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Efficient mean-variance portfolios

e Markowitz (1952) defines efficient mean-variance portfolios:

portfolio risk
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w'=argmax w p— —w Xw =-X U
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portfolio mean

e w: vector of weights on risky assets (1 — 1'w is invested in the

risk-free asset)
e 1 and X: vector of mean returns and covariance matrix of returns

e ~: risk-aversion coefficient
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e Markowitz (1952) defines efficient mean-variance portfolios:

portfolio risk
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portfolio mean
e w: vector of weights on risky assets (1 — 1'w is invested in the
risk-free asset)
e 1 and X: vector of mean returns and covariance matrix of returns

e ~: risk-aversion coefficient
e Challenge: Investors must estimate g and X and rely on
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Estimation risk and poor performance

e Problem: w* performs poorly out-of-sample. The naive equally
weighted portfolio (we, = 1/N) often outperforms it.

e See DeMiguel et al. (2009, RFS).

e This fact questions the added value of portfolio optimization.
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Two extreme alternatives: plug-in or naive

Plug-in: relying on w*. It is theoretically optimal, but subject to
heavy estimation risk

e Approaches exist to limit estimation errors on parameters (e.g. Ledoit
& Wolf shrinkage)

Naive: relying on we,,. It is insensitive to estimation risk but it is
also suboptimal!

Let's try to find the middle ground ...
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Combination of naive and mean-variance portfolio strategies

e Tu and Zhou (2011, JFE) introduce a portfolio combination:
W(K,) =KW+ KoWe, With ¢ :=k1+ ko =1.

e K = (K1, K2) are the combination coefficients.

e As in Kan And Zhou (2007, JFQA), they are found by maximizing

the expected out-of-sample utility (EU)

k% = argmax E |w(k)p — %W(K)/EW(K‘,) st. €
K

out-of-sample utility
=argmax EU st. ¢
K
e This combined rule significantly outperforms w* and may

outperform we,,.
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This seems all well and good, but ...

e Tu and Zhou (2011) force combination coefficients to sum to one:
W(K) = KiW”* + Kowe, Wwith ¢

e The constraint is needed in combinations of fully invested portfolios,
because it is equivalent to the full investment constraint

Problem: w* is not a fully invested portfolio: 1'w* # 1.

e It invests s =1 — 1'W* in the risk-free asset

We actually invest in three portfolios: the sample tangent, the
risk-free asset, and the equally-weighted portfolio...

e ... But under ¢, we only have one coefficient to control the weight

allocated to each one of them !



This paper

e We propose to relax the constraint on combination coefficients:
W(K) = K1W" + KoWe,, with—e

e We find the optimal combination coefficients that maximize the
expected out-of-sample utility of the portfolio combination:

k%Pt = argmax EU st—e€
K
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Theoretical results:

1. We derive the optimal combination coefficients

N

. We highlight analytically the key benefits of relaxing the constraint
3. The wrong constraint helps: the c constraint is helpful in some cases
4. We introduce a mixed strategy combining both strategies

Empirical results:

1. The optimal strategy always delivers a positive net utility
2. The constrained strategy may deliver negative net utility

3. The mixed strategy accomplishes its mission
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Benefits of relaxing the constraint

Key benefits of relaxing the constraint;

1.

Optimal exposition to the three funds

. Outperformance relative to the risk-free asset

Less extreme portfolio weights

. Outperformance in expected out-of-sample utility (EU)

. Outperformance relative to the two-fund rule

Outperformance in expected out-of-sample Sharpe Ratio

10



Combination coefficients
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Combination coefficients

W(fi) = KIW" + KoWey

K1 K2
0.81 N Constrained
. —— Optimal
0.61 1.01
0.41
0.51
0.29

Yew 4 6 8 1012 14 16 18 20 Yew 4 6 8 1012 14 16 18 20
v
 and equality iff v = ven = Mew/agw

e We use the 25 portfolios of stocks sorted on size and

gl
o Key facts: k¥ > k7"

book-to-market (25SBTM) dataset spanning 07/26 to 12/21.
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Benefit 1: Optimal exposure to the equally-weighted portfolio
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Benefit 1: Optimal exposure to the risk-free asset
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Benefit 1: Optimal exposure to the tangent portfolio

Ttan
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Benefit 2: Outperformance relative to the risk-free asset

Problem: Under mild conditions, the constrained combination can
underperform the risk-free asset for investors with a risk-aversion higher
than a given threshold: 7,,eg1

lvneg = 5.41 with the 256SBTM dataset.
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Benefit 2: Outperformance relative to the risk-free asset

Problem: Under mild conditions, the constrained combination can
underperform the risk-free asset for investors with a risk-aversion higher
than a given threshold: 7,,eg1

Intuition: The combination should outperform each of its components,
but it might not be possible because of the constraint.

lvneg = 5.41 with the 256SBTM dataset.

15



Benefit 2: Outperformance relative to the risk-free asset
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Benefit 3: Less extreme weight allocation

e Problem: The weights allocated to the risky assets by the
constrained strategy are extreme.

e Why it matters: practical implementation and transaction costs

17



Benefit 3: Less extreme weight allocation

Portfolio weights (y = 3) Portfolio weights (y = 10)

0.3 0.8

021 0.6

Y W

Nl T
H H 'ﬂ'E'ﬁEE'@MM‘HEME'@%EHE?

0 10 20 oy 0 m " ny
[lew*][> = [lw*|l>

0.4

0.3

0.2

0.1

0.0




Mixed strategy & empirical results
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Mixing w°P* and w®

pt

e Practical concern: 5" is unbounded and very sensitive to

estimation errors in 1 while 2™ is bounded in [0, 1]

e Estimation errors have a substantial impact on out-of-sample

performance

e When theoretical gain is small, the wrong constraint helps (cf.
Jagannathan and Ma (2003)).

e We define a symmetric interval around e : [Yew £ €]. In this

tz

interval, w'? is preferred to w°Pt :

Wopt’tz — W' if v E [’YEW + 6]7

WPt otherwise.
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Empirical results

Dataset N Time period Abbr.

25 portfolios formed on size and book-to-market 25 07/1926 - 12/2021 25SBTM
10 momentum portfolios 10 01/1927 - 12/2021 10MOM

25 portfolios formed on OP? and investment 25 07/1963 - 12/2021 250PINV
48 industry portfolios 48 07/1969 - 12/2021 48IND

Table 1: List of datasets used in the empirical analysis (monthly frequency)

e Different rolling window sizes

e Various estimators for 3 : sample, linear shrinkage, nonlinear

shrinkage (Ledoit & Wolf (2004, 2017))

e Monthly rebalancing and proportional transaction costs of 10bps

2Operating profitability.

20



Empirical results
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Takeaways

1. We derive the optimal combination coefficients

2. We highlight analytically the key benefits of relaxing the constraint
3. The wrong constraint helps: the ¢ constraint is helpful in some cases
4. We introduce a mixed strategy combining both strategies

5. The optimal strategy always delivers a positive net utility

6. The constrained strategy may deliver negative net utility

7. The mixed strategy accomplishes its mission
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Thank youl!

Please send comments to

rodolphe.vanderveken@uclouvain.be



Impact of estimation risk
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Optimal exposure to the three funds + estimation risk
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Combination coefficients

The constrained combination coefficients are

2 2 2
+o (’y_')/ew)
K% = Y ew €[0,1] and k¥ =1-k€]0,1].
F = 202, e 4 d O ? el

The optimal combination coefficients are

opt __ 77ZJ2
N

€1[0,1] and K" = %W(l — KPP €R,
y

d is a parameter that increases with estimation risk N/ T



Yneg threshold definition

/02,
Y>> Yew | 1+ 1+d792 = Vneg-
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Notation

e Sample mean-variance portfolio (SMV) (from sample of size T)

w* = 271[]

2=

e We define jie, = W, p and 02, = w’,Ewe,. Moreover, we define

Yew = ,er/o'gw

o We define #2 = /371 as the maximum squared Sharpe ratio,
02, = p2, /02, as the squared Sharpe ratio of the EW portfolio,
and 92 as the difference between the two:

Y2 =60%—-62, > 0.



Sample estimators
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Efficient frontier - Short reminder
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