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Introduction

The main objective of this thesis is to apply some known techniques of torsion

theories and preradicals to different non-abelian categories, and in particular to

the category Simp(Grp) of simplicial groups. Two families of torsion theories

in simplicial groups are introduced and they constitute a lattice µ(Grp) of

torsion theories in Simp(Grp). Connections between the lattice µ(Grp) and

the homotopical aspects of Simp(Grp) are studied. For instance, the torsion

theories of µ(Grp) are defined by truncations of the Moore chain complex and,

moreover, we show how the homotopy groups of a simplicial group can be

computed with the preradicals of the torsion theories in µ(Grp).

Furthermore, we will have an easier description of the torsion theories of

µ(Grp) when restricted to certain subcategories of Simp(Grp). Restricted to

the category of internal groupoids, the torsion theories of µ(Grp) yield the

already known examples of (Abelian groups, equivalence relations) and (Con-

nected groupoids, discrete groupoids). As new examples, we will study the

subcategory of simplicial groups M2≥ of simplicial groups whose Moore com-

plex vanishes for n > 2 and the subcategory of Dakin’s group T -complexes, as

these two examples generalize the torsion theories already studied in internal

groupoids in [BG06], [EG10] and [Man15]. In these cases torsion theories can

be studied as torsion theories in Conduché’s 2-crossed modules and in Ashley’s

reduced crossed complexes, respectively.

Categorical algebra

Already in the early years of category theory, when abelian categories were

introduced to capture the categorical aspects of abelian groups to provide a

proper setting to develop homological algebra, the following natural question

arose in Mac Lane’s article [Lan50]: what is a suitable categorical setting that

captures many fundamental properties of the category of groups (and of other
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categories such as Lie algebras or categories of universal algebras) in the same

way as abelian categories do for the category of abelian groups?

A solution to this problem, and our context for this thesis, is given by the

notion of a semi-abelian category in the sense of [JMT02]. In order to under-

stand the notion of a semi-abelian category it is useful to recall that abelian

categories are characterized by the so-called ‘Tierney equation’([Bar71]):

(abelian) = (Barr-exact) + (additive).

Here, a regular category is a finitely complete category with coequalizers where

each morphism f : A→ B admits a pullback stable ‘image’ factorization:

A B

f(A)

f

e m

where e is a regular epimorphism and m is a monomorphism, and a regular

category is called (Barr-)exact if, moreover, internal equivalence relations are

effective. The next ingredient of a semi-abelian category is protomodularity

in the sense of Bourn ([Bou91]). In a pointed category X, protomodularity is

equivalent to the validity of the Split Short Five Lemma in X. In addition,

if X is a pointed, regular and protomodular category then the classical basic

results of homological algebra hold in X, such as the snake lemma, the 3 × 3

lemma, etc. Finally, putting all these properties together we get the definition

of a semi-abelian category:

(semi-abelian) = (pointed) + (exact) + (protomodular) + (binary coproducts).

More generally, we will be interested in normal categories [Jan10], that is

regular categories where regular epimorphisms are normal epimorphisms. In

the general context of normal categories, torsion theories and preradicals have

nice properties.

Torsion theories

Since their introduction by Dickson [Dic66], torsion theories serve to study

abelian categories. A torsion theory in a pointed category X is a pair of full

subcategories (T ,F) that satisfy the axioms:
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TT1 Any morphism f : T → F with T in T and F in F is zero.

TT2 Any object X in X has a short exact sequence:

0 T (X) X F (X) 0

with T (X) in T and F (X) in F .

In a torsion theory the subcategories T and F determine each other uniquely.

The subcategory T is a mono-coreflective subcategory of X and F is an epi-

reflective subcategory of X:

T X F .⊥ ⊥

The first example of a torsion theory is given by torsion and torsions-free

abelian groups. In the category Ab of abelian groups we define T as the sub-

category of torsion abelian groups X, the abelian groups where all elements

have finite order:

for x ∈ X, then there is n ∈ N such nx = 0.

And F is the category of torsion-free abelian groups, abelian groups X where

only the trivial element has finite order:

if nx = 0, then x = 0.

From the axiom TT2, each torsion theory defines a ‘torsion subobject’ T (X)

for each object X. This construction is functorial and is a first example of a

preradical of X. By a preradical on X we mean a subfunctor r : X→ X of the

identity functor on X; this means we have a subobject σX : r(X)→ X and for

a morphism f : X → Y we have a commutative diagram:

X Y

r(X) r(Y ) .

f

f ′

σX σY

A preradical r in X defines two subcategories in X, the r-torsion and r-torsion-

free subcategory:

Tr = {X|r(X) = X}, Fr = {X|r(X) = 0}.
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In a normal category X torsion theories are in bijection with idempotent rad-

icals, preradicals such that rr(X) = r(X) and r(X/r(X)) = 0. The proofs

presented here closely follow those of [BG06] and [CDT06], which study tor-

sion theories in different non-abelian settings, namely homological categories

and the so-called (E ,M)-normal categories, respectively.

If the category T is closed under subobjects in X then the torsion theory

is called hereditary. For example, the torsion theory of torsion abelian groups

is hereditary. For the category RMod of modules over an associative ring R

the torsion theories are characterized by a theorem proved by P. Gabriel that

states bijections between:

1. Hereditary torsion theories;

2. Left exact radicals r : RMod→ RMod;

3. Gabriel topologies on the ring R;

4. Localizations of RMod .

As a generalization, in a locally finitely presentable abelian category A we have

a bijection between:

1. Hereditary torsion theories in A;

2. Left exact radicals in A;

3. Universal closure operators in A;

4. Localizations of A.

By a localization of A we mean a subcategory B of A where the inclusion I has

a finite-limit preserving left adjoint L:

A B .
L

⊥
I

For the case of non-abelian categories, in [BG06] the bijections between

hereditary torsion theories, hereditary closure operators and hereditary radicals

is established for homological categories. And in [CDT06] torsion theories and

radicals are studied in other non-abelian settings. However, the connection

with localizations has not been studied yet. Here, we present how to construct

a hereditary torsion theory (TL,FL) from a localization L a I in the context

of normal categories.
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It is easy to see that if we have torsion theories (T ,F) and (S,G) in a

category X,

T ⊂ S if and only if G ⊂ F .

This allows one to introduce an order in the class of torsion theories for a

category X, (T ,F) ≤ (S,G) if T ⊂ S and hence, we have a lattice Xtors of

torsion theories of a category X.

It has been a major tool in ring theory to study the lattice Rtors of torsion

theories of the category RMod of modules over a R, as well as the sublattice

Rhtors of hereditary torsion theories. These lattices have interesting properties,

for instance, for any ring R the lattice Rhtors is small (a set) and it has the

structure of a frame and, moreover, some rings can be characterized by the

lattice Rhtors. We will study a particular sublattice µ(Grp) of torsion theories

in simplicial groups.

Simplicial objects and homotopy

Introduced by S. Eilenberg and J. A. Zilber in the 50’s [EZ50], a simplicial set

X is a functor

X : ∆op Sets

where ∆op is the simplicial category. A simplicial set encodes the homotopical

properties of ‘well-behaved’ topological spaces in a combinatorial way. How-

ever, it must also be recalled that in order to define a homotopy equivalence

relation on a simplicial set X, and hence define the homotopy groups πn(X),

X should satisfy the Kan condition. It was proved by D. Kan that the singular

simplicial set S(X) of a topological space X satisfies this property.

A simplicial object X in a category X is a functor X : ∆op → X. Simplicial

objects in the category of groups, called simplicial groups, appear naturally in

topology, since the singular simplicial set of a loop space Ω(X) (of a pointed

topological space X) is a simplicial group. It was proved by Moore that sim-

plicial groups satisfy the Kan condition and that the homotopy groups πn(X)

of a simplicial group are isomorphic to the homology groups of the normalized

chain complex M(X) of X:

πn(X) ∼= Hn(M(X)).

Moreover, these groups are abelian for n ≥ 1.

For the case of abelian groups, the Dold-Kan theorem states an equivalence
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via the normalization functor between simplicial abelian groups and chain com-

plexes in abelian groups,

Simp(Ab) ∼= chn(Ab)

in such a way that simplicial homotopy corresponds to homology.

A breakthrough in order to study the homotopical aspects of simplicial

objects in a categorical way was presented by A. Carboni and G.M. Kelly

and M.C. Pedicchio in [CKP93]. There, the Kan condition is introduced for

simplicial objects in a regular category X and it was proved that simplicial

objects in X satisfy the Kan condition if and only if X is a Mal’tsev category.

Mal’tsev categories are categories where internal reflexive relation are in fact

equivalence relations [CPP92]. These categories extend Mal’tsev varieties of

universal algebras, which have been characterized by A. Mal’tsev ([Mal54]) as

varieties with a ternary operation p(x, y, z) such that:

p(x, y, y) = x and p(x, x, y) = y.

The category of groups is a Mal’tsev category, where such an operation

p(x, y, z) is given by p(x, y, z) = xy−1z. It is the existence of this operation

that makes the proof of Moore possible (see [Bar71]), so simplicial objects in a

Mal’tsev category satisfy the Kan condition and this includes simplicial objects

in groups, rings, abelian groups, modules over a ring, and others. Semi-abelian

categories in particular are Mal’tsev categories.

In [EdL04] the results of Moore for simplicial groups are generalized for

simplicial objects in semi-abelian categories. The Moore normalization functor

M : Simp(X) ch(X)

is defined as

M(X)n =

n−1⋂
i=0

ker(δi)

where δi are the face operators of the simplicial object X. Then, the nth-

homology object of X is defined as the homology object of the normalization

chain complex Hn(M(X)) and for n ≥ 1 the Hn(M(X)) are abelian objects in

X.

Our interest in torsion theories in simplicial groups lies in the following.

First, the category of simplicial groups has embedded the category Grpd(Grp)

of internal groupoids in groups (via the nerve functor). Examples of torsion the-
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ories in internal groupoids have been studied in detail, for example in [BG06],

[EG15] and [Man15], so it is natural to look for generalizations of these torsion

theories in simplicial groups.

Secondly, as mentioned before there are the homotopical aspects of simpli-

cial groups, so in our work we will give applications of torsion theories to this

subject.

Finally, simplicial groups as well as other algebraic categories from algebraic

topology, like Dakin’s T -complexes or Conduché’s 2 -crossed modules (chapter

5), are semi-abelian but they have not been studied in depth from the point of

view of categorical algebra.

Structure of the text

Chapter 1 serves as an introduction to the categorical concepts we will be using

throughout this thesis. Moreover, it briefly introduces the reader to different

aspects of categorical algebra, as we will encounter different kind of categories.

The relation between the various contexts that will be mentioned in this thesis

can summarised in the following diagram:

semi-abelian homological Mal’tsev

ideal determined normal regular

Chapter 2 studies torsion theories in normal categories. Sections 2.1 and 2.2

introduces preradicals and their connections with torsion theories. In particular

we recall the bijection:

{torsion theories inX} ∼= {idempotent radicals in X}

and its restriction

{hereditary torsion theories inX} ∼= {hereditary radicals in X}.

In section 2.3 some basic examples are recalled, some classical abelian examples

as well as some more recent developments in non-abelian contexts. Following

the observations in 2.3, section 2.4 introduces two theorems for torsion theories

in normal categories that are well known for abelian categories but have been

somehow overlooked in recent works:
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1. Let X be a normal exact category, if (T ,F) is an hereditary torsion theory

then T is a normal exact category. Moreover, if X is semi-abelian then

T is semi-abelian.

2. Let X be a normal category and L a I a localization of X, then the

subcategory

TL = {X|L(X) ∼= 0}

is a hereditary torsion subcategory of X.

As an application of the second theorem above, following [Pop73] an example

of a hereditary torsion theory is given in the semi-abelian category of sheaves

of groups over a topological space given by the sheafification/localization of

presheaves.

In chapter 3 we study the category Grpd(X) of internal groupoids in a

normal Mal’tsev category X and we recall two torsion theories in Grpd(X)

already studied in [BG06] and [EG10]:

1. (Ab(X), Eq(X)) given by internal abelian objects in X and internal equiv-

alence relations in X;

2. and (Conn(Grpd(X)), Dis(X)) given by connected groupoids in X and

discrete groupoids.

If X is the category Grp of groups, it is known that internal groupoids are

equivalent to Whitehead’s crossed modules ([Whi41]). A crossed module is a

morphism ∂ : A → B with an action of B on A, written ba for a ∈ A and

b ∈ B, satisfying the identities:

∂(ba) = b∂(a)b−1 and ∂(a)a′ = aa′a−1.

so the previous torsion theories in internal groupoids correspond to torsion

theories in crossed modules:

1. (Ab(X), Eq(X)) = (Ab,NMono) where the objects of Ab are crossed mod-

ules of the form A → 0 with A an abelian group, and the objects of

NMono are inclusions of normal subgroups i : N → G.

2. (Conn(Grpd(X)), Dis(X)) = (CExt,Dis) where CExt is the category

of central extensions in groups and the objects Dis are discrete crossed

modules, i.e. crossed modules of the form 0→ G for a group G.

Chapter 4 is the core of this work. Since we can consider Grpd(X) as a

full subcategory of Simp(X) under the nerve functor, our first objective is
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to generalise the torsion theories in internal groupoids to a family of torsion

theories in Simp(X). As a first step we consider the category pch(X) of proper

chain complexes in an ideal determined X so that we obtain a lattice COT of

torsion theories given by cotruncations in pch(X)

COKn and KERn

for each n ≥ 0. We then define the torsion theories µn≥ and µ≥n in simplicial

groups. More precisely, µn≥ has as torsion-free category the category of sim-

plicial groups with trivial Moore complex for i > n, and similarly, µ≥n has as

torsion category the category of simplicial groups with trivial Moore complex

for i < n. These constitute a lattice µ(Grp) of torsion theories. The lattice

µ(Grp) and COT are related via the Moore normalization:

µ(Grp) = . . . µ1≥ µ≥1 µ0≥ Simp(Grp)

COT (pch(Grp)0) = . . . COK2 KER1 COK1 pch(Grp)≥0

M

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

so that each torsion/torsion-free subcategory of µn≥ and µ≥n is mapped into

the torsion/free subcategory of COKn and KERn, accordingly.

The lattice µ(Grp) defines a lattice of idempotent radicals of Simp(X)

(denoted by µn≥ and µ≥n) and, hence for a simplicial group X we have a sub-

lattice of torsion subobjects µn≥(X) and µ≥n(X). We can study homotopical

properties of X with these subobjects, for example the quotient

Π≥n+1
n+1≥(X) = µ≥n+1(X)/µn+1≥(X)

is isomorphic to K(πn+1(X), n+1) the (n+1)-st Eilenberg-Mac Lane simplicial

group of the (n+ 1)-st homotopy group of X.

Chapter 5 brings more applications of the lattice µ(Grp) by restricting

it to certain subcategories of Simp(Grp). In the first place we consider the

subcategory Mn≥ of simplicial groups with trivial Moore complex for i >

n. For the case n = 2, M2≥ is equivalent to the category of Conduché’s 2-

crossed modules. Following the examples in chapter 3, we observe that the

subcategories of discrete simplicial groups Dis, internal equivalence relations

Eq(Grp) and internal groupoids Grpd(Grp) are still torsion-free subcategories

of Mn≥. And similarly, the category Ab of abelian groups and categories of

special kinds of central extensions are torsion subcategories of Mn≥.

A second example, we study the subcategory of Dakin’s group T -complexes,
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simplicial groups where there is a canonical filler of horns. This category is

equivalent to the category Crs(Grp) of Ashley’s reduced crossed complexes. A

reduced crossed complex is a proper chain complex in the categoy of groups:

M = . . . Mn Mn−1 . . . M2 M1 M0
δn δ2 δ1

with actions M0 → Aut(Mi) where Mn is an abelian group for n > 2, the

morphism δ1 : M1 → M0 is a crossed modules and the actions δ1(M1) →
Aut(Mi) are trivial. Both the subcategories Mn≥ and Crs(Grp) naturally

extend the examples for internal groupoids.

As a second kind of application, we study torsion torsion-free categories

or TTF-categories for short. In an abelian category X, a subcategory T of

X is a TTF-subcategory if there are subcategories C and F such that (C, T )

and (T ,F) are torsion theories, the triplet (C, T ,F) is called a TTF-theory.

Semi-abelian examples of TTF-theories in chn(Grp) are given in chapter 4:

(Ker(cotn−1), ch(X)n−1≥, ch(X)≥n), (ch(X)n−1≥, ch(X)≥n,Ftrn−1).

However, these examples cannot be generalized to simplicial groups, but

the triplets

(CExt,Dis,Ab)

in XMod and

(Ker(cotn−1), Crs(Grp)n−1≥, Crs(Grp)≥n) .

in Crs(Grp) behave like TTF-theories in a weak sense. This means that they

are triplets (C, T ,F) of subcategories such that:

1. the pair (C, T ) is a torsion theory in the usual sense.

2. the torsion-free category T is mono-coreflective (but not normal mono-

coreflective).

3. the pair (T ,F) satisfies axiom TT1 of a torsion theory.

4. the pair (T ,F) satifies axiom TT2 of a torsion theory only for a class E
of objects i.e. for X there is a short exact sequence:

0 T (X) X F (X) 0

xiv



with T (X) in T and F (X) in F if and only if X belongs to E .
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Chapter 1

Categories

In this first chapter, we will introduce the categorical foundations and the basic

terminology we will be using.

1.1 Morphisms

Definition 1.1.1. An object 0 in a category X is called a zero object if it is

both initial and terminal, i.e. for every object A there is exactly one morphism

αA : 0 → A and τA : A → 0. We will write αAτA = 0A (or only 0 if there is

no confusion), and we say that a morphism f : A→ B is a zero morphism if f

factors through 0, i.e. the diagram commutes

0

A B

αB

f

τB

A category is called pointed if it has a zero object (necessarily unique up to

isomorphism).

1.1.2. In a pointed category X, provided that they exist, the kernel of a mor-

phism f : A→ B (resp. cokernel) is defined as the morphism k(f) : ker(f)→
A, (resp. c(f) : B → cok(f)) where:

ker(f) A

0 B

k(f)

f

αB

resp.

A B

0 cok(f)

f

τA c(f)

1



is a pullback, respectively a pushout.

Definition 1.1.3. A morphism f : A→ B in X is called:

� monomorphism: if for every morphisms g, h : C → A such that fg = fh

then g = h;

� regular monomorphism if it is the equalizer of a pair of morphisms

A B C
f g

h
;

� normal monomorphism if it is the kernel of a morphism in X;

� split monomorphism or a section if there is a morphism p : B → A such

that pf = 1A.

Dually, a morphism f : A→ B is called (regular/normal/split) epimorphism if

it satisfies the dual condition.

Monomorphisms capture the categorical aspect of an “injective morphism”

in a category. In the category of sets and functions Sets they all coincide

(monomophisms, regular and split) as injective functions but in other alge-

braic categories they may all be very different and in fact may not even cor-

respond to injective functions. For instance, this is the case of the category of

abelian divisible groups Div, where an abelian group X is divisible if it has the

property:

for all x ∈ X, n ∈ N+ ⇒ there is y ∈ X such that x = ny.

The morphism Q→ Q/Z in Div is a monomorphism but is not injective.

Another basic discrepancy among monomorphisms is that in abelian cate-

gories such as Ab the category of abelian groups or RMod of modules over a

ring R all monomorphisms are normal, i.e. kernel of some morphism. However,

in Grp the monomorphisms are injective group morphisms f : G→ H but they

are only normal if the image f(G) is a normal subgroup of H, i.e. closed under

conjugation in H.

In general, in a category X we have:

split monomorphism⇒ regular monomorphism⇒ monomorphism

and, in a pointed category X,

normal monomorphism⇒ regular monomorphism⇒ monomorphism.

2



To see this, notice that given a section s : A→ B of p : B → A, s is the equalizer

of the arrows B B
1B

sp
, and that a kernel of a morphism f : A → B

is actually the equalizer of A B
f

0
. However, a split monomorphism

may fail to be a normal one: for instance in groups, the diagonal morphism

∆ : G→ G×G, ∆(g) = (g, g) may not have a normal image:

(a, b)(g, g)(a−1, b−1) = (aga−1, bgb−1)

for a, b, g in G. This is the case if and only if G is abelian.

The distinction between the different types of epimorphisms plays a central

part for the study of exactness properties of a category. For the category

Sets of sets, the epimorphisms are exactly surjective functions and they also

coincide with regular and, as a consequence of the Axiom of Choice, with split

epimorphisms. In contrast, in the category of rings with unit, Rings, the

inclusion Z → Q is a epimorphism but is not surjective. However, in varieties

in universal algebra, like Rings and monoids, Mon, regular epimorphisms are

exactly surjective morphisms. Regular epimorphisms are more adequate to

study quotients.

1.1.4. For an object A of X and two morphisms m : M → A and n : N → A

such that m factors through n, i.e. there is t : M → N with m = nt, we write

m ≤ n:

N

A

M

n

m

t

A subobject of A is an equivalence class of momorphisms, where n ≡ m if

and only if n ≤ m and m ≤ n. We write sub(A) for the order category of

subobjects over A. Similarly, a quotient of A is an equivalence class of regular

epimorphisms with domain A, where for two regular epimorphisms p : A→ Q

and q : A→ Q, p ≡ q if each one factors through the other one.

1.2 Relations and Regular categories

Regular and (Barr) exact categories allows us to have factorization of mor-

phisms with subobjects and quotients. They have played a central part in

category theory as abelian categories, elementary toposes and varieties of uni-

versal algebras are exact.

In order to study regular categories we must introduce internal relations
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and their relation with regular epimorphisms. Their connection is better un-

derstood if we recall that in varieties in universal algebra, quotients p : X → Y

are in bijection with congruences on X, equivalence relations compatible with

the operations of the algebra. For example, in the case of groups, if H ≤ G is

a subgroup we can define a relation in G,

x ≡ y if and only if xy−1 ∈ H,

this gives an equivalence relation in Sets but not in Grp; i.e.

R = {(x, y) ∈ G×G | x ≡ y}

is a subgroup of G × G if and only if H is a normal subgroup in G. And

this allows the quotient set G/H to have a well defined group structure. So in

this case there is a bijection of quotients, congruences and normal monomor-

phisms. In more general categories, we will work with internal relations instead

of congruences.

Regular categories are everywhere in category theory, we recommend [Joh02]

and [Bor94] for a more in depth treatment.

1.2.1. In a finitely complete category X, a relation R on a object X is a sub-

object r = (r0, r1) : R→ X ×X:

X ×X

R X .

p0 p1

r0

r1

r

A relation is called reflexive if there is a morphism σ such that the diagram

commutes:
R

X X ×X .

r

∆X=(1X ,1X)

σ

A relation is called symmetric if there is a morphism i such that the diagram

commutes:

X ×X X ×X

R R .

t=(p2,p1)

r

i

r

A relation is called transitive if there is a morphism m : R2 → R such that
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R2 R X
π0

m
π2

r0

r1

satisfies r0m = r0π0 and r1m = r1π2 where R2 is the pullback:

R2 R

R X .

π2

π0 r1

r0

A relation is an equivalence relation if it is reflexive, symmetric and transitive.

1.2.2. For a morphism f : A→ B we can construct an equivalence relation on

A in X, the kernel pair of f :

Eq2[f ] Eq[f ] A B
π0

m
π2

δ0

δ1

i

f

σ (1.1)

where Eq[f ] is the pullback of f along itself. In Sets this is the equivalence

relation on A saying that x ≡ y if and only if f(x) = f(y) for a function

f : A→ B.

A relation R is called effective if it is the kernel pair of a morphism f in X,

Eq[f ] = R.

1.2.3. We write Eq(X) for the category of equivalence relations and for an

object X, EqX(X) for the category of equivalence relations over X. Since

r : R → X × X in EqX(X) is reflexive we have ∆X ≤ r, so Rel(X) have a

initial (or bottom) object ∆X = (1X , 1X) : X → X × X. Moreover, there is

terminal object, the largest equivalence on X, ∇X = 1 : X ×X → X ×X:

X R X ×X

X ×X

σ

∆X

r

r

∇X=1X×X

and composing with projections p0, p1 : X×X → X, this yields a commutative

diagram:

X R X ×X

X X X

σ

1X 1X

(r0,r1)

r0 r1 p0 p1

1 1

5



Both the equivalence relations ∆X and ∇X are effective. The equivalence

relation ∆X = Eq[1X ] is called the discrete relation on X, and ∇X = Eq[τX ]

is called the indiscrete relation on X.

Monomorphisms can be characterized by their kernel pair:

Lemma 1.2.4. Consider a morphism f and its kernel pair Eq[f ], as in 1.1.

The following are equivalent for f :

1. f is a monomorphism.

2. the morphisms δ0, δ1 are equal.

3. δ0 or δ1 is an isomorphism.

4. σ is an isomorphism.

It is also useful to remember that for a morphism f and the pullback of f

along any morphism p in X:

ker(p∗(f)) ker(f)

P A

Y B

∼=

p∗(f) f

p

when have ker(p∗(f)) ∼= ker(f).

Definition 1.2.5. A finitely complete category X is regular if:

� coequalizers of kernel pairs exist in X;

� regular epimorphisms are pullback stable, that is:

for any pullback

C ×B A A

C B

p2

p1 f

g

of an regular epimorphim f along a morphism g, p1 is a regular epimorphism.

A regular category is called exact (in the sense of Barr [Bar71]) if all equiv-

alence relations are effective.

1.2.6. The category Sets of sets is exact. It is well-know that abelian categories

like Ab, Rmod and Grothendieck categories are exact ([Bor94]). Also algebras,
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AlgT , for an algebraic theory T , in the sense of Lawvere, are exact. These

include varieties of universal algebras (see [ARV10]).

The category F of torsion-free abelian groups, is given by the abelian groups

where only the trivial element has a finite order. Then F is regular since it is a

normal epireflective subcategory of Ab (section 1.4). But it is not exact; in Z
we can define the equivalence relation R as

x 'R y if and only if x− y = 2k for some k ∈ Z.

This equivalence relation is not effective. If R were effective, in particular,

R Z it should be the equivalence of its coequalizer. However, in the

quotient Z→ Z/ 'R we have that [x] + [x] = [0] for all x ∈ Z. Since Z/ 'R is

torsion-free, it must be trivial. But the kernel pair of Z → 0 is the indiscrete

relation ∇Z = Z× Z Z .

The category Top of topological spaces, is not regular, as regular epimor-

phisms are not pullback stable. However, the category Grp(Top) of topolog-

ical groups and Haussdorf groups, Grp(Haus), are regular, but the category

Grp(Cmp) of compact Haussdorf groups is exact, this has been studied in

[BC05].

Theorem 1.2.7. ([Bar71]) Let X be a regular category. Then X admits (reg-

ular epi, mono)-factorization, i.e. any arrow f : A → B has a factorization

f = mp with p a regular epimorphism and m a monomorphism. Moreover,

these factorizations are pullback stable and for a morphism f the factorization

is necessarily unique up isomorphism.

Proof. Let f : A→ B an arrow in X and consider the kernel pair Eq[f ]:

Eq[f ] A B

I

δ0

δ1 f

p
m

Then p is the coequalizer of the kernel pair and m is given by the universal

property of p. We will show that m is a monomorphism using 1.2.4. Consider

7



the diagram

Eq[f ] Eq[m]×I A A

A×I Eq[m] Eq[m] I

A I B

b

a

π2

π1 p

φ2

φ1

p2

p1 m

p m

where each square is a pullback. The whole square is a pullback and we can

assume δ0 = φ1a and δ1 = π2b. The arrow φ2a = π1b is an epimorphism as a

consequence of pullback stability of regular epimorphisms.

Now, we have

p1φ2a = pφ1a = pδ0 = pδ1 = qπ2b = p2π1b = p2φ2a

and since φ2a is epic then p1 = p2 and finally m is a monomorphism.

The uniqueness of the factorization follows from the fact that regular epi-

morphisms have the property that for a square

A B

C D

p

a b
t

m

with p a regular epimorphism and m a monomorphism there exists a unique t

such that tp = a and mt = b.

Using this property we can give an alternative definition of a regular cate-

gory.

Corollary 1.2.8. (See [BG04]) Let X be a finitely complete category. Then X
is a regular category if and only if any arrow admits a pullback stable (regular

epi, mono)-factorization.

1.2.9. Consider a morphism f : A→ B and its (regular epi, mono)-factorization

as in 1.2.7

A B

f(A)

f

ef mf

The image of f is the subobject mf : f(A)→ B.
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We introduce some useful properties of regular epimorphisms, the proofs

can be found in [BG04].

Proposition 1.2.10. Let X be a regular category. Then:

� if f is a regular epimorphism and a monomorphism then it is an isomor-

phism.

� if gf is a regular epimorphism then g is a regular epimorphism.

� if f and g are regular composable epimorphisms then gf is a regular

epimorphism.

� if f : A → B and g : X → Y are regular epimorphisms then f × g :

A×X → B × Y is also a regular epimorphism.

1.3 Normal categories and exact sequences

As mentioned before, in a pointed category X, normal and regular epimor-

phisms might be different. Since we will often use short exact sequences it will

be useful to work with normal categories instead of only regular ones.

Normal categories were introduced in [Jan10], see also [CDT06] and [BJ09].

Definition 1.3.1. A pointed regular category X is normal if every regular

epimorphism is normal. Equivalently, every morphism admits a pullback stable

(normal epi, mono)-factorization.

A sequence:

X Y Z
f g

is exact at Y if both

1. mf is kernel of g

2. eg is a cokernel of f .

where (ef ,mf ) and (eg,mg) are the regular epi-mono factorizations of f and

g. Consider

X Y Z

f(X) g(Y )

f

ef

g

egmf mg

9



notice that mf = ker(g) if and only if mf = ker(eg). When all regular epi-

morphisms are normal, then condition 2) follows from 1); if eg is a normal

epimorphism, it is a cokernel of some morphism but, in particular, it is also a

cokernel of its kernel mf . So, for a normal category, we can define:

Definition 1.3.2. In a normal category X a sequence

X Y Z
f g

is exact at Y if mf is a kernel of g.

With this definition we recall some natural properties that will hold in any

normal category, like the category Grp of groups.

Lemma 1.3.3. ([Jan10]) For a morphism f : X → Y in a normal category the

following conditions are equivalent:

1. f is regular epimorphism.

2. The sequence

X Y 0
f

is exact a Y .

Proof. The kernel of τY : Y → 0 is given by 1Y and it is equal to mf if and

only if f is a regular epimophism.

Proposition 1.3.4. ([Jan10]) For a normal category X with pullbacks the

following conditions are equivalent:

1. Any morphism having a trivial kernel is a monomorphism;

2. Any regular epimorphism having a trivial kernel is an isomorphism;

3. Any split epimorphism having a trivial kernel is an isomorphism.

Proof. The implications 1) ⇒ 2) ⇒ 3) are trivial. To prove 3) ⇒ 1) consider

f : X → Y a morphism with trivial kernel and the pullback of f along itself,

i.e. the kernel pair of f :

Eq[f ] X

X Y .

δ0

δ1 f

f

10



The morphism δ0 also has trivial kernel and it is a split epimorphism (since

Eq[f ] is a reflexive relation), so δ0 is an isomorphism. Similarly δ1 is isomor-

phism. This implies that f is a monomorphism by lemma 1.2.4.

Remark that since a cokernel is always the cokernel of its kernel, if we take

a cokernel of the kernel of f : X → Y with trivial kernel then the diagram

0 X

0 Y

f

is both a pullback and a pushout, so f is an isomorphism.

Corollary 1.3.5. ([Jan10]) For a normal category X the following conditions

are satisfied:

1. Any morphism in X having a trivial kernel is a monomorphism.

2. A sequence

0 X Y
f

is exact at X if and only if f is a monomorphism.

3. A sequence

0 X Y 0
f

is exact at X and Y if and only if f is an isomorphism.

1.3.6. For a morphism f : X → Y in a normal category X we have two distin-

guished short sequences given by the image factorization. Firstly, the sequence

0 ker(f) X f(X) 0
k(f) ef

is always exact. For a normal suboject k : K → X we will write the object

representing the cokernel of k as X/K. Similarly, we have a sequence

f(X) Y cok(f) 0
mf q(f)

(1.2)

but this may not be exact at f(X). This is expected even in the category

of groups, Grp, just notice that for a (not normal) subgroup, H ≤ G the

cokernel exists and is given by making quotient with NG(H), the smallest

normal subgroup of G containing H (we are implicity using that the cokernel

of a subobject exists in any normal category).
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A morphism f : X → Y is called proper if the monomorphism mf is normal,

and this happens if and only if the short exact sequence (1.2) is exact.

We introduce two important properties of normal categories:

Lemma 1.3.7. ([BJ09]). In a normal category X, pullbacks reflect monomor-

phisms, i.e. in a pullback

P A

E B

p∗(f) f

p

f is a monomorphism whenever p∗(f) is a monomorphism.

Proof. Since a monomorphism is characterized by the property of having a

trivial kernel, just consider the diagram:

ker(p∗(f)) P E

ker(f) A B

∼=

p∗(f)

p

f

Since p∗(f) is monic, ker(p∗(f)) is zero and so is ker(f).

In normal categories the Noether’s third isomorphism theorem holds:

Lemma 1.3.8. ([EG13]). Let X be a normal category. Then, given two normal

subobjects k : K → A and l : L→ A such that k ≤ l, i.e. k factors through l,

then there is an isomorphism

A/L ∼=
A/K

L/K

Proof. Consider the diagram given by the exact sequences of k, l and i : K → L:

0

0 K L L/K 0

0 K A A/K 0

A/L A/L

0

i

id

qi

l l′

k qk

ql q′

1

12



Taking k = li the arrow l′ is induced by the universal property of qi and,

respectively, q′ is induced by qk. First, l′ is a monomorphism since if we take

the pullback:

P ker(l′)

L L/K

p1

p0 k(l′)

qi

p0 must factors through K, this gives that k(l′)p1 = qip0 = 0. By stability

of pullbacks p1 is a normal epimorphism and ker(l′) = 0. Now q′ is a normal

epimorphism since when considering:

L A A/L

ker(q′) A/K A/L

l

φ

ql

qk id

k(q′) q′

the left hand square is a pullback and φ, induced by ker(q′), turns out to be

a normal epimorphism since qk is a normal epimorphism. It follows that the

sequence

0 L/K A/K A/L 0

is exact.

1.4 Reflective subcategories

For a category X, when considering a subcategory A of X, we actually mean

a full and replete subcategory of X, unless we explicitly say otherwise. By

a replete subcategory we mean “closed under isomorphisms”: if A ∈ A and

A ∼= B then B ∈ A.

1.4.1. Consider a subcategory A of X given by the inclusion, a fully faithful

embedding, i : A → X. Then A is called a reflective subcategory of X if there

is a left adjoint R : X→ A, called the reflector, of the inclusion i : A→ X:

X A .
R

⊥
i

(1.3)

The counit εA : Ri(A)→ A is always an isomorphism and, for an object X in

X, the componenet of the unit ηX : X → iR(X) is called the reflection of X.

13



The morphism ηX is universal: for any morphism g : X → A with A in A there

is a unique morphism γ such

X A

iR(X).

g

ηX
γ

The subcategory A is said to be closed under subobjects if every subobject

in X of an object in A lies in X. Similarly, A is closed under quotients if for

any regular epimorphism p : A→ B with A in A, then B is also in A.

Definition 1.4.2. Consider a reflective subcategory A of X, 1.3. We say that:

� A is regular-epireflective (or normal-epireflective) in X if the reflection

ηX is a regular (normal) epimorphisms for all X.

� ([CDT06]) A is a Birkhoff subcategory of X if it is normal-epireflective

and closed under quotients in X.

� A is a localization of X if the left adjoint r preserves finite limits.

The dual notions are also used. In particular, a subcategory B of X is coreflec-

tive if the inclusion j has a right adjoint t. And

� B is normal-monocoreflective in X if the coreflection of j a t, each com-

ponent of the counit, εX : jt(X)→ X is a normal monomorphism.

� ([CDT06]) B is a coBirkhoff subcategory of X if it is normal monocore-

flective closed under subobjects in X.

� B is a colocalization of X if the right adjoint t preserves finite colimits.

Its easy to see that A is complete (cocomplete) whenever X is so. More

precisely:

Lemma 1.4.3. Let A be a reflective subcategory of category X. For a small

category J and j : J → A then

lim j ∼= lim ij colim j ∼= R(colim ij),

provided that lim ij and, respectively, colim ij exists in X.

The dual of the lemma also holds for coreflective subcategories.
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1.4.4. For a reflective subcategory A of regular category X, if the reflections

ηX are regular epimorphisms then A is closed under subobjects. Indeed, for a

subobject s : S → A, from the diagram

S iR(S)

A iR(A)

ηS

s iR(s)

ηA

if A is in A, ηA is an isomorphism and then ηS is a monomorphism since s

is so. Then ηS is both a regular epimorphism and a monomorphism, hence an

isomorphism.

Another property of regular-epireflective categories is that ir(f) is a regular

epimorphism in X when f is a regular epimorphism in X,

A iR(A)

B iR(B)

ηA

f iR(f)

ηB

since both f and ηB are regular epimorphisms then so is iR(f). Moreover,

since A is closed in X under subobjects, image of morphisms in A are in A
(1.2.9), so a morphism f in A is a regular epimorphism if and only if i(f) is a

regular epimorphism in X.

1.5 Homological and semi-abelian categories

Even if in a normal category we can work with short exact sequences this

context is too general to properly reflect some more typical aspects of Grp. In

particular, we will be interested in a suitable non-abelian categorical setting to

adapt results from homological algebra, for example the five lemma, the nine

lemma, the snake lemma, etc. that still hold true in Grp.

Protomodularity and homological categories will be of most importance to

this end.

Definition 1.5.1. Let X be a category. The category of points Pt(X) is defined

as follows:

� Objects: Split epimorphisms (p, s) of X with a given splitting i.e. we have

morphisms

p : X Y , s : Y X

and ps = 1Y .
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� Morphisms: Pairs of morphisms (f1, f0) : (p, s)→ (p′, s′):

X X ′

Y Y ′

p

f1

p′

f0

s s′

such that p′f1 = f0p and f1s = s′f0.

Let X have pullbacks, the codomain functor:

π : Pt(X) X ,

sending a split epimorphism (p, s) as above to the codomain Y of p. This

functor is a fibration called fibration of points ([Bou91]).

The fiber of π of an object Y refers to the subcategory PtY (X) of Pt(X) of

split epimorphisms with codomain Y . And a morphism α : B → Y induces a

change-of-base functor among fibers:

α∗ : PtY (X) PtB(X)

given by “pulling back” along α, so for (p, s) in PtY (X) consider the pullback

of p along α

P X

B Y.

α∗(p) p

α

s

So, α∗(p) is a split epimorphism with the section induced by s′ = (1, sα) and

so α∗(p, s) = (α∗(p), s′).

Definition 1.5.2. ([Bou91]) A category X with pullbacks is called protomod-

ular if the functor α∗ is conservative for all morphisms α in X.

For a pointed category X, protomodularity is actually equivalent to the Split

Short Five Lemma to be valid in X. To recall, the Split Short Five Lemma

states that for a diagram

ker(p) X Y

ker(f) A B

α

p

β γ

s

f

t
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where (p, s) and (f, t) are split epimorphisms, so if α and γ are isomorphisms,

then so is β.

Proposition 1.5.3. For a pointed category X with pullbacks, the following

conditions are equivalent:

1. X is protomodular;

2. In X the Split Short Five Lemma holds.

Proof. Consider αY : 0→ Y and p : X → Y with a section s, applying α∗Y (p, s)

is actually given by ker(p),

ker(p) X

0 Y

k(p)

α∗Y (p,s) p

αY

s .

So given a morphism β : X → A in PtY (X)

X A

Y Y

β

p f

1Y

s t ,

we apply α∗Y (β), to obtain a diagram:

ker(p) X Y

ker(f) A Y

α∗(β)

p

β 1Y

s

f

t

then if, α∗Y is conservative then if α∗(β) is an isomorphism then β is so. This

shows that the Split Short Five Lemma is equivalent to the functors α∗ being

conservative for the morphism α : 0 → Y . It remains to prove that for a

morphism f : X → Y , the functor f∗ is conservative. Since αY = f ◦ αX ,

0 Y

X

αX

αY

f

we have, α∗Y = α∗Xf
∗. So f∗ is conservative when both α∗X and α∗Y are conser-

vative.

We present the main definitions:
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Definition 1.5.4. A category X is called

� homological if it is pointed, regular and protomodular.

� semi-abelian if it is homological, exact and has binary coproducts.

Semi-abelian categories were introduced in [JMT02], they have been study

widely. See [BG06], [BB04] and [BC05] for instance.

Examples 1.5.5. As expected, Grp and abelian categories are semi-abelian.

Examples are vast and range over many areas, firstly many varieties of universal

algebras like Lie Algebras, KLie, and the category of rings without unit, Rng,

not necessarily unital rings are semi-abelian ([JMT02]).

It was proved in [Bou96] that the category of Heyting algebras is protomod-

ular. It is also exact being an algebraic variety but not pointed so PtY (Heyt)

is semi-abelian, the same for Bool, boolean algebras. Following this, for a

topos E like Sets or LoCo locally connected spaces, the dual categories Eop are

protomodular, exact and cocomplete ([Bou96], [LM92]).

The category of topological spaces is not regular but the category Grp(Top)

of topological groups is homological and compact Hausdorff groups Grp(Hcmp)

is semi-abelian. Moreover, taking a semi-abelian algebraic theory T, the cate-

gory of models of T in compact Haussdorf spaces is semi-abelian ([BC05]).

Other examples, include KHopfcoc. cocommutative Hopf algebras and C∗-
algebras that are semi-abelian ([GR04] ,[GSV19]).

Remark 1.5.6. It is useful to recall from [Bou91], that for a regular category

X, the condition of protomodularity is equivalent to the next property: given

a commutative diagram in X:

A B C

X Y Z

(1) p (2)

with p a regular epimorphism, if the external rectangle, (1 + 2), is a pullback

then, the left hand square (1) is a pullback if and only if the right hand square

(2) is a pullback.

Definition 1.5.7. Let be X a normal category, and consider a diagram

A B

C D

m

p q

n
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then X:

� is ideal determined if each time we have p and q normal epimorphisms,

m a normal monomophism and n a monomorphism, then n is a normal

monomorphism.

� satisfies the Corresponce Theorem (CT) if each time we have p and q nor-

mal epimorphisms and m, n monomorphisms such that ker(p) ∼= ker(q)

then the diagram is a pullback.

Remark 1.5.8. It is known that a homological category is normal and it can be

proved that it also satisfies (CT), applying 1.5.6 to

ker(q) A B

0 C D ,

(1)

m

p (2) q

n

since n is mono, ker(n) = 0 then ker(p) = ker(q). Finally, (1) and (1 + 2)

are pullbacks and the results follows. Moreover, a homological category with

binary coproducts that is ideal determined is semi-abelian [JMT02].

A reflective subcategory A of X has limits and colimits, provided that they

exist in X. In particular, if X is pointed and/or protomodular then so is A.

Being regular or exact is a different situation.

Lemma 1.5.9. If A is a reflective subcategory of X as in 1.3, then:

� if A is regular epireflective and X is regular then A is regular.

� if A is Birkhoff and X is exact then A is exact.

� if A is a localization and X is regular/exact then A is regular/exact.

Proof. If A is regular epireflective, it suffices to prove pullback stability of regu-

lar epimorphisms. But since the inclusion i : A→ X preserves limits/pullbacks,

if p is a regular epimorphism in A for a pullback f∗(p) then i(p) (recall 1.4.4)

and i(f∗(p)) are regular epimorphisms in X and then so is i(f∗(p)) in A.

If A is Birkhoff, consider an equivalence relation E over X in A. Since X
is exact E is the kernel pair of its coequalizer in X but since A is closed under

quotients, the coequalizer is in A. And E is effective in A.

The case of localizations is different. Clearly, there is pullback stability of

regular epimorphisms since R is exact. Now, an equivalence relation E in A
is effective in X, E = Eq[f ] for some f in X, since R preserves limits then

E = Eq[R(f)].
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Corollary 1.5.10. If A is a regular epireflective subcategory of a homological

category X then A is homological. If A is a Birkhoff subcategory of a semi-

abelian category X then A is semi-abelian. If A is a localization of a semi-

abelian category X then A is semi-abelian.

To illustrate these lasts results, consider F the category of torsion-free

abelian groups, where an abelian group X is torsion-free if satisfies

xn = 0⇒ x = 0 for all x ∈ X.

F is clearly not closed under quotients in Ab, but is regular-epireflective

with the reflector given by

Ab F
F

⊥ , F (X) = X/T (X)

where T (X) is the torsion subgroup of X, the subgroup of elements of finite

order of X.

The category Ab of abelian groups is a Birkhoff subcategory of Grp. The

reflector is called the abelianization functor

Grp Ab

ab

⊥ , ab(X) = X/X ′

where X ′ = [X,X] is the commutator subgroup.

Finally, Grp, our canonical semi-abelian example, does not have any non-

trivial localisations, i.e. apart from 0 orGrp itself (originally proved in [Bor80]).

In contrast to abelian categories, Grothendieck categories or categories of mod-

ules over rings that have plenty of localizations, actually characterized by hered-

itary torsion theories ([Ste75], [Bor94]). For example, consider the category

QV ect of vector spaces over Q is a localization of Ab,

Ab QV ect .

Q⊗

⊥

Since Q is a field, it is a flat abelian group and Q ⊗ is an exact functor.

From this, we can notice that localizations and epireflective categories are very

different; Qvect is not epireflective in Ab, the unit is given by the mappings

x → 1 ⊗ x. And F, the torsion-free abelian groups in Ab has not a exact

reflector, it suffices to apply F to the exact sequence
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Chapter 2

Torsion theories

Torsion theories were introduced by Dickson in [Dic66] for abelian categories

and quickly provided diverse applications to categories of modules over rings,

[Ste75] and [Pop73]. Recently, they have been (re)-introduced in different non-

abelian contexts, for instance see [BG06], [CDT06] or [JT07]. Here we develop

an introductory study of torsion theories in our particular context following

[BG06], [CDT06].

Probably the easiest way is to start with the associated torsion subobject

of a torsion theory, which will be given by preradicals.

2.1 Preradicals

Through out this section we will fix a normal category X with cokernels. Unless

otherwise stated all the results in this section are proved in [CDT06] in a more

general setting, we include the proofs we consider relevant in our context of

normal categories.

It will be useful to remember that for a normal category X and Arr(X) the

category of morphisms of X and where morphisms are commutative squares,

taking kernel and cokernel is functorial and even gives an adjunction

Arr(X) Arr(X)

Cok

⊥

Ker
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and for a fixed object X in X this adjunction restricts to an adjunction:

X/X X/X

Cok

⊥

Ker

.

The next definition is a natural generalization of this adjunction when we

change X for the category End(X) of endofunctors of X with the object 1X .

2.1.1. For a pointed endofunctor (S, ρ) we mean an endofunctor S : X →
X provided with a natural transformation ρ : idX → S. And a copointed

endofunctor (r, σ) is r : X→ X with σ : r → idX:

X X
id

S

⇓ ρ , X X
r

id

⇓ σ .

For a pointed endofunctor (S, ρ) we define a copointed endofunctor by tak-

ing the kernel of ρ:

Ker(S, ρ) = (ker(ρ), k(ρ)), ker(ρX) X S(X)
k(ρX) ρ

.

Dually, the cokernel of a copointed functor gives a pointed functor:

Coker(r, σ) = (cok(σ), q(σ)), r(X) X cok(σX)
σX q(σX)

.

Moreover, Ker and Coker are functorial and give an adjunction:

{copointed endofunctors} {pointed endofunctors}

Coker

⊥

Ker

. (2.1)

Pointed and copointed functors define subcategories of X by fixed objects;

Fix(S, ρ) = {X | ρx iso} and Fix(r, σ) = {X | σx iso}, ([CDT06]).

We shall focus on preradicals, a special kind of copointed functors.

Definition 2.1.2. A (normal) preradical in X is a normal subfunctor r of

the identity of X, equivalently, a copointed functor (r, σ) with a normal σ; so

σX : r(X)→ X is a normal monomorphism for all objects X.
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In other words, for f : X → Y there is a commutative diagram:

X Y

r(X) r(Y )

f

r(f)

σX σY (2.2)

2.1.3. Since each kernel is the kernel of its cokernel and dually each cokernel

necessarily is the cokernel of its kernel; the adjunction of 2.1 restricts to a

equivalence:

{preradicals} {normal pointed endofunctors}

Coker

∼=

Ker

.

where by a normal pointed endofunctor (s, ρ) we mean that each object ρX is

a normal epimorphism.

With this in mind, with a preradical r and its counterpart R = Coker(r)

R(X) = X/r(X), we define the r-Torsion subcategory of r-torsion objects:

Tr = Fix(r, σ) = {X | r(X) = X}.

And the r-Torsion-free subcategory of torsion-free objects

Fr = Fix(R, ρ) = {X | R(X) = X} = {X | r(X) = 0}.

For a fixed preradical we will always have a short exact sequence for each object

0 r(X) X R(X) 0
σX ρX

.

Note that r(X) is not necessarily a torsion object or R(X) torsion-free, further

assumptions on r are needed for this.

Definition 2.1.4. ([CDT06]) A preradical r of X is called

� idempotent if r(r(X)) = r(X) for all objects X.

� radical if r(X/r(X)) = 0 for all objects X.

� hereditary if f−1(r((Y ))) = r(X) for every monomorphism f : X → Y .

� cohereditary if f(r(X)) = r(Y ) for every normal epimorphism f : X →
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Y .1

Note that a hereditary preradical r is necessarily idempotent, simply take

f = r(X) → X; similarly, a cohereditary preradical is a radical by taking the

quotient f = X → X/r(X).

2.1.5. For a preradical r, r is a radical if and only if R(ρX) is an isomorphism:

just consider the diagram

r(X/r(X))

0 r(X) X R(X) 0

RR(X) .

ρX

R(ρX)

So, since ρx is a normal epimorphism and R(ρX) is an isomorphism, the sub-

category Fr = Fix(R, ρ) is actually normal epireflective with the functor R as

the reflection.

On the other hand an idempotent preradical r exhibitis Tr as a normal

monocoreflective subcategory. In summary we have

Lemma 2.1.6. In X there are bijective correspondences:

{radicals} ' {normal-epireflective subcategories}op

and

{idempotent preradicals} ' {normal-monocoreflective subcategories}.

A subcategory A of X is closed under extensions if whenever we have a

short exact sequence in X

0 K X Q 0

with K and Q in A then so is X in A.

Proposition 2.1.7. Let r be a preradical of X, then

1. Tr ∩ Fr = 0

1This definition is adapted from [CDT] where X is chosen with a factorization system
(E,M), so the terminology E-cohereditary/M-hereditary is used and hence the lack of duality
or more precisely there is duality up to a factorization system. However, in normal categories
we have a canonical factorization system (NormEpi,Mono).
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2. Tr is closed under quotients.

3. Fr is closed under subobjects.

4. if r is a radical then Fr is closed under extensions.

5. if r is idempotent then Tr is closed under extensions.

Proof. 1) is trivial since X = r(X) being torsion and 0 = r(X) = X being

torsion-free. 2) and 3) are immediate from 2.2. If f is a quotient and r(X) = X

then σY r(f) is a regular epimorphism and so is σY a monomorphism and a

regular epimorphism, r(Y ) = Y . And if f is a monomorphism and r(Y ) = 0

then fσX = 0 but σX is monic. So r(X) = X.

4) Consider the commutative diagram for radical r

r(K) r(X) r(Q)

0 K X Q 0

R(K) R(X) R(Q)

k

ρK

p

ρX ρQ

If K and Q are in Tr then r(K) = K and R(K) = 0, So ρX factors through p

by p′ : Q → R(X) that is a normal epimorphism. Now since Q is in Tr then

so is R(X) being a quotient of Q, separately r is radical, r(X/r(X)) = 0 so

R(X) = X/r(X) is also torsion-free, then R(X) = 0. 5) is similar to 4).

Proposition 2.1.8. Let r be a preradical of X, then

1. r is hereditary if and only if r is idempotent and Tr is closed under

subobjects.

2. provided that X is ideal determined, r is cohereditary if and only if r is

a radical and Fr is closed under quotients.

Proof. 1) We have noticed that hereditary preradicals are idempotent. Next,

for a monomorphism m : X → Y with Y in TR, since

r(X) r(Y )

X Y

r(m)

σX σY

m
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is a pullback and σY is an iso then r(X) = X. Conversely, for a monomorphism

m : X → Y since r(Y ) = rr(Y ) is torsion and Tr is closed under subobjects

then m−1(r(Y )) is torsion. Then notice that r(X) ≤ m−1(r(Y )), and if we

apply r to m−1(r(Y )) ≤ X we have m−1(r(Y )) = r(m−1(r(Y ))) ≤ r(X).

2) For a normal epimorphism f : X → Y if r(X) = 0, since r is cohereditary

fr(X) = r(Y ) = 0 and Fr is closed under images. Conversely, consider the

diagram,

r(X) X R(X)

f(r(X)) Y Y/f(r(X)) := Z

ρx

f f ′

q

now since X is ideal determined r(X) is normal in X and so is f(r(X)) in

Y . Now for the induced arrow f ′ since f ′ρX = qf is a normal epimorphism,

also f ′ is a normal epimorphism. Since r is a radical and R(X) is torsion-

free so is Z. As expected we always have f(r(X))) ≤ r(Y ) and since Z is

torsion free, r(Z) = 0 and the composite r(Y ) → Y → Z is zero. Finally,

r(Y ) ≤ f(r(X)).

Applying the 2.1.6 with 2.1.8 we have:

Corollary 2.1.9. Following the definitions in 1.4.2. In a normal category X
there are biyective correspondences:

{hereditary preradicals} ∼= {co-Birkhoff subcategories}

and if X is ideal determined

{cohereditary preradicals } ∼= {Birkhoff subcategories}.

We conclude this section with a characterization of hereditary radicals

proved in [BG06] for homological categories.

Corollary 2.1.10. A radical r is hereditary if and only if the reflector R of

Fr preserves monomorphisms.

2.2 Torsion Theories

Definition 2.2.1. A torsion theory in a pointed category X is a pair (T ,F)

of subcategories of X such that:
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TT1 for all X ∈ T and Y ∈ F , every morphism f : X → Y is zero,

TT2 for every object X ∈ X exists a short exact sequence

0 TX X FX 0
tX ηX

with TX ∈ T and FX ∈ F .

T is the torsion part and F is the torsion-free part of the torsion theory. A

subcategory of X is called torsion/torsion-free if it is a torsion/torsion-free part

of a torsion theory.

Proposition 2.2.2. Given a torsion theory (T ,F) for the object X the se-

quence

0 TX X FX 0
tX ηX

is necessarily unique (up to isomorphism).

Proof. Let us consider

0 TX X FX 0

0 T ′X X F ′X 0

tX ηX

id

t′X η′X

exact sequences with TX , T ′X in T and FX , F ′X in F . The composites η′XtX and

ηXt
′
X are zero morphism by 1) of 2.2.1, so they induce morphisms α : FX → F ′X

and β : F ′X → FX with αηX = η′X and ηX = βη′X . By the universal properties

of cokernels p, p′; α and β are inverses. So FX ∼= F ′X . Similarly, T ′X
∼= TX .

Theorem 2.2.3. ([CDT06]) A pair of subcategories (T ,F) of a normal cate-

gory X is a torsion theory if and only if there is a unique idempotent radical r

such that Tr = T and Fr = F

Proof. Given a torsion theory (T ,F), first notice that, for a morphism f : X →
Y , taking the torsion or torsion-free part is functorial:

0 TX X FX 0

0 TY Y FY 0 .

tX

Tf

ηX

f Ff

t′X η′X

In particular, η′XftX = 0 then TY induces an arrow Tf . Analogously, we

have Ff making the right hand square commute. This allows one to define a

preradical r(X) = TX and R(X) = FX = X/TX .
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Given a preradical r and a morphism f : X → Y , is clear from

r(X) r(Y )

X Y .

r(f)

f

that if r(X) = X and r(Y ) = 0 then f factors through zero. So there are no

non-trivial morphism from Tr and Fr. Now given the exact sequence

0 r(X) X R(X) 0
σX ρX

if r is idempotent then r(X) is torsion and if r is a radical then X/r(X)

is torsion-free. Now we have Tr = T from the exact sequence. If tX is an

isomorphism then X is torsion and if X is torsion then X → FX is zero and

its kernel is an isomorphism. From Tr = T then r is idempotent. Analogously,

Fr = F and r is a radical.

2.2.4. In a torsion theory (T ,F) the torsion part and the torsion-free part

determine each other. T is a normal monocoreflectvie subcategory as in 1.4.2,

and a normal monocoreflective subcategory with a radical coreflector (i.e. the

idempotent preradical) is a torsion subcategory. And a full subcategory F is

torsion-free if and only if it is a normal epireflective with reflector F and the

kernel of F as in 2.1.1 is an idempotent radical, t = JT .

T X F
J

⊥
F

T

⊥
I

(2.3)

Now, for a normal category X and a torsion theory (T ,F) in X, applying

2.1.8, we have that T is closed under quotients, F is closed under subobjects

and both are closed under extensions. Moreover, the torsion theory (T ,F)

will be called hereditary if T is closed under subobjects and it will be called

cohereditary if F is closed under quotients. In other words, (T ,F) is hereditary

when T is a coBirkhoff subcategory of X and, similarly, is cohereditary if F is

a Birkhoff subcategory of X, (1.4.2).

Theorem 2.2.5. ([BG06]) Let X be a normal category. A pair of full subcat-

egories (T ,F) of X is a torsion theory in X if and only if

1. T ∩ F = 0.

2. T is closed under quotients and F is closed under subobjects.
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3. For every object X there is a short exact sequence

0 TX X FX 0
tX ηX

with TX in T and FX in F .

Proof. Clearly a torsion theory (T ,F) satisfies all conditions. Conversely, con-

sider an arrow f : X → Y with X in T and Y in F . Taking the image

factorization, f(X) is both torsion since X is in T and torsion-free since Y is

in F . So f(X) = 0 and f = 0.

2.2.6. In order to give a useful characterization of torsion-free subcategories

among reflective ones we need to introduce some definitions. Consider F a

normal epireflective subcategory of X with reflector F . Since ηX is a normal

epimorphism we have a short exact sequence

0 ker(ηX) X F (X) 0
kX ηX

. (2.4)

So we can define the full subcategories of X:

1. TF = {T | T ∼= ker(ηX) for some X}

2. F← = {T | Hom(T, F ) = 0 for all F in F}

3. Ker(F ) = {T | F (T ) ∼= 0}

It is easy to see that indeed we always have F← = Ker(F ) and F← ⊆ TF .

Also, notice that TF = F← if and only if the reflector F is a normal functor,

i.e. for all objects X, F (ker(ηX)) ∼= 0.

Theorem 2.2.7. ([BG06]) Let F be a full subcategory of a normal category

X . The following conditions are equivalent:

1. F is a torsion-free subcategory of X.

2. F is normal-epireflective (as in 1.4.2) of X and TF = F←.

3. F is normal-epireflective of X and Hom(T, F ) = 0 for all T in TF and F

in F .

4. F is normal-epireflective of X, F is closed under extensions and TF is

closed under quotients.

Proof. 1) ⇒ 2). Given a torsion theory (T ,F), we recall that F is always

normal epireflective. Let see that TF = F← = T . We always have F← ⊂ TF .
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Now let us see that TF ⊂ T . For T in TF , T is isomorphic to kernel of ηX in

TT2 for some X. Since T is closed under isomorphisms then T is in T . And

finally T ⊂ F← just by the definition of of torsion theory, TT1. 2) ⇒ 3), is

trivial from TF = F←. For 3) ⇒ 4) consider a quotient p : T → Y with T in

TF . By hypothesis ηY p = 0 so there is i making the diagram commute:

T

0 TY Y FY 0 .

i p

tY ηY

Since p is a normal epimorphism then so is tY , hence it is an iso and Y is in

TF . On the other hand, given a short exact sequence

0 F1 X F2 0
f g

with F1, F2 in F , there is l : ker(ηX) → F1 such that fl = kX but l = 0 and

hence kX = 0. Finally ηX is an isomorphism.

4) ⇒ 1). By 2.2.5 it is only required to prove TF ∩ F = 0. Given X in

TF ∩ F consider

0 X = ker(ηY ) Y F (Y ) 0
kY ηY

.

Since F is closed under extensions Y is in F so kY = 0 and X = 0.

Under these hypothesis of the theorem 2.2.7 the torsion theory is given

by (TF ,F) or, equivalently (F←, T ). Moreover, we shall be interested in the

conditions 1) and 2) of 2.2.7, so we have:

Corollary 2.2.8. Let F be a full subcategory of a normal category X. The

following conditions are equivalent:

1. F is a torsion-free subcategory.

2. F is normal-epireflective and the reflection F is normal, F (ker(ηX)) = 0.

As hinted from 2.2.7 closure under extensions is characteristic for both

torsion and torsion-free subcategories, and even in different settings as seen in

[CDT06] and [JT07]. For normal categories we will only mention:

Theorem 2.2.9. (see [CDT06]) Let X be a normal category. Then a normal

monocoreflective T of X is torsion if and only if it is closed under extensions. 2

2The correponding characterization for torsion-free subcategories also holds but additional
hypotheses are needed, for example some stability of normal monomorphisms along pushouts
of normal epimorphisms and also being ideal determined.
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Proof. Using the notation of section 2.1 since with a normal monocoreflective

subcategory is associated an idempotent preradical r, we shall prove that if

T = Tr is closed under extensions then r is also radical. Consider the pullback:

P X

r(X/r(X)) X/r(X).

p ρX

Since it is a pullback, ker(p) ∼= ker(ρX) ∼= r(X) and since normal epimorphisms

are pullback stable we have a short exact sequence

0 r(X) P r(X/r(X)) 0
p

so P is in T . Since T is coreflective then P ≤ r(X) and by the pullback diagram

also r(X) factors through P ; so P ∼= r(X). Finally p = 0 and r(X/r(X)) =

0.

2.2.1 The lattice of torsion theories

We will introduce an order in the class of torsion theories in a category X.

Lemma 2.2.10. Let τ = (T ,F) and σ = (S,G) torsion theories in a normal

category X. Then

S ⊆ T if and only if F ⊆ G.

Proof. Let t, s the idempotent radicals associated with τ and σ. Since torsion

subcategories are coreflective we have that S ⊆ T if and only if s(X) ≤ t(X) for

all objects X. So for Y in G, t(Y ) = 0 and then s(Y ) = 0 so finally Y ∼= G(Y ).

The converse is similar.

Definition 2.2.11. Given torsion theories τ = (T ,F) and σ = (S,G) in a

normal category X, we define the partial order:

σ ≤ τ if and only if S ⊆ T .

Equivalently, if and only if s(X) ≤ t(X) for all objects X. This order has a

top element (X, 0) and a bottom element (0,X), we will denote them as X, 0

respectively if there is no risk of confusion.

We will denote Xtors, for the (possibly big) lattice of all torsion theories of

X and Xhtors for the sublattice of hereditary torsion theories.
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In the particular case of X = RMod, the categories of modules over a ring

R, the notation (RMod)htors = Rhtors is used and it is always a small frame.

This lattice has been used extensively in the characterization of rings R (see

[Gol86]).

Lemma 2.2.12. Given torsion theories τ = (T ,F) and σ = (S,G) in a normal

category X with idempotent radicals t, s. If σ ≤ τ then for all objects X there

is a short exact sequence in X:

0 t(X)/s(X) G(X) F (X) 0

where F,G are the reflectors of F and G.

Proof. It follows form Noether’s third isomorphisms theorem 1.3.8 for the nor-

mal subobjects t(X), s(X) of X. More precisely, since F (X) = X/t(X) and

G(X) = X/s(X) we have

X/t(X) ∼=
X/s(X)

t(X)/s(X)
.

2.2.13. For torsion theories σ ≤ τ as in 2.2.12, we will be interested in the

functor given by the quotient of the preradicals, s, t:

t/s : X X , t/s(X) = t(X)/s(X).

By the previous lemma we have two short exact sequences in endofunctors of

X:

0 s t t/s 0

and

0 t/s G F 0 .

where G and F are the endofunctors given by the reflectors to the torsion-free

subcategories.

2.3 Torsion theories in algebra

Our most important example, actually, will be studied in the next chapter.

However, we provide some basic examples in order to clarify some of the theory

of this chapter and recall some historical results in order to give an overview

of some of the applications provided by torsion theories.
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2.3.1 Abelian categories

Torsion theories were introduce early in the 60’s by Dickson ([Dic66]) for abelian

categories. Quickly, they were used to study and even characterize noncommu-

tative rings via the torsion theories of their category of modules, RMod (see,

for example, the extensive monograph [Gol86] or [Ste75]). Historically, a first

major contribution is:

Theorem 2.3.1. 3(Maranda, Gabriel, see [Ste75]) For a ring R, there is a

bijective correspondence between:

1. Hereditary torsion theories.

2. Left exact radicals in Rmod.

3. Left Gabriel topologies.

4. Localizations of Rmod. 4

Here a Gabriel topology can be seem as the additive counter part of a

Grothendieck topology ([LM92]) for a ring R when it is considered as a category

of one element and Rmod as a category of additive presheaves over R. In this

case, a Gabriel topology reduces to a family of left ideals of R satisfying some

axioms.

Moreover, this is the basis for the Gabriel-Popescu theorem, [GP64] that

presents any Grothendieck category as a localization of a category of modules

with respect to a particular torsion theory (see [Ste75], [Pop73]).

2.3.2. As a first example: in Ab, the categories T of torsion abelian groups

and F of torsion-free abelian groups gives a hereditary torsion theory (T,F) in

Ab. So for a group X taking the torsion subgroup T (X), the subgroup of X of

elements of finite order, defines a hereditary radical.

T Ab F⊥
F

T

⊥

In a similar way, for a prime number p we have a hereditary torsion theory

given by the torsion subcategory Tp of p-torsion groups, where a group is said

to be of p-torsion if its elements have order a power of p.

3In [Bor94], the case of locally finitely presentable abelian categories is exposed. Using
Gabriel topologies is not possible, however the theorem includes the bijection with universal
closure operators.

4Originally, the term Giraud subcategory was used, a reflective subcategory with a reflec-
tion that preserves kernels. For abelian categories this is the same as preserving all finite
limits, hence a localization.
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Also in Ab consider the category Div of divisible abelian groups and the

category Red of reduced abelian groups, where a group is called reduced if the

only divisible subgroup is 0; then (Div,Red) is a non-hereditary torsion theory

of Ab. Clearly, Q is divisible but Z is reduced. Now, for a group X taking the

largest divisible subgroup d(X) of X, is only an idempotent radical.

Div Ab Red⊥
d

⊥

2.3.3. For a prime p and n ∈ N we define the full replete subcategory Tp,n
of Ab, whose objects are abelian groups whose elements have order pm with

m ≤ n. Clearly, Tp,n is closed under subobjects and quotients but it is not

closed under extensions in Ab. To see this, take p = 2 and n = 1, T2,1
∼= Z2V ect

the category of vector spaces over Z2, is suffices to consider

0 Z2 Z4 Z4/Z2 0 .

So Tp,n determines a hereditary preradical. Now, it is clear that in the

lattice Abhtors of hereditary of torsion theories of Ab the category T of torsion

abelian groups is maximal, this means that there in no non-trivial hereditary

torsion categories that contain T. This follows, that since a torsion subcategory

T of Ab containing T would have an abelian group with elements without finite

order and thus containing a copy of Z since T is closed under subobjects. Now,

since torsion categories are closed under coproducts and quotients in Ab, having

a generator implies that the torsion category T ∼= Ab.

On the other hand, the lattice Abhtors the subcategories Tp are minimal,

i.e. there no non-trivial hereditary torsion category contained in Tp. This is

easy to see, since a non-trivial torsion subcategory T of Ab contained in Tp
must have a p-abelian group and thus a copy of Zp since T is closed under

extensions. Hence, T contains all cyclics groups Zpn , a family of generators

of Tp. This also proves that Tp is the smallest hereditary torsion category

containing the categories Tp,n.

2.3.4. In abelian categories, it is very natural to ask when the torsion theory

splits, i.e. when the torsion subobject t(X) is a direct summand of X, so

0 t(X) X F (X) 0
σx ηX

is a split short exact sequence and X ∼= t(X)⊕ F (X). Clearly, our most basic

example, (T,F) in Ab, does not satisfy this. But since Z is a noetherian ring, the

36



category Abf.g. of finitely generated abelian groups is an abelian subcategory

of Ab and, indeed, the restriction of (T,F) to Abf.g. splits.

A second elementary example, torsion abelian groups T being a hereditary

torsion subcategory of an abelian category is itself abelian. Now, recall that a

torsion group is a direct sum of its p-components or p-torsion,

T (X) =
⊕
p

p(X).

So each torsion theory of Tp for each prime p splits in T. In fact, every hered-

itary torsion theory in T splits since the torsion subgroup is determined by

choosing a family of primes L = {pi}i and thus defining the torsion subgroup

as

TL(X) =
⊕
i∈L

pi(X).

Moreover, (T ,F) is a hereditary torsion theory in T if and only if (F , T ) is

a torsion theory in T .

([Ste75]) For Rmod and a torsion theory (T ,F), if there is a central idempo-

tent e of the ring R such that t(X) = eX then (T ,F) splits. Closely related to

this problem, is to study when a torsion category T is also torsion-free, called

a torsion torsion-free subcategory or TTF for short. So T is a TTF subcate-

gory of X when there is F and C subcategories such that (C, T ) and (T ,F) are

torsion theories for X. TTF subcategories can be found outside abelian cate-

gories, for example in triangulated categories ([BR07]) and in chapter 4 we will

introduce an example of a TTF subcategory in a normal ideal detemermined

category.

2.3.2 Non-abelian categories

2.3.5. In Grp, taking the commutator subgroup G′ of a group G, the subgroup

generated by all the commutator elements [a, b] = aba−1b−1, is a radical. The

category Ab is a normal epireflective subcategory of Grp where the reflector

is the abelianization functor ab(G) = G/G′. Ab is reflective in Grp but not

torsion-free, clearly the commutator is not idempontent. If we consider the

categories introduced in 2.2.6 we have

ker(ab()) = Ab← = {G | G′ = G}

i.e. its the category of perfect groups (groups such that G = G′). And any

non-abelian group with order p3 with p prime, like the dihedral D4 or the
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quaternion group H, is in TF but not in ker(ab()).5

Definition 2.3.6. Let A be a reflective subcategory of a normal category X as

in 1.3. Then the reflector R is called:

� [BCGS08] a protolocalization if R preserves short exact sequences;

� [EG10] a protoadditive reflector if R preserves split short exact sequences.

For abelian categories a localization and protolocalization are the same, and

being protoadditive means to preserve finite products.

It was proved in [EG15] (Theorem 2.6), that hereditary torsion theories in

homological categories have a protoadditive reflection and in [CGJ18] is shown

that Grp does not have any non-trivial protoadditive reflector or protolocaliza-

tions. So in Grp any hereditary torsion theory is trivial. But a non hereditary

torsion theory example in Grp is given by adapting (T′,F′) where torsion-free

groups are taken in the usual sense and torsion groups are groups generated

by elements of finite order. In order to clarify why this torsion theory is not

hereditary take GL2(Q), the invertible matrix group of 2× 2 with coefficients

in Q. Let

A =

(
0 1

1 0

)
, B =

(
0 2

1/2 0

)
, AB =

(
1/2 0

0 2

)

thus H =< A,B > is torsion since both A,B have order 2 but but AB has no

finite order, so < AB >∼= Z is torsion-free.

2.3.7. In [GKV16] it is proved that the category HopfK,coc of cocommutative

Hopf algebras over a field K with characteristic zero is a semi-abelian category

and moreover there is a hereditary torsion theory given by

LieK HopfK,coc Grp⊥ ⊥

the torsion subcategory as LieK the category of Lie alegbras over K and the

torsion-free subcategory is Grp. Moreover, the reflector of this torsion theory

is also a localization ([GKV18]).

5It follows from the fact that for a non-abelian group G with order p3 with p prime it has
G′ = Z(G) ' Zp
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2.4 Torsion theories and localizations

We shall study some properties that are well-known in abelian categories but

have been overlooked in the non-abelian context and need special attention.

2.4.1 Localizations and hereditary torsion subcategories

6

The next result is based on 2.3.1. First, notice that given a reflection R a i
of a pointed category X with unit η, for an object X then R(X) ∼= 0 if and

only if ηX is a zero morphism.

Theorem 2.4.1. Let A be a protolocalization as in 2.3.6 of a normal category

X with reflector L and unit η. The subcategories of X

TL = ker(L) = {X | L(X) ∼= 0} = {X | ηX = 0}

and

FL = {X | ηX : X → iL(X) is monic}

define a torsion theory (TL,FL) in X.

Proof. TT1). For a morphism f : X → Y consider the diagram given by the

naturality of η:

X Y

iL(X) iL(Y ) .

ηX

f

ηY

iL(f)

Now, if ηX = 0 and ηY is monic is clear that f is zero.

TT2). Consider for an object X the regular epi-mono factorization (p,m)

of ηX and the commutative diagram

0 ker(ηX) X ηX(X) 0

iL(X) .

k p

ηX m

6This section is expanded from [Lop22b].
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To see that ker(ηX) is torsion, consider the commutative diagram:

ker(ηX) X

iL(ker(ηX)) iL(X) .

ηker(ηX )

k

ηX

iL(k)

Since L is preserves short exact sequences then iL(k) is monic and since ηxk = 0

this implies that ηker(ηX) = 0. To see that ηX(X) is torsion-free consider the

diagram:

X iL(X)

ηX(X)

iL(X) iLiL(X)

iL(ηX(X)) .

ηX

p

ηX ηiL(X)

m

ηηX (X)

iL(ηX)

iL(p) iL(m)

Notice that since L is a reflector then iL(ηX) and ηiL(X) are isomorphisms.

Since iL(M)ηηX(X) is a monomorphism then ηηX(X) is also a monomorphism.

Corollary 2.4.2. Let A be a localization of a normal category X then there

is a torsion theory (TL,FL) as in 2.4.1.

Corollary 2.4.3. The torsion theory (TL,FL) induced by a protolocalization

L a i of a normal category X is normally hereditary (see 2.4.5 below), i.e. the

category T is closed under normal subobjects.

Proof. Since L preserves short exact sequences it preseves kernels, so if m :

S → X is a normal monomorphism with X torsion then L(S) = 0.

Corollary 2.4.4. The torsion theory (TL,FL) induced by a localization L a i
of a normal category X is hereditary.

Proof. Since L is exact it preserves monomorphism so if m : S → X with

L(X) = 0 then L(S) = 0.

It is also worth mentioning that, under the hypothesis from above, a local-

ization L : X→ A induces a preradical on X as r = ker(η), so it can be proved

that TL = Tr.
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Since we are working with different kind of monomorphisms we can intro-

duce weaker notions of hereditary torsion theories.

Definition 2.4.5. A preradical r in a normal category X is called normally

hereditary if for all normal subobjects m : X → Y the diagram

r(X) r(Y )

X Y

r(m)

σX σY

m

is a pullback. Equivalently, form 2.1.8 (the same proof can be easily adapted),

a preradical r is normally hereditary if and only if r is idempotent and the

subcategory Tr is closed under normal subobjects.

Moreover, we say:

� A torsion theory (T ,F) in a normal category X is called normally hered-

itary if T is closed under normal subobjects;

� ([GR07]) A torsion theory (T ,F) in a normal category X is called quasi-

hereditary if T is closed under regular monomorphisms, i.e. for every

equalizer e : E → T with T in T then so is E in T .

Lemma 2.4.6. For r a preradical in a normal category X the following are

equivalent:

1. r is normally hereditary;

2. For all normal subobject m : X → Y , r(X) = X ∩ r(Y );

3. The preradical r : X → X is left exact, i.e. it preserves left exact se-

quences.

Proof. 1) ⇔ 2) is trivial from the definition. 2) ⇔ 3) is also easy to see, just

consider the commutative diagram in X

0 r(X) ∩K r(X) r(Y )

0 K X Y 0 .

y

r(f)

k f

Since r(X)∩K is the kernel of r(f) then r is left exact if and only if r(X)∩K =

r(K).

We recall that for a coreflective subcategory and in particular for a torsion

subcategory T of X, colimits in T are computed as in X but limits are not

necessarily computed as in X, recall 1.4.3.
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Lemma 2.4.7. Let (T ,F) be a normally hereditary torsion theory of a normal

category X. Then T is closed under kernel pairs of arrows f : A → B with A

in T .

Proof. Consider the commutative diagram

ker(p1) Eq(f) A

ker(f) A B .

∼=

p1

p0 f

f

Since T is closed under normal subobjects and A is torsion then ker(f) is tor-

sion. Now, since T is closed under extensions in X and we have the isomorphism

ker(f) ∼= ker(p1) then Eq(f) is torsion.

Lemma 2.4.8. Let (T ,F) be a normally hereditary torsion theory of a normal

category X and the inclusion i : T → X preserves pullbacks. Then T is also a

normal category. Moreover, if X is a normal exact category then T is also a

exact normal category.

Proof. We will first prove that an arrow q in T is a regular epimorphism in

X if and only if it is a regular epimorphism in T . Clearly, if q is a regular

epimorphism in T and the inclusion i : T → X preserves colimits then q is

a regular epimorphism in X. Now, if q is a regular epimorphism in X it is a

coequalizer of its kernel pair Eq(q) in X and, since T is closed under kernel pairs

in X we have the isomorphism Eq(q) ∼= t(Eq(q)), so q is a regular epimorphism

in T . Moreover, since T is normally hereditary normal epimorphisms coincide

with regular epimorphisms in T .

To prove pullback stability of regular epimorphism consider the pullback

diagram in T :

P X

A B

p′ p

with p a regular epimorphism in T . Since the inclusion i : T → X preserves

pullbacks and quotients, we have that p is a regular epimorphism in X, and so

p′ is a regular epimorphism in T .

Finally, since T is closed under quotients and X is exact any equivalence

relation in T must be effective and T is exact.

Notice that if i : T → X preserves pullbacks, then it preserves finite limits

since it obviously preserve the zero object. In the context of a homological
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category X we have:

Proposition 2.4.9. ([GR07], Theorem 3.3) Let (T ,F) a torsion theory in a

homological category X. The following conditions are equivalent:

1. (T ,F) is quasi-hereditary

2. the associated idempotent radical t : X→ X preserves finite limits.

3. the associated idempotent radical t : X→ X preserves equalizers.

4. for every regular subobject e : E → A in X, then F (e) is a monomorphism

in F .

In the abelian context, hereditary, normally hereditary and quasi-hereditary

are the same and the idempotent radical t is left exact if and only if it preserves

finite limits as it is shown in 2.3.1.

Theorem 2.4.10. Let (T ,F) be a torsion theory in a homological category

X. If (T ,F) is quasi-hereditary then T is a homological category. Accordingly,

if (T ,F) is hereditary then T is a homological category.

Proof. It follows form 2.4.8 and 2.4.9 that T is regular. It remains to see that

T is protomodular, but this follows form the fact that t preserves finite limits

and so the inclusion i : T → X preserves exact sequences. Notice that i is also

conservative.

Corollary 2.4.11. If (T ,F) is a hereditary torsion theory in a semi-abelian

category X then T is a semi-abelian category.

Proof. Since T is coreflective in X it is finitely complete and finitely cocomplete.

It follows from 2.4.8 and 2.4.9 that T is exact. Since the inclusion i : T → X
preserves exact sequences T is protomodular and finally T is semi-abelian.

2.4.2 Sheaves over a topological space

Beside 2.3.7 not many examples of (non-abelian) localizations of semi-abelian

categories have been studied. We will study a large family of examples using

the category of sheaves over a topological space. We recall the fundamentals

using [LM92] and [CV04] as main references.

2.4.12. We fix a topological space X. Consider the category given by the

topology O(X) of X, i.e. the category given by the preordered set of open sets

of X. The objects of O(X) are the open sets of X and there is exactly one

morphism U → V if U ⊆ V for U, V open sets of X.
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The category of presheaves over X in Sets is the functor category

psh(X, sets) = [O(X)op, Sets].

So a presheaf P is a contravariant functor:

P :
O(X)op Sets

U ⊆ V P (V )→ P (U) .

Usually, the morphism P (V ) → P (U) is written as restriction of elements,

f 7→ f |U for f ∈ P (V ).

Definition 2.4.13. A presheaf P is called a sheaf if is satisfies: for each open

covering U = ∪iUi, i ∈ I for an open U of X there is an equalizer diagram:

P (U)
∏
i P (Ui)

∏
i,j P (Ui ∩ Uj)e

p

q

where for f ∈ P (U), e(f) = {f |Ui}i and for a family fi ∈ P (Ui)

p(fi) = {fi|Ui∩Uj}, q(fi) = {fj |Ui∩Uj}.

We write sh(X,Sets) for the full subcategory of sheaves of psh(X,Sets).

Sheaves capture the local properties of X. So, for example, for a topological

space Y we have the sheaf over X of continuous functions

Cont( , Y ) : O(X)→ Sets, Cont(U, Y ) = {f : U → Y | is continuous}.

But in general, the presheaf of constant functions Cte( , Y ) : O(X) → Sets is

not a sheaf.

The category sh(X,Sets) is a localization of psh(X,Sets), we will describe

the reflector usually called the “sheafification” functor.

2.4.14. ([LM92]) For a continuous function p : Y → X, we have the sheaf of

local sections:

Γ(p) : O(X)op → Sets, Γ(p)(U) = {s : U → E | ps = 1U}.

This defines a functor:

Γ : Top/X sh(X,Sets) .

44



Now, consider a presheaf P over X and for x ∈ X, the set of open sets of

X that contain x is a filtered family, so we define the Stalk Px of P at x as the

“downwards” colimit:

Px = colimx∈UP (U) .

For p we can define a continuous function p : ΛP → X as follows. Consider the

disjoint union of all stalks of p and the morphism p as:

ΛP =
∐
x

Px, p :
ΛP X

([f ] ∈ Px) x

Then for each s ∈ P (U) for an open U we define a function ṡ:

ṡ :
U ΛP

x ([s] ∈ Px) ,

then we give ΛP the topology by taking as base of opens all the sets ṡ(U) ⊂
ΛP . This topology makes p and each ṡ continuous. Moreover, the morphism

p : ΛP → X is a local homeomorphism (also called étale); each element of ΛP

has a open neighborhood which is mapped by p homeomorphically onto an

open subset of X.

The construction of ΛP is functorial and we have a diagram:

psh(X,Sets) Top/X

sh(X,Sets) Et/X .
Γ

Γ

Λ

Λ

Theorem 2.4.15. (see [LM92]) For any topological space X there is an ad-

junction:

psh(X,Sets) Top/X

Λ

⊥

Γ

.

This adjunction restricted to sh(X,Sets) and Et/X yields an equivalence:

sh(X,Sets) Et/X

Λ

∼=

Γ

.
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Moreover, Sh(X,Sets) is a reflective subcategory of psh(X,Sets) and Et/X is

a coreflective subcategory Top/X.

Thus the sheafification functor S is given by

S = ΓΛ : psh(X,Sets) sh(X,Sets) .

The reflector S is a localization since both Γ and Λ preserve finite limits. It

follows from the fact that in psh(X,Sets) limits and colimits are computed

component-wise and that in Sets finite limits and filtered colimits commute,

in particular taking stalk at a point x ∈ X commutes with finite limits.

2.4.16. The category psh(X,Sets) is exact since it is a functor category over

Sets, and thus sh(X,Sets) being a localization of an exact category is also

exact. Now, we will consider the category psh(X,Grp) of presheaves over X on

groups, a presheaf P over X on groups is nothing than a contravariant functor

P : O(X)op → Grp. So now each sets P (U) is a group and the restrictions

P (V )→ P (U) are group morphisms.

We will introduce a definition that will also be used in the next chapters.

2.4.17. A group object or internal group in a category X with products and

terminal object 0 is a object G with morphisms: e : 0 → G, m : G2 → G and

i : G→ G such that the diagrams commute: the identities

G G2 G

G

(1,e)

1
m

(e,1)

1

the associativity

G3 G2

G2 G

p0×m

m×p2 m

m

and the inverses

G G2 G

G

(1,i)

1
m

(i,1)

1

We write Grp(X) for the category of internal group objects in X.

2.4.18. Since in psh(X,Sets) limits are computed component wise we have

Grp(psh(X,Sets)) ∼= psh(X,Grp). Now, recall that limits in Grp are com-
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puted as in Sets, so for a P in psh(X,Grp) the diagram in 2.4.13:

P (U)
∏
i P (Ui)

∏
i,j P (Ui ∩ Uj)e

p

q

is an equalizer in Grp if and only if it is an equalizer in Sets. In other words

P is a sheaf if UP : O(X)op → Grp → Sets is a sheaf in Sets, where U is

the forgerful functor. This also proves that Grp(sh(X,Sets)) ∼= sh(X,Grp).

Since both psh(X,Sets) and sh(X,Sets) are exact categories we have that

psh(X,Grp) and sh(X,Grp) are semi-abelian (see [BB04]), since Grp(X) is

exact protomodular whenever X is exact.

It is also worth studying Grp(Top/X). In Top/X the terminal object is 1X

and the product of two objects f : A→ X, g : B → X is given by the pullback

in Top:

A×X B B

A X .

p1

p0 g

f

(2.5)

If we have a group object (p : G → X, e, i,m) in Top/X, notice that in G×X
G = {(a, b) ∈ G×G | p(a) = p(b)} the elements of the product are pairs (a, b)

of elements in G that are in the same fibre p−1(x) for some x ∈ X. From the

commutative diagram:

G×X G G

X

m

p′
p

we have that pm(a, b) = p′(a, b) = p(a) = p(b) = x. So the operation m is

restricted to each fibre:

G×X G G

p−1(x)×X p−1(x) p−1(X) .

m

m

Similarly, also the morphism i is restricted to each fibre. So a group object in

Top/X can be described as a continuous function p : G→ X where each fibre

p−1(x) is a group and the induced operations m : G×X G→ G, i : G→ G and

e : X → G are continuous.

It is worth mentioning that the pullback of two local homeomorphisms is a

local homeomorphism.
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2.4.19. The definition of a group object only requires finite products, so a func-

tor F : A → B that preserves finite products induces a functor F : Grp(A) →
Grp(B). The functor Γ : Top/X → psh(X,Sets) preserves binary products.

Just consider 2.5 and for an open sets U and sections sf : U → A and Sg :

U → B such that fsf = 1U , gsg = 1U define a section (sf , sg) : U → A×X B

and, conversely, a local section of s : U → A ×X B with projections induces

p0s and p1s local sections of f and g; so Γ(fp0 = gp1) ∼= Γ(f)× Γ(g).

The functor Λ : psh(X,Sets) → Top/X also preserves finite products.

Indeed, in Sets, filtered colimits commute with finite products and coproducts

commute with pullbacks, we have that a product of presheaves P×Q is mapped

to

∐
x Px ×Qx

∐
xQx

∐
x Px X.

in Top/X.

Finally the adjunction from 2.4.15

psh(X,Grp) Grp(Top/X) .

Λ

⊥

Γ

gets restricted to

psh(X,Grp) sh(X,Grp)

ΓΛ

⊥

i

;

which is a localization of semi-abelian categories.

Let N be the full subcategory of psh(X,Sets) given by the presheaves P

such that the stalks are trivial i.e. Px = 0 for all x ∈ X, such presheaves

are called negligible ([Pop73]). The previous localization induces a hereditary

torsion theory as in 2.4.1. We can characterize the torsion subcategory as

follows.

Proposition 2.4.20. For a topological space X. Let

S = ΓΛ : psh(X,Grp)→ sh(X,Grp)

the localization as in 2.4.19 and the torsion theory (T ,F) in psh(X,Grp) as
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in 2.4.1. Then T = Ker(S) ∼= N where N is the subcategory of negligible

presheaves over X.

Proof. Since psh(X,Grp) ∼= Grp(Top/X), a presheaf P in psh(X,Grp) is in T
if and only if Γ(P ) ∼= 1X :

Γ(P ) =
∐
x Px X

X

∼=

p 1X

Moreover, the fibres of p and 1X are isomorphic for each x ∈ X, so P is in T
if and only if each Px = 0 for each x.

In 2.4.18 we can replace Grp by any other algebraic theory T. The category

TAlg of models in Sets also will satisfy psh(X,TAlg) ∼= TAlggpsh(X,Sets).

The reason is due mainly to the fact that all limits and filtered colimits in TAlg
are computed as in Sets ([ARV10]) and for a T-algebra in Top/X this means

that each operation is restricted to fibres. In [BJ02] algebraic theories T such

that TAlg is semi-abelian are characterized. Any semi-abelian algebraic theory

will then satisfy 2.4.20.
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Chapter 3

Torsion theories and

internal groupoids

As a first step towards simplicial objects, we shall focus on the category of inter-

nal groupoids in X. We will introduce two examples of torsion theories for in-

ternal groupoids. For the particular case of Grp, internal groupoids correspond

to Whitehead’s crossed modules so the torsion theories in internal groupoids

are also studied via normalization as torsion theories in crossed modules.

The concept of Mal’tsev category is introduced, first, as a more general

context for categorical algebra, since homological/semi-abelian categories are

Mal’tsev categories. And equally important, the Mal’tsev axiom has important

consequences in the study of internal groupoids. Firstly, reflexive relations are

necessarily equivalence relations and, second internal categories are actually

internal groupoids. Moreover, simplicial objects in Mal’tsev categories always

satisfy the Kan condition which is needed to define an homotopy relation in

simplicial objects (this shall be discussed in the next chapter). We recommend

[BB04] as a complete reference for Mal’tsev categories.

Crossed modules were introduced by Whitehead ([Whi41]), mainly as a

structure useful in algebraic topology. Now they provide an example of a

semi-abelian category that is studied in its own right. We will review the

fundamentals of crossed modules of groups and expose the relations between

crossed modules, precrossed modules and groups. As the main reference in

crossed modules we will use [BHS10] and for a more in-depth treatment [LLR04]

,[ACL07], [CCG02], [LG94]

Torsion theories in internal grupoids have been studied since their first

appearances in the non-abelian context and have provided different applications

51



since, for example [BG06], [EG10], [EG13], [EG15] and [Man15].

3.1 Internal groupoids in Mal’tsev categories

Definition 3.1.1. An internal category X in a category with pullbacks X is

given by a diagram in X:

X2 X1 X0
π0

m
π2

δ0

δ1

e

where

1. X0 is the “object of objects”;

2. X1 is the “object of morphisms”;

3. X2 is the “object of composable morphisms”.

and the morphisms δ0, δ1, e, m that are called the domain, codomain, identity

and composition morphisms respectively. These morphisms are required to

satisfy the “equations of a category” such as domain/codomain of the identities,

associativity of the composition, etc. More precisely, the square

X2 X1

X1 X0

π2

π0 δ0

δ1

is required to be a pullback and the morphisms satisfy the equations

δ0e = δ1e = 1X0
, δ1π2 = δ1m, δ0π0 = δ0m, m(eδ0, 1X1

) = 1X1
= m(1X1

, eδ1)

where (eδ0, 1X1), (1X1 , eδ1) are induced by the pullback X2 and taking the

pullback

X3 X2

X2 X1 .

p1

p0 π0

π1

the equation m(mpo, δ1p1) = m(δ0p0,mp1) is satisfied.

A morphism f : X → Y of internal categories is given by a pair of mor-

phisms (f0, f1) in X such that
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X2 X1 X0

Y2 Y1 Y0

π0

m
π2

(f1,f1)
δ0

δ1

f1

e

f0

π0

m
π2

δ0

δ1

e

commutes serially, i.e. f0δ0 = δ0f1, f1e = ef0, f1m = m(f1, f1) and so on. A

morphism f of internal categories is a normal monomorphism if and only if f0

and f1 are kernels in X and, if X is a semi-abelian or homological category, f

is a normal epimorphism if and only if f0 and f1 are normal epimorphisms (see

[BG00]).

Definition 3.1.2. An internal category X is a groupoid, “if every arrow is

invertible”, i.e. if it is provided with i : X1 → X1,

X2 X1 X0
π0

m
π2

δ0

δ1

i

σ0

such that it “inverts morphisms”, i.e.:

δ0i = δ1, δ1i = δ0, m(1X1
, i) = eδ0, m(i, 1X1

) = eδ1.

When X has finite products and a terminal object 0:

� an internal group or group object in X is a groupoid X in X such that

X0 = 0 (so the pullback X2 is the product X2
1 ), i.e. it looks like

G2 G 0
p0

m
p2

i

for an object G, where p0, p2 are the product projections.

� An abelian group object is a group object such that m is abelian, i.e.

mt = m where t : G2 → G2 is the twist morphism, t = (p2, p0).

An internal group G in X, is usually defined as an object G with morphisms

m : G2 → G, e : 0 → G and i : G → G so we have the commutative diagrams
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for the “equations of groups”: the identities

G G2 G

G

(1,e)

1
m

(e,1)

1

the associativity

G3 G2

G2 G

p0×m

m×p2 m

m

and the inverses

G G2 G

G

(1,i)

1
m

(i,1)

1

which correspond exactly to the diagrams given by the definition of an internal

groupoid.

For a category X with finite limits, we write Cat(X), Grpd(X), Grp(X),

Ab(X) and Eq(X), Rrel(X) for the categories of internal categories, internal

groupoids, internal groups, internal abelian groups, internal equivalences rela-

tions and internal reflexive relations in X, respectively. Clearly, we have

Eq(X) ⊆ Grpd(X) ⊆ Cat(X), Eq(X) ⊆ Rrel(X)

and

Ab(X) ⊆ Grp(X) ⊆ Grpd(X) .

Definition 3.1.3. ([CLP91]) A category X is called a Mal’tsev category or is

said to satisfy the Mal’tsev property if any internal reflexive relation in X is an

equivalence relation, i.e., Rrel(X) = Eq(X).

3.1.4. A varieties of universal algebras a category is Mal’tsev if and only if there

is a ternary operation p called the Mal’tsev operation that satisfies p(x, y, y) = x

and p(x, x, y) = y for all x and y. So Grp is a Mal’tsev category since we

have p(x, y, z) = xy−1z and using the same operation any variety having an

under-lying group structure is still a Mal’tsev category. If a category X is pro-

tomodular then X also satisfies the Mal’tsev property, this includes homological

and semi-abelian categories. But being normal/regular and the Mal’tsev prop-

erty are completely independent conditions, we can even have a normal ideal

determined category that fails to be Mal’tsev (see [JMTU10] and [BB04]).
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Clearly, a group G is exactly an internal group in Sets. However, it is

not an internal group in Grp unless it is abelian, m is required to be a group

morphism, so Grp(Grp) = Ab(Grp) = Ab. More generally, in a Mal’tsev

category X internal groups are always abelian, so Ab(X) = Grp(X)1.

A crucial result for Mal’tsev categories is:

Theorem 3.1.5. ([CPP92]) If X is a Mal’tsev category then any every internal

category is a groupoid, Cat(X) = Grpd(X)2.

Similar to the fundamental groups of topological spaces/simplicial sets we

introduce:

Definition 3.1.6. Let X be a normal Mal’tsev category. The connected com-

ponents functors defined as

π0 : Grpd(X) X , π0(X) = coeq(δ0, δ1)

and a groupoid X is called connected if the morphism (δ0, δ1) : X1 → X2
0 is

a normal epimorphism. So a groupoid is connected if the morphism (δ0, δ1)

is a normal epimorphism if and only if coeq(δ0, δ1) = 0. The subcategory of

connected internal groupoids will de denoted as Conn(Grpd(X))

And the “object of automorphisms of 0” functor:

π1 : Grpd(X) X , π1(X) = ker( (δ0, δ1) : X1 → X2
0 ).

3.1.7. A reflexive graph in X is a diagram

X1 X0

δ0

δ1

σ0

where δ0σ0 = δ1σ0 = 1X0 . Given a finitely cocomplete regular Mal’tsev cate-

gory X, if a reflexive graph admits a structure of a groupoid this is necessarily

unique. Moreover, given a morphism of reflexive graphs between groupoids

is necessarily a groupoid morphism. If X is a regular Mal’tsev category the

forgetful functor U : Grpd(X)→ Rgph(X) admits a left adjoint functor. With

1In a Mal’tsev category, internal abelian groups are exactly the objects who admits an
internal Mal’tsev operation p, a morphism satisfying “p(x, y, y) = x” and “p(x, x, y) = y”, so
we can define the group structure with m = p(x, 1, z) and i = p(1, y, 1).

2For X = Grp, this is verified by noticing that the composition m factors through the
Mal’tsev operation p(x, y, z) = xy−1z, as m(f, g) = p(f, σ0δ1(f), g). And even the inverse of
arrows i can be defined with p, i(f) = p(σ0δ0(f), f, σ0δ1(f)).
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this in mind we will usually write a groupoid only with its components X1, X0

(see [BB04] and [Ped95]).

3.1.8. Among the subcategory Eq(X) of Grpd(X) it is important to distinguish

two important subcategories:

� Dis(X) of discrete equivalence relations: 1G = G→ G

G G G
1

1
1

1

1

.

� Ind(X) of indiscrete equivalence relations: 0 = G→ 0

G3 G2 G
φ0

φ1

φ2

p0

p1
∆ .

Where p0, p1 : G2 → G are the product projections and for G3 we write φ0 =

(p0, p1), φ1 = (p0, p2) and φ2 = (p1, p2) where p0, p1, p2 : G3 → G are the

product projections.

We can define the full embeddings given by the discrete and indiscrete

relations of an object G in X:

D : X Grpd(X) , Ind : X Grpd(X) .

Actually, we have a string of adjuctions3:

π0 a D a ()0 a Ind :

Grpd(X)

X

aa a

We write (X)0 = X0 and (X)1 = X1. Since D and Ind are full embeddings,

we recall quickly the non-trivial units/counits of these adjunctions. Consider

a groupoid X. The unit of π0 a D:

X1 π0(X)

X0 π0(X) = coeq(δ0, δ1) .

qδ0=qδ1

δ0 δ1 1 1

q

3The adjunction π0 a D is studied in [Bou87] for the case of internal groupoids in an
exact category X. The adjunctions D a ()0 and ()0 a Ind are well-known, for example the
case of X = Sets is mentioned in [GZ67]
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The counit of D a ()0:

X0 X1

X0 X0 .

σ0

1 1 δ0 δ1

1

The unit of ()0 a Ind:

X1 X2
0

X0 X0 .

(δ0,δ1)

δ0 δ1 p0 p1

1

All these subcategories of Grpd(X) give rise to non-abelian torsion theories.

Proposition 3.1.9. ([BG06]) For a normal Mal’tsev category X, the pair

(Ab(X), Eq(X)) is a hereditary torsion theory in Grpd(X).

Ab(X) Grpd(X) Eq(X)⊥
π1

supp

⊥

Proof. For a groupoid X, the reflector is the support functor supp given by the

image factorization of the induced morphism η = (δ0, δ1) :

X1 X0 ×X0

ηX(X1)

η=(δ0,δ1)

eη mη

Then this gives a factorization of the groupoid X through eη:

X1 η(X1) = supp(X)

X0

eη

δ1

δ0 d0

d1

Clearly, supp(X) is an equivalence relation since mη is a monomorphism. So

the short exact sequence of the torsion theory is

π1(X) X1 η(X1)

0 X0 X0 .

eη

δ0 δ1 d0 d1

id

The π1(X) inherits an internal abelian group structure from X. To see that

there are no morphisms between Ab(X) and Eq(X) different from zero, just
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consider a morphism f = (f0, f1):

A E1

0 E0 ,

f1

δ0 δ1

f0

the morphism f induces a diagram

A 0× 0 = 0

E1 E0 × E0

f1

(δ0,δ1)

so if (δ0, δ1) is monic, then f1 must be zero and so is f . Since Ab(X) is always

closed under subobjects in Grpd(X) if X is a Mal’tsev category, then the torsion

theory is hereditary.

Proposition 3.1.10. ([EG10], [EG15]) For a normal category X, the pair

(Conn(Grpd(X)), Dis(X)), where Conn(Grpd(X)) is the full subcategory of

connected groupoids, is a cohereditary torsion theory in Grpd(X).

Conn((Grpd(X))) Grpd(X) Dis(X) ' X⊥

Γ

π0

⊥

D

Proof. Writting q = coeq(δ0, δ1) : X0 → coeq(δ0, δ1), the short exact sequence

is given by

Γ1(X) X1 coeq(δ0, δ1)

Γ0(X) X0 coeq(δ0, δ1)

qδ0=qδ1

δ0 δ1 1 1

q

The kernel groupoid Γ of (qδ0, q) correspond to the full subgroupoid of the

connected component of 0, it is easy to see that indeed it is connected as in

the definition 3.1.6.

Notice that (Ab(X), Eq(X)) ≤ (Conn(Grpd(X)), Dis(X)).
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3.2 Crossed modules

In this section we study the particular case when X is the category Grp of

groups. Then the category of internal groupoids in groups is equivalent to

the category of Whitehead’s crossed modules; therefore the previous torsion

theories in internal groupoids can be studied as torsion theories in crossed

modules.

A classical problem in topology is to study the second homotopy group. In

this direction the work of S. Mac Lane and J. H. C. Whitehead shows that

crossed modules are weak pointed homotopy 2-types, for instance the standard

geometric example of a crossed module is the boundary morphism of the second

relative homotopy group

∂ : π2(X,X1, x) π1(X1, x) .

Later, the investigation on double groupoids and, in particular, the version of

the 2-dimensional Seifert-van Kampen Theorem by Brown and Spencer (1971-

1973) led back to crossed modules. The categories of crossed modules and

internal groupoids are equivalent, this result was known to J. L. Verdier was

later expanded by J. L. Loday to the categories of 1-cat groups and simplicial

groups with Moore complex of lenght 1. However, it seems that it was first R.

Lavendhomme, that discovered the equivalence of internal categories in groups

and crossed modules. Now, for the ‘category-theorists’ crossed modules and

internal categories are studied in their own right, for instance internal crossed

modules in a semi-abelian category (instead of groups) were introduced by G.

Janelidze in [Jan03], and they form themselves a semi-abelian category. 4

All group actions will be written on the left as g() and each group G will

act on itself by conjugation as g(a) = g−1ag.

Definition 3.2.1. A crossed module in Grp is a group morphism: ∂ : A→ B

with an action of B on A, written b(a), such that:

XM1 ∂(b(a)) =b (∂(a)) = b−1∂(a)b. (∂ is equivariant)

XM2 ∂(a)(a′) = a−1a′a. (Peiffer identity)

for all a and a′ in A and b in B. If ∂ only satisfies XM1 is called a precrossed

module. A morphism f : ∂ → ∂′ of precrossed/crossed modules is a pair of

4These historical remarks are taken from [BHS10], [Jan03] and [BS76].
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morphisms (f0, f1) such that the following diagram commutes:

A B

X Y

∂

f1 f0

∂′

and is compatible with the actions: f1(b(a)) =f0(b) (f1(a)). The categories of

crossed modules and precrossed modules will be written as Xmod and PXMod

respectively.

3.2.2. Notice that for a precrossed module ∂ : A → B, the image ∂(A) is a

normal subgroup of B. Moreover, if ∂ is a crossed module then ker(∂) ≤ Z(A),

where Z(A) is the center subgroup of A, so it is an abelian subgroup. So, a

morphism G→ 0 is a precrossed module but it is only a crossed module if and

only if G is abelian.

In the category of XMod, the monomorphisms are exactly where (f0, f1)

are both injective. A morphism (f0, f1) is a regular epimorphism if and only if

f0, f1 are surjective but epimorphisms are not necessarily surjective. A normal

crossed submodule (A,B, ∂) of (X,Y, ∂′) is a submodule where A and B are

normal in X and Y , y(a) ∈ A and b(x)x−1 ∈ X for all a, y, b, x. The quotient

is then given by (X/A, Y/B, ∂′′) (see [LLR04]).

The full embedding of XMod into PXMod admits a left adjoint, thus XMod

is a reflective subcategory. For a precrossed module ∂ : A → B an element of

the form ∂(a)a′(aa′a−1)−1 for a, a′ in A is called a Peiffer element and the

subgroup generated by them, < A,A > is the Peiffer commutator. It can be

shown that the reflector R : PXMod→ XMod is defined by

R :
PXMod XMod

∂ : A→ B R(∂) : A
<A,A> → B

Note that ∂ is a crossed module if and only if < A,A >= 0.

3.2.3. In Xmod we have the full replete subcategories:

� Ab of abelian groups, i.e. ∂ : A→ 0 for A an abelian group.

� NMono of inclusion of normal subgroups, i.e. ∂ = i : N → G, the action

is given by conjugation.

� CExt of central extensions, given by the surjective crossed modules ∂ :
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A→ B. So

0 ker(∂) A B 0∂

is indeed a central extension in groups (the kernel is central in A).

� Dis of discrete crossed modules, i.e. ∂ : 0→ G for a group G.

� Ind of indiscrete crossed modules, i.e. ∂ = 1G : G→ G for a group G.

In conjunction we have the functors, for a precrossed module ∂ : A→ B and a

group G :

� H0 : PXMod→ Grp, H0(∂) = cok(∂) = B/∂(A);

� D : Grp→ PXMod, D(G) = 0→ G;

� ()0 : PXMod→ Grp, (∂)0 = B;

� Ind = Grp→ PXMod, Ind(G) = 1G : G→ G;

� ()1 = PXMod→ Grp, (∂)1 = A;

� D′ = Grp→ PXMod, D′(G) = G→ 0;

� H1 = PXMod→ Grp, H1(∂) = ker(∂).

Moreover, these functors form a string of adjunctions (see [CCG02]):

H0 a D a ()0 a Ind a ()1 :

XMod

Grp

a a aa

Similar to the groupoid case, since D and Ind are full embeddings we recall

the non-trivial unit/counit components (written vertically) for a crossed module

∂ : A→ B:

The unit of H0 a D:

A B

0 cok(∂)

∂

cok(∂)

The counit of D a ()0:

0 B

A B

1B

∂
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The unit of ()0 a Ind:

A B

B B

∂

∂ 1B

1B

The counit of Ind a ()1:

A A

A B

1A

1A ∂

∂

It is worth noticing, that the diagram of the unit of ()0 a Ind commutes if

and only if ∂ satisfies axiom XM1 and the diagram of the counit of Ind a ()1

commutes if and only if ∂ satisfies XM2. So for precrossed modules, PXMod,

only H0 a D a ()0 a Ind are adjoints. Also for PXMod there are the adjunc-

tions ()1 a D′ a H1 that do not hold when we restrict to XMod. However,

there will be a torsion theory when restricted Grp to Ab as follows.5

Proposition 3.2.4. In XMod, the pair (Ab,NMono) is an hereditary torsion

theory.

Ab XMod NMono

D′

⊥
H1

⊥

Proof. The short exact sequence for a crossed module ∂ : A→ B is

ker(∂) A ∂(A)

0 B B

∂

e∂

m∂

id

where (e∂ ,m∂) is the normal epi-mono factorization of ∂. Clearly, there are no

non-trivial morphisms between Ab and NMono.

Proposition 3.2.5. In XMod, the pair (CExt,Dis) is a cohereditary torsion

theory.

CExt XMod Dis ' Grp⊥

H0

⊥

D

5In an even more limiting case, for a pointed category with kernels and cokernels C, we can
define these functors between C and the category of arrows Arr(C) and yield the adjunctions
H0 a D a ()0 a Ind a ()1 a D′ a H1.
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Proof. Similarly, for a crossed module ∂ : A→ B the short exact sequence is

A A 0

∂(A) B cok(∂) ,

id

e∂ ∂

m∂

where e∂ ,m∂ is the normal epi-mono factorization of ∂. It is also easy to see

that there are no non-trivial morphisms between CExt and Dis.

The next two results are due to Loday [Lod82], however here the proofs

follow the calculations in [BHS10]. It is worth mentioning that in these works

there is no mention of the Mal’tsev operation in groups, and yet it is used

implicitly in the calculations.

Proposition 3.2.6. (see [Lod82]) A reflexive graph

δ0, σ0, δ1 : X1 X0

in Grp, admits a groupoid structure if and only if [ker(δ0), ker(δ1)] = 0.

Proof. We begin with a useful observation. If X is a groupoid the composition

morphism m factorises through the Mal’tsev operation by (π0, σ0δ0π2, π2)

m :
X2 X3

1 X1

(f, g) f − σ0δ0(g) + g .

p

This follows from the calculations:

m(f, g) = m(f + 0, 0 + g) = m(f + 0, σ0δ0(g)− σ0δ0(g) + g)

= m(f, σ0δ0(g)) +m(0,−σ0δ0(g) + g) = f − σ0δ0(g) + g

Similarly, we can write m(f, g) = g − σ0δ0(g) + f . From this, if f ∈ ker(δ1)

and g ∈ ker(δ0)) we have [ker(δ0), ker(δ1)] = 0.

For the converse, for a reflexive graph X, we can take X2 as the pullback

and even define m as before. However, m is not a group morphism unless

[ker(δ0), ker(δ1)] = 0 as seen from

m((f, g) + (a, b)) = m(f + a, g + b) = f + a− σ0δ0(g + b) + g + b

f + a− σ0δ0(b)− σ0δ0(g) + g + b
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and

m(f, g) +m(a, b) = f − σ0δ0(g) + g + a− σ0δ0(b) + b

= f − σ0δ0(g) + g + a− σ0δ1(a) + b

since +a− σ0δ1(a) is in ker(δ1) and −σ0δ0(g) + g in ker(δ0).

Since the work of Whitehead on crossed modules, it has been know that

the category XMod is equivalent to the category of Cat(Grp) = Grpd(Grp).

Theorem 3.2.7. (see [Lod82]) There is an equivalence between PXMod and

Rgph(Grp) given by the normalization functor M .

M : Rgph(Grp) PXMod , M(X) = δ1|ker(δ0) : ker(δ0)→ X1 → X0

for a reflexive graph X, δ0, σ0, δ1 : X1 X0 .

The inverse functor is

L : PXMod Rgph(Grp)

where

L(∂) = AoB B
p

∂′

i

for a precrossed module ∂ : A → B and where p and i are the projection and

inclusion of B of the semidirect product and ∂′(a, b) = ∂(a)b. Moreover, this

equivalence is restricted to an equivalence XMod ∼= Grpd(Grp)

Proof. Since ker(δ0) is normal we can define the action of X0 over ker(δ0) by

conjugation, x(k) = σ0(x)kσ0(x)−1, clearly it is a precrossed module. Then for

a reflexive graph X there is an isomorphism:

X1 X0

ker(δ0) oX0 X0

δ0

δ1

µ∼=
σ0

id

p

∂

i

where µ(x1) = (x1σ0δ0(x1)−1, δ0(x1)) and µ−1(k, x0) = kσ0(x). Notice that

M(X) satisfies the Peiffer condition if [ker(δ0), ker(δ1)] = 0:
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δ1(a)a′ = σ0δ1(a)a′σ0δ1(a)−1 = aa−1σ0δ1(a)a′σ0δ1(a)−1 = aa′a−1

since a−1σ0δ1(a) is in ker(δ1).

And finally if ∂ is a crossed module notice that [ker(p), ker(∂′)] = 0 since

(k, 0)(j−1, δ1(j)) = (kj−1, δ1(j))

and

(j−1, δ1(j))(k, 0) = ((j−1)δ(j)k, δ1(j)) = (j−1jkj−1, δ1(j))

for j, k in ker(δ0).

Proposition 3.2.8. ([BG06], [EG10]) The normalization functor

M : Grpd(Grp) XMod

restricts to an equivalence of torsion theories:

M :

(Ab(Grp), Eq(Grp)) (Ab,NMono)

(Conn(Grp), Dis(Grp)) (CExt,Dis)

∼=

∼=

Proof. We will show that each subcategory is mapped equivalently to its coun-

terpart. Clearly, Ab(Grp) ' Ab

M : ( A 0
0

) = A 0

and Dis(Grp) ' Dis ' Grp

M : ( G G
id

id

) = 0 G .

Let X be a groupoid in Grp and its normalization

M : ( X1 X0

δ0

δ1

) = ker(δ0) X0

If X is an equivalence relation then (δ0, δ1) : X1 → X2
0 is injective, so for
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k ∈ ker(δ0) with δ1(k) = 0 the pair (δ0(k), δ1(k)) = (0, 0), so k = 0. Also notice

that δ0(σ0(x)kσ0(x)−1) = xx−1 = 0, then M(X) is a normal monomorphism.

Conversely, for a crossed module i : N → G the induced morphism

N oG G2

(n, g) (g, ng)

is clearly injective, so L(i) is an equivalence relation.

If X is connected, (δ0, δ1) : X1 → X2
0 is surjective. So for the pair (0, x) ∈

X2
0 there is k ∈ X1 such that δ0(k) = 0 and δ1(k) = x. Then the crossed

module ker(δ0)→ X0 is a central extension.

For a surjective crossed module ∂ : A→ B the induced morphism

AoB B2

(a, b) (∂(a)b, b)

is surjective, since for a (b0, b1) ∈ B2 there is a such that ∂(a) = b0b
−1
1 so the

pair (a, b) is mapped onto (b0, b1). So L(∂) is a connected groupoid.

Remark 3.2.9. From the adjunctions in 3.2.3 some observations can be made.

The subcategory of discrete crossed modules, Dis is a torsion-free subcategory

of XMod that is also coreflective in XMod with D a ()0. The counit ε of the

coreflection, for a crossed module ∂ : A→ B, is

0 B

A B

0 1B

∂

which is monic since the arrows εB = (0, 1B) are injective, but it is not a

normal monomorphism, since this would imply b(a) = a for all a ∈ A and

b ∈ B. With 2.2.9 in mind, this shows that Dis is closed under extensions

and monocoreflective in XMod that is not a torsion subcategory of XMod. In

chapter 4 we will study TTF-subcategories, subcategories that are both torsion

and torsion-free subcategories, so Dis is an example of a weaker version of a

TTF-subcategory.

Also from 3.2.3, the subcategory of indiscrete crossed modules Ind is reflec-

tive and coreflective in XMod, ()0 a Ind a ()1 so the inclusion Ind → XMod

is exact and we have a localization ()0 a Ind.
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Let be η the unit of ()0 a Ind:

A B

B B

∂

∂ 1

1

so η∂ = (∂, 1B). The torsion theory in Xmod induced from the localization as

in 2.4.1 actually corresponds to (Ab,NMono):

T = Ker(( )0Ind) = {X | (Ind(X))0
∼= 0} ∼= Ab

and

F = {X | η∂ = (∂, 1B) is monic} ∼= NMono .

Remark 3.2.10. Given a semi-abelian category X the notion of an internal

action is introduced in [BJK05]. For objects B and X an B-action over X is

given by a morphism αB,X : B[X → X where the object B[X is the kernel of

(0, 1) : B + X → X that satisfy some conditions. Later in [Jan03] the notion

of an internal crossed module in a semi-abelian category X is introduced. It

is also proved the equivalences between internal precrossed modules/internal

reflexives graphs and crossed modules/internal categories.

The previous torsion theories in crossed modules in groups can be studied

in the internal case of a semi-abelian category as mention in [BG06]. For the

purpose of this work we will restrict to the case of groups.
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Chapter 4

Torsion theories in

simplicial objects

1

Following the examples in groupoids and crossed modules, we will try to

generalize the torsion theories to simplicial objects. The principal technique

is by using truncations in the Moore normalization. A particular lattice of

torsion theories given by ‘good’ truncations is studied and connections with

the homology/homotopy objects are given.

4.1 Preliminaries

4.1.1 Simplicial homotopy

We recall the basics of simplicial homotopy. In particular, we introduce the

Kan condition and recall its connection with Mal’tsev categories.

Definition 4.1.1. The simplicial category ∆ is given by

� Objects: the ordered sets [n] = {0 < 1 < 2 < · · · < n} for n ∈ N.

� Morphisms: the non-decreasing monotone functions.

In particular, we have the morphisms:

� δni : [n− 1]→ [n] the injection which does not take the value i ∈ [n].

� σni : [n+ 1]→ [n] the surjection which takes twice the value i ∈ [n].

1This chapter is adapted from [Lop22b].
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If there is no risk of confusion we only write δi and σi. These morphisms satisfy

the relations, called the simplicial identities:

δjδi = δiδj−1 if i < j

σjσi = σiσj+1 if i ≤ j

σjδi =


δiσj−1 if i < j

1 if i = j or i = j + 1

δi−1σj if i > j + 1 .

The morphisms δni , σni are the generators of ∆, i.e. any morphism µ : [m]→
[n] can be written in a unique way as

µ = δnisδ
n−1
is−1

. . . δn−t+1
i1

σm−tjt
. . . σm−2

j2
σm−1
j1

.

such that n ≥ is > · · · > i1 ≥ 0, 0 ≤ jt < · · · < j1 < m and n = m− t+ s. For

example:

[2] [3]

3

2 2

1 1

0 0

µ

=

[2] [1] [2] [3]

3

2 2 2

1 1 1 1

0 0 0 0

σ0 δ0 δ2

Definition 4.1.2. A simplicial object X in a category X is a functor

X : ∆op X .

As a consequence of the simplicial identities X is determined by a family of

objects Xi in X for 0 ≤ i and morphisms dni : Xn → Xn−1 called the face

morphisms and sni : Xn → Xn+1 called the degeneracy morphisms. If there is

no risk of confusion we will simply write di and si for the face and degeneracy

morphisms.
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X = . . . Xn . . . X3 X2 X1 X0
...

d0

dn

...

d0

d4
sn−1

s0

d0

d1

d2

d3

s3

s0

d1

d2

d0

s1

s2

s0

d1

d0

s1

s0

s0

such that they satisfy:

didj = dj−1di if i < j

sisj = sj+1si if i ≤ j

disj =


sj−1di if i < j

1 if i = j or i = j + 1

sjdi−1 if i > j + 1 .

A morphism of simplicial objects f : X → Y is a sequence of morphisms

fn : Xn → Yn such that

dni fn = fn−1d
n
i and sni fn = fn+1s

n
i .

We denote the category of simplicial objects in X as Simp(X) = [∆op,X].

We introduce the Kan property for simplicial objects in a regular category,

this generalizes the classical well-known cases for the categories of Sets, Grp,

Rmod and other ones.

Definition 4.1.3. (see [CKP93]) Consider a simplicial object X in a regular

category X. For n ≥ 1 and k ∈ [n] the object of (n, k)-horns in X is given by

xi : K(n, k) Xn−1 i ∈ {0, . . . , n} − {k}

such that dixj = dj−1xi for all i < j with i, j 6= k which is universal with

respect to this property. For n = 1 we define K(1, 0) = K(1, 1) = X0. The

universal property yields comparison morphisms

l(n, k) : Xn K(n, k) .

We say that X satisfies the Kan condition or that is Kan when the l(n, k)

are regular epimorphisms. In particular, the comparison morphisms to the

(1, k)-horns are d0, d1 : X1 → X0.
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4.1.4. The importance of the Kan condition lies mainly in that it implies that

the homotopy relation is an equivalence relation ([GZ67]). Given a basepoint 0

in X0 of a Kan simplicial set, we consider Zn = {x ∈ Xn : di(x) = 0 for all i =

0, . . . , n} where 0 = σi(0) for all i. For elements x, x′ of Zn we say that they

are homotopic if there is y in Xn+1, called an homotopy, such that

di(y) =


0 i < n

x i = n

x′ i = n+ 1 .

The Kan condition implies this is indeed an equivalence relation and then

the homotopy groups are defined as πn(X) = Zn/ ∼. It was observed by

Kan that the singular simplicial set of a topological space is Kan, and Moore

([Moo55]) proved that a simplicial group considered as a simplicial set is also

Kan. The same holds for abelian groups and R-modules (see [Wei94], [May67]).

In fact, what is needed in these cases to make Moore’s proof work is a Malt’sev

operation p(x, y, z) such that p(x, y, y) = x and p(x, x, y) = y.

We now introduce ‘the nerve functor’. Introduced by Grothendieck, the

nerve functor can be applied to internal categories in a category X with finite

limits, see for example [Dus75].

Definition 4.1.5. Let X be a category with finite limits and X an internal

category in X:

X1 ×X0
X1 X1 X0

δ0

δ1

δ2

δ0

δ1

s

The nerve of X, denoted by Ner(X), is the simplicial object in X defined as

follows:

1. Ner(X)0 = X0, Ner(X)1 = X1 and for n ≥ 2, Ner(X)n = X
×nX0
1 =

X1×X0
X1×X0

X1×X0
· · · ×X0

X1 is the object of n-composable arrows,

i.e. the limit of

X1 X1 X1

X0 X0 X0 . . . X0 X0 .

δ0 δ1 δ0 δ1 δ0 δ1

2. For n ≥ 3, the face morphisms dn0 = (p1, p2, . . . , pn), dnn = (p0, p1 . . . , pn−1)

forget the first and the last arrow respectively.

And for 0 < i < n, dni = (p0, . . . , δ1(pi, pi+1), . . . , pn) composes the ith-
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arrow with the (i+ 1)th-arrow.

3. The degeneracy morphism sni = (p0, . . . , pi−1, sδ0pi, pi, . . . , pn) inserts an

identity for the ith-arrow.

This defines the fully faithful nerve functor

Ner : Cat(X) Simp(X) .

An internal groupoid in X always satisfy the Kan condition and moreover

an internal category is Kan if and only if it is an internal groupoid ([Dus75]).

Recall that if X is a regular Mal’tsev category internal categories are in fact

internal groupoids.

Theorem 4.1.6. ([CKP93] THEOREM 4.2) A regular category X is a Mal’tsev

category if and only if every simplicial object in X is Kan.

For X = Grp, it was proved by Moore ([Moo55]) that the homotopy groups

can be calculated by homology of a chain complex given by normalization. We

introduce the Moore normalization functor in a more general context following

[EdL04].

Definition 4.1.7. Let X be a simplicial object in a pointed category with

pullbacks X. The normalized, or Moore, chain complex M(X) is the chain

complex

M(X) = . . . M(X)n+1 M(X)n M(X)n−1 . . .
δn+2 δn+1 δn δn−1

with M(X)0 = X0 and for n > 0

M(X)n =

n−1⋂
i=0

ker(di : Xn Xn−1 )

with the differentials

δn = dn ∩i ker(di) : M(X)n M(X)n−1

and M(X)i = 0 for i < 0. This defines a functor:

M : Simp(X) ch(X) .

Given a simplicial object X and its associated Moore chain complex M(X)
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they can be represented as:

X = . . . X3 X2 X1 X0

M(X) = . . . M(X)3 M(X)2 M(X)1 M(X)0

di

...

d0

d1

d2

d3

d1

d2

d0

d1

d0

δ3 δ2 δ1

1

4.1.8. In a pointed category X, a chain complex X is a collection of morphisms:

X = . . . Xn+1 Xn Xn−1 . . .
δn+2 δn+1 δn δn−1

such that δnδn+1 = 0 for all n ∈ Z. If X has kernels and cokernels we can define

the n-homology objects of X in two different ways:

Hn(X) = cok(Xn+1 → ker(δn)), Kn(X) = ker(cok(δn+1)→ Xn−1) .

In abelian categories the objects Hn(X) and Kn(X) are isomorphic and it was

proved in [EdL04] that this is also the case for a pointed regular protomodular

category, provided that the chain complex X is proper, i.e. the differential

morphisms δn have normal images. The category of chain complexes will be

studied in-depth in the next section.

For the case of groups, X = Grp, the homotopy groups of a simplicial group

X are calculated by the homology of the Moore chain complex:

πn(X) ∼= Hn(M(X))

for all n ∈ N. The Moore chain complex is proper and even if it is not necessarily

a chain complex of abelian groups the homology groups Hn(M(X)) are always

abelian for n ≥ 1 ([Moo55]).

In more general categories the following facts are known:

� ([EdL04]) If X is semi-abelian and X is a simplicial object in X, then the

homology objects Hn(M(X)) are abelian for n ≥ 1.

� ([EdL04]) If X is pointed, regular and protomodular, then the Moore nor-

malization functor M preserves regular epimorphisms. As a consequence

it preserves short exact sequences.

� ([Bou07]) If X is pointed and protomodular, then the Moore normaliza-

tion functor M is conservative, i.e. it reflects isomorphisms.
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� ([Bou07]) If X is semi-abelian, then the Moore normalization functor M

is monadic.

� In [dL09], if X is semi-abelian with enough projectives the homotopy

groups are defined are indeed they can be calculated via the homology

objects of the Moore complex.

4.2 Torsion theories in chain complexes

As a first step we will study torsion theories in chain complexes.

4.2.1 Chain complexes in normal categories

Definition 4.2.1. Let X be a normal category. A chain complex X is a family

of objects Xi and morphisms δi with i ∈ Z:

X = . . . Xi+1 Xi Xi−1 . . .
δi+1 δi

with the condition δiδi+1 = 0 for all i. A morphism f : X → Y is a family of

morphisms fi in X:

. . . Xi+1 Xi Xi−1 . . .

. . . Yi+1 Yi Yi−1 . . .

δi+2 δi+1

fi+1

δi

fi

δi−1

fi−1

δi+1 δi

such that fi−1δi = δifi for all i.

Throughout this section for a chain complex X, we will write ei, mi for the

normal epi/mono factorization of the morphisms δi for each i.

We will denote the category of chain complexes in X as ch(X) and pch(X)

for the full subcategory of proper chain complexes, those complexes where each

δi is a proper morphism i.e. mi : δi(Xi)→ Xi−1 is a normal monomorphism:

Xi Xi−1

δi(Xi)

δi

ei mi

For a fixed n ∈ N we write ch(X)≥n, ch(X)n≥, pch(X)n≥, pch(X)≥n for

the categories of truncated complexes at order n. The categories ch(X)≥n and

pch(X)≥n are the complexes bounded below at n:

75



X = . . . Xn+2 Xn+1 Xn
δn+3 δn+2 δn+1

and ch(X)n≥ and pch(X)n≥ are bounded above at n:

X = Xn Xn−1 Xn−2 . . .
δn δn−1 δn−2

and as a special case we write ch(X)n≥m for the category of bounded complexes

for fixed n and m. So, for the categories of arrows/proper arrows, we have

Arr(X) = ch(X)1≥0 and PArr(X) = pch(X)1≥0. Finally, we write Xn for the

subcategory of pch(X) that have trivial objects for all i 6= n.

The category ch(X) has all limits and colimits of X, and these are computed

component-wise. The category pch(X) is not so well-behaved, for example the

kernel in the category of chain complexes may not be a proper one. For example,

the proper arrow morphism f = (f1, f0):

< a2, r > D4

< a2, r > / < r > 0

f1 f0

where D4 is the dihedral group with generators a4 = r2 = 1 and ar = ra−1.

The kernel is given by the inclusion < r >→ D4 which in not a normal sub-

group.

By a short exact sequence in pch(X) we mean a short exact sequence in

ch(X) where the objects are proper chain complexes.

Lemma 4.2.2. If X is an ideal determined category then the category pch(X)

has cokernels and they are computed as in ch(X).

Proof. We will prove the case for the category PArr(X). For a morphism

f : X → Y of proper arrows (X, d), (Y, δ) consider the commutative diagram

X1 Y1 cok(f1)

δ(Y1) δ′(cok(f1))

X0 Y0 cok(f0)

f1

d

p

eδ

δ

δ′
eδ′

mδ

q′

mδ′
f0 q

where δ′ is induced by universal property of the cokernel p and mδ, eδ and

76



mδ′ , eδ′ are the normal epi-mono image factorizations of δ and δ′ respectively.

Now, since taking images is functorial we have q′ such that q′eδ = eδ′p and

mδ′q
′ = qmδ, then q′ is a normal epimorphism since p and eδ′ are also nor-

mal epimorphisms. Finally, since X is ideal determined and mδ is a normal

monomorphism and mδ′ is a monomorphism, then mδ′ is a normal monomor-

phism. So δ′ : cok(f1)→ cok(f0) is the cokernel of f in pch(X).

For a fixed n and X an n-truncated chain complex in pch(X)n≥,

X = Xn Xn−1 Xn−2 . . .
δn δn−1 δn−2

,

there are two convenient ways to extend X to an infinite chain complex in

pch(X), so pch(X)n≥ has two different embeddings into pch(X). Also, there

are two different ways to n-truncate a chain complex into pch(X)n≥. Different

authors use different notations and differ in which are the ‘good’ truncations.

We choose to follow the terminology of [BHS10], although it is used in a very

different setting.

4.2.3. For a fixed n ∈ Z we define the functors:

� trn : ch(X) ch(X)n≥ is the canonical (upward) truncation:

trn(X) = Xn Xn−1 Xn−2 . . .

� skn : ch(X)n≥ ch(X) is the canonical inclusion or skeleton func-

tor:

skn(Y ) = . . . 0 0 Yn Yn−1 . . .

� coskn : ch(X)n≥ ch(X) the coskeleton functor is given by:

coskn(Y ) = . . . 0 ker(δn) Yn Yn−1 . . .
k(δn) δn

� cotn : ch(X) ch(X)n≥ the (upward) cotruncation functor:

cotn(X) = cok(δn+1) Xn−1 Xn−2 . . .
δ′n .

Dually, for the bounded below chain complexes at n:
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� tr′n : ch(X) ch(X)≥n is the (downward) truncation:

tr′n(X) = . . . Xn+2 Xn+1 Xn

� sk′n : ch(X)≥n ch(X) is the canonical inclusion or skeleton func-

tor:

sk′n(Y ) = . . . Yn+1 Yn 0 0 . . .

� cosk′n : ch(X)≥n ch(X) is the coskeleton functor:

cosk′n(Y ) = . . . Yn+1 Yn cok(δn+1) 0 . . .
cok(δn+1)

� cot′n : ch(X) ch(X)n≥ the (downward) cotruncation functor:

cot′n(X) = . . . Xn+2 Xn+1 ker(δn)
δ′n+1

.

We write Skn = skntrn and Coskn = coskntrn and Cotn = skncotn,

Cot′n = sk′ncot′n.

We will consider ch(X)n≥ and ch(X)≥n as full subcategories of ch(X) given

by the skeleton functors sk and sk′, respectively.

Lemma 4.2.4. Let X be a normal category. The functors cotn and cot′n can

be restricted to proper chain complexes:

cotn = pch(X) pch(X)n≥ , cot′n = pch(X) pch(X)≥n .

Proof. Since X is normal cotn(X) and cot′n(X) are in fact proper complexes

if X is proper. Indeed, for cotn consider:

Xn Xn−1 . . .

δn(Xn)

cok(δn+1) Xn−1 . . .

δ′n(cok(δn+1))

δn

qn

en

1

δn−1

q′n

mn

δ′n

e′n

δn−1

m′n
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where δ′n is induced by the cokernel qn = cok(δn+1) and consider the image

factorizations of δn and δ′n. q′n is a normal epimorphism since qn and e′n are

also. Now, since mn = m′nq
′
n is a monomorphism then so is q′n a monomorphism

and hence, an isomorphism. So, cotn gets restricted to proper chains.

For cot′, consider a proper chain complex X, so if δn+1(Xn+1) is normal in

Xn then it is normal in ker(δn):

Xn+2 Xn+1 Xn

δ(Xn+1) ker(δn) .

δn+2 δn+1

en+1

mn+1

So, the corestriction of δn+1, δ′n+1 = Xn+1 → ker(δn), is proper.

Lemma 4.2.5. For a normal category X we have the adjunctions:

cotn a skn a trn a coskn :

ch(X)

ch(X)n≥ .

aa a

Proof. Since sk and cosk are full and faithful embeddings, we shall only de-

scribe the non-trivial units and counits. Consider X in ch(X), the counit α of

skn a trn is given by:

Skn(X) = . . . 0 Xn Xn−1 . . .

X = . . . Xn+1 Xn Xn−1 . . .

α

δn

1 1

δn+1 δn

and the unit β of trn a coskn:

X = . . . Xn+1 Xn Xn−1 . . .

Coskn(X) = . . . ker(δn) Xn Xn−1 . . .

β

δn+1 δn

1 1

k(δn) δn
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and the unit γ of cotn a skn:

X = . . . Xn+1 Xn Xn−1 . . .

Cotn(X) = . . . 0 cok(δn+1) Xn−1 . . .

γ

δn+1 δn

cok(δn+1) 1

δ′n

It is straightforward to see that α, β and γ are universal arrows. For example

in the case for γ, consider f : X → Skn(A) where A is a n-truncated chain

complex:

X = . . . Xn+1 Xn Xn−1 . . .

Skn(A) = . . . 0 An An−1 . . . ,

f

δn+1

fn+1

δn

fn fn−1

δ′n

since fnδn+1 = 0 then by the universal property of cok(δn+1) there is f ′n such

that fn = f ′ncok(δn+1) and thus we define f ′ : cotn(X)→ A as (f ′)n = f ′n and

(f ′)i = fi for i < n. Finally, we have that the following diagram commutes:

X Cotn(X)

Skn(A) .

γ

f f ′

Similarly, we have adjunctions for the bounded below chain complexes. The

proof is completely analogue to the previous one.

Lemma 4.2.6. For a normal category X we have the adjunctions:

cosk′n a tr′n a sk′n a cot′n :

ch(X)≥n

ch(X) .

aa a

Proof. Consider X in ch(X). The unit α′ of tr′n a sk′n is:

X = . . . Xn+1 Xn Xn−1 . . .

Sk′n(X) = . . . Xn+1 Xn 0 . . .

α′

δn+1

1

δn

1

δn+1
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and the counit β′ of cosk′n a tr′n:

Cosk′n(X) = . . . Xn+1 Xn cok(δn+1) . . .

X = . . . Xn+1 Xn Xn−1 . . .

β′

δn+1

1

cok(δn+1)

1

δn

and the counit γ′ of sk′ a cot′:

Cot′n(X) = . . . Xn+1 ker(δn) 0 . . .

X = . . . Xn+1 Xn Xn−1 . . .

γ′

δn+1

1 k(δn)

δn+1 δn

By 4.2.4 we immediately have:

Corollary 4.2.7. Let X be a normal category then the adjunctions cotn a
skn a trn a coskn and cosk′n a tr′n a sk′n a cot′n for chain complexes ch(X)

can be restricted to proper chain complexes:

cotn a skn a trn a coskn :

pch(X)

pch(X)n≥

aa a

and

cosk′n a tr′n a sk′n a cot′n :

pch(X)≥n

pch(X) .

aa a

Remark 4.2.8. Note that the embeddings skn and coskn (sk′n and cosk′n) only

differ in one degree.

In [BHS10] the adjunctions cotn a skn a trn a coskn are used in a very dif-

ferent context, mainly applied to crossed complexes over groupoids and higher

groupoids and other homotopy models. However, cosk′n a tr′n a sk′n a cot′n

are not mentioned and do seem to have any application in those contexts.

Remark 4.2.9. 2 The category of chain complexes/proper chain complexes

present a dual behaviour as above. However, for a category X being normal

2The author would like to thank prof. T. Van der Linden for suggesting this remark.
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is not a self-dual property and neither for a morphism to be proper. On the

other hand, we could work in a more general setting of a pointed category X
with kernels and cokernels; and we call a morphism f : A → B proper if f is

admits a factorization f = me with e a normal epimomphism and m a normal

epimorphism and this factorization is unique in the following sense: given an-

other factorization f = m′e′ with e′ a normal epirmophism and m′ a normal

monorphism then there is a morphism t such that te = e′ and m′t = m.

In this general setting in the category X lemma 4.2.4 holds and lemmas

4.2.5 and 4.2.6 are formally dual. It is worth mentioning that (formally) dual

properties of torsion theories in pointed categories with kernels and cokernels

have been studied in [JT07].

4.2.2 Torsion theories given by cotruncations

Through this section X is a normal category.

4.2.10. We will study torsion theories in pch(X) given by the ‘good’ truncations,

in our case the cotruncations. Recall that a proper morphism f : A → B

defines two truncated morphisms, ker(f)→ 0 and 0→ cok(f) and defines two

canonical short exact sequence given by the normal epi-mono factorization of

f :

0 ker(f) A f(A) 0
k(f) ef

0 f(A) B cok(f) 0
mf cok(f)

.

We will be particularly interested in the case of proper chain complexes, but

we will first define the torsion theories for ch(X) (which is a normal category

when X is so, since limits and colimits are computed component-wise) and then

consider the restriction of each torsion theory to pch(X).

Definition 4.2.11. Let X be a normal category, we define the full subcategories

in pch(X) for each n ∈ Z:

EPn = {X | δn is a normal epi and Xi = 0 for n− 1 > i}.

For example, a proper chain complex X in EPn looks like this:

. . . Xn+1 Xn Xn−1 0 0 . . .
δn+1 δn
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with δn a normal epimorphism. And, similarly,

MNn = {X | δn is a normal mono and Xi = 0 for i > n}.

For example, a proper chain complex X in NMn looks like this:

. . . 0 0 Xn Xn−1 Xn−2 . . .
δn δn−1

where δn is a normal monomorphism.

Note that EPn is a full subcategory of pch(X)≥n−1 and MNn is a full

subcategory of pch(X)n≥.

4.2.12. Let X be a normal category. The unit of cotn−1 a skn−1 for a chain

complex X is given by

X = . . . Xn Xn−1 Xn−2 . . .

Cotn−1(X) . . . 0 cok(δn) Xn−2 . . .

ηX

δn

cok(δn)

δn−1

1

δ′n−1 δn−2

which is a normal epimorphism component-wise, so ch(X)n−1≥ is a normal

epireflective subcategory of ch(X). It is easy to see that ch(X)n−1≥ is closed

under subobjects, quotients and extensions in ch(X), however it is not a torsion-

free subcategory, the functor cotn−1 is not normal as in 2.2.8. Indeed, it may

happen that cotn−1(ker(ηX)) may not be trivial for a chain complex X.

As a counter-example we can consider the truncated case cot0 = coker :

Arr(X) → X. Let D4 be the dihedral group with generators a2 = b4 = 1 and

aba = b−1 and consider X =< a >→ D4 the inclusion morphism and the unit

ηX :

< a > D4

0 D4/ < a, b2 >

ηX,1 ηX,0

so ker(ηX) is the inclusion < a >→< a, b2 > which does not have a trivial

cokernel. Accordingly, the functor coker is not a normal functor.

Remember that in a normal category X a morphism is a monomorphism

if and only if it has trivial kernel. The dual does not hold for epimorphisms,

there are morphisms with trivial cokernel and that are not epimorphisms. So,

a chain complex X is in Ker(cotn−1) if and only if it is a truncated (below)
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(n− 1) chain complex

X = . . . Xn+1 Xn Xn−1 0 . . .
δn+1 δn

and where the morphism δn has a trivial cokernel3.

Following 2.2.6 and the fact that cot is not a normal functor we have that

Ker(cotn−1) ⊂ Tch(X)n−1≥ . Also notice that EPn ⊂ Ker(cotn−1). This is an

example of a normal epireflective subcategory ch(X)n≥ closed under extensions

in a semi-abelian category, ch(X), which is not a torsion-free subcategory.

We will prove that when restricted to proper chain complexes the subcat-

egories Ker(cotn−1) and Tpch(X)n−1≥ are equivalent, cotn−1 is normal and we

have a torsion theory (EPn, pch(X)n−1≥) in pch(X).

Corollary 4.2.13. Let X be a normal category. The pair of subcategories

(Ker(cotn−1), ch(X)n−1≥) in ch(X) gets restricted to a cohereditary torsion

theory in pch(X) given by the pair (EPn, pch(X)n−1≥).

Proof. We will prove that Ker(cotn−1) ∩ pch(X) = EPn. It suffices to prove

that a proper morphism f : A → B with trivial cokernel is a normal epi-

morphism. Indeed, consider e,m the normal epi/mono factorization and the

diagram

A B cok(f)

f(A) ker(q)

f

e

q

m

m′

k

where m′ is induced by the kernel ker(q). Then if f is a proper morphism then

m′ is an isomorphism since the normal monomorphism m is the kernel of its

cokernel q. Also, if cok(f) = 0 then k is also an isomorphism. Finally, m is an

isomorphism and f is a normal epimorphism.

Now we prove that (EPn, pch(X)n−1≥) is a torsion theory. The axiom TT1

is trivial since a morphism f :

Xn Xn−1

0 Yn−1

δn

fn fn−1

with δn a regular epi must be trivial. And, for a proper chain complex X the

3Recall that for a functor F : A→ B between pointed categories the kernel of F , Ker(F )
is the replete full subcategory of A of objects A such that F (A) ∼= 0.
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short exact sequence of the torsion theory (EPn, pch(X)n−1≥) is given by

. . . Xn+1 Xn δn(Xn) 0 . . .

. . . Xn+1 Xn Xn−1 Xn−2 . . .

. . . 0 0 cok(δn) Xn−2 . . .

δn+1

id

en

id mn

δn+1 δn δn−1

c(δn) id

and we have cok(δn) ∼= Xn−1/δn(Xn).

For n ∈ Z the adjunction trn a coskn is a localization: indeed, the fact

that trn admits a left adjoint skn implies that trn it preserves finite limits.

From 2.4.1 and 2.4.4, trn induces an hereditary torsion theory (Ttrn ,Ftrn).

Theorem 4.2.14. Let X be a normal category. The localization trn−1 a
coskn−1 induces a hereditary torsion theory (Ttrn−1

,Ftrn−1
) in ch(X) as in

2.4.1. This torsion theory can be restricted to a hereditary torsion theory

(pch(X)≥n,MNn) in pch(X).

Proof. From 2.4.1, the localization trn−1 a coskn−1 induces a torsion theory

as

Ttrn−1
= {X | trn−1(X) = 0} = {X | Xi = 0 forn− 1 ≤ i} = ch(X)≥n

and

Ftrn−1 = {X | ηX monic}.

where ηX is the unit of trn−1 a coskn−1. The short exact sequence of the

torsion theory is given by

0 ker(ηX) X ηX(X) 0
ker(ηX) e

where e is the normal epimorphism of the image factorization of ηX = me.

Consider the commutative diagram

Xn Xn−1 Xn−2

δn(Xn) ker(δn−1)

δn

en

δn−1

mn

m′n

k

where m′n is induced by the kernel ker(δn−1), so the normal epi/mono fac-
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torization of ηX at the level n is given by ηX = m′nen. So, the short exact

sequence is

. . . Xn+1 ker(δn) 0 0 . . .

. . . Xn+1 Xn Xn−1 Xn−2 . . .

. . . 0 δ(Xn) Xn−1 Xn−2 . . .

id k(δn)

δn+1 δn

en

δn−1

id id

mn

Notice that the torsion subobject of X is given the downward cotruncation

Cot′n, and it restricts to proper chain complexes. It follows that (Ttrn−1
,Ftrn−1

)

restricts to proper chain complexes as (pch(X)≥n,MNn).

4.2.15. We will denote the previous torsion theories in pch(X) as

COKn = (EPn, pch(X)n−1≥), KERn = (pch(X)≥n,MNn),

and we write kern and cokn for the associated idempotent radicals of each

torsion theory KERn and COKn respectively.

In summary, we have that pch(X)≥n is a torsion subcategory in pch(X) and

the coreflector is given by cot′n : pch(X) → pch(X)≥n. Similarly, pch(X)n−1≥

is a torsion-free subcategory of pch(X) with the reflector cotn:

Ker(cot) ch(X) ch(X)n−1≥

COKn = EPn pch(X) pch(X)n−1≥

cotn−1

⊥

skn−1

⊥

cotn−1

⊥

skn−1
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and

ch(X)≥n ch(X) Ftrn−1

KERn = pch(X)≥n pch(X) MNn .

sk′n

⊥

cot′n

⊥

sk′n

⊥

cot′n

⊥

4.2.3 The lattice COT

Proposition 4.2.16. Let X be a normal category. In pch(X) for each n ∈ Z
we have the inclusions as full subcategories

. . . ≤ pch(X)≥n+1 ≤ EPn+1 ≤ pch(X)≥n ≤ EPn ≤ pch(X)≥n−1 ≤ . . .

Equivalently,

. . . ≥ MNn+2 ≥ pch(X)n+1≥ ≥ MNn+1 ≥ pch(X)n≥ ≥MNn ≥ . . . .

Moreover, this gives a linearly ordered lattice of torsion theories in pch(X):

O ≤ . . . ≤ KERn+1 ≤ COKn+1 ≤ KERn ≤ COKn ≤ . . . ≤ pch(X)

Proof. By definition we have EPn ≤ pch(X)≥n−1 and since a morphismXn+1 →
0 is a normal epimorphism we have pch(X)≥n ≤ EPn. Recall that the order is

reverse for the torsion-free subcategories.

This construction works with truncated or bounded chains complexes, in

particularly we will be interested in the case for pch(X)≥0, pch(X)n≥0 the

category of proper chain complexes bounded below 0 and above n for a fixed

n.

Corollary 4.2.17. Let X be a normal category. In pch(X)≥0 there is a linearly

ordered lattice of torsion theories given by:

0 ≤ . . . ≤ KERn ≤ COKn ≤ . . . ≤ KER1 ≤ COK1 ≤ pch(X)≥0

Corollary 4.2.18. Let X be a normal category. In pch(X)n≥0 there is a linearly
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ordered lattice of torsion theories given by:

0 ≤ KERn ≤ COKn ≤ . . . ≤ COK2 ≤ KER1 ≤ COK1 ≤ pch(X)n≥0

Definition 4.2.19. For a normal category X, we write COT (pch(X)) for the

lattice of torsion theories given by the cotruncations functors cot, cot′ in

pch(X) as in 4.2.15, 4.2.16, 4.2.17, 4.2.18.

Similarly, for COT (pch(X)≥0) and COT (pch(X)n≥0).

4.2.20. Each torsion theory has its associated idempotent radical, and thus

COT also defines a lattice of idempotent radicals. Moreover, for each proper

chain complex X there is the lattice cot(X) of subobjects of X given by the

torsion subobjects kern(X), cokn(X) of X.

As an example, consider X in pch(X)2≥0:

X = X2 X1 X0 ,
δ2 δ1

and the lattice COT (pch(X)2≥0):

O ≤ KER2 ≤ COK2 ≤ KER1 ≤ COK1 ≤ pch(X)2≥0 ,

so for X the lattice of subobjects cot(X) is

X = X2 X1 X0

cok1(X) = X2 X1 δ1(X1)

ker1(X) = X2 ker(δ1) 0

cok2(X) = X2 δ2(X2) 0

ker2(X) = ker(δ2) 0 0

0 = 0 0 0 .

δ2 δ1

δ2 δ1

δ2

δ2

Remark 4.2.21. Working with bounded above complexes will give a maximal

element in the lattice COT , namely COK1. And bounded below complexes have

KERn as a minimal element in COT . Moreover, in this case COK1 = (EP1,X0)

and KERn = (Xn,NMn) where Xn is the subcategory of chain complexes that

are zero for all i 6= n.

It is worth mentioning that COT (pch(X)) is a sublattice of pch(X)tors

(2.2.11) the lattice of all torsion theories in pch(X), but they may not need

to coincide. For example, if X = Ab and (T,F) the torsion theory given by
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torsion/torsion-free abelian groups then (Arr(T), Arr(F)) is a torsion theory

in Arr(Ab) not considered in COT (Arr(Ab)).

4.2.4 Homology

In abelian categories, the homology objects of a chain complex X are defined

as

Hn(X) = ker(δn)/δn+1(Xn+1)

or in other words cok(Xn+1 → ker(δn)). We can also consider its dualKn(M) =

ker(cok(δn+1)→ Xn−1)), these definitions can be defined using only limits and

colimits. In the abelian case the objects Hn(X) and Kn(X) are isomorphic

and then in [EdL04] this is proved for homological categories provided that

the chain complex X is proper. We will prove this fact in a different way for

normal categories.

Theorem 4.2.22. For a normal category X and X a proper chain complex

then the objects Hn(X), Kn(X) are isomorphic and are given by

Hn(X) ∼= Kn(X) ∼= kern(X)/cokn+1(X)

where cokn+1(X), kern(X) are the torsion subobjects of X given by the torsion

theories of COK and KER (as defined in 4.2.15) and where Hn(X), Kn(X) are

considered as trivial chain complexes except at the order n that have the object

Hn(X), Kn(X) respectively.

Proof. The objects Hn(X) and Kn(X) are defined as follows: consider the

diagram

Xn+1 Xn Xn−1

δn+1(Xn+1) ker(δn) cok(δn+1) δn(Xn)

en+1

δn+1 δn

qn+1

enmn+1

m′n+1

kn

e′n

mn

where en+1, mn+1 and en, mn are the epi/mono factorization of δn+1, δn; and

m′n+1 and e′n are induced by the universal properties of ker(δn) and cok(δn+1),

respectively. So Hn(X) = cok(m′n+1) and Kn(X) = ker(e′n).

Since ch(X) is normal this follows from the third isomorphism theorem

(1.3.8) for the normal subobjects cokn+1(X) ≤ kern(X) of X as we are going

to explain: We have a short exact sequence in ch(X):
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0 kern(X)/cokn+1(X) X/cokn+1(X) X/kern(X) 0 .

To be more precise observe the short exact sequences that define Hn(X) and

Kn(X). Then Hn(X) is the cokernel of the inclusion cokn+1(X) ≤ kern(X):

0

cokn+1(X) = . . . Xn+1 δn+1(Xn+1) 0 . . .

kern(X) = . . . Xn+1 ker(δn) 0 . . .

Hn(X) = . . . 0 Hn(X) 0 . . .

0

m′n+1

so Hn(X) ∼= kern(X)/cokn+1(X); and on the other hand

0

Kn(X) = . . . 0 Kn(X) 0 . . .

X/cokn+1(X) = . . . 0 cok(δn+1) Xn−1 . . .

X/kern(X) = . . . 0 δn(X) Xn−1 . . .

0

e′n

so Kn(X) ∼= ker(X/cokn+1(X) → X/kern(X)). The third isomorphism theo-

rem then yields the isomorphism Hn(X) = Kn(X).

The coskeleton functors coskn, cosk′n can be used to characterize the tor-

sion subobjects/torsion-free quotients of the torsion theories in COT as follows:

Proposition 4.2.23. Let X be a normal category. For X in pch(X) the fol-

lowing are equivalent:

1. Hn(X) = 0 ;
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2. X/kern+1(X) ∼= Coskn(X).

Similarly, the following are equivalent:

1. Hn(X) = 0 ;

2. cokn(X) ∼= Cosk′n(X).

where kern+1(X) and cokn(X) are the torsion subobjects of X given by the

torsion theories in 4.2.15.

Proof. First, recall from 4.2.14 that the unit X → Coskn(X) factors through

the reflection of MNn+1:

X = . . . Xn+2 Xn+1 Xn . . .

X/kern+1(X) = . . . 0 δn+1(Xn+1) Xn . . .

Coskn(X) = . . . 0 ker(δn) Xn . . .

δn+2 δn+1

en+1

δn

mn+1 δn

k(δn) δn

And, by definition, δn+1(Xn+1) ∼= ker(δn) if and only if Hn(X) = 0. The

second part is similar, since cok(δn+1) ∼= δn(X) if and only if Hn(X) = 0.

Consider the category pch(X)≥0, the lattice COT (pch(X)≥0) induces a lat-

tice of idempotent radicals:

0 ≤ · · · ≤ cokn+1 ≤ kern ≤ cokn ≤ · · · ≤ cok2 ≤ ker1 ≤ cok1 ≤ Id ,

and hence, for each chain complex M there is a lattice cot(M) of the torsion

subobjects of M :

0 ≤ · · · ≤ kern(M) ≤ cokn(M) ≤ · · · ≤ cok2(M) ≤ ker1(M) ≤ cok1(M) ≤M.

We will be interested in all possible quotients of torsion subobjects of M (in-

cluding 0 andM itself), or equivalently the quotients of preradicals of the lattice

COT (pch(X)≥0) as in 2.2.13. The homology of these quotients is calculated as

follows.

Lemma 4.2.24. Let X be a normal category and M a chain complex in

pch(X)≥0. Consider the lattice cot(M) (as in 4.2.19) then we have:
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1. For all n > 0

Hi(cokn(M)) = Hi(kern(M)) =

{
Hi(M) i ≥ n

0 n > i .

2. For all n > 0

Hi

(
M

cokn(M)

)
= Hi

(
M

kern(M)

)
=

{
0 i ≥ n

Hi(M) n > i .

3. For all n > 0

Hi

(
cokn(M)

kern(M)

)
= 0 for all i .

4. For m > n

Hi

(
cokn(M)

kerm(M)

)
= Hi

(
cokn(M)

cokm(M)

)
=

{
Hi(M) m > i ≥ n

0 otherwise .

5. Moreover, for m > n

Hi

(
cokn(M)

cokm(M)

)
= Hi

(
kern(M)

cokm(M)

)
= Hi

(
kern(M)

kerm(M)

)
.

6. In particular, for m = n+ 1

Hi

(
cokn(M)

kern+1(M)

)
=

{
Hi(M) i = n

0 i 6= n .

Proof. It is straightforward to calculate the homology of each chain complex.

For 1) consider:

cokn(M) = . . . Mn+1 Mn δn(Mn) 0 . . .

kern(M) = . . . Mn+1 ker(δn) 0 0 . . .

δn+1 en

δ′n+1

For 2) consider:

M
cokn(M) = . . . 0 0 Mn−1

δn(Mn) Mn−2 . . .

M
kern(M) = . . . 0 δn(Mn) Mn−1 Mn−2 . . .

δ′n−1

mn
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For 3) consider:

cokn(M)
kern(M) = . . . 0 Mn

ker(δn) δn(Mn) 0 . . .
∼=

For 4) and 5) the following chain complexes have the same homology:

kern(M)
kerm(M) = δm(Mm) Mm−1 . . . Mn+1 ker(δn) 0

kern(M)
cokm(M) = 0 Mm−1

δm(Mm) . . . Mn+1 ker(δn) 0

cokn(M)
kerm(M) = δm(Mm) Mm−1 . . . Mn+1 Mn δn(Mn)

cokn(M)
cokm(M) = 0 Mm−1

δm(Mm) . . . Mn+1 Mn δn(Mn)

4.2.25. Notice that for a chain complex M the quotients

cokn(M)

cokn+1(M)
,

cokn(M)

kern+1(M)
,

kern(M)

kern+1(M)
,

kern(M)

cokn+1(M)

have trivial homology objects except for Hn(M) at order n. In addition to this

property, kern(M)
cokn+1(M) is a trivial chain complex except at order n that have the

object Hn(M) (see 4.2.22):

kern(M)
cokn+1(M) = . . . 0 Hn(M) 0 . . .

4.2.5 ch(X)n≥ and ch(X)≥n as TTF subcategories

In addition to the torsion theories KERn, COKn there is another family of

torsion theories in ch(X) and, by restriction, in pch(X). In fact, the subcate-

gories of truncated chain complexes, ch(X)≥n, are simultaneously torsion and

torsion-free subcategories of ch(X). Furthermore, in pch(X) both the subcate-

gories pch(X)n≥ and pch(X)≥n will be torsion and torsion-free. We recall the

definition of a TTF subcategory.

TTF-theories were introduced in [Jan65] for abelian categories and provided

useful applications, for example some TTF-theories allow to decompose an

object into a direct sum of torsion subobjects of two different torsion theories

(see also [Ste75]).

93



Definition 4.2.26. A full subcategory T of a normal category X is a torsion

torsion-free or a TTF (for short) subcategory if there are full subcategories

C and F of X such that (C, T ) and (T ,F) are torsion theories in X. It is

convenient to call such a triplet (C, T ,F) a TTF theory of X.

Notice that in a TTF theory (C, T ,F) the torsion theory (T ,F) is hereditary

and (C, T ) is cohereditary.

Remember from the previous torsion theories (Ker(cotn−1≥), pch(X)n−1≥)

and (ch(X)≥n,Ftrn−1), that pch(X)n≥ is already a torsion-free subcategory of

pch(X) and respectively ch(X)≥n is a torsion subcategory of ch(X).

Theorem 4.2.27. Let X be a normal category. For each n ∈ Z the pair

(ch(X)n−1≥, ch(X)≥n) is a hereditary cohereditary torsion theory in ch(X). The

reflector and coreflector are given by skn−1 a trn−1 and tr′n a sk′n defined in

4.2.3:

ch(X)n−1≥ ch(X) ch(X)≥n

skn−1

⊥

trn−1

tr′n

⊥

sk′n

Proof. For X in ch(X)n−1≥ and Y in ch(X)≥n it is clear that there is only the

trivial morphism from skn−1(X)→ sk′n(Y ):

X = . . . 0 0 Xn−1 Xn−2

Y = . . . Yn+1 Yn 0 0

Since limits and colimits are computed component-wise in ch(X), the short

exact sequence of the torsion theory for a chain complex X in ch(X) is given

by:

. . . 0 0 Xn−1 Xn−2 . . .

. . . Xn+1 Xn Xn−1 Xn−2 . . .

. . . Xn+1 Xn 0 0 . . .

Corollary 4.2.28. Let X be a normal category. For each n ∈ Z the triplets of

full subcategories

(ch(X)n−1≥, ch(X)≥n,Ftrn−1
)
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are TTF theories in ch(X). Moreover, by restriction these determine the TTF

theories in pch(X)

(pch(X)n−1≥, pch(X)≥n,MNn).

Similarly, the triplet of subcategories in ch(X)

(Ker(cotn−1≥), ch(X)n−1≥, ch(X)≥n)

determines the TTF theories in pch(X)

(EPn, pch(X)n−1≥, pch(X)≥n).

4.3 Torsion theories in simplicial groups

We introduce torsion theories in Simp(X) defined in a similar way as the torsion

theories COKn and KERn of pch(X). Moreover, for the particular case of the

category of simplicial groups Simp(Grp), these torsion theories are defined

by the simplicial objects who have truncated above and below Moore chain

complexes.

4.3.1 Torsion theories induced by trn a coskn
We recall some useful properties and constructions that will be useful for simpli-

cial objects in a category X. References for more elementary facts of simplicial

objects include: [GZ67], [Dus75] and [May67].

4.3.1. We denote ∆n the full subcategory of ∆ whose objects are the ordered

sets [m] for m ≤ n. So an n-truncated simplicial object X (or a simplicial

object truncated at level n) is a functor

X = ∆op
n X .

Such truncated simplicial object X is equivalent to a family of objects Xi for

0 ≤ i ≤ n and morphisms di, si:

X = Xn . . . X3 X2 X1 X0
...

d0

dn

...

d0

d4
sn−1

s0

d0

d1

d2

d3

s3

s0

d1

d2

d0

s1

s2

s0

d1

d0

s1

s0

s0
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such that they satisfy the simplicial identities where they are defined. The

category of n-truncated simplicial objects will be denoted as Simpn(X).

4.3.2. (see [Dus75]) For each n ∈ N we have the truncation functor

trn : Simp(X) Simpn(X)

which simply forgets the objects Xi of a simplicial object X for dimensions

higher than n. It is a standard application of Kan extensions that if X has finite

limits then trn admits a right adjoint coskn called the n-coskeleton functor,

while if X has finite colimits then trn admits a left adjoint skn called the n-

skeleton:

skn a trn a coskn :

Simp(X)

Simpn(X) .

a a

The endofunctors of Simp(X), Coskn = coskntrn and Skn = skntrn are called

the n-coskeleton and n-skeleton functors and they give an adjunction Skn a
Coskn.

We can describe the n-coskeleton functor as follows. For an n-truncated

simplicial object X the simplicial kernel of the face morphisms d0, . . . , dn :

Xn → Xn−1 is an object ∆n+1 in X with morphisms φ0, . . . , φn+1 : ∆n+1 → Xn

such that diφj = dj−1φi for all i < j and it is universal with this property:

given a family of morphisms p0, . . . , pn+1 : Y → Xn such that dipj = dj−1pi for

all i < j then there is a unique morphism α : Y → ∆n+1 such that φiα = pi:

Y Xn

∆n+1 Xn Xn−1 . . .

α

...
p0

pn+1

1

...
φ0

φn+1

...
d0

dn

Moreover, the universal property of the simplicial kernel ∆n+1 allows one to

define degeneracies morphisms si : Xn → ∆n+1. So the simplicial kernel of X

defines an (n+ 1)-truncated simplicial object.

We may define the n-coskeleton of the n-truncated simplicial object as it-
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eration of successive simplicial kernels:

coskn(X) = . . . ∆n+2 ∆n+1 Xn Xn−1 . . .
...

φ0

φn+3

...

φ0

φn+2

sn+2

s0

...

d0

dn+1

sn+1

s0

...

d0

dn
sn

s0

sn−1

s0

For X = Grp the simplicial kernel ∆n+1 of an n-truncated simplicial group

can be described as the subgroup of Xn+2
n of (n+2)-tuples (x0, . . . , xn+1) such

that φi(xj) = φj−1(xi) for i < j and where φi are the product projections.

The next result is proved in [Con84] for simplicial groups.

Theorem 4.3.3. Let X be a pointed category with finite limits. For a simplicial

object X, the Moore normalization of the n-coskeleton Coskn(X) satifies:

� M(Coskn(X))i = M(X)i for i ≤ n;

� M(Coskn(X))n+1 = ker(δn : M(X)n →M(X)n−1);

� M(Coskn(X))i = 0 for i > n+ 1.

i.e. we have:

Coskn = . . . ∆n+2 ∆n+1 Xn Xn−1

M(Coskn) = . . . 0 ker(δn) M(X)n M(X)n−1

...
φ0

φn+2

...
φ0

φn+1

...
d0

dn

k(δn) δn

Proof. The case for i ≤ n is trivial. For i = n+1 since ∆n+1 and the morphisms

φi satisfy the simplicial identities then φ′n+1 : M(Coskn(X))n+1 → M(X)n

factors through ker(δn).

Notice that by definition M(X)n = ∩n−1
0 ker(di) then ker(δn) = ∩n0ker(di),

so we can consider the family of morphisms {pi : ker(δn) → Xn} with pi = 0

for i ≤ n and pn+1 the inclusion of ker(δn) to Xn. We have dipj = dj−1pi

if i < j so the universal property of ∆n+1 gives α such that pi = φiα. By

construction φiα = pi = 0 for i ≤ n so α factors through M(Coskn(X))n+1. It

follows that M(Coskn(X))n+1
∼= ker(δn).

For i > n + 1, it follows by induction and since k(δn) is monic and that

Coskm(Coskn(X)) ∼= Coskn(X) if m > n.

Also recall that semi-abelian categories are finitely complete and cocom-

plete, so the functors skn and coskn are defined and they are left and right

adjoint of the truncation functor trn for each n ≥ 0; skn a trn a coskn.
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When X is a normal category we can introduce the simplicial analogues of

the torsion theories KERn.

4.3.4. If X is a normal category with finite limits the adjunction trn a coskn
is a localization: indeed, it is clear that trn preserves limits since they are

computed component-wise in Simp(X) and Simpn(X).

From 2.4.1 the adjunction trn a coskn with unit η, induces a hereditary

torsion theory (Ttrn ,Ftrn), where

Ttrn ∼= ker(trn) = {X | Xi = 0 for i ≤ n}

and

Ftrn = {X | ηX : X → Coskn(X) is monic}.

This torsion theory extends the torsion theory (Ab(X), Eq(X)) of Grpd(X)

(3.1.9) if X is a Mal’tsev category. Notice that the adjunction ()0 a Ind for

internal groupoids (3.1.8) still hold in Simp(X), in particular for an object X

the indiscrete simplicial object is

Ind(X) = . . . X4 X3 X2 X .

φ4

φ0

...

φ4

φ0

...

φ4

φ0

...

φ1

φ0

s0

where Xn is the n-fold product of X and degeneracies are defined by the

product projections.

Proposition 4.3.5. Let X be a normal Mal’tsev category. For n = 0, consider

the torsion theory (Ttr0 ,Ftr0) in Simp(X). The torsion-free subcategory Ftr0
is equivalent to Eq(X).

Proof. Clearly, we have tr0 = ()0 and the right adjoint, the 0-coskeleton func-

tor, coincides with the indiscrete functor, so tr0 a cosk0
∼= ()0 a Ind.

The unit of ()0 a Ind for a simplicial object X is given by

X = . . . X3 X2 X1 X0

Ind(X) = . . . X4
0 X3

0 X2
0 X0 .

ηX

d4

d0

...

d3

d0

...

(d0,d1,d2,d3)

d2

d0

...

(d0,d1,d2)

d1

d0

(d0,d1)

s0

1

φ4

φ0

...

φ4

φ0

...

φ4

φ0

...

φ1

φ0

s0

Since X is a Mal’tsev category, it is proved in [Duv21] that internal groupoids

are closed under subobjects in Simp(X). So, if X has a monic unit ηX , then X
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is a groupoid since Ind(X) is an equivalence relation. Finally, since (d0, d1) :

X1 → X2
0 is monic then X is an equivalence relation and Ftr0 ⊆ Eq(X). On

the other hand, clearly an equivalence relation always has a monic unit ηX .

Notice also that Ab(X) ⊂ Ttr0 , since an internal abelian group X always

has X0 = 0.

4.3.2 Torsion theories and truncated Moore normaliza-

tions

We recall that in [dL09], the homotopy groups in simplicial objects with enough

projectives are defined in such way that the category of simplicial objects has

a Quillen model structure. So, the next definition makes sense in this context.

Definition 4.3.6. Let X be a semi-abelian category with enough projectives

and n ∈ N, a simplicial object X in Simp(X) is called an n-type if πi(X) = 0

for all i > n.

A simplicial object X with a Moore complex such that M(X)i = 0 for i > n

is an n-type.

We will writeMn≥ for the full subcategory of Simp(X) of simplicial objects

with trivial Moore complex for i > n, M(X)i = 0. Similarly, we write M≥n
for the category of simplicial objects with trivial Moore complex for i < n.

A simplicial object is a K(A,n)-simplicial group (or has type K(A,n)) if

πn(X) = A and πi(X) = 0 for i 6= n.

In order to introduce the simplicial analogues of the torsion theories COKn
we will restrict to the case of X = Grp. We will review some properties of the

category Mn≥ in Grp.

Theorem 4.3.7. ([Con84]) The category Mn≥ is equivalent to the full sub-

category of Simpn(Grp) given by the n-truncated simplicial groups such that

[
⋂
i∈I

ker(di),
⋂
j∈J

ker(dj)] = 0

for all subsets I, J of n = {0, 1, . . . , n} such that I ∩ J = ∅ and I ∪ J = n.

We have seen, from 3.2.7, that the category of internal groupoids in groups

is equivalent to the category of reflexive graphs such that [ker(d0), ker(d1)] = 0.

Moreover, also from Loday’s [Lod82] it had been noticed that Grpd(Grp) ∼=
M1≥. So, the previous theorem by Conduché is a generalization of these results.
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We will prove that the subcategories Mn≥ are torsion-free subcategories

of Simp(X), respectively, that the subcategories M≥n are the torsion subcat-

egories of (Ttrn−1 ,Ftrn−1). To this end we need to introduce the Conduché

decomposition of a simplicial group as semi-direct product of degenerate im-

ages of the lower order Moore complex objects. This decomposition is given as

follows:

4.3.8. ([Con84]) In order to avoid multiple subscripts we will write σi = ī for

the degeneracy maps of ∆.

For any object [n] = {0 < 1 < · · · < n} of the simplicial category ∆ we will

introduce an order in S(n) the set of surjective maps of ∆ with domain [n].

Any surjective map σ : [n]→ [m] is written uniquely as σ = ī1ī2 . . . īn−m with

i1 < i2 < · · · < in−m. We introduce the inverse lexicographic order in S(n,m)

the set of surjective maps form [n] to [m]:

ī1ī2 . . . īn−m < j̄1j̄2 . . . j̄n−m if in−m = jn−m, . . . , is+1 = js+1, and is > js.

This order extends to S(n) by setting S(n,m) < S(n, l) if m > l.

As an example, for S(4) we have:

id[4] < 3̄ < 2̄ < 2̄3̄ < 1̄ < 1̄3̄ < 1̄2̄ < 1̄2̄3̄

< 0̄ < 0̄3̄ < 0̄2̄ < 0̄2̄3̄ < 0̄1̄ < 0̄1̄3̄ < 0̄1̄2̄ < 0̄1̄2̄3̄

For a simplicial group X and a surjective map i = ī1ī2 . . . īr we have si =

sir . . . si1 and di = di1 . . . dir . Using the order of S(n) we have a filtration of

Xn by the subgroups

Gn,i =
⋂
j≥i

ker(dj).

Notice that Gn,id = 0 and Gn, ¯n−1 = M(X)n.

4.3.9. ([Con84]) The order S(n) satisfies that for a surjective map i : [n]→ [r]

and its successor j we have the semidirect product

Gn,j ∼= Gn,i osi M(X)r.

Finally, this implies that Xn decomposes as a succession of semi-direct prod-

ucts:

Xn = (. . . (M(X)n osn−1
M(X)n−1) osn−2

. . . ) osp−1...s0 M(X)0
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As an example, for n = 2 consider a simplicial group X with Moore complex

M :

X2 X1 X0 ,

d0

d1

d2

d0

d1

s0

s1
s0

and the order S(2) = {id < 1̄ < 0̄ < 0̄1̄}. Then we have the subgroups of X2:

G2,0̄1̄ = ker(d0d1)

G2,0̄ = ker(d0) ∩ ker(d0d1)

G2,1̄ = ker(d1) ∩ ker(d0) ∩ ker(d0d1) = M2

G2,id = ker(id) ∩ ker(d1) ∩ ker(d0) ∩ ker(d0d1) = 0.

and thus we have the split short exact sequences:

M2 = G2,1̄ G2,0̄ M1

G2,0̄1̄ X2 X0 = M0

M1

d1

s1

d0

d0d1

s1s0

s0

And it is clear that

X2 = G2,0̄1̄os1s0M0 = (G2,0̄os0M1)os1s0M0 = (((M2os1M1)os0M1)os1s0M0.

Similarly, for n = 3 we have:

X3 = M3 oM2 oM2 oM1 oM2 oM1 oM1 oM0

with the parenthesis nested to the left as before and each Mi is included into

X3 with respective degeneracy map si following the order of S(3).

Corollary 4.3.10. For each n ∈ N, the category M≥n+1 and Ttrn are equiv-

alent.

Moreover, the category M≥n+1 is a torsion subcategory in Simp(X);

(Ttrn ,Ftr−n) ∼= (M≥n+1,Ftrn).
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Proof. It follows inmmediately from the semidirect decomposition that a sim-

plicial group X has Xi = 0 for n > i if and only if M(X)i = 0 for n > i.

Proposition 4.3.11. ([Por93]) There is a ‘truncation’ functor

Cotn : Simp(Grp)→ Simp(Grp)

such that there is a natural isomorphism:

CotnM ∼= MCotn

where M is the Moore normalization functor.

4.3.12. The functor Cotn in 4.3.11 will be called the n-cotruncation4. The

functor Cotn(X) is defined as follows:

Cotn(X)i = Xi for n > i ,

Cotn(X)n = Xn/δn+1(Mn+1) ,

and for i > n the object Cotn(X) is obtained by deleting all M(X)k for k > n

and replacing M(X)n by M(X)n/δn+1(M(X)n+1) in the semidirect decompo-

sition.

For example, for a simplicial group X with Moore complex M , the first

objects of Cot1(X) are:

Cot1(X)0 = X0 = M0

Cot1(X)1 = M1/δ2(M2) = M1/δ2(M2) oM0

Cot1(X)2 = 0 oM1/δ2(M2) oM1/δ2(M2) oM0

Cot1(X)3 = 0 o 0 o 0 oM1/δ2(M2) o 0 oM1/δ2(M2) oM1/δ2(M2) oM0 .

Proposition 4.3.13. ([Por93]) LetMn≥ be the full subcategory of Simp(Grp)

defined by those groups whose Moore complex is trivial for dimensions greater

than n. Let in :Mn≥ → Simp(Grp) the inclusion functor then

1. Cotn is left adjoint of in;

4This is not the original terminology from [Por93]. There the simplicial groups of Mn≥
are called n-truncated and the functor Cotn = t |n is called the n-truncation. The name
cotruncation is suitable here, firstly, because it behaves similarly to the cotruncation functor
of chain complexes introduced in section 4.2 and, secondly, because we will be working with
both the truncation functors Cotn and trn of simplicial groups.
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2. the unit ηX : X → Cotn(X) of the adjunction is a natural epimorphism

which induces an isomorphism in πi(X) for i ≤ n;

. . . Xn+1 Xn Xn−1 . . .

. . . Cot(X)n+1 Xn/δn+1(Mn+1) Xn−1 . . . .

dn+2

d0

...

dn+1

d0

...

ηn+1

dn

d0

...

ηn

dn−1

d0

...

1

dn+2

d0

...

dn+1

d0

...

dn

d0

...

dn

d0

...

(4.1)

3. for any simplicial group X, π(Cotn(X)) = 0 for i > n;

4. the inclusion Mn≥ →Mn+1≥ correspond to a natural epimorphism

ηn : Cotn+1 → Cotn

and for a simplicial group X then ker(ηn(X)) is a K(πn+1(X), n + 1)-

simplicial group.

Unlike the case for ch(X) this cotruncation functor for simplicial groups is

normal and thus defines a torsion theory in Simp(Grp).

Corollary 4.3.14. The subcategory Mn≥ of Simp(Grp) given by the sim-

plicial groups with trivial Moore complex for dimension greater than n is a

torsion-free subcategory of Simp(Grp); the torsion theory is given by the pair

(Ker(Cotn),Mn≥).

Proof. By 4.3.13 and by 2.2.8 it suffices to prove that the functor Cotn is

normal. For a simplicial group X with a Moore complex M , since taking

normalization preseves exact sequences we have that the Moore complex of

ker(ηX) is:

. . . Mn+1 dn+1(Mn+1) 0 . . .
en+1

which is trivial under the chain cotruncation cotn. Since the functor cotn and

Cotn commute with the Moore normalization we have that Cotn(ηX) = 0 for

any simplicial group X.

Corollary 4.3.15. A simplicial group X with Moore complex M belongs to
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Ker(Cotn) if and only ifMi = 0 for n−1 ≥ i and δn+1 is a regular epimorphism:

. . . Mn+1 Mn 0 . . .
δn+1

Corollary 4.3.16. The categoryM0≥ is equivalent to the category Dis(Grp)

of discrete simplicial groups.

The category M1≥ is equivalent to the category of internal grupoids.

Moreover, the categories Dis(Grp) ∼= Grp and Grpd(Grp) are torsion-free

subcategories of Simp(X).

Proof. For n = 0, it is clear from the definition of the cotruncation functor

Cot0 that Cot0(X) = Dis(π0(X)).

For n = 1, it has been mentioned that M1≥ is equivalent to the category

of internal grupoids.

4.3.3 The lattice µ(Grp) and the fundamental simplicial

groups

Theorem 4.3.17. Let X be a semi-abelian category and X a simplicial object

with Moore chain complex N . Then the normalization functor M maps the

short exact sequence of X given by the torsion theory (Ttrn ,Ftrn) in Simp(X)

into the short exact sequence of N given by the torsion theory KERn+1 in

pch(X).

Moreover, M maps the torsion theory (Ttrn ,Ftrn) into KERn+1:

M :
Simp(X) pch(X)

(Ttrn ,Ftrn) (pch(X)≥n+1,MNn)

i.e. the subcategory Ttrn is mapped into pch(X)≥n+1 and Ftrn into MNn.

Proof. Since X is semi-abelian the normalization functor M is exact, it pre-

serves short exact sequences ([EdL04]) and also preserves the normal epi/mono

factorization of morphisms in Simp(X). From 4.3.3 notice that M commutes

(up to isomorphism) with the truncation and coskeleton functors:

Simp(X) ch(X)

Simpn(X) ch(X)n≥ .

M

trn a trn acoskn

M

coskn
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So, for a simplicial object X and its Moore complex N , the functor M maps

the short exact sequence in Simp(X):

0 ker(ηX) X ηX(X) 0

Coskn(X)

k e

ηX m

into

M(ker(ηX)) = . . . Nn+2 ker(δn+1) 0 . . .

M(X) = . . . Nn+2 Nn+1 Nn . . .

M(ηX(X)) = . . . 0 δn+1(Nn+1) Nn . . .

M(Coskn(X)) = . . . 0 ker(δn) Nn . . .

m(k)

δ′n+2

M(e)

M(ηX)

δn+2 δn+1

en+1

δn

M(m)

mn+1 δn

k(δn) δn

by M .

Since the short exact sequence of the torsion theories are preserved, it fol-

lows that M(Ttrn) ⊆ pch(X)≥n+1 and M(Ftrn) ⊆MNn.

Theorem 4.3.18. Let X be a simplicial group with Moore complex N . The

normalization functor M maps the short exact sequence of X given by the

torsion theory (Ker(Cotn),Mn≥) in Simp(Grp) into the short exact sequence

of N given by COKn+1.

Moreover, M maps the torsion category Ker(Cotn) into the torsion cate-

gory EPn+1 and, respectively, the torsion-free categoryMn≥ into pch(Grp)n≥;

M :
Simp(Grp) pch(Grp)

(Ker(Cotn),Mn≥) (EPn+1, pch(Grp)n≥)

Proof. Since the cotruncation functors commute (up to isomorphism) with the

Moore normalization

Simp(Grp) pch(Grp)

Mn≥ pch(Grp)n≥

M

Cotn a Cotn a
M

Skn
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and the normalization M preserves kernels (it is an exact functor), for a sim-

plicial group X and its Moore complex N the short exact sequence

0 ker(ηX) X Cotn(X) 0
ηX

is mapped by M into the short exact sequence (written vertically)

M(ker(ηx)) = . . . Nn+1 δn+1(Nn+1) 0 . . .

M(X) = . . . Nn+1 Nn Nn−1 . . .

M(Cotn(X)) = . . . 0 Nn/δn+1(Nn+1) Nn−1 . . . .

en+1

mn+1

δn+1 δn

δ′n

Since the associated short exact sequence of the torsion theory is preserved

by M it follows that M(Ker(Cotn)) ⊂ EPn+1 and M(Mn≥) ⊂ pch(Grp)n≥.

4.3.19. For each n ≥ 0 we will denote the previous torsion theories as

µn≥ = (Ker(Cotn),Mn≥), µ≥n+1 = (M≥n+1,Ftrn).

For a simplicial group X we will write µn≥(X) and µ≥n+1(X) for the torsion

subobject of X correspondig to each torsion theory. Since the Moore normal-

ization functor is exact the subcategories Mn≥ and M≥n+1 are always closed

under subobjects and quotients in Simp(Grp), so the torsion theories µn≥ are

cohereditary and µ≥n+1 are hereditary.

We will write µ(Grp) for the set of these torsion theories. The next result

shows that µ(Grp) is indeed a lattice similar to the lattice COT (pch(Grp)≥0).

Theorem 4.3.20. The torsion subcategories of the torsion theories µn≥ and

µ≥n+1 in Simp(Grp) are linearly ordered as:

0 ⊆ · · · ⊆ Ker(Cotn+1) ⊆M≥n+1 ⊆ Ker(Cotn) ⊆M≥n ⊆ · · · ⊆ Simp(Grp).

Moreover, the torsion theories µn≥ and µ≥n+1 form a linearly ordered lattice

µ(Grp):

0 ≤ · · · ≤ µn+1≥ ≤ µ≥n+1 ≤ µn≥ ≤ µ≥n ≤ . . .

· · · ≤ µ≥2 ≤ µ1≥ ≤ µ≥1 ≤ µ0≥ ≤ Simp(Grp) .

106



Proof. First we will proveM≥n+1 ⊆ Ker(Cotn). For a simplicial group X and

M its Moore normalization and η the counit as in 4.1, if Mi = 0 for n ≥ i

then Xi = 0 for n ≥ i. Since ηX is a normal epimorphism, we conclude that

Cotn(X)i = 0 for n ≥ i. It follows from the semidirect decomposition that

Cotn(X) = 0.

Now we will proveKer(Cotn) ⊆M≥n. From 4.1 it is clear that if Cotn(X) =

0 we have Xi = 0 for n− 1 ≥ i, then Mi = 0 for n− 1 ≥ i and, accordingly, X

is in M≥n.

Theorem 4.3.21. For all n ≥ 0 we have

1. the subcategory Mn≥ of simplicial groups with trivial Moore complexes

for i > n is a Birkhoff subcategory of Simp(Grp). Moreover, Mn≥ is

semi-abelian.

2. the subcategoriesM≥n of simplicial groups with trivial Moore Complexes

for n > i are semi-abelian.

Proof. This follows from the fact that Mn≥ is a torsion-free subcategories

of the cohereditary torsion theory µn≥, so Mn≥ is closed under quotients in

Simp(Grp). Mn≥ is semi-abelian from Corollary 1.5.10.

On the other hand, M≥n is the torsion category of the hereditary torsion

theory µ≥n in a semi-abelian category, so it follows the second statement from

2.4.11.

4.3.22. In summary, the normalization functor M maps each torsion theory of

µ(Grp) into a torsion theory of COT (pch(Grp)≥0):

M :
µn≥ COKn+1

µ≥n KERn
,

i.e. each torsion/torsion-free subcategory is mapped into the corresponding

torsion/torsion-free subcategory, accordingly, and the associated short exact

sequence is preserved:

µ(Grp) = . . . µ1≥ µ≥1 µ0≥ Simp(Grp)

COT (pch(Grp)≥0) = . . . COK2 KER1 COK1 pch(Grp)≥0

M

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
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Definition 4.3.23. Let µ(Grp) be the lattice defined as in 4.3.19. For m ≥ n
and the idempotent radicals of the torsion theories of µ(Grp):

µm≥ ≤ µ≥m ≤ · · · ≤ µn≥ ≤ µ≥n ,

consider the quotients of preradicals of Simp(Grp):

Π≥nm≥ =
µ≥n
µm≥

, Πn≥
≥m =

µn≥
µ≥m

, Π≥n≥m =
µ≥n
µ≥m

, Πn≥
m≥ =

µn≥
µm≥

;

and for all n the trivial quotients:

Π≥n =
µ≥n

0
∼= µ≥n , Π≥n =

Id

µ≥n
, Πn≥ =

µn≥
0
∼= µn≥ , Πn≥ =

Id

µn≥
.

For a simplicial group X the objects Π≥nm≥(X),Πn≥
≥m(X),Π≥n≥m(X) and Πn≥

m≥(X)

as well as Π≥n(X),Π≥n(X),Πn≥(X) and Πn≥(X) will be called the fundamen-

tal simplicial groups of X.

Accordingly, the family of functors:

Π≥nm≥,Π
n≥
≥m,Π

≥n
≥m,Π

n≥
m≥,Π

≥n,Π≥n,Π
n≥,Πn≥ : Simp(Grp) Simp(Grp)

will be called fundamental simplicial functors.

The rest of the section will be devoted to justify the choice of the name

‘fundamental’. The homotopy groups of the fundamental simplicial groups of a

simplicial group X are the same as X but only in certain dimension, otherwise

they are trivial. The following calculations include 3) 4.3.13.

Theorem 4.3.24. Let µ(Grp) be the lattice in 4.3.19. Let X be a simplicial

group with Moore normalization M . The homotopy groups of the fundamental

simplicial group of X are calculated as follows:

1. For all n ≥ 0

πi(Π
n≥(X)) = πi(Π

≥n+1) =

{
πi(M) i ≥ n+ 1

0 n+ 1 > i .

2. For all n ≥ 0

πi(Πn≥(X)) = πi(Π
≥n+1(X)) =

{
0 i ≥ n+ 1

πi(X) n+ 1 > i .
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3. For all n ≥ 0

πi(Π
n≥
≥n+1(X)) = 0 for all i .

4. For m > n ≥ 0

πi(Π
n≥
≥m+1(X)) =

{
πi(X) m+ 1 > i ≥ n+ 1

0 otherwise .

5. Moreover, for m > n ≥ 0 and for all i

πi(Π
n≥
≥m+1(X)) = πi(Π

n≥
m≥(X)) = πi(Π

≥n+1
≥m+1(X)) = πi(Π

≥n+1
m≥ (X)) .

6. In particular, for m = n+ 1

πi(Π
n≥
≥n+2(X)) =

{
πi(X) i = n+ 1

0 i 6= n .

Proof. From 4.3.11 and 4.3.3 it is easy to see that the preradicals commute

with normalization:

Simp(Grp) Simp(Grp)

pch(Grp)≥0 pch(Grp)≥0

µ≥n+1

M M

kern+1

,

Simp(Grp) Simp(Grp)

pch(Grp)≥0 pch(Grp)≥0 .

µn≥

M M

cokn+1

Since the homotopy groups of a simplicial group are calculated with the

homology of the Moore normalization the result follows from 4.2.24.

4.3.25. For an abelian group A, a simplicial group X is an Eilenberg-Mac

Lane simplicial group of type K(A,n), or a K(A,n)-simplicial group, if it has

πn(X) = A and all other homotopy groups trivial.

In particular, the n-th Eilenberg-Mac Lane simplicial group K(A,n) for

an abelian group A (in symmetric form) is defined as follows. Consider the

(n+ 1)-truncated simplicial group k(A,n):

k(A,n) = An+1 A 0 . . . 0

dn+1

d0

...

0

0

...

0

0

0

0

where the non-trivial face morphisms are

(d0, d1, . . . , dn+1) = (p0, p0 + p1, p1 + p2, . . . , pn−1 + pn, pn) ,
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where pi are the product projections, and the degeneracies are given by si =

(0, . . . , 1A, . . . , 0) with 1A in the ith-place for 0 ≤ i ≤ n. Then we define

K(A,n) = coskn+1(k(A,n)).

It can be observed that m ≥ n+1 K(A,n)m = A( pn ), where
(
p
n

)
is the binomial

coefficient.

Indeed, it is easy to see that the the Moore complex of K(A,n) is:

M(K(A,n)) = . . . 0 A 0 . . . 0 . (4.2)

The Dold-Kan Theorem (see [Wei94] for instance) gives an equivalence between

the categories of simplicial abelian groups Simp(Ab) and chain complexes in

abelian groups chn(Ab)≥0, where the equivalence is given by the Moore nor-

malization. In [CC91] this equivalence was further extended to an equivalence

between Simp(Grp) and the category of hypercrossed modules in Grp. A hy-

percrossed module is a group chain complex M with group actions for all n:

Φnα : Mr(α) Aut(Mn) forα ∈ S(n)

and binary operations

Γnα,σ : Mr(α) ×Mr(σ) Mn forα, σ ∈ S(n), 1 < σ < α, α ∩ σ = ∅

satisfying some equations. S(n) is the set of surjective maps of ∆ with domain

[n] and has the order introduced in 4.3.8 and α ∩ σ = ∅ means that the maps

α, σ do not share a common index in their factorization by the degeneracies ī.

Lemma 4.3.26. Let X be a simplicial group with Moore complex

M = . . . 0 0 A 0 0 . . .

then X isomorphic to the Eilenberg- Mac Lane simplicial group K(A,n).

Proof. Consider the chain complex M as above. Since all degrees of M are

trivial except one, all morphisms Mi → Aut(Mj) with j > i are trivial as

well all binary mappings Mi ×Mj → Mk with k > i, j. This means that the

structure of Hypercrossed module of M is necessarily unique. Thus, it follows

from the equivalence of Hypercrossed modules and simplicial groups ([CC91])

that X ∼= K(A,n).

The next corollary generalizes part 4) of 4.3.13.
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Corollary 4.3.27. For n ≥ 0 and a simplicial group X the simplicial groups:

Πn≥
≥n+2(X) , Πn≥

n+1≥(X) , Π≥n+1
≥n+2(X) , Π≥n+1

n+1≥(X)

are K(πn+1(X), n+ 1)-simplicial groups.

Moreover, Π≥n+1
n+1≥(X) is isomorphic to (n+ 1)-th Eilenberg-Mac Lane sim-

plicial group K(πn+1(X), n+ 1).

Proof. It follows by definition from 6) of 4.3.24. Moreover, the Moore complex

of Π≥n+1
n+1≥(X) isomorphic to the chain complex kern+1(M)

cokn+2(M) , that is a trivial chain

complex except at order n that has πn+1(X). It follows from the observation

in 4.3.25 that Π≥n+1
n+1≥(X) ∼= K(πn+1(X), n+ 1).

We conclude with some observations.

4.3.28. 1. For a simplicial group X the connected components group is cal-

culated as π0(X) ∼= coeq(d0, d1) ∼= X0/δ1(M1), so Cot0 ∼= π0. Hence,

the adjunction π0 a D is the torsion-free reflection of the torsion theory

µ0≥ and M0≥ ∼= Dis(Grp) (4.3.16). Moreover, the following diagram

commutes (up to isomorphism):

Simp(Grp) Dis(Grp)

Grp

Π0≥

π0 D

2. For n ≥ 1, we can consider the category Abn the full subcategory of

Simp(Grp) given by the n-Eilenberg Mac Lane objects K(A,n) for all

abelian groups A. Clearly, Ab ∼= Abn and by 4.3.27 and the observations

in 4.3.25 the following diagram commutes (up to isomorphism):

Simp(Grp) Abn

Ab

Π
≥n+1
n+1≥

πn K( ,n)

3. The fundamental groupoid or Poincaré groupoid can be defined categor-

ically as the groupoid given by the left adjoint Π1 of the nerve functor

N : Grpd(X) → Simp(X) (see [GZ67]). For the case of X = Grp, we

have noticed thatM1≥ ∼= Grpd(Grp) ∼= XMod is the torsion-free part of

µ1≥, it follows from the definition of the cotruncation functor Cot1 and

the semi-direct decomposition that the inclusion M1≥ → Simp(Grp) is
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naturally isomorphic to the nerve functor N : Grpd(Grp)→ Simp(Grp),

so the diagram

Simp(Grp) M1≥

Grpd(Grp)

Π1≥

Π1 N

commutes up to isomorphism.5

5In [Duv21], the fundamental groupoid is studied in the case of Mal’tsev exact categories.
Similar to the group case, the left adjoint of the nerve functor is given by the unique groupoid

structure of the reflexive graph X1/H(X) X0 where H(X) = d2(D0 ∩D1) and Di

is the kernel pair of the face morphisms d1, d0 : X2 → X1.
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Chapter 5

Applications

5.1 Chain complexes with operations

1

As seen in chapter 3, the torsion theories in internal groupoids can be

studied in a simpler way as torsion theories in crossed modules, we can also

study torsion theories in simplicial groups as torsion theories in categories given

by the Moore chain complexes with operations.

In particular, the torsion/torsion-free objects of these chain complexes with

operators are constructed as the torsion/torsion-free objects of the underlying

proper chain complex of the torsion theories in COT in pch(Grp).

We will restrict the lattice µ(Grp) to the semi-abelian subcategories of

Simp(Grp). Firstly, we consider the subcategories Mn≥ where the case for

n = 1 reduces to the torsion theories in crossed modules and for n = 2 they

correspond to Conduché’s 2-crossed modules. As a second kind of example

we consider the category of T-complexes and Ashley’s crossed complexes in

groups. We will show that different kinds of central extensions appear as torsion

categories.

5.1.1. In [CC91], the notion of a hypercrossed module is introduced as a chain

complex M with group actions for all n:

Φnα : Mr(α) Aut(Mn) forα ∈ S(n)

1This chapter is adapted from [Lop22a].
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and binary operations

Γnα,σ : Mr(α) ×Mr(σ) Mn forα, σ ∈ S(n), 1 < σ < α, α ∩ σ = ∅

satisfying some equations. The Moore complex of a simplicial group is an hy-

percrossed module and, thus we have a generalized version of the Dold-Kan

theorem. The categories of hypercrossed modules and simplicial groups are

equivalent under the Moore normalization functor M ′, so the diagram com-

mutes up to isomorphism:

Simp(Grp) HXmod

chn(Grp)

M ′∼=

M U

where U forgets the group actions Φnα and binary operations Γnα,σ. This equiv-

alence M ′ generalises the following equivalences:

� The classical Dold-Kan Theorem between chn(Ab)≥0 the category of

chain complexes in abelian groups and the category Simp(Ab) of sim-

plicial abelian groups;

� the equivalence between the categories Grpd(Grp) of internal groupoids

in groups and XMod of crossed modules;

� the equivalence between the categories M2≥ of simplicial groups with

trivial Moore complexes for i > 2 and 2XMod of Conduché’s 2-crossed

modules;

� the equivalence between the categories of Dakin’s group T -complexes and

Ashley’s crossed complexes in groups, and as well as the hypercrossed

complexes with all the binary operations trivial Γnα,σ = 0.

5.1.1 Simplicial groups with truncated Moore complex

We will study the restriction of the torsion theories of µ(Grp) to the subcate-

gories Mn≥ of Simp(Grp). The category of abelian groups and special kinds

of categories of central extensions will appear as torsion categories of Mn≥.

Recall that group actions are written in the left as b(a). We write [a, b] =

aba−1b−1 for the commutator elements for a, b in a groupA, and for a precrossed

module δ : A → B the Peiffer elements are < a, a′ >= aa′a−1δ(a)a′−1 and so,
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a precrossed module is a crossed module if and only if all Peiffer elements are

trivial.

We will write µ(Mn≥) for the lattice of the restricted torsion theories of

µ(Grp) to the subcategory Mn≥. Will first study the case n = 2.

We recall the category of 2-crossed modules introduced by D. Conduché.

Definition 5.1.2. ([Con84]) A group chain complex

L M N
δ2 δ1

is called a 2-crossed module if N acts on L and M and the differentials δ2, δ1

are equivariant (N acts over itself with conjugation), and there is a mapping

{ , } : M ×M L

satisfying:

2XM1 δ2{m0,m1} = m0m1m
−1
0

δ1(m0)(m−1
1 );

2XM2 {δ2(l0), δ2(l1)} = [l0, l1];

2XM3 {δ2(l),m}{m, δ2(l)} = l δ1(m)l−1;

2XM4 {m0,m1m2} = {m0,m1}{m0,m2}{δ2{m0,m2}−1, δ1(m0)m1};

2XM5 {m0m1,m2} = {m0,m1m2m
−1
1 } δ1(m0){m1,m2};

2XM6 n{m0,m1} = {nm0,
nm1}.

The map { , } is called the Peiffer Lifting.

A morphism of 2-crossed modules is a morphism of chain complexes that

preserves the group action and the Peiffer lifting. The category of 2-crossed

complexes will be denoted as 2XMod.

5.1.3. ([Con84]) From the definition we observe that given a 2-crossed module

L M N
δ2 δ1

we have:

1. The Peiffer lifting defines a group action of M over L as

m(l) = l{δ2(l)−1,m}

and δ2 is an equivariant morphism.
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2. It follows from 2XM2 that δ2 : L→M is a crossed module but in general

δ1 : M → N is only a precrossed module.

3. 2XM1 and 2XM2 basically mean that the Peiffer lifting { , } factors

through the commutator of L and the Peiffer commutator of δ1 : M → N :

L× L M ×M

L M N .

δ2×δ2

[ , ] < , >{ , }

δ2 δ1

4. If L = 0, from 2XM1 δ1 : M → N is a crossed module.

5. For a precrossed module δ : A→ B since the Peiffer elements < a, a′ >=

aa′a−1δ(a)a′−1 are contained in ker(δ), so the coskeleton:

cosk1(δ) : ker(δ) A Bδ

is a 2-crossed module with { , } =< , >.

6. In addition, if δ : A → B is a crossed module, besides cosk1(δ), the

skeleton of δ is a 2-crossed module with trivial Peiffer Lifting:

sk1(δ) : 0 A B .δ

7. The 1-cotruncation of a 2-crossed module is a crossed module:

cot1(δ2, δ1) : 0 M/δ2(L) N .

8. Form the previous observations we have an adjunction:

2Xmod Xmod .

cot1

⊥
sk1

9. Also, we have the adjunction:

2XMod Grp

cot0

⊥
sk0

= 2XMod XMod Grp .

cot1

⊥
sk1

H0

⊥
D
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10. The coskeletal adjunctions hold as well:

2XMod PXMod ,

tr1

⊥

cosk1

2XMod Grp .

tr0

⊥
cosk0

For completeness sake and to further exhibit the similarities between crossed

modules and 2-crossed modules we include the following results.

Proposition 5.1.4. (see [Lod82], [Con84] and [Con03]) For a simplicial group

X with Moore complex M :

1. If Mi = 0 for i ≥ 2, then the morphism δ1 : M1 →M2 is a crossed module

where M0 acts on M1 by conjugation with the degeneracy s0.

Conversely, there is a functor (the nerve functor) associating to a crossed

module δ : A→ B a simplicial group X having δ as its Moore complex.

2. If Mi = 0 for i ≥ 3, the complex M2 → M1 → M0 is a 2-crossed module

where M0 acts on M1 and M2 by conjugation via the degeneracies and

the Peiffer lifting

{x, y} = s1[x, y][s1(y), s0(x)] .

Conversely, there is a functor associating to a 2-crossed module (δ2, δ1) a

simplicial group whose Moore complex is naturally isomorphic to (δ2, δ1).

Corollary 5.1.5. The category 2XMod of 2-crossed modules is semi-abelian.

Proof. 2XMod is equivalent to M2≥ a torsion-free category of a cohereditary

torsion theory of a semi-abelian category Simp(X). In particular, 2XMod is a

Birkhoff subcategory of Simp(Grp) so the result follows from 1.5.10.

The following categories were also introduced by Conduché.

Definition 5.1.6. ([Con84])

1. A reduced 2-crossed module is a group morphism δ : L→M with a map

{ , } : M ×M → L satisfying:

(a) δ{m0,m1} = [m0,m1],

(b) {δ(l0), δ(l1)} = [l0, l1],

(c) {δ(l),m}{m, δ(l)} = 1,
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(d) {m0,m1m2} = {m0,m1}{m0,m2}{[m2,m0],m1},

(e) {m0m1,m2} = {m0,m1m2m
−1
1 }{m1,m2}.

The category of reduced 2-crossed modules will be denoted as R2XMod.

2. A stable crossed module is a group morphism δ : L → M with a map

{ , } : M ×M → L satisfying:

(a) δ{m0,m1} = [m0,m1],

(b) {δ(l0), δ(l1)} = [l0, l1],

(c) {m1,m0} = {m0,m1}−1,

(d) {m0m1,m2} = {m0m1m
−1
0 ,m0m2m

−1
0 }{m0,m2}.

We will denote StXMod for the category of stable crossed modules.

The underlying morphism δ : L → M of reduced 2-crossed module/stable

crossed module is in fact a crossed module.

The terminology reduced 2-crossed module comes from the fact that a sim-

plicial group X is called reduced if X0 = 0 and from the next theorem2.

Theorem 5.1.7. ([Con84]) The category of 2-crossed modules L → M → N

with N = 0 is equivalent to the category of simplicial groups with trivial

Moore complex except for degrees 1, 2 and it is also equivalent to the category

R2XMod of reduced 2-crossed modules.

Theorem 5.1.8. ([Con84]) For n ≥ 2 the category of simplicial groups with

trivial Moore complex except for degrees n and n + 1 is equivalent to the

category StXMod of stable crossed modules.

2In [Con84], no name is given to these 2-crossed modules.
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5.1.9. Recall the lattice µ(Grp):

Simp(Grp) = Simp(Grp) Simp(Grp) 0

µ0≥ = Ker(Cot0) Simp(Grp) M0≥ ∼= Grp

µ≥1 = M≥1 Simp(Grp) Ftr0 ∼= Eq(Grp)

µ1≥ = Ker(Cot1) Simp(Grp) M1≥ ∼= Grpd(Grp)

µ≥2 = M≥2 Simp(Grp) Ftr1

µ2≥ = Ker(Cot2) Simp(Grp) M2≥

. . . . . . . . . . . .

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Lemma 5.1.10. For n = 1, the restriction of the lattice µ(Grp) to the sub-

category M1≥ is the lattice µ(M1≥):

0 ≤ µ′≥1 ≤ µ′0≥ ≤ M1≥

where µ′≥i and µ′i≥ are the restrictions of µ(Grp) to M1≥. These torsion

theories are equivalent to

0 ≤ (Ab,Eq(Grp)) ≤ (Conn(Grpd(Grp)), Dis(Grp)) ≤ M1≥ .

And thus, equivalent to the lattice of torsion theories in crossed modules:

0 ≤ (Ab,NMono) ≤ (Cext,Dis) ≤ XMod .

Proof. First, notice that besides µ≥1 and µ0≥ the intersection of any torsion

theory of µ(Grp) to M1≥ is the bottom element (0,M1≥). Since the tor-

sion and the torsion-free category of a torsion theory determine each other

and we already have Dis(Grp) = Grp and Eq(Grp) as torsion-free categories

then the torsion categories much be equivalent, i.e. Ker(Cot0) ∩ M1≥ =

Conn(Grpd(Grp)) and M≥1 ∩M1≥ = Ab. By 3.2.8, this lattice corresponds

to the lattice above in crossed modules.
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Following the case for n = 1, for n = 2, if we write µ′i≥, µ′≥i for the restric-

tions of the torsion theories, the only non-trivial torsion theories of µ(M2≥)

are:
µ′0≥ = Ker(Cot0) ∩M2≥ M2≥ Grp

µ′≥1 = M≥1 ∩M2≥ M2≥ Eq(Grp)

µ′1≥ = Ker(Cot1) ∩M2≥ M2≥ Grpd(Grp)

µ′≥2 = M≥2 ∩M2≥ M2≥ Ftr1

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Similar to the case internal groupoids/crossed modules, for n = 2 we can study

these torsion theories with 2-crossed modules.

Lemma 5.1.11. For a 2-crossed module X = L → M → N the chain com-

plexes torsion objects:

µ≥2(X) = ker(δ2) 0 0

µ1≥(X) = L δ2(L) 0

µ≥1(X) = L ker(δ1) 0

µ0≥(X) = L M δ1(X)

and the torsion-free objects:

X/µ≥2(X) = δ2(L) M N

X/µ1≥(X) = 0 M/δ2(L) N

X/µ≥1(X) = 0 δ1(M) N

X/µ0≥(X) = 0 0 N/δ1(M) .

are 2-crossed modules with the structure induced from X.

Proof. It is straightforward to verify of the axioms of 2-crossed modules.

Theorem 5.1.12. The torsion theories inM2≥ are equivalent under the Moore

normalization functor to the torsion theories in 2XMod:

1. µ′0≥
∼= (Ker(cot0), Dis)
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2. µ′≥1
∼= (R2XMod,NMono)

3. µ′1≥
∼= (CExt ∩R2XMod,XMod)

4. µ′≥2
∼= (Ab2,Ftr1)

where

� Ab2 is the subcategory given by 2-crossed modules of the form A→ 0→ 0

with A an abelian group.

� Dis, NMono, XMod are respectively the categories of discrete crossed

modules, normal subgroup crossed modules and crossed modules consid-

ered as 2-crossed modules under sk1.

� R2XMod is the category of 2-reduced crossed modules as in 5.1.7.

� CExt ∩ R2XMod is the category of 2-reduced crossed modules who are

also central extensions, i.e. the morphism δ is surjective;

� the functors coti, ski, tri, coski are defined for 2-crossed complexes as in

5.1.3.

Proof. Firstly, let M ′ the Conduché equivalence between the category M2≥

and and the category 2-crossed modules, so the diagram

M2≥ 2Xmod

pch(Grp)2≥

M ′∼=

M U

commutes up to isomorphism where U is the forgetful functor. Now for the

equivalences:

1. Is trivial.

2. Since M2≥ ∩M≥1 is the category of simplicial groups with non-trivial

Moore complex at degrees 1,2 it must be equivalent to the category of

reduced 2-crossed modules. As for what concerns to the torsion-free cat-

egory it has been noticed that Eq(Grp) ∼= NMono.

3. Since the morphism δ2 : L→M is a crossed module, then L→ δ2(L) is a

central extension. The Moore normalization functor is conservative, so a

simplicial group X with a Moore complex M2 → δ2(M2)→ 0 necessarily

belongs to Ker(Cot1), then Ker(Cot1) ∩M≥2
∼= CExt ∩R2XMod. For

the torsion-free category it has been noticed that Gpds(Grp) ∼= XMod.
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4. Since M2≥ ∩ M≥2 is the category of simplicial groups with the only

non-trivial Moore complex at degree 2, it must be equivalent to Ab2.

We will now consider the case for n > 2 and µ(Mn≥). First, we can observe

that the top non-trivial elements

µ′1≥ ≤ µ′≥1 ≤ µ′0≥

have as torsion-free categories the categories Grpd(Grp), Eq(Grp) and Dis,

respectively.

µ(Mn≥), unlike µ(Grp), has a minimal element µ′≥n. The torsion categories

of the first three bottom non-trivial elements of µ(Mn≥) are characterized as

follows.

Theorem 5.1.13. Consider n > 2, In µ(Mn≥) consider the torsion theories:

1. µ≥n−1 = (M≥n−1 ∩Mn≥ , Ftrn−2
∩Mn≥);

2. µ′n−1≥ = (Ker(Cotn−1) ∩Mn≥ , Mn−1≥ ∩Mn≥);

3. µ′≥n = (M≥n ∩Mn≥ , Ftrn−1
∩Mn≥).

Then for the torsion categories we have the equivalences:

1. M≥n−1 ∩Mn≥ ∼= StXMod.

2. Ker(Cotn−1) ∩Mn≥ ∼= StXMod ∩ CExt, where StXmod ∩ Cext is the

category of stable crossed modules that have a surjective map δ, i.e. they

are central extensions.

3. M≥n ∩Mn≥ ∼= Abn, where Abn is the subcategory of simplicial groups

given by the Eilenberg Mac-Lane objects at degree n.

Proof. 1) Notice M≥n−1 ∩ Mn≥ is the category of simplicial groups whose

Moore complex is trivial except at degrees n, n− 1, so by 5.1.8 it is equivalent

to the category of crossed modules.

2) If X is a simplicial group in Ker(Cotn−1)∩Mn≥ its Moore complex M

is trivial except at degrees n and n− 1. Also, since X belongs to Ker(Cotn−1)

under the normalization δn : Mn → Mn−1 is surjective so X equivalent to a

stable crossed module central extension.

3) Is trivial since a simplicial group in M≥n ∩Mn≥ has a trivial Moore

complex except at degree n, which must be an abelian group.
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Corollary 5.1.14. The category StXMod of stable crossed modules and the

category R2XMod of reduced 2-crossed modules are semi-abelian.

Proof. StXMod is the torsion category of a hereditary torsion theory of Mn≥

which is semi-abelian. So, the result follows from 2.4.11. Similarly forR2XMod.

5.1.2 Reduced crossed complexes

Introduced by Dakin [Dak77], a T-complex is a Kan simplicial object that

admits a canonical filler for horns, for example groupoids have this property.

Following the work of Ashley’s [Ash78] and the observations in [CC91] a group

T-complex (a T-complex in simplicial groups) can be defined as simplicial group

X with Mn∩Dn = 0 where M is the Moore complex of X and D is the graded

subgroup of X generated by the degenerated elements of X.

Definition 5.1.15. ([Ash78]) A reduced crossed complex or a group crossed

complex M is a proper chain complex3

M = . . . Mn Mn−1 . . . M2 M1 M0
δn δ2 δ1

where

1. Mn is abelian for n ≥ 2;

2. M0 acts on Mn for n ≥ 1 and the restriction to δ1(M1) acts trivially on

Mn for n ≥ 2;

3. δn preserves the action of M0 and δ1 : M1 →M0 is a crossed module.

A morphism of reduced crossed complexes is a chain complex morphism that

preserves all actions. We will write Crs(Grp) for the category of reduced

crossed complexes.

It is proved in [Ash78] that the category of group T-complexes is equivalent

to the category of reduced crossed complexes. And in [EP97] is shown that

the category of reduced crossed complexes is an epi-reflective subcategory of

simplicial groups4.

3Usually, a (reduced) crossed complex is written with the indexes i ≥ 1 since in the
general case of crossed complex the object M0 is used for the object of objects of the base
groupoid M1,M0. We will not be working with crossed complexes over groupoids. Following
[CC91], we start with i = 0 since reduced crossed complexes are the Moore complexes of
group T-complexes.

4This result is consequence of more general result. Crossed complexes over groupoids (over
sets) is a variety of simplicial groupoids, reduced crossed complexes are groupoid crossed
complexes as a group is a groupoid with only one object.
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Corollary 5.1.16. The category of Dakin’s group T -complexes, and hence the

category Crs(Grp) of reduced crossed complexes, are semi-abelian.

Proof. From [EP97], we have that group T -complexes is a normal epi-reflective

subcategory of Simp(Grp). In fact it is a Birkhoff subcategory, we just need

to prove that it is closed under regular epimorphism in Simp(Grp). So let

be X a group T -complex, a simplicial group with MX
n ∩ DX

n = 0 and f :

X → Y a regular epimorphism where MX
n ,M

Y
n are the Moore subobjects and

DX
n , D

Y
n are the graded subgroups generated by degenerated elements of X and

Y respectively.

Since the Moore normalization preserves regular epimorphisms then the

restriction fM : MX
n →MY

n is also a regular epimorphism. Now the restriction

fD : DX
n → DY

n is surjective, since we have a commutative diagram:

Xn Xm

Yn Ym

f

si

f

si

so for a degenerate element si(ym) in Yn (si a composition of degenerate mor-

phisms), there is xm in XM such that sif(xm) = fsi(xm). Finally, the mor-

phism:

fM × fD : MX
n ×Xn DX

n MY
n ×Yn DY

n

is a regular epimorphism (see 1.2.10), so if MX
n ×XnDX

n = MX
n ∩DX

n = 0 then

so MY
n ∩DY

n = 0.

5.1.17. As first examples, we have that for a crossed module δ : A → B the

1-skeleton and 1-coskeleton are crossed complexes:

sk1(δ) = . . . 0 0 A B

cosk1(δ) = . . . 0 ker(δ) A B .

We can define an n-reduced crossed complex as a n-truncated chain complex

M :

M = Mn Mn−1 . . . M2 M1 M0
δn δ2 δ1

satisfying all the axioms of a reduced crossed complex that make sense, thus

we have a category Crs(Grp)n≥ of n-truncated crossed complexes.

It is straightforward to see that for a n-truncated reduced crossed complex

M the n-skeleton skn(M) and the n-coskeleton coskn(M) are reduced crossed
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complexes. We consider Crs(Grp)n≥ as a full subcategory of Crs(Grp) under

skn. Clearly, Crs(Grp)1≥ ∼= XMod.

Also, the n-truncation and n-cotruncation of a reduced crossed complex are

n-truncated reduced crossed complexes. So, we have the adjuctions 5:

cotn a skn a trn a coskn :

Crs(Grp)

Crs(Grp)n≥ .

aa a

5.1.18. Consider the lattice µ(Crs(Grp)) given by the restriction of µ(Grp) to

Crs(Grp)

µ(Crs(Grp)) = . . . ≤ µ′≥2 ≤ µ′1≥ ≤ µ′≥1 ≤ µ′0≥ ≤ Crs(Grp) .

Then the torsion theories µ′n≥ and µ′≥n can be expressed with the functors

cotn a skn a trn a coskn:

µ′n≥ = (Ker(cotn), Crs(Grp)n≥), µ′≥n = (Crs(Grp)≥n,Ftrn) .

Here, Crs(Grp)≥n is the subcategory of reduced crossed complexes trivial for

degrees below n, so basically, Crs(Grp)≥n ∼= chn(Ab)≥n for n ≥ 1. It is easy to

see that Grp ∼= Dis(Grp), Eq(Grp), Grpd(Grp) are still torsion-free categories

of Crs(Grp).

Since Crs(Grp) is a semi-abelian category then so are Crs(Grp)n≥ and

Crs(Grp)≥n.

Theorem 5.1.19. For n > 1, let µ(Crs(Grp)n≥) be the lattice given by re-

striction of µ(Grp) to Crs(Grp)n≥:

µ(Crs(Grp)n≥) = 0 ≤ µ′≥n ≤ µ′n−1≥ ≤ . . . ≤ µ′≥1 ≤ µ′0≥ ≤ Crs(Grp)n≥ .

Where the bottom torsion theories are given by

1. µ′n−1≥ = (Ker(cotn−1) ∩ Crs(Grp)n≥ , Mn−1≥ ∩ Crs(Grp)n≥);

2. µ′≥n = (M≥n ∩ Crs(Grp)n≥ , Ftrn−1
∩ Crs(Grp)n≥).

Then for the torsion categories we have the equivalences:

5([BHS10]) Once again, this functors are also defined in the more general setting of crossed
complexes over groupoids, also the adjunctions hold.
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1. Ker(cotn−1) ∩ Crs(Grp)n≥ ∼= CExt(Ab), where CExt(Ab) is the cate-

gory of central extension in abelian groups, i.e. surjective morphisms.

2. M≥n ∩ Crs(Grp)n≥ ∼= Abn; where Abn is the subcategory of simplicial

groups given by the n-th Eilenberg-Mac Lane objects or, equivalently, the

category of abelian groups.

Proof. The proof is similar to 5.1.13.

5.2 A weak semi-abelian TTF-theory in simpli-

cial groups

In 4.2.28, if we write X = Grp (or any semi-abelian category) we have intro-

duced two different examples of TTF-theories in ch(X) and in pch(X):

(Ker(cotn−1), pch(X)n−1≥, pch(X)≥n), (ch(X)n−1≥, ch(X)≥n,Ftrn−1
).

These examples rely on the fact that in ch(X) we have the string of adjunctions

cot a sk a tr a cosk which is not the case for simplicial objects.

We have seen that in internal groupoids Grpd(Grp), and in Simp(Grp), the

subcategory of discrete groupoids Dis(Grp) ∼=M0 is a torsion-free subcategory

and also mono-coreflective but not normal mono-coreflective, so it is not a

torsion subcategory. In general, the subcategories Mn≥ are only torsion-free.

However, restricted to Crs(Grp) since we have the functors and adjunctions

cot a sk a tr a cosk similarly defined as in ch(X), so we will have weaker

versions of a TTF-theories. More precisely, the categories Crs(Grp)n−1≥ are

torsion-free mono-reflective subcategories of Crs(Grp) and the pairs

(Crs(Grp)n−1≥, Crs(Grp)≥n)

satisfy the axiom TT1 of a torsion theory and they only satisfy TT2 (the short

exact sequence) for a special class of objects of Crs(Grp).

Two different kinds of torsion theories are introduced.

5.2.1. Let X be a normal category.

1. We will call a torsion theory (T ,F) in X a CTF-theory if F is a mono-

coreflective category of X. Trivially, in a TTF-theory (C, T ,F) the pair

(C, T ) is a CTF-theory.

2. For a class of objects E of X, a pair (T ,F) of full subcategories of X will

be called a E-torsion theory if:
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TT1 for all X ∈ T and Y ∈ F , every morphism f : X → Y is zero,

TT2’ for every object X ∈ E exists a short exact sequence

0 TX X FX 0
tX fX

with TX ∈ T and FX ∈ F .

As a first example of a E-torsion theory we can consider given by the torsion

theories COKn.

Lemma 5.2.2. In ch(X) the category of chain complexes the pair

(Ker(cotn), ch(X)n≥)

and E the class of proper chain complexes pch(X) is a E-torsion theory in ch(X).

Proof. To verify TT1 it suffices to notice that given a commutative diagram:

Xn+1 Xn

0 Yn

δn+1

fn+1 fn

with δn a morphism with trivial cokernel then the morphism f must be triv-

ial. TT2’ holds since it has been stablished that the restriction of the pair

(Ker(cotn), ch(X)n≥) to proper chain gives a torsion theory (EPn, pch(X)n≥)

in pch(X).

As a second example we have the subcategory of discrete crossed modules

Dis in XMod which behaves almost as a torsion torsion-free subcategory.

Proposition 5.2.3. In XMod consider the triplet of subcategories:

(CExt,Dis,Ab)

then:

1. The pair (CExt,Dis) is a CTF theory in XMod.

2. The pair (Dis,Ab) is an E-torsion theory where E is the class of crossed

modules δ : A→ B where the action B → Aut(A) is trivial.
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Proof. 1) It has been noticed that the discrete functor D has right adjoint ( )0

with the counit for a crossed module δ : A→ B:

0 A

B B

0

δ

1

(5.1)

which is a monomorphism since the pair (0, 1) are injective morphisms.

2) It is clear that the pair (Dis,Ab) satisfies TT1 since in a commutative

diagram

0 A

G 0

f1

f0

the morphism f = (f1, f0) is zero. For TT2’, recall that the unit (5.1) is a

normal monomorphism in XMod if and only if b(a)a−1 = 0 , i.e. the action

of B over A is trivial. From the Peiffer identity δ(a)(a′) = aa′a−1, a crossed

module with trivial action also has A as an abelian group then we have the

short exact sequence in XMod:

0 0 A A 0

0 B B 0 0 .

δ

5.2.4. In Crs(Grp) for each n ≥ 0 consider the full subcategory Crs(Grp)≥n

of reduced crossed complexes M who are trivial in degrees below n:

M = . . . Mn+1 Mn 0 0 . . . ;

for all n > 0 the category Crs(Grp)≥n is equivalent to the category ch(Ab)≥n ∼=
ch(Ab) of chain complexes in abelian groups.

Thus for n ≥ 2 we have a functor tr′n : Crs(Grp)→ Crs(Grp)≥n, defined

for a crossed complex M by

tr′n(M) = . . . Mn+1 Mn 0 . . . .
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The natural chain complex morphism f : M → tr′n(M):

. . . Mn+1 Mn Mn−1 . . . M1 M0

. . . Mn+1 Mn 0 . . . 0 0

1 1 0 0 0

is a morphism in Crs(Grp) if and only if all the actions M0 → Aut(Mi) are

trivial for i ≥ n since it must satisfy m0mn = fn(m0mn) =f0(m0) fn(mn) = mn

for all m0 ∈M0 and mn ∈Mn. In particular, this condition holds if δ : M1 →
M0 is a central extension, since in a crossed complex the restrictions of the

actions δ1(M1)→ Aut(M0) are trivial.

Proposition 5.2.5. For n ≥ 2, consider the triplet of subcategories:

(Ker(cotn−1), Crs(Grp)n−1≥, Crs(Grp)≥n) .

in Crs(Grp). Then

1. The pair (Ker(cotn−1), Crs(Grp)n−1≥) is CTF theory, i.e. the subcate-

gory Crs(Grp)n−1≥ is mono-coreflective.

2. The pair (Crs(Grp)n−1≥, Crs(Grp)≥n) is an E-torsion theory where E is

the class of crossed complex M with all action M0 → Aut(Mi) trivial for

i ≥ n.

3. If M if a crossed complex with δ1 : M1 → M0 a crossed module central

extension then M belongs to E .

In particular, for n = 2 this holds for the triplet:

(Ker(cot1),XMod, chn(Ab)≥2) .

Proof. 1) From 5.1.18, µ′n−1≥ = (Ker(cotn−1), Crs(Grp)n−1≥) is a torsion

theory. It suffices to notice that the counit of skn−1 a trn−1 given by

. . . 0 Mn−1 Mn−2 . . .

. . . Mn Mn−1 Mn−2 . . .

is monic since each component is an injective morphism.

2) It is clear that the pair (Crs(Grp)n−1≥, Crs(Grp)≥n) satisfies TT1 of

the definition of a E-torsion theory. Now, let M be a crossed complex with
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trivial actions M0 → Aut(Mi) and consider the morphisms trn−1(M)→M →
tr′n(M) in Crs(Grp):

. . . 0 0 Mn−1 Mn−2 . . .

. . . Mn+1 Mn Mn−1 Mn−2 . . .

. . . Mn+1 Mn 0 0 . . .

it is a short exact sequence in Crs(Grp) since it is a short exact sequence as

chain complexes and the forgetful functor is conservative.

3) It follows from the definition of crossed complex that if δ1 is surjective

the actions δ1(M1) = M0 → Aut(Mi) are trivial.
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[Con03] D. Conduché. Simplicial crossed modules and mapping cones. Geor-

gian Mathematical Journal, 10:623–636, 2003.

[CPP92] A. Carboni, M. C. Pedicchio, and N. Pirovano. Internal graph and

internal groupoids in Mal’cev categories. Canadian Math. Soc. Con-

ference Prod. 1991, 13, 1992.

[CV04] C. Centazzo and E. Vitale. Categorical Foundations - Special Topics

in Order, Topology, Algebra and Sheaf Theory, VII Sheaf Theory.

Cambridge University Press, New York Heidelberg Berlin, 2004.

[Dak77] M. K. Dakin. Kan complexes and multiple groupoid structures. Phd

Thesis, University of Wales, Bangor, 1977.

[Dic66] S. E. Dickson. A torsion theory for abelian categories. Trans. Amer.

Math. Soc., 121:223–235, 1966.

[dL09] T. Van der Linden. Simplicial homotopy in semi-abelian categories.

J. K-Theory, 4:379–390, 2009.

[Dus75] J. Duskin. Simplicial methods and the interpretation of triple coho-

mology. American Mathematical Society, 1975.

[Duv21] A. Duvieusart. Fundamental groupoids for simplicial objects in

Mal’cev categories. J. Pure Appl. Algebra, 225, 2021.

[EdL04] T. Everaert and T. Van der Linden. Baer invariants in semi-abelian

categories ii:homology. Th. Appl. Categ., 12:195–224, 2004.

133



[EG10] T. Everaert and M. Gran. Homology of n-fold groupoids. Th. Appl.

Categ., 23(2):22–41, 2010.

[EG13] T. Everaert and M. Gran. Monotone-light factorisation systems and

torsion theories. Bull. Sci. Math, 23(11):221–242, 2013.

[EG15] T. Everaert and M. Gran. Protoadditive functors, derived torsion

theories and homology. J. Pure Appl. Algebra, 219(8):3629–3676,

2015.

[EP97] P.J. Ehlers and T. Porter. Varieties of simplicial groupoids i: Crossed

complexes. J. Pure Appl. Algebra, 120, 1997.

[EZ50] S. Eilenberg and J. Zibler. Semisimplicial complexes and singular

homology. Annals Math., 51:499–513, 1950.

[GKV16] M. Gran, G. Kadjo, and J. Vercruysse. A torsion theory in the

category of cocommutative Hopf algebras. Appl. Categ. Structures,

24:269–282, 2016.

[GKV18] M. Gran, G. Kadjo, and J. Vercruysse. Split extension classifiers in

the category of cocommutative Hopf algebras. Bull. Belgian Math.

Society, 25(3):355–382, 2018.

[Gol86] J. S. Golan. Torsion Theories. Longman Scientific and Technical,

New York, 1986.

[GP64] P. Gabriel and N. Popescu. Caracterisation des categories abeliennes

avec generateurs et limites inductives exactes. C. R. Acad. Sci. Paris,

258:4188–4190, 1964.

[GR04] M. Gran and J. Rosicky. Semi-abelian monadic categories. Th. Appl.

Cat., 13:106–113, 2004.

[GR07] M. Gran and V. Rossi. Torsion theories and Galois coverings of

topological groups. J. Pure Appl. Algebra, 208:135–151, 2007.

[GSV19] M. Gran, F. Sterck, and J. Vercruysse. A semi-abelian extension of

a theorem by Takeuchi. J. Pure Appl. Algebra, 223:4171–4190, 2019.

[GZ67] P. Gabriel and M. Zisman. Calculus of Fractions and Homotopy

Theory. Springer-Verlag, New York Heidelberg Berlin, 1967.

[Jan65] J. Jans. Some aspects of torsion. Pacific Journal of Mathematics,

15(4):1249–1259, 1965.

134



[Jan03] G. Janelidze. Internal crossed modules. Georgian Math. J., 10(1):99–

114, 2003.

[Jan10] Z. Janelidze. The pointed subobject functor, 3x3 lemmas, and sub-

tractivity of spans. Th. Appl. Categ., 23(11):221–242, 2010.

[JMT02] G. Janelidze, L. Marki, and W. Tholen. Semi-abelian categories. J.

Pure Appl. Algebra, 168(2-3):367–386, 2002.

[JMTU10] G. Janelidze, L. Marki, W. Tholen, and A. Ursini. Ideal determined
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