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Abstract

Conditional tail expectations are often used in risk measurement and capital allocation. Con-
ditional mean risk sharing appears to be e↵ective in collaborative insurance, to distribute
total losses among participants. This paper develops analytical results for risk allocation
among di↵erent, correlated units based on conditional tail expectations and conditional
mean risk sharing. Results available in the literature for independent risks are extended to
correlated ones, in a unified way. The approach is applied to mixture models with correlated
latent factors that are often used in insurance studies.

Keywords: Weighted distributions, size-biased transform, mixture models.



1 Introduction and motivation

The paper aims at contributing to the rich literature on risk allocation and risk sharing that
are both core topics in actuarial science. In the former case, actuaries often need to allocate
the available amount of capital across various entities, such as business lines, territories or
even individual products. Costs of holding capital can then be distributed among entities so
that it is fairly supported by policyholders, on the one hand, and the respective performances
of each entity can be assessed, on the other hand. There are many ways to allocate capital,
most of them being based on risk measures such as Conditional Tail Expectation (CTE)
considered in this paper.

Risk sharing is a related, though distinct problem. In that context, economic agents hand
their individual losses over to a pool and agree on some rule as to how the total pooled loss
has to be divided among them. In the present paper, we focus on the conditional mean risk
sharing, as defined by Denuit and Dhaene (2012). According to this rule, each participant
to an insurance pool contributes the conditional expectation of the loss brought to the pool,
given the total loss experienced by the entire pool.

In both cases, we wish to determine how to split the risk measure of the total risk, or
the total risk itself, among individual entities. Precisely, the contribution of this paper is
as follows. Representations for capital allocation based on CTE and conditional mean risk
sharing derived in the literature for independent risks are extended here to correlated ones.
To this end, we use a multivariate weighted distribution considered by Arratia et al. (2019)
in the context of size-biasing sums of random variables. Several examples are discussed,
including Liouville and infinitely divisible multivariate distributions. Mixture models where
correlation arises from latent variables are carefully studied because of their wide applicability
to insurance studies.

The remainder of this paper is organized as follows. Section 2 establishes the decompo-
sition of CTE among correlated business lines whereas Section 3 considers the conditional
mean risk sharing of correlated losses. As an application, Section 4 deals with multivariate
mixture models.

2 General CTE decomposition formulas

2.1 CTE and size-biasing

Consider an insurance loss modeled as a non-negative random variable X with distribution
function FX and expected value E[X] such that 0 < E[X] < 1. Several risk measures for X
are based on the function

t 7! E[X|X > t] =
1

P[X > t]

Z 1

t

xdFX(x)

where t is such that P[X > t] > 0. The Conditional Tail Expectation (CTE) is obtained when
t corresponds to some Value-at-Risk (or quantile) of X. Such risk measures are intimately
related to the size-biased transform, as shown next. Consider a (measurable) function g and
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write

E[Xg(X)] =

Z 1

0

xg(x)dFX(x)

= E[X]

Z 1

0

g(x)
xdFX(x)

E[X]

= E[X]E[g( eX)] (2.1)

where the non-negative random variable eX with distribution function

P[ eX  t] =
1

E[X]

Z t

0

xdFX(x),

is called the size-biased version of X. In some sense, eX is larger compared to X, so that eX
represents a worse loss than X. In order to see why this is true, it su�ces to notice that
eX is distributed as max{X,Z} where the random variable Z is independent of X and has
distribution function

P[Z  t] =
P[ eX  t]

P[X  t]
=

E[X|X  t]

E[X]
. (2.2)

Notice that the size-biased version of any constant c lefts it unchanged, that is, ec = c. This
shows that no unjustified loading is induced by the size-biased transform.

Now, inserting the function

g(x) = I[x > t] =

8
<

:

1 if x > t

0 otherwise
(2.3)

in identity (2.1), we see that the representation

E[X|X > t] = E[X]
P[ eX > t]

P[X > t]
(2.4)

is valid for any threshold t. The ratio P[ eX > t]/P[X > t] appearing in (2.4) exceeds unity
so that we recover the classical inequality E[X|X > t] � E[X] for all t from elementary
probability.

The size-biased transform can be traced back to the late 1960s in the statistical literature.
It is an example of weighted distribution. Initially developed in order to unify various
sampling distributions when the chance of being recorded by an observer varies, weighted
distributions are closely related to weighted risk measures and weighted capital allocation
rules. See Furman and Zitikis (2009). Among these weighted distributions, the size-biased,
or length-biased one corresponds to the identity weight function. It refers to the situation
where larger observations are more likely to be recorded. Hence, the available data are of
bigger size compared to the actual population values. Translated to an actuarial context,
this means that claim amounts are made larger before performing actuarial calculations,
which generates a safety loading. The size-biased transform has proven to be useful in the
study of risk measures after the pioneering work by Furman and Landsman (2005, 2008) and
Furman and Zitikis (2008a,b) in connection to (2.4).
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2.2 Independent losses

Consider n insurance losses modeled as non-negative, mutually independent random variables
X1, X2, . . . , Xn, each with 0 < E[Xi] < 1. Define the aggregate loss S as S =

Pn
i=1 Xi.

Clearly,

E[S|S > t] =
nX

i=1

E[Xi|S > t]

so that the total E[S|S > t] can be decomposed into the sum of individual contributions
E[Xi|S > t] that are useful in risk management to allocate the CTE across lines of business,
for instance (taking for t a quantile of S). It is known from Furman and Landsman (2005)
that the representation

E[Xi|S > t] = E[Xi]
P[S �Xi + eXi > t]

P[S > t]
(2.5)

holds true, where the size-biased version eXi ofXi is assumed to be independent ofX1, X2, . . . , Xn.
In words, the contribution E[Xi|S > t] of risk Xi to E[S|S > t] is equal to its expected value
E[Xi] increased by the ratio of the excess probabilities P[S � Xi + eXi > t] and P[S > t],
where

S �Xi + eXi =
X

j 6=i

Xj + eXi

is the sum of all risks Xj, except the ith one which is replaced with its size-biased version
eXi. Hence, S �Xi + eXi tends to be larger compared to S.

Identities (2.4)-(2.5) have been exploited in a number of papers (including those cited
in the preceding section) to derive many useful properties for risk measures, mainly for
continuous losses assumed to be mutually independent. In the next section, we extend these
results to general losses, possibly correlated.

2.3 Dependent losses

Let us now extend the representation (2.5) recalled in the preceding section to correlated
risks. To this end, consider a collection of n insurance losses, modeled as n non-negative,
possibly correlated random variables X1, X2, . . . , Xn. Hence, we consider the random vector,
or insurance portfolio X = (X1, . . . , Xn) with joint distribution function FX . As before,
define the aggregate loss S as S =

Pn
i=1 Xi.

For each i 2 {1, 2, . . . , n}, define the random vector Y [i] = (Y [i]
1 , . . . , Y [i]

n ) with joint
distribution function FY [i] given by

FY [i](y1, . . . , yn) =

Z y1

0

· · ·
Z yn

0

xidFX(x1, . . . , xn)

E[Xi]

=
E[Xi|X1  y1, . . . , Xn  yn]

E[Xi]
FX(y1, . . . , yn). (2.6)

The random vector Y [i] with distribution function (2.6) plays a central role in the extensions
of the results presented in the preceding section to correlated risks. Distributions (2.6)
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have been considered by Arratia et al. (2019) in relation to size-biasing sums of random
variables. See Section 2.4 below for details. The distribution function (2.6) is a multivariate
weighted version of the distribution function forX. Multivariate weighted distributions have
been reviewed by Navarro et al. (2006). The weight function w corresponding to (2.6) is
w(x1, . . . , xn) = xi/E[Xi] that has been considered in Jain and Nanda (1995).

We see from (2.6) that Y [i]
i is distributed as eXi, marginally. The marginal distribution

of Y [i]
j for j 6= i is given by

P[Y [i]
j  yj] =

Z yj

0

Z 1

0

xidF(Xi,Xj)(xi, xj)

E[Xi]

=
E
⇥
XiI[Xj  yj]

⇤

E[Xi]

= P[Xj  yj] +
Cov

⇥
Xi, I[Xj  yj]

⇤

E[Xi]
(2.7)

=
E[Xi|Xj  yj]

E[Xi]
P[Xj  yj], (2.8)

where I[·] is the indicator function, equal to 1 if the condition appearing between the brackets
is satisfied, and to 0 otherwise. Interestingly, some positive dependence is needed among the
components of X to ensure that the components of the random vector Y [i] are “larger”
compared to those of X. If Xi and Xj are negatively related then it can be expected that
Xi and I[Xj  yj] are positively correlated (since xj 7! I[xj  yj] is a decreasing function)

so that we see from (2.7) that the inequality P[Y [i]
j  yj] � P[Xj  yj] holds true. If this

is the case for all yj then Y [i]
j tends to be smaller compared to Xj, in the sense that Y [i]

j is
dominated by Xj in (first-order) stochastic dominance. This is for instance the case when
Xi is negatively expectation dependent on Xj, that is, when the inequality

E[Xi|Xj  yj] � E[Xi]

holds true for all yj. In words, this means that the knowledge that Xj is small, that is,
Xj falls below the threshold yj, makes Xi larger on average. We then see from (2.8) that

the inequality P[Y [i]
j  yj] � P[Xj  yj] is valid for all yj, so that Y [i]

j is smaller than Xj

in (first-order) stochastic dominance, as mentioned previously. Switching from X to Y [i] is
thus not necessarily a conservative strategy in this case. To prevent such a phenomenon to
occur, some positive dependence is needed among X1, X2, . . . , Xn.

Considering (2.6), in order to ensure that FX dominates FY [i] , so that Y [i] is larger
than X (in the sense of the lower orthant order, that is, the joint distribution function FX

dominates FY [i] everywhere), the inequality

E[Xi|X1  y1, . . . , Xn  yn]  E[Xi]

has to be valid for all y1, . . . , yn. This condition expresses some positive relationship between
the individual risks X1, . . . , Xn. It appears to be similar to the one imposed by Guo et al.
(2016); see also Denuit and Mesfioui (2017).
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We know from Proposition 6.1(v) in Navarro et al. (2006) that provided X possesses
positively associated components, Y [i] is larger thanX in multivariate stochastic dominance.
Notice that

dFY [i](y1, . . . , yn) =
yi

E[Xi]
dFX(y1, . . . , yn)

so that the ratio dFY [i]/dFX is non-decreasing. This corresponds to condition (1.8) in Cohen
and Sackrowitz (1995). Together with association, that condition is known to imply multi-
variate (first-order) stochastic dominance. This is formally stated in the next result, of which
we provide the reader with an elementary proof borrowed from Shaked and Shanthikumar
(2007, Theorem 6.B.8).

Property 2.1. Assume that the risks X1, . . . , Xn are associated random variables, that is,
the covariance Cov[g1(X), g2(X)] is non-negative for all non-decreasing functions g1 and g2.
Then, the random vector Y [i] with distribution function (2.6) is larger than X in the sense
of multivariate first-order stochastic dominance, that is, the inequality E[g(X)]  E[g(Y [i])]
holds true for every non-decreasing function g such that the expectations exist.

Proof. Considering a non-decreasing function g,

E[g(Y [i])] =

Z 1

0

· · ·
Z 1

0

g(y)dFY [i](y)

=

Z 1

0

· · ·
Z 1

0

g(y)
dFY [i](y)

dFX(y)
dFX(y)

�
Z 1

0

· · ·
Z 1

0

g(y)dFX(y)

Z 1

0

· · ·
Z 1

0

dFY [i](y)

dFX(y)
dFX(y)

= E[g(X)]

where the inequality comes from the covariance inequality defining association and the non-
decreasingness of the ratio dFY [i](y)/dFX(y). This ends the proof.

Property 2.1 considers risksX1, . . . , Xn that are associated random variables. Association
is a positive dependence concept reviewed in Section 7.2.3 of Denuit et al. (2005). It is known
to increase many risk measures compared to the independent case.

The next result gives a general representation formula for E[Xi|S > s] based on the
random vector Y [i]. As a corollary, we obtain the existing result for independent risks
recalled in Section 2.2.

Proposition 2.2. Consider insurance losses X1, . . . , Xn with joint distribution function FX

and expected values E[Xi] such that 0 < E[Xi] < 1. Let Y [i] = (Y [i]
1 , . . . , Y [i]

n ) be a random
vector with joint distribution function FY [i] given by (2.6). Then for any s � 0 and for any
i 2 {1, 2, . . . , n}, we have

E[Xi|S > s] = E [Xi]
P[Y [i]

1 + . . .+ Y [i]
n > s]

P[X1 + . . .+Xn > s]
.

5



Proof. Following the lines leading to (2.1), we obtain

E[Xig(S)] =

Z 1

0

· · ·
Z 1

0

xig(x1 + . . .+ xn)dFX(x1, . . . , xn)

= E[Xi]

Z 1

0

· · ·
Z 1

0

g(x1 + . . .+ xn)
xidFX(x1, . . . , xn)

E[Xi]

= E[Xi]E[g(Y
[i]
1 + . . .+ Y [i]

n )]. (2.9)

Now, let us apply (2.9) to the function g given by

g(x1, . . . , xn) = I

"
nX

j=1

xj > s

#

to obtain the identity

P
h
Y [i]
1 + . . .+ Y [i]

n > s
i
=

E
⇥
XiI [S > s]

⇤

E[Xi]
.

This ends the proof.

Corollary 2.3. Consider independent risks X1, X2, . . . , Xn. Let eX1, eX2, . . . , eXn be their cor-
responding size-biased versions, assumed to be independent and independent of X1, X2, . . . , Xn.
If X1, . . . , Xn are mutually independent then Y [i]

1 , . . . , Y [i]
n are also independent random vari-

ables. Furthermore, (2.8) shows that Y [i]
j is distributed as Xj for j 6= i, and Y [i]

i
d
= eXi, where

“
d
=” means “is distributed as”. The distributional equality

Y [i]
1 + . . .+ Y [i]

n
d
= S �Xi + eXi

thus holds true when X1, . . . , Xn are mutually independent and we recover (2.5) as a partic-
ular case.

2.4 Size-biased transform of a sum of dependent risks

Arratia et al. (2019, Section 2.4) studied the e↵ect of size-biasing on a sum of random
variables. Their result can also be obtained with the help of the CTE decomposition derived
in Proposition 2.2. This can be shown as follows. On the one hand, the identity appearing
in equation (2.4) allows us to write

E[S|S > t] = E[S]
P[eS > t]

P[S > t]

for any threshold t. On the other hand, Proposition 2.2 allows us to write

E[S|S > s] =
nX

i=1

E[Xi|S > s]

=
nX

i=1

E [Xi]
P[Y [i]

1 + . . .+ Y [i]
n > s]

P[X1 + . . .+Xn > s]
.
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Combining these identities, we get

P[eS > t] =
nX

i=1

E [Xi]

E[S]
P[Y [i]

1 + . . .+ Y [i]
n > t].

This shows that eS obeys a discrete mixture with mixing distribution assigning probability
E[Xi]
E[S] on index i. Precisely, define the random variable K valued in {1, 2, . . . , n}, independent
of X and of Y [1], . . . ,Y [n] such that P[K = k] = E[Xk]

E[S] for k 2 {1, 2, . . . , n}. Then,

eS d
=

nX

i=1

Y [K]
i =

8
>>>><

>>>>:

Y [1]
1 + . . .+ Y [1]

n with probability E[X1]
E[S]

Y [2]
1 + . . .+ Y [2]

n with probability E[X2]
E[S]

...

Y [n]
1 + . . .+ Y [n]

n with probability E[Xn]
E[S]

.

This shows that size-biasing a sum of correlated risks is equivalent to selecting at random
(according to the discrete distribution assigning probability E[Xk]

E[S] to index k) one element

among {Y [1], . . . ,Y [n]}. Thus, the elements Y [i] corresponding to risks Xi with larger ex-
pected values are more likely to be selected.

As a particular case, consider independent risks X1, . . . , Xn. Let eX1, . . . , eXn be their cor-
responding size-biased versions, assumed to be independent, and independent of X1, . . . , Xn.
Let the random variable K valued in {1, 2, . . . , n} be defined as above, and independent of

X1, . . . , Xn and of eX1, . . . , eXn. We then have eS d
= S �XK + eXK =

P
j 6=K Xj + eXK .

3 Conditional mean risk sharing

3.1 General representation formula

Consider the random vector, or insurance portfolio X = (X1, . . . , Xn) with joint distribution
function FX . The next result gives a general representation formula for E[Xi|S = s] in terms
of the random vectors Y [i].

Proposition 3.1. Consider insurance losses X1, . . . , Xn with joint distribution function FX

and expected values E[Xi] such that 0 < E[Xi] < 1. Let Y [i] = (Y [i]
1 , . . . , Y [i]

n ) be a random
vector with joint distribution function FY [i] given by (2.6). The following results hold:

(i) if X1, . . . , Xn are continuous random variables with joint probability density function
fX then for any s � 0,

E[Xi|S = s] = E [Xi]
f
Y

[i]
1 +...+Y

[i]
n
(s)

fX1+...+Xn(s)
.

(ii) if X1, . . . , Xn are valued in {0, 1, 2, . . .} then for any s 2 {0, 1, 2, . . .},

E[Xi|S = s] = E [Xi]
P[Y [i]

1 + . . .+ Y [i]
n = s]

P[X1 + . . .+Xn = s]
.
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(iii) if X1, . . . , Xn are zero-augmented random variables with positive probability masses at
the origin and probability density functions over (0,1) then E[Xi|S = 0] = 0 and for
any s > 0, the representation in (i) holds true.

Proof. Let us apply (2.9) to the function g given by

g(x1, . . . , xn) = I

"
nX

j=1

xj  s

#

to get the identity

P
h
Y [i]
1 + . . .+ Y [i]

n  s
i
=

E
⇥
XiI [S  s]

⇤

E[Xi]
, E

⇥
XiI [S  s]

⇤
= E[Xi]P

h
Y [i]
1 + . . .+ Y [i]

n  s
i
.

To establish the validity of statement (i), notice that we can also write

E
⇥
XiI[S  s]

⇤
=

Z s

0

E
⇥
Xi

��S = t
⇤
fS(t)dt.

Taking the derivative of these expressions with respect to s gives the identity stated in (i).
Turning to (ii), we can write

E
⇥
XiI [S = s]

⇤
= E

⇥
XiI [S  s]

⇤
� E

⇥
XiI [S  s� 1]

⇤

= E[Xi]P
h
Y [i]
1 + . . .+ Y [i]

n = s
i
,

as announced. This ends the proof.

It is worth to stress that the representation in Proposition 3.1(i) is related to Bartlett’s
formula for conditional expectations E[U |V = v] in terms of characteristic functions (Zabell,
1979). Essentially, the densities are replaced with their inverse transform to obtain Bartlett’s
formula.

When X1, . . . , Xn are mutually independent, we recover as a particular case the result
obtained by Denuit (2019, Proposition 2.3), as formally stated next.

Corollary 3.2. Consider independent risks X1, X2, . . . , Xn. Let eX1, eX2, . . . , eXn be their cor-
responding size-biased versions, assumed to be independent and independent of X1, X2, . . . , Xn.
If X1, . . . , Xn are mutually independent then Y [i]

1 , . . . , Y [i]
n are also independent random vari-

ables. Furthermore, Y [i]
j is distributed as Xj for j 6= i, while Y [i]

i
d
= eXi. The distributional

equality

Y [i]
1 + . . .+ Y [i]

n
d
= S �Xi + eXi

thus holds true when X1, . . . , Xn are mutually independent and

(i) if X1, X2, . . . , Xn are absolutely continous random variables with respective probability
density functions fX1 , fX2 , . . . , fXn, then for any s > 0

E[Xi|S = s] = E[Xi]
fS�Xi+ eXi

(s)

fS (s)
. (3.1)
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(ii) if X1, X2, . . . , Xn are valued in {0, 1, 2, . . .}, then for any s 2 {0, 1, 2, . . .}

E[Xi|S = s] = E[Xi]
P[S �Xi + eXi = s]

P[S = s]
. (3.2)

(iii) if X1, . . . , Xn are zero-augmented random variables with positive probability masses at
the origin and probability density functions over (0,1) then E[Xi|S = 0] = 0 and for
any s > 0, (3.1) holds true.

3.2 Linear case

3.2.1 Characterization

With the help of multivariate Laplace transforms, Furman et al. (2018) characterized the
case where the conditional expectations are linear in s, that is, the situation where the
identity E[Xi|S = s] = E[Xi]

E[S] s holds true. Considering Theorem 3.2 in that paper, denote as

X = Xi and Y =
P

j 6=i Xj. Let L(u, v) = E[exp(�uX � vY )] be the Laplace transform of
the random couple (X, Y ). Then,

E[Xi|S = s] =
E [Xi]

E[S]
s ,

d
duL(u, v)
d
dvL(u, v)

�����
(u,v)=(t,t)

=
E [Xi]

E
hP

j 6=i Xj

i for all t. (3.3)

This further constrains the distribution of the random vectors Y [i], as shown next. Consid-
ering Proposition 3.1(i), we see that under (3.3), we must have

E [Xi]

E[S]
s = E [Xi]

f
Y

[i]
1 +...+Y

[i]
n
(s)

fS(s)
) feS(s) = f

Y
[i]
1 +...+Y

[i]
n
(s). (3.4)

Thus, (3.3) implies that all sums Y [i]
1 + . . .+ Y [i]

n are identically distributed, as eS.

3.2.2 Inverted Dirichlet distributions

Assume that X obeys the Inverted Dirichlet(a1, . . . , an+1) distribution, for some positive
parameters a1, . . . , an+1, that is, X possesses the joint probability density function

fX (x1, . . . , xn) =
�
�Pn+1

i=1 ai
�

Qn+1
i=1 � (ai)

nY

i=1

xai�1
i

 
1 +

nX

i=1

xi

!�
Pn+1

i=1 ai

(3.5)

for positive x1, x2, . . . , xn. The random vector X admits the representation

X
d
=

1

Zn+1
(Z1, . . . , Zn)

where Z1, . . . , Zn, Zn+1 are independent random variables obeying Chi-Square distributions
with 2aj degrees of freedom, j 2 {1, . . . , n, n+ 1}.
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If an+1 > 1, we have E[Xi] =
ai

an+1�1 and the joint probability density function of Y [i] is
obtained from

xi

E[Xi]
fX (x1, . . . , xn) =

�
⇣Pn+1

j=1 aj
⌘

� (ai + 1)� (an+1 � 1)
Q

i=1,...,n,j 6=i � (aj)

xai
i

Y

i=1,...,n,j 6=i

x
aj�1
j

 
1 +

nX

j=1

xj

!�
Pn+1

j=1 aj

.

We deduce that Y [i] follows the Inverted Dirichlet(a1, . . . , ai + 1, . . . , an+1 � 1) distribution.
Since

S =
nX

j=1

Xj =

Pn
j=1 Zj

Zn+1
,

the probability density function of the sum S is given by

fS (s) =
�
�Pn+1

i=1 ai
�

� (
Pn

i=1 ai)� (an+1)
s
Pn

i=1 ai (1 + s)�
Pn+1

i=1 ai .

For the same reason, we also get

fPn
j=1 Y

[i]
j
(s) =

�
�Pn+1

i=1 ai
�

� (
Pn

i=1 ai + 1)� (an+1 � 1)
s
Pn

i=1 ai+1 (1 + s)�
Pn+1

i=1 ai .

It follows that from Proposition 3.1(i) that

E [Xi|S = s] = E[Xi]
fPn

j=1 Y
[i]
j
(s)

fS (s)

=
ai

an+1 � 1

�
⇣Pn

j=1 aj
⌘

�
⇣Pn

j=1 aj + 1
⌘ � (an+1)

� (an+1 � 1)
s

=
aiPn
j=1 aj

s.

The conditional expectation is thus linear in s, with a slope equal to the ratio of ai over the
sum of a1, . . . , an. As it will be explained below for the whole class of Liouville distributions,
this result can also be deduced from (3.3).

3.2.3 Liouville distributions

The result established in the preceding section is just a particular case of a more general
statement applying to the whole family of Liouville distributions. Recall that an absolutely
continuous random vectorX obeys a multivariate Liouville distribution if its joint probability
density function is proportional to

g

 
nX

j=1

xj

!
nY

i=1

xai�1
i

10



where xi > 0, ai > 0 and the function g is positive, continuous and appropriately integrable.
Gupta and Richards (1987) have used the notation Ln[g; a1, ..., an] to refer to this distribution.

We only consider Liouville distributions of the first kind for which the support is non-
compact. In this case

X
d
= RZ,

where R =
Pn

j=1 Xj obeys the univariate Liouville distribution L1[g; a] with a =
Pn

i=1 ai
and Z is independent of R and possesses the Dirichlet distribution with joint probability
density function

fZ (z1, . . . , zn) =
� (
Pn

i=1 ai)Qn
i=1 � (ai)

n�1Y

i=1

zai�1
i

 
1�

n�1X

i=1

zi

!an�1

, zi > 0,
nX

i=1

zi = 1.

We recover as a particular case the Inverted Dirichlet distribution considered in the preceding

section with g (t) = (1 + t)�
Pn+1

i=1 ai for t > 0, an+1 > 0. The corresponding probability
density function is proportional to

Qn
i=1 x

ai�1
i

(1 +
Pn

i=1 xi)
Pn+1

i=1 ai

which corresponds to (3.5). As another example, the multivariate correlated Gamma dis-
tribution is obtained with g (t) = tc�1e�bt for t > 0, c > 0, b > 0. The corresponding
probability density function is proportional to

 
nX

i=1

xi

!c�1 nY

i=1

�
e�bxixai�1

i

�
.

Let us now derive the distribution of Y [i]. Since xifX (x1, . . . , xn) is proportional to

g

 
nX

j=1

xj

!
xai
i

Y

i=1,...,n,j 6=i

x
aj�1
j ,

we deduce that Y [i] follows the Ln[g; a1, ..., ai + 1, ..., an] distribution as soon as E[Xi] <
1. We have fS (s) / g (s) sa�1 where “/” means “is proportional to”, and therefore,
fPn

j=1 Y
[i]
j
(s) / g (s) sa. It follows that E [Xi|Sn = s] / s which implies

E [Xi|Sn = s] =
E [Xi]

E [Sn]
s.

Since E [Xi] = aiE [R] /a, we finally get

E [Xi|Sn = s] =
aiPn
j=1 aj

s.

This result can also be obtained as a consequence of (3.3). To this end, consider

X = Xi = RZi and Y =
X

j 6=i

Xj = R
X

j 6=i

Zj = R(1� Zi).

11



Then,

L(u, v) = E

"
exp

 
�R

 
uZi + v

X

j 6=i

Zj

!!#

and the ratio appearing in (3.3) writes

d
duL(u, v)
d
dvL(u, v)

�����
(u,v)=(t,t)

=
E[RZi exp(�tR)]P
j 6=i E[RZj exp(�tR)]

=
E[Zi]P
j 6=i E[Zj]

=
E [Xi]

E
hP

j 6=i Xj

i .

This confirms that the conditional mean risk sharing is linear in the case of Liouville distri-
butions.

In Section 4, we consider conditionally independent risks. This construction is widely
used in actuarial models and allows us to derive extensions of the results obtained earlier
in the independent case. This is also another approach to deal with Liouville distributions
which are correlated by the common factor R that plays the role of the latent variable ⇤
inducing correlation between the conditionally independent risks.

3.2.4 Infinitely divisible distributions

According to Corollary 2.5 in Horn and Steutel (1978), a positive random vector X with
infinitely divisible distribution on Rn

+ can be characterized by its Laplace transform of the
form

E[e�ht,Xi] = exp

 Z

Rn
+

e�ht,xi � 1

kxk ⌫ (dx)

!

where hx,yi stands for the inner product
Pn

i=1 xiyi, kxk =
p

hx,xi for the Euclidean norm

and where ⌫ is a measure such that ⌫ ({0}) = 0 and
R
y>x

⌫(dy)
kyk < 1 for all x in the interior

of Rn
+. The expectation of Xi is given by

E[Xi] =

Z

Rn
+

xi

kxk⌫ (dx) .

The random vector Y [i] possesses the Laplace transform

E[e�ht,Y
[i]i] =

E[Xie�ht,Xi]

E[Xi]
= � 1

E[Xi]

@

@ti
E[e�ht,Xi]

=
1R

Rn
+
(xi/ kxk) ⌫ (dx)

Z

Rn
+

xi

kxke
�ht,xi⌫ (dx)

Z

[0,1)

eitx
⌫ (dx)

⌫ ([0,1))
E[e�ht,Xi]

= E[e�ht,Z
[i]i]E[e�ht,Xi]

12



whereZ [i] is a random variable with probability density function proportional to (xi/ kxk) ⌫ (dx),
and therefore Y [i] d

= X +Z [i] where X and Z [i] are independent. See also item (b) in The-
orem 2.4 by Horn and Steutel (1978).

Assume that there exist positive constants �ij such that for all i 6= j

R
Rn
+

xi
kxke

�ht,xi⌫ (dx)
R
Rn
+

xj

kxke
�ht,xi⌫ (dx)

= �ij, for all t.

In this case, we have

�ij =

R
Rn
+
(xi/ kxk) ⌫ (dx)

R
Rn
+
(xj/ kxk) ⌫ (dx)

and
E[e�ht,Z

[1]i] = ... = E[e�ht,Z
[n]i]

as well as
E[e�ht,Y

[1]i] = ... = E[e�ht,Y
[n]i].

Note that
E[e�th1,Y [i]i] = E[e�th1,Z[i]i]E[e�th1,Xi] = E[e�th1,Z[i]i]E[e�tS]

and that

E[e�teS] =
E[Se�tS]

E[S]
= � 1

E[S]

@

@t
E[e�tS] = � 1

E[S]

@

@t
E[e�th1,Xi]

=
1

E[S]

Z

Rn
+

h1,xi
kxk e�th1,xi⌫ (dx) exp

 Z

Rn
+

e�th1,xi � 1

kxk ⌫ (dx)

!

=
nX

i=1

E[Xi]

E[S]
E[e�th1,Z[i]i]E[e�th1,Xi]

=
nX

i=1

E[Xi]

E[S]
E[e�th1,Z[i]i]E[e�tS]

= E[e�th1,Y [i]i] for i = 1, ..., n,

in accordance with (3.4).
It finally follows that

E[Xi|S = s] = E[Xi]
fS̃ (s)

fS (s)
=

E[Xi]

E[S]
s =

R
Rn
+
(xi/ kxk) ⌫ (dx)

Pn
j=1

R
Rn
+
(xj/ kxk) ⌫ (dx)

s.

Again, this result can also be obtained with the help of (3.3).
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4 Application to dependence by mixture

4.1 Size-biased transform of a mixture

Arratia et al. (2019, Lemma 2.6) studied the size-biased transform of mixtures. This section
summarizes their findings, that appear to be useful for studying dependence induced by
correlated latent factors in the next sections. We provide the reader with an elementary
reasoning, for convenience and because this result will also be central to the extension to
size-biasing conditionally independent risks.

Consider a family of non-negative random variables {X(�), � � 0} indexed by a single,
non-negative parameter �. Let ⇤ be a mixing parameter with distribution function F⇤. The
corresponding mixture X(⇤) has distribution function

P[X(⇤)  x] =

Z 1

0

P[X(�)  x]dF⇤(�).

Define eX(�) to be the size-biased version of X(�), with distribution function

P[ eX(�)  z] =
E
⇥
X(�)I[X(�)  z]

⇤

E[X(�)]
.

Then, the size-biased version ]X(⇤) of the mixture X(⇤) corresponds to the mixture of
the non-negative random variables { eX(�), � � 0} with mixing parameter ⇤? distributed
according to

dF⇤?(�) =
E[X(�)]

E[X(⇤)]
dF⇤(�). (4.1)

This result can be rewritten as
]X(⇤)

d
= eX(⇤?) (4.2)

and is easily obtained as follows:

P[]X(⇤)  x] =
1

E[X(⇤)]

Z x

0

tdFX(⇤)(t)

=
1

E[X(⇤)]

Z 1

0

Z x

0

tdFX(�)(t)dF⇤(�)

=
1

E[X(⇤)]

Z 1

0

E[X(�)]F eX(�)(t)dF⇤(�)

=

Z 1

0

F eX(�)(t)dF⇤?(�)

which shows that the announced distributional equality (4.2) is indeed valid.
In the particular case where E[X(�)] is proportional to �, that is, if the identity E[X(�)] =

a� holds for some positive constant a, we obtain

dF⇤?(�) =
�

E[⇤]
dF⇤(�),

so that ⇤? d
= e⇤ and ]X(⇤)

d
= eX(e⇤).
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4.2 Common mixture model

4.2.1 Definition

The common mixture model (in the terminology of Wang, 1998) consists in conditionally
independent risks and forms the basis of the credibility approach. The kind of dependence
induced by this construction is comprehensively studied in Denuit et al. (2005, Chapter 7).
The intuition behind this modeling approach is as follows: an external mechanism, described

by the positive random variable ⇤, influences several risks X1, X2, . . . , Xn with Xi
d
= Xi(⇤).

Given the environmental parameter ⇤, the individual risks are independent. Formally, the
joint distribution function of the portfolio vector X can be written as

FX(t1, . . . , tn) = E
⇥
P[X1  t1, . . . , Xn  tn|⇤]

⇤

=

Z 1

0

 
nY

i=1

P[Xi(�)  ti]

!
dF⇤(�). (4.3)

Notice that this construction is rather general and covers for instance the case of the common
shock model, where each risk Xi is obtained as the sum of two independent random variables,
with the second one common to all risks. This common shock then plays the role of ⇤ in the
common mixture model (4.3). The multivariate Gamma distribution proposed in Furman
and Landsman (2005) is built in this way, defining Xi = �iY0 + Yi for some �i > 0, where
Y0, Y1, . . . , Yn are independent, Gamma-distributed random variables. Here, Y0 plays the
role of ⇤. This is also the approach followed by Furman and Landsman (2010) to derive a
multivariate extension of the Tweedie distribution. The multivariate Pareto II distribution
used by Asimit et al. (2013) is also obtained in this way, specifying Xi = µi + Yi/Y0 where
Y0, Y1, . . . , Yn are independent random variables with Y1, . . . , Yn obeying the same Negative
Exponential distribution and Y0 following the Gamma distribution. The multivariate Pareto
distribution proposed by Asimit et al. (2010) corresponds to Xi = min{�iY0 + µi, Yi} with
�i > 0, where Y0, Y1, . . . , Yn are independent, Pareto-distributed random variables. In credit
risk modeling, time-to-defaults Xi are sometimes assumed to be subject to a competing risk
mechanism with Xi = min{Yi, Y0} where Y0, Y1, . . . , Yn are independent, positive random
variables. The common factor Y0 impacting all times-to-default accounts for a systematic
shock. See, e.g., Giesecke (2003).

4.2.2 Association

It is reasonable to expect that the risks Xi resulting from this construction are positively
correlated provided they all move in the same direction with ⇤. This makes the random
vector Y [i] with distribution function (2.6) larger so that size-biasing induces a safety margin
in this case. This is formally stated in the next result.

Property 4.1. Consider the risks X1, X2, . . . , Xn with joint distribution function (4.3).
Assume that

P[Xi(�)  t] � P[Xi(�+ �)  t] for all t, � > 0, � > 0, and i = 1, 2, . . . , n.
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Then, the random vector Y [i] with distribution function (2.6) is larger than X in the sense
of multivariate first-order stochastic dominance, that is, the inequality E[g(X)]  E[g(Y [i])]
holds true for every non-decreasing function g such that the expectations exist.

Proof. We know from Property 7.2.16 in Denuit et al. (2005) that the risks X1, . . . , Xn are
associated random variables, that is, the covariance Cov[g1(X), g2(X)] is non-negative for
all non-decreasing functions g1 and g2. The announced result then follows from Property
2.1.

4.2.3 Representation formula

When the risksX1, X2, . . . , Xn are conditionally independent, given ⇤, with joint distribution
function (4.3), it turns out that each Y [i] also obeys a common mixture model with a change
in the ith conditional distribution and in the mixing distribution. This is formally stated
next.

Proposition 4.2. Consider the risks X1, X2, . . . , Xn with joint distribution function (4.3).
Then, each Y [i] also possesses a joint distribution function of the form (4.3), that is,

FY [i](t1, . . . , tn) =

Z 1

0

 
Y

j 6=i

P[Xj(�)  tj]

!
P[ eXi(�)  ti]dF⇤?

i
(�)

where ⇤?
i is distributed according to (4.1), that is,

dF⇤?
i
(�) =

E[Xi(�)]

E[Xi(⇤)]
dF⇤(�).

Proof. It su�ces to write

FY [i](y1, . . . , yn) =
E
⇥
XiI[X1  y1, . . . , Xn  yn]

⇤

E[Xi]

=
E
h
E
h
Xi

Qn
j=1 I[Xj  yj]

���⇤
ii

E[Xi]

= E

"
E
⇥
XiI[Xi  yi]

��⇤
⇤

E[Xi]

Y

j 6=i

P[Xj  yj|⇤]
#
.

This ends the proof.

4.2.4 Individual model of risk theory

Assume that ⇤ 2 [0, 1] and that each risk Xi is of the form Xi = IiCi. Given ⇤ = �,
Ii = Ii(�) is Bernoulli(�) distributed, that is,

P[Ii = 1|�] = 1� P[Ii = 0|�] = �.
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We assume that the costs Ci are independent of ⇤ with respective means E[Ci] = µi. Then,
Xi = Xi(�) is such that E[Xi(�)] = �µi for every i = 1, 2, . . . , n. Given ⇤, all the random
variables I1, . . ., In, C1, . . ., Cn are assumed to be independent.

Each Y [i] obeys a mixture of
�
X1(�), . . . , eCi, . . . , Xn(�)

�
with mixing parameter ⇤?

i dis-
tributed according to

dF⇤?
i
(�) =

�µi

E[⇤]µi
dF⇤(�) , ⇤?

i
d
= e⇤ for all i.

Thus, the following representations hold true:

E[Xi|S > t] = E[⇤]µi

P
h
eCi +

P
j 6=i Xj

�e⇤
�
> t
i

P
hPn

j=1 Xj(⇤) > t
i

E[Xi|S = t] = E[⇤]µi

f eCi+
P

j 6=i Xj

�
e⇤
�(t)

fPn
j=1 Xj(⇤)(t)

.

Example 4.3. Assume that given ⇤ 2 (0, 1), each Ii is Bernoulli distributed with the same
mean ⇤ where ⇤ follows the Beta(⌘, �) distribution. The costs Ci are independent of ⇤ and
obey Gamma(↵i, ⌧) distributions. Given ⇤, all the random variables I1, ..., In, C1, ..., Cn are
assumed to be independent.

It is easy to see that eCi follows the Gamma(↵i + 1, ⌧) distribution. Moreover,

Y [i] d
=
⇣
X1

⇣
e⇤
⌘
, ..., eCi, ..., Xn

⇣
e⇤
⌘⌘

where e⇤ follows the Beta(⌘ + 1, �) distribution. Since

f eCi+
P

j 6=i X1(e⇤)|e⇤=� (s)

= exp (�s⌧)
n�1X

j=0

�j (1� �)n�1�j
X

P
l 6=i kl=j:kl2{0,1}

⌧

�
⇣
↵i +

P
l 6=i kl↵l + 1

⌘(⌧s)↵i+
P

l 6=i kl↵l

we then have

f eCi+
P

j 6=i X1(e⇤) (s)

= exp (�s⌧)
n�1X

j=0

B (⌘ + 1 + j, � + n� 1� j)

B (⌘ + 1, �)

X
P

l 6=i kl=j:kl2{0,1}

⌧

�
⇣
↵i +

P
l 6=i kl↵l + 1

⌘(⌧s)↵i+
P

l 6=i kl↵l .

If ↵1 = . . . = ↵n = ↵, we thus obtain

f eCi+
P

j 6=i X1(e⇤) (s)

= exp (�s⌧)
n�1X

j=0

B (⌘ + 1 + j, � + n� 1� j)

B (⌘ + 1, �) B (j + 1, n)

� (n+ 1 + j)

� (n� j)

⌧

� (j↵ + 1)
(⌧s)j↵+1

and E[Xi|S = s] = ↵i
↵•
s holds true in this case, as expected.
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4.2.5 Compound mixed Poisson model

Let us now assume that given ⇤ = � each Xi is a compound Poisson sum. Precisely, assume
that Xi =

PNi

k=1 Cik where the claim severities Cik are positive, continuous, and distributed
as Ci, all these random variables being independent, i = 1, 2, . . . , n, and independent of
(N1, . . . , Nn). We denote as µi = E[Ci] the mean claim severity for Xi. Each Ni obeys the
Poisson(ai⇤) distribution given ⇤, for some positive constants a1, . . . , an. Claim severities
thus remain independent but the random vector of claim frequencies (N1, . . . , Nn) now obeys
the common mixture model. In this case, all components Xi increase in ⇤ in the first-order
stochastic dominance (see Chapter 7 in Denuit et al., 2005). This construction is a particular
case of the model considered in Kim et al. (2019).

Here, we see that

dF⇤?
i
(�) =

ai�µi

aiE[⇤]µi
dF⇤(�) =

�

E[⇤]
dF⇤(�)

so that ⇤?
1, . . . ,⇤

?
n are identically distributed and ⇤?

i
d
= e⇤ for all i. Since eXi(�)

d
= Xi(�)+ eCi

where the random variable eCi is independent of Xi(�), we get

FY [i](t1, . . . , tn) =

Z 1

0

 
Y

j 6=i

P[Xj(�)  tj]

!
P[Xi(�) + eCi  ti]dFe⇤(�).

Thus, the following representations hold true:

E[Xi|S > t] = aiE[⇤]µi

P
hPn

j=1 Xj

�e⇤
�
+ eCi > t

i

P
hPn

j=1 Xj(⇤) > t
i

E[Xi|S = t] = aiE[⇤]µi

fPn
j=1 Xj

�
e⇤
�
+ eCi

(t)

fPn
j=1 Xj(⇤)(t)

.

Now, assume that severities also depend on ⇤, that is, Cik = Cik(⇤) with E[Cik(�)] = �µi.
Given ⇤, all the random variables are supposed to be independent. Then, Y [i] is a mixture
of �

X1(�), . . . , Xi(�) + eCi(�), . . . , Xn(�)
�

with mixing parameter ⇤?
i distributed as

dF⇤?
i
(�) =

ai�2µi

aiE[⇤2]µi
dF⇤(�) =

�2

E[⇤2]
dF⇤(�).

Thus, the mixing parameters ⇤?
i are identically distributed for all i, that is, ⇤?

i
d
= ⇤? for all

i. We have the following representations:

E[Xi|S > t] = aiE[⇤
2]µi

P
hPn

j=1 Xj

�
⇤?
�
+ eCi

�
⇤?
�
> t
i

P
hPn

j=1 Xj(⇤) > t
i

E[Xi|S = t] = aiE[⇤
2]µi

fPn
j=1 Xj

�
⇤?
�
+ eCi

�
⇤?
�(t)

fPn
j=1 Xj(⇤)(t)

.
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Some families of distributions are closed in the sense that if ⇤ obeys a distribution belonging
to the family then this is also the case for ⇤?. Gamma distributions satisfy this property.

4.3 General mixture models

4.3.1 Definition

Let us now extend the common mixture model by letting each risk Xi depend on its own
latent variable ⇥i, that is,

FX(t1, . . . , tn) =

Z 1

0

. . .

Z 1

0

 
nY

i=1

P[Xi(✓i)  ti]

!
dF⇥(✓1, . . . , ✓n). (4.4)

If ⇥1 = . . . = ⇥n = ⇤ then we are back to the common mixture model (4.3) studied in the
preceding section.

Mixture models (4.4) are also widely used in insurance studies. In multiperil insurance
modeling for instance, policyholders may own several insurance products (up to n, say).
Given ⇥, the number of claims Ni recorded for product i is often assumed to be Poisson
distributed with parameter �i⇥i, where �i is the a priori expected claim frequency for product
i, based on policyholder’s specific risk profile. Denuit and Lu (2020) assumed that ⇥ obeys
the Wishart distribution with dimension n. As another example, Denuit et al. (2015)
introduced the Max-factor individual risk model for credit portfolios. Given ⇥ 2 [0, 1]n,
default indicators Ii are Bernoulli distributed with

P[Ii = 1|⇥i] = 1� P[Ii = 0|⇥i] = ⇥i,

with
⇥i = F 

⇣
max{⌫i + �i i, µ0 + �0 0}

⌘

where F is a suitable distribution function, ⌫i 2 R and �i � 0. There is thus a competition
between the risk-specific e↵ect ⌫i+�i i and the global e↵ect µ0+�0 0 and only the largest
one impacts on the occurrences of losses.

4.3.2 Association

As it was the case for common mixture models, it is reasonable to expect that the risks Xi

resulting from this construction are positively correlated provided they all move in the same
direction with ✓i and the components of ⇥ are positively related. This makes the random
vector Y [i] with distribution function (2.6) larger so that size-biasing induces a safety margin
in this case. This is formally stated in the next result.

Property 4.4. Consider the risks X1, X2, . . . , Xn with joint distribution function (4.4).
Assume that

P[Xi(✓i)  t] � P[Xi(✓i + �)  t] for all t, ✓i > 0, � > 0, and i = 1, 2, . . . , n,

and ⇥ is associated. Then, the random vector Y [i] with distribution function (2.6) is larger
than X in the sense of multivariate first-order stochastic dominance, that is, the inequality
E[g(X)]  E[g(Y [i])] holds true for every non-decreasing function g such that the expecta-
tions exist.
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Proof. We know from Property 7.2.17 in Denuit et al. (2005) that the risks X1, . . . , Xn are
associated random variables. The announced result then follows from Property 2.1.

4.3.3 Representation formula

The next result shows that each Y [i] obeys a common mixture model with a change in the
ith conditional distribution and in the mixing distribution.

Proposition 4.5. Consider the risks X1, X2, . . . , Xn with joint distribution function (4.4).
Then, each Y [i] also possesses a joint distribution function of the form (4.4), that is,

FY [i](t1, . . . , tn) =

Z 1

0

. . .

Z 1

0

 
Y

j 6=i

P[Xj(✓j)  tj]

!
P[ eXi(✓i)  ti]dF⇥?[i](✓1, . . . , ✓n)

where the mixing parameter ⇥?[i] has joint distribution

dF⇥?[i](✓1, . . . , ✓n) =
E[Xi(✓i)]

E[Xi]
dF⇥(✓1, . . . , ✓n).

Proof. It su�ces to write

FY [i](y1, . . . , yn) =
E
⇥
XiI[X1  y1, . . . , Xn  yn]

⇤

E[Xi]

=
E
h
E
h
Xi

Qn
j=1 I[Xj  yj]

���⇥
ii

E[Xi]

= E

"
E
⇥
XiI[Xi  yi]

��⇥i

⇤

E[Xi]

Y

j 6=i

P[Xj  yj|⇥j]

#
.

This ends the proof.

4.3.4 Individual model of risk theory

Assume that each risk Xi is of the form Xi = IiCi and that ⇥ 2 [0, 1]n. Given ⇥ = ✓,
Ii = Ii(✓i) obeys the Bernoulli(✓i) distribution, that is,

P[Ii = 1|✓i] = 1� P[Ii = 0|✓i] = ✓i

for every i = 1, 2, . . . , n. Given ⇥, all the random variables Ij and Cj are assumed to be
independent. Then, Y [i] is a mixture of

�
X1(✓1), . . . , eCi, . . . , Xn(✓n)

�

with mixing parameter ⇥[i] defined in Proposition 4.5.
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4.3.5 Compound mixed Poisson model

Assume that Xi =
PNi

k=1 Cik where the claim severities Cik are positive, continuous, and
distributed as Ci. Given ⇥ = ✓, each Ni obeys the Poisson(ai✓i) distribution, for some
positive constants a1, . . . , an, and severities are such that E[Cik(✓i)] = ✓iµi. Given ⇥, all the
random variables are assumed to be independent. Then, Y [i] is a mixture of

�
X1(✓1), . . . , Xi(✓i) + eCi(✓i), . . . , Xn(✓n)

�

with mixing parameter ⇥?[i] distributed as

dF⇥?[i](✓1, . . . , ✓n) =
ai✓2i µi

aiE[⇥2
i ]µi

dF⇥(✓1, . . . , ✓n) =
✓2i

E[⇥2
i ]
dF⇥(✓1, . . . , ✓n).

Sometimes, ⇥ and ⇥?[i] obey distributions in the same family. This is for instance the case
when ⇥ follows a multivariate Liouville distribution.

If the severities Cik are independent of ⇥ then we see that Y [i] is a mixture of
�
X1(✓1), . . . , Xi(✓i) + eCi, . . . , Xn(✓n)

�

with mixing parameter ⇥?[i]. Since

dF⇥?[i](✓1, . . . , ✓n) =
ai✓iµi

aiE[⇥i]µi
dF⇥(✓1, . . . , ✓n) =

✓i
E[⇥i]

dF⇥(✓1, . . . , ✓n),

we see that ⇥?[i] d
= ⇥[i] for all i = 1, 2, . . . , n. Here also, if ⇥ obeys a Liouville distribution

then this is also the case for ⇥[i].
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