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Option pricing and hedging in illiquid markets in presence of jump
clustering

John-John Ketelbuters∗ Donatien Hainaut†

Abstract

The topic of this paper is the pricing and hedging of options on small capitalization stocks. Such
stocks tend to exhibit two features. The first is the presence of motionless periods in their prices. It
is a consequence of a lack of liquidity, since these stocks are not heavily traded. The second is the
occurrence of clustered sudden moves in the price at the times the stock is traded. The model we
propose is therefore a self-exciting Hawkes jump-diffusion process that is time-changed by the inverse
of an alpha-stable subordinator, a process that exhibits motionless periods. This article is divided into
two parts. In the first part, we prove that, when adding some information to the inverse alpha-stable
subordinator, we obtain a Markov process. This result allows us to obtain the dynamic framework we
need to establish a hedging strategy. In the second part, we deal with the pricing and hedging of options.
To this end, we derive a fractional partial differential equation (FPDE) for the Fourier transform of
the log asset price. We introduce a finite difference method to solve this FPDE. Prices of options can
be obtained by a numerical inversion of the Fourier transform with a fast-Fourier transform algorithm.
Changes of measures are then discussed, as well as an optimal quadratic hedging strategy for options.
Finally, the last section of this paper presents some numerical experiments.

Introduction

Illiquid assets, for example in emerging markets, are characterized by periods of time without any trade,
and thus without movement in their prices. Properly taking into account this feature require stochastic
processes that exhibit motionless periods. In this regard, usual models that involve Brownian motions or
more general Lévy processes do not seem appropriate, as such processes move all the time. This problem also
occurs in physical systems exhibiting sub-diffusion. The periods without trades correspond to the trapping
events in which the subdiffusive particle gets immobilized. Subdiffusion is thus a well known phenomenon in
statistical physics. The usual mathematical tool for this phenomenon is fractional calculus. More precisely,
the density of a subdiffusive model is characterized by a fractional partial differential equation (FPDE), as
in Barkai, Metzler, and Klafter (2000), Metzler and Klafter (2004) and Metzler and Klafter (2000). That is,
the partial derivative with respect to time is replaced by a fractional derivative. This particular equations
are also called fractional Fokker-Planck equations. Due to the link between the subdiffusive behaviour and
fractional calculus, we also refer to subdiffusive models as fractional models. Subdiffusive dynamics can also
be obtained by the technique of time-change, as in e.g. Ketelbuters and Hainaut (2022). A subdiffusion is
obtained when a standard diffusion process is time-changed by the inverse of an α-stable Lévy process. This
approach is used in Magdziarz (2009) to obtain a subdiffusive version of the famous Black and Scholes model
and to show that vanilla option prices can be computed by numerical integration. It is also established that
despite the Black and Scholes market being complete, its subdiffusive counterpart is not, since more than
one risk neutral measure exist. Hainaut and Leonenko (2021) propose an extension to a subdiffusive jump
diffusion model, for which option prices can be computed by solving a fractional partial integro-differential
equation. This equation is similar to Dupire’s forward partial differential equation (PDE) for call prices.
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A feature that often characterize financial data is the clustering of certain events. Events that are typically
clustered are jumps in the asset prices and defaults of companies. As an example, we can cite the 2008
economic crisis. The collapse of Lehman Brothers brought the financial system to the brink of a breakdown.
The important economical consequences indicates the existence of a propagation phenomena that is channeled
through the complex economic system. Self-exciting point processes, also called Hawkes processes, allow to
mathematically take into account this phenomenon of contagion. This approach finds its origins in the
papers Hawkes (1971a) and Hawkes (1971b), as well as in Hawkes and Oakes (1974). The arrival of events
is ruled by an intensity process which represents the instantaneous probability of occurrence. In the most
common and simplest setting, the intensity process suddenly increases when an event occurs. Motivated by
the 2008 crisis, the Hawkes process approach was used in Errais, Giesecke, and Goldberg (2010) to model
the spillover effect between defaults. Self-exciting processes were also used in Ait-Sahalia, Cacho-Diaz, and
Laeven (2015) to model the clustering of jumps in the prices of financial assets or in Hainaut (2016b) and
Hainaut (2016a) for modeling the term structure of interest rates. The pricing and hedging of vanilla options
when the asset is driven by a self-exciting jump diffusion was studied in Moraux and Hainaut (2018). More
precisely, this article shows that the Fourier transform of the log-asset price is described by a system of
ordinary differential equations. After having solved this system numerically, the method of Carr and Madan
(1999) is used to invert the transform with a fast Fourier transform (FFT) algorithm, leading to the option
prices.

A self-exciting model that exhibits subdiffusive behaviour was introduced in Hainaut (2020) under the name
of fractional Hawkes process. It is shown in Ketelbuters and Hainaut (2022) that such a process can be
calibrated to credit default swaps by solving numerically a FPDE that characterizes the associated Laplace
transform. The fractional Hawkes process is obtained by time-changing a Hawkes process, which is similar
to the work of Magdziarz (2009) with the Black and Scholes model. More precisely, the time-change used
for subdiffusions is a process (St)t⩾0 defined as St := inf{τ > 0 : Uτ > t}, where (Ut)t⩾0 is an α-stable
subordinator, i.e. an increasing Lévy process to be described with more details hereinafter. In other words,
(St)t⩾0 is the inverse of the α-stable subordinator (Ut)t⩾0. (St)t⩾0 is of course nondecreasing, since St is
defined as the smallest time (Ut)t⩾0 goes above the level t.

We refer to (St)t⩾0 as a time-change and not as a subordinator because it is not a Markov process, and
thus not a Lévy process either. Related to that, the practical use in finance of such a time-change suffers
from a twofold problem: nothing can be said about the distribution of St conditional on Ss, s < t. Even
worse is the fact that even if the distribution of St given Ss could be known, the fact that (St)t⩾0 is not a
Markov process would make this distribution irrelevant. This is of course a significant problem if, as often,
one wants to re-evaluate a financial product after it is issued. A solution to the first part of this problem
was proposed in Hainaut (2021). More specifically, Hainaut (2021) shows how to determine the distribution
of St conditional on (Ss, USs), s < t. That is, we have to adjunct the additional information on the last
known value USs

of (USt
)t⩾0, which represents the actual value reached by (Ut)t⩾0 on the first time it goes

above the level s. This solution provides an insight for the second part of the problem, which becomes: Is it
relevant to use the distribution of St given the last known values (Ss, USs

)? As a matter of fact, it could be
that the distribution St seen from time s ∈ (0, t) depends on some values (Su, USu) with u < s, leading to a
loss of information. The first main contribution of this paper is to show that the answer to the question in
italics is yes. We show that even though (St)t⩾0 is not a Markov process, the bivariate process (St, USt

)t⩾0
satisfies the Markov property, ensuring that the approach of Hainaut (2021) does not suffer from any loss of
information.

The second main contribution of this paper is a method for pricing vanilla options when the asset model
is both self-exciting and subdiffusive. We obtain such a model by applying the technique of time-change
mentioned above on the self-exciting jump diffusion asset model of Moraux and Hainaut (2018), leading to
what we call a fractional (or subdiffusive) self-exciting jump diffusion model. We show that the Fourier
transform of the log-price is ruled by a FPDE. Inspired by the finite difference method of Alikhanov (2015),
we propose a numerical method to solve the aforementioned FPDE and show that its error is (at least) of
order 2. Then, we compute vanilla option prices by numerical inversion of the transform with the help of a
FFT algorithm.

The third contribution of this paper is to tackle the question of the hedging of contingent claims in a
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fractional self-exciting jump diffusion setting. As the market is incomplete, a perfect replication of all the
contingent claims is impossible. In this case, we aim at approximating the payoff of the contingent claim by
a self-financing portfolio (or self-financing strategy) that minimizes the expected squared hedging error, as
in e.g. Föllmer and Sondermann (1985) and Cont, Tankov, and Voltchkova (2012). Unlike approaches based
on other loss functions, quadratic hedging yields linear hedging rules that are very convenient to implement,
see Schweizer (2001). Relying on the predictable representation theorem for square integrable martingales
of Kunita and Watanabe (1967), we derive the existence and uniqueness of an optimal quadratic hedging
strategy for any square integrable contingent claim. Moreover, if the payoff of the contingent claim is not
path dependent, i.e. if it depends on the final value of the asset only, we give an explicit formula for this
optimal quadratic hedging strategy. In particular, we deduce the hedging strategies for call options.

This paper is organized as follows. In the first section, we describe precisely the model we propose. In the
second section, we deal with the Markov property of (St, USt

)t⩾0. To do so, we derive some properties of the
processes that are involved and study the different filtrations that arise in our setting. In the third section,
we derive a fractional partial differential equation for the transform of the log-asset price. In the fourth
section, we describe a whole class of risk neutral measures. As a consequence, the market is arbitrage free
and incomplete. In the fifth section, we propose a numerical method based on finite differences that allows
to solve numerically the fractional partial differential equation derived in the third section. Furthermore, we
show how the results of this method can be used to retrieve the price of a call option under a particular risk
neutral measure. In Section 6, we deal with the optimal quadratic hedging of contingent claims. Finally, the
last section presents our numerical results that consist of call option prices and implied volatilities computed
with the method we proposed.

0.1 The Model

This first section is dedicated to the precise introduction of the model we use. For a technical reason, the
probability space (Ω,F ,P) is assumed to be the product of two complete probability spaces (Ω(1),F (1),P(1))
and (Ω(2),F (2),P(2)). The first probability space (Ω(1),F (1),P(1)) carries the non-fractional model which, as
mentioned in the introduction, is the same as in Moraux and Hainaut (2018). The other probability space
carries all the processes related to the time-change operation (the α-stable Lévy process and its inverse). The
introduction of the model with two probability spaces is the reason why the different stochastic processes
will be indexed by a superscript (i) indicating on which probability space they live (i = 1, 2). This gives a
little cumbersome notations at the beginning of this article, but the product space construction is crucial to
simplify the proof of one of our results (this result is Proposition 0.17).

Let (A(1)
t )t⩾0 be a stochastic process on (Ω(1),F (1),P(1)) that satisfy the following stochastic differential

equation (SDE)
dA(1)

t

A
(1)
t−

= µdt+ σdW (1)
t + dD(1)

t − λ
(1)
t E[eξ − 1]dt, (1)

where (W (1)
t )t⩾0 is a standard Brownian motion on (Ω(1),F (1),P(1)). The processes (J (1)

t )t⩾0 and (λ(1)
t )t⩾0

are defined as we explain now. Let (N (1)
t )t⩾0 be a pure jump process with jumps of size 1 and inten-

sity (λ(1)
t )t⩾0 and ξ1, ξ2, · · · =dist ξ be independent and identically distributed random variables whose

distribution is given by the probability measure ν on (R,BR). We assume that the jumps ξ1, ξ2, . . . are
double-exponential random variables. That is, the probability measure ν is of the form

ν(B) := p

∫
B∩R+

ρ+e−ρ+zdz − (1 − p)
∫

B∩R−
ρ−e−ρ−zdz (2)

where p and (1 − p) are respectively the probabilities to observe upward and downward jumps and ρ+ > 0,
ρ− < 0 are the jump size parameters. The average upward jump size is 1/ρ+ > 0 whereas the average
downward jump size is 1/ρ− < 0. Overall, the expected size of a jump is E[ξ] = p(1/ρ+) + (1 − p)(1/ρ−).
The joint moment-generating function of (ξ, |ξ|) will be needed in the subsequent developments and is denoted
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by ψ. From Equation (2), we have

ψ(z1, z2) := E
[
ez1ξ+z2|ξ|

]
= p

ρ+

ρ+ − (z1 + z2) + (1 − p) ρ−

ρ− − (z1 − z2)
(3)

provided that (z1 + z2) < ρ+ and (z1 − z2) > ρ−. We set

D
(1)
t :=

N
(1)
t∑

k=1
(eξk − 1) J

(1)
t :=

N
(1)
t∑

k=1
ξk L

(1)
t :=

N
(1)
t∑

k=1
|ξk|, (4)

and define the stochastic intensity process (λ(1)
t )t⩾0 as

dλ(1)
t = κ(θ − λ

(1)
t )dt+ ηdL(1)

t . (5)

Finally, we define the log-price of the stock as the process (X(1)
t )t⩾0 := (lnA(1)

t )t⩾0. Using Ito’s Lemma, we
have

dX(1)
t =

(
µ− σ2

2 − λ
(1)
t E[eξ − 1]

)
dt+ σdW (1)

t + dJ (1)
t . (6)

This relation implies that

A
(1)
t = A

(1)
0 exp

{(
µ− σ2

2

)
t− E[eξ − 1]

∫ t

0
λ(1)

s ds+ σW
(1)
t + J

(1)
t

}
. (7)

This completes the introduction of all the stochastic processes defined on (Ω(1),F (1),P(1)). Let (U (2)
t )t⩾0 be

an α-stable subordinator on the probability space (Ω(2),F (2),P(2)). The process (U (2)
t )t⩾0 is thus a strictly

increasing Lévy process whose Laplace transform satisfies

E[e−ωU
(2)
t ] = e−tωα

for some α ∈ (0, 1). We denote by (S(2)
t )t⩾0 the inverse of (U (2)

t )t⩾0, that is

S
(2)
t := inf{τ > 0 : U (2)

τ > t}

for each t ⩾ 0. The paths of (S(2)
t )t⩾0 are nondecreasing P(2)-a.s., but not strictly increasing. Note that

(S(2)
t )t⩾0 has continuous paths P(2)-a.s., which is a consequence of the strictly increasing paths of (U (2)

t )t⩾0.

Let (Ω,F ,P) be defined as follows: Ω = Ω(1) × Ω(2), F = F (1) ⊗ F (2) and P(B1 × B2) = P(1)(B1)P(2)(B2)
for any B1 × B2 ∈ F (1) × F (2). The process (At)t⩾0 is defined on (Ω,F ,P) as At(ω1, ω2) = A

(1)
t (ω1) for

all (ω1, ω2) ∈ Ω. The process (Ut)t⩾0 is defined as Ut(ω1, ω2) = U
(2)
t (ω2). The other processes (λt)t⩾0,

(Jt)t⩾0, (St)t⩾0 and the others are defined similarly. This construction obviously implies that the processes
(At)t⩾0 and (Ut)t⩾0 are independent. The null sets of (Ω,F ,P) are denoted by N . By the assumption of
completeness of the probability space, we obviously have N ⊂ F .

The stock price is represented by the time-changed process (ASt
)t⩾0. Figure 1 displays examples of paths

for the asset price (ASt
)t⩾0 (or (At)t⩾0 in the bottom right non fractional case) for different fractional orders

α. The cases α < 1 exhibit motionless periods, corresponding to the absence of trade for the asset. This is
the feature that allows to take into account the potential illiquidity of the asset. Observe that when α is
smaller, the periods of illiquidity tend to last longer.
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Figure 1: Five simulated paths for fractional order varying from 0.7 to 1. A fractional order equal to 1
corresponds to the non fractional model (no time change).
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0.2 Markov property of the time-change process

We denote by (FU
t )t⩾0 and (FS

t )t⩾0 the natural filtrations of (Ut)t⩾0 and (St)t⩾0. Note that all the natural
filtrations are assumed to contain the null sets N . The α-stable subordinator (Ut)t⩾0 admits a PDF that we
denote by pU (t, τ) = ∂

∂τ P(Ut ⩽ τ). This PDF satisfies the representation

pU (t, τ) = 1
π

+∞∑
k=0

(−1)k

k! Γ(1 + kα)τ−(1+αk)tk sin(παk)

for τ > 0. See e.g. Proposition 3.1 in Gupta and Kumar (2022) for a proof. As a consequence, the
subordinator (Ut)t⩾0 has strictly increasing paths P-a.s.. Note that being a Lévy process, (Ut)t⩾0 is also a
Feller process, for which the reader is referred to the Chapter 3 of Revuz and Yor (2004). If we consider
(Ut)t⩾0 as a Feller process, any initial distribution can be considered for U0. For a random variable X and a∨

t⩾0 FU
t -measurable random variable Z, we write EX [Z] for the expected value obtained for Z if the initial

distribution of U0 is the distribution of X. When no superscript is added on the expectation operator, we
consider U0 = 0 P-a.s., i.e. E[Z] = E0[Z] and (Ut)t⩾0 is then a Lévy process.

The next proposition gives some further basic properties of (Ut)t⩾0 and its inverse (St)t⩾0.

Proposition 0.1. (i) For any t ⩾ 0, St ∈ {τ ⩾ 0 : Uτ ⩾ t} P-a.s., so that USt
⩾ t P-a.s..

(ii) For any t ⩾ 0, St is an P-a.s. finite stopping-time with respect to the filtration (FU
t )t⩾0. Moreover,

supu⩾0 Su < +∞ P-a.s..

(iii) (St)t⩾0 has continuous paths P-a.s..

Proof. (i) By definition of St and the definition of infimum, there is a random sequence τn ∈ {τ ⩾ 0 : Uτ > t}
such that τn ↓ St. By the right-continuity of (Uτ )τ⩾0, we have limn→+∞ Uτn = USt . Since Uτn > t for all n,
we also have limn→+∞ Uτn = USt ⩾ t.

(ii) That St is a stopping-time is a consequence of {St ⩽ s} = {Us ⩾ t} ∈ FU
s for all s ⩾ 0. Let us prove

that it is finite a.s.. For any fixed t > 0,

P(St < +∞) = P

(⋃
n∈N

{St ⩽ n}

)

= P

(⋃
n∈N

{Un ⩾ t}

)
,

where we used that {St ⩽ n} = {Un ⩾ t}. Moreover, since the process (Ut)t⩾0 is increasing, the sequence of
events ({Un ⩾ t})n∈N is increasing. As a consequence, the continuity of probability measures implies that

P

(⋃
n∈N

{Un ⩾ t}

)
= lim

n→+∞
P(Un ⩾ t).

Since (Us)s⩾0 is an α-stable process, the random variables Un and n1/αU1 share the same probability
distribution, thus

lim
n→+∞

P(Un ⩾ t) = lim
n→+∞

P
({

U1 ⩾
t

n1/α

})
.

Again, the sequence of events
({
U1 ⩾ t

n1/α

})
n∈N is increasing so that the continuity of probability measures

yields
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lim
n→+∞

P
({

U1 ⩾
t

n1/α

})
= P

(⋃
n∈N

{
U1 ⩾

t

n1/α

})
= P(U1 > 0)
= 1.

This proves that St is a.s. finite. As a consequence of the nondecreasing paths of (St)t⩾0, the sequence of
events ({Sn < +∞})n∈N is decreasing. Therefore, the continuity of probability measures implies

P
(

sup
u⩾0

Su < +∞
)

= P

(⋂
n∈N

{Sn < +∞}

)
= lim

n→∞
P(Sn < +∞) = 1,

which concludes the proof of (ii).

(iii) A proof of the right-continuity of (St)t⩾0 is given at Lemma 4.8 in Chapter 0 of Revuz and Yor (2004).
We show now that the left-continuity can be obtained as a consequence of the strictly increasing paths of
(Ut)t⩾0. Let

A := {ω ∈ Ω : the function t 7→ Ut(ω) is strictly increasing}

and
Bl := {ω ∈ Ω : the function t 7→ St(ω) is left-continuous}.

Let ω ∈ A and assume by contradiction that ω /∈ Bl. Then there would be some t ⩾ 0 such that for all
ε > 0,

St(ω) − St−ε(ω) > η.

It implies that
USt(ω)−ε+η(ω) − USt(ω)−ε(ω) < ε.

Letting ε decrease to 0 yields
U(St(ω)+η)−(ω) − USt(ω)−(ω) ⩽ 0,

where of course Ut− denotes the left limit lims↑t Us. As a consequence, we should have

Us(ω) = U(St(ω)+η)−(ω) = USt(ω)−(ω)

for all s ∈ (St(ω), St(ω)+η), contradicting that ω ∈ A. This proves that A ⊂ Bl and hence the left-continuity
of (St)t⩾0 follows from the strictly increasing paths of (Ut)t⩾0.

Revuz and Yor (2004) also note that St− = inf{s ⩾ 0 : Us ⩾ t}, but since (St)t⩾0 is left-continuous by (iii)
in Proposition 0.1, we have

St = inf{s ⩾ 0 : Us ⩾ t} = inf{s ⩾ 0 : Us > t}.

As (St)t⩾0 is a nondecreasing process, Proposition 0.1 (ii) implies that it is has bounded variation. Since it
has continuous (and thus càdlàg) paths, Proposition 0.1 (ii) also implies that (St)t⩾0 is a semimartingale.
Moreover, having proved that St is a stopping-time for any t ⩾ 0, we can introduce the stopped sigma-
algebras

FU
St

:=
{
A ∈ FU

∞ : A ∩ {St ⩽ u} ∈ FU
u for all u ⩾ 0

}
,

where FU
∞ =

∨
t⩾0 FU

t . Since for any 0 ⩽ s ⩽ t, Ss and St are stopping-times that satisfy Ss ⩽ St a.s.,
it is clear that the collection (FU

St
)t⩾0 of sigma-algebras is a filtration. We also introduce the filtrations

(FU◦S
t )t⩾0 and (FS,U◦S

t )t⩾0 to be the natural filtrations of respectively (USt
)t⩾0 and (St, USt

)t⩾0. The next
proposition shows that (FU

St
)t⩾0 is finer than the natural filtration of (St)t⩾0.

Proposition 0.2. For all t ⩾ 0, FS
t ⊂ FU

St
.
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Proof. Fix any r ∈ R and τ ⩽ t. We start by showing that {Sτ ⩽ r} ∩ {St ⩽ u} ∈ FU
u for all u ⩾ 0. To this

end, note that {Sτ ⩽ r} ∩ {St ⩽ u} = {Ur ⩾ τ} ∩ {Uu ⩾ t}. If r > u, then

{Uu ⩾ t} ⊂ {Ur ⩾ t} ⊂ {Ur ⩾ τ}

so that {Ur ⩾ τ} ∩ {Uu ⩾ t} = {Uu ⩾ t} ∈ FU
u . If r ⩽ u, it is clear that {Ur ⩾ τ} ∩ {Uu ⩾ t} ∈ FU

u .
This allows us to conclude that {Sτ ⩽ r} ∈ FU

St
. Since the intervals of the form (−∞, r] generates the Borel

σ-algebra BR, it implies that for any B ∈ BR and 0 ⩽ τ ⩽ t, we have

{Sτ ∈ B} ∈ FU
St
.

The conclusion follows.

Similarly, we can define the σ-algebra of events that happen before the stopping-time St as

FU
St− := FU

0 ∨ σ{A ∩ {s < St} : A ∈ FU
s , s ∈ R+}.

It is well known that FU
St− ⊂ FU

St
, for all t ⩾ 0. Finally, we will also use the stopped processes (USt

s )s⩾0 that
are defined as

USt
s :=

{
USt

if s ⩾ St

Us if s < St

}
= Us1{s<St} + USt

1{s⩾St} = Us∧St
.

We give now some intermediary results that will be useful to prove that the bivariate process (St, USt
)t⩾0

is a Markov process with respect to its natural filtration (FS,U◦S
t )t⩾0. Before stating and proving these

results, let us stress their purpose. The proof of the Markov property of (St, USt
)t⩾0 relies on the strong

Markov property of the Feller process (Ut)t⩾0, which states that such processes renew themselves at stopping-
times. When stopping (Ut)t⩾0 at the stopping-time St, the relevant σ-algebra is the stopped σ-algebra FU

St
.

However, as mentioned before, we want to prove that (St, USt
)t⩾0 satisfies the Markov property with respect

to its natural filtration (FS,U◦S
t )t⩾0. The first goal of our preliminary results is thus to establish that

both filtration (FS,U◦S
t )t⩾0 and (FU

St
)t⩾0 coincide. The other goal of the preliminary results is to express

some events of interest as countable unions or intersections of more simple events to prove that they are
measurable.

Lemma 0.1. Let N denote the collection of all null sets in the probability space (Ω,F ,P). Then for each
t ⩾ 0 it holds that

FU
St

= σ(St, U
St) ∨ N ,

where σ(St, U
St) denote the sigma-algebra generated by the random variable St and the stopped process

(USt
s )s⩾0.

Proof. First part. The first step is to prove FU
St

⊃ σ(St, U
St) ∨ N . By Proposition 0.2, it is clear that

FU
St

⊃ σ(St). By the assumption of completeness of the probability space, it also holds that FU
St

⊃ N .
Therefore, the first step will be completed by proving that FU

St
⊃ σ(USt). Fix s ⩾ 0 and B ∈ BR. For any

u ⩾ 0,
{USt

s ∈ B} ∩ {St ⩽ u}

=
(

{USt
s ∈ B} ∩ {St ⩽ u} ∩ {St ⩽ s}

)
∪
(

{USt
s ∈ B} ∩ {St ⩽ u} ∩ {St > s}

)
=
(

{USt
∈ B} ∩ {St ⩽ u ∧ s}

)
∪
(

{Us ∈ B} ∩ {St ⩽ u} ∩ {St > s}
)

Theorem 6 (P.5) in Protter (2005) implies that {USt
∈ B} ∈ FU

St
and consequently that {USt

s ∈ B} ∩ {St ⩽
u ∧ s} ∈ FU

u∧s ⊂ FU
u . Moreover,

{Us ∈ B} ∩ {St ⩽ u} ∩ {St > s} =
{

∅ if s ⩾ u

{Us ∈ B} ∩ {Us ⩾ t} ∩ {Uu ⩾ t} if s < u

}
∈ FU

u .
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It follows that {USt
s ∈ B} ∩ {St ⩽ u} ∈ FU

u , which proves the first inclusion.

Second part. The second step is to prove FU
St

⊂ σ(St, U
St) ∨ N . Define

A :=
{
A ∈ FU

∞ : E[1A|FU
St

] = E[1A|σ(St, U
St) ∨ N ]

}
.

Clearly A is a λ-system that contains N . Let C be the collection of subsets

C :=


n⋂

j=1
{Utj ∈ Bj} : n ∈ N, tj ∈ R+, Bj ∈ BR

 .

This collection is a π-system that satisfies σ(C) ∨ N = FU
∞. For C ∈ C,

E[1C |FU
St

] = E

 n∏
j=1

1{Utj
∈Bj}

∣∣∣∣FU
St


=

n+1∑
k=1

E

1{St∈[tk−1,tk)}

n∏
j=1

1{Utj
∈Bj}

∣∣∣∣FU
St

 ,
where t0 and tn+1 have to be understood as 0 and +∞ respectively. Note that

1{St∈[tk−1,tk)}1{Utj
∈Bj} =

{
1{St∈[tk−1,tk)}1{Utj ∧St ∈Bj} if j < k

1{St∈[tk−1,tk)}1{Utj ∨St ∈Bj} if j ⩾ k.

Moreover, by the FU
St

-measurability of the random variables St (Proposition 0.2) and Utj∧St = USt
tj

(first
part of this proof), we deduce that 1{St∈[tk−1,tk)}1{Utj ∧St ∈Bj} is FU

St
-measurable whenever j < k. As a

consequence,

E[1C |FU
St

] =
n+1∑
k=1

1{St∈[tk−1,tk)}

k−1∏
j=1

1{Utj ∧St ∈Bj}E

 n∏
j=k

1{Utj ∨St ∈Bj}

∣∣∣∣FU
St


Let Z be the FU

∞-measurable random variable
∏n

j=k 1{U(tj ∨St)−St
∈Bj}. Then

n∏
j=k

1{Utj ∨St ∈Bj} = Z ◦ θSt
,

where (θt)t⩾0 denotes the translation operators defined as θt(Us) = Us+t (see Revuz and Yor (2004), Chapters
1 and 3). From Theorem 3.1 in Chapter 3 of Revuz and Yor (2004), we have

E
[
Z ◦ θSt

|FU
St

]
= EUSt [Z],

and thus

E[1C |FU
St

] =
n+1∑
k=1

1{St∈[tk−1,tk)}

k−1∏
j=1

1{Utj ∧St ∈Bj}EUSt [Z].

Since FU
St

⊃ σ(St, U
St) ∨ N , the tower property for conditional expectations gives

E[1C |σ(St, U
St) ∨ N ] = E[E[1C |FU

St
]|σ(St, U

St) ∨ N ]

=
n+1∑
k=1

E

1{St∈[tk−1,tk)}

k−1∏
j=1

1{Utj ∧St ∈Bj}EUSt [Z]
∣∣∣∣σ(St, U

St) ∨ N


=

n+1∑
k=1

1{St∈[tk−1,tk)}

k−1∏
j=1

1{Utj ∧St ∈Bj}EUSt [Z]

= E[1C |FU
St

],
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where the third equality comes from the σ(St, U
St)-measurability of the random variable in the conditional

expectation. From Dynkin’s π-λ theorem, we conclude that σ(C) ⊂ A. Since σ(C)∨N = FU
∞, it implies that

FU
∞ = A. As a conclusion, for any A ∈ FU

St
, A ∈ A and therefore

1A = E[1A|FU
St

] = E[1A|σ(St, U
St) ∨ N ],

so that A ∈ σ(St, U
St) ∨ N , concluding the proof.

In the following, we write (FU◦S
t )t⩾0 for the natural filtration of the process (USt)t⩾0 and (FU◦S,S

t )t⩾0 for
the natural filtration of the bivariate process (USt , St)t⩾0.

Lemma 0.2. For all t ⩾ 0,

(i) FU
St

= σ(FU
St−, USt),

(ii) FU
St− ⊂ FS

t .

Proof. (i) Recall that the FU
St

-measurability of USt
follows from Theorem 6 (P.5) in Protter (2005). Therefore

we just have to prove that FU
St

⊂ σ(FU
St−, USt). By Lemma 0.1, FU

St
= σ(St, U

St) ∨ N , so that we will prove
that σ(FU

St−, USt
) contains both σ(St) and σ(USt). From the definition of FU

St−, clearly {St > s} ∈ FU
St−

for all s ⩾ 0, so that σ(USt) ⊂ σ(FU
St−, USt

). For the second inclusion, note that for any s ⩾ 0 and B ∈ BR,
one has

{USt
s ∈ B} =

(
{USt

s ∈ B} ∩ {St ⩾ s}
)

∪
(

{USt
s ∈ B} ∩ {St > s}

)
=
(

{USt
∈ B} ∩ {St ⩾ s}

)
∪
(

{Us ∈ B} ∩ {St > s}
)
.

It is an easy task to check that the sets {St ⩾ s} and {Us ∈ B}∩{St > s} belong to FU
St−. We thus conclude

that the second inclusion σ(USt) ⊂ σ(FU
St−, USt

) holds.

(ii) We have to show that A ∩ {St > s} ∈ FS
t whenever s ⩾ 0 and A ∈ FU

s . For this, it is enough to show
that {Us < b} ∩ {St > u} ∈ FS

t for any b ∈ R and s ⩽ u. Such sets satisfy

{Us < b} ∩ {St > u} = {Sb > s} ∩ {St > u},

which proves that they are in FS
t if b ⩽ t. In the case b > t, the nondecreasing paths of (St)t⩾0 entail that

{Sb > s} ∩ {St > u} = {St > u}, and thus the set also belongs to FS
t .

Lemma 0.3. Let t > 0 and x1 ⩾ 0. Then

{USt
⩾ x1} =

{
Ω if x1 ⩽ t

{St = Sx1} if x1 > t.

Proof. The case x1 ⩽ t is obvious since USt
⩾ t (Proposition 0.1). Let x1 > t and ω ∈ {Sx1 > St}. Then there

exists ξ ∈ (St(ω), Sx1(ω)). It follows that USt(ω)(ω) < Uξ(ω) ⩽ x1 and thus {USt ⩾ x1} ∩ {Sx1 > St} = ∅.
Since (Su)u⩾0 is nondecreasing, we have

{USt
⩾ x1} = {USt

⩾ x1} ∩ {Sx1 ⩾ St}
= ({USt

⩾ x1} ∩ {Sx1 > St}) ∪ ({USt
⩾ x1} ∩ {Sx1 = St})

= {USt
⩾ x1} ∩ {Sx1 = St}

so that {USt ⩾ x1} ⊂ {Sx1 = St}. For the converse inclusion, let ω ∈ {Sx1 = St}. Proposition 0.1 implies
that x1 ⩽ USx1 (ω)(ω). Since USx1 (ω)(ω) = USt(ω)(ω), we conclude that ω ∈ {USt

⩾ x1}.
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Lemma 0.4. Let 0 < t < x1. Then

{St = Sx1} =
⋂

n∈N

⋃
(q1,q2)∈Q×Q

0⩽q1<q2<q1+ 1
n

[
{Uq1 < t} ∩ {Uq2 ⩾ x1}

]
. (8)

Proof. We denote by C the set at the right-hand side of Equation (8). Let ω ∈ C. We can find sequences
(q1,n)n∈N, (q2,n)n∈N such that for all n, q1,n < q2,n < q1,n + 1

n , Uq1,n
(ω) < t and Uq2,n

(ω) ⩾ x1. By definition
of (St)t⩾0, we have

q1,n ⩽ St(ω) ⩽ Sx1(ω) ⩽ q2,n < q1,n + 1
n
.

It is then clear that both the sequences (q1,n)n∈N, (q2,n)n∈N are convergent and converge towards the same
limit. We get ω ∈ {St = Sx1} as a conclusion.

Conversely, let ω ∈ {St = Sx1}. For each n, let q1,n ∈ (St(ω) − 1
2n , St(ω)) ∩Q+ and q2,n ∈ (Sx1(ω), Sx1(ω) +

1
2n ) ∩ Q+. We clearly have Uq1,n

(ω) < t, Uq2,n
(ω) ⩾ x1, q1,n < q2,n and q2,n − q1,n < 1

n , the latter being a
consequence of St(ω) = Sx1(ω). This proves that ω ∈ C.

Corollary 0.1. For any t ⩾ 0, FU◦S
t ⊂ FU

∞.

Proof. This is a consequence of Lemmas 0.3 and 0.4, as they imply that {USs
⩾ x} ∈ FU

∞ for all s ⩽ t.

Lemma 0.5. For any t ⩾ 0, we have FU◦S,S
t = FU

St
.

Proof. First part. We begin with the proof of FU◦S,S
t ⊂ FU

St
. Since Proposition 0.2 states that FS

t ⊂ FU
St

,
we only need to prove FU◦S

t ⊂ FU
St

. To this end, it suffices to show that for any x ∈ R and s ⩽ t,
{USs > x} ∈ FU

St
. To this end, we must show that if u ⩾ 0, then {USs > x} ∩ {St ⩽ u} ∈ FU

u . This is trivial
if x ⩽ s so we assume that x > s. We have

{USs
> x} ∩ {St ⩽ u} = {Ss = Sx} ∩ {St ⩾ u}

= {Ss = Sx} ∩ {St ⩽ u} ∩ {Sx ⩽ u}
= {Ss = Sx} ∩ {Uu ⩾ t ∨ x}

=
⋂

n∈N

⋃
(q1,q2)∈Q×Q

0⩽q1<q2<q1+ 1
n

[
{Uq1 < s} ∩ {Uq2 ⩾ x} ∩ {Uu ⩾ t ∨ x}

]
∈ FU

u

The first equality comes from Lemma 0.3, the second is a consequence of Sx = Ss ⩽ St, the third comes
from the definition of (St)t⩾0 and the fourth is an application of Lemma 0.4. We conclude that the last set
is in FU

u because whenever q2 > u,

{Uq1 < s} ∩ {Uq2 ⩾ x} ∩ {Uu ⩾ t ∨ x} = {Uq1 < s} ∩ {Uu ⩾ t ∨ x}{
∈ FU

u if q1 ⩽ u

= ∅ ∈ FU
u if q1 > u,

which concludes the proof.

Second part. We now prove FU◦S,S
t ⊃ FU

St
. By Lemma 0.2 (i), FU

St
= σ(FU

St−, USt
). According to (ii) of

the same lemma, FU
St− ⊂ FS

t , so that FU
St− ⊂ FU◦S,S

t . Since the FU◦S,S
t -measurability of USt is trivial, the

result follows.

We can now prove the Markov property for (St, USt)t⩾0.

Theorem 0.1. The bivariate process (St, USt
)t⩾0 is a Markov process with respect to its natural filtration.
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Proof. According to Theorem 45 in the first chapter of Protter (2005), proving that the Markov property
holds amounts to showing that

E[f(St, USt
)|FS,U◦S

s ] = E[f(St, USt
)|σ(Ss, USs

)]
for any t ⩾ s ⩾ 0 and any bounded Borel measurable function f : R2 → R. Let

A =
{
A ∈ σ(St, USt

) : E[1A|FS,U◦S
s ] = E[1A|σ(Ss, USs

)]
}

and
C = {{St ⩽ x1} ∩ {USt

⩾ x2} : x1, x2 ∈ R} .
Note that C is a π-system and A is a λ-system. Since the collection {(−∞, x1] × [x2,+∞) : x1, x2 ∈ R}
generates the Borel σ-algebra BR2 , it is clear that σ(C) = σ(St, USt

). We prove now that C ⊂ A. To this
end, we start by observing that

{St ⩽ x1} ∩ {USt
⩾ x2}

=
(

{St ⩽ x1} ∩ {USt
⩾ x2} ∩ {Ss = St}

)
∪
(

{St ⩽ x1} ∩ {USt
⩾ x2} ∩ {Ss < St}

)
=
(

{Ss ⩽ x1} ∩ {USs ⩾ x2} ∩ {Ss = St}
)

∪
(

{St ⩽ x1} ∩ {USt ⩾ x2} ∩ {Ss < St}
)

=
(

{Ss ⩽ x1} ∩ {USs
⩾ x2 ∨ t}

)
∪
(

{St ⩽ x1} ∩ {USt
⩾ x2} ∩ {Ss < St}

)
.

Since {Ss ⩽ x1} ∩ {USs
⩾ x2 ∨ t} is in σ(Ss, USs

), it remains to show that

E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|FS,U◦S
s ] = E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|σ(Ss, USs

)].

To do so, we proceed in two steps. In the first step we will assume that x2 ⩽ t, so that {USt
⩾ x2} = Ω.

This case is the most simple. In the second step, we will work with x2 > t.

Let x2 ⩽ t. Then {St ⩽ x1} ∩ {USt
⩾ x2} ∩ {Ss < St} = {St ⩽ x1} ∩ {Ss < St}. We will establish that

{St ⩽ x1} ∩ {Ss < St}

=

⋂
n∈N

⋃
q∈Q
q>0

[
{USs+q ⩾ t} ∩ {Ss + q < x1 + n−1}

] ∩ {Ss < St}.
(9)

Let ω be a member of the set at the left-hand side of Equation (9). Let n ∈ N and q ∈ (St(ω) − Ss(ω), x1 +
n−1 − Ss(ω)) ∩ Q. Such a q exists because

St(ω) − Ss(ω) ⩽ x1 − Ss(ω) < x1 + n−1 − Ss(ω).

Moreover, q + Ss(ω) > St(ω) ensures that Uq+Ss(ω)(ω) > t, so that ω ∈ {USs+q ⩾ t}. Conversely, let ω
be a member of the set at the right-hand side of Equation (9). For each n ∈ N, let qn ∈ Q, qn > 0 satisfy
USs(ω)+qn

(ω) ⩾ t and qn < x1 + n−1 − Ss(ω). Since Ss(ω) + qn < x1 + n−1 for any n, we have

t ⩽ USs(ω)+qn
(ω) < Ux1+n−1(ω).

By the right-continuity of (Ut)t⩾0, limn→+∞ Ux1+n−1(ω) = Ux1(ω) ⩾ t. By definition of (St)t⩾0, this is
equivalent to St(ω) ⩽ x1. This proves that ω ∈ {St ⩽ x1} and finishes the proof of Equation (9). Since the
bivariate process (Ut, t)t⩾0 is a Feller process1 with respect to its natural filtration (FU

t )t⩾0, it follows that
if we define the FU

∞-measurable indicator random variable Z as

Z := 1


⋂

n∈N

⋃
q∈Q
q>0

[
{Uq ⩾ t} ∩ {q < x1 + n−1}

]
1this follows from the fact that it is a Lévy process.
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then Equation (9) implies that
1{St⩽x1}∩{Ss<St} = 1{Ss<St}Z ◦ θSs

.

By using the FU
Ss

-measurablility of 1{Ss<St} and Theorem 3.1 from the Chapter 3 of Revuz and Yor (2004),
we find

E[1{St⩽x1}∩{Ss<St}|FU
Ss

] = 1{Ss<St}E[Z ◦ θSs
|FU

Ss
]

= 1{Ss<St}E(USs ,Ss)[Z].
(10)

Similarly, Lemma 0.3 entails that 1{Ss<St} is σ(Ss, USs
)-measurable and thus by the tower property,

E[1{St⩽x1}∩{Ss<St}|σ(Ss, USs
)] = E[1{Ss<St}E[Z ◦ θSs

|FU
Ss

]|σ(Ss, USs
)]

= 1{Ss<St}E[E(USs ,Ss)[Z]|σ(Ss, USs)]
= 1{Ss<St}E(USs ,Ss)[Z].

(11)

By combining Equations (10) and (11), it follows that

E[1{St⩽x1}∩{Ss<St}|FU
Ss

] = E[1{St⩽x1}∩{Ss<St}|σ(Ss, USs
)]

whenever x2 ⩽ t.

We now consider the case x2 > t. We will establish that when x2 > t,

{St ⩽ x1} ∩ {USt ⩾ x2} ∩ {Ss < St}

=

⋂
n∈N

⋃
(q1,q2)∈Q2

0<q1<q2<q1+ 1
n

[
{USs+q1 < t} ∩ {USs+q2 ⩾ x2} ∩ {Ss + q2 < x1 + n−1}

] ∩ {Ss < St}.
(12)

Let ω be a member of the first set of Equation (12) and n ∈ N. Let

q1 ∈ (0 ∨ (St(ω) − Ss(ω) − (2n)−1), St(ω) − Ss(ω)) ∩ Q

and
q2 ∈

(
St(ω) − Ss(ω), (St(ω) − Ss(ω) + (2n)−1) ∧ (x1 + n−1 − Ss(ω))

)
∩ Q.

The existence of q1 follows from St(ω) > Ss(ω) whereas the existence of q2 follows from St(ω) ⩽ x1 < x1+n−1.
The inequality Ss(ω) + q1 < St(ω) implies that USs(ω)+q1(ω) < t. By Lemma 0.3, we have Sx2(ω) = St(ω),
so that Ss(ω) + q2 > St(ω) implies that Ss(ω) + q2 > Sx2(ω), which in turn implies that USs(ω)+q2(ω) ⩾ x2.
Finally, note that by construction, it also holds that 0 < q1 < q2 < q1 + n−1. This proves that ω is
also a member of the second set of Equation (12). We prove now the reverse inclusion: assume that ω
is a member of the second set of Equation (12). For each n, let q1,n, q2,n be numbers in Q that satisfy
0 < q1,n < q2,n < q1,n + n−1, USs(ω)+q1,n

(ω) < t, USs(ω)+q2,n
(ω) ⩾ x2 > t and q2,n < x1 + n−1 − Ss(ω). By

construction, Ss(ω) + q1,n < St(ω), thus

x2 ⩽ USs(ω)+q2,n
(ω) ⩽ USs(ω)+q1,n+n−1(ω) ⩽ USt(ω)+n−1(ω)

and the right-continuity of (Ut)t⩾0 implies that USt(ω)(ω) ⩾ x2. Similarly, Ss(ω) + q2,n < x1 + n−1 implies
that

t < x2 < USs(ω)+q2,n
(ω) < Ux1+n−1(ω)

and Ux1(ω) > t follows from the right-continuity of (Ut)t⩾0. We get St(ω) ⩽ x1 as a consequence, which
ends the proof of Equation (12). As a consequence, the FU

∞-measurable random variable Z defined as

Z := 1


⋂

n∈N

⋃
(q1,q2)∈Q2

0<q1<q2<q1+ 1
n

[
{Uq1 < t} ∩ {Uq2 ⩾ x2} ∩ {q2 < x1 + n−1}

]
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satisfies
1{St⩽x1}∩{USt⩾x2}∩{Ss<St} = 1{Ss<St}Z ◦ θSs

.

Again, by using the FU
Ss

-measurability of 1{Ss<St} and Theorem 3.1 from the Chapter 3 of Revuz and Yor
(2004), we find

E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|FU
Ss

] = 1{Ss<St}E[Z ◦ θSs
|FU

Ss
]

= 1{Ss<St}E(USs ,Ss)[Z].
(13)

Similarly, Lemma 0.3 entails that 1{Ss<St} is σ(Ss, USs
)-measurable and thus by the tower property,

E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|σ(Ss, USs
)] = E[1{Ss<St}E[Z ◦ θSs

|FU
Ss

]|σ(Ss, USs
)]

= 1{Ss<St}E[E(USs ,Ss)[Z]|σ(Ss, USs
)]

= 1{Ss<St}E(USs ,Ss)[Z].

(14)

By combining Equations (13) and (14), it follows that

E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|FU
Ss

] = E[1{St⩽x1}∩{USt⩾x2}∩{Ss<St}|σ(Ss, USs
)] (15)

whenever x2 > t. It follows that C ⊂ A and thus by Dynkin’s π-λ theorem, for any A ∈ σ(C) = σ(St, USt),

E[1A|FS,U◦S
s ] = E[1A|σ(Ss, USs)].

Let f : R2 → R be a bounded Borel measurable function. Using the decomposition of f into its positive and
negative parts, i.e. f = (f ∨ 0) − ((−f) ∨ 0), and the linearity of conditional expectations, we can assume
without loss of generality that f ⩾ 0. Define the sequence of functions (fn : R2 → R+)n∈N as

fn(x, y) :=
22n∑
k=0

k

2n
1{f(x,y)∈[k/2n,(k+1)/2n)}.

We clearly have that 0 ⩽ fn ⩽ fn+1 ⩽ f for all n ∈ N and fn → f . Therefore, Equation (15) and two
applications of the monotone convergence theorem yield

E[f(St, USt
)|FS,U◦S

s ] = E
[

lim
n→+∞

fn(St, USt
)|FS,U◦S

s

]
= lim

n→+∞
E[fn(St, USt)|FS,U◦S

s ]

= lim
n→+∞

22n∑
k=0

k

2n
E
[
1{(St,USt )∈f−1[ k

2n , k+1
2n )}|FS,U◦S

s

]

= lim
n→+∞

22n∑
k=0

k

2n
E
[
1{(St,USt )∈f−1[ k

2n , k+1
2n )}|σ(Ss, USs)

]
= lim

n→+∞
E[fn(St, USt

)|σ(Ss, USs
)]

= E
[

lim
n→+∞

fn(St, USt
)|σ(Ss, USs

)
]

= E[f(St, USt)|σ(Ss, USs)],

which is what we had to prove.

In the next section, we study the transform of our asset process. This will be useful to compute option
prices.
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0.3 FPDE’s for densities and Fourier transforms

This section is devoted to the derivation of FPDE’s for the joint densities and transforms of the bivariate
process (XSt

, λSt
)t⩾0

2. Before diving into the main topic of this section, let us start by introducing the
filtrations we consider for this process. In the non-fractional market, the filtration of the asset price (At)t⩾0
is denoted by (FA

t )t⩾0 and is defined as

FA
t = N ∨ σ{Ws : 0 ⩽ s ⩽ t} ∨ σ{Js : 0 ⩽ s ⩽ t} = FW

t ∨ FJ
t ,

where (FW
t )t⩾0 and (FJ

t )t⩾0 are the completed natural filtrations of the brownian motion (Wt)t⩾0 and the
jump process (Jt)t⩾0 respectively. In other words, we assume that the impacts on the asset price of the
brownian component (i.e. the noise component) and the jump component can be isolated from one another.
Recall that N denotes the null sets of the probability space and are in FW

t ∨ FJ
t because we assumed that

the natural filtrations are completed. Note that the natural filtration (FJ
t )t⩾0 carries the information about

the other jump processes (Dt)t⩾0 and (Lt)t⩾0 and about the intensity (λt)t⩾0, that is

σ{Ds : 0 ⩽ s ⩽ t} ∨ σ{Ls : 0 ⩽ s ⩽ t} ∨ σ{λs : 0 ⩽ s ⩽ t} ⊂ FJ
t ,

for each t ⩾ 0. Let us now introduce the filtration for the fractional market. Let (FA,U
t )t⩾0 be defined as

FA,U
t = FA

t ∨ FU
t . Since Ss is a (FU

t )t⩾0-stopping-time for all s ⩾ 0, it is also a (FA,U
t )t⩾0-stopping-time.

Therefore, we can introduce the filtration (FA◦S
t )t⩾0 defined as the time-changed filtration FA◦S

t = FA,U
St

. It
is well known from the chapter 10 of J. Jacod (1979) that if a process (At)t⩾0 is a (FA,U

t )t⩾0-semimartingale,
then the time-changed process (ASt

)t⩾0 is a (FA,U
St

)t⩾0-semimartingale3. Therefore, the filtration of the asset
price (ASt

)t⩾0 can be chosen to be (FA◦S
t )t⩾0.

We move now to the main topic of this section. We first need to derive PDE’s for the joint densities
and transform of the process (Xt, λt)t⩾0. Afterwards, we use the PDE of (Xt, λt)t⩾0 to show that the
joint densities and transforms of the time-changed process (XSt

, λSt
)t⩾0 satisfy similar equations, with the

difference that the partial derivative with respect to time is replaced by a fractional Caputo derivative. In the
non-fractional case, we work conditionally on the last known value for (Xt, λt)t⩾0. This is justified because
self-exciting Hawkes processes satisfy the Markov property provided that we keep track of their intensity.
More precisely, (Jt, λt)t⩾0 is a Markov process whereas the jump process (Jt)t⩾0 alone is not.
Proposition 0.3. Let p(t, x1, x2|s, y1, y2) be the bivariate probability density function (PDF) of (Xt, λt)
given (Xs, λs) = (y1, y2), s < t, i.e.

p(t, x1, x2|s, y1, y2) := ∂2

∂x1∂x2
P(Xt ⩽ x1, λt ⩽ x2|Xs = y1, λs = y2).

Then p satisfies the PDE
∂

∂t
p(t, x1, x2|s, y1, y2) = −

(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
p(t, x1, x2|s, y1, y2)

+ σ2

2
∂2

∂x2
1
p(t, x1, x2|s, y1, y2) − κ(θ − x2) ∂

∂x2
p(t, x1, x2|s, y1, y2) + κp(t, x1, x2|s, y1, y2)

− ηE[|ξ|p(t, x1 − ξ, x2 − η|ξ||s, y1, y2)] + E[p(t, x1 − ξ, x2 − η|ξ||s, y1, y2) − p(t, x1, x2|s, y1, y2)],

with initial condition p(s, x1, x2|s, y1, y2) = δR2(x1 − y1, x2 − y2), δR2 being the Dirac measure located at
(0, 0) ∈ R2.

Proof. This proof relies on the Cramers-Moyal expansion. It states that the bivariate PDF p satisfies
p(t+ ∆, x1, x2|s, y1, y2) − p(t, x1, x2|s, y1, y2)

=
+∞∑
n=1

n∑
j=0

(−1)n

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

(M(j, n− j,∆|t, x1, x2)p(t, x1, x2|s, y1, y2))
(16)

2Recall that (Xt)t⩾0 is the logarithm of the asset price, i.e. Xt = ln At.
3This is stated in Theorem 10.16, which can be applied to our case because our time-change (St)t⩾0 is both finite and

continuous. We shall come back more precisely to this point in the section about changes of measures.
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where M(j, n−j,∆|t, x1, x2) = E[(Xt+∆−Xt)j(λt+∆−λt)n−j |Xt = x1, λt = x2]. The proof of this statement
can be found in Hainaut (2020). Applying Ito’s Lemma on the functions R2 ∋ (x, y) 7→ hj,n(x, y) := xjyn−j

leads to

hj,n(Xt+∆ −Xt, λt+∆ − λt)

= j

∫ ∆

s=0
(Xt+s −Xt)j−1(λt+s − λt)n−j

([
µ− σ2

2 − λt+sE[eξ − 1]
]

ds+ σdWt+s

)
+ j(j − 1)σ2

2

∫ ∆

s=0
(Xt+s −Xt)j−2(λt+s − λt)n−jds

+ (n− j)
∫ ∆

s=0
(Xt+s −Xt)j(λt+s − λt)n−j−1κ(θ − λt+s)ds

+
∫ ∆

s=0

(
(Xt+s −Xt)j − (Xt+s− −Xt)j

)(
(λt+s − λt)j − (λt+s− − λt)j

)
dNt+s.

(17)

Let us now examine the expectation of each term of Equation (17). We have for the first term

E
[

j

∫ ∆

s=0
(Xt+s − Xt)j−1(λt+s − λt)n−j

([
µ − σ2

2 − λt+sE[eξ − 1]
]

ds + σdWt+s

)]
=

{(
µ − σ2

2 − λtE[eξ − 1]
)

∆ + O(∆2) if n = j = 1

O(∆2) otherwise,

(18)

whereas the other terms can be respectively written as

E

[
j(j − 1)σ2

2

∫ ∆

s=0
(Xt+s −Xt)j−2(λt+s − λt)n−jds

]

=
{
σ2∆ +O(∆2) if n = j = 2
O(∆2) otherwise,

(19)

E

[
(n− j)

∫ ∆

s=0
(Xt+s −Xt)j(λt+s − λt)n−j−1κ(θ − λt+s)ds

]

=
{
κ(θ − λt)∆ +O(∆2) if n = 1, j = 0
O(∆2) otherwise,

(20)

and

E

[∫ ∆

s=0

(
(Xt+s −Xt)j − (Xt+s− −Xt)j

)(
(λt+s − λt)n−j − (λt+s− − λt)n−j

)
dNt+s

]
= λtη

n−jE[ξj |ξ|n−j ]∆ +O(∆2).
(21)
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Using Equations (16) to (21), we obtain
p(t+ ∆, x1, x2|s, y1, y2) − p(t, x1, x2|s, y1, y2)

∆

= − ∂

∂x1

[(
µ− σ2

2 − x2E[eξ − 1]
)
p(t, x1, x2|s, y1, y2)

]
+ σ2

2
∂2

∂x2
1
p(t, x1, x2|s, y1, y2) − ∂

∂x2
[κ(θ − x2)p(t, x1, x2|s, y2, y3)]

+ E

+∞∑
n=1

n∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

(x2p(t, x1, x2|s, y1, y2))

+O(∆)

= −
(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
p(t, x1, x2|s, y1, y2)

+ σ2

2
∂2

∂x2
1
p(t, x1, x2|s, y1, y2) − κ(θ − x2) ∂

∂x2
p(t, x1, x2|s, y1, y2) + κp(t, x1, x2|s, y1, y2)

+ E

+∞∑
n=1

n∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

(x2p(t, x1, x2|s, y1, y2))

+O(∆).

(22)

The expectation term of Equation (22) can be rewritten as

E

+∞∑
n=1

n∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

(x2p(t, x1, x2|s, y1, y2))


= E

+∞∑
n=1

n−1∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

(x2p(t, x1, x2|s, y1, y2))


+ E

[+∞∑
n=1

(−ξ)n

n!
∂n

∂xn
1

(x2p(t, x1, x2|s, y1, y2))
]

= E

−η|ξ|
+∞∑
n=1

n−1∑
j=0

(−ξ)j(−|ηξ|)n−j−1

j!(n− j − 1)!
∂j

∂xj
1

∂n−j−1

∂xn−j−1
2

p(t, x1, x2|s, y1, y2)


+ E

+∞∑
n=1

n−1∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)! x2
∂j

∂xj
1

∂n−j

∂xn−j
2

p(t, x1, x2|s, y1, y2)


+ E

[+∞∑
n=1

(−ξ)n

n! x2
∂n

∂xn
1
p(t, x1, x2|s, y1, y2)

]

= E

−η|ξ|
+∞∑
n=0

n∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)!
∂j

∂xj
1

∂n−j

∂xn−j
2

p(t, x1, x2|s, y1, y2)


+ E

+∞∑
n=1

n∑
j=0

(−ξ)j(−|ηξ|)n−j

j!(n− j)! x2
∂j

∂xj
1

∂n−j

∂xn−j
2

p(t, x1, x2|s, y1, y2)


= −ηE[|ξ|p(t, x1 − ξ, x2 − η|ξ||s, y1, y2)]
+ x2E[p(t, x1 − ξ, x2 − η|ξ||s, y1, y2) − p(t, x1, x2|s, y1, y2)].

(23)

The proof is then completed by combining Equations (22) and (23).

For t ⩾ 0, z1 ∈ C and z2 ∈ R, define the conditional transform φ as

φ(t, z1, z2|s, y1, y2) := E[ez1Xt+iz2λt |Xs = z1, λs = y2].
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The function φ also satisfies a PDE.

Proposition 0.4. The function φ satisfies the PDE

∂φ

∂t
(t, z1, z2|s, y1, y2) =

(
iz1E[eξ − 1] − κz2 + i − iE

[
ez1ξ+iz2η|ξ|

]) ∂φ

∂z2
(t, z1, z2|s, y1, y2)

+
((

µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2

)
φ(t, z1, z2|s, y1, y2)

with boundary conditions φ(s, z1, z2|s, y1, y2) = ez1y1+iz2y2 and φ(s, 0, 0|s, y1, y2) = 1.

Proof. The partial derivative of φ satisfies

∂φ

∂t
(t, z1, z2|s, y1, y2) = lim

∆→0

∫
R+

∫
R e

z1x1+iz2x2(p(t+ ∆, x1, x2|s, y1, y2) − p(t, x1, x2|s, y1, y2))dx1dx2

∆

=
∫
R+

∫
R
ez1x1+iz2x2

∂p

∂t
(t, x1, x2|s, y1, y2)dx1dx2.

Thanks to Proposition 0.3, we find

∂φ

∂t
(t, z1, z2|s, y1, y2) = −

∫
R+

∫
R
ez1x1+iz2x2

(
µ− σ2

2 − x2E[eξ − 1]
)
∂p

∂x1
(t, x1, x2|s, y1, y2)dx1dx2

+ σ2

2

∫
R+

∫
R
ez1x1+iz2x2

∂2p

∂x2
1

(t, x1, x2|s, y1, y2)dx1dx2

− κ

∫
R+

∫
R
ez1x1+iz2x2(θ − x2) ∂p

∂x2
(t, x1, x2|s, y1, y2)dx1dx2

κ

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

− ηE
[
|ξ|
∫
R+

∫
R
ez1x1+iz2x2p(t, x1 − ξ, x2 − η|ξ||s, y1, y2)dx1dx2

]
E
[∫

R+

∫
R
x2e

z1x1+iz2x2(p(t, x1 − ξ, x2 − η|ξ||s, y1, y2) − p(t, x1, x2|s, y1, y2))dx1dx2

]
We can now compute all the terms with the help of integrations by parts. To this end, note that if ω ∈ R
and E[eωXt ] < +∞, then ∫

R+

∫
R
eωx1p(t, x1, x2|s, y1, y2)dx1dx2 < +∞

so that ∫
R
eωx1p(t, x1, x2|s, y1, y2)dx1 < +∞ (24)

for almost all x2. Fix any x2 ∈ R such that (24) holds. Since the function x1 7→ eωx1p(t, x1, x2|s, y1, y2) is
positive and continuous, Equation (24) implies that

lim
x1→±∞

eωx1p(t, x1, x2|s, y1, y2) = 0.

Also note that p(t, x1, x2|s, y1, y2) vanishes whenever x2 → +∞. Moreover, since by definition of (λt)t⩾0,
λt ⩾ θ for all t, it follows that p(t, x1, 0|s, y1, y2) = 0 for all t, x1, s, y1, y2. Bearing these facts in mind, the
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first term is rewritten as

−
∫
R+

∫
R
ez1x1+iz2x2

(
µ− σ2

2 − x2E[eξ − 1]
)
∂p

∂x1
(t, x1, x2|s, y1, y2)dx1dx2

= −
(
µ− σ2

2

)∫
R+
z1e

iz2x2

[
p(t, x1, x2|s, y1, y2)e

z1x1

z1
−
∫
ez1x1p(t, x1, x2|s, y1, y2)dx1

]+∞

x1=−∞
dx2

+ E[eξ − 1]
∫
R+
x2e

iz2x2z1

[
p(t, x1, x2|s, y1, y2)e

z1x1

z1
−
∫
ez1x1p(t, x1, x2|s, y1, y2)dx1

]+∞

x1=−∞
dx2

= z1

(
µ− σ2

2

)∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

+ iz1E[eξ − 1] ∂
∂z2

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

= z1

(
µ− σ2

2

)
φ(t, z1, z2|s, y1, y2) + iz1E[eξ − 1] ∂φ

∂z2
(t, z1, z2|s, y1, y2).

(25)

The second second term is computed with two integrations by parts, that is

σ2

2

∫
R+

∫
R
ez1x1+iz2x2

∂2p

∂x2
1

(t, x1, x2|s, y1, y2)dx1dx2

= σ2

2

∫
R+
eiz2x2z1

[
ez1x1

z1

∂p

∂x1
(t, x1, x2|s, y1, y2) −

∫
ez1x1

∂p

∂x1
(t, x1, x2|s, y1, y2)dx1

]+∞

x1=−∞
dx2

= −σ2

2 z1

∫
R+

∫
R
ez1x1+iz2x2

∂p

∂x1
(t, x1, x2|s, y1, y2)dx1dx2

= −σ2

2 z1

∫
R+
eiz2x2z1

[
ez1x1

z1
p(t, x1, x2|s, y1, y2) −

∫
ez1x1p(t, x1, x2|s, y1, y2)dx1

]+∞

x1=−∞
dx2

= σ2

2 z2
1

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

= σ2

2 z2
1φ(t, z1, z2|s, y1, y2).

(26)

The third term is

− κ

∫
R+

∫
R
ez1x1+iz2x2(θ − x2) ∂p

∂x2
(t, x1, x2|s, y1, y2)dx1dx2

= −κθ
∫
R
ez1x1 iz2

∫
R+

eiz2x2

iz2

∂p

∂x2
(t, x1, x2|s, y1, y2)dx2dx1

− κi
∫
R
ez1x1

∫
R+

ix2e
iz2x2

∂p

∂x2
(t, x1, x2|s, y1, y2)dx2dx1

= −κθiz2

∫
R
ez1x1

[
p(t, x1, x2|s, y1, y2) −

∫
eix2z2p(t, x1, x2|s, y1, y2)dx2

]+∞

x2=0
dx1

− κi ∂
∂z2

∫
R
ez1x1

∫
R+
eiz2x2

∂p

∂x2
(t, x1, x2|s, y1, y2)dx2dx1

= κθiz2

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

− κi ∂
∂z2

∫
R
ez1x1 iz2

[
eiz2x2

iz2
p(t, x1, x2|s, y1, y2) −

∫
eiz2x2p(t, x1, x2|s, y1, y2)dx2

]+∞

x2=0
dx1

= κθiz2φ(t, z1, z2|s, y1, y2) − κ
∂

∂z2
(z2φ(t, z1, z2|s, y1, y2))

= κφ(t, z1, z2|s, y1, y2)[θiz2 − 1] − z2κ
∂φ

∂z2
(t, z1, z2|s, y1, y2).

(27)
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The fourth term is simply

κ

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2 = κφ(t, z1, z2|s, y1, y2). (28)

The fifth term is computed as

− ηE
[
|ξ|
∫
R+

∫
R
ez1x1+iz2x2p(t, x1 − ξ, x2 − η|ξ||s, y1, y2)dx1dx2

]
= −ηE

[
|ξ|
∫ +∞

−η|ξ|

∫
R
ez1(x1+ξ)+iz2(x2+η|ξ|)p(t, x1, x2|s, y1, y2)dx1dx2

]

= −ηE
[
|ξ|ez1ξ+iz2η|ξ|

∫
R+

∫
R
ez1x1+iz2x2p(t, x1, x2|s, y1, y2)dx1dx2

]
= −ηE

[
|ξ|ez1ξ+iz2η|ξ|

]
φ(t, z1, z2|s, y1, y2).

(29)

Similarly, the last term is rewritten as

E
[∫

R+

∫
R
x2e

z1x1+iz2x2(p(t, x1 − ξ, x2 − η|ξ||s, y1, y2) − p(t, x1, x2|s, y1, y2))dx1dx2

]
= φ(t, z1, z2|s, y1, y2)ηE

[
|ξ|ez1ξ+iz2η|ξ|

]
+ i
(

1 − E
[
ez1ξ+iz2η|ξ|

]) φ

∂z2
(t, z1, z2|s, y1, y2).

(30)

Adding all the terms of Equations (25) to (30) gives the announced result.

Define φ(0) as
φ(0)(t, z1, z2|s, y1, y2) := E[ez1(Xt−y1)+iz2(λt−y2)|Xs = y1, λs = y2],

which is a variant of φ where the initial values of the processes (Xt)t⩾0 and (λt)t⩾0 are substracted. The
PDE of Proposition 0.4 easily imply a PDE for φ(0).

Corollary 0.2. The function φ(0) satisfies the PDE

∂φ(0)

∂t
(t, z1, z2|s, y1, y2) = γ(z1, z2)∂φ

(0)

∂z2
(t, z1, z2|s, y1, y2) + β(z1, z2)φ(0)(t, z1, z2|s, y1, y2)

where
γ(z1, z2) := iz1E[eξ − 1] − κz2 + i − iE

[
ez1ξ+iz2η|ξ|

]
and

β(z1, z2) :=
(
r − σ2

2

)
z1 + (σz1)2

2 + iκ(θ − y2)z2 − z1y2E[eξ − 1] − y2 + y2E
[
ez1ξ+iz2η|ξ|

]
.

Moreover the boundary conditions φ(s, z1, z2|s, y1, y2) = φ(s, 0, 0|s, y1, y2) = 1 hold.

Proof. It follows from

φ(0)(t, z1, z2|s, y1, y2) = exp{−z1x1 − iz2y2}φ(t, z1, z2|s, y1, y2)

and Proposition 0.4.

The interest of Corollary 0.2 is that the PDE of this corollary happened to be slightly easier to solve
numerically than the PDE of Proposition 0.4.

We now turn to the derivation of fractional counterparts of the PDE’s. In the following, for s ⩽ t, pα will
denote either the conditional PDF of (XSt

, λSt
) given that (XSs

, λSs
) = (y1, y2), Ss = v and USs

= u, in
which case it is written as

pα(t, x1, x2|s, y1, y2, v, u) := ∂2

∂x1∂x2
P (XSt

⩽ x1, λSt
⩽ x2|XSs

= y1, λSs
= y2, Ss = v, USs

= u) ,
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the conditional PDF of (St, XSt , λSt) given the same information, in which case we denote it by

pα(t, x0, x1, x2|s, y1, y2, v, u)

:= ∂3

∂x0∂x1∂x2
P (St ⩽ x0, XSt ⩽ x1, λSt ⩽ x2|XSs = y1, λSs = y2, Ss = v, USs = u) .

or finally the conditional PDF of (St, XSt
). In this last case, we write

pα(t, x0, x1|s, y1, y2, v, u) := ∂2

∂x0∂x1
P (St ⩽ x0, XSt ⩽ x1|XSs = y1, λSs = y2, Ss = v, USs = u) .

The letter p still denotes the conditional PDF of (Xt, λt) knowing (Xs, λs). The function g will denote the
PDF of St given Ss = v and USs

= u, i.e.

g(t, τ |s, v, u) := ∂

∂τ
P(St − Ss ⩽ τ |Ss = v, USs

= u),

where t ⩾ s. It is shown in Hainaut (2021) that the Laplace transform of g with respect to time satisfies∫ +∞

u

e−ωtg(t, τ |s, v, u)dt = ωα−1e−ωu−τωα

so that
g̃(ω, τ |s, v, u) :=

∫
R+
e−ωtg(u+ t, τ |s, v, u)dt

= ωα−1e−τωα

(31)

for t ⩾ u. Note that the conditional PDF’s are related by the following identity

pα(t, x1, x2|s, y1, y2, v, u) =
∫
R+
p(v + τ, x1, x2|v, y1, y2)g(t, τ |s, v, u)dτ (32)

for t > u. It follows follows from

P (XSt ⩽ x1, λSt ⩽ x2|XSs = y1, λSs = y2, Ss = v, USs = u)

=
∫
R+

P(Xv+τ ⩽ x1, λv+τ ⩽ x2|XSs = y1, λSs = y2, Ss = v, USs = u)g(t, τ |s, v, u)dτ

=
∫
R+

P(Xv+τ ⩽ x1, λv+τ ⩽ x2|Xv = y1, λv = y2)g(t, τ |s, v, u)dτ.

The reason for imposing t > u is the fact that if s ⩽ t ⩽ u = USs
, then we have USt

= USs
= u, that is USt

is not random anymore.

The next lemma comes as a consequence of the relation between p and pα at Equation (32).

Lemma 0.6. The Laplace transforms of p and pα satisfy

p̃α(ω, x1, x2|s, y1, y2, v, u) = ωα−1p̃(ωα, x1, x2|v, y1, y2)

where
p̃α(ω, x1, x2|s, y1, y2, v, u) :=

∫
R+
e−ωtpα(u+ t, x1, x2|s, y1, y2, v, u)dt

and
p̃(ω, x1, x2|v, y1, y2) :=

∫
R+
e−tωp(v + t, x1, x2|v, y1, y2)dt.
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Proof. From Equation (32) and Fubini’s Theorem,

p̃α(ω, x1, x2|s, y1, y2, v, u) :=
∫
R+
e−ωtpα(u+ t, x1, x2|s, y1, y2, v, u)dt

=
∫
R+
e−ωt

∫
R+
p(v + τ, x1, x2|v, y1, y2)g(u+ t, τ |s, v, u)dτdt

=
∫
R+
p(v + τ, x1, x2|v, y1, y2)

∫
R+
e−ωtg(u+ t, τ |s, v, u)dtdτ

= ωα−1
∫
R+
e−τωα

p(v + τ, x1, x2|v, y1, y2)dτ

= ωα−1p̃(ωα, x1, x2|v, y1, y2),

as announced.

In the next lemma, we recall another useful result.

Lemma 0.7. For any function h : R+ → R, it holds that

d̃αh

dtα (ω) = ωαh̃(ω) − ωα−1h(0)

where
d̃αh

dtα (ω) :=
∫
R+

dαh

dtα (t)e−ωtdt and h̃(ω) :=
∫
R+
h(t)e−ωtdt.

The proof can be found in Podlubny (1999). Thanks to these preliminary results about fractional calculus,
we can extend our PDE’s to the fractional case.

Proposition 0.5. For t ⩾ u, the joint conditional PDF pα of (XSt
, λSt

) satisfies the following fractional
partial differential equation (FPDE)

∂αpα

∂tα
(t, x1, x2|s, y1, y2, v, u) = −

(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
pα(t, x1, x2|s, y1, y2, v, u)

+ σ2

2
∂2

∂x2
1
pα(t, x1, x2|s, y1, y2, v, u) − κ(θ − x2) ∂

∂x2
pα(t, x1, x2|s, y1, y2, v, u)

+ κpα(t, x1, x2|s, y1, y2, v, u) − ηE[|ξ|pα(t, x1 − ξ, x2 − η|ξ||s, y1, y2, v, u)]
+ E[pα(t, x1 − ξ, x2 − η|ξ||s, y1, y2, v, u) − pα(t, x1, x2|s, y1, y2, v, u)],

with initial condition pα(s, x1, x2|s, y1, y2, v, u) = δ{x1−y1,x2−y2}.

Proof. Recall that for s ⩽ t, p(t, x1, x2|s, y1, y2) denotes the PDF of (Xt, λt) given that (Xs, λs) = (y1, y2)
evaluated at (x1, x2) ∈ R2. The identity∫

R+

∂

∂t

(
e−ωtp(s+ t, x1, x2|s, y1, y2)

)
dt = −p(s, x1, x2|s, y1, y2)

follows from the fundamental theorem of calculus while an explicit computation of the integral gives∫
R+

∂

∂t

(
e−ωtp(s+ t, x1, x2|s, y1, y2)

)
dt

= −ωp̃(ω, x1, x2|s, y1, y2) +
∫
R+
e−ωt ∂

∂t
p(s+ t, x1, x2|s, y1, y2)dt

with p̃(ω, x1, x2|s, y1, y2) :=
∫
R+ e

−ωtp(s+ t, x1, x2|s, y1, y2)dt. As a consequence, we have

ωp̃(ω, x1, x2|s, y1, y2) − p(s, x1, x2|s, y1, y2) =
∫
R+
e−ωt ∂

∂t
p(s+ t, x1, x2|s, y1, y2)dt. (33)
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From the PDE of p (see Proposition 0.3), the right-hand side of Equation (33) becomes

−
∫
R+
e−ωt

(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
p(s+ t, x1, x2|s, y1, y2)dt

+ σ2

2

∫
R+
e−ωt ∂

2

∂x2
1
p(s+ t, x1, x2|s, y1, y2)dt− κ(θ − x2)

∫
R+
e−ωt ∂

∂x2
p(s+ t, x1, x2|s, y1, y2)dt

+ κ

∫
R+
e−ωtp(s+ t, x1, x2|s, y1, y2)dt− ηE

[
|ξ|
∫
R+
e−ωtp(s+ t, x1 − ξ, x2 − η|ξ||s, y1, y2)dt

]
+ E

[∫
R+
e−ωt[p(s+ t, x1 − ξ, x2 − η|ξ||s, y1, y2) − p(s+ t, x1, x2|s, y1, y2)]dt

]
= −

(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
p̃(ω, x1, x2|s, y1, y2) + σ2

2
∂2

∂x2
1
p̃(ω, x1, x2|s, y1, y2)

− κ(θ − x2) ∂

∂x2
p̃(ω, x1, x2|s, y1, y2) + κp̃(ω, x1, x2|s, y1, y2)

− ηE[|ξ|p̃(ω, x1 − ξ, x2 − η|ξ||s, y1, y2)] + E[p̃(ω, x1 − ξ, x2 − η|ξ||s, y1, y2) − p̃(ω, x1, x2|s, y1, y2)]

Since this is valid for any ω, we can replace ω by ωα. After multiplying both sides by ωα−1, it gives

ωα(ωα−1p̃(ωα, x1, x2|s, y1, y2)) − ωα−1p(s, x1, x2|s, y1, y2)

= −
(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
(ωα−1p̃(ωα, x1, x2|s, y1, y2)) + σ2

2
∂2

∂x2
1

(ωα−1p̃(ωα, x1, x2|s, y1, y2))

− κ(θ − x2) ∂

∂x2
(ωα−1p̃(ωα, x1, x2|s, y1, y2)) + κ(ωα−1p̃(ωα, x1, x2|s, y1, y2))

− ηE[|ξ|(ωα−1p̃(ωα, x1 − ξ, x2 − η|ξ||s, y1, y2))]
+ E[(ωα−1p̃(ωα, x1 − ξ, x2 − η|ξ||s, y1, y2)) − (ωα−1p̃(ωα, x1, x2|s, y1, y2))]

Using Lemma 0.6 and the fact that p(s, x1, x2|s, y1, y2) = pα(u, x1, x2|s, y1, y2, v, u) = δ{x1−y1,x2−y2}, we get

ωα(p̃α(ω, x1, x2|s, y1, y2, v, u)) − ωα−1p(s, x1, x2|s, y1, y2)

= ∂̃αpα

∂tα
(ω, x1, x2|s, y1, y2, v, u)

= −
(
µ− σ2

2 − x2E[eξ − 1]
)

∂

∂x1
p̃α(ω, x1, x2|s, y1, y2, v, u) + σ2

2
∂2

∂x2
1
p̃α(ω, x1, x2|s, y1, y2, v, u)

− κ(θ − x2) ∂

∂x2
p̃α(ω, x1, x2|s, y1, y2, v, u) + κp̃α(ω, x1, x2|s, y1, y2, v, u)

− ηE[|ξ|p̃α(ω, x1 − ξ, x2 − η|ξ||s, y1, y2, v, u)]
+ E[p̃α(ω, x1 − ξ, x2 − η|ξ||s, y1, y2, v, u) − p̃α(ω, x1, x2|s, y1, y2, v, u)],

and the result follows.

From the definition of conditional PDF, we have

pα(t, x0, x1, x2|s, y1, y2, v, u) = g(t, x0 − v|s, v, u)p(x0, x1, x2|v, y1, y2).

The Laplace transform of pα therefore satisfies

p̃α(ω, x0, x1, x2|s, y1, y2, v, u) :=
∫
R+
e−ωtpα(u+ t, x0, x1, x2|s, y1, y2, v, u)dt

= p(x0, x1, x2|s, y1, y2, v, u)
∫
R+
e−ωtg(u+ t, x0 − v|s, v, u)dt

= p(x0, x1, x2|s, y1, y2, v, u)g̃(ω, x0 − v|s, v, u)
= ωα−1p(x0, x1, x2|v, y1, y2)e−(x0−v)ωα

,

(34)
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where the last equality follows from Equation (31). For z0, z2 ∈ R and z1 ∈ C, define the transform φα as

φα(t, z0, z1, z2|s, y1, y2, v, u) := E[e−z0St+z1XSt +iz2λSt |XSs = y1, λSs = y2, Ss = v, USs = u],

with t ⩾ u. Then the function φα satisfies a fractional PDE.

Proposition 0.6. The following FPDE holds

∂αφα

∂tα
(t, z0, z1, z2|s, y1, y2, v, u)

=
(

iz1E[eξ − 1] − κz2 + i − E
[
ez1ξ+iz2η|ξ|

]) ∂φα

∂z2
(t, z0, z1, z2|s, y1, y2, v, u)

+
((

µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2 − z0

)
φα(t, z0, z1, z2|s, y1, y2, v, u)

with boundary conditions
φα(t, z0, 0, 0|s, y1, y2, v, u) = Eα(−z0(t− u)α)

φα(v, z0, z1, z2|s, y1, y2, v, u) = e−z0v+z1y1+iz2y2

and
φα(t, 0, 0, 0|s, y1, y2, v, u) = 1.

Proof. Note that the time-Laplace transform of φα
X,λ satisfies

φ̃α
X,λ(ω, z0, z1, z2|s, y1, y2, v, u) :=

∫
R+
e−ωtφα(u+ t, z0, z1, z2|s, y1, y2, v, u)dt

=
∫
R+

∫
R+

∫
R

∫
R+
e−ωt−z0x0+z1x1+iz2x2pα(u+ t, x0, x1, x2|s, y1, y2, v, u)dx0dx1dx2dt

=
∫
R+

∫
R

∫ +∞

v

e−z0x0+z1x1+iz2x2 p̃α(ω, x0, x1, x2|s, y1, y2, v, u)dx0dx1dx2

= ωα−1evωα

∫
R+

∫
R

∫ +∞

v

e−x0[z0+ωα]+z1x1+iz2x2p(x0, x1, x2|v, y1, y2)dx0dx1dx2

= ωα−1evωα

∫ +∞

v

e−x0[z0+ωα]φ(x0, z1, z2|v, y1, y2)dx0,

(35)

where the penultimate equality comes as a consequence of Equation (34). Next, an integration by parts
yields

φ̃α
X,λ(ω, z0, z1, z2|s, y1, y2, v, u)

= −ωα−1evωα

z0 + ωα

[
φ(x0, z1, z2|v, y1, y2)e−[z0+ωα]x0

−
∫
e−[z0+ωα]x0

φ

∂x0
(x0, z1, z2|v, y1, y2)dx0

]+∞

x0=v

= ωα−1e−z0v

z0 + ωα
φ(v, z1, z2|v, y1, y2)

+ ωα−1evωα

z0 + ωα

∫ +∞

v

e−[z0+ωα]t ∂φ

∂t
(t, z1, z2|v, y1, y2)dt.

(36)
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From Proposition 0.4, we know that

ωα−1evωα

∫ +∞

v

e−[z0+ωα]t ∂φ

∂t
(t, z1, z2|v, y1, y2)dt

= ωα−1evωα (
iz1E[eξ − 1] − κz2

) ∫ +∞

v

e−[z0+ωα]t ∂φ

∂z2
(t, z1, z2|v, y1, y2)dt

+

(
µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2 + E
[
(1 − η|ξ|)ez1ξ+iz2|ξ|]− 1

ω1−αe−vωα

∫ +∞

v

e−[z0+ωα]tφ(t, z1, z2|v, y1, y2)dt

=
(
iz1E[eξ − 1] − κz2

) ∂

∂z2
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u)

+
((

µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2 + E
[
(1 − η|ξ|)ez1ξ+iz2|ξ|

]
− 1
)
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u)

where the second equality is a consequence of Equation (35). Equation (36) is then rewritten as

(z0 + ωα)φ̃α
X,λ(ω, z0, z1, z2|s, y1, y2, v, u) − ωα−1e−z0vφ(v, z1, z2|v, y1, y2)

=
(
iz1E[eξ − 1] − κz2

) ∂

∂z2
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u)

+
((

µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2 + E
[
(1 − η|ξ|)ez1ξ+iz2|ξ|

]
− 1
)
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u).

By noting that φα(u, z0, z1, z2|s, y1, y2, v, u) = e−z0v+z1y1+iz2y2 = e−z0vφ(v, z1, z2|v, y1, y2), it follows that
the last equation becomes

ωαφ̃α
X,λ(ω, z0, z1, z2|s, y1, y2, v, u) − ωα−1φα(u, z0, z1, z2|s, y1, y2, v, u)

= −z0φ̃
α
X,λ(ω, z0, z1, z2|s, y1, y2, v, u) +

(
iz1E[eξ − 1] − κz2

) ∂

∂z2
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u)

+
((

µ− σ2

2

)
z1 + (σz1)2

2 + iκθz2 + E
[
(1 − η|ξ|)ez1ξ+iz2|ξ|

]
− 1
)
φ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u).

Since Lemma 0.7 implies that

∂̃φα

∂tα
(ω, z0, z1, z2|s, y1, y2, v, u) = ωαφ̃α

X,λ(ω, z0, z1, z2|s, y1, y2, v, u) − ωα−1φα(0, z0, z1, z2|s, y1, y2, v, u),

the conclusion follows.

As in the non-fractional case, we derive an equation for the variant φ(0)
α of φα where the initial values of the

processes are substracted. More precisely, if

φ(0)
α (t, z0, z1, z2|s, y1, y2, v, u) := E[e−z0St+z1(XSt −y1)+iz2(λSt −y2)|XSs

= y1, λSs
= y2, Ss = v, USs

= u],

then φ
(0)
α satisfies a FPDE.

Corollary 0.3. The function φ
(0)
α satisfies the FPDE

∂αφ
(0)
α

∂tα
(t, z1, z2|s, y1, y2, v, u) =γ(z1, z2)∂φ

(0)
α

∂z2
(t, z0, z1, z2|s, y1, y2, v, u)

+ β(z0, z1, z2)φ(0)
α (t, z0, z1, z2|s, y1, y2, v, u)

where
γ(z1, z2) := iz1E[eξ − 1] − κz2 + i − iE

[
ez1ξ+iz2η|ξ|

]

25



and

β(z0, z1, z2) :=
(
r − σ2

2

)
z1 + (σz1)2

2 + iκ(θ − y2)z2 − z1y2E[eξ − 1] − y2 + y2E
[
ez1ξ+iz2η|ξ|

]
− z0.

Moreover the boundary conditions

φα(t, z0, 0, 0|s, y1, y2, v, u) = Eα(−z0(t− u)α),

φα(v, z0, z1, z2|s, y1, y2, v, u) = e−z0v

and
φα(t, 0, 0, 0|s, y1, y2, v, u) = 1

hold.

The proof uses Corollary 0.2 and is essentially the same as Proposition 0.6. It is therefore omitted.

0.4 Changes of measure

In this section, we extend the results of the changes of measure section of Moraux and Hainaut (2018) to
the subdiffusive model. To this end, we use a result of J. Jacod (1979) that states that under a condition
called adaptation to a time change, sometimes also referred to as synchronization with a time-change, a time-
changed local-martingale remains a local-martingale. We begin this section by stating this result precisely.
Then, we show that it applies to our setting and thereby obtain risk neutral measures for the time-changed
model.

For a probability measure Q and a filtration F = (Ft)t⩾0 on (Ω,F), we define M(Q,F) and Mloc(Q,F) to be
respectively the set of all (Q,F)-martingales and the set of all (Q,F)-local martingales. Of course, it holds
that M(Q,F) ⊂ Mloc(Q,F). A subscript 0 is added to these notations when the collection is restricted to
the (local-) martingales (Mt)t⩾0 that starts at 0, i.e. M0 = 0 Q-a.s.. A superscript c is added when the
collection is restricted to the (local-) martingales that has continuous paths Q-a.s.. For example, the set
Mc

0(Q,F) (resp. M0,loc(Q,F)) thus contains the continuous martingales which start at 0 (resp. the local-
martingales which start at 0 but are not necessarily continous). We give the definition of two orthogonal
local-martingales.

Definition 0.1. Let (Mt)t⩾0 and (Ht)t⩾0 be two processes in Mloc(Q,F). We say that the local-martingales
(Mt)t⩾0 and (Ht)t⩾0 are orthogonal if the process (MtHt)t⩾0 belongs to M0,loc(Q,F). This is written as
(Mt)t⩾0 ⊥ (Ht)t⩾0.

This definition can be found in e.g. J. Jacod (1979) (Definition 2.10). It allows us to further define the
collection

Md
loc(Q,F) := {(Mt)t⩾0 ∈ Mloc(Q,F) : (Mt)t⩾0 ⊥ (Ht)t⩾0 for all (Ht)t⩾0 ∈ Mc

0,loc(Q,F)}.

For convenience, we will write FU , FA and FA◦S instead of (FU
t )t⩾0, (FA

t )t⩾0 and (FA◦S
t )t⩾0, see the

beginning of Section 0.3 for the definitions of these filtrations. In particular, the collection Md
loc(Q,F) is

known to contain the compensated jump processes, as shown in the next proposition.

Proposition 0.7. Let Ξ be the random measure associated with the jump process (Jt)t⩾0 and g : R → R be
a function that satisfies

∫
R |g(z)|ν(dz) < +∞. Recall that (Nt)t⩾0 is the process that counts the number of

jumps of (Jt)t⩾0, i.e. Nt is the number of jumps of (Jt)t⩾0 in the interval [0, t]. Then the compensated jump
process (J̃g

t )t⩾0 defined as

J̃g
t :=

∫ t

0

∫
R
g(z) (Ξ(dz)dNs − λs−ν(dz)ds)

is in Md
loc(P,FA).
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Proof. The compensated jump process can also be expressed as

J̃g
t =

Nt∑
k=1

g(ξk) − E[g(ξ1)]Λt,

where ξ1, ξ2, . . . are the i.i.d. jump sizes of (Jt)t⩾0 distributed according to ν and Λt =
∫ t

0 λs−ds. Let
(Ht)t⩾0 ∈ Mc

0,loc(P,FA). We have to show that (J̃g
t Ht)t⩾0 belongs to M0,loc(P,FA). From the definition of

quadratic covariation,

J̃g
t Ht =

∫ t

0
Hs−dJ̃g

s +
∫ t

0
J̃g

s−dHs + [J̃g, H]t.

Since the compensated process (J̃g
t )t⩾0 and (Ht)t⩾0 are in Mloc(P,FA), it is enough to show that ([J̃g, H]t)t⩾0

is indistinguishable from the null process. Since (
∑Nt

k=1 g(ξk))t⩾0 is quadratic pure jump,

[J̃g, H]t =
∑

0<s⩽t

g(∆Js)∆Hs − E[g(ξ1)][Λ, H]t

but the continuity of (Ht)t⩾0 implies that
∑

0<s⩽t g(∆Js)∆Hs = 0. Moreover, if we denote by (Et)t⩾0
the time process (t)t⩾0, then it is a continuous quadratic pure jump semimartingale4. As a consequence
([E,H]t)t⩾0 is indistinguishable from the null process. Then, Theorem 29 in Protter (2005) (Chapter 2)
yields

[Λ, H]t = [λ · E,H]t =
∫ t

0
λs−d[E,H]s = 0,

where ((λ · E)t)t⩾0 denotes the stochastic integral (
∫ t

0 λs−dEs) = (Λt)t⩾0.

The second important notion is the one of adaptation to a time-change.

Definition 0.2. An F-time-change (St)t⩾0 is a nondecreasing process such that for any t ⩾ 0, St is an
F-stopping-time. Moreover, a stochastic process (Xt)t⩾0 is adapted to the time-change (St)t⩾0 if (Xt)t⩾0 is
constant on any interval [St−, St] for all t ⩾ 0, Q-a.s..

It is clear that if (St)t⩾0 is as described in the previous sections, it is an (FU ∨ FA)-time-change. Moreover,
its continuity entails that any process is adapted to it, as St− = St for all t. Adaptation to time-changes
is discussed in details in the Chapter 10 of J. Jacod (1979). It is also referred to as synchronization with a
time-change, as e.g. in Kobayashi (2011).

Recall that a random set is a subset of Ω×R+. A particular case of random set is given by random intervals.
Given two random variables S, T : Ω → R+ ∪ {+∞}, the random interval [[S, T ]] is the random set defined as

[[S, T ]] := {(ω, t) ∈ Ω × R+ : S(ω) ⩽ t ⩽ T (ω)}.

To an F-time-change (St)t⩾0, we can associate the random set JS as

JS = {(ω, t) ∈ Ω × R+ : St−(ω) < +∞}.

Let P be a class of stochastic processes and define

PJS = {(Xt)t⩾0 : (Xt∧T )t⩾0 ∈ P for any F-stopping-time T that satisfies [[0, T ]] ⊂ JS}.

With all these notations introduced, we can state the result that is of interest to us, namely that under
some conditions, a time-changed local-martingale remains a local-martingale. This result is contained5 in
Theorem 10.16 in J. Jacod (1979).

4Because it is càdlàg and has finite variation on compacts, see Theorem 26 in the chapter 2 of Protter (2005).
5This theorem also contains the same result for other class of processes such as semimartingales for example, as noted at

the beginning of Section 0.3, but we are only interested with local-martingales here.
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Lemma 0.8. Let (Mt)t⩾0 be a process that belongs to Mc
loc(Q,F) (resp. a process that belongs to Md

loc(Q,F))
and that is adapted to an F-time-change (St)t⩾0. Then the time-changed process (MSt)t⩾0 belongs to
Mc

loc(Q,G)JS (resp. belongs to Md
loc(Q,G)JS ), where G denotes the time-changed filtration (FSt

)t⩾0.

If the time-change (St)t⩾0 is the inverse of an α-stable subordinator, Proposition 0.1 implies that P({St <
+∞ for all t ⩾ 0}) = 1 so that by ignoring a null set, we can assume that {St < +∞ for all t ⩾ 0} = Ω.
It follows that the associated random set JS is simply Ω × R+, and thus that [[0,+∞]] = Ω × R+ ⊂ JS .
As a consequence, the inclusions (MSt

)t⩾0 ∈ Mc
loc(Q,G)JS (resp. (MSt

)t⩾0 ∈ Md
loc(Q,G)JS ) in particular

means that (MSt)t⩾0 ∈ Mc
loc(Q,G) (resp. (MSt)t⩾0 ∈ Md

loc(Q,G)). Finally, note that since the inverse
of an α-stable process has continuous paths a.s., we can drop the assumption of a process adapted to the
time-change in Lemma 0.8. This is summarized in the next corollary.

Corollary 0.4. Let (Mt)t⩾0 be a process that belongs to Mc
loc(Q,F) (resp. a process that belongs to

Md
loc(Q,F)) and an F-time-change (St)t⩾0 that is the inverse of an α-stable subordinator Then the time-

changed process (MSt
)t⩾0 belongs to Mc

loc(Q,G) (resp. belongs to Md
loc(Q,G)), where G denotes the time-

changed filtration (FSt
)t⩾0.

We will also use use a change of variable formula for time-changed stochastic integral. This formula is stated
at Proposition 10.21 of J. Jacod (1979). Let (Zt)t⩾0 and (Ht)t⩾0 be two a semimartingales, with (Zt)t⩾0

in synchronization with a time-change (St)t⩾0 and (Ht)t⩾0 predictable. If the stochastic integral
∫ t

0 HsdZs

exists, then the integral
∫ St

0 HsdZs also exists and satisfies the change of variable formula

∫ St

0
HsdZs =

∫ t

0
HSs−dZSs

. (37)

This formula can also be found in Kobayashi (2011) (Lemma 2.3). Again, since the inverse of an α-stable
subordinator is continuous, we can drop the assumption of synchronization with the time-change.

In the following, we focus on a family of changes of measure induced by exponential martingales (Mt(x, ζ))t⩾0
that satisfy

Mt(x, ζ) = exp
{
b1(x)λt + xLSt + b2(x)St − 1

2

∫ t

0
ζ2

s ds−
∫ t

0
ζsdWs

}
, (38)

where (ζt)t⩾0 is an adapted process of the form ζt = ζ0 + ζ1λt and ζ0, ζ1 and x are constants. The functions
b1, b2 correspond to the price of jump risk. The next proposition gives sufficient conditions under which
(MSt

(x, ζ))t⩾0 is in Mloc(P,FA,U ).

Proposition 0.8. If the relations

κb1(x) − (ψ(0, ηb1(x) + x) − 1) = 0

and
b2(x) + κθb1(x) = 0

hold, then the process (Mt(x, ζ))t⩾0 is in Mloc(P,FA,U ).

Proof. Proposition 4.1 in Moraux and Hainaut (2018) states that the two conditions of the statement are
sufficient for (Mt(x, ζ))t⩾0 to be in Mloc(P,FA). It remains to be shown that it is also in Mloc(P,FA,U ). By
definition of local-martingale, there exists a sequence (Tn)n∈N of FA-stopping-times that satisfies Tn ↑ +∞
P-a.s. and such that the stopped process (Mt∧Tn(x, ζ))t⩾0 is a (P,FA)-martingale for any n ∈ N. Recall that
the filtrations FA and FU are independent. We will use the following property: for an integrable random
variable X and two σ-algebras H and G, if H is independent of σ(X) ∨ G, then

E[X|G ∨ H] = E[X|G]
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P-a.s.. This is property (k) in the chapter 9.7 of Williams (1991). As a consequence, we find for t ⩾ s,

E[Mt∧Tn
(x, ζ)|FA,U

s ] = E[Mt∧Tn
(x, ζ)|FA

s ] = Ms∧Tn
(x, ζ).

It follows that (Mt(x, ζ))t⩾0 ∈ Mloc(P,FA,U ).

We can use the local-martingales Mt(x, ζ) as densities to define equivalent measures Qx,ζ as

Qx,ζ(A|FA,U
s ) = E

[
1A

Mt(x, ζ)
Ms(x, ζ) |FA,U

s

]
. (39)

The next proposition shows that such measures preserves the structure of the model we specified.

Proposition 0.9. Under the measure Qx,ζ , the intensity (λSt
)t⩾0 satisfies the SDE

dλSt
= κ(θx,ζ − λSt

)dSt + ηx,ζdLSt

where
θx,ζ

θ
= ηx,ζ

η
= ψ(0, ηb1(x) + x).

The distribution of the α-stable subordinator remains unchanged under Qx,ζ . The jumps of the processes
(Dt)t⩾0, (Jt)t⩾0 and (Lt)t⩾0 defined at Equation (4) have intensity (λt)t⩾0 under Qx,ζ . Moreover, the jump
sizes ξ1, ξ2, . . . remain double exponential under this measure and their distribution is given by

νx,ζ(B) = px,ζ

∫
B∩R+

ρx,ζ
+ e−ρx,ζ

+ zdz + (1 − px,ζ)
∫

B∩R−
ρx,ζ

− e−ρx,ζ
− zdz,

with
ρx,ζ

+ = ρ+ − (ηb1(x) + x),

ρx,ζ
− = ρ− + (ηb1(x) + x)

and

px,ζ =
pρ+ρ

x,ζ
−

pρ+ρ
x,ζ
− + (1 − p)ρx,ζ

+ ρ−
.

Proof. Propositions 4.2 and 4.3 in Moraux and Hainaut (2018) establish that under Qx,ζ ,

λt = λ0 +
∫ t

0
κ(θx,ζ − λs−)ds+ ηx,ζLt.

Thanks to the change of variable formula (37), it follows that

λSt
= λ0 +

∫ t

0
κ(θx,ζ − λSs−)dSs + ηx,ζLSt

.

The fact that the law of (Ut)t⩾t remains unchanged follows from the independence of FA and FU . The
remainder of the statement corresponds to Propositions 4.2 and 4.3 in Moraux and Hainaut (2018).

Proposition 0.10. If the process (ζt)t⩾0 satisfy

ζt = µ+ λt[ψ(0, ηb1(x) + x)(ψx,ζ(1, 0) − 1) − (ψ(1, 0) − 1)] − r

σ
,

and if the relations of Proposition 0.8 are satisfied, then the equivalent measure Qx,ζ of Equation (39) is a
risk-neutral measure. Under this measure, the asset price (ASt

)t⩾0 satisfies the SDE

dASt = rAStdSt + σAStdWSt +ASt

(
dDSt − EQx,ζ [eξ − 1]λStdSt

)
whereas its logarithm (XSt)t⩾0 = (lnASt)t⩾0 satisfies

dXSt
=
(
r − σ2

2 − EQx,ζ [eξ − 1]λSt

)
dSt + σdWSt + dJSt .
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Proof. It is proved in Moraux and Hainaut (2018) (Proposition 4.4) that under Qx,ζ ,

At = r

∫ t

0
As−ds+ σ

∫ t

0
As−dWs +

∫ t

0
As−

(
dDs − EQx,ζ [eξ − 1]λsds

)
(40)

and

Xt =
∫ t

0

(
r − σ2

2 − EQx,ζ [eξ − 1]λs

)
ds+ σWt + Jt.

The dynamics of (ASt)t⩾0 and (XSt)t⩾0 then follow from the change of variable formula (37). Moreover,
note that by Equation (40) and Ito’s lemma applied on the process (Ãt)t⩾0 = (e−rtAt)t⩾0, we have

Ãt = σ

∫ t

0
ÃsdWs +

∫ t

0
Ãs

(
dDs − EQx,ζ [eξ − 1]λsds

)
or using the random measure Ξ,

Ãt = σ

∫ t

0
ÃsdWs +

∫ t

0
Ãs

∫
R
(ez − 1)(Ξ(dz)dNs − λs−ν(dz)ds)

under Qx,ζ . Again, from the change of variable formula (37),

ÃSt
= σ

∫ t

0
ÃSs−dWSs

+
∫ t

0
ÃSs−

∫
R
(ez − 1)(Ξ(dz)dNSs

− λs−ν(dz)dSs). (41)

Since the brownian motion (Wt)t⩾0 belongs to Mc
loc(Qx,ζ ,FA), Corollary 0.4 implies that the time-changed

brownian motion (WSt
)t⩾0 belongs to Mc

loc(Qx,ζ ,FA◦S). Moreover, Proposition 0.7 states that(∫ t

0

∫
R

(ez − 1) (Ξ(dz)dNs − λs−ν(dz)ds)
)

t⩾0

is in Md
loc(Qx,ζ ,FA). Therefore, Corollary 0.4 and the change of variable formula (37) entails that the

time-changed compensated jump process(∫ t

0

∫
R

(ez − 1)
(
Ξ(dz)dNSs − λSs−ν(dz)dSs

))
t⩾0

is in Md
loc(Qx,ζ ,FA◦S). Since stochastic integrals with respect to local-martingales are local-martingales,

Equation (41) implies that (ÃSt)t⩾0 is in Mloc(Qx,ζ ,FA◦S), which ends the proof.

0.5 Pricing of call options

In this section, we show how to price call and put options in our framework. We proceed by numerically
inverting the Fourier transform of the option prices.

0.5.1 Numerical computation of the Fourier transform

This subsection is devoted to a numerical method that allows to solve the FPDE of Corollary 0.3. We work
with a grid on [0, T ] × [−zmax, zmax] where T, zmax > 0 are fixed constants. The discretization step sizes are
∆t := T/nt and ∆z := zmax/nz with nt, nz ∈ N. The grid is defined as {t0, . . . , tnt}×{z−nz , z−nz+1, . . . , znz }
where tx := x∆t and zy := y∆z. This grid contains (nt + 1) × (2nz + 1) points. We set σα := 1 − α

2 . Note
that for any α ∈ (0, 1), we have σα ∈ ( 1

2 , 1), so that the inequalities tj < tj + 1
2 ∆t < tj+σα < tj+1 always

hold.
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We use φ̂(0)
α to denote the approximated values of the function φ

(0)
α from Corollary 0.3. That is, for fixed

s, y1, y2, v, u and ω ∈ C, we write

βφ̂(0)
α (t, z) ≈ β(ω, z)φ(0)

α (t, r, ω, z|s, y1, y2, v, u)

to express the fact that βφ̂(0)
α (t, z) is the quantity that aims to approximate

β(ω, zi)φ(0)
α (t, r, ω, z|s, y1, y2, v, u).

Similarly, we also write
∆αφ̂

(0)
α

∆tα (t, z) ≈ ∂αφ
(0)
α

∂tα
(t, r, ω, z|s, y1, y2, v, u)

and

γ
∆φ̂(0)

α

∆z (t, z) ≈ γ(r, ω, z)∂φ
(0)
α

∂z
(t, r, ω, z|s, y1, y2, v, u).

The FPDE of Corollary 0.3 translates into

∆αφ̂
(0)
α

∆tα (tj+σα
, zi) = βφ̂(0)

α (tj+σα
, zi) + γ

∆φ̂(0)
α

∆z (tj+σα
, zi). (42)

We will now give the formulas for our approximations and study their rates of convergence.

The approximation used for the Caputo fractional derivative is the one introduced in Alikhanov (2015). The
Caputo derivative approximation for a function f is

dαf

dtα (tj+σα
) ≈ ∆αf

∆tα (tj+σα
) := ∆α

t

Γ(1 − α)

j∑
s=0

c
(α,j)
j−s

f(ts+1) − f(ts)
∆t

(43)

where c(α,0)
0 := σ1−α

α and

c(α,j)
s :=


a

(α)
0 + b

(α)
1 if s = 0,

a
(α)
s + b

(α)
s+1 − b

(α)
s if 1 ⩽ s ⩽ j − 1,

a
(α)
j − b

(α)
j if s = j,

(44)

when j ∈ {1, . . . , nt}. The constants a(α)
s and b

(α)
s are defined as

a(α)
s := (s+ σα)1−α − (s− 1 + σα)1−α (45)

and
b(α)

s := 1
2 − α

[
(s+ σα)2−α − (s− 1 + σα)2−α

]
− 1

2
[
(s+ σα)1−α + (s− 1 + σα)1−α

]
.

(46)

The approximation formula of Equations (43)-(46) is based on a quadratic interpolation of f on the grid
{0 = t0, t1, . . . , tnt

= T} and is derived in Alikhanov (2015). This approximation has the benefit of a high
order error, that is O(∆3−α

t ), as stated in the next proposition.

Proposition 0.11. For any α ∈ (0, 1) and f ∈ C3[0, tj+1],∣∣∣∣dαf

dtα (tj+σα
) − ∆αf

∆tα (tj+σα
)
∣∣∣∣ = O(∆3−α

t ).

Proof. See Lemma 2 in Alikhanov (2015).
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The fractional derivative of Corollary 0.3 is thus approximated by

∆αφ̂
(0)
α

∆tα (tj+σα
, zi) := ∆α

t

Γ(1 − α)

j∑
s=0

c
(α,j)
j−s

φ̂
(0)
α (ts+1, zi) − φ̂

(0)
α (ts, zi)

∆t
. (47)

We move to the approximation βφ̂
(0)
α (t, z). The next proposition introduces the formula we use.

Proposition 0.12. Let f ∈ C2[0, T ]. Then,

f(tj+σα
) = (1 − σα)f(tj) + σαf(tj+1) +O(∆2

t ).

Proof. The proof is based on Taylor’s theorem. This theorem implies that

σαf(tj+1) = σα

(
f(tj+σα

) + (tj+1 − tj+σα
)f ′(ttj+σα

) + (tj+1 − tj+σα)2

2 f ′′(t̃j+1)
)

= σα

(
f(tj+σα

) + (1 − σα)∆tf
′(ttj+σα

) + ((1 − σα)∆t)2

2 f ′′(t̃j+1)
) (48)

and
(1−σα)f(tj)

= (1 − σα)
(
f(tj+σα) + (tj − tj+σα)f ′(tj+σα) + (tj+σα

− tj)2

2 f ′′(t̃j)
)

= (1 − σα)
(
f(tj+σα) − σα∆tf

′(tj+σα) + (σα∆t)2

2 f ′′(t̃j)
) (49)

for some t̃j+1 ∈ (tj+σα
, tj+1) and t̃j ∈ (tj , tj+σα

). Summing Equations (48) and (49) yields the announced
result.

The term βφ̂
(0)
α (t, z) is therefore computed as

βφ̂(0)
α (tj+σα

, zi) := β(r, ω, zi)
[
σαφ̂

(0)
α (tj+1, zi) + (1 − σα)φ̂(0)

α (tj , zi)
]

(50)

for all i ∈ {−nz, . . . , nz}. The approximation γ∆φ̂(0)
α

∆z (t, z) is more tricky. This happens for two reasons. The
first is that we have to control the rates of convergence with respect to both ∆t and ∆z. The second is
that we have to rely on 3 different approximations in order not to fall outside of the grid {z−nz , . . . , znz }
when approximating the partial derivative with respect to z. The falling outside of the grid problem will
be explained more precisely and addressed later on, in the case i ∈ {−nz, nz}. For now, we assume that
i ∈ {−nz + 1, . . . , nz − 1}. The approximation is in this case based on the following proposition.

Proposition 0.13. Let f, k ∈ C3[−zmax, zmax]. Then,

k(zi)f ′(zi) =
k(zi+ 1

2
)f(zi+1) − ∆zk

′(zi)f(zi) − k(zi− 1
2
)f(zi−1)

2∆z
+O(∆2

z).

Proof. By Taylor’s theorem,

k(zi+ 1
2
) = k(zi) + ∆z

2 k′(zi) + 1
2

(
∆z

2

)2
k′′(zi) + 1

6

(
∆z

2

)3
k′′′(z̃i+ 1

2
) (51)

for some z̃i+ 1
2

∈ (zi, zi+ 1
2
) and

k(zi− 1
2
) = k(zi) − ∆z

2 k′(zi) + 1
2

(
∆z

2

)2
k′′(zi) − 1

6

(
∆z

2

)3
k′′′(z̃i− 1

2
) (52)
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for some z̃i− 1
2

∈ (zi− 1
2
, zi). Similarly,

f(zi+1) = f(zi) + ∆zf
′(zi) + ∆2

z

2 f ′′(zi) + ∆3
z

6 f ′′′(z̃i+1) (53)

for some z̃i+1 ∈ (zi, zi+1) and

f(zi−1) = f(zi) − ∆zf
′(zi) + ∆2

z

2 f ′′(zi) − ∆3
z

6 f ′′′(z̃i−1) (54)

for some z̃i−1 ∈ (zi−1, zi). Multiplying Equation (51) by Equation (53) and Equation (52) by Equation (54)
leads to

k(zi+ 1
2
)f(zi+1) − k(zi− 1

2
)f(zi−1) = 2∆zk(zi)f ′(zi) + ∆zk

′(zi)f(zi) +O(∆3
z).

A division by ∆z then implies that

k(zi+ 1
2
)f(xi+1) − ∆zk

′(zi)f(xi) − k(zi− 1
2
)f(xi−1)

2∆z
= k(zi)f ′(zi) +O(∆2

z),

as announced.

Let k be a function that belongs to C3[−zmax, zmax] and g : [0, T ] × [−zmax, zmax] → R : (t, z) 7→ g(t, z)
be a function that is twice continuously differentiable with respect to its first argument and three times
continuously differentiable with respect to its second argument. Proposition 0.12 implies that

k(zi)
∂g

∂z
(tj+σα

, zi) = σαk(zi)
∂g

∂z
(tj+1, zi) + (1 − σα)k(zi)

∂g

∂z
(tj , zi) +O(∆2

t ). (55)

Moreover, Proposition 0.13 applied on each term at the right-hand side of Equation (55) provides us with

k(zi)
∂g

∂z
(tj+σα , zi) = O(∆2

z + ∆2
t )

+ σα

k(zi+ 1
2
)g(tj+1, zi+1) − k′(zi)g(tj+1, zi) − k(zi− 1

2
)g(tj+1, zi−1)

2∆z

+ (1 − σα)
k(zi+ 1

2
)g(tj , zi+1) − k′(zi)g(tj , zi) − k(zi− 1

2
)g(tj , zi−1)

2∆z

(56)

The approximation γ
∆φ̂(0)

α

∆z (t, z) then follows from Equation (56), that is

γ
∆φ̂

(0)
α

∆z
(tj+σα , zi)

:= σα

γ(ω, zi+ 1
2

)φ̂(0)
α (tj+1, zi+1) − ∆z

∂γ
∂zi

(ω, zi)φ̂(0)
α (tj+1, zi) − γ(ω, zi− 1

2
)φ̂(0)

α (tj+1, zi−1)
2∆z

+ (1 − σα)
γ(ω, zi+ 1

2
)φ̂(0)

α (tj , zi+1) − ∆z
∂γ
∂zi

(ω, zi)φ̂(0)
α (tj , zi) − γ(ω, zi− 1

2
)φ̂(0)

α (tj , zi−1)
2∆z

.

(57)

Unfortunately, Approximation (57) cannot be used when i ∈ {−nz, nz}. The reason is what we previously
referred to as the falling outside of the grid problem. As a matter of fact, the zi+1 (resp. zi−1) that appears
in Equation (57) prevents us from using this formula for i = nz (resp. i = −nz) without falling outside of
the grid {z−nz , . . . , znz }. The next proposition introduces the approximations we use when i ∈ {−nz, nz}.

Proposition 0.14. Let f ∈ C3[−zmax, zmax]. Then we have

(i)

f ′(−zmax) = −f(−zmax + 2∆z) + 4f(−zmax + ∆z) − 3f(−zmax)
2∆z

+O(∆2
z)
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(ii)

f ′(zmax) = 3f(zmax) − 4f(zmax − ∆z) + f(zmax − 2∆z)
2∆z

+O(∆2
z).

Proof. By Taylor’s theorem,

f(−zmax + ∆z) − f(−zmax)
∆z

= f ′(−zmax) + ∆z

2 f ′′(−zmax) +O(∆2
z) (58)

and
f ′′(−zmax) = f ′′(−zmax + ∆z) +O(∆z)

= f(−zmax + 2∆z) − 2f(−zmax + ∆z) + f(−zmax)
∆2

z

+O(∆z).
(59)

Substituting Equation (59) into Equation (58) gives

f(−zmax + ∆z) − f(−zmax)
∆z

= f ′(−zmax) + f(−zmax + 2∆z) − 2f(−zmax + ∆z) + f(−zmax)
2∆z

+O(∆2
z).

Result (i) is obtained by isolating f ′(−zmax). The proof of (ii) is similar and therefore omitted.

Proposition 0.14 motivates the approximations

γ
∆φ̂(0)

α

∆z (tj+σα
, zi)

:= σαγ(ω, zi)
−φ̂(0)

α (tj+1, zi+2) + 4φ̂(0)
α (tj+1, zi+1) − 3φ̂(0)

α (tj+1, zi)
2∆z

+ (1 − σα)γ(ω, zi)
−φ̂(0)

α (tj , zi+2) + 4φ̂(0)
α (tj , zi+1) − 3φ̂(0)

α (tj , zi)
2∆z

(60)

when i = −nz and

γ
∆φ̂(0)

α

∆z (tj+σα
, zi) := σαγ(ω, zi)

3φ̂(0)
α (tj+1, zi) − 4φ̂(0)

α (tj+1, zi−1) + φ̂
(0)
α (tj+1, zi−2)

2∆z

+ (1 − σα)γ(ω, zi)
3φ̂(0)

α (tj , zi) − 4φ̂(0)
α (tj , zi−1) + φ̂

(0)
α (tj , zi−2)

2∆z

(61)

when i = nz. From Equation (42), we replace the approximations by their formulas of Equations (47), (50),
(57), (60) and (61), and we express the values of time tj+1 in function of the values up to time tj . This leads
to
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φ̂(0)
α (tj+1, zi+1)

[
−σα∆1−α

t γ(ω, zi+ 1
2

)
2∆z

]

+ φ̂(0)
α (tj+1, zi)

[
c

(α,j)
0

Γ(1 − α) − ∆1−α
t σαβ(r, ω, zi) +

∆1−α
t σα

∂γ
∂zi

(ω, zi)
2∆z

]

+ φ̂(0)
α (tj+1, zi−1)

[
σα∆1−α

t γ(ω, zi− 1
2

)
2∆z

]

= φ̂(0)
α (tj , zi)

[
(1 − σα)∆1−α

t β(r, ω, zi) + c
(α,j)
0

Γ(1 − α)

]
− 1

Γ(1 − α)

j−1∑
s=0

c
(α,j)
j−s

(
φ̂(0)

α (ts+1, zi) − φ̂(0)
α (ts, zi)

)
+ (1 − σα)∆1−α

t

2∆z

[
γ(ω, zi+ 1

2
)φ̂(0)

α (tj , zi+1) − ∆z
∂γ

∂zi
(ω, zi)φ̂(0)

α (tj , zi)

− γ(ω, zi− 1
2

)φ̂(0)
α (tj , zi−1)

]

(62)

in the case i ∈ {−nz + 1, . . . , nz − 1}. Otherwise, it gives

φ̂(0)
α (tj+1, zi+2)

[
σα∆1−α

t γ(ω, zi)
2∆z

]
+ φ̂(0)

α (tj+1, zi+1)
[

−2∆1−α
t σαγ(ω, zi)

∆z

]
+ φ̂(0)

α (tj+1, zi−1)
[

c
(α,j)
0

Γ(1 − α) − ∆1−α
t σαβ(r, ω, zi) + 3σα∆1−α

t γ(ω, zi)
2∆z

]

= φ̂(0)
α (tj , zi)

[
(1 − σα)∆1−α

t β(r, ω, zi) + c
(α,j)
0

Γ(1 − α)

]

− 1
Γ(1 − α)

j−1∑
s=0

c
(α,j)
j−s

(
φ̂(0)

α (ts+1, zi) − φ̂(0)
α (ts, zi)

)
+ (1 − σα)∆1−α

t γ(ω, zi)
2∆z

[
−φ̂(0)

α (tj , zi+2) + 4φ̂(0)
α (tj , zi+1) − 3φ̂(0)

α (tj , zi)
]

(63)

when i = −nz and

φ̂(0)
α (tj+1, zi)

[
c

(α,j)
0

Γ(1 − α) − ∆1−α
t σαβ(r, ω, zi) − 3σα∆1−α

t γ(ω, zi)
2∆z

]

+ φ̂(0)
α (tj+1, zi−1)

[
2∆1−α

t σαγ(ω, zi)
∆z

]
+ φ̂(0)

α (tj+1, zi−2)
[

−σα∆1−α
t γ(ω, zi)
2∆z

]
= φ̂(0)

α (tj , zi)
[

(1 − σα)∆1−α
t β(r, ω, zi) + c

(α,j)
0

Γ(1 − α)

]

− 1
Γ(1 − α)

j−1∑
s=0

c
(α,j)
j−s

(
φ̂(0)

α (ts+1, zi) − φ̂(0)
α (ts, zi)

)
+ (1 − σα)∆1−α

t γ(ω, zi)
2∆z

[
3φ̂(0)

α (tj , zi) − 4φ̂(0)
α (tj , zi−1) + φ̂(0)

α (tj , zi−2)
]

(64)

when i = nz. Equations (62)-(64) actually describe a linear system of equations. Namely, if we define the
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matrix γ ∈ R(2nz+1)×(2nz+1) as

3γnz −4γnz γnz 0 · · · 0 0 0 0
γnz−1+ 1

2
−∆z∂γnz−1 −γnz−1− 1

2
0 · · · 0 0 0 0

0 γnz−2+ 1
2

−∆z∂γnz−2 −γnz−2− 1
2

· · · 0 0 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 0 0 · · · γ−nz+2+ 1
2

−∂γ−nz+2 −γ−nz+2− 1
2

0
0 0 0 0 · · · 0 γ−nz+1+ 1

2
−∆z∂γ−nz+1 −γ−nz+1− 1

2
0 0 0 0 · · · 0 −γ−nz 4γ−nz −3γ−nz


where γi and ∂γi are respectively used as shorthands for γ(ω, zi) and ∂γ

∂zi
(ω, zi), and the matrix β ∈

R(2nz+1)×(2nz+1) as
β := diag (β(r, ω, znz

), β(r, ω, znz−1), . . . , β(r, ω, z−nz
)) ,

then we can rewrite Equations (62)-(64) in the matrix form[
−σα∆1−α

t

(
β + γ

2∆z

)
+ I c

(α,j)
0

Γ(1 − α)

]
φ̂α(tj+1)

=
[

(1 − σα)∆1−α
t

(
β + γ

2∆z

)
+ I c

(α,j)
0

Γ(1 − α)

]
φ̂α(tj) + 1

Γ(1 − α)

j−1∑
s=0

c
(α,j)
j−s (φ̂α(ts+1) − φ̂α(ts))

where I ∈ R(2nz+1)×(2nz+1) is an identity matrix and

φ̂α(tj) = (φ̂(0)
α (tj , znz

), φ̂(0)
α (tj , znz−1), . . . , φ̂(0)

α (tj , z−nz
))⊤ ∈ R(2nz+1)×1.

From the initial condition φ̂α(t0) = 1, it is thus possible to compute recursively all the φ̂α(tj)’s by using

φ̂α(tj+1)

=
[

−σα∆1−α
t

(
β + γ

2∆z

)
+ I c

(α,j)
0

Γ(1 − α)

]−1 [
(1 − σα)∆1−α

t

(
β + γ

2∆z

)
+ I c

(α,j)
0

Γ(1 − α)

]
φ̂α(tj)

+ 1
Γ(1 − α)

[
−σα∆1−α

t

(
β + γ

2∆z

)
+ I c

(α,j)
0

Γ(1 − α)

]−1 j−1∑
s=0

c
(α,j)
j−s (φ̂α(ts+1) − φ̂α(ts)) .

0.5.2 Inversion of the Fourier transform via FFT

Now that we are armed to compute the values of the transform φα, this subsection describes in details how
to obtain the call prices from this transform by inverting it. As in Carr and Madan (1999), this inversion
is performed numerically with the help of a Fast Fourier Transform algorithm. For a fixed maturity T > 0,
and an evaluation time t ∈ [0, T ), we wish to compute the call price

EQ[e−rST (eXST − ek)+|Gt],

where (Xt)t⩾0 is the logarithm of the stock price and k = lnK is the log-strike. By the Markov property,
this call price can be considered as the function

C(T, k|t, y1, y2, v, u) = EQ[e−rST (eXST − ek)+|(ASt
, λSt

, St, USt
) = (y1, y2, v, u)].

Since this function is not square integrable (with respect to the log-strike k), Fourier theory does not apply.
However, if we fix ε > 1, then the function

c(T, k|t, y1, y2, v, u) := eεkEQ[e−rST (eXST − ek)+|(ASt , λSt , St, USt) = (y1, y2, v, u)]
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is square integrable and its Fourier transform exists. Denote by ĉ the Fourier transform with respect to the
log-strike k,

ĉ(T, ω|t, y1, y2, v, u) :=
∫
R
eiωkc(T, k|t, y1, y2, v, u)dk.

This Fourier transform can be expressed in terms of the Fourier-Laplace transform of the couple (St, XSt
)

through the following computations

ĉ(T, ω|t, y1, y2, v, u) =
∫
R
e(iω+ε)kC(T, k|t, y1, y2, v, u)dk

=
∫
R
e(iω+ε)k

∫
R+

∫ +∞

k

e−rx0
(
ex1 − ek

)
pα(T, x0, x1|t, y1, y2, v, u)dx1dx0dk

=
∫
R+
e−rx0

∫
R
ex1pα(T, x0, x1|t, y1, y2, v, u)

∫ x1

−∞
e(iω+ε)kdkdx1dx0

−
∫
R+
e−rx0

∫
R
pα(T, x0, x1|t, y1, y2, v, u)

∫ x1

−∞
e(iω+ε+1)kdkdx1dx0

=
(

1
iω + ε

− 1
iω + ε+ 1

)∫
R+

∫
R
e−rx0+(iω+ε+1)x1pα(T, x0, x1|t, y1, y2, v, u)dx1dx0

= 1
(iω + ε)2 + (iω + ε)φα(T, r, iω + ε+ 1, 0|t, y1, y2, v, u).

Then we can invert the Fourier transform to obtain the call price

C(T, k|t, y1, y2, v, u) = e−εk

π

∫
R+
e−iωkφα(T, r, iω + ε+ 1, 0|t, y1, y2, v, u)

(iω + ε)2 + (iω + ε) dω. (65)

We will approximate this integral with the help of Riemann sums and perform the computations with the
help of a fast Fourier transform algorithm. Following Carr and Madan (1999), the approximation for the
integral of Equation (65) is of the form

C(T, kn|t, y1, y2, v, u) ≈ e−εkn

π

N∑
j=1

eiωjkn
φα(T, r, iωj + ε+ 1, 0|t, y1, y2, v, u)

(iωj + ε)2 + (iωj + ε)

[
3 + (−1)j − ζj−1

3

]
∆ω

for the range of log-strikes kn = −kmax + ∆k(n− 1), kmax > 0, n = 1, . . . , N ∈ N and ∆k = 2kmax/N . The
discretization of the variable ω is of the form ωj = ∆ω(j − 1) for some ∆ω > 0 and ζj−1 = 0 if j = 1 and
ζj−1 = 0 when j ̸= 1. Imposing ∆k∆ω = 2π/N and performing some computations yields

C(T, kn|t, y1, y2, v, u)

≈
e−εkn

π

N∑
j=1

exp
{

−
2iπ(j − 1)(n − 1)

N

}
φα(T, r, iωj + ε + 1, 0|t, y1, y2, v, u)

(iωj + ε)2 + (iωj + ε)
(−1)j−1

[
3 + (−1)j − ζj−1

3

]
∆ω ,

which can be computed with a fast Fourier transform algorithm.

0.6 Hedging of a call option

In this section, we discuss the hedging strategy for contingent claims, and in particular call options. A first
strategy could be to “Delta” hedge the call option, that is buying a quantity ∂C/∂ASt

of the underlying
asset (ASt

)t⩾0 to mimic the first order behavior of the call option price with respect to the asset. However,
such an approach fails to properly take into account the jumps that occurs in the price. To better take
into account the occurrences of jumps, we propose a hedging strategy that is determined through a variance
minimization problem, as pioneered in Föllmer and Sondermann (1985). This approach is also referred to as
quadratic hedging and is used in numerous studies. We can cite for example Föllmer and Schweizer (1991),
Pham (2000) and Moraux and Hainaut (2018).
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The variance minimization of the hedging error will be performed under a fixed risk neutral measure Q, as
described in Section 0.4. The choice of such a measure is questionable. As a matter of fact, this approach
suffers from two drawbacks. The first is that the chosen risk neutral measure Q becomes an input of the
optimization procedure that leads to the hedging strategy. Consequently, the hedging strategy provides
neither a risk neutral measure nor a price for the contingent claim. The second drawback is that the profits
and losses that will occur in practice are ruled by the real-world probability measure. From this point of
view, the optimization should be performed under the real probability measure and not under a risk neutral
one. However, hedging under a risk neutral measure has some benefits. On the one hand, quadratic hedging
with discontinuous processes under probability measures that are not risk neutral does not admit a solution
in general. On the other hand, the non-uniqueness of a risk neutral measure allows to adjust the parameters
that appear in the optimization problem. In particular, the parameters could then be adjusted to reflect
the uncertainty over the evolution of prices and the risk aversion of traders. As noted in L. P. Hansen and
Sargent (1995) and Lars Peter Hansen and Sargent (2001), the risk neutral measure can be chosen so that
the obtained hedging strategy is more conservative than any other strategy built under P.

The quadratic hedging approach relies on predictable representation theorems for martingales. Such theorems
allow to write contingent claims as stochastic integrals of predictable processes with respect to the risk factors
that drive the underlying asset price. The first representation theorem is often called the Kunita-Watanabe
decomposition theorem and was introduced in Kunita and Watanabe (1967). Similar results can be found
in Kunita (2004) and in Chapter 3 of Jean Jacod and Shiryaev (2003). We start with the general case
of the hedging of a square integrable contingent claims Y . More precisely, we establish the existence and
uniqueness the quadratic hedging strategy under each fixed risk neutral measure Q. Afterwards, we determine
the particular hedging strategy when the contingent claim Y is the payoff of a call option.

In order to rely on the Kunita-Watanabe decomposition theorem for square integrable martingales, we work
with the discounted asset prices. Recall that in the subdiffusive case, the discounted asset price is (ÃSt

)t⩾0,
where Ãt = e−rtAt, t ⩾ 0. Fix a risk neutral measure Q as in Section 0.4. Note that when talking about
square integrable martingales, we refer to the terminology of Protter (2005) (P.180), i.e. an (Ft)t⩾0-adapted
stochastic process (Mt)t⩾0 that satisfies E[M2

t ] < +∞ and E[Mt|Fs] = Ms for all t ⩾ s ⩾ 0. In particular,
we do not necessarily mean that supt⩾0 E[M2

t ] < +∞ (the processes that satisfy this additional condition
are referred to as L2 martingales in Protter (2005) and are of course square integrable martingales).

Let T > 0 be a deterministic maturity and Y be an FA◦S
T -measurable positive and square integrable random

variable that represents the payoff of a contingent claim to be paid at time T . We aim at finding a portfolio
(or strategy) in order to hedge the contingent claim Y . A portfolio consists of a vector valued predictable
stochastic process (π(0)

t , π
(1)
t , . . . , π

(d)
t )t∈[0,T ] where d is the number of risky assets in the market and π

(i)
t is

the quantity of assets i to be hold at time t. Asset i = 0 is the risk-free asset. In our case, d = 1 and the
present value (Vt(π))t∈[0,T ] of the portfolio π = (π(0)

t , π
(1)
t )t∈[0,T ] is given by

Vt(π) = π
(0)
t + π

(1)
t ÃSt

(66)

at time t. On top of being (FA◦S
t )t∈[0,T ]-predictable, we require the portfolio π to be self-financing. This

concept refers to the fact that the instantaneous changes in the value (Vt(π))t∈[0,T ] are due to changes in the
prices of the assets, and not to instantaneous rebalancing of the asset quantities (π(0)

t , π
(1)
t )t∈[0,T ] we hold.

Mathematically, this condition is expressed as

Vt(π) = V0(π) +
∫ t

0
π(1)

u dÃSu
.

For more material about self-financing portfolios, we refer to the chapter 2 of Jeanblanc, Yor, and Chesney
(2009). The goal is thus to find

π⋆ = arg min
π∈Π

EQ
[
(VT (π) − e−rST Y )2] (67)

where Π is the set of all self-financing portfolios. The next result requires the notion of orthogonal martin-
gales. This notion was given at Definition 0.1. Let us state the Kunita-Watanabe decomposition theorem.
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Lemma 0.9. Let (Bt)t⩾0, (Mt)t⩾0 be two square integrable (Q,G)-martingales, where G = (Gt)t⩾0 is a filtra-
tion that satisfies the usual conditions. There exists a unique choice of square integrable (Q,G)-martingales
(M ′

t)t⩾0 and (M ′′
t )t⩾0 such that

(i) (M ′
t)t⩾0 ∈ Φ(B), where

Φ(B) :=
{(∫ t

0
ϕudBu

)
t⩾0

: (ϕu)u⩾0 is a G-predictable process
}
,

(ii) (M ′′
t )t⩾0 is orthogonal to any process that belongs to Φ(B),

(iii) (Mt)t⩾0 and (M ′
t +M ′′

t )t⩾0 are indistinguishable.

The statement and the proof can be found at Proposition 4.1 in Kunita and Watanabe (1967). In order to
apply Lemma 0.9, we need the filtration (Gt)t⩾0 to satisfy what are called the usual conditions. The first
usual condition is that G0 must contain all the null sets of the probability space, which is here the case by
assumption. The second is that the σ-algebras Gt+ :=

⋂
ε>0 Gt+ε and Gt should coincide for any t ⩾ 0. This

property is called the right-continuity of the filtration. The two next lemmas show that the filtration FA◦S

that we have chosen for the discounted asset price (ÃSt
)t⩾0 is right-continuous.

Lemma 0.10. Let (Ht)t⩾0 and (Ft)t⩾0 be two right-continuous filtrations on the same probability space
(Ω,F ,P). Then the filtration (Ht ∨ Ft)t⩾0 is right-continous.

Proof. Fix t ⩾ 0. We begin by showing the inclusion⋂
ε>0

(Ht+ε ∪ Ft+ε) ⊂ Ht ∪ Ft. (68)

Note that this inclusion is trivial in the case Ht ∪ Ft = F , so that we assume Ht ∪ Ft ̸= F , that is Ht ∪ Ft is
strictly included in F . In this proof, set complements are taken with respect to F , i.e. for A ⊂ F , A = F \A.
Let B ∈ Ht ∪ Ft. By the right-continuity of the filtrations and two applications of De Morgan’s laws, we
have

B ∈

(⋂
ε>0

Ht+ε

)
∪

(⋂
ε>0

Ft+ε

)

=
(⋂

ε>0
Ht+ε

)
∩

(⋂
ε>0

Ft+ε

)

=
(⋃

ε>0
Ht+ε

)
∩

(⋃
ε>0

Ft+ε

)
so that there are εH, εF > 0 such that B ∈ Ht+εH ∩Ft+εF . Setting ε = εH∧εF , we have that B ∈ Ht+ε∩Ft+ε,
which implies

B ∈
⋂
ε>0

(Ht+ε ∪ Ft+ε)

and thereby proves the inclusion at Equation (68). As a consequence,

σ

(⋂
ε>0

(Ht+ε ∪ Ft+ε)
)

⊂ Ht ∨ Ft.

It remains to show that ⋂
ε>0

(Ht+ε ∨ Ft+ε) = σ

(⋂
ε>0

(Ht+ε ∪ Ft+ε)
)
.

39



To this end, note that

B ∈
⋂

ε>0(Ht+ε ∨ Ft+ε)

⇔ For any ε > 0, B ∈ S whenever S is a σ-algebra that satisfies S ⊃ Ht+ε ∪ Ft+ε

⇔ For any ε > 0, B ∈ S whenever S is a σ-algebra that satisfies S ⊃ Ht+ε ∨ Ft+ε

⇔ For any ε > 0, B ∈ Ht+ε ∨ Ft+ε

⇔ B ∈
⋂

ε>0(Ht+ε ∨ Ft+ε),

concluding the proof.

Lemma 0.11. The filtration FA◦S is right-continuous.

Proof. Recall that FA◦S
t = FA,U

St
, where FA,U

t = FA
t ∨ FU

t = FW
t ∨ FJ

t ∨ FU
t .

First we show that FA,U is right-continuous. According to Lemma 0.10, it is enough to show that FW ,
FJ and FU are right-continuous. The right-continuity of both FU and FW is guaranteed by Theorem 31
in the chapter 1 of Protter (2005), which states that the natural filtrations of Lévy processes completed
with the null sets are right-continuous. The proof of the right-continuity of natural filtrations of counting
processes (Theorem 25 in the same chapter) is also valid for the right-continuity of FJ . It follows that FA,U

is right-continuous. It remains to show that this conclusion extends to the time-changed filtration FA◦S .

Fix t ⩾ 0 and assume that A ∈
⋂

n∈N FA◦S
t+ 1

n
. Then for each n ∈ N and all s ⩾ 0, A ∩ {St+ 1

n
⩽ s} ∈ FA,U

s . It
implies that for any k ∈ N, ⋂

m⩾k

⋃
n∈N

A ∩
{
St+ 1

n
⩽ s+ 1

m

}
∈ FA,U

s+ 1
k

, (69)

and thus the right-continuity of FA,U entails that the set of Equation (69) is in FA,U
s . Finally, since the

paths of (St)t⩾0 are nondecreasing and right-continuous, the set of Equation (69) equals A∩ {St ⩽ s}. This
proves that A ∈ FA,U

St
= FA◦S

t .

We can now state the existence and uniqueness of the quadratic hedging strategy.

Proposition 0.15. Let Y be a FA◦S
T - measurable square integrable random variable. Then there exists a

unique choice of a FA◦S-predictable process (yt)t⩾0 and a martingale (Mt)t⩾0 such that

e−rST Y =
∫ T

0
ysdÃSs

+MT (70)

with (Mt)t⩾0 being orthogonal to any process in Φ(Ã ◦ S). Moreover, there exists a unique solution to the
quadratic hedging problem (67) given by

π⋆ = (EQ[e−rST Y ] − y0ÃS0 , yt)t∈[0,T ].

Proof. Define the process (Yt)t⩾0 as Yt := EQ[e−rST Y |FA◦S
t ]. It is then clear that (Yt)t⩾0 is a square

integrable (Q,FA◦S)-martingale. Lemma 0.9 entails the existence of a unique choice of a FA◦S-predictable
process (yt)t⩾0 and a square integrable (Q,FA◦S)-martingale (Mt)t⩾0 such that

Yt =
∫ t

0
ysdÃSs +Mt.

Moreover, the stochastic integral (
∫ t

0 ysdÃSs)t⩾0 is a square integrable (Q,FA◦S)-martingale. Equation (70)
follows. The orthogonality of (Mt)t⩾0 to any process in Φ(Ã ◦ S) corresponds to the second statement of
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Lemma 0.9. Then, for any self-financing portfolio π = (π(0)
t , π

(1)
t ), we can write

EQ[(VT (π) − e−rST Y )2] = EQ

(V0(π) +
∫ T

0
(π(1)

u − yu)dÃSu −MT

)2


= EQ

[
(V0(π) −MT )2

]
+ EQ

(∫ T

0
(π(1)

u − yu)dÃSu

)2


− 2EQ

[
MT

∫ T

0
(π(1)

u − yu)dÃSu

]
.

(71)

Note that
(∫ t

0 (π(1)
u − yu)dÃSu

)
t⩾0

∈ Φ(Ã ◦S) and thus this martingale is orthogonal to (Mt)t⩾0. It implies
that

EQ

[
MT

∫ T

0
(π(1)

u − yu)dÃSu

]
= 0.

Therefore, with some more straightforward computations, Equation (71) becomes

EQ[(VT (π) − e−rST Y )2] = (V0(π) −M0)2 + EQ[(MT −M0)2] + EQ

(∫ T

0
(π(1)

u − yu)dÃSu

)2
 .

To this point, it is already clear that the optimal initial value for the hedging strategy is V0(π) = M0 =
EQ[e−rST Y ]. It is also clear that the optimal (π(1)

t )t⩾0 is determined through the minimization of

EQ

(∫ T

0
(π(1)

u − yu)dÃSu

)2
 .

Moreover,

EQ

(∫ T

0
(π(1)

u − yu)dÃSu

)2
 = EQ

[[
(π(1) − y) · (Ã ◦ S), (π(1) − y) · (Ã ◦ S)

]
T

]

= EQ

[∫ T

0

(
π

(1)
t − yt

)2
d
[
Ã ◦ S, Ã ◦ S

]
t

] (72)

where ((π(1) − y) · (Ã ◦ S))t denotes the stochastic integral
∫ t

0 (π(1)
u − yu)dÃSu

. The first and second
equalities in Equation (72) respectively follow from Corollary 3 and Theorem 29 in Protter (2005), since(∫ t

0 (π(1)
u − yu)dÃSu

)
t⩾0

is a martingale. Quadratic variations being increasing processes, the quantity at

Equation (72) is minimized when π
(1)
t = yt for all t ⩾ 0. The result follows by combining our findings with

Equation (66).

Unfortunately, Proposition 0.15 does not give an explicit way to compute the optimal strategy π⋆. The reason
is that the Kunita-Watanabe decomposition theorem does not give an explicit formula for the predictable
process (yt)t⩾0 but only asserts its existence ans uniqueness. However, for any square-integrable contingent
claim whose payoff depend only on the terminal value ÃST

of the stock, one can use Ito’s lemma to compute
explicitly the solution of the quadratic hedging problem. The remainder of this section is thus dedicated the
explicit quadratic hedging portfolio when Y = f(AST

). By the Markov property, there exists a function g
such that the (FA◦S

t )t⩾0-martingale (Yt)t⩾0 = (EQ[e−rST f(AST
)|FA◦S

t ])t⩾0 satisfies

EQ[e−rST f(AST
)|FA◦S

t ] = g(t, ÃSt
, λSt

, St, USt
), (73)
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or
g(t, y1, y2, v, u) = E[e−rST f(AST

)|(ÃSt , λSt , St, USt) = (y1, y2, v, u)]. (74)

We now show that the argument t is actually irrelevant in the function g. The intuition behind this result
is that in the time-changed setting, the relevant time is given by the last observed value of (USt)t⩾0, ruling
out the original time scale (t)t⩾0. To prove this, we rely on two intermediary results.

Lemma 0.12. For all t ⩾ 0, it holds that SUt = t a.s.. Moreover S ◦ U = idR+ a.s., that is the processes
((S ◦ U)t)t⩾0 and (t)t⩾0 are indistinguishable.

Proof. The first part of the statement follows readily from

SUt(ω)(ω) = inf{τ > 0 : Uτ ⩾ Ut(ω)}

and the fact that the paths of (Ut)t⩾0 are strictly increasing a.s.. The second part of the statement is a
consequence of the càdlàg paths of ((S ◦ U)t)t⩾0, combined with the first statement.

Lemma 0.13. For each u ⩾ s ⩾ 0, we have

{Ss = v} ∩ {USs = u} = {Su = v} ∩ {USs = u}. (75)

As a consequence,
{Ss = v} ∩ {USs = u} = {Su = v} ∩ {USs = u} ∩ {USu = u}. (76)

Proof. Let ω be a member of the set at the left-hand side of Equation (75). Since Uv(ω) = u, it is clear that

Su(ω) := inf{τ > 0 : Uτ (ω) ⩾ u} ⩽ v.

Assume by contradiction that inf{τ > 0 : Uτ (ω) ⩾ u} < v. Then there exists an ε > 0 such that Uv−ε(ω) ⩾ u.
Hence, as u ⩾ s, this leads to v − ε ⩾ Ss(ω) = v, which is a contradiction. We conclude that Su(ω) = v.

Conversely, let ω be a member of the set at the right-hand side of Equation (75). The equality USs(ω)(ω) = u
implies that

Su(ω) = (S ◦ U ◦ S)s(ω) = v.

Moreover, Lemma 0.12 says that (S ◦ U ◦ S)s(ω) = Ss(ω) a.s., which proves that Ss(ω) = v.

That the set at the left-hand side of Equation (76) contains the set at the right-hand side is an obvious
consequence of Equation (75) that we have just established. Let ω ∈ {Ss = v} ∩ {USs = u}. By Equation
(75), Ss(ω) = Su(ω) = v, so that USu(ω)(ω) = Uv(ω) = u.

We are now able to prove the irrelevancy of the t argument in the function g of Equation (74).

Proposition 0.16. Let g be the function of Equation (74). Then for any t ∈ [0, T ], u ⩾ t, v ⩾ 0, we have

g(t, y1, y2, v, u) = g(u ∧ T, y1, y2, v, u)

so that g does not depend on t.

Proof. By Lemma 0.13,

g(t, y1, y2, v, u) = EQ[e−rST f(AST
)|(ÃSt

, λSt
, St, USt

) = (y1, y2, v, u)]
= EQ

[
e−rST f(AST

)|(ÃSu , λSu , Su, USs , USu) = (y1, y2, v, u, u)
]
.

If u ⩽ T , the Markov property of (St, USt
)t⩾0 implies that

EQ
[
e−rST f(AST

)|(ÃSu
, λSu

, Su, USs
, USu

) = (y1, y2, v, u, u)
]

= EQ
[
e−rST f(AST

)|(ÃSu
, λSu

, Su, USu
) = (y1, y2, v, u)

]
= g(u, y1, y2, v, u)
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whereas if u > T , one has

EQ
[
e−rST f(AST

)|(ASu , λSu , Su, USs , USu) = (y1, y2, v, u, u)
]

= e−rST f(AST
)

= g(T, y1, y2, v, u).

Indeed, in that case, since USs = USu = u and s ⩽ T < u, we have v = Ss ⩽ ST ⩽ Su = v.

The previous result motivates that in the following, the function g will be defined as

g(y1, y2, v, u) = EQ[e−rST f(AST
)|(ÃSu

, λSu
, Su, USu

) = (y1, y2, v, u)].

Assuming that g is sufficiently regular, we apply Ito’s lemma for semimartingales on the process
(g(ÃSt

, λSt
, St, USt

))t⩾0. To do so, note that all the processes that are involved are indeed semimartingales.
As a matter of fact, since (Ãt)t⩾0 and (λt)t⩾0 are semimartingales, Theorem 10.16 in J. Jacod (1979)
implies that their time-changed counterparts are also semimartingales. Moreover, since (St)t⩾0 and (USt)t⩾0
have finite variation (because they are nondecreasing) and are càdlàg, Theorem 26 in the second chapter
of Protter (2005) entails that they are quadratic pure jump semimartingales. In order to use Ito’s lemma,
we need to determine the quadratic (co)variations of (or between) the processes that are involved in the
function g. We begin with the proof that the quadratic covariation between (Ut)t⩾0 and (At)t⩾0 or (λt)t⩾0
is zero. The proof consists in showing that these processes never jump together.

Proposition 0.17. The quadratic covariation processes ([A,U ]t)t⩾0 and ([λ,U ]t)t⩾0 are indistinguishable
from the null process.

Proof. We give the proof for ([A,U ]t)t⩾0 only, as the case of ([λ,U ]t)t⩾0 is essentially the same.

The proof rely on the assumption regarding the structure of the probability space (Ω,F ,P) explained in the
introduction of the model. Since (Ut)t⩾0 is a quadratic pure jump semimartingale6, it holds that

[A,U ]t =
∑

0<s⩽t

∆As∆Us.

Let us define J n
t (ω) = {s ∈ (0, t] : ∆Us(ω) > n−1} and Jt(ω) =

⋃
n⩾1 J n

t (ω) = {s ∈ (0, t] : ∆Us(ω) > 0}.
Since (Ut)t⩾0 is almost surely strictly increasing and Ut(ω) < +∞ for almost all ω, the set J n

t (ω) is almost
surely finite for all n ⩾ 0 and t > 0 (which also implies that the set of jumps Jt(ω) is countable, as
it is a countable union of finite sets). Similarly, we define J̃ n

t (ω2) = {s ∈ (0, t] : ∆U (2)
s (ω2) > n−1} and

J̃t(ω2) =
⋃

n⩾1 J̃ n
t (ω2). Note that for all n, J̃ n

t (ω2) = J n
t (ω1, ω2). From the monotone convergence theorem

6Again, this process is càdlàg and since it is strictly increasing, it has finite variation. Theorem 26 in the second chapter of
Protter (2005) therefore implies that it is a quadratic pure jump semimartingale.
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and Tonelli’s theorem, it follows that

E[|[A,U ]t|] ⩽ E

 ∑
0<s⩽t

|∆As|∆Us


=
∫

Ω

∑
s∈Jt(ω)

|∆As(ω)|∆Us(ω)P(dω)

= lim
n→+∞

∫
Ω

∑
s∈J n

t (ω)

|∆As(ω)|∆Us(ω)P(dω)

= lim
n→+∞

∫
Ω2

∫
Ω1

∑
s∈J n

t (ω1,ω2)

|∆As(ω1, ω2)|∆Us(ω1, ω2)P(1)(dω1)P(2)(dω2)

= lim
n→+∞

∫
Ω2

∫
Ω1

∑
s∈J̃ n

t (ω2)

|∆A(1)
s (ω1)|∆U (2)

s (ω2)P(1)(dω1)P(2)(dω2)

= lim
n→+∞

∫
Ω2

∑
s∈J̃ n

t (ω2)

∆U (2)
s (ω2)

(∫
Ω1

|∆A(1)
s (ω1)|P(1)(dω1)

)
P(2)(dω2)

= lim
n→+∞

∫
Ω2

∑
s∈J̃ n

t (ω2)

∆U (2)
s (ω2)[ψ(1, 0) − 1]E[As−]E[∆Ns]P(2)(dω2)

= 0,

where the last equality is a consequence of ∆Ns = 0 P-a.s., for all s ⩾ 0. We conclude that for all t ⩾ 0,
[A,U ]t = 0 a.s., that is ([A,U ]t)t⩾0 and the null process are modifications. The conclusion then follows
from the fact that ([A,U ]t)t⩾0 is a càdlàg process (which is a consequence of Theorem 22 in Protter (2005),
combined with the polarization identity for quadratic variations).

Corollary 0.5. The quadratic covariation process ([A ◦ S,U ◦ S]t)t⩾0 and ([λ ◦ S,U ◦ S]t)t⩾0 are indistin-
guishable from the null process.

Corollary 0.6. The processes (|∆(A◦S)t∆(U ◦S)t|)t⩾0 and (|∆(λ◦S)t∆(U ◦S)t|)t⩾0 are indistinguishable
from the null process.

Proof. This follows from the proof of Proposition 0.17. It is shown that the process (
∑

0<s⩽t |∆As|∆Us)t⩾0
is indistinguishable from the zero process. The result then follows from the inequalities

0 ⩽ |∆(A ◦ S)t∆(U ◦ S)t| ⩽
∑

0<s⩽St

|∆As|∆Us

and
0 ⩽ |∆(λ ◦ S)t∆(U ◦ S)t| ⩽

∑
0<s⩽St

|∆λs|∆Us.

Proposition 0.18. For any semimartingale (Xt)t⩾0, the quadratic covariation process ([X,S]t)t⩾0 is indis-
tinguishable from the null process.

Proof. The quadratic covariation processes being càdlàg, it is enough to show that they are modifications
of the null process. As observed above, the process (St)t⩾0 is a quadratic pure jump semimartingale. As a
consequence, Theorem 28 of Protter (2005) (Chapter 2) yields

[X,S]t = X0S0 +
∑

0<s⩽t

∆Xs∆Ss,

which is 0 a.s., since (St)t⩾0 is continuous and S0 = 0.

44



Proposition 0.19. Assume that the function g of Equation (73) is sufficiently regular. Then, we have that

g(ÃST
, λST

, ST , UST
) = g(Ã0, λ0, 0, 0) + σ

∫ T

0
ÃSt

∂g

∂y1
dWSt

+
∫ T

0

[
∂g

∂v
+ κ(θ − λSt)

∂g

∂y2
− ÃStE[eξ − 1]λSt

∂g

∂y1
+ σ2

2 Ã2
St

∂2g

∂y2
1

]
dSt

+
∫ T

0

∫
R
(g(ezÃSt− , λSt− + η|z|, St, USt

) − g(ÃSt− , λSt− , St, USt
))Ξ(dz)dNSt

+
∑

0<t⩽T

(g(ÃSt
, λSt

, St, USt
) − g(ÃSt

, λSt
, St, USt−)),

where Ξ is the random measure associated with the jump process (Jt)t⩾0.

Proof. An application of Ito’s lemma for semimartingales yields

g(t, ÃSt
, λSt

, St, USt
) − g(ÃS0 , λS0 , S0, US0)

=
∫ t

0

∂g

∂y1
(ÃSs− , λSs− , Ss−, USs−)ÃSs−

[
σdWSs + λSsE[eξ − 1]dSs

]
+
∫ t

0

∂g

∂y2
(ÃSs− , λSs− , Ss−, USs−)κ(θ − λSs)dSs

+
∫ t

0

∂g

∂v
(ÃSs− , λSs− , Ss−, USs−)dSs

+ σ2

2

∫ t

0

∂2g

∂y2
1

(ÃSs− , λSs− , Ss−, USs−)Ã2
Ss−

dSs

+
∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs− , λSs− , Ss−, US−)
]
.

(77)

The jump part can be decomposed as follows∑
0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs− , λSs− , Ss−, USs−)
]

=
∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − lim
u↑s

g(ÃSu
, λSu

, Su, USu
)
]

1{∆(U◦S)s=0}∩{∆(Ã◦S)s>0}

+
∑

0<s⩽t

[
g(ÃSs , λSs , Ss, USs) − lim

u↑s
g(ÃSu , λSu , Su, USu)

]
1{∆(U◦S)s>0}∩{∆(Ã◦S)s=0}

+
∑

0<s⩽t

[
g(ÃSs , λSs , Ss, USs) − lim

u↑s
g(ÃSu , λSu , Su, USu)

]
1{∆(U◦S)s>0}∩{∆(Ã◦S)s>0}

and Corollary 0.6 implies that the last term is indistinguishable from the zero process. The continuity of g
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is then used to obtain∑
0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs− , λSs− , Ss−, USs−)
]

=
∑

0<s⩽t

[
g(ÃSs , λSs , Ss, USs) − lim

u↑s
g(ÃSu , λSu , Su, USu)

]
1{∆(U◦S)s=0}∩{∆(Ã◦S)s>0}

+
∑

0<s⩽t

[
g(ÃSs , λSs , Ss, USs) − lim

u↑s
g(ÃSu , λSu , Su, USu)

]
1{∆(U◦S)s>0}∩{∆(Ã◦S)s=0}

=
∑

0<s⩽t

[
g(ÃSs , λSs , Ss, USs) − g(lim

u↑s
(ÃSu , λSu , Su, USu))

]
1{∆(U◦S)s=0}∩{∆(Ã◦S)s>0}

+
∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(lim
u↑s

(ÃSu
, λSu

, Su, USu
))
]

1{∆(U◦S)s>0}∩{∆(Ã◦S)s=0}

=
∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs− , λSs− , Ss, USs
)
]

1{∆(U◦S)s=0}∩{∆(Ã◦S)s>0}

+
∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs
, λSs

, Ss, USs−)
]

1{∆(U◦S)s>0}∩{∆(Ã◦S)s=0}.

The result is finally obtained by rearranging the terms in Equation (77) and rewriting the first jumps term
with the help of the random measure Ξ, which gives∑

0<s⩽t

[
g(ÃSs

, λSs
, Ss, USs

) − g(ÃSs− , λSs− , Ss, USs
)
]

1{∆(U◦S)s=0}∩{∆(Ã◦S)s>0}

=
∫ T

0

∫
R
(g(ezÃSt− , λSt− + η|z|, St, USt

) − g(ÃSt− , λSt− , St, USt
))Ξ(dz)dNSt

and concludes the proof.

Using Proposition 0.19, we can derive the optimal hedging strategy π⋆ of Equation (67) when YT = f(AST
).

This strategy is given in the next proposition.

Proposition 0.20. Assume the the function g of Equation (73) is sufficiently smooth. Then if Y = f(AST
)

is square integrable, the hedging problem (67) admits the solution π⋆ = (π(0⋆)
t , π

(1⋆)
t )t⩾0, where

π(1⋆)
u =
σ2ÃSu−

∂g
∂y1

+ λSu−

∫
R(g(ezÃSu− , λSu− + η|z|, Su, USu

) − g(ÃSu− , λSu− , Su, USu
)(ez − 1)ν(dz)

ÃSu−

[
σ2 + λSu−

∫
R(ez − 1)2ν(dz)

]
and

π(0⋆)
u = EQ[e−rST f(AST

)] − π
(1⋆)
0 ÃS0 .

Proof. Recall that the function g and the FA◦S-martingale (Yt)t⩾0 = (EQ[e−rST f(AST
)|FA◦S

t ])t⩾0 satisfy

EQ[e−rST f(AST
)|FA◦S

t ] = g(ÃSt
, λSt

, St, USt
). (78)

For any self-financing portfolio π = (π(0)
t , π

(1)
t )t∈[0,T ], we have the following decomposition of the quadratic
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hedging error

EQ

(YT − V0(π) −
∫ T

0
π

(1)
t dÃSt

)2
 = EQ

(YT − Y0 + (Y0 − V0(π)) −
∫ T

0
π

(1)
t dÃSt

)2


= EQ

(Y0 − V0(π))2 +
(
YT − Y0 −

∫ T

0
π

(1)
t dÃSt

)2

+ 2(Y0 − V0(π))
(
YT − Y0 −

∫ T

0
π

(1)
t dÃSt

)
= (Y0 − V0(π))2 + EQ

(YT − Y0 −
∫ T

0
π

(1)
t dÃSt

)2
 ,

where the last equality comes from
EQ[YT − Y0] = Y0 − Y0 = 0

and

EQ

[∫ T

0
π

(1)
t dÃSt

]
= 0,

as (Yt)t⩾0 and (ÃSt
)t⩾0 are FA◦S-martingales. It is then clear that the optimal initial amount is V0(π⋆) =

Y0 = EQ[e−rST f(AST
)]. Next, Proposition 0.19 implies that

YT − Y0 −
∫ T

0
π

(1)
t dÃSt

= σ

∫ T

0
ÃSt

(
∂g

∂y1
− π

(1)
t

)
dWSt

+
∫ T

0

[
∂g

∂v
+ κ(θ − λSt)

∂g

∂y2
− ÃStEQ[eξ − 1]λSt

(
∂g

∂y1
− π

(1)
t

)
+ σ2

2 Ã2
St

∂2g

∂y2
1

]
dSt

+
∫ T

0

∫
R

(
g(ezÃSt− , λSt− + η|z|, St, USt

) − g(ÃSt− , λSt− , St, USt
) − (ez − 1)ÃSt−π

(1)
t

)
Ξ(dz)dNSt

+
∑

0<t⩽T

(g(ÃSt
, λSt

, St, USt
) − g(ÃSt

, λSt
, St, USt−))

In order to shorten the notations, we define

H
(1)
t := σÃSt

(
∂g

∂y1
(ÃSt

, λSt
, St, USt

) − π
(1)
t

)
,

H
(2)
t := ∂g

∂v
(ÃSt

, λSt
, St, USt

) + κ(θ − λSt
) ∂g
∂y2

(ÃSt
, λSt

, St, USt
)

− ÃSt
EQ[eξ − 1]λSt

(
∂g

∂y1
(ÃSt , λSt , St, USt) − π

(1)
t

)
+ σ2

2 Ã2
St

∂2g

∂y2
1

(ÃSt , λSt , St, USt),

X
(3)
t :=

∫ t

0

∫
R

(
g(ezÃSu− , λSu− + η|z|, Su, USu) − g(ÃSu− , λSu− , Su, USu)

− (ez − 1)ÃSu−π
(1)
u

)
Ξ(dz)dNSu

and
X

(4)
t :=

∑
0<u⩽t

(g(ÃSu
, λSu

, Su, USu
) − g(ÃSu

, λSu
, Su, USu−)).

Moreover we denote
X

(1)
t :=

∫ t

0
H

(1)
u−dWSu

X
(2)
t :=

∫ t

0
H

(2)
u−dSu
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and (Ht)t∈[0,T ] := (Yt − Y0 −
∫ t

0 π
(1)
u dÃSu

)t⩾0, which is a martingale. Using the notations we introduced, we
find

HT = YT − Y0 −
∫ T

0
π

(1)
t dÃSt

=
∫ T

0
H

(1)
t− dWSt +

∫ T

0
H

(2)
t− dSt +X

(3)
T +X

(4)
T

=
4∑

k=1
X

(k)
T .

(79)

Since (Ht)t∈[0,T ] is a martingale, we have

EQ

(YT − Y0 −
∫ T

0
π

(1)
t dÃSt

)2
 = EQ[H2

T ] = EQ[[H,H]T ],

where the second equality follows from Corollary 3 in Protter (2005) (Chapter 2). Combining Equation (79)
and the bilinearity of quadratic covariations, it follows that

[H,H]t =
4∑

k=1

4∑
j=1

[X(k), X(j)]t.

Note that the process (X(k)
t )t∈[0,T ] is continuous when k ∈ {1, 2} and quadratic pure jump when k ̸= 1.

Indeed, Theorem 29 in Protter (2005) (Chapter 2) implies that

[X(2), X(2)]t =
∫ t

0

(
H

(2)
u−

)2
d[S, S]u

which is indistinguishable from the null process, as implied by Proposition 0.18. It follows that if k ̸= 1 and
j ∈ {1, 2, 3, 4} then

[X(k), X(j)]t = [X(j), X(k)]t =
∑

0<u⩽t

∆X(k)
u ∆X(j)

u .

Since (X(k)
t )t∈[0,T ] is continuous for k ∈ {1, 2}, we infer that ([X(k), X(j)]t)t∈[0,T ] is indistinguishable from

the null process whenever k ∈ {1, 2} and j ̸= 1. In addition, Theorem 29 in the second chapter of Protter
(2005) also entails that

[X(1), X(1)]t =
∫ t

0

(
H

(1)
u−

)2
d[W ◦ S,W ◦ S]u =

∫ t

0

(
H

(1)
u−

)2
dSu.

Next we have

[X(4), X(4)]t =
∫ t

0

∫
R

(
g(ezÃSu− , λSu− + η|z|, Su, USu

) − g(ÃSu− , λSu− , Su, USu
)

− (ez − 1)ÃSu−π
(1)
u

)2
χ(dz,dSu),

[X(4), X(4)]t =
∑

0<u⩽t

(g(ÃSu , λSu , Su, USu) − g(ÃSu , λSu , Su, USu−))2

and
[X(3), X(4)]t = [X(4), X(3)]t = 0,

which follows from Corollary 0.6. As a consequence,
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[H,H]T =
∫ t

0

(
H

(2)
u−

)2
dSu +

∑
0<u⩽t

(g(ÃSu , λSu , Su, USu) − g(ÃSu , λSu , Su, USu−))2

+
∫ t

0

∫
R

(
g(ezÃSu− , λSu− + η|z|, Su, USu) − g(ÃSu− , λSu− , Su, USu)

− (ez − 1)ÃSu−π
(1)
u

)2
χ(dz,dSu).

and thus the strategy (π(1)
t )t∈[0,T ] will be chosen so as to minimize the quantity

EQ[H2
T ] = EQ

[∫ T

0

(
σÃSu−

(
∂g

∂y1
(ÃSu− , λSu− , Su−, USu−) − ϕu

))2
dSu

]

+ EQ

[∫ T

0

∫
R

(
g(ezÃSu− , λSu− + η|z|, Su, USu) − g(ÃSu− , λSu− , Su, USu)

− (ez − 1)ÃSu−π
(1)
u

)2
ν(dz)λSu

dSu

]

+ EQ

 ∑
0<u⩽T

(g(ÃSu
, λSu

, Su, USu
) − g(ÃSu

, λSu
, Su, USu−))2

 .
Since the third term does not depend on π

(1)
u and (St)t⩾0 is nondecreasing (thus dSu ⩾ 0), the problem

amounts to finding

π(1⋆)
u = arg min

π
(1)
u

{(
σÃSu−

(
∂g

∂y1
(ÃSu− , λSu− , Su−, USu−) − ϕu

))2

+
∫
R

(
g(ezÃSu− , λSu− + η|z|, Su, USu) − g(ÃSu− , λSu− , Su, USu)

− (ez − 1)ÃSu−π
(1)
u

)2
ν(dz)λSu

}
.

It is then easy to check the first and second derivatives with respect to π(1)
u to conclude that

π(1⋆)
u =

σ2ÃSu−
∂g

∂y1
+ λSu−

∫
R(g(ezÃSu− , λSu− + η|z|, Su, USu ) − g(ÃSu− , λSu− , Su, USu )(ez − 1)ν(dz)

ÃSu−

[
σ2 + λSu−

∫
R(ez − 1)2ν(dz)

] ,

as announced.

The optimal quadratic hedging strategy for a call option comes as a corollary.

Corollary 0.7. The call price process (Yt)t∈[0,T ] = (C̃(t, ÃSt
, λSt

, St, USt
))t∈[0,T ] is a martingale that satis-

fies the following SDE

C̃(ÃST
, λST

, ST , UST
) = C̃(Ã0, λ0, 0, 0) + σ

∫ T

0
ÃSt

∂C̃

∂y1
dWSt

+
∫ T

0

[
∂C̃

∂v
+ κ(θ − λSt)

∂C̃

∂y2
− ÃStEQ[eξ − 1]λSt

∂C̃

∂y1
+ σ2

2 Ã2
St

∂2C̃

∂y2
1

]
dSt

+
∫ T

0

∫
R
(C̃(ezÃSt− , λSt− + η|z|, St, USt

) − C̃(ÃSt− , λSt− , St, USt
))Ξ(dz)dNSt

+
∑

0<t⩽T

(C̃(ÃSt
, λSt

, St, USt
) − C̃(ÃSt

, λSt
, St, USt−)).
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Moreover, in the case of a call option, the hedging problem (67) admits the solution π⋆ = (π(0⋆)
t , π

(1⋆)
t )t⩾0,

where

π(1⋆)
u =

σ2ÃSu−
∂C̃
∂y1

+ λSu−

∫
R(C̃(ezÃSu− , λSu− + η|z|, Su, USu

) − C̃(ÃSu− , λSu− , Su, USu
)(ez − 1)ν(dz)

ÃSu−

[
σ2 + λSu−

∫
R(ez − 1)2ν(dz)

]
and

π(0⋆)
u = EQ[e−rST (AST

−K)+] − π
(1⋆)
0 ÃS0 .

We close this section with a theoretical results about stopping-times.

Lemma 0.14. For any a.s. finite (FU
St

)-stopping-time τ , the random variables USτ
and USτ− are (FU

St
)t⩾0-

stopping times.

Proof. To prove that USτ
is a (FU

St
)t⩾0-stopping time, we need to show that for any t ⩾ 0, {USτ

⩽ t} ∈ FU
St

.
We have that

{USτ ⩽ t} = ({USτ ⩽ t} ∩ {τ ⩽ t}) ∪ ({USτ ⩽ t} ∩ {τ > t})︸ ︷︷ ︸
=∅

(80)

where the emptiness of the second set follows from the inequality USτ ⩾ τ . The right-continuous paths of
(USt)t⩾0 imply that it is a progressively measurable process, from what it follows that USτ is FU

Sτ
-measurable.

Note that the two assertions of the previous sentence are respectively Propositions 4.8 and 4.9 in the chapter
1 of Revuz and Yor (2004). The FU

Sτ
-measurability of USτ

precisely means that {USτ
∈ B} ∩ {τ ⩽ t} ∈ FU

St

for all t ⩾ 0 and any Borel set B ∈ BR. It is then obvious that Equation (80) implies that {USτ
⩽ t} ∈ FU

St
.

We conclude that USτ
is a (FU

St
)t⩾0-stopping time.

Let us prove now that USτ− is a (FU
St

)t⩾0-stopping time. One has

{USτ− ⩽ t} =
(
{USτ− ⩽ t} ∩ {τ = 0}

)
∪
(
{USτ− ⩽ t} ∩ {τ > 0}

)
= {τ = 0} ∪

(
{USτ− ⩽ t} ∩ {τ > 0}

)
.

As {τ = 0} is in FU
St

for any t ⩾ 0, it remains to show that it is also the case for {USτ− ⩽ t} ∩ {τ > 0}. To
this end, we will establish that for any k ∈ N,

{USτ− ⩽ t} ∩ {τ > 0} =
⋂
n∈N
n⩾k

⋃
q∈Q∩(0,t]

{
q < τ ⩽ q + 1

n

}
∩ {USq ⩽ t}. (81)

Let ω be a member of the set at the left-hand side of Equation (81) and fix n ∈ N. Let q ∈ ([τ(ω) − 1
2n ] ∨

0, τ(ω)) ∩ Q. Then ω ∈
{
q < τ ⩽ q + 1

n

}
. Moreover, q < τ(ω) implies that USq

(ω) ⩽ USτ−(ω) ⩽ t and thus
ω ∈ {USq

⩽ t}. Finally, note that USq
(ω) ⩾ q entails the inequality q ⩽ t. This proves the ω is also a

member of the second set.

Let ω be a member of the set at the right-hand side of Equation (81). Then for each n ⩾ k, we have a
qn ∈ (0, t] ∩ Q that satisfies qn < τ(ω) ⩽ qn + 1

n and USqn
(ω) ⩽ t. Up to a subsequence, we obtain that

qn ↑ τ(ω). Therefore,
lim

n→+∞
USqn

(ω) = USτ−(ω) ⩽ t.

The second inclusion follows.

It remains to observe that Equation (81) establishes that {USτ− ⩽ t} ∩ {τ > 0} ∈ FU
S

t+ 1
k

for any k ∈ N. The

FU
St

-measurability of this set is then a consequence of the right-continuity of (FU
St

)t⩾0 (see Lemma 0.11).
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Table 1: Parameters used for the computations.

θ ρ+ ρ− p η κ σ λ0 r S0

6.44 30.47 -33.9 0.37 337.08 14.71 0.12 5.62 0.01 100

0.7 Numerical results

This section presents the results of our numerical experiments. These results consist of call prices and
associated implied volatilities computed with the help of the method described in Section 0.5. The values of
the parameters are from Moraux and Hainaut (2018) and are reported in Table 1.

Figure 2 displays the prices of call option for various strikes, fractional orders α and maturities from one
to six months. Note that the case α = 1 corresponds to the non-fractional case. All the call prices used in
this section are reported in Tables 2 and 3. We observe that a lower fractional order leads to higher call
prices for the considered maturities. This observation is reflected on Figure 3, which presents the implied
volatilities computed on with those call prices. As a matter of fact, the implied volatilities are always higher
for smaller fractional orders. Figure 4 presents the corresponding implied volatility surfaces. From these last
two figures, we notice that the fractional model allows to introduce a special feature: the implied volatilities
are especially high for the lowest maturities. This seems to indicate that such models correspond to a
situation in which most of the movements of the price of the stock occur very shortly. A fractional model
thus seems appropriate for use in a period of turbulent financial markets.
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Figure 2: Comparison of the call option prices for various fractional orders α and for the non-fractional case
(α = 1). M corresponds to the maturity expressed in months.
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Figure 3: Comparison of the implied volatility smiles for various fractional orders α and for the non-fractional
case (α = 1). M corresponds to the maturity expressed in months.

Table 2: Call prices for strikes from 90 to 110.

α = 0.7 α = 0.8

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

90 10.65 11.25 11.76 12.22 12.63 13.00 10.42 10.92 11.42 11.88 12.31 12.71
91 9.75 10.40 10.95 11.43 11.86 12.25 9.49 10.05 10.58 11.07 11.53 11.95
92 8.86 9.57 10.15 10.66 11.11 11.51 8.57 9.20 9.77 10.29 10.77 11.21
93 8.00 8.76 9.38 9.91 10.38 10.80 7.67 8.37 8.99 9.54 10.04 10.50
94 7.16 7.98 8.64 9.19 9.68 10.12 6.80 7.57 8.23 8.81 9.33 9.81

95 6.35 7.23 7.92 8.50 9.00 9.45 5.97 6.80 7.50 8.11 8.65 9.15
96 5.58 6.52 7.24 7.84 8.36 8.82 5.17 6.07 6.80 7.44 8.00 8.51
97 4.86 5.84 6.59 7.21 7.74 8.21 4.42 5.38 6.15 6.80 7.38 7.90
98 4.19 5.22 5.98 6.61 7.16 7.64 3.73 4.74 5.53 6.21 6.80 7.33
99 3.58 4.64 5.42 6.06 6.61 7.10 3.11 4.15 4.96 5.65 6.25 6.79

100 3.04 4.11 4.90 5.55 6.10 6.59 2.56 3.62 4.44 5.13 5.74 6.28
101 2.58 3.64 4.43 5.07 5.63 6.12 2.10 3.15 3.97 4.66 5.27 5.81
102 2.18 3.22 4.00 4.64 5.20 5.69 1.72 2.74 3.55 4.23 4.83 5.37
103 1.85 2.86 3.62 4.25 4.80 5.28 1.40 2.38 3.17 3.84 4.43 4.97
104 1.57 2.53 3.28 3.90 4.43 4.91 1.14 2.07 2.83 3.48 4.07 4.59

105 1.33 2.25 2.97 3.57 4.10 4.57 0.94 1.80 2.53 3.16 3.73 4.25
106 1.14 2.00 2.69 3.28 3.79 4.25 0.77 1.57 2.26 2.87 3.43 3.93
107 0.97 1.78 2.44 3.01 3.51 3.96 0.64 1.36 2.02 2.61 3.14 3.64
108 0.83 1.59 2.22 2.76 3.25 3.69 0.53 1.19 1.81 2.37 2.89 3.37
109 0.72 1.42 2.02 2.54 3.01 3.44 0.44 1.04 1.62 2.16 2.65 3.12

110 0.62 1.27 1.83 2.34 2.79 3.21 0.37 0.91 1.45 1.96 2.44 2.89
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Figure 4: Comparison of the implied volatilities surfaces for various fractional orders α and for the non-
fractional case. The M axis corresponds to the maturity expressed in months and the K axis corresponds
to the strikes.
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Table 3: Call prices for strikes from 90 to 110.

α = 0.9 α = 1

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

90 10.26 10.66 11.11 11.56 11.99 12.41 10.16 10.45 10.83 11.25 11.69 12.12
91 9.30 9.76 10.25 10.74 11.21 11.65 9.19 9.53 9.96 10.42 10.89 11.35
92 8.36 8.89 9.43 9.95 10.44 10.91 8.22 8.63 9.11 9.62 10.11 10.60
93 7.44 8.03 8.62 9.18 9.70 10.19 7.28 7.75 8.29 8.84 9.37 9.88
94 6.54 7.21 7.85 8.44 8.99 9.50 6.35 6.91 7.50 8.09 8.65 9.19

95 5.67 6.42 7.11 7.73 8.31 8.84 5.44 6.10 6.75 7.37 7.97 8.52
96 4.84 5.67 6.41 7.06 7.66 8.20 4.58 5.33 6.04 6.70 7.31 7.89
97 4.06 4.97 5.74 6.42 7.04 7.60 3.78 4.61 5.37 6.06 6.69 7.29
98 3.35 4.32 5.12 5.82 6.45 7.02 3.05 3.95 4.74 5.46 6.11 6.72
99 2.72 3.73 4.55 5.26 5.90 6.48 2.40 3.36 4.17 4.90 5.56 6.18

100 2.17 3.20 4.03 4.75 5.39 5.97 1.84 2.82 3.64 4.38 5.05 5.67
101 1.71 2.73 3.55 4.27 4.92 5.50 1.39 2.35 3.17 3.90 4.57 5.19
102 1.34 2.32 3.13 3.84 4.48 5.06 1.03 1.94 2.74 3.47 4.13 4.75
103 1.04 1.96 2.75 3.45 4.08 4.65 0.75 1.60 2.37 3.07 3.73 4.34
104 0.81 1.66 2.42 3.09 3.71 4.28 0.55 1.31 2.04 2.72 3.36 3.96

105 0.63 1.41 2.12 2.77 3.37 3.93 0.40 1.07 1.75 2.40 3.02 3.60
106 0.50 1.19 1.86 2.49 3.07 3.61 0.30 0.87 1.50 2.11 2.71 3.28
107 0.39 1.01 1.63 2.23 2.79 3.31 0.23 0.71 1.28 1.86 2.43 2.98
108 0.31 0.86 1.44 2.00 2.53 3.04 0.18 0.59 1.10 1.64 2.18 2.71
109 0.25 0.73 1.26 1.79 2.30 2.79 0.14 0.49 0.94 1.44 1.95 2.46

110 0.21 0.63 1.11 1.61 2.09 2.56 0.11 0.40 0.81 1.27 1.75 2.23

Conclusions

In this article, we proposed a model for small capitalization stocks that are characterized by illiquidity periods.
The motionless periods in their prices were modeled through the inverse of an α-stable subordinator. The
occurrence of clustered sudden moves in the prices were captured by the use of self-exciting Hawkes processes.
In a first section, we have showed that if we add some information about the path of the α-subordinator, its
inverse satisfy the Markov property. In the next sections, we have presented a class of risk neutral measures
for our model and described a numerical method to compute call option prices. Afterwards, we derived
quadratic hedging strategy for contingent claims, and in particular for call options. We concluded this paper
by giving the numerical results we obtained when computing call option prices with the method we proposed.
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