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Abstract

Network to Transaction (NVT) ratio is a measure that describes the relationship

between transaction volume and market capitalization, and that may serve as an

indicator for the valuation of a cryptocurrency. We build a connectedness network

connecting 39 cryptocurrencies based on mutual contributions to the variances of

forecast errors for NVT ratios. We find that NVT connectedness is not related

to market capitalization, as we have large and small cryptocurrencies by market

cap that propagate large NVT shocks ( eg Litecoin, Dogecoin, Bitcoin Cash(bch),

OMG Network and Decentraland). The largest transmitter of NVT shocks is OMG

Network, which receives little public attention. Cryptocurrencies relying on proof

of stake as a consensus mechanism are the smallest receivers of NVT spillovers from

other cryptocurrencies. These assets are also the least interconnected, which makes

them attractive from a risk diversification point of view. This complements the

energy efficiency of PoS compared with proof of work.
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1 Introduction

Cryptocurrencies, unlike traditional currencies and assets, are decentralized digital cur-

rencies or assets that are not regulated by any central institution or government. The

aim is to ensure anonymity, low cost and fast speed of peer-to-peer transactions based

on crypto protocols, although this may be realized only to some extent in most cases,

see e.g. Härdle et al. (2020). Moreover, high volatility and limited liquidity of smaller

cryptocurrencies is an issue that needs to be taken into account in investment strategies,

as emphasized by Trimborn et al. (2020) and Petukhina et al. (2020).

In the last few years, cryptocurrencies have witnessed unprecedented growth in price

and market capitalisation, where the total market capitalization has surpassed $2 Trillion

in 2021, with more than 4,000 different cryptocurrencies in existence as of January 20221.

The top 20 cryptocurrencies make up nearly 90 per cent of the total market. One reason

for the large number of existing cryptocurrencies is that they are relatively costless to

create, while a large portion of them has little to no trading volume, see e.g. Härdle et

al. (2020). As a result, many investors are concerned with the valuation of digital assets

with an incentive to detect whether it reflects a fundamental value, or whether they are

just forming speculative bubbles, see e.g. Bouri et al. (2017) and Cheah and Fry (2015).

In 2017, coinmetrics.io introduced the network value-to-transaction (NVT) ratio as a

method of valuing crypto assets2. It is defined as the ratio of market capitalization and

the on-chain transaction volume and can be viewed as the analogue of a price to earnings

ratio for stocks. It tracks the daily USD volume transmitted through the blockchain and

measures this against the market value (as measured by market capitalisation). The NVT

metric quantifies essentially the market valuation of the network against its usefulness as a

payment network, where usefulness is approximated by the transaction volume. Therefore,

it helps investors in spotting bubbles and investment opportunities. High NVT ratios hint

at possible overvaluations, low ratios at undervaluations. In this study, we will be using an

1see e.g. coinmarketcap.com
2see https://coinmetrics.io/an-introduction-to-mtv/
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adjusted measure of the NVT metric, proposed by coinmetrics in 20183, because from the

perspective of an analyst or economist it is useful to isolate only the meaningful economic

transactions to render a more robust analysis of the economic volume. This adjusted

measure attempts to correct the raw NVT measure for change transactions that are not

genuine payment transactions.

Based on the NVT ratio, we construct a network, aiming to explore, identify and evalu-

ate network connectedness or spillovers among different cryptocurrencies at a system-wide

level. Investigating network connectedness contributes to understanding the information

transmission mechanism in the cryptocurrency market and provides useful information

for market participants such as investors to adjust their portfolio based on their risk

preferences. Furthermore, this is informative for miners, as the mining process requires

significant energy consumption and large material purchase costs. From a risk manage-

ment perspective there is an incentive to mine the less interconnected cryptocurrencies,

because mining rewards are typically payed in the own cryptocurrency, for example cur-

rently 6.25 BTC for mining one block of bitcoin transactions. Thus, the incentive is to

obtain diversified risks that arise from price fluctuations in the crypto market.

In order to investigate the diversification and hedging traits of the aforementioned

cryptocurrencies, we use the framework of vector autoregressive models, see e.g. Sims

(2002). Since we are analyzing high-dimensional data, we exploit the least absolute shrink-

age and selection operator (LASSO) method, which imposes sparsity on the estimated

coefficients and increases the prediction accuracy and interpretability of the statistical

model. We then use the concept of forecast error variance decompositions to build a di-

rectional network of connectedness, reflecting the proportions of transmitted or received

variances that are attributed to other cryptos. Using the spillover index approach and

its variants (Diebold and Yilmaz, 2009, 2012, 2014), we measure both total and direc-

tional network connectedness across the cryptocurrencies. This provides information, for

example, about directional causalities, in a predictability sense, of NVT ratios.

In order to overcome the limitations of the forecast variance decomposition, Diebold

3see https://coinmetrics.io/introducing-adjusted-estimates/
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and Yilmaz (2012) have extended the spillover index framework by using the generalized

variance decomposition (GVD) framework of Koop et al. (1996) and Pesaran and Shin

(1998) which is independent of ordering, i.e., the ordering of the variables in the VAR

does not matter. This method is useful when we have a large number of data for which

it is unnecessary to specify a structural VAR model. However, this comes at a cost,

because the shocks are not necessarily orthogonal, and the sums of forecast error variance

contributions are not necessarily unity, requiring additional standardizations.

The literature on cryptocurrencies has seen a surge recently. A good overview is given

by Elender et al (2016). For example, Corbet, Meegan, Larkin, Lucey, and Yarovaya

(2018) have used the spillover index approach to investigate the relation across three

of the most popular cryptocurrencies (Bitcoin, Ripple, and Litecoin) and a variety of

standard financial assets (gold, stock, SP500). Their results suggest a relative isolation

of these three popular cryptocurrencies from the standard assets. As a consequence, this

may offer diversification benefits for investors with short investment horizons. The results

of Lehner et al. (2021) suggest that the largest cryptocurrencies are still too volatile to

justify their use in funding science or higher education. They call for more advanced

valuation metrics to attract more institutional investors to this ecosphere.

Some papers have focused on examining the evolution of cryptocurrencies as it has been

characterized by a bubble-like behavior and extreme volatility. For example, Kjaerland

et al (2018) analyze bitcoin’s price dynamics using classical time series models. Hafner

(2020) employed recursive unit-root type bubble tests, proposed initally by Phillips et al

(2011) and Phillips et al (2015), extended to the case where volatility varies over time.

This was then applied to 11 of the largest cryptocurrencies and the CRIX index. And the

results confirm the presence of bubbles, but much less clear than under constant volatility.

Furthermore, attempts have been made to link potential bubbles to investor sentiments,

available for example via social networks. For crypoassets this has been emphasized by

Chen et al (2018). Chen and Hafner (2019) defined a way to test for speculative bubbles

based on StockTwits sentiment indices, see also Nasekin and Chen (2018). The latter

is used as a transition variable in a soft transition autoregression. After applying the
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model to the CRIX index, they found that the explosive price dynamics detected locally

is closer to the notion of a speculative bubble motivated by exuberant sentiment. Using

a different approach, Fry and Cheah (2016) have developed a model for financial bubbles

and crashes and that was based on statistical physics and mathematical finance.

Only few papers pay attention to the relations between different cryptocurrencies.

Shuyue Yia, Zishuang Xua, and Gang-Jin Wang (2018) applied the spillover index and its

variants to the volatility connectedness in the cryptocurrency market. They have exam-

ined the static and dynamic volatility connectedness across eight different cryptocurren-

cies. For variance decompositions, they rely on the generalized variance decompostition

framework of Koop et al. (1996) and Pesaran and Shin (1998). Their results indicate that

the chosen cryptocurrencies are interconnected and the cryptocurrencies with the highest

market capitalization are the ones that are more likely to propagate volatility shocks to

others. It is remarkable that Bitcoin is not the dominant player of volatility connectedness

in the cryptocurrency market and that some cryptocurrencies are significant transmitters

of volatility connectedness and that they even have a larger contribution of volatility

spillovers to others.

In this paper, we investigate the connectedness among 39 cryptocurrencies based on

the NVT ratio. We do not distinguish between the different types of cryptocurrencies,

assets and tokens, as they are numerous and the borders are fluid, and for simplicity call

them cryptocurrencies or cryptos. For the variance decomposition, we use independent

componenet analysis (ICA), which will be more effective than the approach of Diebold

and Yilmaz (2012) since it enables the identification of the underlying independent shocks,

also called structural shocks, and it does not depend on the ordering of the VAR elements.

Its fundamental difference to previous methods is in the assumption of non-Gaussianity,

which enables us to find the original components that are stochastically independent

from each other. In our case, the method is justified by the fact that all of our shocks

are significantly non-Gaussian. The next section introduces our methodology. We then

present our data and the empirical results of the application, and Section 4 summarizes

the results and concludes.
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2 Methodology

2.1 The model and estimation

Suppose we have N cryptoassets. We model here the NVT yit, i = 1, . . . , N , of crypto i

at time t, via a vector autoregressive model (VAR) of the form

yt = µ+
K∑
j=1

Aj(yt−j − µ) + εt (2.1)

where εt is a stochastic error term and Aj are N × N parameter matrices. The error

terms satisfy E(εt) = 0 and E(εtε
′
t) = Ω, where Ω is an N ×N positive definite variance-

cobvariance matrix. Furthermore, E(εtε
′
t−k) = 0, for any non-zero k. There is no serial

correlation in the error terms.

We assume stationarity of the time series yt, so that the usual stationarity conditions

of the parameter matrices Ai apply. To determine the true lag order K for the model,

Lutkepohl (1991) pointed out that selecting a higher order lag length than the true lag

length increases the mean square forecast errors of the VAR and selecting a lower order

lag length than the true one usually causes serial correlated errors. There are several sta-

tistical information criteria for selecting a lag length such as Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC), final prediction error (FPE), and Hannan-

Quinn Information Criterion (HQC). Usually, the AIC is preferred over other criteria, due

to its favourable small sample forecasting features. The BIC , HQ, and FPE however,

work well in large samples and they are consistent estimators of the true order.

For large N , there would be too many parameters to estimate for reasonable sample

sizes. To tackle this issue we will use LASSO for variable selection. The Lasso imposes an

L1-penalty to the least squares loss function when estimating the parameters, to shrink

some of them to zero, hence eliminating the corresponding variable. The choice of the

penalty parameter is done by five-fold cross-validation. For instance, if information criteria

suggest to choose a lag order of K = 3. We then estimate the model by minimizing
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equation by equation the following LASSO criterion

T∑
t=1

ε2it + λi

N∑
j=1

3∑
k=1

|Aijk|, i = 1, . . . , N

with respect to the coefficients Aijk, where the tuning parameters λi is chosen by five-fold

cross-validation.

2.2 Forecast error variance decomposition

In the following, we study the implications of the estimated parameters for the decom-

positions of the variances of forecast errors, in the spirit of Diebold and Yilmaz (2014),

which allows us to quantify the network relationships between cryptocurrencies.

It is important to have an orthogonal system, as it simplifies the calculation of the

variance decomposition and ensures that the variance of a weighted sum is equal to a

weighted sum of variances. However, the error terms εt of the VAR model are typically

non-orthogonal. For that reason, we have to identify uncorrelated structural shocks from

the residuals of the estimated VAR model. The original Cholesky-factor identification

popularized by Sims is often used, but this method is sensitive to the ordering of the

variables in the system.

An alternative of finding the underlying structural shocks is based on the independent

component analysis (ICA) method which aims to find linear combinations of the error

term εt that are independent, or at least as independent as possible. It is well known

that independent components are identified under non-Gaussian distributions. To find

the transformed error term ut, we need to find the linear combination v of the error term

εt,

ut = v′εt

such that Var(ut) = IN , where IN is the identity matrix, and uit is independent from ujt,

i 6= j.

A pre-processing is necessary before doing ICA to center and whiten the residuals. As

the residuals of the estimated VAR model are already centered at zero by construction,
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we only need to orthogonalize them. The standardization of shocks ut is defined as

ũt = Ω−
1
2 εt

where Ω−1/2 is the inverse of the symmetric square root of Ω, based on the spectral

decomposition of Ω. As a result, these ũt are ”pre-whitened” in the sense that their mean

is zero and variance-covariance equal to the identity matrix. However, they are only

independent under Gaussianity, which is excluded by our assumptions.

After the pre-whitening, we extract structural innovations by Independent Component

Analysis (ICA), which uses an orthogonal rotation matrix R, called the mixing matrix,

given by the ICA algorithm to rotate ũt such that:

ut = Rũt

where the components of ut are maximally independent. Therefore,

ut = Σ−1/2Rεt

The rotation is performed by maximizing the distance from Gaussianity of the projected

data in order to recover the original independent components. In particular, we use

the so-called FastICA algorithm which identifies independent shocks in a unique way.

FastICA is an efficient and popular algorithm introduced by Aapo Hyvärinen. As most

ICA algorithms, FastICA seeks an orthogonal rotation of the pre-whitened data via a

fixed-point iteration scheme that maximizes a measure of non-Gaussianity of the rotated

components. We could have used alternatively the testing approach of Hafner et al.

(2022), but as they show the differences to FastICA are typically small.

To obtain the forecast error variance decompositions, we use the VMA(∞) represen-

tation of the VAR(K) model. So, for example, if we consider the lag order of 2, then

starting from the reduced form VAR(2) model in (2.1), we may obtain the infinite order

VMA representation,

yt =
∞∑
j=0

Φjεt−j
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with coefficient matrices Φj that, for our VAR(2) model, can be obtained recursively as

Φ0 = IN , Φ1 = A1, Φ2 = Φ1A1 + A2, . . . ,Φj = Φj−1A1 + Φj−2A2, . . ., see e.g. Lütkepohl

(2005). Based on the ICA, we can rewrite the model as

yt =
∞∑
j=0

Θjut−j

where Θj := ΦjΩ
1/2R′ and ut ∼ (0, IN). All aspects of connectedness are contained in

this representation: the contemporaneous aspects are explained by Θ0 and the dynamic

ones are summarized by the other coefficients (Θ1, Θ2,..).

The proportion of the h-step ahead forecast error variance of crypto i accounted for

by innovations in crypto j is then given by

ωij,h =
h−1∑
k=0

θ2ij,k/
N∑
j=1

h−1∑
k=0

θ2ij,k

where
∑N

j=1 ωij,h = 1 by construction. A large proportion ωij,h would then indicate that

crypto i’s forecast uncertainty, at a given time horizon, is to a large part explained by

another crypto j, and can be interpreted as a spillover effect from crypto j to crypto i.

2.3 Network Connectedness

The analysis can be refined following Diebold and Yilmaz (2014) by viewing variance

decompositions as weighted directed networks. Denote by Wh = (ωij,h) the matrix con-

taining all individual elements ωij,h. Each element of Wh measures the pairwise directional

connectedness from j to i,

CH
i←j := ωij,h

Since our variance decompostion matrix is not symmetric , CH
i←j 6= CH

j←i in general.

Therefore, we have N2 −N different pairwise directional connectedness measures.

The ”to” measure is defined as the total direction connectedness to others from j,

which measures the sum of the contributions of crypto j to all other cryptos’ forecast

errors, and it can be viewed as a ”to”-degree of a node (i.e. a crypto) of the network:

Ch
·←j := ω·j =

N∑
i=1,i6=j

ωij,h

8



Likewise, the ”from” directional connectedness is defined as the total direction con-

nectedness from others to i, which measures the sum of the contributions of all other

cryptos j to explain the forecast error variance of crypto i:

Ch
i←· := ωi· =

N∑
j=1,j 6=i

ωij,h

Therefore, we have 2N total direction connectedness measures, N of which explain

the transmitted shocks to others, and the remaining N explain the received shocks from

others. Consequently, the net total direction connectedness is equal to

CH
i = CH

·←i − CH
i←·

In total there are N(N−1)
2

net pairwise directional connectedness measures, and N net total

directional connectedness measures.

Finally, the total connectedness measure for the network of cryptos is the grand total

of the off-diagonal elements in the variance decomposition matrix, which is given by

CH : ω =
∑N

i=1 ωi· =
∑N

j=1 ω·j. This total connectedness mean degree of the network.

The larger the mean degree, the greater the overall network connectedness.

In the following, we will use this methodology to analyse in detail the network con-

nectedness of cryptocurrencies, identify important spillover transmitters, and estimate

the total connectedness of the system.

3 Data and Empirical Analysis

In the first step, for this empirical analysis, data was collected from the Coinmetrics.io

website. We first selected the 500 cryptocurrencies and tokens having the largest market

capitalization by January 2021. As this is at the end of the sample period, the resulting

selection could be due to survivorship bias, which we acknowledge as a potential limitation

of our methodology. We include assets of various characteristics such as consensus mech-

anism or utility. On the basis of these assets, we excluded the ones that were introduced
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after 2018, as the necessary amount of historical data would be too short to reliably esti-

mate time series models. Also, we discarded cryptos that disappeared after a while, and

those with consecutive missing values of more than ten days. Our sample period is from

November 11, 2018 to February 16, 2021, so that each NVT series comprises 825 observa-

tions. Table 4.1 reports the finally selected 39 cryptocurrencies including symbols, market

capitalizations (MCs) and rankings. Hence, we extract N = 39 cryptocurrencies of the

500 largest cryptocurrencies by market capitalizations which have been publicly traded

for at least two consecutive years and whose NVT ratio is provided by coinmetrics.io.

Figure 3.1 shows the daily NVT series for six selected cryptocurrencies.

Figure 3.1: Evolution of NVT ratio for six cryptocurrencies from November 2018 to

February 2021

In terms of missing values, there was only one value missing for Verge (xvg), which we
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imputed by the median. We show in Table 4.2 the descriptive statistics of the daily NVT

series for the cryptocurrencies during the entire period. To save space, only the statistics

for the 26 largest cryptos are reported.

We observe a remarkable gap between mean and median for some of the time series

which indicates that the data are skewed, or that it may be due to the presence of outliers

in the data. For instance, for Huobi Token (ht), the mean is equal to 7722.28 while the

median is equal to 1039.16. We would also like to highlight the enormous differences in

levels between the medians for each cryptocurrency. For example, the NVT median of

USD Coin(usdc) and Stellar (xlm) are equal to 6.81 and 899.69, respectively.

We can observe that Bitcoin, ethereum, Tether(usdt), USD Coin (usdc), Bitcoin

cash(bch), and Zcash (zec) have the lowest volatility compared with other cryptocur-

rencies, confirming their status of relatively mature assets. Low volatility is of course an

inherent feature of stablecoins such as Tether (usdt) and USD Coin (usdc). On the other

hand, we see that the volatility of the NVT series Huobi Token (ht), Synthetix (snx),

Augur (rep), Aragon (ant) and Gnosis (gno) is extremely high.

Figure 4.3 shows the correlation matrix of the adjusted NVT series. Since we have or-

dered the cryptocurrencies by market capitalization, we see from this heatmap that most

of the cryptocurrencies with the highest market capitalization, such as bitcoin, ethereum,

Ripple(xrp, Cardano(ada), Litecoin (ltc), Chainlink(link), Stellar(xlm) are strongly cor-

related with each other. On the other hand, the ”small cap” cryptocurrencies such as

gas and elf have a very low correlation with other cryptocurrencies. Moreover, we can

observe that there are some large cap and medium cap cryptos which are correlated with

roughly all the other assets, such as xrp, Cardano(ada), Chainlink(link), Stellar(xlm),

USD Coin(usdc) from the first tier (large cap), and Basic Attention Token(bat), Decen-

traland(mana), 0x (zrx) and OMG Network(omg) from the second one (medium cap).

To detect whether or not there is seasonality in the adjusted NVT series, we have

checked their autocorrelation function (ACF). Figure 4.3 shows different ACF plots for 9

selected cryptocurrencies. A weekly seasonality pattern is clearly distinguishable for all

selected series. We use a seasonal adjustment for each series to filter out the seasonality,
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and the adjusted time series are shown in Figure 4.2.

We tested stationarity by using an Augmented Dickey-Fuller test for each time series,

the results of which are reported in Table 4.3. We find that the vast majority of adjusted

NVT series is stationary. For nine series, the null hypothesis of a unit root is not rejected

at the 5% level, but this may be due to low power of the ADF test. We therefore continue

to use these series without any further adjustments.

3.1 VAR-LASSO

To select the order of the VAR model, we use the smallest lag K such that the residual

correlations does not show any significant serial correlation, using a multivariate port-

manteau test of order ten, see Lutkepohl (1995). This results in a lag order of K = 3.

Using VAR with large samples (39 cryptocurrencies) will lead to over-parameterization,

as the VAR model has K(N2 + 1) parameters. In our case, we end up with 4335 regres-

sion parameters. Therefore, we use the least absolute shrinkage and selection operator

(LASSO) method to reduce the dimensionality. We then estimate the model by minimiz-

ing equation by equation the LASSO criterion to shrink some of the parameters to zero.

To find the optimal penalty parameter, we used five-fold cross-validation (CV). Figure

4.4 shows the estimated coefficients, where a large number has been shrunk to zero. We

see that all NVT series are mostly influenced by their own lagged values, but there are

quite a few lagged cross-terms that appear important. These spill-over effects are what

we are looking at in the variance decompositions.

In terms of model diagnostics, we first started by checking the serial correlation using

Ljung-Box test of residual autocorrelation, and the results of this test is shown in Table

4.4. The results indicate that we have just two cryptocurrencies whose residuals do show

signs of serial correlation (Aelf(elf), and gas), which from a global perspective appears

acceptable given the level of the test.

Second, we applied a normality test using the Jarque-Bera test to check the residual

distribution, see Table 3.1. The test clearly rejects the null hypothesis of a Gaussian
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distribution at a 5% significance level. This confirms the pertinence of an ICA approach

for the identification of structural innovations, as this requires nonnormality of the data.

Table 3.1: Normality test using Jarque-Bera

Test statistic Critical value p-value Df

2.785e+06 101.9 0.000 80

The correlation matrix of the residuals is shown in Figure 4.5. Clearly, there are

some strong correlations in the residuals, and the correlation tends to be higher among

the large cryptocurrencies, based on their market capitalization. For example, there are

higher correlations between bitcoin, ethereum and Ripple than between smaller ones such

as gas, fun, or gno.

3.2 Forecast error variance decomposition

We now proceed to the forecast error variance decomposition of the estimated VAR-

LASSO model. The first step is to orthogonalize the residuals. We then use the FastICA

algorithm in python, which maximizes the discrepancy from Gaussianity of the projected

residuals in order to recover the structural innovations which are statistically independent.

We considered estimating network connectedness at the forecast horizon h = 10, which

can be considered a medium term horizon. However, longer horizons would essentially

yield the same results, as the variances have converged almost to the unconditional (long-

term) error variances at horizon h = 10, due to the low persistence in the estimated

VAR(3) model.
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Figure 3.2: Heatmap that explains the NVT connectedness table for cryptocurrencies

The heatmap of the proportion of forecast error variances explained by other cryptos,

Wh, is shown in Figure 3.2. We first discuss the diagonal elements, most of which are

above 70%. This means that by far the largest proportions of NVT forecast error variances

are explained by the own history of each NVT series. This is not surprising, as the most

important and significant elements of the estimated VAR parameter matrices are the

diagonal ones.

We now discuss the off-diagnonal elements of Wh which represent the pairwise direc-

tional connectedness. We observe that there are some cryptocurrencies that are significant

transmitters of this network connectedness. For example, we see that the innovations

to bch explain 27.906% of the error variance in forecasting btg’s NVT value ten days

ahead. Moreover, it contributes 24.516% of explaining the error variance in forecasting

Ethereum(etc)’s NVT value ten days ahead.

Also, one of largest pairwise directional connectedness is from ltc to rep with 29.372%,

while the pairwise directional connectedness from etc to bch is only 0.07%, so that the net

pairwise connectedness from etc to bch is 29.3%. The second largest pairwise directional
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connectedness is from Cardano(ada) to ant ( 24.001%). In return, the pairwise directional

connectedness from ant to ada is only 0.001%. Thus, there is a strong net spillover in

NVT from Cardano to ant. Furthermore, the innovations to snt contribute 19.197% of

the error variance in forecasting ten days ahead of neo’s NVT value. And it contributes

25.988% of the error variance in forecasting 10 days ahead of (elf)’s NVT value.

Table 3.2: The from-connectedness, to-connectedness and net-connectedness of the cryp-

tocurrencies

btc eth usdt xrp ada ltc link bch xlm usdc doge xtz neo

From 2.965 12.822 11.491 20.591 0.007 33.590 0.012 0.888 0.143 1.470 0.430 0.550 20.673

To 2.390 8.460 6.721 15.457 25.694 29.957 0.000 55.276 2.543 3.795 45.761 0.062 23.942

Net 0.575 4.362 4.770 5.134 -25.687 3.633 0.012 -54.388 -2.400 -2.325 -45.331 0.488 -3.269

xem ht dash dcr etc mkr zec bat btg mana zrx waves omg

From 1.776 0.007 0.027 0.129 24.525 0.118 0.499 55.560 41.944 9.873 21.438 0.048 13.184

To 3.221 2.308 2.687 1.478 18.600 6.058 5.791 0.670 0.044 34.970 16.090 7.652 65.288

Net -1.445 -2.301 -2.660 -1.349 5.925 -5.940 -5.292 54.890 41.900 -25.097 5.348 -7.604 -52.104

dgb ren lsk xvg knc rep snt ant fun cvc gno elf gas

From 5.096 25.870 2.695 10.098 3.364 30.432 0.003 24.281 53.923 5.719 1.274 48.268 5.422

To 0.277 0.776 2.590 0.207 0.472 3.259 50.039 1.968 0.074 24.402 3.558 0.000 0.000

Net 4.819 25.094 0.105 9.891 2.892 27.173 -50.036 22.313 53.849 -18.683 -2.284 48.268 5.422

Table 3.2 contains the off-diagonal column and row sums of the connectedness matrix

Wh, which are contributions to others and contribution from others, respectively. The row

sum is 100%, so that the NVT connectedness from others is equal to 1 minus the diagonal

element. We also report the net connectedness in this table, which is the difference

between “to” and “from”.

The cryptocurrencies with the largest net-connectedness are fun with 53,823%, bat

with 52.27 %, and elf with 48,268% which means that these are the cryptocurrencies with

NVT that receive from others much more than what they contribute to others. From a

risk management perspective, one should be aware of a higher risk associated with these
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assets, as their NVT is highly influenced by shocks in other cryptocurrencies.

We can also identify from this table the cryptocurrencies with the smallest risk of

being influenced by shocks to other cryptocurrencies: Cardano(ada) with a contribution

from others of only 0.07% , ht with 0.07%, dash with 0.027%, snt with 0.003% and link

with 0.012%.

What distinguishes Chainlink (link) from other cryptos is that it is one of the smallest

recipients of network connectedness (0.012%), but also the smallest transmitter of shocks.

It is therefore isolated in the system.

On the opposite side, the cryptocurrencies that have the largest contributions to others

are omg with 72,479%, bch with 55,3%, snt with 50,04%, and doge with 45,87%. We also

observe that Bitcoin, although being by far the largest crypto by market cap, does not

generate widespread connectedness since it has a small contribution in transmitting NVT

shocks to other cryptocurrencies (2.43%), and it also receives a small proportion of NVT

spillovers from other cryptocurrencies (2.96%).

Distilling all of the various cross-cryptocurrencies spillovers into a single Spillover Index

for our full 2018-2021 data sample, we find that almost 13% of forecast error variances is

due to spillovers from other cryptos.

3.3 Network Connectedness

We now represent the estimated networks graphically using several devices. These devices

include the node’s naming convention, node’s size, node’s color, and the direction of

the edges. The node’s naming convention is short for each cryptocurrency, node’s size

indicates either the from-connectedness or to-connectedness. We tried to specify different

characteristics of cryptocurrencies based on the node’s color: for each network it either

indicates the size of their relative market capitalization, or the consensus mechanism that

have been used.

Note that the edges whose NVT pairwise directional connectedness or spillover from

one cryptocurrency to another are less than 0.05 are not shown in the plots. In addition,
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the size of each edge is based on the pairwise directional connectedness value.

3.3.1 Based on the market capitalization

To specify the cryptocurrencies based on their market capitalization, we divided them into

several ranges according to the size of their market capitalization. We first investigate

the ”to”-connections and then the ”from” connections. Note that there is potentially

an asymmetry: there may be assets that are important contributors, i.e. have strong

”to”-connections, while being less important receivers, and vice versa. Figure 3.3 shows

the network ”to”-connections, which indicates that the NVT connectedness among cryp-

tocurrencies does not necessarily depend on their size: Bitcoin is only a small transmitter,

while some other mega-cap cryptocurrencies are high transmitters such as Cardano (ada),

Litecoin, Bitcoin cash, Doge coin and neo. We see that there are also some cryptocurren-

cies whose market capitalization is between 1 and 2 billion USD are high transmitters such

as Ethereum(etc), mana, 0x(zrx) and especially OMG network, which has received little

attention in the literature, although it appears to be strongly linked to other assets. In

addition, other cryptocurrencies with low market capitalization (below 500 million USD)

such as Status(snt) and Civic(cvc), are more likely to propagate NVT shocks to others.
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Figure 3.3: Connectedness network linking 39 cryptocurrencies based on their contribution

to others. The colors indicate the market capitalization: red for more than 800 billion

USD, indianred for more than 100 billion USD, lightcoral (between 10 and 100 billion

USD), darksalmon (between 2 and 10 billion USD), salmon (between 1 and 2 billion

USD), lightsalmon (between 500 million and 1 billion USD), and peachpuff (below 500

million USD).

It should be emphasized that bitcoin is not the dominant source of NVT connectedness

in the cryptocurrency market, since it is not the highest transmitter to others. On the

contrary, it is one of the lowest ones. Moreover, many cryptos with low market cap affect

the forecast error variance of cryptos with high market cap. For instance, DigiByte(dgb)

is a big transmitter of shocks to ltc, elf to etc, and gas to bat.
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Figure 3.4: Connectedness network linking 39 cryptocurrencies based on the their market

capitalization and their contribution from others.

We now consider the network constructed using the ”from” connections between cryp-

tos, see Figure 3.4. From this network, we see that the cryptocurrencies that have low

market capitalization (those with market cap below 500 million USD , and between 1 and

2 billion USD) receive the most shocks from other cryptos, for example: Basic Atten-

tion Token(bat), Bitcoin Gold(btg), 0x(zrx), fun, Aelf(elf), Aragon(ant), and Augur(rep).

Moreover, we have identified that some cryptocurrencies with the highest market cap such

as xrp and especially Litecoin can be explained to a large extent by shocks from other

assets.

The results from these two networks indicate that the chosen cryptocurrencies are

interconnected and the intensity of connectedness between pairwise cryptocurrencies is not

fully determined by market capitalization since both cryptocurrencies with the highest

and lowest market capitalization take an important role in NVT connectedness of the

whole market.
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3.3.2 Based on the consensus mechanism

To further examine relative influence of cryptocurrencies in the network, we also employed

the consensus mechanism to characterize each cryptocurrency. These consensus mecha-

nisms are used in the blockchain systems to ensure that all the transactions occurring on

the network are genuine and all participants agree on a consensus on the status of the

ledger. Therefore, this set of rules decides on the contributions by the various participants

who work on verification and authentication of transactions occurring on the Blockchain,

and on the block mining activities.

There are different types of consensus mechanism algorithms that work on different

principles. the most popular being Proof of Work (PoW) and Proof of Stake (PoS). PoW

refers to an agreement algorithm that proves that it has completed a numerically difficult

task that can easily be checked. Many cryptocurrencies rely on it such as bitcoin, dash,

and doge. The main drawback of PoW is the amount of energy needed to achieve the

numerical task. Therefore, many altcoins are using PoS, see e.g. Saleh (2021) for a formal

economic model for PoS, and the conditions under which PoS generates consensus. It is

more efficient as it refers to an agreement algorithm that gives decision-making authority

in proportion to the percentage of shares held in the cryptocurrency. The market-leading

coins using PoS are Cardano (ADA), Polkadot and Stellar (XLM). There is also Delegated

Proof of Stake (DPoS) which is a popular evolution of the PoS concept, where users of

the network vote and elect delegates to validate the next block. In our data we only have

Lisk(lsk) that relies on DPoS. There are many other consensus mechanisms that aim to

have a more efficient system.

In our network, we have tried to distinguish between cryptocurrencies that use PoW

and those that use PoS, in order to reveal their importance for the connectedness. Each

color in the network representation in Figure 3.5 specifies one type of consensus mecha-

nism.
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Figure 3.5: Connectedness network linking 39 cryptocurrencies based on the their con-

sensus mechanism and their contribution in transmitting shocks to others. Each color

specifies one type of consensus mechanism: PoW in blue, PoS in lightcoral, dPos in indi-

anred, and the others are in yellow.

From this network, we see that only three of the cryptocurrencies that rely on Proof-

of-work have a large contribution in transmitting shocks to other cryptocurrencies: Bch,

doge and ltc. Only Cardano (ada) and neo, which belong to the group of cryptocurrencies

that use Proof-of-Stake, have a high contribution in transmitting shocks to others. Both

Cardano and neo are smart contract platforms that allow, for example, the development

of decentralized finance applications.

We have also some cryptocurrencies that use another consensus mechanism rather

than PoW and PoS and have a high contribution in transmitting shocks to others such as

mana, Status(snt) and omg, which is currently secured by the proof-of-authority(POA)

consensus mechanism.

We observe large contributions in transmitting shocks to others within cryptos that
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use Proof-of-work and also within cryptos that use consensus mechanism other than PoW

and PoS. And mostly the cryptocurrencies that rely on consensus mechanism other than

PoW and PoS are the ones that contribute the most to cryptos that use PoW or PoS.

Figure 3.6: Connectedness network linking 39 cryptocurrencies based on the their con-

sensus mechanism and their contribution in receiving from others

We now turn to the network based on the ”from” connections, see Figure 3.6. We see

that the only cryptocurrencies that receive small NVT spillovers from other cryptocur-

rencies are the ones that rely on Proof-of-stake. There are only rep and neo that receive

higher spillovers from other assets. We also observe that the highest pairwise directional

connectedness values are coming from the cryptocurrencies that use consensus mechanism

other than PoW and PoS: from mana to rep, from Tether(usdt) to Bitcoin Cash (bch).

The highest transmitters and highest receivers are the cryptocurrencies that use consensus

mechanism other than PoW and PoS.

Our results suggest that cryptocurrencies that rely on Proof-of-stake or dPoS (other

than rep and neo), are the smallest receivers of NVT spillovers from other cryptocurren-
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cies. Since we also observe small contributions in transmitting shocks to others within

cryptos that use Proof-of-stake, it means that these cryptocurrencies are less intercon-

nected. From a risk management perspective, it may be beneficial to invest in cryptocur-

rencies based on PoS consensus mechanism. Moreover, using cryptos that use PoS is more

energy efficient since it does not require highly complex computations compared to PoW.

3.3.3 Based on the purpose

Each cryptocurrency is used for a different purpose, for example security, payments, smart

contracts, etc. Therefore, we finally distinguish different cryptocurrencies with respect to

their utility, to see whether the connectedness is at least partially explained by their

utility. The categories that have been chosen are smart contracts, payment, medium

of exchange, DeFi, enterprise solution, and privacy, where DeFi cryptocurrencies are

essentially providing decentralized financial services such as savings, loans, trading, and

insurance to practically anyone with an internet-enabled smartphone. A smart contract

crypto is a self-executing contract with the terms of the agreement between buyer and

seller being directly written into lines of code. Note that these categories are somewhat

arbitrary and others may have been chosen, see e.g. Oliveira et al. (2018) for a more

detailed study of the types and purposes of tokens.
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Figure 3.7: Connectedness network linking 39 cryptocurrencies based on their categories

and their contribution to others: skyblue for smart contracts, indianred for deFi, aqua

for privacy, greenyellow for medium of exchange, yellowgreen for payment, and orchid for

enterprise solution.

The network based on ”to” connections is shown in Figure 3.7, where each color

specifies one category. This network indicates that most of the cryptocurrencies that are

used for either payment or medium of exchange such as Doge, Litecoin, omg, and Bitcoin

cash, have the largest contribution in transmitting shocks to other cryptos. These results

also indicate that the cryptocurrencies that are used for enterprise solution such as ant,

and deFi cryptocurrencies (such as bat, rep) have the lowest contributions in transmitting

shocks to others. For the altcoins used for privacy, we only have snt and cvc that have high

contribution to others. In addition, some of the cryptocurrencies that are used for smart

contracts have large contributions of NVT spillovers to others, such as Cardano(ada), neo

and etc.

We see a high interconnection within cryptos used for payment and medium of ex-
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change. We also observe that DeFi cryptocurrencies have a high pairwise directional

connectedness value transmitted to them from other categories such as privacy (cvc, snt),

smart contracts(xtz) and medium of exchange(xrp).

Figure 3.8: Connectedness network linking 39 cryptocurrencies based on the their cate-

gories and their contribution from others

Looking at the network based on ”from” connections in Figure 3.8, we see that mostly

the cryptocurrencies used for payment, deFi, and enterprise solution receive higher shocks

from other assets. Moreover, some of the cryptocurrencies used for smart contracts receive

high contributions from others such as etc, eth and neo. However, we see that cryptos

used for privacy (xvg, dcr, dash, zec, cvc, snt) receive small NVT spillovers from other

cryptocurrencies, and the spillovers within this category are also small. This result in-

dicates that the cryptocurrencies that are used for privacy are the least interconnected,

and receive small spillovers from other cryptos. Similar to the consensus mechanism proof

of stake, cryptos that are used for privacy appear less connected and hence beneficial to

reduce risks in a diversified portfolio.

25



4 Conclusion

We have investigated the connectedness of cryptocurrencies via their network to trans-

action (NVT) ratio. The methodology uses the contributions of each asset, to and from

other assets, to explain the variances of forecast errors ten days ahead.

One of our findings is that the NVT connectedness, or the spillover effect, is not

necessarily linked to market capitalization, since we found that cryptocurrencies with

high market capitalizations (e.g. Litecoin and Dogecoin, Bitcoin cash ) propagate large

NVT shocks, but also some small-cap cryptocurrencies are important transmitters of NVT

shocks (e.g., cnt, cvc, omg, mana). More importantly, the largest emitter of NVT shocks

in the cryptocurrency market is omg, which is small cap that offers scaling solutions for

the Ethereum network and attracts little public attention.

Another interesting finding is that bitcoin is not the dominant cryptocurrency when

it comes to NVT shocks, even though it plays an important role in this cryptocurrency

market. However, it has a small contribution in spillovers to altcoins. Moreover, our work

provided us with new information about cryptocurrencies that rely on Proof-of-stake

and delegated Proof-of-stake as consensus mechanism, which are the smallest receivers of

NVT spillovers from other cryptocurrencies. These cryptos are also the least intercon-

nected with each other, which make them attractive from a risk diversification perspective.

Moreover, using cryptos that use PoS is more efficient since it does not require high elec-

tricity costs and high material purchase costs to verify transactions. Similarly, we have

found that the cryptocurrencies that are used for privacy are the least interconnected,

and receive small spillovers from other cryptos, which make them attractive for risk man-

agement.

Our results are obtained using a particular methodology which, just as any method-

ology, has limitations. One of them is the use of a linear vector autoregression for NVT,

which involves several choices such as the order of the model, linearity, and estimation

method, that can be criticized. In the methodological part of the paper we have tried our

best to justify our choices. Another potential limitation is our joint treatment of cryp-
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tocurrencies and tokens without explicitly taking into account the technical links between

them, such as e.g. ERC20 tokens and Ethereum. Furthermore, when analysing spillover

effects, we do not distinguish between effects that are caused by technical reasons and

those that are not. Finally, as mentioned, our data could be affected by survivorship

bias as the cryptos were selected based on market capitalization at the end of the sample

period.

Our investigation complements the literature on the risks associated with cryptocur-

rencies and provides new information for market participants and risk managers. As for

future work, there are several interesting directions for an extension. It would be interest-

ing to try to move from a full-sample static analysis to a dynamic framework, either using

rolling-samples or a genuine dynamic analysis, in order to examine the cycles or trends,

should they exist, in the connectedness measures. It may be that overall connectedness

increases over time as markets become more integrated, or that individual assets become

systemically risky in that they become highly linked with other assets at a given time.

It would also be possible to use a dynamic independent component analysis as in Hafner

and Herwartz (2021), that allows for time-varying rotations to construct the structural

innovations of the model. We leave these important issues for future research.
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Appendix

Table 4.1: The 39 cryptocurrencies with their symbols, market capitalizations (MCs) and

rankings by MCs

Cryptocurrency SymbolMC Rank Cryptocurrency SymbolMC Rank

Bitcoin Btc 894.52B 1 Basic Attention Token bat 1.54B 62

Ethereum eth 194.55 2 Bitcoin gold Btg 1.38B 68

Tether usdt 36.81B 4 Decentraland mana 1.25B 73

XRP xrp 36.25 B 5 0x zrx 1.14B 79

Cardano Ada 32.06B 6 waves waves 1.11B 82

Litecoin ltc 12.39B 9 OMG Network omg 1.09B 83

Chainlink link 12.39B 10 DigiByte dgb 997.39M 85

Bitcoin Cash Bch 9.79 B 12 Ren ren 852.71M 95

Stellar Xlm 9.15B 13 Lisk lsk 656.1M 107

USD Coin usdc 9.12B 14 Verge xvg 617.18M 112

Doge Coin Doge 6.60B 19 Kyber Network knc 559.03M 114

Tezos Xtz 3.71B 30 Augur Rep 433.27M 129

Neo neo 3.58B 32 Status snt 434.27M 130

Nem Xem 3.01B 38 Aragon ant 371.61M 139

Huobi Token ht 2.59B 42 FunToken fun 377.87M 141

Dash dash 2.17B 46 Civic cvc 312.03M 148

Decred dcr 1.99B 49 Gnosis gno 204.16M 187

Ethereum Classic etc 1.79B 54 Aelf elf 180.24M 266

Maker mkr 1.75B 58 Gas gas 109.95M 355

Zcash Zec 1.68B 59

28



Figure 4.1: ACF plots for 9 NVT series
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Table 4.2: NVT descriptive statistics during the period from 15 November 2018 to 16

February 2021.

CountMean Std Min 25 % 50 % 75 % Max SkewnessKurtosis

btc 825.0 80.25 29.48 23.28 59.79 73.86 91.54 206.74 1.23 1.43

eth 825.0 53.17 29.07 8.29 32.38 47.19 67.02 235.29 1.44 3.75

usdt 825.0 22.20 15.63 2.11 11.27 17.91 28.55 99.53 1.51 2.58

xrp 825.0 252.09 177.23 12.74 127.82 207.67 321.87 980.55 1.35 1.86

ada 825.0 56.89 48.32 0.34 28.03 50.46 75.36 946.67 7.97 138.87

ltc 825.0 110.71 55.39 5.44 68.37 103.65 145.87 364.93 0.92 1.19

link 825.0 361.88 405.27 9.92 119.66 230.08 430.18 2804.90 2.81 9.68

bch 825.0 48.45 32.31 4.88 26.69 39.47 62.58 194.21 1.26 1.53

xlm 825.0 1143.88 886.99 1.71 487.11 899.69 1579.80 4867.69 1.33 1.86

usdc 825.0 10.84 11.44 0.23 3.90 6.81 13.17 105.25 2.74 10.58

doge 825.0 91.60 45.61 4.35 58.92 85.71 120.36 253.17 0.60 0.20

xtz 825.0 193.08 154.74 21.76 88.13 146.59 251.98 1289.07 2.13 7.16

neo 825.0 35.39 44.26 0.26 9.87 21.13 38.90 332.42 3.04 11.07

xem 825.0 504.06 410.31 0.00 228.48 402.31 649.58 3132.43 1.98 5.85

ht 825.0 7722.28 96225.33 1.14 380.07 1039.16 2769.06 2722436.69 27.38 771.56

dash 825.0 112.00 44.76 9.91 81.58 107.30 139.50 280.52 0.58 0.70

dcr 825.0 116.34 59.46 7.77 71.56 115.46 158.69 317.98 0.18 -0.50

etc 825.0 169.62 269.47 8.70 52.77 97.60 175.90 4237.99 6.70 73.40

mkr 825.0 248.43 262.08 3.20 67.45 162.06 341.62 1924.67 2.23 6.96

zec 825.0 41.15 17.81 10.64 28.58 38.00 50.17 148.20 1.29 3.03

bat 825.0 144.91 137.55 0.97 53.43 105.80 191.73 1318.59 2.70 12.66

btg 825.0 411.14 330.71 4.34 170.97 332.95 560.03 2414.00 1.78 5.17

mana 825.0 286.67 351.16 3.18 76.63 172.90 369.34 4420.86 4.22 32.57

zrx 825.0 196.71 163.45 5.86 88.08 149.08 255.28 1257.77 1.89 4.96

waves 825.0 365.64 430.56 6.16 119.47 242.23 453.57 6238.69 5.18 51.25

omg 825.0 127.62 121.34 3.23 51.77 94.63 165.41 1515.64 3.58 26.60
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Figure 4.2: ACF plots of 9 NVT series after removing seasonality
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Figure 4.3: Correlation between different NVT ratios of cryptocurrencies
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Table 4.3: Results of the ADF stationarity test, where the critical value 5% is -2.865

Time series Statistic P-value Time series Statistic P-value

btc -4.97 0.0 bat -3.68 0.0044

eth -2.54 0.10 btg -6.47 0.0

usdt -3.93 0.0018 mana -2.31 0.1657

xrp -3.36 0.0123 zrx -3.37 0.0119

ada -4.84 0.0 waves -5.20 0.0

ltc -2.9478 0.0401 omg -2.67 0.07

link -3.23 0.0179 dgb -3.21 0.0193

bch -1.78 0.3862 ren -4.77 0.0001

xlm -7.5075 0.0 lsk -3.03 0.0318

usdc -2.0609 0.2605 xvg -11.53 0.0

doge -3.28 0.0154 knc -3.5209 0.0075

xtz -5.87 0.0 rep -2.3868 0.1455

neo -2.81 0.0556 snt -2.78 0.0601

xem -7.2305 0.0 ant -3.6019 0.0057

ht -3.3504 0.0128 fun -5.06 0.0

dash -6.81 0.0 cvc -3.77 0.0031

dcr -3.94 0.0017 gno -2.8867 0.0469

etc -2.58 0.0954 elf -3.3967 0.0111

mkr -4.94 0.0 gas -3.7953 0.0003

zec -3.80 0.0029
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Figure 4.4: Estimated coefficients of the VAR(3)-LASSO model
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Table 4.4: P values for the Ljung-Box test on the residuals of the VAR-LASSO model

lag1 lag2 lag3 lag1 lag2 lag3

btc 0.268 0.218 0.385 bat 0.635 0.661 0.84

eth 0.862 0.93 0.151 btg 0.86 0.957 0.584

usdt 0.989 0.986 0.373 mana 0.908 0.99 0.218

xrp 0.374 0.382 0.566 zrx 0.52 0.813 0.908

ada 0.793 0.291 0.029 waves 0.924 0.994 0.992

ltc 0.849 0.955 0.625 omg 0.735 0.206 0.278

link 0.632 0.504 0.066 dgb 0.847 0.678 0.128

bch 0.606 0.409 0.173 ren 0.653 0.64 0.013

xlm 0.835 0.922 0.946 lsk 0.548 0.835 0.908

usdc 0.701 0.795 0.205 xvg 0.959 0.998 0.83

doge 0.677 0.666 0.152 knc 0.668 0.904 0.292

xtz 0.598 0.467 0.109 rep 0.979 0.963 0.779

neo 0.755 0.521 0.256 snt 0.813 0.875 0.888

xem 0.912 0.925 0.748 ant 0.606 0.671 0.85

ht 0.713 0.906 0.714 fun 0.551 0.024 0.033

dash 0.929 0.846 0.756 cvc 0.738 0.919 0.982

dcr 0.659 0.723 0.067 gno 0.946 0.996 0.818

etc 0.816 0.834 0.844 elf 0.097 0.246 0.0

mkr 0.96 0.983 0.774 gas 0.664 0.353 0.004

zec 0.897 0.967 0.19

35



Figure 4.5: Correlation in the residuals of the estimated VAR-LASSO model
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