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Abstract 
This research reviews a historical graphical method for the analysis of rigid frames. As the basis of this 
method, the graphical analysis methods for statically indeterminate beams, as well as determinate ones, 
were also reviewed. This method for rigid frames was presented by William Wolfe in 1921 [1]. 
Although somewhat rudimentary and almost forgotten, it possesses a special cognitive value comparing 
to the analytical and numerical methods. The current mainstream of the study on graphic statics pays 
limited attention on the application of graphic statics to rigid frames, as well as to hyperstatic beams. 
However, exploration on the analysis methods of these structure types was an important part of the 
history of graphic statics. Such explorations have occupied a large portion of some of the classic works 
of graphic statics. After the introduction, this paper reviews the origin and basis of the graphical method 
for rigid frames, revealing the history and system of the technique behind the graphical method for rigid 
frames. The methods for beams will be explained in more technical details in the following section, 
enabling readers to readily comprehend the explanation of the method for rigid frames in the next part. 
After the technical account, the advantages and disadvantages of this method for rigid frames are 
discussed. The author argues that this graphical method for rigid frames, notwithstanding its present 
limitation, is potential to be developed into a design method for architects to explore the form of rigid 
frames perceptively.  
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1.  Introduction 
A Rigid frame is a load-bearing skeleton characterized by its continuous moment-resisting joints. The 
joints are so stiff comparing to members that the change of angles of joints under load are conveniently 
neglected generally. Due to the structural redundancy result from these rigid joints, rigid frames are 
often statically indeterminate, or termed as hyperstatic, which means that the inner forces cannot be 
calculated simply using the static equilibrium of forces and moment. The deformation of structures, and 
thus strengthen of material, must be involved as well. 

Graphic statics is a geometric-based approach for the analysis and design of structures. The classic 
graphic statics is a powerful tool with unparalleled visual clarity, and it enjoyed worldwide popularity 
around the turn of the nineteenth and twentieth century. Nonetheless, its efficiency was limited by hand-
drawing, one of the reasons leading to its declining popularity. It was almost totally superseded by 
algebraical and numerical methods by the end of the twentieth century in both teaching and practice. In 
recent years, graphics statics has been rediscovered as a perceptive method for structures design with an 
enhanced efficiency through computerization. During the “renaissance”, the graphic statics has been 
well studied, reintroduced, redeveloped for statical problems. 

Though with “statics” in its name, the theories and techniques of graphic statics has well been extended 
further into the field of strength of material in history. Rigid frames, as well as hyperstatic beams, can 
be and has been analyzed with graphic statics. These theories and techniques comprise a substantial part 
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of the arsenal of graphic statics. However, the methods for rigid frames, as well as for other statically 
indeterminate structures, have received much less attention. For example, the seminal book of E. Allen 
and W. Zalewski did not cover this topic at all [2]. The exceptionally comprehensive monograph on the 
history of structural theory by K. Kurrer highly valued graphic statics both for its historical significance 
and future promise, but only mentioned its application in hyperstatic structures in a passing comment 
[3]. The historical study of T. Boothby presented the graphical method for continuous span girders by 
Du Bois and Greene, and the long-forgotten graphical methods for portal frames by Milo Ketchum and 
Jerome Sondericker [4]. But the portal frame discussed are lattice, not rigid ones. E. Saliklis clearly 
explained and exemplified the techniques for statically indeterminate beams and determinate rigid 
frames [5], but still missed the ones for rigid frames; besides, the book is a textbook on know-how, shed 
little light on the history aspect. It is regrettable that a more complete review on the geometric-based 
methods for rigid frames and the highly-related methods for hyperstatic beams, is still missing. This fact 
is especially upsetting in light of the length that these topics occupied in many classic works of graphic 
statics. For example, in Anwendungen der graphischen Statik published by Ritter, a semi-graphical 
method for rigid frames was presented [6]. 

To this end, in the following section this paper will present an account on the history of the geometric-
based method for rigid frames. More technique details will be explained in the next two sections. After 
that, there will be a discussion evaluating the advantage and drawbacks of the methods. The last part 
summarizes the main points and discusses the prospect of future research. 

2. the origin and basis of the graphical method for rigid frames 
This part presents a brief review of the graphical analysis methods for rigid frames from the historical 
perspective. As the foundation of this method, the graphical methods for funicular curves, beam bending 
moment, beam deflection, beam statical indeterminacy will be reviewed in turn. 

 

Figure 1 Force polygon (up) and funicular polygon (below) [8] 

The foundation of the graphical analysis methods for rigid frames lies in Pierre Varignon’s (1645-1722) 
introduction of the graphical method to determine the funicular polygon in his work Nouvelle Mécanque 
ou statique published posthumously in 1725 [7]. Varignon discovered that the funicular polygon, which 
is the resulting equilibrium position, and the tension of an inelastic suspended rope under loading could 
be determined with a fan-like polygon composed of a succession of triangles of forces, called force 
polygon. The funicular polygon is also termed as funicular curve or form diagram, while the force 
polygon as force diagram. For example, in figure 1 the edges of the funicular polygon of ACDPQB 
resulted from loads K, L, M, N can be constructed with the force polygon SEFGHR. The length of the 
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vertical edge of each triangle represents the magnitude of each load, and the length of rays represents 
the magnitude of each segments of the funicular polygon, to which the rays are parallel one by one. 
Take the first triangle EFS for instance, the length of the vertical EF represents the weight of K. line AC 
and CD were drew in parallel to ES, FS respectively, with their intersection C on the vertical of load K. 
The remaining line segments of the two diagrams will also be drawn in the same manner. 

The bending moment diagram of statically determinate plane beams simply supported at ends could be 
analogously constructed as a funicular polygon enclosed by a closing string joining the two ends of the 
funicular. This finding was made by Carl Culmann (1821-1881) in the first volume of his seminal book 
Die graphische Statik in 1864 [8]. The essence of Culmann’s moment diagram was a graphical “
integration machine”, as historian Stüssi put it [9], contrasting the essence of the common moment 
diagrams: a simplified graph of the abscissa-moment function presenting calculation results. A more 
detailed explanation of Culmann’s diagram can be found in the section 3.1. 

In his book Culmann also showed a keen interest in statically indeterminate continuous beams over 
multiples spans, which were gaining widespread popularity in railway bridges then. However, Culmann 
did not manage to presented a graphical solution to this structural type. Because for the analysis of 
hyperstatic structure the consideration of deformation is indispensable, which he found too complicated 
to treat graphically. This inability is partly due to Culmann’s equation of curvature was not simplified. 
He then entered into a somewhat abstruse analytical discussion of continuous girder [8]. 

It was Christian Otto Mohr (1935-1918) who was the first to graphically solve this problem, in his 
treatise Beiträge zur Theorie der Holz- und Eisenkonstruktionen (Contribution to the theory of wooden 
and iron constructions) published in 1868 [10]. There were two keys to his solution: the graphical 
method of deflection and the fixed-point method, which were both invented by him. First, with a 
simplified equation of curvature, Mohr deduced that the defection of beams could also be represented 
with funicular polygon. By analogically taking discretized moment as the ‘loading’, the deflection curve 
could be depicted by a funicular polygon with its closing string representing the original neutral axis of 
beam. Second, Mohr addressed the statical indeterminacy with the fixed-point method. This method is 
based on the fact that the abscissae of the inflexion point of unloaded spans is independent from its 
bending moment propagated from loaded spans. The fixed-point method for continuous beams was 
elaborated in-depth in the work of Augustus Jay Du Bois [11] and James B. Chalmers [12] and will not 
be detailed in this paper. 

Also based on Culmann’s moment diagram, the American engineer and theorist Charles Ezra Greene 
(1842–1903) presented a different semi-graphical approach for trussed hyperstatic continuous girders 
in his monograph in 1875 [13]. Greene’s method combined moment-area theorem with the method of 
tentative closing string. The well-known moment-area theorem was first clearly presented in this book, 
despite partly implied in Mohr’s above-mentioned treatise already. But Greene probably was not aware 
of Mohr’s treatise then, as he had only acknowledged Culmann’s work in this book. The procedure of 
Greene is to draw tentative closing string with trail end ordinates, then, with moment-area theorem 
calculate and check if relative deflection conforms. New closing strings will be tried until the correct 
one is located. Greene’s method is well explained by Thomas Boothby [4], hence will not be explained 
in the following section. 

Surely, it is also feasible to inspect the tentative closing string more graphically though Mohr’s elastic 
curve instead of moment-area theorem. This hybrid approach was taken by William Sidney Wolfe, an 
American instructor and civil engineer, in his textbook graphical analysis published in 1921 [1]. Wolfe 
employed a graphical trick of locating the end of correct closing string based on trial ones, which, to the 
best of the author ’  knowledge, was first presented by him. Wolfe thus solved a number of different 
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statically indeterminate beams, including continuous beams and ones with fixed ends, and, most 
interestingly, a rigid portal frame. 

The highly-graphical solution for the portal frame is based on his solution for indeterminate beams. And 
to expound his method for indeterminate beams, explanation of techniques borrowed from the 
precursors mention above is inevitable. It is worth noting that rigid frames have also been solved 
graphically or semi-graphically with fixed-point method [7] [14]. 

3. The basic techniques of the graphical analysis methods for rigid frames 
This part explains the technique basis of Wolfe’s graphical analysis method for rigid frames. As 
abovementioned, the methods for rigid frames was based on the graphical methods for hyperstatic beams 
(subsection 3.3), which are in turn based upon the geometric-based method for simply supported beams 
(subsections 3.1 and 3.2). Most of the techniques in the subsections 3.1 and 3.2 is well covered by 
Saliklis’ book [5].  But since they are crucial to the topic in discuss, the author feels justified to cover 
the major points from a more historical perspective. 

3.1. Culmann’s geometric-based analysis of bending moment for statically determinate beams 
To understand Culmann’s bending moment diagram, we can start with the graphical solution of the 
moment of a force about a point. Take the case in figure 2 as an example, to calculate the moment of 
force f about the arbitrary point K’, a pair of reciprocal triangles are constructed. The first triangle △
OCD is composed of line segment DC, drawn in parallels with f in any convenient scale, and segments 
joining endpoints D, C to an arbitrary pole O. To construct the second triangle △O’C’D’, from O’, an 
arbitrary point on the action line of f, draw line O’C’ and O’D’ parallel to OC and OD respectively. 
Point C’ and D’ are the intersections of these two lines with line p, the parallel line of f through K’. The 
distance between f and C’D’ equals h’, while that between O and DC equals h. Because △OCD is 
obviously similar to △O’C’D’, CD ·  h’ equals C’D’ ·  h. It follows that: 

  𝑀 = |𝑓| ∙ ℎ′ = 𝐶𝐷 ∙ ℎ’ = 𝐶′𝐷′ ∙ ℎ (1) 

In which M is the moment of force f about K’. 

 

Figure 2 graphical solution of the moment of a force. Form diagram (above), force diagram (below) (source: 
author redrawn according to Wolfe 1921) 

The bending moment diagram of a simply supported beam can be read as a succession of such reciprocal 
triangles. Take the simply supported beam under four loads in figure 3 for example. A funicular polygon 
A’B’C’D’E’F’ is constructed with force polygon ABCDEO through Varignon’s method, then the end 
points A’ and F’ are joined with a closing string, of which the parallel line though O intersects loading 
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line AB on point R. The magnitude of the reaction force 5 under the left beam end must equal the length 
of line AR because it forms a closed triangle with RO and AB, which corresponds to the equilibrium on 
point A’. Similarly, the length of line RE equals to the reaction force 6 on the right end. The funicular 
polygon with its closing string is the bending moment diagram of the beam. To prove that, take the beam 
section on the arbitrary vertical x between load 3 and 4 for example. As △A’G’K’ and △ORA are 
reciprocal triangles for reaction force 5, according to the graphical solution of moment above, the 
moment of force 5 around any point of line x equals G’K’ times the pole distance h. Similarly, moment 
of load 1 equals J’K’ times h, that of load 2 equals I’J’ times h, that of load 3 equals H’I’ times h. As 
the moment direction of the load 1, 2, 3 are opposite to that of reaction 5, the moment of the loads should 
be subtracted from that of the reaction 5 to obtain the resultant moment. Hence,  

 𝑀𝑥 = ℎ·𝐺′𝐾′ ―ℎ·𝐽′𝐾′ ―ℎ·𝐼′𝐽′ ―ℎ·𝐻′𝐼′ = ℎ·𝐺′𝐻′ (2) 
In which Mx is the resultant moment on vertical x.  

 

Figure 3 graphical solution of the moment of a force. Form diagram (left), force diagram (right) (source: author 
redrawn according to Wolfe 1921) 

 
It follows that the moment at any section of a beam is given by the product of the pole distance times 
the its intercept. The intercept is the length of the segment cutting between the funicular polygon and its 
closing string. It is worth noting that the abscissa of pole O is in reverse proportion to the pole distance 
of force diagram, and the ordinate of pole affects the slope of the closing string but not the intercept for 
each section. As for beams subjected to continuously distributed load, the load should be discretized and 
integrated. In other words, the load should be evenly divided, and each division is substituted by an 
equivalent concentrated load imposed on the vertical of the centroid of the division. The final error will 
be marginal if the divisions are reasonably narrow. 

3.2 Mohr’s Geometric-based method for deflection analysis of statically determinate beams 
Mohr’s Geometric-based method for deflection can be readily understood if one understands the 
algebraically meaning of Culmann’s moment diagram: integration machine”. The construction process 
of Culmann’s moment diagram is equivalent to double integrating the loading function. i.e.: 

 𝑀(𝑥) = ∬𝑞(𝑥)𝑑2𝑥  (3) 

Where M(x) is the function of bending moment along the abscissa x, q(x) the function of loading.  

Since the function of deflection w(x) of a beam is also directly proportional to the double integration of 
the function of bending moment M(x), i.e.: 

 𝑤(𝑥) =
1

𝐸𝐼∬𝑀(𝑥)𝑑2𝑥 (4) 
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Where E is Young's modulus of material, I second moment of area about the neutral axis of the beam 
section. EI is bending stiffness, a value indicating the ability of the beam to resist bending.  

It follows that the defection of a beam could also be computed through similar graphical device. By 
analogically taking moment as continuously distributed “load”, the deflection function w(x) could be 
depicted by a funicular polygon with its closing string representing the original beam neutral axis. As 
the intercept between funicular polygon and closing string is reversely proportional to the pole distance 
of force diagram, the intercept will just equal deflection if the pole distance of its ‘force diagram’ is set 
as: 

 ℎ =
𝐸𝐼

𝑛 ∙ 𝐻 (5) 

in which h is the pole distance of this special ‘force diagram’, n is a scale to scale down h in order to 
scale up the ordinate of elastic curves as deflection is normally tiny, H the pole distance of force diagram 
for constructing the bending moment diagram This special ‘force diagram’ for deflection was quite 
vaguely referred to as auxiliary figure (Hülfsfigur) by Mohr [10]. To differ from while be analogous to 
Culmann’s conventional force polygon, this special ‘force diagram’ will be referred to as ‘MΔx force 
polygon/diagram’ following James Chalmers [12] or simply ‘MΔx polygon/diagram’. Chalmers’ 
writing is one of the earliest introductions of Mohr’s method to English readers.  

 

Figure 4 graphical solution of the elastic curve of a girder with given moment at ends. segments with the same 
color are parallel. The diagram of second moment of area of the girder (left above), given bending moment 

diagram (left middle), result elastic curve (left below), the MΔx polygon of the first method (right above), the 
MΔx polygon of the second method (right below) (source: author redrawn according to image from [10]) 

Mohr’s method is advantageous when dealing with beams with varying second moment of area I. The 
girder with inconstant I under given moment in figure 4 is an example from Mohr’s treatise. The bending 
moment is given. To accommodate to the inconstant second area moment and different signs of moment, 
Mohr divided the bending moment diagram into nine slices, within which the second area moment and 
the sign of moment are constant. On this basis, Mohr devised two alternative MΔx force polygons to 
accommodate inconstant second area moment. The first technique: 

a) The magnitudes of areas of each discretized moment segment ∫𝑀 are treated as the “load”. 
They are laid out in the order of the segment numbers vertically with the positive moment-area 
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of segments 4, 5, 6 from top to bottom in turn and the negative moment-area of 1, 2, 3, 7, 8, 9 
in the opposite direction.  

b) The pole distance for each segment in proportional to its corresponding second area moment 
and equals 

𝐸𝐼
𝑛 ∙ 𝐻 , in which I is the second moment of area about the neutral axis of the beam. 

Here, H is assumed to be one for convenience. 
c) Each ray intersects the previous one or its extension on the pole.  

For example, the third ray CP2 intersects DP3 at the pole P3, while DP3 intersects EP4 at the pole P4. P3 
and P4 coincide as their pole distance both equals E · I3 / H. The sixth ray FP5 intersects the fifth ray EP4 
on its extension at the pole P5 as the pole distance E · I4 / H is larger than that of P4. 

The second technique: 

a) The magnitudes of moment-areas divided by respective second area moment 
∫𝑀

𝐼 , are treated as 
the “loading”. They are laid out in the order and direction as the first technique.  

b) The pole distance h for each segment is fixed to equal 
𝐸

𝑛 ∙ 𝐻 , in which H is also assumed to be 
one. 

c) Each ray intersects the previous one on the same pole.  
The elastic curve is then constructed with parallels of each ray. Its vertices lie on the verticals drawn 
from the centroids of moment segments. 

Essentially, the second MΔx force polygons a modification of the first MΔx force polygons scaling 
down every component triangle by the ration of its respective second area moment so that all the poles 
coincide. The MΔx force polygon looks simpler in the second methods, but the relation between  second 
area moment and slope is less readable. It is worth noting that the direction of the first ray AP1 or AP is 
arbitrary and the closing string representing the position of original neutral axis is not necessarily 
horizontal. 

3.3. The techniques of Wolfe’s geometric-based method for statically indeterminate beams 
The problem of calculating the bending moment of statically indeterminate beams can resolves itself 
into locating the closing string, as shown in figure 5 the funicular curve of bending moment is solely 
dictated by loading. The influence from external moment and fixed ends is reflected by the location of 
closing string. for example, when there is a moment at support, the closing string detaches from the end 
of funicular curve in a vertical distance representing the magnitude of the moment at support. 

It only takes two trials to locate the closing string of the moment diagram approximately by Mohr’s trick 
of auxiliary paired triangles at ends. The beam fixed at both ends (figure 5) is an example from his book. 
After constructing the funicular polygon of moment, to determine the closing string, he started by 
drawing two closing strings r-r’ and s-s’ (in dashed lines) on this funicular polygon. He then constructed 
deflection lines m-m1’ and m-m2’, which is respectively corresponding to r-r’ and s-s’ with 
corresponding MΔx polygons. As both ends of the beam are fixed, the correct elastic curves should be 
tangent to the original neutral axis at ends. Therefore, r-r’ and s-s’ are wrong because the tangents to 
the ends of their corresponding elastic curves do not coincide with original neutral axes extended but 
make angles to them. The end of the correct closing string can be located based on the trial ones with a 
pair of similar triangles with opposite angles (enlarged view of the right end of closing string in figure 5). 
The right ends of both the right-end tangents and the neutral axes of the two trial elastic curves are 
extended rightward to the same arbitrary horizontal distance, making the vertical distances at the ends 
of W1 and W2. As W1 is above the axe whereas W2 below it, the real location of the right end of the 

1906



Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference 
Innovation·Sustainability·Legacy 

 

closing string must lie somewhere between R’ and S’. Measure off W1 from R' on one side of R2, then 
W2 from S' on the other side. By connecting the extremes of these two lengths, the intersection X is 
obtained, which approximately locates the right end of the true base line. In a same way the left end Y 
is also be located. This is not a precise method, but Wolfe claimed that the error was marginal. 

Note that his MΔx polygons is slightly different from Mohr’s: all the “loads” of moment-areas were laid 
out on the loading line of in the same direction from up to bottom, and the poles of negative moment 
were set on the left side of the loading line. 

  

Figure 5 diagrams for a girder fixed at both ends. Force diagram (up left), loading and bending moment diagram 
(up  middle) enlarged view of the right end of closing string(up right) , and MΔx polygon based on trial closing 
string RR’ (middle right), the MΔx polygon based on trial closing string SS’(down left), elastic curves based on 

RR’ and SS’ (down middle) [1] 

4. The techniques of Wolfe’s graphical analysis method for rigid frames 
This part presents the Wolfe’s graphical analysis method of a steel portal frame. The frame has two 
fixed bases and a girder with varying second moment of area due to the stiffing plates on its webs (figure 
6).  The frame is loaded vertically by four point-loads and evenly distributed self-weight. 
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Figure 6. The portal frame that Wolfe analyzed with graphic statics [1]. 

Wolfe reduce the portal frame into a continuous beam over three spans. As shown in figure 7, the 
bending moment diagram of columns are revolved 90 degrees in opposite directions to horizontal around 
rigid joint b and c. The moment diagrams are then lowered altogether in order not to overlap the notation 
of loading and second area moment of the beam. Then, the rigid connections between beams and rotated 
columns are treated as continuous beam over simple support, because the displacement at the rigid joints 
between beam and columns is negligible, and moreover, the bending moment and the angle of rotation 
are continuous through the joint. The elastic curve will also be flattened in the same manner. 

 

Figure 7. Transformation of the bending moment diagram [1] 

The correct bending moment diagram could be determined based two tentative closing strings according 
to Wolfe. The funicular curve of the beam (the curve of 3 in figure 8), independent of moment at the 
beam ends, was first constructed from left to right according to the load with a force diagram (2 in figure 
8). Then with the first trial closing string (dotted line below in the moment diagram of beam), the first 
trial elastic curve (5 in figure 8) is constructed accordingly with the auxiliary first trial MΔx diagram (4 
in figure 8). Note that the pole distance for the girder of the MΔx diagram varies according to second 
area moment. This elastic is evidently incorrect there is displacement blow both ends. Another trial 
elastic curve with displacement above both ends (7 in figure 8) was constructed based on a different trial 
closing string (dotted line above in the moment diagram of beam). Then the correct closing string of 
moment was located with the auxiliary of a pair of similar triangles mentioned previously.  It worth 
noting that, a simple analytical analysis was also employed by Mohr beforehand to determine the 
difference of the moment at the two ends of columns. thus, the moment closing strings of columns can 
be located in accordance with the ones of the beam. 
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Figure 8. Diagrams for the portal frame including two tentative trials [1] 

5. The values and drawbacks of the historical geometric-based method for rigid frames 
The geometric-based method for rigid frames processes unique values compared with classic algebraic 
method.  Firstly, the method can be advantageous for problems involving compound loading or varying 
moments of second area moment. Such problems can be difficult to formulate algebraically. Secondly, 
it can be easily grasped by ones without a good knowledge of calculus, which is the case for most 
architects. Thirdly, as the track of the entire analysis process and all the relations are clearly presented 
in the same set of drawing, it is possible to change both the geometry and its bending behavior and 
obtain a renewed equilibrium as long as related diagrams adapt accordingly. One can change the desired 
geometry and then understand how the bending behavior must adapt. Or, reversely, change the bending 
behavior and then obtain a geometry that adapts. It thus become a chronology-free because the deductive 
process undertaken by the designer can be switched whenever desired. Form and bending moment are 
simultaneously and dynamically steered by designers. Perhaps most importantly, this method is very 
insightful into the relation between form and forces. one can have a clearly idea of how loads affect 
bending, how beam’s bending stiffness affects deflection, instead of losing the sense of relations in the 
maze of calculation.  

the first point eases the analysis of rigid frames with changing sections. The last three points, especially 
the last one, gives this method potential edge of aiding architects to study, perceive and design rigid 
frames. combined together, this method could leave a space for architect to explore the creative forms 
of rigid frames. 
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This method apparently has its drawback, which can partly account for to its current disuse. Firstly, the 
method can only be applied to symmetric frames under symmetric vertical loading. Moreover, this 
method has not been well developed for more complex frames, like multi-story and multi-span, frames 
with oblique or curved members. Its laborious hand-drawing aggravates this incompetence. 

6. Conclusion and future work  

This paper reviews a historical graphical analysis method for rigid frames with a brief historical 
overview and a technical explanation on this method and its supporting techniques. The special values 
and drawbacks of this historical geometric-based method is also discussed. In a whole, this paper gives 
a global perspective on this graphical method that has been long ignored, its merits and present limitation. 

For future research, there are two possible approaches: history and design.  

Wolfe’s method is just one of the graphical methods for rigid frames. For a more comprehensive account 
on this topic, a historical study of the fixed-point method will be indispensable. Besides, the historical 
application in real design practices of Wolfe’s method, as well as the fixed-point method, is to be 
investigated. 

For the perspective of design, theoretical development and parameterization are still needed to overcome 
the limitation and achieve the potential of this method. 
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