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Motivation



Efficient mean-variance portfolios

• Markowitz (1952) defines efficient mean-variance portfolios:

w⋆ = argmax
w

w⊤µ︸ ︷︷ ︸
portfolio mean

− γ

2

portfolio risk︷ ︸︸ ︷
w⊤Σw =

1

γ
Σ−1µ

• w : vector of weights on risky assets (1− 1′w is invested in the

risk-free asset)

• µ and Σ: vector of mean returns and covariance matrix of returns

• γ: risk-aversion coefficient

• Challenge: Investors must estimate µ and Σ and rely on

ŵ⋆ =
1

γ
Σ̂−1µ̂
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Estimation risk and poor performance

• Problem: ŵ⋆ performs poorly out-of-sample. The naive equally

weighted portfolio (wew = 1/N) often outperforms it.

• See DeMiguel et al. (2009, RFS).

• This fact questions the added value of portfolio optimization.
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How to deal with estimation risk?

• Two extreme alternatives: plug-in or naive

• Plug-in: relying on ŵ⋆. It is theoretically optimal, but subject to
heavy estimation risk

• Approaches exist to limit estimation errors on parameters (e.g. Ledoit

& Wolf shrinkage)

• Naive: relying on wew . It is insensitive to estimation risk but it is

also suboptimal!

• Let’s try to find the middle ground ...
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Combination of naive and mean-variance portfolio strategies

• Tu and Zhou (2011, JFE) introduce a portfolio combination:

ŵ(κ) = κ1ŵ⋆ + κ2wew with c := κ1 + κ2 = 1.

• κ = (κ1, κ2) are the combination coefficients.

• As in Kan And Zhou (2007, JFQA), they are found by maximizing

the expected out-of-sample utility (EU)

κtz = argmax
κ

E
[
ŵ(κ)′µ− γ

2
ŵ(κ)′Σŵ(κ)

]
︸ ︷︷ ︸

out-of-sample utility

s.t. c

= argmax
κ

EU s.t. c

• This combined rule significantly outperforms ŵ⋆ and may

outperform wew .
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This seems all well and good, but ...

• Tu and Zhou (2011) force combination coefficients to sum to one:

ŵ(κ) = κ1ŵ⋆ + κ2wew with c

• The constraint is needed in combinations of fully invested portfolios,

because it is equivalent to the full investment constraint

• Problem: ŵ⋆ is not a fully invested portfolio: 1′ŵ⋆ ̸= 1.

• It invests πrf = 1− 1′ŵ⋆ in the risk-free asset

• We actually invest in three portfolios: the sample tangent, the

risk-free asset, and the equally-weighted portfolio...

• ... But under c , we only have one coefficient to control the weight

allocated to each one of them !
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• Problem: ŵ⋆ is not a fully invested portfolio: 1′ŵ⋆ ̸= 1.
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This paper

• We propose to relax the constraint on combination coefficients:

ŵ(κ) = κ1ŵ⋆ + κ2wew with c

• We find the optimal combination coefficients that maximize the

expected out-of-sample utility of the portfolio combination:

κopt = argmax
κ

EU s.t. c

8



Contributions



Contributions

Theoretical results:

1. We derive the optimal combination coefficients

2. We highlight analytically the key benefits of relaxing the constraint

3. The wrong constraint helps: the c constraint is helpful in some cases

4. We introduce a mixed strategy combining both strategies

Empirical results:

1. The optimal strategy always delivers a positive net utility

2. The constrained strategy may deliver negative net utility

3. The mixed strategy accomplishes its mission
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Optimal vs. constrained

combination



Benefits of relaxing the constraint

Key benefits of relaxing the constraint;

1. Optimal exposition to the three funds

2. Outperformance relative to the risk-free asset

3. Less extreme portfolio weights

4. Outperformance in expected out-of-sample utility (EU)

5. Outperformance relative to the two-fund rule

6. Outperformance in expected out-of-sample Sharpe Ratio
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Combination coefficients

ŵ(κ) = κ1ŵ⋆ + κ2wew

γew 4 6 8 10 12 14 16 18 20
γ

0.2
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κ1

γew 4 6 8 10 12 14 16 18 20
γ

0.0
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1.0

1.5

κ2

Constrained

Optimal

• Key facts: κtz1 ≥ κopt1 and equality iff γ = γew = µew/σ
2
ew

• We use the 25 portfolios of stocks sorted on size and

book-to-market (25SBTM) dataset spanning 07/26 to 12/21.
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Benefit 1: Optimal exposure to the equally-weighted portfolio

1 γew 4 6 8 10 12 14 16 18 20
γ
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Constrained

When γ = 10, T = 120, and N = 25, πtzew = 43% and πoptew = 15% 12



Benefit 1: Optimal exposure to the risk-free asset

1 γew 4 6 8 10 12 14 16 18 20
γ
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πrf
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Constrained

When γ = 10, T = 120, and N = 25, πtzrf = 34% and πoptrf = 77% 13



Benefit 1: Optimal exposure to the tangent portfolio

1 γew 4 6 8 10 12 14 16 18 20
γ
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Benefit 2: Outperformance relative to the risk-free asset

Problem: Under mild conditions, the constrained combination can

underperform the risk-free asset for investors with a risk-aversion higher

than a given threshold: γneg
1

Intuition: The combination should outperform each of its components,

but it might not be possible because of the constraint.

1γneg = 5.41 with the 25SBTM dataset.
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Benefit 2: Outperformance relative to the risk-free asset
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Benefit 3: Less extreme weight allocation

• Problem: The weights allocated to the risky assets by the

constrained strategy are extreme.

• Why it matters: practical implementation and transaction costs

17



Benefit 3: Less extreme weight allocation
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Mixed strategy & empirical results



Mixing ŵ opt and ŵ tz

• Practical concern: κ̂opt2 is unbounded and very sensitive to

estimation errors in µ̂ while κ̂tz is bounded in [0, 1]

• Estimation errors have a substantial impact on out-of-sample

performance

• When theoretical gain is small, the wrong constraint helps (cf.

Jagannathan and Ma (2003)).

• We define a symmetric interval around γew : [γew ± ϵ]. In this

interval, ŵ tz is preferred to ŵopt :

ŵopt,tz =

ŵ tz if γ ∈ [γew ± ϵ],

ŵopt otherwise.

19
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Empirical results

Dataset N Time period Abbr.

25 portfolios formed on size and book-to-market 25 07/1926 - 12/2021 25SBTM

10 momentum portfolios 10 01/1927 - 12/2021 10MOM

25 portfolios formed on OP2 and investment 25 07/1963 - 12/2021 25OPINV

48 industry portfolios 48 07/1969 - 12/2021 48IND

Table 1: List of datasets used in the empirical analysis (monthly frequency)

• Different rolling window sizes

• Various estimators for Σ̂ : sample, linear shrinkage, nonlinear

shrinkage (Ledoit & Wolf (2004, 2017))

• Monthly rebalancing and proportional transaction costs of 10bps
2Operating profitability.
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Empirical results
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Takeaways

1. We derive the optimal combination coefficients

2. We highlight analytically the key benefits of relaxing the constraint

3. The wrong constraint helps: the c constraint is helpful in some cases

4. We introduce a mixed strategy combining both strategies

5. The optimal strategy always delivers a positive net utility

6. The constrained strategy may deliver negative net utility

7. The mixed strategy accomplishes its mission
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Thank you!

Please send comments to
rodolphe.vanderveken@uclouvain.be



Impact of estimation risk
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Optimal exposure to the three funds + estimation risk
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Combination coefficients

The constrained combination coefficients are

κtz1 =
ψ2 + σ2ew (γ − γew )

2

ψ2 + σ2ew (γ − γew )2 + d
∈ [0, 1] and κtz2 = 1− κtz1 ∈ [0, 1].

The optimal combination coefficients are

κopt1 =
ψ2

ψ2 + d
∈ [0, 1] and κopt2 =

γew
γ

(1− κopt1 ) ∈ R,

d is a parameter that increases with estimation risk N/T



γneg threshold definition

γ > γew

1 +

√
1 +

θ4/θ2ew
d − θ2

 = γneg .



Notation

• Sample mean-variance portfolio (SMV) (from sample of size T )

ŵ⋆ =
1

γ
Σ̂−1µ̂

• We define µew = w ′
ewµ and σ2ew = w ′

ewΣwew . Moreover, we define

γew = µew/σ
2
ew

• We define θ2 = µ′Σ−1µ as the maximum squared Sharpe ratio,

θ2ew = µ2ew/σ
2
ew as the squared Sharpe ratio of the EW portfolio,

and ψ2 as the difference between the two:

ψ2 = θ2 − θ2ew ≥ 0.
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Sample estimators

µ̂ =
1

T

T∑
t=1

Rt , Σ̂ =
1

T − N − 2

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′.



Efficient frontier - Short reminder

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Standard Deviation

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
ea
n
R
et
u
rn

wtan

weww⋆

rf

EF - Fully invested

EF - Not fully invested


	Motivation
	Contributions
	Optimal vs. constrained combination
	Mixed strategy & empirical results
	Takeaways

