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Abstract—This work presents an automated analysis 

algorithm to detect action potentials (APs) in a nerve and 

quantify its activity. The algorithm is based on template 

matching. The templates are automatically adapted to 

individual AP shapes that vary depending on the nerve fibers 

from which the AP originates, and the recording setup used. The 

algorithm was validated by quantifying vagus nerve activity 

recorded during in vivo experiments in a rat model. The 

MATLAB version of the code is available in open access on 

GitHub1. 

Keywords—Action Potential detection, algorithm, vagus 

nerve, signal processing, template matching, clustering. 

I. INTRODUCTION 

The nervous system transmits information through action 
potentials (APs). AP recording can be challenging as the 
amplitude of neural signals recorded with cuff electrodes is 
typically 3 – 10 µV [1]. Although above the noise level of the 
electrode interface (< 0.5 µVRMS [2]), this is much lower than 
the amplitude of many artifacts (e.g., muscular artifacts are up 
to typically 15 mVp-p [1]). Besides, a typical recording can 
contain around 100 APs per second [3]. Manual counting is, 
therefore, nearly impossible for long-term recordings.  

Algorithms are required to analyze the nerve activity, 
which is usually mainly performed by detecting the occurring 
APs and quantifying them in terms of frequency and 
amplitude. Besides, classifying them according to their shape 
could lead to discrimination among propagation speed and, 
therefore, discriminate the types of fibers that are activated 
[4]. 
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AP detection algorithms have been widely reported in the 
literature. They can be roughly placed into three categories: 
simple amplitude thresholding [5], signal decomposition 
according to the frequency components [6], [7], and template 
matching [8], [9].  

For single amplitude thresholding, the APs are expected to 
have an amplitude greater than the background level.  AP can 
thus be distinguished using a minimum amplitude threshold. 
Harrison et al. proposed a circuit-integrated algorithm [5]. The 
main drawback of this technique is that the ground hypothesis 
is not always verified since the signal-to-noise ratio of 
recorded nervous signals varies greatly for each application 
(e.g. -30 dB reported for the human tibial nerve [10] and 1.2 
to 3.8 dB in sciatic nerves of rats [11]). Besides, transient 
artifacts and interferences are often as large or larger than APs. 

In the signal decomposition method, the signal is 
decomposed into different time-frequency components to 
separate the background and noise from the APs. Algorithms 
using an empirical mode decomposition of the signal, based 
on the band-limited frequential composition of APs, have 
been previously reported [6], [12]. The first four intrinsic 
mode functions of the empirical mode decomposition, 
containing the components of the APs, are kept.  APs are 
detected when the amplitude of these layers is higher than a 
given threshold. This method assumes that the 
background/noise has a Gaussian distribution (verified in a 
first approximation [13]) and that the AP amplitude is higher 
than the background and noise. This method does not require 
prior knowledge of the shape of the APs, except for their main 
frequency components. It yields better results than a simple 
amplitude thresholding method [12]. However, artifacts 
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containing components in the same bandwidth as the APs 
cannot be filtered easily. 

For template matching, a similarity measure is used to 
compare patterns in the signal with a template expected to 
represent the AP's shape [8], [9]. A thresholding is applied to 
this similarity measure to detect APs. However, the shape of 
the APs can vary widely depending on the activated nerve 
fibers and the recording setup that is used [4]. Hence, finding 
a proper template that suits all cases can be difficult. 

We present here an algorithm based on template matching 
that can be used for processing other neural recordings, by 
applying automatic template adaptation to each individual AP 
shape. The method was validated in vivo with acute vagus 
nerve electroneurograms (VENG) recorded in a single rat.   

The MATLAB R2021b (Mathworks, USA) version of the 
code is available in open access on GitHub2. 

II. MATERIALS AND METHODS 

The AP detection algorithm was inspired by an interictal 

spike detection algorithm used in electroencephalogram 

recordings [14], adapted here for detecting APs in nerve 

recordings. There are three main parameters, in the form of 

thresholds. We performed an in vivo trial to assess the quality 

of the output. 

A. AP Detection Algorithm Workflow 

The workflow of the algorithm is presented in Fig. 1.  

The algorithm works in six steps. (1) The signal is filtered. 
(2) Templates of the targeted pattern are loaded. (3) APs are 
detected with the highest detection sensitivity settings. (4) 
Detected APs are separated into clusters according to their 
shape. The number of clusters is automatically adjusted to the 
number of major shapes. (5) Centroid shapes of the 
compounded clusters are used as templates for more specific 
AP detections, therefore adapting to the types of AP 
morphology. (6) Detected APs are summed and further 
validated based on their characteristics. 

1) Signal filtering 
First, the signal is digitally filtered in a tunable bandpass 

(second-order Butterworth back/forth zero dephasing). The 
default bandwidth is set to 300 Hz - 3,000 Hz.   

2) Creation of the generic templates 
The user defines the generic templates. By default, a single 

generic template has been used, presented in Fig. 2a. This 
template was based on a typical vagus nerve AP shape [4].  

Alternatively, multiple templates can be chosen. In that 
case, the following steps of the algorithm are individually 
computed for each template and detected APs are regrouped. 

3) Generic template matching detection 
A first detection is performed by comparing the generic 

template with the nerve recording. The cross-correlation 
quantifies the similarity between the generic template and a 
sliding window of the signal. The examined frame and the 
template are normalized in amplitude, limiting the correlation 
value to the range [0, 1] (one corresponding to a perfect 
match). This allows focusing on the shape of the AP while 
removing the impact of the absolute amplitude, which largely 
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fluctuates depending on the recording setup. Potential APs are 
detected when the correlation is above a given threshold.  

The amplitude of each potential AP is estimated by the 
difference between the maximum and minimum values in a 
2 ms window around the top of the correlation. The amplitude 
of each potential APs is compared to the amplitude of the 
background signal, estimated by the local RMS amplitude on 
a 0.5 s window. Potential APs are discarded either if they are 
too large – considered as artifacts – or too small – considered 
as noise. 

4) Clustering 
 The APs are clustered in the temporal domain using the 

K-means method. This clustering method aims to group the 
APs with the same shape, determining the patterns that 
repeatedly occur in the neural signal. The number of clusters 
is automatically determined to adapt to the number of AP 
shapes – and hence of activated fiber types – in the recording. 
In that regard, our method does not require prior knowledge 
on the number of different APs morphologies within the 
recording to determine the number of clusters needed for the 

 
Fig. 1. Workflow of the algorithm: (1) Signal filtering; (2) Creation of the 

generic templates; (3) Generic template matching detection; (4) Clustering; 

(5) Subject-specific template matching detection; (6) Characteristic-based 
APs validation. 

   

   

   

   

   

   



detection. Starting from two clusters, the number of clusters 
increases until the APs in each cluster are believed to be too 
similar. This was estimated with a maximum mean 
discorrelation within each cluster lower than a given 
threshold. Clusters representing less than 1 % of the total APs 
processed are rejected as considered being non-repetitive 
enough to be physiological.  

5) Nerve and recording setup specific template 

matching detection 
A second AP detection is performed, similarly to the 

detection performed in step 3 with the centroid shapes 
obtained by the clustering method (step 4) used as the new 
APs templates.  

6) Characteristic-based APs validation 
Potential APs, detected during the previous step, are 

further validated based on their characteristics. The amplitude 
and duration of the AP are extracted for each potential AP.  
The APs that do not fit the amplitude are discarded. 

B. Major Parameters 

The three main thresholds are the two cross-correlations 
from the detections and the mean discorrelation level admitted 
within a cluster. More permissive parameters (i.e., lower 
cross-correlation thresholds and higher mean discorrelation 
authorized) will therefore allow the detection of a broader 
range of APs with different shapes but detects more false APs 
too. 

Even if a two-step detection algorithm is used (step 3 and 
step 5) to adapt to each AP shape, the initial APs found are 
still influenced by the generic templates given as input during 
step 3. The extent to which the detected APs are related to the 
generic templates depends on the correlation thresholds used 
during the first and second detections (steps 3 and 5). In that 
regard, the algorithm is flexible and can be adapted to various 
applications. For instance, when choosing high correlation 
thresholds (i.e., focusing on APs that are similar to the generic 
template), one could either focus on the activity of specific 
fibers like in [4], work with different types of nerves, or adapt 
to different electrode spacings when recording in bipolar 
mode.  Multiple templates can also be used to cover a range 
of activities at once without overlapping duplicates. A 
standard set of values for the in vivo validation is 0.8 and 0.85 
for the first and second correlation threshold respectively, and 
0.14 for the mean discorrelation. 

C. In Vivo Validation 

An acute VENG signal recorded on one rat was processed 
to validate the algorithm. There is unfortunately no “gold 
standard” in AP analysis. However, the vagus nerve is known 

to regulate the respiratory rhythm [15]. Therefore, the 
presence of a frequency and an amplitude modulation 
component following the respiratory rate was chosen as a 
criterion for assessing detected APs. 

The measurements were performed on one male Wistar rat 
(2.5 months and 300 g). The rat was injected with Xylazine 
7 mg/kg and Ketamine 100 mg/kg intraperitoneally (i.p.). A 
tripolar cuff electrode built following [16] was implanted on 
the cervical left vagus nerve. The two external electrodes are 
separated by 8 mm. In addition to the VENG, the 
electrocardiogram (ECG) was recorded from which the 
reference rate could be estimated. This experimental 
procedure has been approved by the University Health 
Sciences Sector Laboratory Animal Protection Committee 
(2018/UCL/MD/001). A detailed surgery description was 
previously reported in [17], [18].  

The VENG hardware used for signal conditioning was a 
Sallen-Key bandpass filter 12-10000 Hz, Gain 900. For ECG, 
a Sallen-key bandpass filter 15-7000 Hz, Gain 900. The 
signals were digitized with a USB-6212 multifunction I/O 
device (National Instruments, Austin, USA) for an overall 
resolution of 0.17 μV/bit. The VENG was recorded with a 
sampling rate of 80 kHz and the ECG at 40 kHz, both for 3.5 
minutes. 

MATLAB R2021b (Mathworks, USA) was used to 
process the signal. The respiratory rate was derived from the 
ECG (referred to as ECGr) as developed in [19], [20]. The 
single initial template used, and the centroids of the clustering 
applied to the APs detected in step (3) are presented in Fig. 2b. 

III. RESULTS 

The electrode loop impedance measured in a saline 
solution was 15 kΩ ± 5 kΩ, in line with our experience 
(10 kΩ - 20 kΩ . Our cuff electrode was subsequently 
implanted. The VENG consisted of high and lower amplitude 
bursts synchronous to respiration and heartbeat, respectively, 
as previously reported [17]. A sample of the signal is 
presented in Fig. 3. Bursts consisted of predominantly positive 
and negative APs with an amplitude of ~ 20 µVpp.  

An illustration of the filtered VENG and detected APs are 
presented in Fig. 4. By computing the mean frequency and 
mean amplitude of the APs on a 0.15 s sliding window, we 
can analyze the modulation of the neural data.  

The FFT spectrum of the ECGr, chosen as a reference 
physiological signal, shows a respiratory rhythm of 0.98 Hz 
(Fig. 5c). The APs detected by the algorithm show modulation 
in amplitude and frequency with main intrinsic frequency 
components at 0.986 Hz and 0.977 Hz, respectively (Fig. 5a-

 
Fig. 2. Templates for the two detection. On the left, the generic template 

used for the first detection (step 3). On the right, the centroids for the 
clustering used as templates for the second detection (step 5). 
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Fig. 3 Acute VENG signal. Respiratory-related bursts are visible. 
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b). The three modulations are clo e to e ch other’ , supporting 
the genuine detection of the APs.  

IV. DISCUSSION 

We provided an algorithm with simple and efficient 
methods to detect and cluster the APs, based on [14].  

The algorithm could be adapted to other types of nervous 
activity by changing the template of the first detection. The 
parameters that can be modified are the template, the 
correlation thresholds and the maximum discorrelation within 
a cluster.  

One of the limitations is that the algorithm works only 
offline, limiting its use to signal post-processing. Further work 
could adapt the algorithm to online processing. One way to do 
so would be to choose the specific templates during a learning 
phase (still offline). These specific templates would be stored, 
and only the second detection would be performed online. 
This would keep the same procedure and yet drastically reduce 
the required computing power. 

To improve the detection and the classification of APs, 
other features and clustering methods could be investigated. 
Clustering using the fuzzy C-mean with principal component 
analysis, or the superparamagnetic clustering with wavelet 
decomposition coefficients, are developed in [21] and [22] 
respectively and could be adapted here.  

The validation was made on acute data, detected APs 
showing amplitude and frequency patterns similar to the 
ECGr. More robust trials will follow on more specimens and 
chronic activity,  with other physiological markers like the 
circadian rhythm [23].  

V. CONCLUSION 

We proposed an action potential detection algorithm with 
a versatile template matching and validated it with an acute 
VENG analysis. It was developed as part of the investigations 
performed by our group in neural data processing [4], [14], 
[17], [18], [23], [24]. The algorithm is fully automated, and 
default parameters are proposed.  

We will use the proposed AP detection algorithm to 
analyze nerve activity in an epileptic framework, in line with 
our previous works. Besides, our group is also investigating 
the use of gastric electrical stimulation (GES) as a minimally 
invasive treatment for obesity [25]–[28]. In that frame, 
automated AP detection to quantify vagus nerve activity 
modulation may be used as an indicator to assess the effects 
of GES and hence optimize the treatment.  

More generally, this AP detection algorithm could prove 
useful in many other applications in neurology where neve 
activity should be quantified. Adapting to each specific study 
only requires modifying the generic correlation templates and 
possibly adapting the three major parameters. 
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