−A)

〈Gu, u〉
− Auu∗G+Guu∗A

〈Gu, u〉

+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Gu, u〉
= G− Guu∗G

〈Gu, u〉
+ Auu∗A

〈Au, u〉
.

This is exactly the BFGS update which we already saw in (3.1.1).
As we will see shortly, the extended convex Broyden class shares some

134

4.1. Greedy Quasi-Newton Updates

similar properties with the standard convex Broyden class. At the very least,
each update from this class—an extended convex Broyden update—preserves
the main assumption (4.1.1), and, in particular, positive definiteness (see
Lemma 4.1.2). But first let us establish an auxiliary monotonicity result.

Lemma 4.1.1. For any A,G ∈ S++(E,E∗), such that A � G, any u ∈ E,
and any χ1, χ2 ∈ R, the following implication holds:

χ1 ≤ χ2 =⇒ EBroydχ1(A,G, u) � EBroydχ2(A,G, u).

Proof. Suppose that u /∈ ker(G − A) since otherwise the claim is trivial.
According to (4.1.2)–(4.1.4), we have

EBroydχ(A,G, u) = G− (G−A)uu∗(G−A)
〈(G−A)u, u〉

+χ

[
(G−A)uu∗(G−A)
〈(G−A)u, u〉 − Auu

∗G+Guu∗A

〈Au, u〉
+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉

]
.

Denote
s := (G−A)u

〈(G−A)u, u〉 −
Au

〈Au, u〉
.

Then,

〈(G−A)u, u〉ss∗

= (G−A)uu∗(G−A)
〈(G−A)u, u〉 + 〈(G−A)u, u〉

〈Au, u〉
Auu∗A

〈Au, u〉

− (G−A)uu∗A+Auu∗(G−A)
〈Au, u〉

= (G−A)uu∗(G−A)
〈(G−A)u, u〉 − Auu∗G+Guu∗A

〈Au, u〉
+
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉
.

Therefore,

EBroydχ(A,G, u) = G− (G−A)uu∗(G−A)
〈(G−A)u, u〉 + χ〈(G−A)u, u〉ss∗.

The claim now follows from the fact that 〈(G−A)u, u〉ss∗ � 0.

Recall from Lemma 3.1.3 that each convex Broyden update preserves
the bounds on the eigenvalues w.r.t. the target operator. For an extended
convex Broyden update, we have the following slightly weaker variant of

135

Chapter 4. Greedy Quasi-Newton Methods

this result.

Lemma 4.1.2. Let A,G ∈ S++(E,E∗) and η ≥ 1 be such that

A � G � ηA. (4.1.6)

Then, for any u ∈ E and any χ ∈ [0, 1], we have

A � EBroydχ(A,G, u) � ηA. (4.1.7)

Proof. We can assume that u /∈ ker(G − A) since otherwise the claim is
trivial. In view of Lemma 4.1.1 and (4.1.2), it suffices to prove independently
the following two inequalities, assuming that (4.1.6) holds:

SR1(A,G, u) � A, DFP(A,G, u) � ηA.

For the DFP update, the inequality follows from Lemma 3.1.3. For the
SR1 update, we can prove it as follows. Denote G+ := SR1(A,G, u) and
R := G−A � 0. Then, in view of (4.1.3),

G+ −A = R− Ruu∗R

〈Ru, u〉
=
(
IE∗ −

Ruu∗

〈Ru, u〉

)
R
(
IE −

uu∗R

〈Ru, u〉

)
� 0,

where IE, IE∗ are the identity operators in E and E∗.

Remark 4.1.3. Results similar to Lemma 4.1.2 have been known for some
time in the literature for different quasi-Newton updating formulas. For
example, in [40] and [69], it was proved for the SR1 update that if A � G

(respectively, G � A), then A � G+ (respectively, G+ � A), where G+ is
the result of the SR1 update.

Interestingly, from Lemmas 4.1.1 and 4.1.2, it follows, under the main
assumption (4.1.1), that

A � SR1(A,G, u) � BFGS(A,G, u) � DFP(A,G, u).

In other words, the approximation produced by SR1, is better than the one
produced by BFGS, which is in turn better than the one produced by DFP.

Let us now justify the efficiency of the extended convex Broyden up-
date in ensuring convergence G → A. For this, we introduce the following
measure of progress:

σA(G) := 〈A−1, G−A〉 (2.1.25)= 〈A−1, G〉 − n. (4.1.8)

136

4.1. Greedy Quasi-Newton Updates

Thus, σA(G) is the sum of the eigenvalues of the difference G−A, measured
w.r.t. the operator A (see Proposition 2.1.3(iv)). Clearly, for G, satisfying
(4.1.1), we have σA(G) ≥ 0 with σA(G) = 0 if and only if G = A. Therefore,
we need to ensure that σA(G)→ 0 by choosing an appropriate sequence of
update directions u.

First, let us estimate the decrease in σA for an arbitrary direction.

Lemma 4.1.4. Let A,G ∈ S++(E,E∗) be such that A � G. Then, for any
u ∈ E \ {0}, any χ ∈ [0, 1] and G+ := EBroydχ(A,G, u), we have

σA(G)− σA(G+) ≥ 〈(G−A)u, u〉
〈Au, u〉

. (4.1.9)

Proof. By Lemma 4.1.1 and (4.1.4), we have

G−G+ � G−DFP(A,G, u)

= Auu∗G+Guu∗A

〈Au, u〉
−
(
〈Gu, u〉
〈Au, u〉

+ 1
)
Auu∗A

〈Au, u〉
.

Therefore, in view of (4.1.8),

σA(G)− σA(G+) = 〈A−1, G−G+〉

≥ 2 〈Gu, u〉
〈Au, u〉

−
(
〈Gu, u〉
〈Au, u〉

+ 1
)

= 〈Gu, u〉
〈Au, u〉

− 1 = 〈(G−A)u, u〉
〈Au, u〉

.

This is exactly (4.1.9).

According to Lemma 4.1.4, the choice of the updating direction u di-
rectly influences the bound on the decrease in the measure σA. Ideally,
we would like to select a direction u, which maximizes the right-hand side
in (4.1.9). However, this requires finding an eigenvector, corresponding to
the maximal eigenvalue of G w.r.t. A, which might be computationally a
difficult problem4. Therefore, let us consider another approach.

4This is a well-known problem in Linear Algebra called the Generalized Eigenvalue
Problem (GEP). In principle, it can be solved in O(n3) operations using standard linear
algebra techniques, where n is the dimension of the space (see Section 8.7 in [72]). How-
ever, this is too expensive compared to the O(n2) complexity of a typical quasi-Newton
step. Alternatively, we could use some iterative methods to find an approximate solution
to GEP. However, it is difficult to guarantee that O(n2) operations will be enough for
such methods to obtain a sufficiently accurate solution. That is why we are not pursuing

137

Chapter 4. Greedy Quasi-Newton Methods

Let us fix in the space E some basis:

e1, . . . , en ∈ E.

W.r.t. this basis, we can define the following greedily selected direction:

ūA(G) := argmax
u∈{e1,...,en}

〈(G−A)u, u〉
〈Au, u〉

= argmax
u∈{e1,...,en}

〈Gu, u〉
〈Au, u〉

. (4.1.10)

Thus, ūA(G) is a basis vector which maximizes the right-hand side in (4.1.9).
Note that for certain choices of the basis, the computation of ūA(G) might
be relatively simple. For example, if E = Rn, and e1, . . . , en are coordi-
nate directions, then the calculation of ūA(G) requires computing only the
diagonals of the matrix representations of the operators G and A. The up-
date (4.1.2), applying the rule (4.1.10), is called the greedy quasi-Newton
update.

Let us show that the greedy quasi-Newton update decreases the mea-
sure σA with a linear rate. For this, define

B :=
(n∑
i=1

eie
∗
i

)−1
. (4.1.11)

Note that B ∈ S++(E,E∗).

Theorem 4.1.5. Let A,G ∈ S++(E,E∗) be such that A � G. Further, let
µ,L > 0 be such that

µB � A � LB. (4.1.12)

Then, for any χ ∈ [0, 1], ū := ūA(G) and G+ := EBroydχ(A,G, ū), we have

σA(G+) ≤
(

1− µ

nL

)
σA(G). (4.1.13)

this direction any further.

138

4.2. Unconstrained Quadratic Minimization

Proof. Denoting R := G−A � 0 and applying Lemma 4.1.4, we obtain

σA(G)− σA(G+)

≥ 〈Rū, ū〉
〈Aū, ū〉

(4.1.10)= max
1≤i≤n

〈Rei, ei〉
〈Aei, ei〉

(4.1.12)
≥ 1

L
max

1≤i≤n
〈Rei, ei〉

≥ 1
nL

n∑
i=1
〈Rei, ei〉

(2.1.24)= 1
nL

n∑
i=1
〈eie∗i , R〉

(4.1.11)= 1
nL
〈B−1, R〉

(4.1.12)
≥ µ

nL
〈A−1, R〉 (4.1.8)= µ

nL
σA(G).

Remark 4.1.6. A simple modification of the above proof shows that the
factor nL in (4.1.13) can be improved up to 〈B−1, A〉. However, to simplify
the future analysis, we prefer to work directly with constant L.

4.2 Unconstrained Quadratic Minimization

Let us demonstrate how we can apply the quasi-Newton updates described
in the previous section for minimizing the quadratic function

f(x) := 1
2 〈Ax, x〉 − 〈b, x〉, x ∈ E, (4.2.1)

where A ∈ S++(E,E∗) and b ∈ E∗.

Let B be the operator, defined in (4.1.11), and let µ,L > 0 be such that

µB � A � LB. (4.2.2)

Thus, µ is the constant of strong convexity of f , and L is the Lipschitz
constant of the gradient of f , both measured w.r.t. the operator B. The
ratio of these two constants is the condition number of the function (4.2.1):

κ := L

µ
(≥ 1).

Consider the following quasi-Newton scheme.

139

Chapter 4. Greedy Quasi-Newton Methods

Algorithm 4.2.1:
Extended Convex Broyden Method

for Quadratic Function
Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:
1. Update xk+1 = xk −G−1

k ∇f(xk).
2. Choose uk ∈ E and χk ∈ [0, 1].
3. Compute Gk+1 = EBroydχk

(A,Gk, uk).

Since Algorithm 4.2.1 starts with G0 = LB, from (4.2.2), it follows that
A � G0. Hence, in view of Lemma 4.1.2, we have

A � Gk (4.2.3)

for all k ≥ 0. In particular, all Gk are positive definite, and Algorithm 4.2.1
is well-defined.

Remark 4.2.1. For avoiding the O(n3) operations for computing G−1
k ∇f(xk)

at each iteration of Algorithm 4.2.1, when implementing this method, one
should maintain the inverse Hessian approximations Hk := G−1

k . Due to
a low-rank structure of the Broyden update, Hk can be efficiently updated
into Hk+1 at the cost of O(n2).

To estimate the convergence rate of Algorithm 4.2.1, let us look at the
norm of the gradient of f , measured w.r.t. A:

λf (x) := ‖∇f(x)‖∗A = 〈∇f(x), A−1∇f(x)〉1/2, x ∈ E. (4.2.4)

The following lemma shows how λf changes after one iteration of Algo-
rithm 4.2.1.

Lemma 4.2.2. Let k ≥ 0, and let ηk ≥ 1 be such that

Gk � ηkA. (4.2.5)

Then,
λf (xk+1) ≤ (1− η−1

k)λf (xk) = ηk − 1
ηk

λf (xk).

Proof. Using the fact that f is a quadratic function and substituting the

140

4.2. Unconstrained Quadratic Minimization

definition of xk+1 from Algorithm 4.2.1, we obtain

∇f(xk+1) = ∇f(xk) +A(xk+1 − xk) = A(A−1 −G−1
k)∇f(xk).

Therefore, in view of (4.2.4),

λf (xk+1) = 〈∇f(xk), (A−1 −G−1
k)A(A−1 −G−1

k)∇f(xk)〉1/2.

According to (4.2.5) and (4.2.3), we have

η−1
k A−1 � G−1

k � A
−1.

Hence,
0 � A−1 −G−1

k � (1− η−1
k)A−1. (4.2.6)

Consequently,

(A−1 −G−1
k)A(A−1 −G−1

k) � (1− η−1
k)2A−1,

and, in view of (4.2.6) and (4.2.4),

λf (xk+1) ≤ (1− η−1
k)〈∇f(xk), A−1∇f(xk)〉1/2 = (1− η−1

k)λf (xk).

Thus, to estimate how fast λf (xk) converges to zero, we need to upper
bound ηk. There are two ways to proceed, depending on the choice of
directions uk in Algorithm 4.2.1.

First, consider the general situation, when we do not impose any restric-
tions on uk. In this case, we can guarantee that ηk stays uniformly bounded,
and λf (xk)→ 0 at a linear rate.

Theorem 4.2.3. For all k ≥ 0, in Algorithm 4.2.1, we have

A � Gk � κA, (4.2.7)

and
λf (xk) ≤ (1− κ−1)kλf (x0). (4.2.8)

Proof. Since G0 = LB, in view of (4.2.2), we have

A � G0 � κA.

141

Chapter 4. Greedy Quasi-Newton Methods

By Lemma 4.1.2, this implies (4.2.7). Applying now Lemma 4.2.2, we obtain

λf (xk+1) ≤ (1− κ−1)λf (xk)

for all k ≥ 0, and (4.2.8) follows.

Note that the right-hand side in (4.2.8) is exactly the convergence rate of
the standard Gradient Method. Thus, according to Theorem 4.2.3, the con-
vergence rate of Algorithm 4.2.1 is at least as good as that of the Gradient
Method.

Now assume that the directions uk in Algorithm 4.2.1 are chosen in
accordance with the greedy strategy (4.1.10). Recall that, in this case, we
can guarantee that Gk → A (Theorem 4.1.5). Therefore, we can expect
faster convergence from Algorithm 4.2.1.

Theorem 4.2.4. Suppose that, for each k ≥ 0, we choose uk = ūA(Gk) in
Algorithm 4.2.1. Then, for all k ≥ 0, we have

A � Gk �
[
1 +

(
1− (nκ)−1)knκ]A, (4.2.9)

and
λf (xk+1) ≤

(
1− (nκ)−1)knκλf (xk). (4.2.10)

Proof. We already know that A � Gk. Hence, all the eigenvalues of Gk−A
w.r.t. A are nonnegative. Bounding the maximal one via the sum of all
others (see Proposition 2.1.3(iv)), we obtain

Gk −A � 〈A−1, Gk −A〉A
(4.1.8)= σA(Gk)A,

or, equivalently,
Gk �

(
1 + σA(Gk)

)
A.

At the same time, by Theorem 4.1.5, we have

σA(Gk) ≤
(
1− (nκ)−1)kσA(G0).

Note that

σA(G0) (4.1.8)= 〈A−1, G0〉 − n
(4.2.7)
≤ 〈A−1,κA〉 − n (2.1.25)= n(κ − 1) ≤ nκ.

142

4.2. Unconstrained Quadratic Minimization

This proves (4.2.9). Applying now Lemma 4.2.2 and using the fact that
η−1
η ≤ η − 1 for any η ≥ 1, we obtain (4.2.10).

Theorem 4.2.4 shows that the convergence rate of λf (xk) is superlinear.
Let us now combine this result with Theorem 4.2.3 and write down the final
efficiency estimate. Denote by k0 ≥ 0 the number of the first iteration for
which (

1− (nκ)−1)k0
nκ ≤ 1

2 . (4.2.11)

Clearly,
k0 ≤ dnκ ln(2nκ)e.

According to Theorem 4.1.5, during the first k0 iterations,

λf (xk) ≤ (1− κ−1)kλf (x0). (4.2.12)

After that, by Theorem 4.2.4, for all k ≥ 0, we have

λf (xk0+k+1)
(4.2.10)
≤

(
1− (nκ)−1)k0+k

nκλf (xk0+k)

(4.2.11)
≤

(
1− (nκ)−1)k 1

2λf (xk0+k).

Thus, for all k ≥ 0,

λf (xk0+k) ≤ λf (xk0)
k−1∏
i=0

[(
1− (nκ)−1)i 1

2

]
=

(
1− (nκ)−1)∑k−1

i=0
i
(1

2

)k
λf (xk0)

=
(
1− (nκ)−1)k(k−1)/2

(1
2

)k
λf (xk0)

(4.2.12)
≤

(
1− (nκ)−1)k(k−1)/2

(1
2

)k
(1− κ−1)k0λf (x0).

Note that the first factor in this estimate depends on the square of the
iteration counter.

To conclude, let us mention one important property of Algorithm 4.2.1
with greedily selected uk. It turns out that, in the particular case χk ≡ 0,
i.e., when Algorithm 4.2.1 corresponds to the Greedy SR1 Method, it will
identify the operator A, and consequently, the minimizer x∗ of the quadratic
function (4.2.1), in a finite number of steps.

143

Chapter 4. Greedy Quasi-Newton Methods

Theorem 4.2.5. Suppose that, in Algorithm 4.2.1, for each k ≥ 0, we
choose uk = ūA(Gk) and χk = 0. Then Gk = A for some 0 ≤ k ≤ n.

Proof. Suppose that Rk := Gk−A 6= 0 for all 0 ≤ k ≤ n. Since Rk � 0 (see
(4.2.3)), in view of (4.1.10), we must have uk 6∈ kerRk, and, according to
(4.1.3),

Rk+1 = Rk −
Rkuku

∗
kRk

〈Rkuk, uk〉
for all 0 ≤ k ≤ n. From this formula, it is easily seen that

(1) kerRk ⊆ kerRk+1,

(2) uk ∈ kerRk+1.

Thus, the dimension of kerRk grows at least by 1 at every iteration. In par-
ticular, the dimension of kerRn+1 must be at least n+1, which is impossible,
since the operator Rn+1 acts in an n-dimensional vector space.

It is worth noting that for other updates (e.g., DFP or BFGS), the
inclusion kerRk ⊆ kerRk+1 is, in general, no longer valid.

4.3 Minimization of General Functions
Now consider a general problem of unconstrained minimization:

min
x∈E

f(x), (4.3.1)

where f : E → R is a twice differentiable function with positive definite
Hessian. Our goal is to extend the results obtained in the previous section to
the problem (4.3.1), assuming that the methods can start from a sufficiently
good initial point x0.

We make the same assumptions about the objective function f as in
Chapter 3. Namely, we assume that f is strongly convex, strongly self-
concordant and its gradient is Lipschitz continuous, i.e., there exist µ,L > 0
and M ≥ 0 such that, for all x, y, z, w ∈ E, we have

µB � ∇2f(x) � LB, (4.3.2)
∇2f(x)−∇2f(y) �M‖x− y‖z∇2f(w). (4.3.3)

The only difference compared to Chapter 3 is that the operator B in (4.3.2)
cannot be arbitrary and must now coincide with the one from (4.1.11).

144

4.3. Minimization of General Functions

Recall that the ratio of the constants L and µ is called the condition number
of problem (4.3.1):

κ := L

µ
(≥ 1).

Remark 4.3.1. In fact, for our purposes, it is enough to require that (4.3.2)
and (4.3.3) hold only in a neighborhood of a solution, but, for the sake of
simplicity, we do not do this.

Let us now estimate the progress of a general quasi-Newton step. As
before, for measuring the progress, we use the local norm of the gradient:

λf (x) := ‖∇f(x)‖∗x = 〈∇f(x), [∇2f(x)]−1∇f(x)〉1/2, x ∈ E. (4.3.4)

Lemma 4.3.2. Let x ∈ E, G ∈ S++(E,E∗) and η ≥ 1 be such that

∇2f(x) � G � η∇2f(x). (4.3.5)

Let
x+ := x−G−1∇f(x), (4.3.6)

and let λ := λf (x) be such that Mλ ≤ 2. Then, r := ‖x+ − x‖x ≤ λ, and

λf (x+) ≤ (1 + 1
2Mλ)(η − 1 + 1

2Mλ)η−1λ. (4.3.7)

Proof. Denote J :=
∫ 1

0 ∇
2f
(
x + t(x+ − x)

)
dt. Applying Taylor’s formula

and using (4.3.6), we obtain

∇f(x+) = ∇f(x) + J(x+ − x) = J(J−1 −G−1)∇f(x). (4.3.8)

Note that

r = ‖x+ − x‖x
(4.3.6)= ‖G−1∇f(x)‖x

= 〈∇f(x), G−1∇2f(x)G−1∇f(x)〉1/2
(4.3.5)
≤ 〈∇f(x), G−1∇f(x)〉1/2

(4.3.5)
≤ 〈∇f(x),∇2f(x)−1∇f(x)〉1/2 (4.3.4)= λ.

Hence, in view of Lemma 3.3.5, we have

(1 + 1
2Mλ)−1∇2f(x) � J � (1 + 1

2Mλ)∇2f(x), (4.3.9)
J � (1 + 1

2Mλ)∇2f(x+). (4.3.10)

145

Chapter 4. Greedy Quasi-Newton Methods

Therefore, according to (4.3.4) and (4.3.8),

λ2
f (x+) = 〈∇f(x+),∇2f(x+)−1∇f(x+)〉

≤ (1 + 1
2Mλ)〈∇f(x+), J−1∇f(x+)〉

= (1 + 1
2Mλ)〈∇f(x), (J−1 −G−1)J(J−1 −G−1)∇f(x)〉.

(4.3.11)

Further, by (4.3.9) and (4.3.5), we have

(1 + 1
2Mλ)−1J � ∇2f(x) � G � η∇2f(x) � η(1 + 1

2Mλ)J.

Hence,
[(1 + 1

2Mλ)η]−1J−1 � G−1 � (1 + 1
2Mλ)J−1,

and
−
(
1− [(1 + 1

2Mλ)η]−1)J−1 � G−1 − J−1 � 1
2MλJ−1.

Note that

1− [(1 + 1
2Mλ)η]−1 ≤ 1− (1− 1

2Mλ)η−1 = (η − 1 + 1
2Mλ)η−1,

and, since Mλ ≤ 2 and η ≥ 1,

1
2Mλ = 1− (1− 1

2Mλ) ≤ 1− (1− 1
2Mλ)η−1 = (η − 1 + 1

2Mλ)η−1.

Therefore,

−(η − 1 + 1
2Mλ)η−1J−1 � G−1 − J−1 � (η − 1 + 1

2Mλ)η−1J−1.

Consequently,

(G−1 − J−1)J(G−1 − J−1) �
(
(η − 1 + 1

2Mλ)η−1)2J−1.

Combining this with (4.3.11) and (4.3.9), we obtain

λf (x+) ≤
√

1 + 1
2Mλ (η − 1 + 1

2Mλ)η−1〈∇f(x), J−1∇f(x)〉1/2

≤ (1 + 1
2Mλ)(η − 1 + 1

2Mλ)η−1〈∇f(x),∇2f(x)−1∇f(x)〉1/2

= (1 + 1
2Mλ)(η − 1 + 1

2Mλ)η−1λ.

This is exactly (4.3.7).

Now we need to analyze what happens with the Hessian approxima-

146

4.3. Minimization of General Functions

tion after a quasi-Newton update. Let G be the current approximation of
∇2f(x), satisfying, as usual, the condition

∇2f(x) � G. (4.3.12)

Using this approximation, we can compute the new test point

x+ = x−G−1∇f(x).

After that, we would like to update G into a new operator G+, approximat-
ing the Hessian ∇2f(x+) at the new point and satisfying the condition

∇2f(x+) � G+.

A natural idea is, of course, to set

G+ = EBroydχ
(
∇2f(x+), G, u

)
(4.3.13)

for some u ∈ E and χ ∈ [0, 1]. However, we cannot do this, since the
update (4.3.13) is well-defined only when

∇2f(x+) � G

(see Section 4.1), which may not be true, even though (4.3.12) holds. To
avoid this problem, let us apply the following correction strategy:

1. Choose some δ ≥ 0, and set G̃ = (1 + δ)G.

2. Compute G+, using (4.3.13) with G replaced by G̃.

Clearly, for a sufficiently large value of δ, the condition ∇2f(x+) � G̃ will
be valid. If, at the same time, this δ is sufficiently small, then the above
correction strategy should not introduce too big an error.

Lemma 4.3.3. Let x ∈ E, G ∈ S++(E,E∗) and η ≥ 1 be such that

∇2f(x) � G � η∇2f(x). (4.3.14)

Further, let x+ ∈ E and r := ‖x+ − x‖x. Then

G̃ := (1 +Mr)G � ∇2f(x+), (4.3.15)

147

Chapter 4. Greedy Quasi-Newton Methods

and, for all u ∈ E and χ ∈ [0, 1], we have

∇2f(x+) � EBroydχ
(
∇2f(x+), G̃, u

)
� [(1 +Mr)2η]∇2f(x+),

Proof. According to Lemma 3.3.5 and (4.3.14), we have

∇2f(x+) � (1 +Mr)∇2f(x) � (1 +Mr)G = G̃,

G̃ = (1 +Mr)G � (1 +Mr)η∇2f(x) � (1 +Mr)2η∇2f(x+).

Thus,
∇2f(x+) � G̃ � (1 +Mr)2η∇2f(x+),

and the claim now follows from Lemma 4.1.2.

We are ready to write down the scheme of our quasi-Newton meth-
ods. For simplicity, we assume that the constants L and M from (4.3.2)
and (4.3.3) are known.

Algorithm 4.3.1: Extended Convex Broyden Method

Initialization: Choose x0 ∈ E. Set G0 = LB.

For k ≥ 0 iterate:
1. Update xk+1 = xk −G−1

k ∇f(xk).
2. Compute rk = ‖xk+1 − xk‖xk

and set G̃k = (1 +Mrk)Gk.
3. Choose uk ∈ E and χk ∈ [0, 1].
4. Compute Gk+1 = EBroydχk

(
∇2f(xk+1), G̃k, uk

)
.

Remark 4.3.4. For the moment, we do not impose any restrictions on the
choice of updating directions uk in Algorithm 4.3.1. However, eventually,
we will assume that uk are chosen in accordance with the greedy strategy.

Remark 4.3.5. As in Remark 4.2.1, in an actual implementation of Algo-
rithm 4.3.1, one should work directly with Hk := G−1

k in order to keep
the iteration cost low. Note also that, for implementing the correspond-
ing inverse Hessian approximation update at Step 4, one needs to compute
the Hessian-vector product ∇2f(xk+1)uk. This is in contrast to classical
quasi-Newton methods (see Algorithm 3.4.1), for which we only need the
gradients. However, this is not a big issue since, for the majority of func-
tions, arising in real-life applications, the Hessian-vector product can be

148

4.3. Minimization of General Functions

efficiently computed at basically the same cost as the gradient (e.g., by
automatic differentiation or finite differences).

As before, we present two convergence results for Algorithm 4.3.1. The
first one establishes linear convergence and can be seen as a generalization of
Theorem 4.2.3. Note that for this result the directions uk in Algorithm 4.3.1
can be chosen arbitrarily.

Theorem 4.3.6. Suppose the initial point x0 is sufficiently close to the
solution:

Mλf (x0) ≤ ln(3/2)
4 κ−1. (4.3.16)

Then, for all k ≥ 0, we have

∇2f(xk) � Gk � exp
(

2M
k−1∑
i=0

λf (xi)
)
κ∇2f(xk) � 3

2κ∇
2f(xk), (4.3.17)

and
λf (xk) ≤

(
1− (2κ)−1)k λf (x0). (4.3.18)

Proof. In view of (4.3.2), we have

∇2f(x0) � G0 � κ∇2f(x0).

Therefore, for k = 0, both (4.3.17) and (4.3.18) are satisfied.
Now let k ≥ 0, and suppose (4.3.17) and (4.3.18) have already been

proved for all 0 ≤ k′ ≤ k. Denote λk := λf (xk), rk := ‖xk+1 − xk‖xk
, and

ηk := exp
(

2M
k−1∑
i=0

λi

)
κ. (4.3.19)

Note that, according to (4.3.18) and (4.3.16),

M

k∑
i=0

λi ≤Mλ0

k∑
i=0

(
1− (2κ)−1)i ≤ 2κMλ0 ≤

ln(3/2)
2 . (4.3.20)

Applying Lemma 4.3.2, we obtain that

rk ≤ λk (4.3.21)

149

Chapter 4. Greedy Quasi-Newton Methods

and
λk+1 ≤ (1 + 1

2Mλk)(ηk − 1 + 1
2Mλk)η−1

k λk

= (1 + 1
2Mλk)

(
1− (1− 1

2Mλk)η−1
k

)
λk.

(4.3.22)

Using the fact that 1− t ≥ exp(−2t) for any 0 ≤ t ≤ 1
2 , we obtain

(1− 1
2Mλk)η−1

k ≥ exp(−Mλk)η−1
k

(4.3.19)= exp
(
−Mλk − 2M

k−1∑
i=0

λi

)
κ−1

≥ exp
(
−2M

k∑
i=0

λi

)
κ−1

(4.3.20)
≥ 2

3κ
−1.

Also, since ln(1 + t) ≤ t for any t ≥ 0, we obtain from (4.3.16) that

1
2Mλk ≤

ln(3/2)
8 κ−1 ≤ (16κ)−1.

Hence,

(1 + 1
2Mλk)

(
1− (1− 1

2Mλk)η−1
k

)
≤
(
1 + (16κ)−1)(1− 2

3κ
−1
)

≤ 1−
(2

3 −
1
16

)
κ−1 ≤ 1− (2κ)−1.

Consequently, according to (4.3.22) and (4.3.18),

λk+1 ≤
(
1− (2κ)−1)λk ≤ (1− (2κ)−1)k+1

λ0.

Finally, from Lemma 4.3.3, it follows that

∇2f(xk+1) � Gk+1 � (1 +Mrk)2ηk∇2f(xk+1)
(4.3.21)
� (1 +Mλk)2ηk∇2f(xk+1) � exp(2Mλk)ηk∇2f(xk+1)

(4.3.19)= exp
(

2M
k∑
i=0

λi

)
κ∇2f(xk+1)

(4.3.20)
� 3

2κ∇
2f(xk+1).

Thus, (4.3.17) and (4.3.18) are valid for k′ = k+ 1, and we can continue by
induction.

Now let us analyze the greedy strategy. First, we analyze how the Hes-

150

4.3. Minimization of General Functions

sian approximation measure (4.1.8) changes after one iteration. In what
follows, for the sake of convenience, for any x ∈ E and any G ∈ S++(E,E∗),
we use the following shortcut:

σx(G) := σ∇2f(x)(G).

Lemma 4.3.7. Let x ∈ E and G ∈ S++(E,E∗) be such that ∇2f(x) � G.
Further, let x+ ∈ E, r := ‖x+ − x‖x and

G̃ := (1 +Mr)G. (4.3.23)

Then, for any χ ∈ [0, 1] and G+ := EBroydχ
(
∇2f(x+), G̃, ūx+(G)

)
, we have

σx+(G+) ≤
(
1− (nκ)−1)(1 +Mr)2

(
σx(G) + 2nMr

1 +Mr

)
.

Proof. We already know from Lemma 4.3.3 that ∇2f(x+) � G̃. Also note
that ūx+(G̃) = ūx+(G) (see (4.1.10)). Hence, by Theorem 4.1.5, we have

σx+(G+) ≤
(
1− (nκ)−1)σx+(G̃).

Using (4.1.8) and (4.3.23) and Lemma 3.3.5, we further get

σx+(G̃) = 〈∇2f(x+)−1, G̃〉 − n
= (1 +Mr)〈∇2f(x+)−1, G〉 − n
≤ (1 +Mr)2〈∇2f(x)−1, G〉 − n
= (1 +Mr)2(σx(G) + n

)
− n

= (1 +Mr)2σx(G) + n
(
(1 +Mr)2 − 1

)
= (1 +Mr)2σx(G) + 2nMr(1 + 1

2Mr)

≤ (1 +Mr)2
(
σx(G) + 2nMr

1 +Mr

)
.

Putting everything together, we obtain the claim.

Now we can prove superlinear convergence. In what follows, we assume
that n ≥ 2.

Theorem 4.3.8. Suppose that, in Algorithm 4.3.1, for each k ≥ 0, we take
uk = ūxk+1(Gk). Also, suppose that the initial point x0 is sufficiently close

151

Chapter 4. Greedy Quasi-Newton Methods

to the solution:

Mλf (x0) ≤ ln 2
4(2n+ 1)κ

−1
(
≤ ln(3/2)

4 κ−1
)
. (4.3.24)

Then, for all k ≥ 0, we have

∇2f(xk) � Gk �
[
1 +

(
1− (nκ)−1)k2nκ

]
∇2f(xk), (4.3.25)

and
λf (xk+1) ≤

(
1− (nκ)−1)k 2nκλf (xk). (4.3.26)

Proof. Denote λk := λf (xk) and σk := σxk
(Gk) for k ≥ 0. In view of

Theorem 4.3.6, the first relation in (4.3.25) is indeed true, and also

M

k∑
i=0

λi ≤Mλ0

k∑
i=0

(
1− (2κ)−1)i ≤ 2κλ0

(4.3.24)
≤ ln 2

2(2n+ 1) (4.3.27)

for all k ≥ 0.
Let us show by induction that, for all k ≥ 0, we have

σk + 2nMλk ≤ θk, (4.3.28)

where

θk :=
(
1− (nκ)−1)k exp

(
2(2n+ 1)M

k−1∑
i=0

λi

)
nκ

≤
(
1− (nκ)−1)k 2nκ.

(4.3.29)

(The inequality follows from (4.3.27)). Indeed, according to (4.3.2), we have
∇2f(x0) � G0 � κ∇2f(x0). Hence,

σ0 + 2nMλ0
(4.1.8)= 〈∇2f(x0)−1, G0〉 − n+ 2nMλ0

≤ 〈∇2f(x0)−1,κ∇2f(x0)〉 − n+ 2nMλ0

(2.1.25)= n(κ − 1) + 2nMλ0

(4.3.24)
≤ n(κ − 1) + n ln 2

2(2n+ 1) ≤ nκ.

Therefore, for k = 0, (4.3.28) is satisfied. Now suppose that it is also

152

4.3. Minimization of General Functions

satisfied for some k ≥ 0. Since ∇2f(xk) � Gk, all the eigenvalues of Gk −
∇2f(xk) w.r.t. ∇2f(xk) are nonnegative. Bounding the maximal one via
the sum of the others, we obtain

Gk −∇2f(xk) � σk∇2f(xk),

or, equivalently,
Gk � (1 + σk)∇2f(xk). (4.3.30)

Therefore, applying Lemma 4.3.2, we obtain

rk := ‖xk+1 − xk‖xk
≤ λk, (4.3.31)

and

λk+1 ≤ (1 + 1
2Mλk)(σk + 1

2Mλk)(1 + σk)−1λk

≤ (1 + 1
2Mλk)(σk + 2nMλk)λk ≤ (1 + 1

2Mλk)θkλk
≤ exp(1

2Mλk)θkλk ≤ exp(2Mλk)θkλk,
(4.3.32)

where the third inequality follows from (4.3.28). Further, by Lemma 4.3.7,

σk+1 ≤
(
1− (nκ)−1)(1 +Mrk)2

(
σk + 2nMrk

1 +Mrk

)
(4.3.31)
≤

(
1− (nκ)−1)(1 +Mλk)2

(
σk + 2nMλk

1 +Mλk

)
≤

(
1− (nκ)−1)(1 +Mλk)2(σk + 2nMλk)

(4.3.28)
≤

(
1− (nκ)−1)(1 +Mλk)2θk

≤
(
1− (nκ)−1) exp(2Mλk)θk.

Note that 1
2 ≤ 1− (nκ)−1 since n ≥ 2. Therefore,

σk+1 + 2nMλk+1

≤
(
1− (nκ)−1) exp(2Mλk)θk + exp(2Mλk)θk · 2nMλk

≤
(
1− (nκ)−1) exp(2Mλk)θk +

(
1− (nκ)−1) exp(2Mλk)θk · 4nMλk

=
(
1− (nκ)−1) exp(2Mλk)(1 + 4nMλk)θk

≤
(
1− (nκ)−1) exp

(
2(2n+ 1)Mλk

)
θk = θk+1,

where the last identity is due to (4.3.29). Thus, (4.3.28) is proved.

153

Chapter 4. Greedy Quasi-Newton Methods

Let us fix now some k ≥ 0. Since λk ≥ 0, we have, according to (4.3.28)
and (4.3.29),

σk ≤ σk + 2Mλk ≤ θk ≤
(
1− (nκ)−1)k 2nκ.

This proves the second relation in (4.3.25) in view of (4.3.30). Finally,
combining (4.3.32) and (4.3.29), we obtain

λk+1 ≤ exp(2Mλk)θkλk ≤ exp
(
2(2n+ 1)Mλk

)
θkλk

=
(
1− (nκ)−1)−1

θk+1λk ≤
(
1− (nκ)−1)k2nκλk,

which proves (4.3.26).

As in the quadratic case, combining Theorems 4.3.6 and 4.3.8, we obtain
the following efficiency estimate, for all k ≥ 0:

λf (xk0+k) ≤
(
1− (nκ)−1)k(k−1)/2 2−k

(
1− (2κ)−1)k0

λf (x0),

where
k0 := dnκ ln(2nκ)e.

4.4 Comparison with Classical Methods
Let us compare the rates of superlinear convergence we have obtained for
the greedy quasi-Newton methods with those of the classical ones from
Chapter 3. For brevity, we discuss only the DFP and BFGS methods. Fur-
thermore, since the estimates for the general nonlinear case differ from those
for the quadratic one only in absolute constants (both for the greedy and
classical methods), we only consider the case when the objective function is
quadratic.

We use our standard notation: n is the dimension of the space, µ is
the strong convexity parameter, L is the Lipschitz constant of the gradient,
and λk is the local norm of the gradient at the kth iteration. Further, to
avoid some technicalities and keep the presentation simple, we assume that
the condition number of the problem is not especially good, namely,

κ := L

µ
≥ 3. (4.4.1)

For the greedy quasi-Newton methods (both DFP and BFGS), we have

154

4.4. Comparison with Classical Methods

the following recurrence, for all k ≥ 0 (see Theorem 4.2.4):

λk+1 ≤
(
1− (nκ)−1)knκλk ≤ exp

(
−k/(nκ)

)
nκλk. (4.4.2)

Thus, their rate of superlinear convergence is described by the inequality

λk ≤ λ0

k−1∏
i=0

[
exp
(
−k/(nκ)

)
nκ
]

= exp
(
− 1

2k(k − 1)/(nκ)
)
(nκ)kλ0.

(4.4.3)

This inequality is formally valid for all k ≥ 1. However, it is useful only
when the factor in front of λ0 is smaller than or equal to 1, i.e., when
k ≥ KGr

0 , where
KGr

0 := 1 + d2nκ ln(nκ)e. (4.4.4)

The number KGr
0 is the starting moment of superlinear convergence of the

greedy DFP and BFGS methods, according to the estimate (4.4.3).

For the classical DFP Method, we have the following bound, for all k ≥ 1
(Theorem 3.2.3 with χi ≡ 1):

λk ≤
[
2κ(κn/k − 1)

]k/2√κ λ0, (4.4.5)

and the starting moment of superlinear convergence is of the order

KDFP
0 ∼ nκ lnκ (4.4.6)

(see the corresponding discussion after Theorem 3.2.3).

Comparing the starting moments of superlinear convergence, given by
(4.4.4) and (4.4.6), we see that, for the classical DFP Method, the super-
linear convergence starts slightly earlier than for the greedy one. However,
the difference is only in the logarithmic factor.

Nevertheless, let us show that, soon after the superlinear convergence of
the Greedy DFP Method begins, namely, after

K̃Gr
0 := 1 + d6nκ ln(4nκ)e (≥ 2) (4.4.7)

iterations, it will be significantly faster than that of the classical method,
according to our estimates. Indeed, denote the factors in front of λ0 in the
right-hand sides of (4.4.2) and (4.4.5) by Ak and Bk, respectively. Using

155

Chapter 4. Greedy Quasi-Newton Methods

the inequality exp(t) ≥ 1 + t, t ∈ R, and (4.4.1), we obtain, for all k ≥ 1,

Bk =
[
2κ
(
exp([n lnκ]/k)− 1

)]k/2√κ
≥
(

2nκ lnκ
k

)k/2√
κ ≥

(nκ
k

)k/2
.

Hence, for all k ≥ 1,

Ak
Bk
≤ exp

(
− 1

2k(k − 1)/(nκ)
)
(nκ)k

(
k/(nκ)

)k/2
= exp

(
− 1

2k(k − 1)/(nκ)
)
(nκk)k/2.

(4.4.8)

Note that t 7→ ln t/(t − 1) is a decreasing function on (1,+∞) (since the
logarithm is concave). Therefore, according to (4.4.7) and (4.4.1), for all
k ≥ K̃Gr

0 , we have

nκ ln(nκk)
k − 1 ≤

nκ ln
(
nκ[1 + 6nκ ln(4nκ)]

)
6nκ ln(4nκ) ≤

ln
(
nκ[1 + 24(nκ)2]

)
6 ln(4nκ)

≤
ln
(
48(nκ)3)

6 ln(4nκ) ≤
ln
(
(4nκ)3)

6 ln(4nκ) = 3 ln(4nκ)
6 ln(4nκ) = 1

2 .

Consequently, for all k ≥ K̃Gr
0 ,

(nκk)k/2 = exp
(1

2k ln(nκk)
)
≤ exp

(1
4k(k − 1)/(nκ)

)
.

Substituting this estimate into (4.4.8), we obtain, for all k ≥ K̃Gr
0 ,

Ak
Bk
≤ exp

(
− 1

4k(k − 1)/(nκ)
)
≤ 1.

Thus, after K̃Gr
0 iterations, the rate of superlinear convergence of the Greedy

DFP Method is always better than that of the classical one. Moreover, as
k → +∞, the gap between these rates grows as exp

(
O(1)k2(nκ)−1).

Now let us discuss the BFGS Method. For the classical version, we have
the following estimate, for all k ≥ 1 (Theorem 3.2.3 with χi ≡ 0):

λk ≤
[
2(κn/k − 1)

]k/2√κ λ0. (4.4.9)

The starting moment of superlinear convergence is of the order

KBFGS
0 ∼ n lnκ (4.4.10)

156

4.5. Numerical Experiments

(see the corresponding discussion after Theorem 3.2.3).
Comparing (4.4.10) with (4.4.4), we see that, for the classical BFGS

Method, the starting moment of superlinear convergence is much better. It
has a very weak (logarithmic) dependence on the condition number.

Nevertheless, asymptotically, the rate (4.4.9) of the classical BFGS is
slower than that of the greedy one. Specifically, one can show (similarly to
how this was done for DFP) that, soon after the superlinear convergence
of the greedy BFGS Method begins, the corresponding rate (4.4.2) of su-
perlinear convergence will be better than that of the classical method by a
factor of exp

(
O(1)k2/(nκ)

)
.

4.5 Numerical Experiments

In this section, we present preliminary computational results for greedy
quasi-Newton methods and compare them with classical quasi-Newton meth-
ods. We also include one additional method to our comparison, namely, the
Gradient Method, to illustrate the difference between linearly and superlin-
early convergent algorithms.

We would like to stress that the main goal of our experiments is to
confirm theory and get a general idea about the actual relation between
greedy and classical quasi-Newton methods in practice. There is no goal to
perform exhaustive numerical testing involving many different methods and
problems.

4.5.1 Regularized Log-Sum-Exp

First, let us consider the following test function:

f(x) := ln
(m∑
j=1

exp(〈cj , x〉 − bj)
)

+ 1
2

m∑
j=1
〈cj , x〉2 + γ

2 ‖x‖
2, (4.5.1)

where x ∈ Rn, c1, . . . , cm ∈ Rn, b1, . . . , bm ∈ R, γ > 0, and m ≥ n.
We compare Algorithm 4.3.1 (implementing GrDFP, GrBFGS and GrSR1,

depending on the choice of χk) with the usual Gradient Method (GM)5 and
standard quasi-Newton methods DFP, BFGS and SR1.

5For GM, we use the constant step size 1/L, where L is the estimate of the Lipschitz
constant of the gradient given by (4.5.5).

157

Chapter 4. Greedy Quasi-Newton Methods

All the standard methods need access only to the gradient of f :

∇f(x) = g(x) +
m∑
j=1
〈cj , x〉cj + γx, g(x) :=

m∑
j=1

πj(x)cj , (4.5.2)

where

πj(x) := exp(〈cj , x〉 − bj)∑m
j′=1 exp(〈cj′ , x〉 − bj′)

∈ [0, 1], j = 1, . . . ,m.

Note that, for a given point x ∈ Rn, ∇f(x) can be computed in O(mn)
operations.

For the greedy methods, to implement the Hessian approximation up-
date, at every iteration, we need to carry out some additional operations
with the Hessian

∇2f(x) =
m∑
j=1

πj(x)cjcTj − g(x)g(x)T +
m∑
j=1

cjc
T
j + γI

=
m∑
j=1

(
πj(x) + 1

)
cjc

T
j − g(x)g(x)T + γI.

(4.5.3)

Namely, given a point x ∈ Rn, we need to be able to perform the following
two actions:

• For all 1 ≤ i ≤ n, compute the values

〈∇2f(x)ei, ei〉 =
m∑
j=1

(
πj(x) + 1

)
〈cj , ei〉2 − 〈g(x), ei〉2 + γ,

where e1, . . . , en are the basis vectors.

• For a given direction h ∈ Rn, compute the Hessian-vector product

∇2f(x)h =
m∑
j=1

(
πj(x) + 1

)
〈cj , h〉cj − 〈g(x), h〉g(x) + γh.

Let us choose the standard basis in Rn:

ei := (0, . . . , 0, 1, 0, . . . , 0)T , 1 ≤ i ≤ n. (4.5.4)

Then, both the above operations have a cost of O(mn).

158

4.5. Numerical Experiments

In particular, we see that the cost of one iteration is comparable for all
methods under our consideration.

Note that, for our basis (4.5.4), the matrix B, defined by (4.1.11), is the
identity matrix:

B = I.

Hence, the Lipschitz constant of the gradient of f w.r.t. B can be set in the
following way (see (4.5.3)):

L = 2
m∑
j=1
‖cj‖2 + γ. (4.5.5)

All quasi-Newton methods in our comparison start from the same initial
Hessian approximation G0 = LB, and use unit step sizes.

Finally, for greedy quasi-Newton methods, we also need to provide an es-
timate of the parameter of strong self-concordance. Note that the function f
is 1-strongly convex and its Hessian is 2-Lipschitz continuous6 w.r.t. the op-
erator

∑m
j=1 cjc

T
j (see, e.g., [54, Ex. 1]). Hence, in view of Lemma 3.3.2,

the parameter of strong self-concordance can be chosen as follows:

M = 2.

The data defining the test function (4.5.1) is randomly generated in the
following way. First, we generate a collection of random vectors

ĉ1, . . . , ĉm

with entries uniformly distributed in the interval [−1, 1]. Then we generate
b1, . . . , bm from the same distribution. Using this data, we form a prelimi-
nary function

f̂(x) := ln
(m∑
j=1

exp(〈ĉj , x〉 − bj)
)
,

and finally define

cj := ĉj −∇f̂(0), j = 1, . . . ,m.

6Note, however, that the “standard” Lipschitz constant L2 of the Hessian of f (mea-
sured w.r.t. the standard Euclidean norm in Rn) may be significantly bigger than 2
depending on the relation between vectors c1, . . . , cm.

159

Chapter 4. Greedy Quasi-Newton Methods

Note that by construction, according to (4.5.2),

∇f(0) = 1∑m
j=1 exp(−bj)

m∑
j=1

exp(−bj)
(
ĉj −∇f̂(0)

)
= 0,

so the unique minimizer of our test function (4.5.1) is x∗ = 0. The starting
point x0 for all methods is the same and generated randomly from the
uniform distribution on the standard Euclidean sphere of radius 1/n (this
choice is motivated by (4.3.24)) centered at the minimizer.

Thus, our test function (4.5.1) has three parameters: the dimension n,
the numberm of linear functions, and the regularization coefficient γ. Let us
present computational results for different values of these parameters. The
termination criterion for all methods is f(xk)− f(x∗) ≤ ε

(
f(x0)− f(x∗)

)
.

In the tables below, for each method, we display the number of iterations
until its termination. The minus sign (−) means that the method has not
been able to achieve the required accuracy after 1000n iterations.

Table 4.5.1: n = m = 50, γ = 1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 79 4 4 3 45 35 34
10−3 1812 777 57 18 342 57 52
10−5 5263 1866 107 29 738 72 58
10−7 8873 2836 158 39 917 83 63
10−9 12532 3911 203 48 1028 93 67

Table 4.5.2: n = m = 50, γ = 0.1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 76 4 4 3 44 33 33
10−3 2732 1278 78 23 512 70 56
10−5 29785 12923 254 57 3850 126 72
10−7 − 23245 346 74 6794 169 81
10−9 − 32441 381 79 8216 204 87

160

4.5. Numerical Experiments

Table 4.5.3: n = m = 250, γ = 1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 444 4 4 3 214 158 157
10−3 10351 4743 98 21 3321 264 251
10−5 73685 31468 288 55 15637 350 274
10−7 159391 58138 450 82 21953 413 296
10−9 249492 85218 627 110 25500 464 314

Table 4.5.4: n = m = 250, γ = 0.1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 442 4 4 3 209 155 155
10−3 9312 4175 91 21 2686 258 251
10−5 207978 102972 488 87 60461 556 346
10−7 − − 1003 170 147076 792 391
10−9 − − 1407 233 212100 976 419

We see that all quasi-Newton methods outperform the Gradient Method
and demonstrate superlinear convergence (from some moment, the differ-
ence in the number of iterations between successive rows in the table be-
comes smaller and smaller). Among quasi-Newton methods (both the stan-
dard and the greedy ones), SR1 is always better than BFGS, while DFP
is significantly worse than the other two. At the first few iterations, the
greedy methods lose to the standard ones, but later they catch up. How-
ever, the classical SR1 Method always remains the best. Nevertheless, the
greedy methods are quite competitive.

Now let us look at the quality of Hessian approximations, produced
by the quasi-Newton methods. In the tables below, we display the desired
accuracy ε vs the final Hessian approximation error (defined as the operator
norm of Gk − ∇2f(xk) measured w.r.t. ∇2f(xk)). We look at the same
problems as in Tables 4.5.1 and 4.5.3.

161

Chapter 4. Greedy Quasi-Newton Methods

Table 4.5.5: n = m = 50, γ = 1

ε DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−0 1.6 · 103 1.6 · 103 1.6 · 103 1.6 · 103 1.6 · 103 1.6 · 103

10−1 1.6 · 103 1.6 · 103 1.6 · 103 2.7 · 103 1.5 · 103 1.5 · 103

10−3 1.6 · 103 1.6 · 103 1.6 · 103 1.2 · 103 1.2 · 101 3.8 · 100

10−5 1.6 · 103 1.6 · 103 1.6 · 103 2.1 · 102 7.2 · 100 2.6 · 100

10−7 1.6 · 103 1.6 · 103 1.6 · 103 9.1 · 101 5.6 · 100 2.2 · 100

10−9 1.6 · 103 1.6 · 103 1.6 · 103 5.2 · 101 4.1 · 100 1.8 · 100

Table 4.5.6: n = m = 250, γ = 1

ε DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−0 4.1 · 104 4.1 · 104 4.1 · 104 4.1 · 104 4.1 · 104 4.1 · 104

10−1 4.1 · 104 4.1 · 104 4.1 · 104 7.1 · 104 3.8 · 104 3.9 · 104

10−3 4.1 · 104 4.1 · 104 4.1 · 104 6.8 · 104 6.6 · 101 1.7 · 101

10−5 4.1 · 104 4.1 · 104 4.1 · 104 9.4 · 103 3.7 · 101 1.2 · 101

10−7 4.1 · 104 4.1 · 104 4.1 · 104 3.1 · 103 2.8 · 101 9.7 · 100

10−9 4.1 · 104 4.1 · 104 4.1 · 104 1.7 · 103 2.2 · 101 7.3 · 100

As we can see from these tables, for standard quasi-Newton methods the
Hessian approximation error always stays at the initial level. In contrast,
for the greedy ones, it decreases relatively fast (especially for GrBFGS and
GrSR1). Note also that sometimes the initial residual slightly increases
at the first several iterations (which is noticeable only for GrDFP). This
happens due to the fact that the objective function is non-quadratic, and
we apply the correction strategy.

Note that in all the above tests we have used the same values for the
parameters n and m. Let us briefly illustrate what happens when m > n.

Table 4.5.7: n = 50, m = 100, γ = 0.1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 84 4 4 3 46 37 37
10−3 897 316 32 11 183 53 52
10−5 2421 833 67 19 334 63 58
10−7 4087 1304 98 25 423 71 62
10−9 5810 1859 132 32 473 78 66

162

4.5. Numerical Experiments

Table 4.5.8: n = 50, m = 200, γ = 0.1

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 108 4 4 3 45 46 46
10−3 479 101 17 7 97 53 52
10−5 1059 338 39 12 154 62 59
10−7 1817 615 62 18 206 67 64
10−9 2659 807 81 21 234 73 68

Comparing these tables with Table 4.5.2, we see that, with the increase
of m, all the methods generally terminate faster. However, the overall pic-
ture is still the same as before.

Finally, let us present the results for the randomized version of Algo-
rithm 4.3.1, in which, at every step, we select the update direction uniformly
at random from the standard Euclidean sphere:

uk ∼ Unif(Sn−1), (4.5.6)

where Sn−1 := {x ∈ Rn : ‖x‖ = 1}. We call the corresponding methods
RaDFP, RaBFGS and RaSR1.

Table 4.5.9: n = m = 50, γ = 1

ε RaDFP RaBFGS RaSR1
10−1 35 29 34
10−3 566 102 64
10−5 1156 125 77
10−7 1481 142 85
10−9 1698 156 91

Table 4.5.10: n = m = 250, γ = 1

ε RaDFP RaBFGS RaSR1
10−1 261 144 158
10−3 4276 366 287
10−5 19594 517 346
10−7 33293 619 376
10−9 41177 698 396

It is instructive to compare these tables with Tables 4.5.1 and 4.5.3,
which contain the results for the greedy methods on the same problems.
We see that the randomized methods are slightly slower than the greedy

163

Chapter 4. Greedy Quasi-Newton Methods

ones. However, the difference is not really significant, and, what is especially
interesting, the randomized methods do not lose superlinear convergence.

4.5.2 Logistic Regression

Now let us consider another test function, namely l2-regularized logistic
regression, which is popular in the field of Machine Learning:

f(x) :=
m∑
j=1

ln
(
1 + exp(−bj〈cj , x〉)

)
+ γ

2 ‖x‖
2, x ∈ Rn, (4.5.7)

where c1, . . . , cm ∈ Rn, b1, . . . , bm ∈ {−1, 1}, γ > 0, and m� n.
Note that the structure of the function (4.5.7) is similar to that of the

function (4.5.1). In particular, both the diagonal of the Hessian and the
Hessian-vector product for this function can be computed with similar com-
plexity to that of computing the gradient. It can also be shown that the
Lipschitz constant of the gradient of f can be chosen in according to (4.5.5)
but with the coefficient 1/4 instead of 2.

We follow the same experiment design as before with only a couple of
differences. First, instead of generating the data defining the function (4.5.7)
artificially, we take it from the LIBSVM collection of real-world data sets
for binary classification problems7 [32]. Second, we have found it better in
practice not to apply the correction strategy in the greedy methods (i.e.,
simply set G̃k = Gk in Algorithm 4.3.1). This is the only heuristic that we
use. For the regularization coefficient, we always use the value γ = 1, which
is a standard choice.

It is not difficult to see that, for our particular problem, all the methods
we consider have a comparable cost of one iteration.

Let us now look at the results.

Table 4.5.11: Data set ijcnn1 (n = 22, m = 49990)

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 246 43 8 6 25 19 18
10−3 1925 672 45 16 71 25 23
10−5 5123 2007 85 25 145 32 23
10−7 8966 2738 102 29 192 38 23
10−9 12815 3269 118 33 215 43 24

7The original labels bi in the mushrooms data set are “1” and “2” instead of “1”
and “−1”. Therefore, we renamed in advance the class label “2” into “−1”.

164

4.6. Discussion

Table 4.5.12: Data set mushrooms (n = 112, m = 8124)

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 4644 936 15 6 230 83 82
10−3 77103 30594 105 24 1185 149 113
10−5 − 58221 166 34 1700 170 113
10−7 − 83740 217 42 1945 182 113
10−9 − 107471 257 48 2088 194 114

Table 4.5.13: Data set a9a (n = 123, m = 32561)

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 160 32 10 6 110 81 81
10−3 18690 9229 145 38 2203 127 117
10−5 − 79014 411 88 23715 316 123
10−7 − − 553 113 35700 441 124
10−9 − − 581 118 38285 475 124

Table 4.5.14: Data set w8a (n = 300, m = 49749)

ε GM DFP BFGS SR1 GrDFP GrBFGS GrSR1
10−1 10148 3531 35 10 694 300 300
10−3 194813 86315 178 34 1426 307 301
10−5 − 188561 300 54 1849 327 301
10−7 − 255224 387 68 2036 339 301
10−9 − 264346 399 69 2057 340 301

As we can see, the general picture is the same as for the previous test
function. In particular, the DFP update is always much worse than BFGS
and SR1. The greedy methods are competitive with the standard ones and
often outperform them for high values of accuracy.

4.6 Discussion
We have presented a new class of greedy quasi-Newton methods. They
are based on standard quasi-Newton update formulas from the Broyden
family but use greedily selected basis vectors instead of search directions
for updating Hessian approximations.

Compared to classical quasi-Newton methods, greedy methods addition-
ally display linear convergence of Hessian approximations to the true Hes-

165

Chapter 4. Greedy Quasi-Newton Methods

sian. Furthermore, the rate of superlinear convergence for the iterates of the
greedy methods is asymptotically faster than that of the classical methods.

However, these advantages come at a price. Namely, at every iteration
of the greedy methods, one needs to compute a basis vector, which maxi-
mizes a certain measure of progress. This requires additional information
beyond just the gradient of the objective function, such as the diagonal of
the Hessian. If the objective function does not possess any specific struc-
ture (separable, sparse, etc.), the corresponding computations may be quite
expensive.

In this regard, a natural idea is to replace the greedy strategy with a
randomized one, where the update direction is chosen from some distribu-
tion which is easy to sample from (e.g., the uniform distribution on the unit
sphere). For such algorithms, it becomes possible to prove, in the prob-
abilistic sense, similar efficiency estimates to those of the greedy methods
(see [110]). This is confirmed by our experiments, in which the correspond-
ing scheme (Algorithm 4.3.1 with directions (4.5.6)) demonstrates almost
the same performance as the greedy one.

Finally, observe that, for the greedy methods, in contrast to the classical
ones, we have obtained exactly the same efficiency estimate for all updates
from the extended convex Broyden class. This is a consequence of the fact
that, at some point, we upper bounded all members of this class via the
worst one (DFP). This was done deliberately since otherwise the greedy
rule for selecting an update direction for, say, BFGS or SR1, would have
been too complicated for any practical use. Nevertheless, in principle, for
more sophisticated strategies for selecting update directions, we could in-
deed obtain much better efficiency guarantees for greedy variants of BFGS
and SR1. Based on our results, it was shown recently that these improved
efficiency guarantees can also be achieved using certain efficiently imple-
mentable randomized strategies (see [110]).

166

Chapter 5

Subgradient Ellipsoid
Method

We now turn our attention to a completely different member of the quasi-
Newton family of methods, namely, the Ellipsoid Method.

Compared to standard quasi-Newton methods for Smooth Optimization,
the Ellipsoid Method does not have any local superlinear convergence. How-
ever, it has very strong global convergence guarantees: it exhibits a linear
convergence rate with a constant depending only on the dimension of the
space. Furthermore, the Ellipsoid Method is more universal in the sense
that it can be readily applied to general nonsmooth problems with convex
structure such as nonsmooth convex minimization problems with functional
constraints, saddle-point problems, variational inequalities, etc.

In this chapter, we address one of the issues of the Ellipsoid Method,
namely, its “incorrect” dependence on the dimension of the space.

To explain the issue, let us consider the minimization problem

min
x∈Q

f(x), (5.0.1)

where f : E → R is a convex function, and Q is the Euclidean ball of ra-
dius R > 0 centered at the origin:

Q := B(0, R) ≡ {x ∈ E : ‖x‖ ≤ R},

where ‖·‖ := ‖·‖B for some B ∈ S++(E,E∗). The Ellipsoid Method for

167

Chapter 5. Subgradient Ellipsoid Method

solving (5.0.1) can be written as follows (see Algorithm 2.7.2):

xk+1 := xk −
1

n+ 1
Wkgk

〈gk,Wkgk〉1/2
,

Wk+1 := n2

n2 − 1

(
Wk −

2
n+ 1

Wkgkg
∗
kWk

〈gk,Wkgk〉

)
, k ≥ 0,

(5.0.2)

where x0 := 0 (∈ E),W0 := R2B−1, and gk := f ′(xk) is an arbitrary nonzero
subgradient whenever xk ∈ intQ and gk := Bxk is a separator of xk from Q

whenever xk /∈ intQ.
To solve problem (5.0.1) with accuracy ε > 0 (in terms of the function

value), the Ellipsoid Method needs

O
(
n2 ln 2MR

ε

)
(5.0.3)

iterations, where M > 0 is the Lipschitz constant of f on Q (see (2.7.26)).
Looking at this estimate, we can see an immediate drawback: it directly
depends on the dimension and becomes useless when n→∞. In particular,
we cannot guarantee any reasonable rate of convergence for the Ellipsoid
Method when the dimensionality of the problem is sufficiently big.

Note that the aforementioned drawback is an artifact of the method
itself, not its analysis. Indeed, when n→∞, iteration (5.0.2) reads

xk+1 := xk, Wk+1 := Wk, k ≥ 0.

Thus, the method stays at the same point and does not make any progress.
On the other hand, the simplest Subgradient Method for solving (5.0.1)

possesses the “dimension-independent”1

O
(M2R2

ε2

)
(5.0.4)

iteration complexity bound (see (2.6.13)). Comparing (5.0.3) with (5.0.4),
we see that the Ellipsoid Method is significantly faster than the Subgradient
Method only when n is not too big compared to MR/ε and significantly
slower otherwise. Clearly, this is rather strange because the former algo-
rithm does much more work at every iteration by “improving” the “met-

1Of course, complexity bound (5.0.4) may not be exactly dimension-independent, as
the constants M and R may, in principle, themselves depend on the dimension n. Nev-
ertheless, at least, there is no explicit dependence on n in (5.0.4) (in contrast to (5.0.3)),
and there are indeed cases when both M and R are actually independent of n.

168

ric” Wk which is used for measuring the norm of the subgradients.
In this chapter, we propose a new ellipsoid-type algorithm for solving

general nonsmooth problems with convex structure which does not have the
drawback discussed above. This algorithm can be seen as a combination of
the Subgradient and Ellipsoid methods and its convergence rate is basically
as good as the best of the two corresponding rates (up to some logarithmic
factors). In particular, when n → ∞, the convergence rate of the new
algorithm coincides with that of the Subgradient Method.

We would like to clarify that we are not interested in simply obtaining
any method whose complexity is exactly the best among those of the Sub-
gradient and Ellipsoid methods (this goal is easily achieved by running both
methods in parallel). Instead, we are interested in a deeper understanding
of the Ellipsoid Method and how to make it truly continuous in the di-
mension n. By properly combining two methods into one scheme, we hope
to obtain a universal method, which will open up possibilities for further
acceleration.

Contents
This chapter follows [162] (with a few additional minor clarifications regard-
ing the choice of parameters in the general algorithmic scheme) and has the
following structure.

First, in Section 5.1.1, we review the general formulation of a prob-
lem with convex structure and the associated notions of accuracy certificate
and residual. Our presentation mostly follows [125] with examples taken
from [130]. Then, in Section 5.1.2, we introduce the notions of accuracy
semicertificate and gap and discuss their relation with those of accuracy
certificate and residual.

In Section 5.2, we present the general algorithmic scheme of the new
method. To measure the convergence rate of this scheme, we introduce the
notion of sliding gap and establish some preliminary bounds on it.

In Section 5.3, we discuss different choices of parameters in the general
scheme. First, we show that, by setting some parameters to zero, we obtain
the standard Subgradient and Ellipsoid methods. Then we consider a couple
of other less trivial choices which lead to two new algorithms. The principal
of these new algorithms is the latter one, which is called the Subgradient
Ellipsoid Method. We demonstrate that the convergence rate of this algo-
rithm is basically as good as the best among those of the Subgradient and
Ellipsoid methods.

169

Chapter 5. Subgradient Ellipsoid Method

In Section 5.4, we show that, for both new methods, it is possible to ef-
ficiently generate accuracy semicertificates whose gap is upper bounded by
the sliding gap. We also compare our approach with the recently proposed
technique from [125] for building accuracy certificates for the standard El-
lipsoid Method.

In Section 5.5, we discuss how one can efficiently implement the general
scheme of the Subgradient Ellipsoid Method and the corresponding proce-
dure for generating accuracy semicertificates. In particular, we show that
the time and memory requirements of the new scheme are the same as in
the standard Ellipsoid Method.

Finally, in Section 5.6, we discuss some open questions.

5.1 Convex Problems and Accuracy Certifi-
cates

5.1.1 Description and Examples
In this chapter, we consider numerical algorithms for solving problems with
convex structure. The main examples of such problems are convex minimiza-
tion problems, convex-concave saddle-point problems, convex Nash equilib-
rium problems, and variational inequalities with monotone operators.

The general formulation of a problem with convex structure involves two
objects:

• Solid Q ⊆ E (called the feasible set), represented by the Separation
Oracle: given any point x ∈ E, this oracle can check whether x ∈ intQ,
and if not, it reports a vector gQ(x) ∈ E∗ \ {0} which separates x
from Q:

〈gQ(x), x− y〉 ≥ 0, ∀y ∈ Q. (5.1.1)

• Vector field g : intQ → E∗, represented by the First-Order Oracle:
given any point x ∈ intQ, this oracle returns the vector g(x).

In what follows, we only consider the problems satisfying the following con-
dition:

∃x∗ ∈ Q : 〈g(x), x− x∗〉 ≥ 0, ∀x ∈ intQ. (5.1.2)

A numerical algorithm for solving a problem with convex structure starts
at some point x0 ∈ E. At each step k ≥ 0, it queries the oracles at the
current test point xk to obtain the new information about the problem, and

170

5.1. Convex Problems and Accuracy Certificates

then somehow uses this new information to form the next test point xk+1.
Depending on whether xk ∈ intQ, the kth step of the algorithm is called
productive or nonproductive.

The total information, obtained by the algorithm from the oracles after
k ≥ 1 steps, comprises its execution protocol which consists of:

• The test points x0, . . . , xk−1 ∈ E.

• The set of productive steps Ik := {0 ≤ i ≤ k − 1 : xi ∈ intQ}.

• The vectors g0, . . . , gk−1 ∈ E∗ reported by the oracles: gi := g(xi), if
i ∈ Ik, and gi := gQ(xi), if i /∈ Ik, 0 ≤ i ≤ k − 1.

An accuracy certificate, associated with the above execution protocol, is
a nonnegative vector λ := (λ0, . . . , λk−1) such that Sk(λ) :=

∑
i∈Ik

λi > 0
(and, in particular, Ik 6= ∅). Given any solid Ω, containing Q, we can define
the following residual of λ on Ω:

εk(λ) := max
x∈Ω

1
Sk(λ)

k−1∑
i=0

λi〈gi, xi − x〉, (5.1.3)

which is easily computable whenever Ω is a simple set (e.g., a Euclidean
ball). Note that

εk(λ) ≥ max
x∈Q

1
Sk(λ)

k−1∑
i=0

λi〈gi, xi−x〉 ≥ max
x∈Q

1
Sk(λ)

∑
i∈Ik

λi〈gi, xi−x〉 (5.1.4)

and, in particular, εk(λ) ≥ 0 in view of (5.1.2).
In what follows, we will be interested in algorithms which can produce

accuracy certificates λ(k) with εk(λ(k)) → 0 at a certain rate. This is a
meaningful goal because, for all known instances of problems with convex
structure, the residual εk(λ) upper bounds a certain natural inaccuracy
measure for the corresponding problem. Let us briefly review some standard
examples (for more examples, see [125, 130] and the references therein).

Example 5.1.1 (Convex Minimization Problem). Consider the problem

f∗ := min
x∈Q

f(x), (5.1.5)

where Q ⊆ E is a solid and f : E → R ∪ {+∞} is closed convex and finite
on intQ.

171

Chapter 5. Subgradient Ellipsoid Method

The First-Order Oracle for (5.1.5) is g(x) := f ′(x), x ∈ intQ, where
f ′(x) is an arbitrary subgradient of f at x. Clearly, (5.1.2) holds for x∗
being any solution of (5.1.5).

It is not difficult to verify that, in this example, the residual εk(λ) up-
per bounds the functional residual: for x̂k := 1

Sk(λ)
∑
i∈Ik

λixi or x∗k :=
argmin{f(x) : x ∈ Xk}, where Xk := {xi : i ∈ Ik}, we have f(x̂k) − f∗ ≤
εk(λ) and f(x∗k)− f∗ ≤ εk(λ).

Moreover, εk(λ), in fact, upper bounds the primal-dual gap for a certain
dual problem for (5.1.5). Indeed, let f∗ : E∗ → R ∪ {+∞} be the conjugate
function of f . Then, we can represent (5.1.5) in the following dual form:

f∗ = min
x∈Q

max
s∈dom f∗

[〈s, x〉 − f∗(s)] = max
s∈dom f∗

[−f∗(s)− ξQ(−s)], (5.1.6)

where dom f∗ := {s ∈ E∗ : f∗(s) < +∞} and ξQ(−s) := maxx∈Q〈−s, x〉.
Denote sk := 1

Sk(λ)
∑
i∈Ik

λigi (∈ dom f∗). Then, using (5.1.4) and the
convexity of f and f∗, we obtain

εk(λ) ≥ 1
Sk(λ)

∑
i∈Ik

λi〈gi, xi〉+ ξQ(−sk)

= 1
Sk(λ)

∑
i∈Ik

λi[f(xi) + f∗(gi)] + ξQ(−sk)

≥ f(x̂k) + f∗(sk) + ξQ(−sk)
= [f(x̂k)− f∗] + [f∗ + f∗(sk) + ξQ(−sk)] (≥ 0),

where the final inequality (in the parentheses) is due to (5.1.5) and (5.1.6).
Thus, x̂k and sk are εk(λ)-approximate solutions (in terms of function value)
to problems (5.1.5) and (5.1.6), respectively. Note that the same is true if
we replace x̂k with x∗k.

Example 5.1.2 (Convex-Concave Saddle-Point Problem). Consider the fol-
lowing problem: Find (u∗, v∗) ∈ U × V such that

f(u∗, v) ≤ f(u∗, v∗) ≤ f(u, v∗), ∀(u, v) ∈ U × V, (5.1.7)

where U , V are solids in some finite-dimensional vector spaces Eu, Ev,
respectively, and f : U × V → R is a continuous function which is convex-
concave, i.e., f(·, v) is convex and f(u, ·) is concave for any u ∈ U and any
v ∈ V .

In this example, we set E := Eu×Ev, Q := U×V and use the First-Order

172

5.1. Convex Problems and Accuracy Certificates

Oracle
g(x) :=

(
f ′u(x),−f ′v(x)

)
, x := (u, v) ∈ intQ,

where f ′u(x) is an arbitrary subgradient of f(·, v) at u and f ′v(y) is an ar-
bitrary supergradient of f(u, ·) at v. Then, for any x := (u, v) ∈ intQ and
any x′ := (u′, v′) ∈ Q,

〈g(x), x−x′〉 = 〈f ′u(x), u−u′〉−〈f ′v(x), v−v′〉 ≥ f(u, v′)−f(u′, v). (5.1.8)

In particular, (5.1.2) holds for x∗ := (u∗, v∗) in view of (5.1.7).
Let ϕ : U → R and ψ : V → R be the functions

ϕ(u) := max
v∈V

f(u, v), ψ(v) := min
u∈U

f(u, v).

In view of (5.1.7), we have ψ(v) ≤ f(u∗, v∗) ≤ ϕ(u) for all (u, v) ∈ U × V .
Therefore, the difference ϕ(u)−ψ(v) (called the primal-dual gap) is always
nonnegative and can be used for measuring the quality of an approximate
solution x := (u, v) ∈ Q to problem (5.1.7).

Denoting x̂k := 1
Sk(λ)

∑
i∈Ik

λixi =: (ûk, v̂k) and using (5.1.4), we obtain

εk(λ) ≥ max
x∈Q

1
Sk(λ)

∑
i∈Ik

λi〈gi, xi − x〉

≥ max
u∈U,v∈V

1
Sk(λ)

∑
i∈Ik

λi[f(ui, v)− f(u, vi)]

≥ max
u∈U,v∈V

[f(ûk, v)− f(u, v̂k)] = ϕ(ûk)− ψ(v̂k) (≥ 0),

where the second inequality is due to (5.1.8) and the next one follows from
the convexity-concavity of f . Thus, the residual εk(λ) upper bounds the
primal-dual gap for the approximate solution x̂k.

Example 5.1.3 (Variational Inequality with Monotone Operator). LetQ ⊆ E
be a solid and let V : Q→ E∗ be a continuous operator which is monotone,
i.e., 〈V (x) − V (y), x − y〉 ≥ 0 for all x, y ∈ Q. The goal is to solve the
following (weak) variational inequality:

Find x∗ ∈ Q : 〈V (x), x− x∗〉 ≥ 0, ∀x ∈ Q. (5.1.9)

Since V is continuous, this problem is equivalent to its strong variant: find
x∗ ∈ Q such that 〈V (x∗), x− x∗〉 ≥ 0 for all x ∈ Q.

A standard tool for measuring the quality of an approximate solution

173

Chapter 5. Subgradient Ellipsoid Method

to (5.1.9) is the dual gap function, introduced in [6]:

f(x) := max
y∈Q
〈V (y), x− y〉, x ∈ Q.

It is easy to see that f is a convex nonnegative function which equals 0
exactly at the solutions of (5.1.9).

In this example, the First-Order Oracle is defined by g(x) := V (x),
x ∈ intQ. Denote x̂k := 1

Sk(λ)
∑
i∈Ik

λixi. Then, using (5.1.4) and the
monotonicity of V , we obtain

εk(λ) ≥ max
x∈Q

1
Sk(λ)

∑
i∈Ik

λi〈V (xi), xi − x〉

≥ max
x∈Q

1
Sk(λ)

∑
i∈Ik

λi〈V (x), xi − x〉 = f(x̂k).

Thus, εk(λ) upper bounds the dual gap function for the approximate solu-
tion x̂k.

5.1.2 Establishing Convergence of Residual

For the algorithms considered in this chapter, instead of accuracy certifi-
cates and residuals, it turns out to be more convenient to speak about
closely related notions of accuracy semicertificates and gaps, which we now
introduce.

As before, let x0, . . . , xk−1 be the test points, generated by the algorithm
after k ≥ 1 steps, and let g0, . . . , gk−1 be the corresponding oracle outputs.
An accuracy semicertificate, associated with this information, is a nonnega-
tive vector λ := (λ0, . . . , λk−1) such that Γk(λ) :=

∑k−1
i=0 λi‖gi‖∗ > 0. Given

any solid Ω, containing Q, the gap of λ on Ω is defined in the following way:

δk(λ) := max
x∈Ω

1
Γk(λ)

k−1∑
i=0

λi〈gi, xi − x〉. (5.1.10)

Comparing these definitions with those of accuracy certificate and residual,
we see that the only difference between them is that now we use a different
“normalizing” coefficient: Γk(λ) instead of Sk(λ). Also, in the definitions of
semicertificate and gap, we do not make any distinction between productive
and nonproductive steps. Note that δk(λ) ≥ 0.

Let us demonstrate that by making the gap sufficiently small, we can

174

5.1. Convex Problems and Accuracy Certificates

make the corresponding residual sufficiently small as well. For this, we need
the following standard assumption about our problem with convex structure
(see, e.g., [125]).

Assumption 5.1.4. The vector field g, reported by the First-Order Oracle,
is semibounded:

〈g(x), y − x〉 ≤ V, ∀x ∈ intQ, ∀y ∈ Q.

A classical example of a semibounded field is a bounded one: if there is
M ≥ 0, such that ‖g(x)‖∗ ≤ M for all x ∈ intQ, then g is semibounded
with V := MD, where D is the diameter of Q. However, there exist other
examples. For instance, if g is the subgradient field of a convex function
f : E → R ∪ {+∞}, which is finite and continuous on Q, then g is semi-
bounded with V := maxQ f−minQ f (variation of f on Q); however, g is not
bounded if f is not Lipschitz continuous (e.g., f(x) := −

√
x on Q := [0, 1]).

Another interesting example is the subgradient field g of a ν-self-concordant
barrier f : E→ R∪{+∞} for the set Q; in this case, g is semibounded with
V := ν (see, e.g., [133, Theorem 5.3.7]), while f(x)→ +∞ at the boundary
of Q.

Lemma 5.1.5. Let λ be a semicertificate such that δk(λ) < r, where r
is the largest of the radii of Euclidean balls contained in Q. Then, λ is a
certificate and

εk(λ) ≤ δk(λ)
r − δk(λ)V.

Proof. Denote δk := δk(λ), Γk := Γk(λ), Sk := Sk(λ). Let x̄ ∈ Q be
such that B(x̄, r) ⊆ Q. For each 0 ≤ i ≤ k − 1, let zi be a maximizer
of z 7→ 〈gi, z − x̄〉 on B(x̄, r). Then, for any 0 ≤ i ≤ k − 1, we have
〈gi, x̄− xi〉 = 〈gi, zi − xi〉 − r‖gi‖∗ with zi ∈ Q. Therefore,

k−1∑
i=0

λi〈gi, x̄− xi〉 =
k−1∑
i=0

λi〈gi, zi − xi〉 − rΓk ≤ SkV − rΓk, (5.1.11)

where the inequality follows from the separation property (5.1.1) and As-
sumption 5.1.4.

175

Chapter 5. Subgradient Ellipsoid Method

Let x ∈ Ω be arbitrary. For y :=
(
δkx̄+ (r − δk)x

)
/r ∈ Ω, we obtain

(r − δk)
k−1∑
i=0

λi〈gi, xi − x〉

= r

k−1∑
i=0

λi〈gi, xi − y〉+ δk

k−1∑
i=0

λi〈gi, x̄− xi〉

≤ rδkΓk + δk

k−1∑
i=0

λi〈gi, x̄− xi〉 ≤ δkSkV,

(5.1.12)

where the inequalities follow from the definition (5.1.10) of δk and (5.1.11),
respectively.

It remains to show that λ is a certificate, i.e., Sk > 0. But this is simple.
Indeed, if Sk = 0, then, taking x := x̄ in (5.1.12) and using (5.1.11), we get
0 ≥

∑k−1
i=0 λi〈gi, xi − x̄〉 ≥ rΓk, which contradicts our assumption that λ is

a semicertificate, i.e., Γk > 0.

According to Lemma 5.1.5, from the convergence rate of the gap δk(λ(k))
to zero, we can easily obtain the corresponding convergence rate of the
residual εk(λ(k)). In particular, to ensure that εk(λ(k)) ≤ ε for some ε > 0,
it suffices to make δk(λ(k)) ≤ δ(ε) := εr/(ε + V). For this reason, in the
rest of this chapter, we can focus our attention on studying the convergence
rate only for the gap.

5.2 General Algorithmic Scheme
Consider the general scheme presented in Algorithm 5.2.1. This scheme
works with an arbitrary oracle G : E→ E∗ satisfying the following condition:

∃x∗ ∈ B(x0, R) : 〈G(x), x− x∗〉 ≥ 0, ∀x ∈ E. (5.2.1)

The point x∗ from (5.2.1) is typically called a solution of our problem. For
the general problem with convex structure, represented by the First-Order
Oracle g and the Separation Oracle gQ for the solid Q, the oracle G is usually
defined as follows: G(x) := g(x), if x ∈ intQ, and G(x) := gQ(x), otherwise.
To ensure (5.2.1), the constant R needs to be chosen sufficiently big so that
Q ⊆ B(x0, R).

176

5.2. General Algorithmic Scheme

Algorithm 5.2.1:
General Scheme of Subgradient Ellipsoid Method

Input: Point x0 ∈ E and scalar R > 0.

Initialization: Define the functions `0(x) := 0, ω0(x) := 1
2‖x−x0‖2.

For k ≥ 0 iterate:
1. Query the oracle to obtain gk := G(xk).
2. Compute Uk := maxx∈Ωk∩L−k

〈gk, xk − x〉, where

Ωk := {x ∈ E : ωk(x) ≤ 1
2R

2}, L−k := {x ∈ E : `k(x) ≤ 0}.
3. Choose some coefficients ak, bk ≥ 0 and update the functions

`k+1(x) := `k(x) + ak〈gk, x− xk〉,
ωk+1(x) := ωk(x) + 1

2bk(Uk − 〈gk, xk − x〉)〈gk, x− xk〉.
(5.2.2)

4. Set xk+1 := argminx∈E[`k+1(x) + ωk+1(x)].

Note that, in Algorithm 5.2.1, ωk are strictly convex quadratic functions
and `k are affine functions. Therefore, the sets Ωk are certain ellipsoids and
L−k are certain halfspaces (possibly degenerate).

Let us show that Algorithm 5.2.1 is a cutting-plane scheme in which the
sets Ωk ∩ L−k are the localizers of the solution x∗.

Lemma 5.2.1. In Algorithm 5.2.1, for all k ≥ 0, we have x∗ ∈ Ωk ∩ L−k
and Q̂k+1 ⊆ Ωk+1 ∩L−k+1, where Q̂k+1 := {x ∈ Ωk ∩L−k : 〈gk, x− xk〉 ≤ 0}.

Proof. Let us prove the claim by induction. Clearly, Ω0 = B(x0, R) and
L−0 = E, hence Ω0 ∩ L−0 = B(x0, R) 3 x∗ by (5.2.1). Suppose we have
already proved that x∗ ∈ Ωk ∩ L−k for some k ≥ 0. Combining this with
(5.2.1), we obtain x∗ ∈ Q̂k+1, so it remains to show that Q̂k+1 ⊆ Ωk+1 ∩
L−k+1. Let x ∈ Q̂k+1 (⊆ Ωk∩L−k) be arbitrary. Note that 0 ≤ 〈gk, xk−x〉 ≤
Uk. Hence, by (5.2.2), `k+1(x) ≤ `k(x) ≤ 0 and ωk+1(x) ≤ ωk(x) ≤ 1

2R
2,

which means that x ∈ Ωk+1 ∩ L−k+1.

Next, let us establish an important representation of the ellipsoids Ωk via
the functions `k and the test points xk. For this, let us define Gk := ∇2ωk(0)
for each k ≥ 0. Observe that these operators satisfy the following simple
relations (cf. (5.2.2)):

G0 = B, Gk+1 = Gk + bkgkg
∗
k, k ≥ 0. (5.2.3)

177

Chapter 5. Subgradient Ellipsoid Method

Also, let us define the sequence Rk > 0 by the recurrence

R0 = R, R2
k+1 = R2

k+(ak+ 1
2bkUk)2 (‖gk‖∗Gk

)2

1 + bk(‖gk‖∗Gk
)2 , k ≥ 0. (5.2.4)

Lemma 5.2.2. In Algorithm 5.2.1, for all k ≥ 0, we have

Ωk = {x ∈ E : −`k(x) + 1
2‖x− xk‖

2
Gk
≤ 1

2R
2
k}.

In particular, for all k ≥ 0 and all x ∈ Ωk ∩L−k , we have ‖x−xk‖Gk
≤ Rk.

Proof. Let ψk : E → R be the function ψk(x) := `k(x) + ωk(x). Note that
ψk is a quadratic function with Hessian Gk and minimizer xk. Hence, for
any x ∈ E, we have

ψk(x) = ψ∗k + 1
2‖x− xk‖

2
Gk
, (5.2.5)

where ψ∗k := minx∈E ψk(x).

Let us compute ψ∗k. Combining (5.2.2), (5.2.5) and (5.2.3), for any x ∈ E,
we obtain

ψk+1(x) = ψk(x) + (ak + 1
2bkUk)〈gk, x− xk〉+ 1

2bk〈gk, x− xk〉
2

= ψ∗k + 1
2‖x− xk‖

2
Gk

+ (ak + 1
2bkUk)〈gk, x− xk〉

+ 1
2bk〈gk, x− xk〉

2

= ψ∗k + 1
2‖x− xk‖

2
Gk+1

+ (ak + 1
2bkUk)〈gk, x− xk〉.

(5.2.6)

Therefore,

ψ∗k+1 = ψ∗k − 1
2 (ak + 1

2bkUk)2(‖gk‖∗Gk+1
)2

= ψ∗k − 1
2 (ak + 1

2bkUk)2 (‖gk‖∗Gk
)2

1 + bk(‖gk‖∗Gk
)2 ,

(5.2.7)

where the last identity follows from the fact that G−1
k+1gk = G−1

k gk/(1 +
bk(‖gk‖∗Gk

)2) (since Gk+1G
−1
k gk = (1 + bk(‖gk‖∗Gk

)2)gk in view of (5.2.3)).
Since (5.2.7) is true for any k ≥ 0 and since ψ∗0 = 0, we thus obtain, in view
of (5.2.4), that

ψ∗k = 1
2 (R2 −R2

k). (5.2.8)

Let x ∈ Ωk be arbitrary. Using the definition of ψk(x) and (5.2.8), we

178

5.2. General Algorithmic Scheme

obtain

−`k(x) + 1
2‖x− xk‖

2
Gk

= ωk(x)− ψ∗k = ωk(x) + 1
2 (R2

k −R2).

Thus, x ∈ Ωk ⇐⇒ ωk(x) ≤ 1
2R

2 ⇐⇒ −`k(x) + 1
2‖x − xk‖

2
Gk
≤ 1

2R
2
k.

Hence, for any x ∈ Ωk∩L−k , we have `k(x) ≤ 0, and so ‖x−xk‖Gk
≤ Rk.

Lemma 5.2.2 has several consequences. First, we see that the localizers
Ωk∩L−k are contained in the ellipsoids {x : ‖x−xk‖Gk

≤ Rk} whose centers
are the test points xk.

Second, we get an upper bound on the maximal value of the function −`k
over the ellipsoid Ωk: −`k(x) ≤ 1

2R
2
k for all x ∈ Ωk. This observation leads

us to the following definition of the sliding gap:

∆k := max
x∈Ωk

1
Γk

[−`k(x)] = max
x∈Ωk

1
Γk

k−1∑
i=0

ai〈gi, xi − x〉, k ≥ 1, (5.2.9)

provided that Γk :=
∑k−1
i=0 ai‖gi‖∗ > 0. According to our observation,

∆k ≤
R2
k

2Γk
. (5.2.10)

At the same time, ∆k ≥ 0 in view of Lemma 5.2.1 and (5.2.1)
Comparing the definition (5.2.9) of the sliding gap ∆k with the defini-

tion (5.1.10) of the gap δk(a(k)) for the semicertificate a(k) := (a0, . . . , ak−1),
we see that they are almost identical. The only difference between them is
that the solid Ωk, over which the maximum is taken in the definition of
the sliding gap, depends on the iteration counter k. This seems to be un-
fortunate because we cannot guarantee that each Ωk contains the feasible
set Q (as required in the definition of gap) even if so does the initial solid
Ω0 = B(x0, R). However, this problem can be dealt with. Namely, in
Section 5.4, we will show that the semicertificate a(k) can be efficiently con-
verted into another semicertificate λ(k) for which δk(λ(k)) ≤ ∆k when taken
over the initial solid Ω := Ω0. Thus, the sliding gap ∆k is a meaningful
measure of convergence rate of Algorithm 5.2.1 and it makes sense to call
the coefficients a(k) a preliminary semicertificate.

Let us now demonstrate that, for a suitable choice of the coefficients ak
and bk in Algorithm 5.2.1, we can ensure that the sliding gap ∆k converges
to zero.

179

Chapter 5. Subgradient Ellipsoid Method

Remark 5.2.3. From now on, in order to avoid taking into account some
trivial degenerate cases, it will be convenient to make the following minor
technical assumption:

In Algorithm 5.2.1, gk 6= 0 for all k ≥ 0.

Indeed, when the oracle reports gk = 0 for some k ≥ 0, it usually means
that the test point xk, at which the oracle was queried, is, in fact, an exact
solution to our problem. For example, if the standard oracle for a problem
with convex structure has reported gk = 0, we can terminate the method
and return the certificate λ := (0, . . . , 0, 1) for which the residual εk(λ) = 0.

Let us choose the coefficients ak and bk in the following way:

ak :=
αkR+ 1

2θγRk

‖gk‖∗Gk

, bk := γ

(‖gk‖∗Gk
)2 , k ≥ 0, (5.2.11)

where αk, γ, θ ≥ 0 are certain coefficients (to be specified later). We will
see that two main parameters in the above parametrization are actually
αk and γ. They control the “strength” of, respectively, the “subgradient”
and “ellipsoidal” components of Algorithm 5.2.1. The coefficient θ is just a
certain absolute constant. Its specific choice is not particularly important
but usually helps to improve absolute constants in the final convergence rate
estimate.

According to (5.2.10), to estimate the convergence rate of the sliding
gap, we need to estimate the rate of growth of the coefficients Rk and Γk
from above and below, respectively. Let us do this.

Lemma 5.2.4. In Algorithm 5.2.1 with parameters (5.2.11), for all k ≥ 0,

R2
k ≤ [qc(γ)]kCkR2, (5.2.12)

where

qc(γ) := 1 + cγ2

2(1 + γ) , c := 1
2 (τ + 1)(θ + 1)2,

Ck := 1 + τ + 1
τ

k−1∑
i=0

α2
i ,

and τ > 0 can be chosen arbitrarily. Moreover, if αk = 0 for all k ≥ 0,
then, R2

k = [qc(γ)]kR2 for all k ≥ 0 with c := 1
2 (θ + 1)2.

180

5.2. General Algorithmic Scheme

Proof. By the definition of Uk and Lemma 5.2.2, we have

Uk = max
x∈Ωk∩L−k

〈gk, xk−x〉 ≤ max
‖x−xk‖Gk

≤Rk

〈gk, xk−x〉 = Rk‖gk‖∗Gk
. (5.2.13)

At the same time, Uk ≥ 0 in view of Lemma 5.2.1 and (5.2.1). Hence,

(ak + 1
2bkUk)2 (‖gk‖∗Gk

)2

1 + bk(‖gk‖∗Gk
)2 ≤ (ak + 1

2bkRk‖gk‖
∗
Gk

)2 (‖gk‖∗Gk
)2

1 + bk(‖gk‖∗Gk
)2

= 1
1 + γ

(
αkR+ 1

2 (θ + 1)γRk
)2
,

where the identity follows from (5.2.11). Combining this with (5.2.4), we
obtain

R2
k+1 ≤ R2

k + 1
1 + γ

(
αkR+ 1

2 (θ + 1)γRk
)2
. (5.2.14)

Note that, for any ξ1, ξ2 ≥ 0 and any τ > 0, we have

(ξ1 + ξ2)2 = ξ2
1 + 2ξ1ξ2 + ξ2

2 ≤
τ + 1
τ

ξ2
1 + (τ + 1)ξ2

2 = (τ + 1)
(1
τ
ξ2
1 + ξ2

2

)
(look at the minimum of the right-hand side in τ). Therefore, for any τ > 0,

R2
k+1 ≤ R2

k + τ + 1
1 + γ

(1
τ
α2
kR

2 + 1
4 (θ + 1)2γ2R2

k

)
= qR2

k + βkR
2,

where q := qc(γ) ≥ 1 and βk := τ+1
τ(1+γ)α

2
k. Dividing both sides by qk+1, we

get
R2
k+1
qk+1 ≤

R2
k

qk
+ βkR

2

qk+1 .

Since this is true for any k ≥ 0, we thus obtain, in view of (5.2.4), that

R2
k

qk
≤ R2

0
q0 +R2

k−1∑
i=0

βi
qi+1 =

(
1 +

k−1∑
i=0

βi
qi+1

)
R2,

Multiplying both sides by qk and using the fact that βi

qi+1 ≤ τ+1
τ α2

i , we come
to (5.2.12).

When αk = 0 for all k ≥ 0, we have `k = 0 and L−k = E for all k ≥ 0.
Therefore, by Lemma 5.2.2, Ωk = {x : ‖x−xk‖Gk

≤ Rk} and hence (5.2.13)

181

Chapter 5. Subgradient Ellipsoid Method

is, in fact, an equality. Consequently, (5.2.14) becomes

R2
k+1 = R2

k + cγ2

2(1 + γ)R
2
k = qc(γ)R2

k,

where c := 1
2 (θ + 1)2.

Remark 5.2.5. From the proof, one can see that Ck in Lemma 5.2.4 can be
improved up to C ′k := 1 + τ+1

τ(1+γ)
∑k−1
i=0

α2
i

[qc(γ)]i+1 .

Lemma 5.2.6. In Algorithm 5.2.1 with parameters (5.2.11), for all k ≥ 1,

Γk ≥ R
(k−1∑
i=0

αi + 1
2θ
√
γn
[
(1 + γ)k/n − 1

])
. (5.2.15)

Proof. By the definition of Γk and (5.2.11), we have

Γk =
k−1∑
i=0

ai‖gi‖∗ = R

k−1∑
i=0

αiρi + 1
2θγ

k−1∑
i=0

Riρi,

where ρi := ‖gi‖∗/‖gi‖∗Gi
. Let us estimate each sum from below separately.

For the first sum, we can use the trivial bound ρi ≥ 1, which is valid for
any i ≥ 0 (since Gi � B in view of (5.2.3)). This gives us

k−1∑
i=0

αiρi ≥
k−1∑
i=0

αi.

Let us estimate the second sum. According to (5.2.4), for any i ≥ 0, we
have Ri ≥ R. Hence,

k−1∑
i=0

Riρi ≥ R
k−1∑
i=0

ρi ≥ R
(k−1∑
i=0

ρ2
i

)1/2
,

and it remains to lower bound
∑k−1
i=0 ρ

2
i . By (5.2.3) and (5.2.11), G0 = B

and Gi+1 = Gi + γgig
∗
i /(‖gi‖∗Gi

)2 for all i ≥ 0. Therefore,

k−1∑
i=0

ρ2
i = 1

γ

k−1∑
i=0

(〈B−1, Gi+1 −Gi〉 = 1
γ
〈B−1, Gk −B〉 = 1

γ
[〈B−1, Gk〉 − n]

≥ n

γ

(
[det(B−1, Gk)]1/n − 1

)
= n

γ

[
(1 + γ)k/n − 1

]
,

182

5.3. Main Instances of General Scheme

where we have applied the arithmetic-geometric mean inequality (see Propo-
sitions 2.1.3(iv) and 2.1.4(vi)). Combining the estimates we have obtained,
we arrive at (5.2.15).

5.3 Main Instances of General Scheme

Let us consider several specific choices of parameters αk, γ and θ in (5.2.11).

5.3.1 Subgradient Method

The simplest possibility is to choose

αk > 0, γ := 0, θ := 0.

In this case, bk ≡ 0, so Gk = B and ωk(x) = ω0(x) = 1
2‖x − x0‖2 for all

x ∈ E and all k ≥ 0 (see (5.2.3) and (5.2.2)). Consequently, the new test
points xk+1 in Algorithm 5.2.1 are generated according to the following rule:

xk+1 = argmin
x∈E

[k∑
i=0

ai〈gi, x− xi〉+ 1
2‖x− x0‖2

]
, k ≥ 0,

where ai = αiR/‖gi‖∗. Thus, Algorithm 5.2.1 is the Subgradient Method2:

xk+1 = xk − akgk, k ≥ 0. (5.3.1)

In this example, each ellipsoid Ωk is simply a ball: Ωk = B(x0, R) for
all k ≥ 0. Hence, the sliding gap ∆k, defined in (5.2.9), does not “slide”
and coincides with the gap of the semicertificate a := (a0, . . . , ak−1) on the
solid B(x0, R):

∆k = max
x∈B(x0,R)

1
Γk

k−1∑
i=0

ai〈gi, xi − x〉.

In view of Lemmas 5.2.4 and 5.2.6, for all k ≥ 1, we have

R2
k ≤

(
1 +

k−1∑
i=0

α2
i

)
R2, Γk ≥ R

k−1∑
i=0

αi

2Note that method (5.3.1) is not exactly the “standard” Subgradient Method discussed
in Section 2.6, as it uses Separation Oracle instead of projection. Nevertheless, the main
properties of both methods are quite similar.

183

Chapter 5. Subgradient Ellipsoid Method

(tend τ → +∞ in Lemma 5.2.4). Substituting these estimates into (5.2.10),
we obtain the following well-known convergence rate estimate for the gap
in the Subgradient Method (c.f. (2.6.4)):

∆k ≤
1 +

∑k−1
i=0 α

2
i

2
∑k−1
i=0 αi

R.

The standard strategies for choosing the coefficients αi are as follows
(see Section 2.6):

1. We fix in advance the number of iterations k ≥ 1 of the method and
use constant coefficients:

αi := 1√
k
, 0 ≤ i ≤ k − 1.

This corresponds to the so-called Short-Step Subgradient Method. For
this method, we have

∆k ≤
R√
k
.

2. Alternatively, we can use time-varying coefficients:

αi := 1√
i+ 1

, i ≥ 0.

This approach does not require us to fix in advance the number of
iterations k. However, the corresponding convergence rate estimate
becomes slightly worse:

∆k ≤
ln k + 2

2
√
k

R.

(Indeed,
∑k−1
i=0 α

2
i =

∑k
i=1

1
i ≤ ln k + 1,

∑k−1
i=0 αi =

∑k
i=1

1√
i
≥
√
k,

see Lemma 2.6.3.)

Remark 5.3.1. If we allow projections onto the feasible set, then, for the
Subgradient Method with time-varying coefficients αi, one can establish
the O(1/

√
k) convergence rate for the “truncated” gap

∆k0,k := max
x∈B(x0,R)

1
Γk0,k

k∑
i=k0

ai〈gi, xi − x〉,

184

5.3. Main Instances of General Scheme

where Γk0,k :=
∑k
i=k0

ai‖gi‖∗, k0 := dk/2e (see Theorem 2.6.5).

5.3.2 Standard Ellipsoid Method

Another extreme choice is the following one:

αk := 0, γ > 0, θ := 0. (5.3.2)

For this choice, we have ak = 0 for all k ≥ 0. Hence, `k = 0 and L−k = E
for all k ≥ 0. Therefore, the localizers in this method are the following
ellipsoids (see Lemma 5.2.2):

Ωk ∩ L−k = Ωk = {x ∈ E : ‖x− xk‖Gk
≤ Rk}, k ≥ 0. (5.3.3)

Observe that, in this example, Γk ≡
∑k−1
i=0 ai‖gi‖∗ = 0 for all k ≥ 1,

so there is no preliminary semicertificate and the sliding gap is undefined.
However, we can still ensure the convergence to zero of a certain meaningful
measure of optimality, namely, the average radius of the localizers Ωk:

avrad Ωk := [vol(Ωk/B0)]1/n, k ≥ 0, (5.3.4)

where B0 := B(0, 1) is the unit ball.
Indeed, by (5.3.3) and Propositions 2.1.8 and 2.1.4(ii), we have

avrad Ωk = [det(B−1, R−2
k Gk)]−1/(2n) = [det(B−1, Gk)]−1/(2n)Rk. (5.3.5)

Let us define the following functions for any real c, p > 0:

qc(γ) := 1 + cγ2

2(1 + γ) , ζp,c(γ) := [qc(γ)]p

1 + γ
, γ > 0. (5.3.6)

According to Lemma 5.2.4, for any k ≥ 0, we have

R2
k = [q1/2(γ)]kR2. (5.3.7)

At the same time, in view of (5.2.3) and (5.2.11), for all k ≥ 0,

det(B−1, Gk) =
k−1∏
i=0

(1 + bi(‖gi‖∗Gi
)2) = (1 + γ)k. (5.3.8)

Substituting (5.3.7) and (5.3.8) into (5.3.5) and using the definition (5.3.6),

185

Chapter 5. Subgradient Ellipsoid Method

we obtain, for any k ≥ 0,

avrad Ωk =
[q1/2(γ)]k/2

(1 + γ)k/(2n)R = [ζn,1/2(γ)]k/(2n)R. (5.3.9)

Let us now choose γ which minimizes avrad Ωk. For such computations,
the following auxiliary result is useful (see Section 5.A for the proof).

Lemma 5.3.2. For any c ≥ 1/2 and any p ≥ 2, the function ζp,c, defined
in (5.3.6), attains its minimum at a unique point

γc(p) := 2√
c2p2 − (2c− 1) + cp− 1

∈
[

1
cp
,

2
cp

]
(5.3.10)

with the corresponding optimal value

ζp,c
(
γc(p)

)
≤ exp

(
−1/(2cp)

)
.

Applying Lemma 5.3.2 to (5.3.9), we see that the optimal value of γ is

γ := γ1/2(n) = 2
n/2 + n/2− 1 = 2

n− 1 , (5.3.11)

for which ζn,1/2(γ) ≤ exp(−1/n). With this choice of γ, we obtain, for all
k ≥ 0, that

avrad Ωk ≤ exp
(
−k/(2n2)

)
R. (5.3.12)

One can check that Algorithm 5.2.1 with parameters (5.2.11), (5.3.2)
and (5.3.11) is, in fact, the standard Ellipsoid Method (see Remark 5.5.1).

5.3.3 Ellipsoid Method with Preliminary Semicertifi-
cate

As we have seen, we cannot measure the convergence rate of the stan-
dard Ellipsoid Method using the sliding gap because there is no preliminary
semicertificate in this method. Let us present a modification of the stan-
dard Ellipsoid Method which does not have this drawback but still enjoys
the same convergence rate as the original method (up to absolute constants).

For this, let us choose the parameters in the following way:

αk := 0, γ > 0, θ :=
√

2− 1 (≈ 0.41). (5.3.13)

186

5.3. Main Instances of General Scheme

The main difference compared to (5.3.2) is that now we use a non-zero θ.
The specific value suggested in (5.3.13) is not especially important and is
simply motivated by the desire to decrease absolute constants in the final
efficiency estimate as much as possible.

In view of Lemma 5.2.4, for all k ≥ 0, we have

R2
k = [q1(γ)]kR2. (5.3.14)

Also, by Lemma 5.2.6, for all k ≥ 1,

Γk ≥
1
2θR

√
γn[(1 + γ)k/n − 1].

Thus, according to (5.2.10), for each k ≥ 1, we obtain the following estimate
for the sliding gap:

∆k ≤
[q1(γ)]kR

θ
√
γn[(1 + γ)k/n − 1]

= 1
θηk(γ, n) [ζ2n,1(γ)]k/(2n)R, (5.3.15)

where
ηk(γ, n) :=

√
γn(1− (1 + γ)−k/n) (> 0),

and ζ2n,1(γ) is defined in (5.3.6).

Note that the main factor in estimate (5.3.15) is [ζ2n,1(γ)]k/(2n). Let us
choose γ by minimizing this expression. Applying Lemma 5.3.2, we obtain

γ := γ1(2n) ∈
[

1
2n,

1
n

]
. (5.3.16)

Theorem 5.3.3. In Algorithm 5.2.1 with parameters (5.2.11), (5.3.13)
and (5.3.16), for all k ≥ 1, we have

∆k ≤ 6 exp
(
−k/(8n2)

)
R.

Proof. i. Suppose k ≥ n2. By Lemma 5.3.2,

ζ2n,1(γ) ≤ exp
(
−1/(4n)

)
.

Hence, by (5.3.15),

∆k ≤
1

θηk(γ, n) exp
(
−k/(8n2)

)
R.

187

Chapter 5. Subgradient Ellipsoid Method

It remains to estimate from below θηk(γ, n).
Since k ≥ n2, we have

(1 + γ)k/n ≥ (1 + γ)n ≥ 1 + γn.

Hence,
ηk(γ, n) ≥ γn√

1 + γn
.

Note that the function τ 7→ τ/
√

1 + τ is increasing on R+. Therefore, using
(5.3.16), we obtain

ηk(γ, n) ≥ 1/2√
1 + 1/2

= 1√
6
.

Thus, for our choice of θ,

θηk(γ, n) ≥
√

2− 1√
6
≥ 1

6 .

ii. Now suppose k ≤ n2. Then,

6 exp
(
−k/(8n2)

)
≥ 6 exp(−1/8) ≥ 5.

Therefore, it suffices to prove that ∆k ≤ 5R or, in view of (5.2.9), that

〈gi, xi − x〉 ≤ 5R‖gi‖∗,

where x ∈ Ωk ∩ L−k and 0 ≤ i ≤ k − 1 are arbitrary. Note that

〈gi, xi − x〉 ≤ ‖gi‖∗Gi
‖xi − x‖Gi

≤ ‖gi‖∗‖xi − x‖Gi

since Gi � B (see (5.2.3)). Hence, it remains to prove that

‖xi − x‖Gi ≤ 5R.

Recall from (5.2.3) and (5.2.4) that Gi � Gk and Ri ≤ Rk. Therefore,

‖xi − x‖Gi ≤ ‖xi − x∗‖Gi + ‖x∗ − x‖Gi

≤ ‖xi − x∗‖Gi
+ ‖x∗ − x‖Gk

≤ ‖xi − x∗‖Gi
+ ‖xk − x∗‖Gk

+ ‖xk − x‖Gk

≤ Ri + 2Rk ≤ 3Rk,

188

5.3. Main Instances of General Scheme

where the penultimate inequality follows from Lemmas 5.2.1 and 5.2.2. Ac-
cording to (5.3.14),

Rk = [q1(γ)]k/2R ≤ [q1(γ)]n
2/2R

(recall that q1(γ) ≥ 1). Thus, it remains to show that

3[q1(γ)]n
2/2 ≤ 5.

But this is immediate. Indeed, by (5.3.6) and (5.3.16), we have

[q1(γ)]n
2/2 ≤ exp

(
n2γ2/(4(1 + γ))

)
≤ exp(1/4),

so
3[q1(γ)]n

2/2 ≤ 3 exp(1/4) ≤ 5.

5.3.4 Subgradient Ellipsoid Method

The previous algorithm still shares the drawback of the original Ellipsoid
Method, namely, it does not work when n→∞. To eliminate this drawback,
we will choose αk similarly to how this is done in the Subgradient Method.

Consider the following choice of parameters:

αk :=
√
θ/(θ + 1)βk, γ := γ1(2n) ∈

[
1

2n,
1
n

]
,

θ := 3
√

2− 1 (≈ 0.26),
(5.3.17)

where γ1(2n) is defined in (5.3.10), and βk > 0 is a new sequence of coeffi-
cients (to be specified later). A “special” coefficient

√
θ/(θ + 1), linking the

old and new parameters, and a particular value of θ suggested in (5.3.17)
have been chosen in such a way so as to obtain “nice” absolute constants in
the following main result.

Theorem 5.3.4. In Algorithm 5.2.1 with parameters (5.2.11) and (5.3.17),
where β0 ≥ 1, we have, for all k ≥ 1,

∆k ≤

{
2(
∑k−1
i=0 βi)−1(1 +

∑k−1
i=0 β

2
i)R, if k ≤ n2,

6 exp
(
−k/(8n2)

)
(1 +

∑k−1
i=0 β

2
i)R, if k ≥ n2.

(5.3.18)

189

Chapter 5. Subgradient Ellipsoid Method

Proof. Applying Lemma 5.2.4 with τ := θ and using (5.3.17), we obtain

R2
k ≤ [q1(γ)]kCkR2, Ck = 1 +

k−1∑
i=0

β2
i . (5.3.19)

At the same time, by Lemma 5.2.6, we have

Γk ≥ R
(√ θ

θ + 1

k−1∑
i=0

βi + 1
2θ
√
γn[(1 + γ)k/n − 1]

)
. (5.3.20)

Note that 1
2θ
√
γn ≤ 1

2θ ≤
√
θ/(θ + 1) by (5.3.17). Since β0 ≥ 1, we

thus obtain

Γk ≥ 1
2Rθ
√
γn
(

1 +
√

(1 + γ)k/n − 1
)
≥ 1

2Rθ
√
γn (1 + γ)k/(2n)

≥ 1
2
√

2Rθ(1 + γ)k/(2n) ≥ 1
12R(1 + γ)k/(2n),

(5.3.21)

where the last two inequalities follow from (5.3.17). Therefore, by (5.2.10),
(5.3.19) and (5.3.21),

∆k ≤
R2
k

2Γk
≤ 6 [q1(γ)]k

(1 + γ)k/(2n)CkR = 6[ζ2n,1(γ)]k/(2n)CkR,

where ζ2n,1(γ) is defined in (5.3.6). Observe that, for our choice of γ, by
Lemma 5.3.2, we have ζ2n,1(γ) ≤ exp

(
−1/(4n)

)
. This proves the second

estimate3 in (5.3.18).
On the other hand, dropping the second term in (5.3.20), we can write

Γk ≥ R
√

θ

θ + 1

k−1∑
i=0

βi. (5.3.22)

Suppose k ≤ n2. Then, from (5.3.6) and (5.3.17), it follows that

[q1(γ)]k ≤ [q1(γ)]n
2
≤ exp

(γ2n2

2(1 + γ)

)
≤
√
e.

Hence, by (5.3.19), Rk ≤
√
eCkR

2. Combining this with (5.2.10) and (5.3.22),

3In fact, we have proved the second estimate in (5.3.18) for all k ≥ 1 (not only for
k ≥ n2).

190

5.3. Main Instances of General Scheme

we obtain

∆k ≤
1
2

√
e(θ + 1)

θ

(k−1∑
i=0

βi

)−1
CkR.

By numerical evaluation, one can verify that, for our choice of θ, we have
1
2
√
e(θ + 1)/θ ≤ 2. This proves the first estimate in (5.3.18).

Exactly as in the Subgradient Method, we can use the following two
strategies for choosing the coefficients βk:

1. We fix in advance the number of iterations k ≥ 1 of the method and
use constant coefficients:

βi := 1√
k
, 0 ≤ i ≤ k − 1.

In this case,

∆k ≤

{
4R/
√
k if k ≤ n2,

12R exp
(
−k/(8n2)

)
if k ≥ n2.

(5.3.23)

2. We use time-varying coefficients:

βi := 1√
i+ 1

, i ≥ 0.

In this case,

∆k ≤

{
2(ln k + 2)R/

√
k if k ≤ n2,

6(ln k + 2)R exp
(
−k/(8n2)

)
if k ≥ n2.

Let us discuss convergence rate estimate (5.3.23). Up to absolute con-
stants, this estimate is exactly the same as in the Subgradient Method when
k ≤ n2 and as in the Ellipsoid Method when k ≥ n2. In particular, when
n→∞, we recover the convergence rate of the Subgradient Method.

To provide a better interpretation of the obtained results, let us compare
the convergence rates of the Subgradient and Ellipsoid methods:

Subgradient Method: 1/
√
k

Ellipsoid Method: exp
(
−k/(2n2)

)
.

191

Chapter 5. Subgradient Ellipsoid Method

To compare these rates, let us look at their squared ratio:

ρk :=
(

1/
√
k

exp
(
−k/(2n2)

))2
= 1
k

exp(k/n2).

Let us find out for which values of k the rate of the Subgradient Method is
better than that of the Ellipsoid Method and vice versa. We assume that
n ≥ 2.

Note that the function τ 7→ exp(τ)/τ is strictly decreasing on (0, 1] and
strictly increasing on [1,+∞) (indeed, its derivative is exp(τ)(τ − 1)/τ2).
Hence, ρk is strictly decreasing in k for 1 ≤ k ≤ n2 and strictly increasing
in k for k ≥ n2. Since n ≥ 2, we have

ρ2 = 1
2 exp(2/n2) ≤ 1

2
√
e ≤ 1.

At the same time, ρk → +∞ when k →∞. Therefore, there exists a unique
integer K0 ≥ 2 such that ρk ≤ 1 for all k ≤ K0 and ρk ≥ 1 for all k ≥ K0.

Let us estimate K0. Clearly, for any n2 ≤ k ≤ n2 ln(2n), we have

ρk ≤
exp
(
n2 ln(2n)/n2)
n2 ln(2n) = 2

n ln(2n) ≤ 1,

while, for any k ≥ 3n2 ln(2n), we have

ρk ≥
exp
(
3n2 ln(2n)/n2)
3n2 ln(2n) = (2n)3

3n2 ln(2n) = 8n
3 ln(2n) ≥ 1.

Hence,
n2 ln(2n) ≤ K0 ≤ 3n2 ln(2n).

Thus, up to an absolute constant, n2 ln(2n) is the switching moment, start-
ing from which the rate of the Ellipsoid Method becomes better than that
of the Subgradient Method.

Returning to the obtained convergence rate estimate (5.3.23), we see
that, ignoring absolute constants and the “small” interval of the values of k
between n2 and n2 lnn, our convergence rate is basically the best among
the corresponding rates of the Subgradient and Ellipsoid methods.

192

5.4. Constructing Accuracy Semicertificate

5.4 Constructing Accuracy Semicertificate
Let us show how to convert a preliminary accuracy semicertificate, produced
by Algorithm 5.2.1, into a semicertificate whose gap on the initial solid is
upper bounded by the sliding gap. The key ingredient here is the following
auxiliary algorithm which was first proposed in [125] for building accuracy
certificates in the standard Ellipsoid Method.

5.4.1 Augmentation Algorithm
Let k ≥ 0 be an integer and let Q0, . . . , Qk be solids in E such that

Q̂i := {x ∈ Qi : 〈gi, x− xi〉 ≤ 0} ⊆ Qi+1, 0 ≤ i ≤ k − 1, (5.4.1)

where xi ∈ E, gi ∈ E∗. Further, suppose that, for any s ∈ E∗ and any
0 ≤ i ≤ k − 1, we can compute a dual multiplier µ ≥ 0 such that

max
x∈Q̂i

〈s, x〉 = max
x∈Qi

[〈s, x〉+ µ〈gi, xi − x〉] (5.4.2)

(provided that certain regularity conditions hold). Let us abbreviate any
solution µ of this problem by µ(s,Qi, xi, gi).

Consider now the following routine.

Algorithm 5.4.1: Augmentation Algorithm

Input: sk ∈ E∗.

Iterate for i = k − 1, . . . , 0:
1. Compute µi := µ(si+1, Qi, xi, gi).
2. Set si := si+1 − µigi.

Lemma 5.4.1. Let µ0, . . . , µk−1 ≥ 0 be generated by Algorithm 5.4.1.
Then,

max
x∈Q0

[
〈sk, x〉+

k−1∑
i=0

µi〈gi, xi − x〉
]
≤ max
x∈Qk

〈sk, x〉.

Proof. Indeed, at every iteration i = k − 1, . . . , 0, we have

max
x∈Qi+1

〈si+1, x〉 ≥ max
x∈Q̂i

〈si+1, x〉 = max
x∈Qi

[〈si+1, x〉+ µi〈gi, xi − x〉]

= max
x∈Qi

〈si, x〉+ µi〈gi, xi〉.

193

Chapter 5. Subgradient Ellipsoid Method

Summing up these inequalities for i = 0, . . . , k − 1, we obtain

max
x∈Qk

〈sk, x〉 ≥ max
x∈Q0

〈s0, x〉+
k−1∑
i=0

µi〈gi, xi〉

= max
x∈Q0

[
〈sk, x〉+

k−1∑
i=0
〈gi, xi − x〉

]
,

where the identity follows from the fact that s0 = sk −
∑k−1
i=0 µigi.

5.4.2 Methods with Preliminary Certificate
Let us apply the Augmentation Algorithm for building an accuracy semicer-
tificate for Algorithm 5.2.1. We only consider those instances for which
Γk :=

∑k−1
i=0 ai‖gi‖∗ > 0 so that the sliding gap ∆k is well-defined:

∆k := max
x∈Ωk

1
Γk

[−`k(x)] = max
x∈Ωk∩L−k

1
Γk

[−`k(x)]

= max
x∈Ωk∩L−k

1
Γk

k−1∑
i=0

ai〈gi, xi − x〉.

Recall that the vector a := (a0, . . . , ak−1) is called a preliminary semicer-
tificate.

For technical reasons, it will be convenient to add the following termi-
nation criterion into Algorithm 5.2.1:

Terminate Algorithm 5.2.1 at Step 2 if Uk ≤ δ‖gk‖∗, (5.4.3)

where δ > 0 is a fixed constant. Depending on whether this termination cri-
terion has been satisfied at iteration k, we call it a terminal or nonterminal
iteration, respectively.

Let k ≥ 1 be an iteration of Algorithm 5.2.1. According to Lemma 5.2.1,
the sets Qi := Ωi ∩ L−i satisfy (5.4.1). Since the method has not been
terminated during the course of the previous iterations, we have4 Ui > 0
for all 0 ≤ i ≤ k − 1. Therefore, for any 0 ≤ i ≤ k − 1, there exists x ∈ Qi
such that 〈gi, x− xi〉 < 0. This guarantees the existence of dual multiplier
in (5.4.2).

Let us apply Algorithm 5.4.1 to sk := −
∑k−1
i=0 aigi in order to obtain

4Recall that gi 6= 0 for all i ≥ 0 by Remark 5.2.3.

194

5.4. Constructing Accuracy Semicertificate

dual multipliers µ := (µ0, . . . , µk−1). From Lemma 5.4.1, it follows that

max
x∈B(x0,R)

k−1∑
i=0

(ai + µi)〈gi, xi − x〉 ≤ max
x∈Qk

k−1∑
i=0

ai〈gi, xi − x〉 = Γk∆k

(note that Q0 = Ω0 ∩ L−0 = B(x0, R)). Thus, defining λ := (λ0, . . . , λk−1)
with λi := ai + µi for all 0 ≤ i ≤ k − 1, we obtain

Γk(λ) ≡
k−1∑
i=0

λi‖gi‖∗ ≥
k−1∑
i=0

ai‖gi‖∗ ≡ Γk > 0

and

δk(λ) ≡ max
x∈B(x0,R)

1
Γk(λ)

k−1∑
i=0

λi〈gi, xi − x〉 ≤
Γk

Γk(λ)∆k ≤ ∆k.

Thus, λ is a semicertificate whose gap on B(x0, R) is bounded from above
by the sliding gap ∆k.

If k ≥ 0 is a terminal iteration, then, by the termination criterion and
the definition of Uk (see Algorithm 5.2.1), we have

max
x∈Ωk∩L−k

1
‖gk‖∗

〈gk, xk − x〉 ≤ δ.

In this case, we apply Algorithm 5.4.1 to sk := −gk to obtain dual mul-
tipliers µ0, . . . , µk−1. By the same reasoning as above but with the vector
(0, . . . , 0, 1) instead of (a0, . . . , ak−1), we can obtain that δk+1(λ) ≤ δ, where
λ := (µ0, . . . , µk−1, 1).

5.4.3 Standard Ellipsoid Method

In the standard Ellipsoid Method, there is no preliminary semicertificate.
Therefore, we cannot apply the above procedure. However, in this method,
it is still possible to generate an accuracy semicertificate although the cor-
responding procedure is slightly more involved. Let us now briefly describe
this procedure and discuss how it differs from the previous approach. For
details, we refer the reader to [125].

Let k ≥ 1 be an iteration of the method. There are two main steps. The
first step is to find a direction sk, in which the “width” of the ellipsoid Ωk

195

Chapter 5. Subgradient Ellipsoid Method

(see (5.3.3)) is minimal:

sk := argmin
‖s‖∗=1

max
x,y∈Ωk

〈s, x− y〉 = argmin
‖s‖∗=1

[
max
x∈Ωk

〈s, x〉 − min
x∈Ωk

〈s, x〉
]
.

It is not difficult to see that sk is given by any unit eigenvector5 of the
operator Gk, corresponding to the largest eigenvalue. For the correspond-
ing minimal “width” of the ellipsoid, we have the following bound via the
average radius (defined in (5.3.4)):

max
x,y∈Ωk

〈sk, x− y〉 ≤ ρk, (5.4.4)

where ρk := 2 avrad Ωk. Recall that avrad Ωk ≤ exp
(
−k/(2n2)

)
R in view of

(5.3.12).
At the second step, we apply Algorithm 5.4.1 two times with the sets

Qi := Ωi: first, to the vector sk to obtain dual multipliers µ := (µ0, . . . , µk−1)
and then to the vector −sk to obtain dual multipliers µ′ := (µ′0, . . . , µ′k−1).
By Lemma 5.4.1 and (5.4.4), we have

max
x∈B(x0,R)

[
〈sk, x− xk〉+

k−1∑
i=0

µi〈gi, xi − x〉
]
≤ max
x∈Ωk

〈sk, x− xk〉 ≤ ρk,

and

max
x∈B(x0,R)

[
〈sk, xk − x〉+

k−1∑
i=0

µ′i〈gi, xi − x〉
]
≤ max
x∈Ωk

〈sk, xk − x〉 ≤ ρk

(note that Q0 = Ω0 = B(x0, R)). Consequently, for λ := µ+ µ′, we obtain

max
x∈B(x0,R)

k−1∑
i=0

λi〈gi, xi − x〉 ≤ 2ρk.

Finally, one can show that

Γk(λ) ≡
k−1∑
i=0

λi‖gi‖∗ ≥
r − ρk
D

,

where D is the diameter of Q and r is the maximal of the radii of Euclidean
balls contained in Q. Thus, whenever ρk < r, λ is a semicertificate with the

5Here eigenvectors and eigenvalues are defined w.r.t. the operator B inducing the
norm ‖·‖.

196

5.5. Implementation Details

following gap on B(x0, R):

δk(λ) ≡ max
x∈B(x0,R)

1
Γk(λ)

k−1∑
i=0

λi〈gi, xi − x〉 ≤
2ρkD
r − ρk

.

Compared to the standard Ellipsoid Method, we see that, in the Sub-
gradient Ellipsoid methods, the presence of the preliminary semicertificate
removes the necessity in finding the minimal-“width” direction and requires
only one run of the Augmentation Algorithm.

5.5 Implementation Details

5.5.1 Explicit Representations

In the implementation of Algorithm 5.2.1, instead of the operators Gk, it
is better to work with their inverses Hk := G−1

k . Applying the Sherman-
Morrison formula to (5.2.3), we obtain the following update rule for Hk:

Hk+1 = Hk −
bkHkgkg

∗
kHk

1 + bk〈gk, Hkgk〉
, k ≥ 0. (5.5.1)

Let us now obtain an explicit formula for the next test point xk+1. This
has already been partly done in the proof of Lemma 5.2.2. Indeed, recall
that xk+1 is the minimizer of the function ψk+1(x). From (5.2.6), we see
that xk+1 = xk−(ak+ 1

2bkUk)Hk+1gk. Combining it with (5.5.1), we obtain

xk+1 = xk −
ak + 1

2bkUk

1 + bk〈gk, Hkgk〉
Hkgk, k ≥ 0. (5.5.2)

Finally, one can obtain the following explicit representations for L−k
and Ωk:

L−k = {x ∈ E : 〈ck, x〉 ≤ σk},
Ωk = {x ∈ E : ‖x− zk‖2H−1

k

≤ Dk},
(5.5.3)

where

c0 := 0, σ0 := 0, ck+1 := ck + akgk, σk+1 := σk + ak〈gk, xk〉,
zk := xk −Hkck, Dk := R2

k + 2(σk − 〈ck, xk〉) + 〈ck, Hkck〉
(5.5.4)

for any k ≥ 0. Indeed, recalling the definition of functions `k, we see that

197

Chapter 5. Subgradient Ellipsoid Method

`k(x) = 〈ck, x〉 − σk for all x ∈ E. Therefore,

L−k ≡ {x : `k(x) ≤ 0} = {x : 〈ck, x〉 ≤ σk}.

Further, by Lemma 5.2.2,

Ωk = {x : 〈ck, x〉+ 1
2‖x− xk‖

2
Gk
≤ 1

2R
2
k + σk}.

Note that

〈ck, x〉+ 1
2‖x− xk‖

2
Gk

= 1
2‖x− zk‖

2
Gk

+ 〈ck, xk〉 − 1
2 (‖ck‖∗Gk

)2

for any x ∈ E. Hence, Ωk = {x : 1
2‖x− zk‖

2
Gk
≤ 1

2Dk}.

Remark 5.5.1. Now we can justify the claim made in Section 5.3.2 that Al-
gorithm 5.2.1 with parameters (5.2.11), (5.3.2) and (5.3.11) is the standard
Ellipsoid Method. Indeed, from (5.2.11) and (5.3.3), we see that

bk = γ

〈gk, Hkgk〉
, Uk = Rk〈gk, Hkgk〉1/2.

Also, in view of (5.3.11),
γ

1 + γ
= 2
n+ 1 .

Hence, by (5.5.2) and (5.5.1),

xk+1 = xk −
Rk
n+ 1

Hkgk
〈gk, Hkgk〉1/2

,

Hk+1 = Hk −
2

n+ 1
Hkgkg

∗
kHk

〈gk, Hkgk〉
, k ≥ 0.

(5.5.5)

Further, according to (5.3.7) and (5.3.11), for any k ≥ 0, we have

R2
k = qkR2,

where
q = 1 + 1

(n− 1)(n+ 1) = n2

n2 − 1 .

Thus, method (5.5.5) indeed coincides with the standard Ellipsoid Method (5.0.2)
under the change of variables Wk := R2

kHk.

198

5.5. Implementation Details

5.5.2 Computing Support Function

To calculate Uk in Algorithm 5.2.1, we need to compute the following quan-
tity (see (5.5.3)):

Uk = max
x
{〈gk, xk − x〉 : ‖x− zk‖2H−1

k

≤ Dk, 〈ck, x〉 ≤ σk}.

Let us discuss how to do this.
First, let us introduce the following support function to simplify our

notation:

ξ(H, s, a, β) := max
x
{〈s, x〉 : ‖x‖2H−1 ≤ 1, 〈a, x〉 ≤ β},

where H ∈ S++(E∗,E), s, a ∈ E∗ and β ∈ R. In this notation, assuming
that Dk > 0, we have

Uk = 〈gk, xk − zk〉+ ξ(DkHk,−gk, ck, σk − 〈ck, zk〉).

Let us show how to compute ξ(H, s, a, β). Dualizing the linear con-
straint, we obtain

ξ(H, s, a, β) = min
τ≥0

[
‖s− τa‖∗H−1 + τβ

]
, (5.5.6)

provided that there exists some x ∈ E such that ‖x‖H−1 < 1, 〈a, x〉 ≤ β

(Slater condition). One can show that problem (5.5.6) has the following
solution (see Lemma 5.B.2):

τ(H, s, a, β) :=
{

0, if 〈a,Hs〉 ≤ β‖s‖∗H−1 ,

u(H, s, a, β), otherwise,
(5.5.7)

where u(H, s, a, β) is the unconstrained minimizer of the objective function
in (5.5.6).

Let us present an explicit formula for u(H, s, a, β). For future use, it will
be convenient to write down this formula in a slightly more general form for
the following multidimensional variant of problem (5.5.6):

min
u∈Rm

[
‖s−Au‖∗H−1 + 〈u, b〉

]
, (5.5.8)

where s ∈ E∗, H ∈ S++(E∗,E), A : Rm → E∗ is a linear operator with
trivial kernel and b ∈ Rm, 〈b, (A∗HA)−1b〉 < 1. It is not difficult to show

199

Chapter 5. Subgradient Ellipsoid Method

that problem (5.5.8) has the following unique solution (see Lemma 5.B.1):

u(H, s,A, b) := (A∗HA)−1(A∗s− rb),

r :=

√
〈s,Hs〉 − 〈s,A(A∗HA)−1A∗s〉

1− 〈b, (A∗HA)−1b〉
.

(5.5.9)

Note that, in order for the above approach to work, we need to guarantee
that the sets Ωk and L−k satisfy a certain regularity condition, namely,
int Ωk ∩ L−k 6= ∅. This condition can be easily fulfilled by adding into
Algorithm 5.2.1 the termination criterion (5.4.3).

Lemma 5.5.2. Consider Algorithm 5.2.1 with termination criterion (5.4.3).
Then, at each iteration k ≥ 0, at the beginning of Step 2, we have int Ωk ∩
L−k 6= ∅. Moreover, if k is a nonterminal iteration, we also have 〈gk, x −
xk〉 ≤ 0 for some x ∈ int Ωk ∩ L−k .

Proof. Note that int Ω0 ∩ L−0 = intB(x0, R) 6= ∅. Now suppose int Ωk ∩
L−k 6= ∅ for some nonterminal iteration k ≥ 0. Denote P−k := {x ∈ E :
〈gk, x − xk〉 ≤ 0}. Since iteration k is nonterminal, Uk > 0 and hence
Ωk ∩L−k ∩ intP−k 6= ∅. Combining it with the fact that int Ωk ∩L−k 6= ∅, we
obtain int Ωk ∩ L−k ∩ intP−k 6= ∅ and, in particular, int Ωk ∩ L−k ∩ P

−
k 6= ∅.

At the same time, slightly modifying the proof of Lemma 5.2.1 (using that
int Ωi = {x ∈ E : ωi(x) < 1

2R
2} for any i ≥ 0 since ωi is a strictly convex

quadratic function), it is not difficult to show that int Ωk ∩ L−k ∩ P
−
k ⊆

int Ωk+1 ∩ L−k+1. Thus, int Ωk+1 ∩ L−k+1 6= ∅, and we can continue by
induction.

5.5.3 Computing Dual Multipliers

Recall from Section 5.4 that the procedure for generating an accuracy
semicertificate for Algorithm 5.2.1 requires one to repeatedly carry out the
following operation: given s ∈ E∗ and some iteration number i ≥ 0, compute
a dual multiplier µ ≥ 0 such that

max
x∈Ωi∩L−i

{〈s, x〉 : 〈gi, x− xi〉 ≤ 0} = max
x∈Ωi∩L−i

[
〈s, x〉+ µ〈gi, xi − x〉

]
.

This can be done as follows.
First, using (5.5.3), let us rewrite the above primal problem more ex-

200

5.5. Implementation Details

plicitly:

max
x
{〈s, x〉 : ‖x− zi‖2H−1

i

≤ Di, 〈ci, x〉 ≤ σi, 〈gi, x− xi〉 ≤ 0}.

Our goal is to dualize the second linear constraint and find the corresponding
multiplier. However, for the sake of symmetry, it is better to dualize both
linear constraints, find the corresponding multipliers and then keep only the
second one.

Let us simplify our notation by introducing the following problem:

max
x
{〈s, x〉 : ‖x‖H−1 ≤ 1, 〈a1, x〉 ≤ b1, 〈a2, x〉 ≤ b2}, (5.5.10)

where H ∈ S++(E∗,E), s, a1, a2 ∈ E∗ and b1, b2 ∈ R. Clearly, our original
problem can be transformed into this form by setting H := DiHi, a1 := ci,
a2 := gi, b1 := σi− 〈ci, zi〉, b2 := 〈gi, xi− zi〉. Note that this transformation
does not change the dual multipliers.

Dualizing the linear constraints in (5.5.10), we obtain the following dual
problem:

min
µ∈R2

+

[
‖s− µ1a1 − µ2a2‖∗H−1 + µ1b1 + µ2b2

]
, (5.5.11)

which is solvable provided the following Slater condition holds:

∃x ∈ E : ‖x‖H−1 < 1, 〈a1, x〉 ≤ b1, 〈a2, x〉 ≤ b2. (5.5.12)

Note that condition (5.5.12) can be ensured by adding termination crite-
rion (5.4.3) into Algorithm 5.2.1 (see Lemma 5.5.2).

A solution of problem (5.5.11) can be found using Algorithm 5.5.1. In
this routine, τ(·), ξ(·) and u(·) are the auxiliary operations, defined in Sec-
tion 5.5.2, and A := (a1, a2) is the linear operator Au := u1a1 + u2a2
acting from R2 to E∗. The correctness of Algorithm 5.5.1 is proved in The-
orem 5.B.4.

201

Chapter 5. Subgradient Ellipsoid Method

Algorithm 5.5.1: Computing Dual Multipliers

1. Compute τ1 := τ(H, s, a1, b1) and τ2 := τ(H, s, a2, b2).
Compute ξ1 := ξ(H, a2, a1, b1) and ξ2 := ξ(H, a1, a2, b2).
2. If ξ1 ≤ b2, return (τ1, 0). Else if ξ2 ≤ b1, return (0, τ2).
3. Else if 〈a2, H(s− τ1a1)〉 ≤ b2‖s− τ1a1‖∗H−1 , return (τ1, 0).
Else if 〈a1, H(s− τ2a2)〉 ≤ b1‖s− τ2a2‖∗H−1 , return (0, τ2).
4. Else return u := u(H, s,A, b), where A := (a1, a2), b := (b1, b2)T .

5.5.4 Time and Memory Requirements

Let us discuss the time and memory requirements of Algorithm 5.2.1, taking
into account the previously mentioned implementation details.

The main objects in Algorithm 5.2.1, which need to be stored and up-
dated between iterations, are the test points xk, matrices Hk, scalars Rk,
vectors ck and scalars σk, see (5.5.2), (5.5.1), (5.2.4) and (5.5.4) for the
corresponding updating formulas. To store all these objects, we need O(n2)
memory.

Consider now what happens at each iteration k. First, we compute Uk.
For this, we calculate zk and Dk according to (5.5.4) and then perform the
calculations described in Section 5.5.2. The most difficult operation there
is computing the matrix-vector product, which takes O(n2) time. After
that, we calculate the coefficients ak and bk according to (5.2.11), where
αk, θ and γ are certain scalars, easily computable for all main instances of
Algorithm 5.2.1 (see Sections 5.3.1–5.3.4). The most expensive step there
is computing the norm ‖gk‖∗Gk

, which can be done in O(n2) operations by
evaluating the product Hkgk. Finally, we update our main objects, which
takes O(n2) time.

Thus, each iteration of Algorithm 5.2.1 has O(n2) time and memory
complexities, exactly as in the standard Ellipsoid Method.

Now let us analyze the complexity of the auxiliary procedure from Sec-
tion 5.4 for converting a preliminary semicertificate into a semicertificate.
The main operation in this procedure is running Algorithm 5.4.1, which
iterates “backwards”, computing some dual multiplier µi at each iteration
i = k− 1, . . . , 0. Using the approach from Section 5.5.3, we can compute µi
in O(n2) time, provided that the objects xi, gi, Hi, zi, Di, ci, σi are stored
in memory. Note, however, that, in contrast to the “forward” pass, when
iterating “backwards”, there is no way to efficiently recompute all these

202

5.6. Discussion

objects without storing in memory a certain “history” of the main process
from iteration 0 up to k. The simplest choice is to keep in this “history”
all the objects mentioned above, which requires O(kn2) memory. A slightly
more efficient idea is to keep the matrix-vector products Higi instead of
Hi and then use (5.5.1) to recompute Hi from Hi+1 in O(n2) operations.
This allows us to reduce the size of the “history” down to O(kn) while still
keeping the O(kn2) total time complexity of the auxiliary procedure. Note
that these estimates are exactly the same as those for the best currently
known technique for generating accuracy certificates in the standard Ellip-
soid Method [125]. In particular, if we generate a semicertificate only once
at the very end, then the time complexity of our procedure is comparable
to that of running the standard Ellipsoid Method without computing any
certificates. Alternatively, as suggested in [125], one can generate semicer-
tificates, say, every 2, 4, 8, 16, . . . iterations. Then, the total “overhead” of
the auxiliary procedure for generating semicertificates will be comparable
to the time complexity of the method itself.

5.6 Discussion

In this chapter, we have presented a new algorithm—the Subgradient Ellip-
soid Method—for solving general nonsmooth problems with convex struc-
ture. This algorithm can be seen as the combination of the “dimension-
dependent” Ellipsoid Method, which is efficient for small-dimensional prob-
lems, and the “dimension-independent” Subgradient Method, which is much
more efficient for large-scale problems.

Compared to the Ellipsoid Method, the Subgradient Ellipsoid Method
has virtually the same complexity of each iteration. However, it is more
robust with respect to the space dimension n. Furthermore, the procedure
for generating accuracy certificates in the Ellipsoid Subgradient Method is
slightly simpler.

Our developments can be considered as a first step towards constructing
universal methods for nonsmooth problems with convex structure. Such
methods could significantly improve the practical efficiency of solving vari-
ous applied problems.

Let us discuss some open questions. First, the convergence rate estimate
of the Subgradient Ellipsoid Method with time-varying coefficients con-
tains an extra factor proportional to the logarithm of the iteration counter.
We have seen that this logarithmic factor has its roots in the Subgradi-

203

Chapter 5. Subgradient Ellipsoid Method

ent Method. However, as discussed in Remark 5.3.1, for the Subgradient
Method, this issue can be easily resolved by allowing projections onto the
feasible set and working with “truncated” gaps. An even better alternative,
which does not require any of this machinery, is to use Dual Averaging [130]
instead of the Subgradient Method. It is an interesting question whether
one can combine the Dual Averaging with the Ellipsoid Method similarly to
how we have combined the Subgradient and Ellipsoid methods.

Second, the convergence rate estimate, which we have obtained for the
Subgradient Ellipsoid Method, is not continuous in the space dimension n.
Indeed, for small values of the iteration counter k, this estimate behaves as
that of the Subgradient Method and then, at some moment (around n2), it
switches to the estimate of the Ellipsoid Method. As discussed at the end
of Section 5.3.4, there exists some “small” gap between these two estimates
around the switching moment. Nevertheless, the method itself is continuous
in n and does not contain any explicit switching rules. Therefore, there
should be some continuous convergence rate estimate for the method, and
it is an open question to find it.

Finally, besides the Ellipsoid Method, there exist other “dimension-
dependent” methods, e.g., the Center-of-Gravity Method6 [107, 142], the In-
scribed Ellipsoid Method [179], the Circumscribed Simplex Method [23], etc.
Similarly, the Subgradient Method is not the only “dimension-independent”
method and there exist numerous alternatives which are better suited for
certain problem classes, e.g., the Fast Gradient Method [127] for Smooth
Convex Optimization or various methods for Stochastic Programming [56,
57, 101, 124]. Of course, it is interesting to consider different combinations of
the aforementioned “dimension-dependent” and “dimension-independent”
methods. In this regard, it is also worth mentioning the works [21, 22], where
the authors propose new variants of gradient-type methods for smooth
strongly convex minimization problems inspired by the geometric construc-
tion of the Ellipsoid Method.

5.A Proof of Lemma 5.3.2
Proof. Everywhere in the proof, we assume that the parameter c is fixed
and drop all the indices related to it.

Let us show that ζp is a convex function. Indeed, the function ω : R ×

6Although this method is not practical, it is still interesting from an academic point
of view.

204

5.A. Proof of Lemma 5.3.2

R++ → R defined by ω(x, t) := x2/t is convex. Hence, the function q,
defined in (5.3.6), is also convex. Further, since ω is increasing in its first
argument on R+, the function ωp : R+ × R++ → R defined by ωp(x, t) :=
xp/t is also convex as the composition of ω with the mapping (x, t) 7→
(xp/2, t), whose first component is convex (since p ≥ 2) and the second
one is affine. Note that ωp is increasing in its first argument. Hence, ζp
is indeed a convex function as the composition of ωp with the mapping
γ 7→

(
q(γ), 1 + γ

)
, whose first part is convex and the second one is affine.

Differentiating, for any γ > 0, we obtain

ζ ′p(γ) = p[q(γ)]p−1q′(γ)(1 + γ)− [q(γ)]p

(1 + γ)2

=
[q(γ)]p−1(pq′(γ)(1 + γ)− q(γ)

)
(1 + γ)2 .

Hence, the minimizers of ζp are exactly solutions to the following equation:

pq′(γ)(1 + γ) = q(γ). (5.A.1)

Note, from (5.3.6), that

q′(γ) = c[2γ(1 + γ)− γ2]
2(1 + γ)2 = cγ(2 + γ)

2(1 + γ)2 .

Hence, (5.A.1) can be written as

cpγ(2 + γ) = 2(1 + γ) + cγ2

or, equivalently, as
c(p− 1)γ2 + 2(cp− 1)γ = 2.

Clearly, γ = 0 is not a solution of this equation. Making the change of
variables γ = 2/u, u 6= 0, we come the quadratic equation

u2 − 2(cp− 1)u = 2c(p− 1)

or, equivalently, to

[u− (cp− 1)]2 = 2c(p− 1) + (cp− 1)2 = c2p2 − (2c− 1).

205

Chapter 5. Subgradient Ellipsoid Method

This equation has two solutions:

u1 := cp− 1 +
√
c2p2 − (2c− 1), u2 := cp− 1−

√
c2p2 − (2c− 1).

Note that

u2 ≥ cp− 1−
√
c2p2 + 1 ≥ cp− 1− (cp+ 1) = −2.

Hence, γ2 := 2/u2 ≤ −1 cannot be a minimizer of ζp. Consequently, only
u1 is an acceptable solution (note that u1 > 0 in view of our assumptions
on c and p). Thus, (5.3.10) is proved.

Let us show that γ(p) belongs to the interval specified in (5.3.10). For
this, we need to prove that 1 ≤ cpγ(p) ≤ 2. Note that the function

ha(t) := t√
t2 − a+ t− 1

,

where a ≥ 0, is decreasing in t. Indeed, [ha(t)]−1 =
√

1− a
t2 −

1
t + 1 is an

increasing function in t. Hence,

cpγ(p) = 2h2c−1(cp) ≥ 2 lim
t→∞

h2c−1(t) = 1.

On the other hand, using that p ≥ 2 and denoting α := 2c ≥ 1, we get

cpγ(p) = 2hα−1(cp) ≤ 2g(α),

where
g(α) := hα−1(α) = α√

α2 − α+ 1 + α− 1
.

Note that g is decreasing in α. Indeed, denoting τ := 1/α ∈ (0, 1], we get
[g(α)]−1 =

√
1− τ + τ2 − τ + 1, which is a decreasing function in τ . Thus,

cpγ(p) ≤ 2g(1) = 2.

It remains to prove that

ζp(γ(p)) ≤ exp
(
−1/(2cp)

)
.

Let ϕ : [2,+∞)→ R be the function

ϕ(p) := − ln ζp
(
γ(p)

)
= ln

(
1 + γ(p)

)
− p ln q

(
γ(p)

)
. (5.A.2)

206

5.A. Proof of Lemma 5.3.2

We need to show that
ϕ(p) ≥ 1

2cp

for all p ≥ 2 or, equivalently, that the function χ : (0, 1
2]→ R defined by

χ(τ) := ϕ(τ−1)

satisfies
χ(τ) ≥ τ

2c
for all τ ∈ (0, 1

2]. For this, it suffices to show that χ is convex,

lim
τ→0

χ(τ) = 0, lim
τ→0

χ′(τ) = 1
2c .

Differentiating, we see that, for all τ ∈ (0, 1
2],

χ′(τ) = −τ−2ϕ′(τ−1), χ′′(τ) = 2τ−3ϕ′(τ−1) + τ−4ϕ′′(τ−1).

Thus, we need to justify that

2ϕ′(p) + pϕ′′(p) ≥ 0 (5.A.3)

for all p ≥ 2 and that

lim
p→∞

ϕ(p) = 0, lim
p→∞

[−p2ϕ′(p)] = 1
2c . (5.A.4)

Let p ≥ 2 be arbitrary. Differentiating and using (5.A.1), we obtain

ϕ′(p) = γ′(p)
1 + γ(p) − ln q

(
γ(p)

)
−
pq′
(
γ(p)

)
γ′(p)

q
(
γ(p)

) = − ln q
(
γ(p)

)
,

ϕ′′(p) = −q
′(γ(p))γ′(p)
q(γ(p)) = − γ′(p)

p
(
1 + γ(p)

) . (5.A.5)

Therefore,

2ϕ′(p) + pϕ′′(p) = −2 ln q(γ(p))− γ′(p)
1 + γ(p) ≥ −

cγ2(p) + γ′(p)
1 + γ(p) ,

where the inequality follows from (5.3.6) and the fact that ln(1 + τ) ≤ τ for

207

Chapter 5. Subgradient Ellipsoid Method

any τ > −1. Thus, to show (5.A.3), we need to prove that

−γ′(p) ≥ cγ2(p)

or, equivalently, that
d

dp

1
γ(p) ≥ c.

But this is immediate. Indeed, using (5.3.10), we obtain

d

dp

1
γ(p) = c

2(cp√
c2p2 − (2c− 1)

+ 1) ≥ c

since the function τ 7→ τ/
√
τ2 − 1 is decreasing. Thus, (5.A.3) is proved.

It remains to show (5.A.4). From (5.3.10), we see that γ(p) → 0 and
pγ(p)→ c−1 as p→∞. Hence, using (5.3.6), we obtain

lim
p→∞

p2 ln q
(
γ(p)

)
= lim
p→∞

cp2γ2(p)
2
(
1 + γ(p)

) = c

2 lim
p→∞

p2γ2(p) = 1
2c .

Consequently, in view of (5.A.2) and (5.A.5), we have

lim
p→∞

ϕ(p) = lim
p→∞

[
ln
(
1 + γ(p)

)
− p ln q

(
γ(p)

)]
= 0,

lim
p→∞

[−p2ϕ′(p)] = lim
p→∞

p2 ln q
(
γ(p)

)
= 1

2c ,

which is exactly (5.A.4).

5.B Support Function and Dual Multipliers:
Proofs

For brevity, everywhere in this section, we write ‖·‖ and ‖·‖∗ instead of
‖·‖H−1 and ‖·‖∗H−1 , respectively. We also denote B0 := {x ∈ E : ‖x‖ ≤ 1}.

5.B.1 Auxiliary Operations

Lemma 5.B.1. Let s ∈ E∗, let A : Rm → E∗ be a linear operator with
trivial kernel and let b ∈ Rm, 〈b, (A∗HA)−1b〉 < 1. Then, problem (5.5.8)
has a unique solution given by (5.5.9).

208

5.B. Support Function and Dual Multipliers: Proofs

Proof. Note that the sublevel sets of the objective function in (5.5.8) are
bounded:

‖s−Au‖∗ + 〈u, b〉 ≥ ‖Au‖∗ − ‖s‖∗ + 〈u, b〉

≥ (1− 〈b, (A∗HA)−1b〉1/2)‖Au‖∗ − ‖s‖∗

for all u ∈ Rm. Hence, problem (5.5.8) has a solution.
Let u ∈ Rm be a solution of problem (5.5.8). If s = Au, then u =

(A∗HA)−1A∗s, which coincides with the solution given by (5.5.9) (note
that, in this case, r = 0).

Now suppose s 6= Au. Then, from the first-order optimality condition,
we obtain that b = A∗(s − Au)/ρ, where ρ := ‖s − Au‖∗ > 0. Hence,
u = (A∗HA)−1(A∗s− ρb) and

ρ2 = ‖s−Au‖2∗ = ‖s‖2∗ − 2〈A∗s, u〉+ 〈A∗HAu, u〉
= ‖s‖2∗ − 2〈A∗s, (A∗HA)−1(A∗s− ρb)〉

+ 〈A∗s− ρb, (A∗HA)−1(A∗s− ρb)〉
= ‖s‖2∗ − 〈s,A(A∗HA)−1A∗s〉+ ρ2〈b, (A∗HA)−1b〉.

Thus, ρ = r and u = u(H, s,A, b) given by (5.5.9).

Lemma 5.B.2. Let s, a ∈ E∗, β ∈ R be such that 〈a, x〉 ≤ β for some
x ∈ intB0. Then, problem (5.5.6) has a solution given by (5.5.7). Moreover,
this solution is unique if β < ‖a‖∗.

Proof. Let ϕ : R → R be the function ϕ(τ) := ‖s − τa‖∗ + τβ. By our
assumptions, β > −‖a‖∗ if a 6= 0 and β ≥ 0 if a = 0. If additionally
β < ‖a‖∗, then |β| < ‖a‖∗.

If s = 0, then ϕ(τ) = τ(‖a‖∗+ β) ≥ ϕ(0) for all τ ≥ 0, so 0 is a solution
of (5.5.6). Clearly, this solution is unique when β < ‖a‖∗ because then
|β| < ‖a‖∗.

From now on, suppose s 6= 0. Then, ϕ is differentiable at 0 with ϕ′(0) =
β−〈a, s〉/‖s‖∗. If 〈a, s〉 ≤ β‖s‖∗, then ϕ′(0) ≥ 0, so 0 is a solution of (5.5.6).
Note that this solution is unique if 〈a, s〉 < β‖s‖∗ because then ϕ′(0) > 0,
i.e., ϕ is strictly increasing on R+.

Suppose 〈a, s〉 > β‖s‖∗. Then, β < ‖a‖∗ and thus |β| < ‖a‖∗. Note that,
for any τ ≥ 0, we have ϕ(τ) ≥ τ(‖a‖∗ + β)− ‖s‖∗. Hence, the sublevel sets
of ϕ, intersected with R+, are bounded, so problem (5.5.6) has a solution.
Since ϕ′(0) < 0, any solution of (5.5.6) is strictly positive and so must be

209

Chapter 5. Subgradient Ellipsoid Method

a solution of problem (5.5.8) for A := a and b := β. But, by Lemma 5.B.1,
the latter solution is unique and equals u(H, s, a, β).

We have proved that (5.5.7) is indeed a solution of (5.5.6). Moreover,
when 〈a, s〉 6= β‖s‖∗, we have shown that this solution is unique. It re-
mains to prove the uniqueness of solution when 〈a, s〉 = β‖s‖∗, assuming
additionally that β < ‖a‖∗. But this is simple. Indeed, by our assump-
tions, |β| < ‖a‖∗, so |〈a, s〉| = |β|‖s‖∗ < ‖a‖∗‖s‖∗. Hence, a and s are
linearly independent. But then ϕ is strictly convex and thus its minimizer
is unique.

5.B.2 Computation of Dual Multipliers

In this section, we prove the correctness of Algorithm 5.5.1.
For s ∈ E∗, let X(s) be the subdifferential of ‖·‖∗ at the point s:

X(s) :=
{
{Hs/‖s‖∗}, if s 6= 0,
B0, if s = 0.

(5.B.1)

Clearly, X(s) ⊆ B0 for any s ∈ E∗. When s 6= 0, we denote the unique
element of X(s) by x(s).

Let us formulate a convenient optimality condition.

Lemma 5.B.3. Let A be the linear operator from Rm to E∗, defined by
Au :=

∑m
i=1 uiai, where a1, . . . , am ∈ E∗, and let b ∈ Rm, s ∈ E∗. Then,

µ∗ ∈ Rm+ is a minimizer of the function

ψ(µ) := ‖s−Aµ‖∗ + 〈µ, b〉

over Rm+ if and only if

X(s−Aµ∗) ∩ L1(µ∗1) . . . Lm(µ∗m) 6= ∅,

where, for each 1 ≤ i ≤ m and τ ≥ 0, we denote

Li(τ) :=
{
{x ∈ E : 〈ai, x〉 ≤ bi}, if τ = 0,
{x ∈ E : 〈ai, x〉 = bi}, if τ > 0.

Proof. Indeed, the standard optimality condition for a convex function over
the nonnegative orthant is as follows: µ∗ ∈ Rm+ is a minimizer of ψ on Rm+
if and only if there exists g∗ ∈ ∂ψ(µ∗) such that g∗i ≥ 0 and g∗i µ∗i = 0 for

210

5.B. Support Function and Dual Multipliers: Proofs

all 1 ≤ i ≤ m. It remains to note that ∂ψ(µ∗) = b−A∗X(s−Aµ∗).

Theorem 5.B.4. Algorithm 5.5.1 is well-defined and returns a solution
of (5.5.11).

Proof. i. For each i = 1, 2 and τ ≥ 0, denote L−i := {x ∈ E : 〈ai, x〉 ≤ bi},
Li := {x ∈ E : 〈ai, x〉 = bi}, Li(τ) := L−i , if τ = 0, and Li(τ) := Li, if τ > 0.

ii. From (5.5.12) and Lemma 5.B.2, it follows that Step 1 is well-defined
and, for each i = 1, 2, τi is a solution of (5.5.6) with parameters (s, ai, bi).
Hence, by Lemma 5.B.3,

X(s− τiai) ∩ Li(τi) 6= ∅, i = 1, 2. (5.B.2)

iii. Consider Step 2. Note that the condition ξ1 ≤ b2 is equivalent to
B0 ∩ L−1 ⊆ L−2 since ξ1 = maxx∈B0∩L−1

〈a2, x〉. If B0 ∩ L−1 ⊆ L−2 , then, by
(5.B.2), X(s − τ1a1) ∩ L1(τ1) ∩ L−2 = X(s − τ1a1) ∩ L1(τ1) 6= ∅, so, by
Lemma 5.B.3, (τ1, 0) is indeed a solution of (5.5.11).

Similarly, if ξ2 ≤ b1, then B0 ∩ L−2 ⊆ L−1 and (0, τ2) is a solution
of (5.5.11).

iv. From now on, we can assume that B0 ∩L−1 ∩ intL+
2 6= ∅, B0 ∩L−2 ∩

intL+
1 6= ∅, where intL+

i := {x ∈ E : 〈ai, x〉 > bi}, i = 1, 2. Combining this
with (5.5.12), we obtain7

intB0 ∩ L1 ∩ L−2 6= ∅, intB0 ∩ L2 ∩ L−1 6= ∅. (5.B.3)

Suppose 〈a2, H(s−τ1a1)〉 ≤ b2‖s−τ1a1‖∗ at Step 3. 1) If s 6= τ1a1, then
X(s−τ1a1) is a singleton, x(s−τ1a1) = H(s−τ1a1)/‖s−τ1a1‖∗, so we obtain
x(s−τ1a1) ∈ L−2 . Combining this with (5.B.2), we get x(s−τ1a1) ∈ L1(τ1)∩
L−2 . 2) If s = τ1a1, then X(s− τ1a1)∩L1(τ1)∩L−2 = B0 ∩L1(τ1)∩L−2 6= ∅
in view of the first claim in (5.B.3) (recall that L1 ⊆ L1(τ1)). Thus, in any
case, X(s − τa1) ∩ L1(τ1) ∩ L−2 6= ∅, and so, by Lemma 5.B.3, (τ1, 0) is a
solution of (5.5.11).

Similarly, one can consider the case when 〈a1, H(s − τ2a2)〉 ≤ b1‖s −
τ2a2‖∗ at Step 3.

v. Suppose we have reached Step 4. From now on, we can assume that

X(s− τ1a1) ∩ L1(τ1) ∩ intL+
2 6= ∅,

X(s− τ2a2) ∩ L2(τ2) ∩ intL+
1 6= ∅.

(5.B.4)

7Take an appropriate convex combination of two points from the specified nonempty
convex sets.

211

Chapter 5. Subgradient Ellipsoid Method

Indeed, since both conditions at Step 3 have not been satisfied, s 6= τiai,
i = 1, 2, and x(s − τ1a1) /∈ L−2 , x(s − τ2a2) /∈ L−1 . Also, by (5.B.2),
x(s− τiai) ∈ Li(τi), i = 1, 2.

Let µ ∈ R2
+ be any solution of (5.5.11). By Lemma 5.B.3, X(s−Aµ) ∩

L1(µ1)∩L2(µ2) 6= ∅. Note that we cannot have µ2 = 0. Indeed, otherwise,
we get X(s− µ1a1) ∩L1(µ1) ∩L−2 6= ∅, so µ1 must be a solution of (5.5.6)
with parameters (s, a1, b1). But, by Lemma 5.B.2, such a solution is unique
(in view of the second claim in (5.B.4), 〈a1, x〉 > b1 for some x ∈ B0, so
b1 < ‖a1‖∗). Hence, µ1 = τ1, and we obtain a contradiction with (5.B.4).
Similarly, we can show that µ1 6= 0. Consequently, µ1, µ2 > 0, which means
that µ is a solution of (5.5.8).

Thus, at this point, any solution of (5.5.11) must be a solution of (5.5.8).
In view of Lemma 5.B.1, to finish the proof, it remains to show that a1,
a2 are linearly independent and 〈b, (A∗HA)−1b〉 < 1. But this is simple.
Indeed, from (5.B.4), it follows that

either B0 ∩ L1 ∩ intL+
2 6= ∅ or B0 ∩ L2 ∩ intL+

1 6= ∅ (5.B.5)

since τ1 and τ2 cannot both be equal to 0. Combining (5.B.5) and (5.B.3),
we see that intB0∩L1∩L2 6= ∅ and, in particular, L1∩L2 6= ∅. Hence, a1,
a2 are linearly independent (otherwise, L1 = L2, which contradicts (5.B.5)).
Taking any x ∈ intB0 ∩ L1 ∩ L2, we obtain ‖x‖ < 1 and A∗x = b, hence
〈b, (A∗HA)−1b〉 = 〈A∗x, (A∗HA)−1A∗x〉 ≤ ‖x‖2 < 1, where we have used
A(A∗HA)−1A∗ � H−1.

212

Chapter 6

Conclusions

6.1 Summary

In this thesis, we have presented several new results related to quasi-Newton
methods.

First, we have studied classical quasi-Newton methods from the convex
Broyden class and established certain efficiency estimates for their local
superlinear convergence. One of the main conclusions of our analysis was
that the BFGS method is almost insensitive to the condition number, in
contrast to DFP. This is a nice theoretical confirmation of the well-known
empirical superiority of BFGS over DFP.

Second, we have introduced a new family of greedy quasi-Newton meth-
ods. The most important feature of these methods, compared to the classical
ones, is that they generate Hessian approximations converging to the exact
Hessian. To achieve this, the greedy methods use a special greedy choice
of the direction for updating Hessian approximations at each iteration. We
have seen that the greedy methods are asymptotically faster than the clas-
sical ones but their superlinear convergence may start later than for the
classical ones.

Finally, we have studied the Ellipsoid Method and realized that it has
“incorrect” dependency on the dimensionality of the space. To address this
problem, we have proposed a new variant of this algorithm—the Subgra-
dient Ellipsoid Method. As we have seen, the efficiency estimate for this
new method is nearly the best among the corresponding estimates for the
Subgradient and Ellipsoid methods. In particular, the Subgradient Ellip-

213

Chapter 6. Conclusions

soid Method withstands the passage to the limit when the dimensionality
of the space tends to infinity, as does the Subgradient Method. We have
also shown how to efficiently construct accuracy certificates in the Subgradi-
ent Ellipsoid Method, which is important for solving general problems with
convex structure, such as saddle-point problems and variational inequalities.

6.2 Directions for Future Research
Let us outline some possible directions for further research.

The most natural research direction is, of course, obtaining global effi-
ciency estimates for classical quasi-Newton methods. In this thesis, we have
not addressed this question at all apart from the quadratic case.

Another interesting direction is the analysis of limited-memory quasi-
Newton methods, such as L-BFGS [113], which are very popular for large-
scale optimization.

One potential application for locally convergent quasi-Newton methods
is to solve the subproblems arising in path-following interior point methods.
By properly changing the penalty parameter in these methods, we can al-
ways make sure that the output of the previous subproblem is located in the
region of local convergence of the new one. The local convergence results
and the corresponding proof techniques, which we have presented in this
thesis, could be very useful in this context.

Another idea is to use quasi-Newton methods for solving auxiliary sub-
problems arising in high-order proximal-point and tensor methods [135–137].
For example, the subproblem arising in the second-order tensor method (the
Cubic Newton Method) is the minimization of a quadratic function regu-
larized by the cube of the Euclidean norm; the subproblem arising in the
second-order implementation of the third-order tensor method [138] is the
minimization of a quadratic function regularized by the fourth power of the
Euclidean norm. These subproblems have a very special structure which
could be exploited in quasi-Newton methods (both classical and greedy).

Note that we have only considered the most basic problem formulation
for quasi-Newton methods—smooth unconstrained optimization. However,
in practice, we often need to solve more general problems, e.g, compos-
ite optimization problems, in which the objective is formed by the sum of
two components: a smooth one and a general convex function with simple
structure. It would be interesting to extend our results to this problem
formulation.

214

6.2. Directions for Future Research

One of the directions that we did not explore in this thesis, is the ap-
plication of quasi-Newton methods to nonsmooth problems. A reasonable
idea here might be to approximate a nonsmooth objective by a smooth
one, add a small regularizer, and then apply, say, the standard BFGS for
smooth optimization. In principle, we only need a little smoothing: even
if the resulting approximation has an exponentially large condition num-
ber, this should not be a big problem for BFGS (at least, locally) since,
as we showed in this thesis, the condition number enters the corresponding
complexity bound under the logarithm.

Regarding the Subgradient Ellipsoid Method, it is not clear how to get
rid of the extra logarithmic factor which appears whenever we want to use
“more natural” time-varying step sizes instead of the constant ones. It would
also be interesting to investigate whether this method can be accelerated,
similarly to the Gradient Method on problems with Lipschitz continuous
gradient.

215

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms
on Matrix Manifolds. Princeton University Press, 2008.

[2] A. Alacaoglu, O. Fercoq, and V. Cevher. Random extrapolation for
primal-dual coordinate descent. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119, pages 191–201.
PMLR, 2020.

[3] A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher. A
new regret analysis for Adam-type algorithms. In Proceedings of the
37th International Conference on Machine Learning, volume 119,
pages 202–210. PMLR, 2020.

[4] Z. Allen-Zhu, Z. Qu, P. Richtárik, and Y. Yuan. Even Faster Ac-
celerated Coordinate Descent Using Non-Uniform Sampling. In Pro-
ceedings of The 33rd International Conference on Machine Learning,
volume 48, pages 1110–1119. PMLR, 2016.

[5] Y. Arjevani and O. Shamir. Dimension-Free Iteration Complexity of
Finite Sum Optimization Problems. Advances in Neural Information
Processing Systems, 29, 2016.

[6] A. Auslender. Brève communication. Résolution numérique d’inéga-
lités variationnelles. R.A.I.R.O., 7(R2):67–72, 1973.

[7] M. Baes. Estimate Sequence Methods: Extensions and Approxima-
tions. IFOR Internal Report, ETH Zurich, 2009.

[8] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Opti-
mization. Lecture notes, 2021.

217

BIBLIOGRAPHY

[9] E. G. Birgin, J. Gardenghi, J. M. Martínez, S. A. Santos, and P. L.
Toint. Worst-case evaluation complexity for unconstrained nonlin-
ear optimization using high-order regularized models. Mathematical
Programming, 163:359–368, 2017.

[10] R. Bland, D. Goldfarb, and M. Todd. The Ellipsoid Method: A Sur-
vey. Operations Research, 29(6):1039–1091, 1981.

[11] P. T. Boggs and J. W. Tolle. Convergence Properties of a Class of
Rank-two Updates. SIAM J. Optim., 4(2):262–287, 1994.

[12] A. Bouaricha. Tensor Methods for Large, Sparse Unconstrained Op-
timization. SIAM Journal on Optimization, 7(3):732–756, 1997.

[13] N. Boumal. An introduction to optimization on smooth manifolds.
To appear with Cambridge University Press. Mar. 2022.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[15] I. Brace and J. H. Manton. An improved BFGS-on-manifold algo-
rithm for computing weighted low rank approximations. In Proceed-
ings of the 17th international Symposium on Mathematical Theory
of Networks and Systems, pages 1735–1738, 2006.

[16] C. G. Broyden. A class of methods for solving nonlinear simultaneous
equations. Mathematics of Computation, 19(92):577–593, 1965.

[17] C. G. Broyden. Quasi-Newton methods and their application to func-
tion minimization.Mathematics of Computation, 21(99):368–381, 1967.

[18] C. G. Broyden. The convergence of a class of double-rank minimiza-
tion algorithms: 1. General considerations. IMA Journal of Applied
Mathematics, 6(1):76–90, 1970.

[19] C. G. Broyden. The convergence of a class of double-rank mini-
mization algorithms: 2. The new algorithm. IMA Journal of Applied
Mathematics, 6(3):222–231, 1970.

[20] C. G. Broyden, J. E. Dennis Jr, and J. Moré. On the local and
superlinear convergence of quasi-Newton methods. IMA Journal of
Applied Mathematics, 12(3):223–245, 1973.

[21] S. Bubeck and Y. T. Lee. Black-box Optimization with a Politician.
In International Conference on Machine Learning, pages 1624–1631.
PMLR, 2016.

218

BIBLIOGRAPHY

[22] S. Bubeck, Y. T. Lee, and M. Singh. A geometric alternative to Nes-
terov’s accelerated gradient descent. arXiv preprint arXiv:1506.08187,
2015.

[23] V. Bulatov and L. Shepot’ko. Method of centers of orthogonal sim-
plexes for solving convex programming problems. Methods of Opti-
mization and Their Application, 1982.

[24] R. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton
methods with application to unconstrained minimization. SIAM Jour-
nal on Numerical Analysis, 26(3):727–739, 1989.

[25] R. Byrd, J. Nocedal, and Y.-X. Yuan. Global convergence of a class
of quasi-Newton methods on convex problems. SIAM Journal on
Numerical Analysis, 24(5):1171–1190, 1987.

[26] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A Stochastic
Quasi-Newton Method for Large-Scale Optimization. SIAM Journal
on Optimization, 26(2):1008–1031, 2016.

[27] R. H. Byrd, R. A. Tapia, and Y. Zhang. An SQP Augmented La-
grangian BFGS Algorithm for Constrained Optimization. SIAM Jour-
nal on Optimization, 2(2):210–241, 1992.

[28] C. Cartis, N. I. M. Gould, and P. L. Toint. Adaptive cubic regu-
larisation methods for unconstrained optimization. Part I: motiva-
tion, convergence and numerical results.Mathematical Programming,
127:245–295, 2011.

[29] C. Cartis, N. I. M. Gould, and P. L. Toint. Adaptive cubic regular-
isation methods for unconstrained optimization. Part II: worst-case
function-and derivative-evaluation complexity.Mathematical Program-
ming, 130:295–319, 2011.

[30] C. Cartis, N. I. M. Gould, and P. L. Toint. Universal Regulariza-
tion Methods: Varying the Power, the Smoothness and the Accuracy.
SIAM Journal on Optimization, 29(1):595–615, 2019.

[31] A.-L. Cauchy. Méthode générale pour la résolution des systémes
d’équations simultanées. C. R. Acad. Sci. Paris, 25:536–538, 1847.

[32] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2(3):1–27, 2011.

219

BIBLIOGRAPHY

[33] T. F. Coleman and A. R. Conn. On the Local Convergence of a Quasi-
Newton Method for the Nonlinear Programming Problem. SIAM
Journal on Numerical Analysis, 21(4):755–769, 1984.

[34] A. R. Conn, N. I. M. Gould, and P. L. Toint. Convergence of quasi-
Newton matrices generated by the symmetric rank one update.Math-
ematical Programming, 50:177–195, 1991.

[35] F. E. Curtis, T. Mitchell, and M. L. Overton. A BFGS-SQP method
for nonsmooth, nonconvex, constrained optimization and its evalua-
tion using relative minimization profiles. Optimization Methods and
Software, 32(1):148–181, 2017.

[36] F. E. Curtis and M. L. Overton. A Sequential Quadratic Program-
ming Algorithm for Nonconvex, Nonsmooth Constrained Optimiza-
tion. SIAM Journal on Optimization, 22(2):474–500, 2012.

[37] F. E. Curtis and X. Que. A quasi-Newton algorithm for nonconvex,
nonsmooth optimization with global convergence guarantees. Math-
ematical Programming Computation, 7:399–428, 2015.

[38] A. d’Aspremont. Smooth Optimization with Approximate Gradient.
SIAM Journal on Optimization, 19(3):1171–1183, 2008.

[39] W. Davidon. Variable metric method for minimization. Technical
report 5990, Argonne National Laboratory, 1959.

[40] W. Davidon. Variance algorithm for minimization. Computer Jour-
nal, 10(4):406–410, 1968.

[41] E. De Klerk, F. Glineur, and A. B. Taylor. Worst-Case Convergence
Analysis of Inexact Gradient and Newton Methods Through Semidef-
inite Programming Performance Estimation. SIAM Journal on Op-
timization, 30(3):2053–2082, 2020.

[42] J. E. Dennis Jr. On Some Methods Based on Broyden’s Secant Ap-
proximation to the Hessian. Technical Report 71-101, Cornell Uni-
versity, Ithaca, New York, 1971.

[43] J. E. Dennis Jr. On the convergence of Broyden’s method for nonlin-
ear systems of equations. Mathematics of Computation, 25(115):559–
567, 1971.

[44] J. E. Dennis Jr. Toward a Unified Convergence Theory for Newton-
Like Methods. In L. B. Rall, editor, Nonlinear Functional Analysis
and Applications, pages 425–472. Academic Press, 1971.

220

BIBLIOGRAPHY

[45] J. E. Dennis Jr and J. Moré. A characterization of superlinear con-
vergence and its application to quasi-Newton methods. Mathematics
of Computation, 28(126):549–560, 1974.

[46] J. E. Dennis Jr and J. Moré. Quasi-Newton Methods, Motivation
and Theory. SIAM Review, 19(1):46–89, 1977.

[47] J. E. Dennis Jr and R. B. Schnabel. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. SIAM, 1996.

[48] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of
smooth convex optimization with inexact oracle. Mathematical Pro-
gramming, 146:37–75, 2014.

[49] L. Dixon. Quasi Newton techniques generate identical points II: The
proofs of four new theorems. Mathematical Programming, 3:345–358,
1972.

[50] L. Dixon. Quasi-Newton algorithms generate identical points. Math-
ematical Programming, 2:383–387, 1972.

[51] N. Doikov. New Second-Order and Tensor Methods in Convex Opti-
mization. PhD thesis, Université catholique de Louvain (UCL), 2021.

[52] N. Doikov and Y. Nesterov. Inexact Tensor Methods with Dynamic
Accuracies. In Proceedings of the 37th International Conference on
Machine Learning, pages 2577–2586, 2020.

[53] N. Doikov and Y. Nesterov. Local convergence of tensor methods.
Mathematical Programming:1–22, 2021.

[54] N. Doikov and Y. Nesterov. Minimizing Uniformly Convex Functions
by Cubic Regularization of Newton Method. Journal of Optimization
Theory and Applications, 189:317–339, 2021.

[55] Y. Drori and M. Teboulle. Performance of first-order methods for
smooth convex minimization: a novel approach. Mathematical Pro-
gramming, 145:451–482, 2014.

[56] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. Journal of Ma-
chine Learning Research, 12(7), 2011.

[57] P. Dvurechensky and A. Gasnikov. Stochastic Intermediate Gradient
Method for Convex Problems with Stochastic Inexact Oracle. Jour-
nal of Optimization Theory and Applications, 171:121–145, 2016.

221

BIBLIOGRAPHY

[58] O. Fercoq and P. Richtárik. Accelerated, Parallel, and Proximal Co-
ordinate Descent. SIAM Journal on Optimization, 25(4):1997–2023,
2015.

[59] R. Fletcher. A new approach to variable metric algorithms. Computer
Journal, 13(3):317–322, 1970.

[60] R. Fletcher. An Optimal Positive Definite Update for Sparse Hessian
Matrices. SIAM Journal on Optimization, 5(1):192–218, 1995.

[61] R. Fletcher. Practical Methods of Optimization. Wiley, 2000.
[62] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method

for minimization. Computer Journal, 6(2):163–168, 1963.
[63] D. Gabay. Minimizing a differentiable function over a differential

manifold. Journal of Optimization Theory and Applications, 37(2):177–
219, 1982.

[64] U. M. Garcia-Palomares and O. L. Mangasarian. Superlinearly con-
vergent quasi-Newton algorithms for nonlinearly constrained opti-
mization problems. Mathematical Programming, 11:1–13, 1976.

[65] A. Gasnikov, P. Dvurechensky, E. Gorbunov, E. Vorontsova, D. Se-
likhanovych, C. A. Uribe, B. Jiang, H. Wang, S. Zhang, S. Bubeck,
Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. Near Optimal Methods
for Minimizing Convex Functions with Lipschitz p-th Derivatives. In
Conference on Learning Theory, pages 1392–1393. PMLR, 2019.

[66] R. Ge and M. J. D. Powell. The convergence of variable metric ma-
trices in unconstrained optimization. Math. Program., 27:123–143,
1983.

[67] S. Ghadimi and G. Lan. Optimal Stochastic Approximation Algo-
rithms for Strongly Convex Stochastic Composite Optimization I:
A Generic Algorithmic Framework. SIAM Journal on Optimization,
22(4):1469–1492, 2012.

[68] S. Ghadimi and G. Lan. Optimal Stochastic Approximation Algo-
rithms for Strongly Convex Stochastic Composite Optimization, II:
Shrinking Procedures and Optimal Algorithms. SIAM Journal on
Optimization, 23(4):2061–2089, 2013.

[69] D. Goldfarb. Sufficient conditions for the convergence of a variable
metric algorithm. In R. Fletcher, editor, Optimization, pages 273–
281, London / New York. Academic Press, 1969.

222

BIBLIOGRAPHY

[70] D. Goldfarb. A Family of Variable-Metric Methods Derived by Vari-
ational Means. Mathematics of Computation, 24(109):23–26, 1970.

[71] D. Goldfarb, Y. Ren, and A. Bahamou. Practical Quasi-Newton
Methods for Training Deep Neural Networks. Advances in Neural
Information Processing Systems, 33:2386–2396, 2020.

[72] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hop-
kins University Press, 4th edition, 2013.

[73] R. Gower, D. Goldfarb, and P. Richtárik. Stochastic Block BFGS:
Squeezing More Curvature out of Data. In Proceedings of The 33rd
International Conference on Machine Learning, pages 1869–1878.
PMLR, 2016.

[74] R. M. Gower and P. Richtárik. Randomized Quasi-Newton Updates
are Linearly Convergent Matrix Inversion Algorithms. SIAM Journal
on Matrix Analysis and Applications, 38(4):1380–1409, 2017.

[75] R. M. Gower, M. Schmidt, F. Bach, and P. Richtárik. Variance-
Reduced Methods for Machine Learning. Proceedings of the IEEE,
108(11):1968–1983, 2020.

[76] G. N. Grapiglia and Y. Nesterov. Regularized Newton Methods for
Minimizing Functions with Hölder Continuous Hessians. SIAM Jour-
nal on Optimization, 27(1):478–506, 2017.

[77] G. N. Grapiglia and Y. Nesterov. Accelerated Regularized Newton
Methods for Minimizing Composite Convex Functions. SIAM Jour-
nal on Optimization, 29(1):77–99, 2019.

[78] G. N. Grapiglia and Y. Nesterov. Tensor methods for finding approx-
imate stationary points of convex functions. Optimization Methods
and Software:1–34, 2020.

[79] G. N. Grapiglia and Y. Nesterov. Tensor Methods for Minimizing
Convex Functions with Hölder Continuous Higher-Order Derivatives.
SIAM Journal on Optimization, 30(4):2750–2779, 2020.

[80] G. N. Grapiglia and Y. Nesterov. On inexact solution of auxiliary
problems in tensor methods for convex optimization. Optimization
Methods and Software, 36(1):145–170, 2021.

[81] J. Greenstadt. Variations on variable-metric methods. Mathematics
of Computation, 24(109):1–22, 1970.

223

BIBLIOGRAPHY

[82] A. Griewank and P. L. Toint. On the unconstrained optimization of
partially separable functions. In M. J. D. Powell, editor, Nonlinear
Optimization, pages 301–312. Academic Press, London, 1981.

[83] A. Griewank and P. L. Toint. Local convergence analysis for parti-
tioned quasi-Newton updates. Numerische Mathematik, 39(3):429–
448, 1982.

[84] A. Griewank and P. L. Toint. Partitioned variable metric updates
for large structured optimization problems. Numerische Mathematik,
39:119–137, 1982.

[85] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[86] J. Guo. Smooth Quasi-Newton Methods for Nonsmooth Optimization.
PhD thesis, Cornell University, 2018.

[87] S.-P. Han. Superlinearly convergent variable metric algorithms for
general nonlinear programming problems. Mathematical Program-
ming, 11:263–282, 1976.

[88] S.-P. Han. A globally convergent method for nonlinear program-
ming. Journal of Optimization Theory and Applications, 22(3):297–
309, 1977.

[89] S.-P. Han. Dual Variable Metric Algorithms for Constrained Opti-
mization. SIAM Journal on Control and Optimization, 15(4):546–
565, 1977.

[90] J. Hu, B. Jiang, L. Lin, Z. Wen, and Y.-X. Yuan. Structured Quasi-
Newton Methods for Optimization with Orthogonality Constraints.
SIAM Journal on Scientific Computing, 41(4):A2239–A2269, 2019.

[91] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS
Method Without Differentiated Retraction for Nonconvex Optimiza-
tion Problems. SIAM Journal on Optimization, 28(1):470–495, 2018.

[92] W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden Class of
Quasi-Newton Methods for Riemannian Optimization. SIAM Jour-
nal on Optimization, 25(3):1660–1685, 2015.

[93] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent
using Predictive Variance Reduction. Advances in Neural Informa-
tion Processing Systems, 26, 2013.

224

BIBLIOGRAPHY

[94] D. Kamzolov, P. Dvurechensky, and A. Gasnikov. Universal inter-
mediate gradient method for convex problems with inexact oracle.
Optimization Methods and Software:1–28, 2020.

[95] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Pro-
gramming. Combinatorica, 4(4):373–395, 1984.

[96] A. Kavis, K. Y. Levy, F. Bach, and V. Cevher. UniXGrad: A Univer-
sal, Adaptive Algorithm with Optimal Guarantees for Constrained
Optimization. In Advances in Neural Information Processing Sys-
tems, volume 32, pages 6257–6266, 2019.

[97] L. Khachiyan. A polynomial algorithm in linear programming. In
Soviet Mathematics Doklady, volume 244 of number 5, pages 1093–
1096. Russian Academy of Sciences, 1979.

[98] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[99] A. Kostrikin and Y. Manin. Linear Algebra and Geometry. Gordon
and Breach Science Publishers, 1989.

[100] D. Kovalev, R. M. Gower, P. Richtárik, and A. Rogozin. Fast linear
convergence of randomized BFGS. arXiv preprint arXiv:2002.11337,
2020.

[101] G. Lan. An optimal method for stochastic composite optimization.
Mathematical Programming, 133:365–397, 2012.

[102] G. Lan. First-order and Stochastic Optimization Methods for Ma-
chine Learning. Springer, 2020.

[103] G. Lan, A. Nemirovski, and A. Shapiro. Validation analysis of mirror
descent stochastic approximation method. Mathematical Program-
ming, 134:425–458, 2012.

[104] G. Lan and Y. Zhou. An optimal randomized incremental gradient
method. Mathematical Programming, 171:167–215, 2018.

[105] N. Le Roux, M. Schmidt, and F. Bach. A Stochastic Gradient Method
with an Exponential Convergence Rate for Finite Training Sets. Ad-
vances in Neural Information Processing Systems, 25, 2012.

[106] Y. T. Lee and A. Sidford. Efficient Accelerated Coordinate Descent
Methods and Faster Algorithms for Solving Linear Systems. In 2013
IEEE 54th Annual Symposium on Foundations of Computer Science,
pages 147–156. IEEE, 2013.

225

BIBLIOGRAPHY

[107] A. Levin. An algorithm for minimizing convex functions. In Doklady
Akademii Nauk SSSR, volume 160 of number 6, pages 1244–1247.
Russian Academy of Sciences, 1965.

[108] K. Y. Levy, A. Yurtsever, and V. Cevher. Online Adaptive Meth-
ods, Universality and Acceleration. Advances in Neural Information
Processing Systems, 31, 2018.

[109] A. Lewis and M. Overton. Nonsmooth optimization via quasi-Newton
methods. Mathematical Programming, 141:135–163, 2013.

[110] D. Lin, H. Ye, and Z. Zhang. Explicit Convergence Rates of Greedy
and Random Quasi-Newton Methods. Journal of Machine Learning
Research, 23(162):1–40, 2022.

[111] Q. Lin, Z. Lu, and L. Xiao. An Accelerated Proximal Coordinate
Gradient Method. Advances in Neural Information Processing Sys-
tems, 27, 2014.

[112] Q. Lin, Z. Lu, and L. Xiao. An Accelerated Randomized Proxi-
mal Coordinate Gradient Method and its Application to Regular-
ized Empirical Risk Minimization. SIAM Journal on Optimization,
25(4):2244–2273, 2015.

[113] D. Liu and J. Nocedal. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 45:503–528,
1989.

[114] Z. Lu and L. Xiao. On the complexity analysis of randomized block-
coordinate descent methods. Mathematical Programming, 152:615–
642, 2015.

[115] J. M. Martínez. On High-Order Model Regularization for Constrained
Optimization. SIAM Journal on Optimization, 27(4):2447–2458, 2017.

[116] A. Mokhtari, M. Eisen, and A. Ribeiro. IQN: An Incremental Quasi-
Newton Method with Local Superlinear Convergence Rate. SIAM
Journal on Optimization, 28(2):1670–1698, 2018.

[117] A. Mokhtari and A. Ribeiro. RES: Regularized Stochastic BFGS
Algorithm. IEEE Transactions on Signal Processing, 62(23):6089–
6104, 2014.

[118] R. D. Monteiro and B. F. Svaiter. An Accelerated Hybrid Proxi-
mal Extragradient Method for Convex Optimization and its Impli-
cations to Second-Order Methods. SIAM Journal on Optimization,
23(2):1092–1125, 2013.

226

BIBLIOGRAPHY

[119] P. Moritz, R. Nishihara, and M. Jordan. A Linearly-Convergent Sto-
chastic L-BFGS Algorithm. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, pages 249–258.
PMLR, 2016.

[120] I. Necoara, Y. Nesterov, and F. Glineur. Random Block Coordinate
Descent Methods for Linearly Constrained Optimization over Net-
works. Journal of Optimization Theory and Applications, 173:227–
254, 2017.

[121] I. Necoara, A. Patrascu, and F. Glineur. Complexity of first-order
inexact Lagrangian and penalty methods for conic convex program-
ming. Optimization Methods and Software, 34(2):305–335, 2019.

[122] A. Nemirovski. Information-Based Complexity of Convex Program-
ming. Lecture notes, 1995.

[123] A. Nemirovski. Prox-Method with Rate of Convergence O(1/t) for
Variational Inequalities with Lipschitz Continuous Monotone Oper-
ators and Smooth Convex-Concave Saddle Point Problems. SIAM
Journal on Optimization, 15(1):229–251, 2004.

[124] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust Sto-
chastic Approximation Approach to Stochastic Programming. SIAM
Journal on Optimization, 19(4):1574–1609, 2009.

[125] A. Nemirovski, S. Onn, and U. G. Rothblum. Accuracy Certificates
for Computational Problems with Convex Structure. Mathematics of
Operations Research, 35(1):52–78, 2010.

[126] A. Nemirovsky and D. Yudin. Problem complexity and method effi-
ciency in optimization. Wiley-Interscience, 1983.

[127] Y. Nesterov. A method of solving a convex programming problem
with convergence rateO(1/k2). Soviet Mathematics Doklady, 27(2):372–
376, 1983.

[128] Y. Nesterov. Smooth minimization of non-smooth functions. Mathe-
matical Programming, 103:127–152, 2005.

[129] Y. Nesterov. Accelerating the cubic regularization of Newton’s method
on convex problems. Mathematical Programming, 112:159–181, 2008.

[130] Y. Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120:221–259, 2009.

227

BIBLIOGRAPHY

[131] Y. Nesterov. Efficiency of Coordinate Descent Methods on Huge-
Scale Optimization Problems. SIAM Journal on Optimization, 22(2):341–
362, 2012.

[132] Y. Nesterov. Gradient methods for minimizing composite functions.
Mathematical Programming, 140:125–161, 2013.

[133] Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer,
2018.

[134] Y. Nesterov. Inexact basic tensor methods for some classes of con-
vex optimization problems. Optimization Methods and Software:1–
29, 2020.

[135] Y. Nesterov. Implementable tensor methods in unconstrained convex
optimization. Mathematical Programming, 186:157–183, 2021.

[136] Y. Nesterov. Inexact accelerated high-order proximal-point methods.
Mathematical Programming, 2021.

[137] Y. Nesterov. Inexact High-Order Proximal-Point Methods with Aux-
iliary Search Procedure. SIAM Journal on Optimization:2807–2828,
2021.

[138] Y. Nesterov. Superfast Second-Order Methods for Unconstrained
Convex Optimization. Journal of Optimization Theory and Appli-
cations, 191:1–30, 2021.

[139] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algo-
rithms in Convex Programming. SIAM, 1994.

[140] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method
and its global performance. Mathematical Programming, 108:177–
205, 2006.

[141] Y. Nesterov and S. U. Stich. Efficiency of the Accelerated Coordi-
nate Descent Method on Structured Optimization Problems. SIAM
Journal on Optimization, 27(1):110–123, 2017.

[142] D. Newman. Location of the maximum on unimodal surfaces. Journal
of the ACM, 12(3):395–398, 1965.

[143] J. Nocedal and M. L. Overton. Projected Hessian Updating Algo-
rithms for Nonlinearly Constrained Optimization. SIAM Journal on
Numerical Analysis, 22(5):821–850, 1985.

[144] J. Nocedal and S. Wright. Numerical Optimization. Springer Science
& Business Media, 2006.

228

BIBLIOGRAPHY

[145] J. M. Papakonstantinou. Historical Development of the BFGS Se-
cant Method and Its Characterization Properties. PhD thesis, Rice
University, 2009.

[146] D. Perekrestenko, V. Cevher, and M. Jaggi. Faster Coordinate De-
scent via Adaptive Importance Sampling. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, vol-
ume 54, pages 869–877. PMLR, 2017.

[147] A. Perry. A Class of Conjugate Gradient Algorithms with a Two-
Step Variable Metric Memory. Discussion Paper 269, Northwestern
University, Evanston, Illinois, 1977.

[148] M. J. D. Powell. A New Algorithm for Unconstrained Optimization.
In Nonlinear Programming, pages 31–65. Elsevier, 1970.

[149] M. J. D. Powell. On the convergence of the variable metric algorithm.
IMA Journal of Applied Mathematics, 7(1):21–36, 1971.

[150] M. J. D. Powell. Some global convergence properties of a variable
metric algorithm for minimization without exact line searches. In
R. W. Cottle and C. E. Lemke, editors, Nonlinear Programming,
SIAM-AMS proceedings, volume 9. American Mathematical Society,
1976.

[151] M. J. D. Powell. A fast algorithm for nonlinearly constrained opti-
mization calculations. InNumerical Analysis, pages 144–157. Springer,
1977.

[152] M. J. D. Powell. Algorithms for nonlinear constraints that use La-
grangian functions. Mathematical Programming, 14:224–248, 1978.

[153] B. N. Pshenichny and Y. M. Danilin. Numerical Methods in Extremal
Problems. Mir Publishers, 1978.

[154] C. Qi, K. A. Gallivan, and P.-A. Absil. Riemannian BFGS Algo-
rithm with Applications. In Recent Advances in Optimization and
its Applications in Engineering, pages 183–192. Springer, 2010.

[155] Z. Qu, P. Richtárik, M. Takác, and O. Fercoq. SDNA: Stochastic
Dual Newton Ascent for Empirical Risk Minimization. In Proceed-
ings of The 33rd International Conference on Machine Learning, vol-
ume 48, pages 1823–1832. PMLR, 2016.

[156] J. Renegar. A polynomial-time algorithm, based on Newton’s method,
for linear programming. Mathematical Programming, 40:59–93, 1988.

229

BIBLIOGRAPHY

[157] P. Richtárik and M. Takáč. Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function.
Mathematical Programming, 144:1–38, 2014.

[158] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[159] A. Rodomanov and Y. Nesterov. Greedy Quasi-Newton Methods

with Explicit Superlinear Convergence. SIAM Journal on Optimiza-
tion, 31(1):785–811, 2021.

[160] A. Rodomanov and Y. Nesterov. New Results on Superlinear Conver-
gence of Classical Quasi-Newton Methods. Journal of Optimization
Theory and Applications, 188:744–769, 2021.

[161] A. Rodomanov and Y. Nesterov. Rates of superlinear convergence for
classical quasi-Newton methods.Mathematical Programming, 194:159–
190, 2022.

[162] A. Rodomanov and Y. Nesterov. Subgradient ellipsoid method for
nonsmooth convex problems. Mathematical Programming, 2022.

[163] B. Savas and L.-H. Lim. Quasi-Newton Methods on Grassmannians
and Multilinear Approximations of Tensors. SIAM Journal on Sci-
entific Computing, 32(6):3352–3393, 2010.

[164] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with
the stochastic average gradient. Mathematical Programming, 162:83–
112, 2017.

[165] R. B. Schnabel and T.-T. Chow. Tensor Methods for Unconstrained
Optimization Using Second Derivatives. SIAM Journal on Optimiza-
tion, 1(3):293–315, 1991.

[166] N. N. Schraudolph, J. Yu, and S. Günter. A Stochastic Quasi-Newton
Method for Online Convex Optimization. In Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, vol-
ume 2, pages 436–443. PMLR, 2007.

[167] L. Schubert. Modification of a quasi-Newton method for nonlin-
ear equations with a sparse Jacobian. Mathematics of Computation,
24(109):27–30, 1970.

[168] S. Shalev-Shwartz and T. Zhang. Stochastic Dual Coordinate As-
cent Methods for Regularized Loss Minimization. Journal of Machine
Learning Research, 14(2), 2013.

[169] D. Shanno. Conditioning of quasi-Newton methods for function min-
imization. Mathematics of Computation, 24(111):647–656, 1970.

230

BIBLIOGRAPHY

[170] D. Shanno. Conjugate Gradient Methods with Inexact Searches.Math-
ematics of Operations Research, 3(3):244–256, 1978.

[171] D. Shanno. On variable-metric methods for sparse Hessians. Mathe-
matics of Computation, 34(150):499–514, 1980.

[172] N. Z. Shor. Convergence rate of the gradient descent method with
dilatation of the space. Cybernetics, 6(2):102–108, 1970.

[173] N. Z. Shor. Cut-off method with space extension in convex program-
ming problems. Cybernetics, 13(1):94–96, 1977.

[174] J. Sohl-Dickstein, B. Poole, and S. Ganguli. Fast large-scale opti-
mization by unifying stochastic gradient and quasi-Newton meth-
ods. In Proceedings of the 31st International Conference on Machine
Learning, pages 604–612. PMLR, 2014.

[175] J. Stoer. The convergence of matrices generated by rank-2 meth-
ods from the restricted β-class of Broyden. Numer. Math., 44:37–52,
1984.

[176] F. Stonyakin, A. Tyurin, A. Gasnikov, P. Dvurechensky, A. Aga-
fonov, D. Dvinskikh, M. Alkousa, D. Pasechnyuk, S. Artamonov, and
V. Piskunova. Inexact model: a framework for optimization and vari-
ational inequalities. Optimization Methods and Software:1–47, 2021.

[177] R. A. Tapia. Diagonalized multiplier methods and quasi-Newton
methods for constrained optimization. Journal of Optimization The-
ory and Applications, 22(2):135–194, 1977.

[178] R. A. Tapia. On secant updates for use in general constrained opti-
mization. Mathematics of Computation, 51(183):181–202, 1988.

[179] S. Tarasov, L. Khachiyan, and I. Erlikh. The method of inscribed
ellipsoids. In Soviet Mathematics Doklady, volume 37 of number 1,
pages 226–230, 1988.

[180] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact Worst-Case
Performance of First-Order Methods for Composite Convex Opti-
mization. SIAM Journal on Optimization, 27(3):1283–1313, 2017.

[181] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Performance estima-
tion toolbox (PESTO): Automated worst-case analysis of first-order
optimization methods. In 2017 IEEE 56th Annual Conference on
Decision and Control, pages 1278–1283. IEEE, 2017.

231

BIBLIOGRAPHY

[182] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly
convex interpolation and exact worst-case performance of first-order
methods. Mathematical Programming, 161:307–345, 2017.

[183] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact Worst-Case
Convergence Rates of the Proximal Gradient Method for Composite
Convex Minimization. Journal of Optimization Theory and Applica-
tions, 178:455–476, 2018.

[184] P. L. Toint. On sparse and symmetric matrix updating subject to
a linear equation. Mathematics of Computation, 31(140):954–961,
1977.

[185] P. L. Toint. Some numerical results using a sparse matrix updating
formula in unconstrained optimization. Mathematics of Computa-
tion, 32(143):839–851, 1978.

[186] P. L. Toint. A note about sparsity exploiting quasi-Newton updates.
Mathematical Programming, 21:172–181, 1981.

[187] P. L. Toint. A sparse quasi-Newton update derived variationally with
a nondiagonally weighted Frobenius norm. Mathematics of Compu-
tation, 37(156):425–433, 1981.

[188] P. L. Toint. Towards an Efficient Sparsity Exploiting Newton Method
for Minimization. In I. S. Duff, editor, Sparse Matrices and Their
Uses, pages 57–88. Academic Press, London, England, 1981.

[189] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A Smooth Primal-Dual
Optimization Framework for Nonsmooth Composite Convex Mini-
mization. SIAM Journal on Optimization, 28(1):96–134, 2018.

[190] X. Wang, S. Ma, D. Goldfarb, and W. Liu. Stochastic Quasi-Newton
Methods for Nonconvex Stochastic Optimization. SIAM Journal on
Optimization, 27(2):927–956, 2017.

[191] B. E. Woodworth and N. Srebro. Tight Complexity Bounds for Opti-
mizing Composite Objectives. Advances in Neural Information Pro-
cessing Systems, 29, 2016.

[192] J. Yu, S. Vishwanathan, S. Günter, and N. N. Schraudolph. A Quasi-
Newton Approach to Nonsmooth Convex Optimization Problems
in Machine Learning. The Journal of Machine Learning Research,
11:1145–1200, 2010.

232

BIBLIOGRAPHY

[193] D. Yudin and A. Nemirovskii. Informational complexity and effi-
cient methods for the solution of convex extremal problems.Matekon,
13(2):22–45, 1976.

233

	Contents
	Introduction
	Motivation
	Historical Overview
	Quasi-Newton Methods
	Evolution of Optimization Theory
	Ellipsoid Method

	Contributions of this Thesis
	Overview of Main Results

	Background
	Notation and Generalities
	Vector Spaces
	Adjoint Operator
	Order Between Self-Adjoint Operators
	Derivatives
	Norms
	Relative Eigenvalues and Eigenvectors
	Trace Product
	Determinant Product
	Relative Volume

	Standard Function Classes
	Convex Functions
	Strongly Convex Functions
	Smooth Functions
	Nonsmooth Convex Functions

	Gradient Method
	Newton's Method
	Classical Newton's Method
	Globally Convergent Variants

	Quasi-Newton Methods
	General Scheme
	Updating Formulas
	Convergence Results

	Subgradient Method
	Ellipsoid Method
	General Cutting Plane Scheme
	Ellipsoid Method

	Classical Quasi-Newton Methods
	Convex Broyden Class
	Unconstrained Quadratic Minimization
	Strongly Self-Concordant Functions
	Minimization of General Functions
	Discussion
	Appendix
	Proof of Lemma 3.1.1
	Auxiliary Operator Inequality

	Greedy Quasi-Newton Methods
	Greedy Quasi-Newton Updates
	Unconstrained Quadratic Minimization
	Minimization of General Functions
	Comparison with Classical Methods
	Numerical Experiments
	Regularized Log-Sum-Exp
	Logistic Regression

	Discussion

	Subgradient Ellipsoid Method
	Convex Problems and Accuracy Certificates
	Description and Examples
	Establishing Convergence of Residual

	General Algorithmic Scheme
	Main Instances of General Scheme
	Subgradient Method
	Standard Ellipsoid Method
	Ellipsoid Method with Preliminary Semicertificate
	Subgradient Ellipsoid Method

	Constructing Accuracy Semicertificate
	Augmentation Algorithm
	Methods with Preliminary Certificate
	Standard Ellipsoid Method

	Implementation Details
	Explicit Representations
	Computing Support Function
	Computing Dual Multipliers
	Time and Memory Requirements

	Discussion
	Proof of Lemma 5.3.2
	Support Function and Dual Multipliers: Proofs
	Auxiliary Operations
	Computation of Dual Multipliers

	Conclusions
	Summary
	Directions for Future Research

	Bibliography

