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The complex formed by activated protein C (APC) and protein
S plays a crucial role in the endogenous anticoagulant
pathway. This system provides an important control over
the blood coagulation cascade by inactivating activated

factor V (FVa) and activated factor VIII (FVIIIa).1,2 The activa-
tion of protein C takes place on the surface of endothelial cells
and involves thrombin, thrombomodulin (TM), and the
endothelial protein C receptor (EPCR) (►Fig. 1).3 Thrombin
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Abstract Activated protein C (APC) resistance (APCR) is considered a risk factor of venous
thromboembolism (VTE). The most common genetic disorder conferring APCR is a
factor (F) V Leiden mutation, but many other factors are also implicated, such as other
F5 mutations (e.g., FV Hong-Kong and FV Cambridge), protein S deficiency, elevated
factor VIII, exogenous hormone use, pregnancy and postpartum, depending on how
APCR is defined. Considering the large population affected, the detection of this
phenotype is crucial. Two types of tests are currently available: clotting time-based
assays (with several versions) and thrombin generation-based assays with the endoge-
nous thrombin potential (ETP)-based assay. The purpose of this review is therefore to
discuss the performances of these tests and the cases in which it would be appropriate
to use one over the other. Initially, as APCR was thought to be solely related to the FV
Leidenmutation, the objective was to obtain a 100% specific assay. Clotting-time based
assays were thus specifically designed to detect this inherited condition. Later on, an
APCR condition without a FV Leiden mutation was identified and highlighted as an
independent risk factor of VTE. Therefore, the development of a less specific assay was
needed and a global coagulation test was proposed, known as the ETP-based APCR
assay. In light of the above, these tests should not be used for the same purpose.
Clotting time-based assays should only be recommended as a screening test for the
detection of FV mutations prior to confirmation by genetic testing. On the other hand,
the ETP-based APC resistance assay, in addition to being able to detect any type of
APCR, could be proposed as a global screening test as it assesses the entire coagulation
process.
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promotes fibrin formation as well as platelet and endothelial
cell activation but it also plays a role in the anticoagulant
pathway by binding to TM to promote the activation of
protein C. The EPCR then further amplifies the activation
of protein C.3WhenAPC is generated, it remains bound to the
EPCR for a short time before associating with protein S on the
surface of platelets or endothelium whereon it inhibits
coagulation by degrading FVa and FVIIIa through proteolytic
cleavage.4 The proteolysis by APC occurs at amino acids
position 306, 506, and 679 in FVa and 336, 562, and 740 in
FVIIIa.5 Nevertheless, the cleavage of FVIIIa is not only
performed by the APC-protein S complex but also requires
the inactivated formof FVas a cofactor.2 This pathway plays a
key role in controlling coagulation and its disruption can
easily unbalance homeostasis, causing a hypercoagulable
state associated with an increased risk of thrombosis.6

Functional defects in the protein C pathway, due to
inherited or acquired conditions, define a plasma phenotype
known as APC resistance (APCR), and is considered as a risk
factor of venous thromboembolism (VTE).5–8 The most com-
mon genetic condition conferring APCR is the FV R506Q,
better known as FV Leidenmutation. A transition (guanine to
adenine) at nucleotide 1691 in the gene coding for factor V
results in the replacement of arginine (R) at position 506 by a
glutamine (Q). This substitution makes the 506-position less
sensitive to proteolysis by the complex formed by APC with
protein S. This slows the inactivation rate of FVa by 10-fold,
resulting in an increased thrombin generation and a hyper-
coagulable state.9–12 This genetic risk factor for VTE is found

in 20% of patientswith a first VTE event and in 50% of familial
thrombosis.12 Heterozygosity for FV Leiden occurs in 3 to 8%
of the general U.S. and European population, while homozy-
gosity occurs at a frequency of approximately 0.02%.13,14

Compared with healthy individuals, the risk of first VTE
event is threefold higher in heterozygous carriers whereas
it may reach a relative risk (RR) of 30 to 80 in homozygous
carriers.13,15

Other less frequent mutations on the F5 gene have also
been identified and are FV Cambridge, FV Hong Kong, FV
Bonn, FV Nara, FV Besançon, and FV Liverpool.16–19 FV
Cambridge and FV Hong Kong, affect the Arg306-cleavage
site of FV. Arginine is replaced with threonine in FV Cam-
bridge and with glycine in FV Hong Kong. Although FV
Cambridge mutation is uncommon, the prevalence of FV
Hong Kong is approximately 4% in Chinese population.20

Nevertheless, as the anticoagulant APC-cofactor activity of
FV is essentially related to the 506-cleavage site rather than
the 306-cleavage site, these mutations cause a moderate
APCR and the increased risk of thrombosis associated with
these two mutations remains unclear.18,20 Additional mis-
sense mutations such as the FV Besançon (Ala2986Asp), FV
Liverpool (Ile358Thr), FV Nara (Trp1948Arg), or FV Bonn
(Ala512Val) had also been associated with an increased
risk of thrombosis as they seemed to impact either FV levels
or the anticoagulant activity of inactivated FV, therefore
hampering the inactivation of FVIIIa.16,19,21,22 Finally, the
FV HR2 haplotype, characterized by multiple linked mis-
sense or silent mutations is associated with a slight decrease

Fig. 1 Protein C—protein S anticoagulant pathway. APC, activated protein C; Arg, arginine; EPCR, endothelial protein C receptor; FIIa, activated
factor II (thrombin); FVa, activated factor V; FVi, inactivated factor V; FVIIIa, activated factor VIII; FVIIIi, inactivated factor VIII; PC, protein C; PS,
protein S, TM, thrombomodulin.
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in circulating FV levels due to an impaired secretion of FV.
The increased risk of thrombosis associated with this condi-
tion is ambiguous but combined with a heterozygous FV
Leiden mutation, the degree of APCR is similar to that
observed in homozygous FV Leiden carriers, hence it is
characterized as pseudo-homozygous APC resistance.23–25

As protein S and FVIII are also part of this regulatory
pathway, protein S deficiency or high FVIII levels could lead
to an APCR phenotype. Hereditary protein S deficiency is a
relatively rare disorder with a prevalence of 0.03 to 0.13% in
the general population (althoughmore frequent in Japan and
China) but the associated RR of VTE was estimated between
5.0 and 11.5 compared with wild-type individuals.13,26

Regarding high FVIII levels (>150 IU/dL), a risk ratio of VTE
of 4.8 was determined compared with normal individuals
(FVIII levels< 100 IU/dL).27,28

In addition, the hormonal status of women is also a
condition which confers a resistance to APC. Pregnancy
and postpartum periods, as well as administration of exoge-
nous hormones, such as combined hormonal contraceptives
(CHCs) or hormone replacement therapies (HRTs) during
menopause, expose women to hormonal changes, and are
associated with an increased risk of VTE. Indeed, compared
with non-pregnant non-user, a fivefold increased risk of VTE
is reported during pregnancy, and depending on the estro-
progestative association, the RR varies between 1.3 and 5.6 in
women using CHCs or HRTs.29–36

Pregnancy and the use of CHCs or HRTs cause changes in
plasma levels of almost all proteins involved in coagulation
and fibrinolysis.37 These changes might be considered as
relatively modest when measured separately but they could
have a supra-additive effect leading to a pro-coagulable state
responsible for this increased risk of VTE.38 Overall, rises in
coagulation factors II, V, VII, VIII, IX, X, XI, XII, and von
Willebrand factor (VWF), as well as fibrinogen levels are
observed. On the other hand, antithrombin, free protein S,
and tissue factor pathway inhibitor (TFPI) levels, three pro-
teins contributing to the anticoagulant system, are de-
creased.39–42 As for fibrinolysis, there is an increase in
plasminogen levels but a decrease in tissue plasminogen
activator antigens and plasminogen activator inhibitor-1
levels.37 These hormonal changes, both during pregnancy
and following the use of hormonal therapy, are also associ-
ated with APCR.38,43 This phenomenon has been first de-
scribed in 1995 by Henkens et al44 and Olivieri et al45 and is
now largely documented. Afterward, APCR became an im-
portant biomarker to evaluate the increased risk of VTE
associated with CHCs, leading, in 2005, to the Committee
for Medicinal Products for Human Use of the European
Medicines Agency stating that APCR should be investigated
during the development of new steroid contraceptives in
women.46

Given the countless number of people with APCR, wheth-
er acquired or inherited, its detection is of great interest.
Over the years, numerous assays have been developed and
some of them might have the potential to be used as a
screening tool with the aim to identify a hypercoagulable
state, yet without determining the underlying cause. The

purpose of this review is therefore to discuss the perform-
ances of these tests and the cases in which it would be
appropriate to use one over the other.

Laboratory Testing for APC Resistance

Clotting Time-Based Assay
The original assay for screening APCR was described by
Dahlbäck et al in 1993 and consisted of an activated partial
thromboplastin time (aPTT)-based method to determine the
sensitivity of a patient’s plasma after addition of exogenous
APC.47 The aPTT assay is based on the principle that in
citrated plasma, the addition of phospholipids (PLs), activa-
tor of FXII (e.g., micronized silica or ellagic acid), and calcium
chloride triggers the formation of a stable clot. The time
between activation and clot formation is recorded in seconds
and represents the aPTT.48

When exogenous APC is added, the aPTT is prolonged, but
in plasma from patients with APCR, this prolongation is less
pronounced.47 Indeed, in case of a FV Leiden mutation, the
anticoagulant APC-protein S pathway is less effective, result-
ing in a shorter clotting time comparedwith a normal plasma
in the presence of exogenous APC. Results are usually
expressed as a ratio between the aPTT (þAPC) and the
aPTT (�APC). Values >2.0 are expected in normal popula-
tions while a FV Leiden mutation typically gives a ratio<2.0.
Nevertheless, each laboratory must verify its own cutoff
since it may differ according to the kit used, as recently
reported in several external quality control surveys.49–51

Results may also be reported as normalized ratio, which is
the ratio of the patient’s APC ratio divided by the ratio of a
normal pooled plasma (NPP) run on the same day; however,
normalization against NPP does not improve the diagnostic
performance, and unknown FV status in the donor popula-
tion affects the accuracy.52 These external quality control
surveys not only reported important discrepancies between
the different kits in the market but also within a particular
kit, revealing that improvements have to be done for the
proper screening of FV Leiden-induced APC resis-
tance.47,50,51 In addition, other FV mutations, e.g., FV
Hong-Kong and Cambridge, may lead to intermediate APC
resistance ratios compared with wild-type FV and FV
Leiden.18

The very first aPTT-based APC resistance assay was sub-
ject to multiple variables, hampering the interpretation of
the result. Anticoagulant drugs (e.g., vitamin K antagonists,
heparins, direct FXa inhibitors and direct thrombin inhib-
itors) and factor deficiencies tended to falsely increase the
APC ratio while protein S deficiency, lupus anticoagulant,
pregnancy, and hormonal therapy (e.g., HRTs, CHCs) tended
to decrease it, leading to acquired APCR.53 To avoid these
interferences and focus on the detection of FV Leiden,
modifications were implemented such as the addition of a
heparin neutralizer (e.g., polybrene) or even the dilution of
patient’s plasma with a « FV deficient » plasma, in order to
become insensitive to abnormal coagulation factors levels
other than FV. The normalization against NPPwas also. Other
alternative methods trigger the coagulation cascade directly
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through the activation of FX, by using either snake venom
from Crotalus viridis helleri or from Russel Viper Venom
(RVV-X, a snake venom extracted from Daboia russelii) or
through the activation of FV by using RVV-V (also from
Daboia russelii) plus Noscarin, an FV-dependent prothrom-
bin activator extracted from Notechis scutatus scutatus.54

This latter assay is sometimes referred as a prothrombin-
based APCR assay,55–57 and it does not require the presence
of calcium ions and PLs, therefore allowing to eliminate the
influence of lupus anticoagulant.55 Beside these snake ven-
om-based assays, the FXa-based assay is a test for which the
patient’s plasma is diluted in a proprietary reagent contain-
ing FII, fibrinogen, protein S, and APC. Purified FXa, PLs, and
calcium are then added to initiate the coagulation.49,53,58 In
parallel, a calibration curve derived from dilutions of het-
erozygous FV Leiden plasma pool converts clotting times to
percentages. The prolongation of the clotting time is an
inverse relationship to the FV Leiden concentration present
in the tested specimen. Normal FV presence does not affect

this test. The expected value in a FV Leiden heterozygote
stands between 25 and 75% and for a homozygous, it is above
75%.49,53,58 The activation pathways and clottingmixtures of
these clotting-timebased assays are shown in►Fig. 2 and the
commercially available kits are listed in ►Table 1.

These modified assays have been developed to detect the
phenotype associatedwith a FV Leidenmutation specifically,
although other FV mutation may lead to APCR as well, and
which may be variably identified in APCR assays, depending
on assay sensitivities and the assay cutoffs used.18 Compared
with genetic analysis using polymerase chain reaction tech-
nology, these functional tests are much less expensive and
present a shorter turnaround time. Furthermore, as these
clotting time-based assays show a sensitivity and a specific-
ity of almost 100% for the detection of FV Leiden mutation, it
couldmake sense to abstain fromgenetic testing.55However,
their high specificity may be considered as a limitation as
theymay not be able to detect any resistance to APC, induced
by either intrinsic or extrinsic factors (e.g., elevated FVIII

Table 1 Commercially available clotting time-based assays for APC resistance evaluation

Assay name Commercial kit Laboratory

aPTT-based assay HemosIL Factor V Leiden (APC Resistance V) Werfen

Chromogenix Coatest APC Resistance Werfen

Chromogenix Coatest APC Resistance – V Werfen

RVV-X-based assay ProC Ac R Assay Siemens

Crotalus viridis helleri-FXa based assay STA-Staclot APC R Stago

RVV-V plus Noscarin Pefakit-APC-R Factor Leiden Pentafarm

Acticlot Protein C resistance Sekisui

FX-based assay HemoClot Quanti-V Leiden HYPHEN BioMed

Fig. 2 Simplified overview of the coagulation cascade and activated protein C (APC) resistance assays. APC, activated protein C; aPTT, activated
partial thromboplastin time; ETP, endogenous thrombin potential; PLs, phospholipids, TF, tissue factor; TFPI, tissue factor pathway inhibitor.
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levels, protein S deficiency, pregnancy and postpartum, or
even the use of CHC and HRT), or other F5mutations.24,59–61

For this reason, Nicolaes et al developed in 1997 a new
method to assess APCR resistance based on a global coagula-
tion test instead of clotting time-based assay, known as the
endogenous thrombin potential (ETP)-based APC resistance
assay.62

Thrombin Generation-Based Assay
The ETP-based APC resistance assay was developed to assess
acquired APCR in pregnant women, women taking oral CHCs
or HRTs, and in subjects with protein S deficiency, or carrying
either an FV Leiden or a G20210A prothrombin mutation.63

This test is a variant of the thrombin generation assay, a
global coagulation test enabling a continuous overview of
clotting compared with the standard coagulation assays like
aPTT, which retrieve only a clotting time result and represent
approximately 5% of thrombin generation. The ETP-based
APCR assay is based on the measurement of thrombin
generation in presence and in absence of a defined amount
of exogenous APC.64 The activation of coagulation occurs via
the extrinsic pathway, following the addition of PLs, tissue
factor (TF), and calcium (►Fig. 2). In the absence of APC, the
resulting thrombin generation curve reflects all the pro- and
anticoagulant reactions that regulate both thrombin forma-
tion and inhibition. In the presence of APC, thrombin gener-
ation is significantly decreased in a normal plasma sample
(i.e., approximately 90%, see below). The end point of the test,
which is the total amount of thrombin that has been gener-
ated over time, is quantitated by the ETP which corresponds
to the area under the thrombin generation curve (►Fig. 3).38

The amount of APC introduced in the test, to obtain a good
sensitivity and to limit the inherent variability of the assay,
targets a decrease of 90% of the ETP of a healthy pooled
plasma, i.e., a pool of plasma constituted of men and women
of childbearing age not using a hormonal contraceptive
therapy. In other words, the ETP retrieved in presence of
APC, represents only 10% of the baseline ETP (in absence of
APC).64

Results are expressed as a ratio, the normalized APC
sensitivity ratio (nAPCsr), computed as the ratio of the ETP
measured in presence and absence of APC in the tested
plasma divided by the same ratio of the reference plasma
(e.g., a healthy pooled plasma) (Eq. 1). As the denominator
value is close to 0.1, this allows to obtain a scale ranging from
0 to 10. Importantly, conversely to the aPTT-based assay, the
higher the nAPCsr, the more resistant the patient is to APC.

The test was initially performed on a thrombin generation
system based on the cleavage of a chromogenic substrate
specific for thrombin.62 Because of technical and methodo-
logical difficulties limiting this technique65 and because of
the technological advance brought by the calibrated auto-

mated thrombogram (CAT) developed by Hemker et al in the
early 2000s,66 the ETP-based APC resistance assay was
adjusted on a fluorometric technique.65,67 However, the
inherent limitations of the CAT system, such as the lack of
standardization of the reagents, the absence of quality con-
trols, and reference plasma and the batch-to-batch variation,
were also applicable for this assay.68–71 Indeed, besides the
differences imposed by a chromogenic or a fluorogenic assay,
with the use of defibrinated plasma or platelet-poor plasma,
respectively, differences in the source and concentration of
TF, APC, and PL vesicles, led to variable sensitivity of the
assays toward the APCR.38,72 This hampered study-to-study
comparisons which in fine impeded the proper evaluation of
APC resistance induced by hormonal therapies or the evalu-
ation of prothrombotic states. For this reason, this test has
long been put aside.

In 2019, Douxfils et al proposed a standardized method-
ology that met all the standard requirements imposed on
clinical biology laboratory tests in terms of analytical per-
formances (i.e., Food and Drug Administration “Guidance for
Industry: Bioanalytical Method Validation”73 and Interna-
tional Council for Harmonization Q2 [R1] “Validation of
Analytical Procedures: Text and Methodology”74). The ETP-
based APCR was validated on the CAT device using commer-
cially available reagents to ensure batch-to-batch traceabili-
ty, recovery, and reproducibility of the method over time.64

This enabled the reduction of inter-laboratory variability and
allowed laboratory-to-laboratory and study-to-study com-
parison and evaluation.75Ultimately, this validation provides

Fig. 3 Thrombin generation curves in absence (continuous lines) and
in presence of APC (dotted lines) of healthy donors (blue), of a woman
carrier of a heterozygous FV Leiden (green) and of women using
combined oral contraceptives containing either ethinylestradiol (EE)
with levonorgestrel (yellow), with desogestrel (orange) or with dro-
spirenone (red). APC, activated protein C; AUC, area under the curve;
EE, ethinylestradiol; ETP, endogenous thrombin potential; nAPCsr,
normalized APC sensitivity ratio.
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pharmaceutical industries, regulatory bodies, and physicians
with a reproducible sensitive and validated assay that could
be proposed as a gold standard for the assessment of all types
of APCR.

This test, being performed in standardized conditions,
quantifies the degree of APCR through the nAPCsr scale
ranging from 0 to 10. As shown in ►Fig. 3, APC resistance,
characterized by a higher thrombin generation curve in
presence of APC, is observed in carriers of a FV Leiden
mutation as well as in women using CHCs. Besides, signifi-
cant differences can be observed depending on the estrogen–
progestogen association (e.g., levonorgestrel-containing
products vs. desogestrel- or drospirenone-containing prod-
ucts) of CHCs. In addition, the presence of both FV Leiden
mutation and CHC leads to a supra-additive effect which is
reflected by higher nAPCsr values comparedwith CHC use or
FV Leiden mutation alone (►Fig. 4).

However, this test has some limitations. Like the aPTT-
based APC resistance assay, the ETP-based assay is sensitive
to anticoagulants. The addition of polybrene in the triggering
reagent allows to neutralize heparin in plasma samples,
which allows to fully restore thrombin generation in the
presence of concentrations of unfractionated heparin and
low molecular weight heparin (e.g., enoxaparin) up to 1.0
and 1.2 IU/mL, respectively.76 Nonetheless, this has not yet
been investigated in the presence of exogenous APC and
deserves further investigations. Regarding the use of direct
oral anticoagulants (DOACs), there are three commercially
available DOAC removing agents: DOAC Stop, DOAC Remove,
and DP-Filter. However, these charcoal-based agents showed

a slight procoagulant effect on thrombin generation at the
medium TF concentration used in the ETP-based APC resis-
tance assay. Indeed, in absence of anticoagulant, they in-
duced a higher peak, a higher mean velocity rate index, and a
lower time-to-peak compared with a non-treated plasma
and this impact had been associated with a decrease in TFPI
levels of plasma samples.77,78 As a result, diminished TFPI
levels could impact the ETP-based APC resistance assay as
this physiological anticoagulant protein plays an important
role.61 Indeed, TFPI inhibits FXa and subsequently TF and
FVIIa by forming an inactive FXa-TFPI-TF-FVIIa quaternary
complex. If TFPI levels decrease, FXa levels increase, there-
fore protecting FVa from inactivation by APC and reducing
sensitivity for APC.61

According to the recent communication from the Scien-
tific and Standardization Committee of the International
Society on Thrombosis and Haemostasis, a current barrier
to its use, which could be eliminated in the future, is the
unavailability of this technique in clinical routine.53 Indeed,
the validated methodology has recently been transferred on
an automated thrombin generation platform, the ST Genesia
system. Data revealed good reproducibility (standard devia-
tions of 2.0 and 3.5% for within- and between-run reproduc-
ibility respectively), appropriate sensitivity toward
hormonal therapies (significant differences between healthy
individuals andwomen using various CHCs), and comparable
results to those obtained with the validated methodology on
the CAT system (Pearson correlation coefficient [95% confi-
dence interval] of 0.9497 [0.9168–0.9697], based on 60
plasma samples).79

Fig. 4 Assessment of APC resistance of healthy individuals (n¼ 12), carriers of heterozygous FV Leiden mutation (n¼ 5), and women using
combined hormonal contraceptives (n¼ 9), using (A) the ETP-based or (B) the aPTT-based (with predilution) APC resistance assays. Gray areas on
both graphs represent normal ranges. APCr, activated protein C ratio; CHC, combined hormonal contraceptive; EE, ethinylestradiol; DRSP,
drospirenone; DSG, desogestrel; nAPCsr, normalized activated protein C sensitivity ratio.
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In Practice When Should These Tests Be
Used?

APCR testing is not indicated in unselectedpatientspresenting
with VTE and even less for prevention of thrombotic events.
Indeed, the evaluation of APCR is only recommended for
situations in which the test result may give an indication of
the recurrence risk or influence the anticoagulant treatment.
Typically, it concerns patients suffering from VTE before the
age of 40 and patients who are from apparent thrombosis-
prone families (>2 other symptomatic family members).80

As the FV Leidenmutation ismore common than acquired
APCR and other F5mutations, the current recommendations
call in first place, the use of clotting-time based assay with
plasma predilution.53 However, APCR without FV Leiden
mutation represents an independent risk factor of VTE,7,8

so there is a value in having a less specific assay, able to detect
any APCR phenotype. The ETP-based APCR assay is capable of
doing so, which makes it less specific and therefore not able
to identify the underlying cause of APCR.

Thus, both test types certainly assess APCR, but they should
not be used for the same purpose. Moreover, inconsistent
results, as shown in ►Fig. 4, are typically observed between
these two assays. Clotting time-based assays should only be
recommended as a substitute of genetic testing for FV Leiden
mutation and not for the evaluation of APCR during, for
example, thedevelopmentof steroidcontraceptives inwomen,
although it is mentioned in the EMA guidelines (EMEA/CPMP/
EWP/519/98 Rev.1).46 In contrast, the ETP-based APCR assay
has demonstrated, for over 20 years, its ability to detect any
APCR phenotype, and especially, those associatedwith female
hormonal changes, although it was neither validated nor
standardized until recently.64 This test not only detects the
presence of acquired APCR but it also correlates with the RR of
VTE associated with the different CHC formulations available
in themarket.81Despite the fact thatCHCsareusedbyover150
millionwomenworldwide,82 no clear risk minimization strat-
egy to manage the risk of VTE has been implemented. Overall,
the absolute risk of VTE remains low (i.e., 5 to 12 for 10,000
women ayear).However, given the large numberof CHCusers,
22,000 thrombosis related toCHCusewouldoccur eachyear in
Europe.83 Theworldwide use of HRT is certainly lower, but the
annual incidence is higher with three to four cases of VTE per
1,000 women.36,84,85

As the field of personalized medicines is currently
expanding, a biomarker capable of reflecting the “coagula-
bility status” of individuals would be of great interest.
Indeed, VTE is a multifactorial disease whose occurrence
depends on the interaction between gene defects and envi-
ronmental factors.86 As a result, exposure to high-risk sit-
uations such a surgery, trauma, immobilization, pregnancy,
or hormonal therapy may trigger a thrombotic event in
individuals either in absence or presence of genetic muta-
tions. This suggests that the evaluation of thrombophilia
should be based on phenotypic expression rather than only
focusing on genotypic expression.

The ETP-based APC resistance assay, reflecting all the pro-
and anticoagulant reactions might be a potential candidate.

Indeed, the typical information obtained by thrombin gen-
eration investigation (i.e., without exogenous APC added) is
available, providing much more information than the APC
resistance itself. As it enables a more global assessment of
coagulation process, this assay is also sensitive toward other
factors of thrombogenicity like the prothrombin G20210A
mutation, antithrombin, and protein S deficiencies or high
FVIII levels.87–90

A method able to assess the entire coagulation process is
valuable, as this can better reflect bleeding and thrombotic
risks as compared with clotting time-based assays.91 Indeed,
the end point of clotting-time based assays occurs after the
formation of only 5% of total thrombin, which means that
recorded clotting times only correspond to the initiation
phase of the coagulation process.91

Conclusion

A global screening test could be the key to detect prothrom-
botic phenotypes associated with an increased risk of VTE.
The ETP-based APCR assay, by considering the entire coagu-
lation process and assessing thrombin generation in two
different conditions (with and without exogenous APC),
allows the identification of a large panel of prothrombotic
states. Currently, the evaluation of a complete thrombophilia
panel requires multiple coagulation tests, which can make
the interpretation of the results expensive and challenging.
Indeed, changes in coagulation factors levels may not exceed
their respective normal ranges, when assessed individually.
On the other hand, the increased thrombogenicity, resulting
from the additive effect of these changes could be captured
by the ETP-based APC resistance assay. This represents an
interesting approach that needs further clinical validation to
assess and score a hypercoagulable state that would help the
clinician in decision-making.
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