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Abstract
This thesis aims at curvilinear mesh generation and adaptation, we start from

summary ideally the research project as a simple yet fundamental question: assume
a unit square

Ω = {(x1, x2) ∈ [0, 1]× [0, 1]}

and a smooth function f(x1, x2) de�ned on the square, and consider a mesh T made
of P 2 triangles that exactly covers the square, how can we compute the mesh T that
minimizes the interpolation error ‖f − Πf‖Ω. Here, Π is the nodal interpolation of
f on the mesh Ern and Guermond (2013).

We state the problem as to build a unit curvilinear mesh, i.e. build a mesh with
unit edge lengths that are possibly curvilinear. We solve the problem in three stages
of increasing complexity: 1) input a unit square and a metric �eld g(x, y), to build a
unit curvilinear mesh that is possibly anisotropic; 2) input a function f(x, y), to build
an anisotropic curvilinear mesh that minimizes the approximation error; 3) input a
high order �nite element solution, to build an anisotropic curvilinear adapted mesh.

We propose a new framework of curvilinear mesh generation and adaptation:
metric �eld construction, generation of points (point sampling on the boundary and
point sampling in the domain), straight-sided mesh generation and adaptation (trian-
gulation and straight-sided edges swap), curvilinear mesh generation and adaptation
(straight-sided edges curving, curvilinear edges swap, and Curvilinear Small Polygon
Reconnection). A unit curvilinear mesh containing only valid “Geodesic Delaunay
triangles” is obtained this way. In this approach, the curvature is not only used to
match curved boundaries but also to capture features of the interpolated solutions,
and it results in meshes that would not have been achievable by simply curving a
posteriori a straight-sided mesh. A number of application examples are presented in
order to demonstrate the capabilities of the mesh adaptation procedure.
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1
Introduction

The story of �nite element mesh generation started about �fty-year ago, about at
the same time �nite elements started to become popular in the engineering commu-
nity. To our best knowledge, two research teams, one in US and one in France both
started to work on an algorithm to automatically generate triangular meshes on 2D
domains. After a couple of years, both research teams came with solutions and their
respective national research agencies pushed them to extend their results in 3D. They
rapidly realized how huge was the gap between 2D and 3D. Fifty years after, 3D mesh
generation is still a very active research subject and dealing with meshes is still the
nightmare of �nite element practitioners.

This thesis addresses a brain new topic in mesh generation: adaptive curvilinear
meshing. It is indeed quite nice that our research question can be explained within a
very few words. Consider a smooth function f(x, y) de�ned say on the unit square
(x, y) ∈ [0, 1] × [0, 1]. Consider a geometrically quadratic mesh M on the square
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2 Chapter 1 – Introduction

that is potentially anisotropic and curvilinear. Using an isoparametric �nite element
interpolation of f on that mesh leads to de�ne a piecewise quadratic interpolation of
f(x, y) that we call fh(x, y). How can we buildM in such a way that the interpolation
error ‖f − fh‖ (using some norm) is minimal? We are pretty much the �rst ones that
have entered that topic so the state of the art on the subject is almost empty. Pr.
Coupez Coupez (2017) has been an inspiration. Yet, it is still important to draw a
line between the early developments in mesh generation and our research subject in
order to “put ourselves on the map”. We will thus start the introduction by giving
three central questions that motivate this research work, and then browsing di�erent
aspects of �nite element mesh generation and relate them to our research question
when it is relevant.

1 | Three central questions motivate this research work

After reviewing the state of mesh generation, we see the advantages of metric-based
mesh generation - say, the adaptation mesh is obtained directly at the mesh gener-
ation step rather than doing a modi�cation of an existing mesh by enrichment or
moving points; and the advantages of boundary curvilinear mesh generation - say,
accurately capturing the geometry of the surfaces using high-order meshes; and we
also see the lack to coupled these two advantages and the domain curvilinear mesh
generation. In this thesis, based on and taking advantage of well-de�ned Rieman-
nian di�erential geometry, we extend the state of mesh generation to a new branch
- metric-based curvilinear mesh generation and adaptation in computation domain,
considering both the curved geometry and curved solution features. The main idea
is to generate a mesh whose edges are the unit geodesics in a prescribed Riemannian
metric space, and then to build a unit quadratic mesh, i.e. a mesh that has quasi-unit
curvilinear edges and quasi-unit curvilinear triangles. The geodesic between two
points as well as the unit geodesic starting at a given point with a given direction are
the two main tools that allow us to address our issue. Our mesh generation proce-
dure is done in two steps. At �rst, points are distributed in a frontal fashion, ensuring
that two points are never too close to each other in the geodesic senses, and a sim-
ple isotropic Delaunay triangulation of those points is created. Then, straight edge
swaps, straight edge curving, curvilinear edge swaps and Curvilinear Small Poly-
gon Reconnection (CSPR) are performed in order to build the unit mesh. Notions of
curvilinear mesh quality is de�ned as well that allow to drive the edge swapping and
Curvilinear Small Polygon Reconnection (CSPR) procedure.

In this thesis, we focus on the method to generate curvilinear adapted meshes.
Metric �elds based on Hessians of function are still the right tools for driving mesh
adaptation at higher orders. Thus in the examples of Chapter 2, metric �elds that
have been used are based on the Hessians of function. But we should remark that
to construct g(x1, x2) based on Hessians of a function is not correct anymore for
higher orders of approximation. We extend our research to build metric �elds that
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are suited for driving high orders mesh adaptation in Chapter 3. In our research,
we propose a way to build the metric �eld at nodes rather than just averaging the
element based metrics. For gradient interpolation and Hessian computation, we take
the similar method as shown in Rusinkiewicz (2004). It is easy generalizability to
derivatives of any order higher-order di�erential properties on triangular meshes by
this way.

To assess the metric-based curvilinear mesh generation and adaptation process
along with its e�ciency and accuracy, we apply it to analytic metric �elds (Chapter 2),
analytic functions (Chapter 3), and numerical solutions of PDEs (Chapter 4).

1.1 Given a unit square and a metric �eldM(x, y), how to build a

unit curvilinear mesh that is possibly anisotropic

In Chapter 2, we aim at addressing the following issue. Assume a unit square: Ω =
{(x1, x2) ∈ [0, 1]×[0, 1]} and a Riemannian metric gij(x1, x2) de�ned onU . Assume
a mesh T of U that consists in non overlapping valid quadratic triangles that are po-
tentially curved. Is it possible to build a unit quadratic mesh of U i.e. a mesh that has
quasi-unit curvilinear edges and quasi-unit curvilinear triangles ? This Chapter 2
aims at providing an embryo of solution to the problem of curvilinear mesh adapta-
tion. The method that is proposed is based on standard di�erential geometry con-
cepts. At �rst, the concept of geodesics in Riemannian spaces is quickly presented:
the geodesic between two points as well as the unit geodesic starting at a given point
with a given direction are the two main tools that allow us to address our issue. Our
mesh generation procedure is done in two steps. At �rst, points are distributed in
the unit square U in a frontal fashion, ensuring that two points are never too close to
each other in the geodesic sense. Then, a simple isotropic Delaunay triangulation of
those points is created. Curvilinear edge swaps as then performed in order to build
the unit mesh. Notions of curvilinear mesh quality is de�ned as well that allow to
drive the edge swapping procedure. Examples of curvilinear unit meshes are �nally
presented.

1.2 Given a function f(x, y), how to build an anisotropic curvilinear

mesh that minimizes the approximation error

In Chapter 3, we propose a new framework for the generation and adaptation of
unit curvilinear P 2 meshes in dimension 2. In this approach, curvature is not only
used to match curved boundaries but also to capture features of the interpolated
solutions, and it results in meshes that would not have been achievable by simply
curving a posteriori a straight-sided mesh. We proceed as follows. Starting with a
smooth function f(x, y), a metric �eld, based on f and its derivatives up to order 3,
is constructed. A unit P 2 mesh is then generated, with edges within an adimensional
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length range of [0.7, 1.4] with respect to this metric �eld. Points are then spawned in
such a way that their geodesic distance corresponds to edges of unit size, and these
points are then connected in a standard isotropic fashion. A curvilinear mesh quality
criterion is then proposed to drive the mesh optimization process. The triangulation
is subsequently modi�ed using straight-sided edge swap, straight-sided edge curv-
ing, curvilinear edge swap and Curvilinear Small Polygon Reconnection (CSPR) to
form the desired unit mesh. A unit curvilinear mesh containing only valid “Geodesic
Delaunay triangles” is obtained this way. A number of application examples are pre-
sented in order to demonstrate the capabilities of the mesh adaptation procedure.
The resulting adapted meshes allow, most of the times, a signi�cant reduction of the
approximation error compared with straight-sided P 2 meshes of the same density.

1.3 Given a high order �nite element solution, how to build an

anisotropic curvilinear adapted mesh

In Chapter 4, we move to replace the analytical functions with high-order �nite ele-
ment solutions. We go forward and use computational �uid dynamics (CFD) results
to create adapted meshes. The CFD code that is used here is a high order �nite el-
ement code. The �nite element approximation that is used is continuous. Standard
Lagrange shape functions on (possibly) curvilinear triangles are used to approximate
velocity and pressure �eld.

Until now, there is very little literature on this subject - curvilinear mesh gener-
ation and adaptation - and our work is pioneer.

2 | Finite element mesh generation

Finite elements have become the most common numerical analysis tool in engineer-
ing. Finite elements are used in automotive, aerospace, ship building, biomedical and
many more industries. The main reasons of that success are i) the ability of �nite el-
ement to solve most of the relevant non-linear problems in engineering, ii) the nice
structure of proof that is endowed with �nite element formulations and iii) the ability
of �nite elements to handle complex geometries.

The �nite element analysis procedure is often broken up into the following �ve
principal steps

1. Mesh Generation: subdividing the geometrical domain into �nite elements;

2. Local formulation: computation of local elementary matrices;

3. Assembly: obtaining the equations of the entire system from the local matrices;

4. Solving the system of equations (linear or not);
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Figure 1.1: Structured mesh (left) and Unstructured mesh (right) Hiester et al. (2014).

5. Postprocessing: determining quantities of interest, such as stresses and strains,
and obtaining some visualization of the solution.

Mesh generation is one of the 5 mandatory steps of �nite element analysis. The
ability to generate tetrahedral meshes in general 3D domains has allowed �nite el-
ements to handle the geometrical complexity of engineering parts. Yet, this has a
price: mesh generation still considered as the main bottleneck of the �nite element
pipeline. Mesh generation algorithms are very complex pieces of codes and only a
few research teams are producing �nite element mesh generators that are of indus-
trial robustness.

Not only it is di�cult to generate a mesh, but a mesh must be a quality mesh to
enable quality results. Indeed, it is well known in the community that mesh quality
greatly impacts the e�ciency, the stability and the accuracy of �nite elements Freitag
and Ollivier-Gooch (2000).
De�nition: A mesh M is a geometrical discretization of a domain Ω that consists
of

• A collection of mesh entities Md
i of controlled size and distribution;

• Topological relationships or adjacencies forming the graph of the mesh.

In a �nite conforming element mesh, elements can only intersect at vertices, edges
or faces. This excludes the existence of overlapping elements or T-junctions.

There are various ways of classifying meshes:

• 2D vs. 3D. In engineering analysis, meshes can be either 2-dimensional or
3-dimensional. As said before, the 3D case is clearly not an extension of the
2D case. In this thesis, we stay in the plane and thus consider 2D meshes
exclusively.
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• Structured vs. Unstructured. People usually distinguish structured meshes
and unstructured meshes (see Figure 1.1). Structured mesh topological rela-
tionships are implicit. For example, in a 2D structured mesh, vertexM1

i knows
implicitly all its adjacent edges, vertices and faces. Unstructured mesh topolo-
gies are explicit: the adjacencies of every mesh entity must be explicitly stored.
In this work, we are on the unstructured side.

• Tet/Tri vs. Hex/Quad. Mesh entities can be of various types: triangles and
quads in 2D and tetrahedra, hexahedra, prisms and pyramids in 3D (see Figure
1.2). A mesh is said to be hybrid if it contains at least two di�erent types of
mesh entities. In this thesis, we consider triangular meshes only.

• Linear vs. High-Order. Now comes the classi�cation of the geometry of
mesh entities. Meshes can be straight-sided/linear or curvilinear/high-order
(see Figure 1.3). A linear mesh has all its edges straight sided while high-order
meshes can have edges that are curved. In this thesis, we are dealing with
curvilinear elements.

• Uniform vs. Adaptive. A mesh can be adaptive or uniform. An adaptive
mesh has mesh sizes that may vary over the domain. In section 4, we will
present the classical theory of H-adaptivity.

• Isotropic vs. Anisotropic. A mesh can be isotropic or anisotropic (see Fig-
ure 1.4). Anisotropic meshes are now quite common in the mesh generation
community. We will discuss that topic in the section 4 as well.

This classi�cation is obviously not exhaustive. Yet, it allows us to position this re-
search work in the broad domain of �nite element mesh generation. This thesis
presents some seminal results on the generation of high-order anisotropic adaptive
triangular meshes. Thus, we are working in 2D, we use unstructured adaptive trian-
gular meshes that are both curvilinear and anisotropic. In the following subsections
of this introduction, we will give an overview of the di�erent aspects of mesh gen-
eration that are actually used in our work.

2.1 Mesh generation – the simplical case

Even though e�cient 2D mesh generation techniques were already available in the
early 1970’s Lawson (1972), the �rst automatic unstructured mesh generation system
for general 3D domains was proposed in the early 1990’s with Paul-Louis George’s
seminal work on 3D constrained Delaunay triangulation George et al. (1990). It is in-
teresting to note that today’s most widely used 3D mesh generation algorithm is still
the one developed at that time by those 3 authors. Three-dimensional mesh genera-
tion is a problem that is extraordinary complicated. Only half a dozen research teams
Si (2015); Boissonnat et al. (2002); Lévy in the world have the technology to build
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Figure 1.2: The di�erent kind of elements used in a �nite element mesh, both in 2D (left) and
in 3D (right) Wikipedia contributors (2022).

Figure 1.3: Linear mesh (left) and High-order quadratic mesh (right) Ims et al. (2015).

tetrahedral meshes for general 3D domains in an automatic manner. My advisor, Pr.
Jean-François Remacle belongs to this short list with Gmsh Geuzaine and Remacle
(2009) , the only open source complete mesh generator available today. Célestin
Marot, one of the members of our research team, has developed the most advanced
3D mesh generator (to parallelize and optimize all stages of tetrahedral mesh gener-
ation) available today Marot et al. (2019, 2020); Marot and Remacle (2020). It is now
fully integrated in Gmsh. In this work we will actually be lucky to be able to borrow
some of Gmsh’s algorithm to generate planar straight-sided triangular meshes, both
isotropic and anisotropic.

The classical pipeline for generating a 2D mesh is the following. Consider the
simple model of Figure 1.5. Meshing takes as input a domain G ⊂ R2 that has to
be triangulated. The most common way to describe G is to use a boundary-based
scheme where the geometric domain is represented as a set of topological entities
together with adjacencies. Model vertices and model edges of G from a boundary
representation of G. Each model edge is topologically oriented: it has a starting and
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Figure 1.4: Isotropic mesh (left) and Anisotropic mesh (right) Coupez et al. (2010).
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Figure 1.5: A simple 2D the model (left) and the 1D mesh (right)

a ending model vertex. Model faces ofG are bounded by oriented model edges. As an
example, Figure 1.5 presents a simple model that is composed of two model faces, 20
model edges and 25 model vertices. The �rst step for doing the mesh is to discretize
(or mesh) the edges of the model. The result is presented in Figure 1.5 for a uniform
mesh size. Then, each of the two model faces is triangulated.

The standard way of triangulating a model face starts by creating an empty mesh
i.e. a mesh that contains all vertices of the 1D mesh and that contains all mesh
edges of the 1D boundary. The empty mesh corresponding to the simple model of
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empty mesh 1 point inserted 4 points inserted

6 points inserted 33 point inserted 409 points inserted

Figure 1.6: Illustration of the Bowyer-Watson algorithm with a point insertion scheme based
on the circumcenter of the largest triangle

Figure 1.5 is presented on Figure 1.6. Then points are added inside the domain. Each
time a new point is added, the triangulation is updated using the Bowyer-Watson
algorithm. Figure 1.6 gives an example of the Bowyer and Watson algorithm with a
point insertion based on the circumcenter of the largest triangle. Points on the �nal
mesh are nicely distributed so that only a very light optimization (Laplace smoothing)
is necessary for obtaining the �nal mesh.

In this thesis, our meshing approach is not the usual one for which points and
triangles are generated at the same time. In our approach, points are generated �rst,
and then connected in a second step. Points are generated using a frontal algorithm
that is very similar to the one described in Baudouin et al. (2014); Georgiadis et al.
(2017). We will come back in details on this frontal algorithm in further chapters.
Nevertheless, with the aim of teasing the reader, Figure 1.7 shows a small illustration
of the frontal procedure applied to the simple geometry of Figure 1.5.

2.2 Mesh generation – quad- and hex-meshing

Quadrilateral meshes in 2D and hexahedral meshes in 3D and are usually consid-
ered to be superior to triangular/tetrahedral meshes. In a computational perspective,
a hexahedral mesh contains about 7 times fewer elements that a tetrahedral mesh
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Point insertion Triangulation Final mesh

Figure 1.7: Illustration of the frontal procedure that is used in this thesis.

with the same number of nodes. This means less data storage and a faster assembly
procedure. The availability of tensor-product basis functions allow to dramatically
reduce the number of �oating point operations for computing �nite element opera-
tors Fischer (1997). The local Cartesian structure of the mesh allows the creation of
natural overlaps between elements and the building of e�cient local precondition-
ers, even for GPUs Remacle et al. (2016). There are also numerous modeling reasons
to prefer hexes: boundary layers in CFD Puso and Solberg (2006), the inaccuracy or
locking problems in solid mechanics Benzley et al. (1995).

Generating quad meshes in a reliable is still an open problem in mesh generation.
Yet, some solutions exist. Block structured quad meshing was among the �rst tech-
niques that allowed to generate �nite element meshes. Those early methods were
essentially manual Thompson et al. (1998). Research on automatic blocking is very
active today Bommes et al. (2013). People from our group are also actively working
on that subject Jezdimirovic et al. (2021). Research on generating unstructured quad
meshing has also led to a variety of methods: paving Blacker and Stephenson (1991),
indirect meshing Remacle et al. (2012, 2013a), quadtree methods Pascal and Marechal
(1998)...

Hex meshing is way more complex. There exist manual or semi-automatic ways
of generating block structured meshes that are available in industry. Yet, generat-
ing structured or unstructured hex-meshes on general 3D domains is still an open
problem.

In our work, we do not consider quad- or hex-meshes, so we will not do a com-
plete state of the art on hex meshing.
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3 | Curvilinear mesh generation

3.1 High-order mesh generation

Scienti�c computing is now an old science. Solving partial di�erential equations on
a computer is a very common task for aerospace/chemical/ mechanical/electrical en-
gineers. Still, numerical methods for PDEs that have reached a production level such
as �nite elements are, for most of them, based on numerical schemes that are of the
second order of accuracy. Some applications in �uid mechanics or in electromagnetic
nonetheless require numerical schemes that are of higher order of accuracy (those
schemes are sometimes called high �delity schemes). It has been proved in many
contributions that high-order �nite element schemes require high-order meshes, i.e.,
meshes that capture the curvilinear features of the geometry with a high �delity as
well Bernard et al. (2009). In the last decade, a signi�cant part of the research in
mesh generation has thus been devoted to the generation of body �tted curvilinear
meshes. The main issue of generating curved meshes is that there exists for now
no algorithm that actually generates a P 2 mesh in a direct fashion. State-of-the-art
methods generate a straight-sided mesh and place high-order points on the CAD
geometry. Then, invalid elements are untangled using various approaches Fortu-
nato and Persson (2016); Hartmann and Leicht (2016); Moxey et al. (2016); Karman
et al. (2016); Ruiz-Gironés et al. (2016); Toulorge et al. (2013); Remacle et al. (2013b).
Nowadays, body �tted curvilinear meshes start to be used in an industrial context
Kroll (2006); Kroll et al. (2015).

High-order meshes have exclusively been used for increasing geometrical accu-
racy, i.e., to make the mesh represents the geometry of curved parts with high �delity.
The natural extension of the use of curvilinear meshes is high-order/curvilinear mesh
adaptation. In the linear case, extensive work has been done in anisotropic mesh
adaptationAlmeida et al. (2000); Buscaglia and Dari (1997); Castro-Díaz et al. (1997);
Formaggia et al. (2004); Dompierre et al. (1997); Huang (2005); Frey and Alauzet
(2005); Gruau and Coupez (2005); Li et al. (2005); Tam et al. (2000); Pain et al. (2001).
The concept of metric tensor is always central in anisotropic adaptation: it allows to
de�ne mesh sizes and directions that allow to minimize the interpolation error Schall
et al. (2004); Courty et al. (2006); Chen et al. (2007); Alauzet et al. (2006); Loseille and
Alauzet (2011a,b). Yet, all those methods end up with a straight-sided mesh.

3.2 Body �tted meshes – curving and untangling

Let’s start with a question. Why should we want high-order meshes while generating
straight-sided ones is already so complex? This question is 100% valid and deserves
an answer.

There is a growing consensus in the computational mechanics community that
state of the art solver technology requires, and will continue to require too extensive
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computational resources to provide the necessary resolution for a broad range of
demanding applications, even at the rate that computational power increases. The
requirement for high resolution naturally leads us to consider methods which have a
higher order of grid convergence than the classical (formal) 2 order provided by most
industrial grade codes. This indicates that higher-order discretization methods will
replace at some point the current �nite volume and �nite element solvers, at least
for part of their applications.

The development of high-order numerical technologies for engineering analy-
sis has been underway for many years now. For example, Discontinuous Galerkin
methods (DGM) have been largely studied in the literature, initially in a theoreti-
cal context Cockburn et al. (2000), and now from the application point of view Kroll
et al. (2010, 2015). In many contributions, it is shown that the accuracy of the method
strongly depends on the accuracy of the geometrical discretization Bassi and Rebay
(1997); Bernard et al. (2009); Toulorge and Desmet (2010).

Since 2012 and the �rst high order workshop for CFD Wang et al. (2013), re-
searchers in CFD are actively working on high order meshing. The UCLouvain team
Quan et al. (2014) has produced theoretical results and algorithms to generate valid
body-�tted linear meshes for capturing geometries de�ned implicitely by high-order
discretizations. All the work that was done was aiming at accurately capturing the
geometry of the surfaces and ensuring that the resulting mesh was valid.

Modern mesh generation procedures take as input CAD1 models composed of
model entities: vertices G0

i , edges G1
i , faces G2

i or regions G3
i . Each model entity Gdi

has a geometry (or shape) Geuzaine and Remacle (2009) for which solid modelers
usually provide a parametrization, that is, a mapping ξ ∈ Rd 7→ x ∈ R3. There are
also four kind of mesh entities Md

i that are said to be classi�ed on model entities2.
Each mesh entity is classi�ed on the model entity of the smallest dimension that
contains it. The way of building a high order mesh is to �rst generate a straight
sided mesh. Then, mesh entities (edges, faces and regions) are curved according to
the geometry of the CAD entity it is classi�ed on.

In the p-version of �nite elements, high order nodes are added to edges, faces
and regions of the element with the aim of creating curvilinear elements with their
shape based on high order (Lagrangian or not) polynomial bases (see Figure 1.8) :

Other authors Dey et al. (1997); Dey (1997); Sevilla et al. (2008a,b) would rather
use the exact mappings of the geometry and build a so-called isogeometric mesh.

The naive curving procedures described above does not ensure that all the el-
ements of the �nal curved mesh are valid. Figure 1.9 gives an illustration of this
important issue: some of the curved triangles are tangled after having been curved.
It is important to note that this problem is not related to the accuracy of the geomet-
rical discretization: in Figure 1.9, the mesh would not be valid in the iso-geometric
case i.e. if the curved edge was assigned the exact geometry (blue curve).

1Computer Aided Design.
2We use the symbol @ for indicating that a mesh entity is classi�ed on a model entity.
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Model face G2
1

Mesh Curving

Model edge G1
1

Mesh edge M1
1 @ G2

1

Mesh edge M1
2 @ G1

1

Figure 1.8: Straight sided mesh (left) and curvilinear (cubic) mesh (right).

First-order mesh High-order vertices Untangling

Figure 1.9: Straight sided mesh (left) basic curvilinear (quadratic) mesh with tangled elements
(center) and untangled mesh (right).

In this work, the point of view is quite di�erent. The curvature of the mesh will be
used to adapt to the curvilinear features of the solution and not of the geometry. This
is indeed quite di�erent because a solution is not de�ned in term of this geometry
(even though...).

3.3 Validity Bounds for Second Order Planar Triangles

In Figure 1.9, the basic curvilinear mesh is visually incorrect: one curvilinear mesh
edge of one of the triangles intersect with the two other edges. In this work, we will
use P 2 triangles exclusively. At that point it is interesting to recall a fundamental
result on high order mesh validity Johnen et al. (2013).

The geometry of the six-node quadratic triangle is shown in Figure 1.10. Inspec-
tion reveals two types of nodes: corners (1, 2 and 3) and midside nodes (4, 5 and
6).

The determinant J(ξ) = J(ξ, η) = det
(
dX
dξ

)
for a planar quadratic triangle is

a polynomial in ξ and η of order 2 as well.
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Figure 1.10: Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings x(ξ),
X(ξ) and X(x).

If Ji is de�ned as J(ξ, η) evaluated at node i, it is possible to write the Jacobian
determinant exactly as a �nite element expansion whose coe�cients are the Jacobian
determinants at the nodes:

J(ξ, η) = J1 (1− ξ − η)(1− 2ξ − 2η)︸ ︷︷ ︸
L(2)

1 (ξ,η)

+ J2 ξ(2ξ − 1)︸ ︷︷ ︸
L(2)

2 (ξ,η)

+ J3 η(2η − 1)︸ ︷︷ ︸
L(2)

3 (ξ,η)

+

J4 4(1− ξ − η)ξ︸ ︷︷ ︸
L(2)

4 (ξ,η)

+ J5 4ξη︸︷︷︸
L(2)

5 (ξ,η)

+ J6 4(1− ξ − η)η︸ ︷︷ ︸
L(2)

6 (ξ,η)

. (1.1)

In equation (1.1), the functions L(2)
i (ξ, η) are the equidistant quadratic Lagrange

shape functions that are commonly used in the �nite element community.

It is obvious that a necessary condition for having J(ξ, η) > 0 everywhere is that
Ji > 0, i = 1, . . . , 6. Yet, this condition is not su�cient. The expression (1.1) does
not give more information because the quadratic Lagrange shape functionsL(2)

i (ξ, η)
change sign on the reference triangle. The main idea of Johnen et al. (2013) is to use
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the quadratic triangular Bézier functions B(2)
2 (ξ, η) Piegl and Tiller (1997):

J(ξ, η) = J1 (1− ξ − η)2︸ ︷︷ ︸
B(2)

1 (ξ,η)

+ J2 ξ2︸︷︷︸
B(2)

2 (ξ,η)

+ J3 η2︸︷︷︸
B(2)

3 (ξ,η)

+
(

2J4 −
1
2(J2 + J1)

)
2 ξ (1− ξ − η)︸ ︷︷ ︸

B(2)
4 (ξ,η)

+
(

2J5 −
1
2(J3 + J2)

)
2 ξη︸︷︷︸

B(2)
5 (ξ,η)

+
(

2J6 −
1
2(J1 + J3)

)
2 η (1− ξ − η)︸ ︷︷ ︸

B(2)
6 (ξ,η)

. (1.2)

Since
∑6
i=1 B

(2)
i (ξ, η) = 1 and B(2)

i (ξ, η) ≥ 0, we obtain the following estimate

Jmin ≥ min
{
J1, J2, J3, 2J4 −

J1 + J2

2 , 2J5 −
J2 + J3

2 , 2J6 −
J3 + J1

2

}
≤ min {J1, J2, J3} . (1.3)

This estimate provides two conditions on the geometrical validity of the triangle:
a su�cient condition (if min{J1, J2, J3, 2J4− J1+J2

2 , 2J5− J2+J3
2 , 2J6− J3+J1

2 } > 0,
the element is valid) and a necessary condition (if min{J1, J2, J3} < 0, the element
is invalid). However, these two conditions are sometimes insu�cient to determine
the validity of the element, as the bound (1.3) is often not sharp enough (having
min{2J4 − J1+J2

2 , 2J5 − J2+J3
2 , 2J6 − J3+J1

2 } < 0 does not imply that the element
is invalid).

A sharp necessary and su�cient condition on the geometrical validity of an ele-
ment can be achieved in a general way by re�ning the Bézier estimate adaptively so
as to achieve any prescribed tolerance—and thus provide bounds as sharp as neces-
sary for a given application. In our work, we will use the su�cient condition (1.3) to
assess the validity of our adaptive curvilinear triangles.

4 | Classical theory of H-adaptivity

A mesh should be adapted. Adaptivity consists in �nding the right mesh size and
order at the right place. In this section, we cover the classical theory of H-adaptivity.
H-adaptivity consists in changing the mesh size while leaving the approximation
order constant. There are two steps in H-adaptivity: i) approximating the error and
ii) computing the optimal mesh. We also distinguish isotropic and anisotropic H-
adaptivity. This section covers both cases.
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4.1 Mesh adaptation – the isotropic case

A mesh M is a geometrical discretization of a domain Ω that consists of a collection
of mesh entities Ωi, i = 1, . . . , N (triangles, quadrangles, tetrahedra, hexahedra,
etc.) of controlled shape and size.

Let us consider a �eld f(x, y) de�ned in domain Ω and a �nite element approxi-
mation fh of f de�ned on M.

The quality of a �nite element solution fh depends strongly on its underlying
mesh. A mesh is optimum when it covers the domain strategically: it is dense where
the solution exhibits strong variations and coarse in places where the discretization
error is low. h-adaptivity consists in controlling the mesh size in order to control the
discretization error.

Let us de�ne the elementary discretization error as some norm ‖.‖ of the di�er-
ence between the �nite element solution fh and the exact solution f

e2
i =

∫
Ωi
‖f − fh‖2 dv (1.4)

A posteriori error estimation techniques aim at producing estimates of ei Ainsworth
and Oden (2011). The local error converges to zero at a certain convergence rate k

ei = Chki (1.5)

where C is a positive constant depends on f but is independent of hi – the local
mesh size. The size hi of a triangle or of a tetrahedron Ωi is usually chosen as its
circumradius. Let us call M∗ the optimal mesh and h∗i the optimal mesh size in the
area de�ned by element Ωi in the original mesh, M. This de�nes a size �eld on Ω:
for each element Ωi of the mesh M (that actually covers Ω), an optimal size h∗i is
de�ned. In general, the mesh adaptation procedure requires as an input a size �eld
h(x) that returns the optimal size of the mesh at any point x. A background mesh
is a special case of a size �eld.

The total error contained in the optimal mesh over the area de�ned by Ωi is

e∗i
2 = e2

i

(
h∗i
hi

)2k
. (1.6)

The total error contained in the optimal mesh is therefore

e∗2 =
N∑
i=1

e∗2i =
∑
i

e2
i

(
h∗i
hi

)2k
=
∑
i

e2
i r
−2k
i (1.7)

where ri is the size reduction factor of element Ωi. The total number of elements in
the optimal mesh can be written as

N∗ =
N∑
i=1

(
hi
h∗i

)d
=

N∑
i=1

rdi . (1.8)
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where d is the dimension of the problem.
With the above statements, it is possible to give two de�nitions of what could

be called an optimal mesh. An optimal mesh could be de�ned as a mesh that results
in a speci�ed discretization error e∗ = ē while minimizing the number of elements
N∗. The solution of this problem can be written in closed form Ladevèze et al. (1991),
posing α = 2k/d, as

ri =

e
2α

(1+α)
i

(∑N
j=1 e

2
1+α
j

)
ē2


1
dα

= Ke
2

2k+d
i (1.9)

with K independent of i. The error in one element of the optimal mesh is

e∗2i
rdi

= e2
i r
−2k−d
i = e2

i e
2(−2k−d)/(2k+d)
i K−2k−d = K−2k−d. (1.10)

The mesh optimization process aims therefore at building a mesh with errors that
are uniformly distributed.

Another de�nition of mesh optimality would be to impose the number of ele-
ments in the optimal mesh N∗ = N̄ while minimizing the discretization error e∗2.
The optimal formula

ri =

 e
2

(1+α)
i(∑N
j=1 e

2
1+α
j

)N̄


1
d

(1.11)

is very similar to (1.9) and also leads to uniform error repartition.
Note that factor k may be variable: this is true in the case of p-adaptivity where

p is the polynomial degree of the element or when singularities are present in the
solution. When this is the case, no closed form formula like (1.9) is available and
numerical optimization has to be used to �nd the optima.

As an example, let us consider the following problem brie�y depicted in Figure
1.11-(a). Here, the equation of plane strain elasticity has been solved using linear
�nite elements. The error norm that has been chosen is the energy norm. The theo-
retical convergence rate of the error in energy is k = 1. The simple error procedure
of Zienkiewicz and Zhu (1992a,b) has been used for estimating the error.

Starting with a mesh of 3, 301 triangles, formula (1.11) was used with N̄ = 3, 301
i.e. we aim at producing a mesh with the same number of elements that produces
a minimum amount of discretization error. It took two mesh adaptation iterations
to produce a mesh with 3, 230 elements and with a discretization error of e2 =
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p

(a) Von-Mises stresses, loads (b) Initial mesh (3, 301 triangles)
and �xations deformed structure

(c) Optimal mesh using (d) Optimal mesh using
of formula (1.11) of formula (1.9)

N̄ = 3, 301 triangles, N = 3, 230 triangles ē2 = 5.66 107, N = 1, 090 triangles

Figure 1.11: An example of the use of Equations (1.9) and (1.11).

2.37 107 (see Figure 1.11). The initial discretization error with 3301 elements was
e2 = 5.66 107.

Starting with the same mesh of 3, 301 triangles, formula (1.9) was used with
ē2 = 5.66 107 i.e. we aim now at producing a mesh with about the same discretiza-
tion error but with a minimum number of elements. Again, it took two adaptation
iterations to produce a mesh with 1, 090 elements and with a discretization error of
e∗2 = 5.90 107 (see Figure 1.11).
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4.2 Error estimation – the isotropic case

In (1.4), we assume that we have access to the exact solution f of a problem. This
is obviously not the case. Even though elementary errors ei are not computable, it
is indeed possible to estimate ei. There are various ways of estimating a posteriori
(i.e. after having computed fh) the error of �nite element solutions Ainsworth and
Oden (2011). In this thesis, we only focus on approximation error i.e. the di�erence
between f and its Lagrange interpolation Πk

hf Ainsworth and Oden (2011). In short,
Πk
hf belongs to the same �nite element space as fh. It consists in choosing as nodal

values the exact values of the exact function f . The Lagrange interpolation is of
outmost importance in error estimation Kobayashi and Tsuchiya (2014) because it is
often true that

‖f − fh‖ ≤ C‖f −Πk
hf‖.

where C is a positive constant. Thus, even though ‖f − fh‖ cannot be computed,
standard approximation theory based on Taylor series allows us to estimate the inter-
polation error ‖f−Πk

hf‖, leading to the possibility to replace the true error ‖f−fh‖
by an error estimator ‖f −Πk

hf‖.
Let W l,p(Ω), l ∈ N , p ∈ [1,∞], be the Sobolev spaces with the seminorms

|f |p
W l,p(Ω) :=

∑
|α|=l

∫
Ω
|Dαf |p.

The case p = 2 refers to standard Sobolev spaces: Hm(Ω) = Wm,2(Ω) andH0(Ω) =
L2(Ω). Consider a triangle T . Classical estimate of the interpolation error reads

|f −Πk
hf |Hm(T ) ≤ C(diam(T ))l−m|f |Hl(T ),

diam(T ) being the longest edge of T . The admissible range of the parameters l and
m depend on the space dimension d and on the polynomial degree k.

In this work, d = 2 and we essentially work with polynomial orders k = 2.
Thus, the L2 (m = 0) and H1 (m = 1) norms of the error can be estimated by
approximating the third order derivatives of f inside T :

‖f −Π1
hf‖L2(T ) ≤ C(diam(T ))3|f |H3(T ),

|f −Π1
hf |H1(T ) ≤ C(diam(T ))2|f |H3(T ).

In this work, we start by creating optimal meshes based on a known analytical
function f(x, y). In this case, we have at hand the exact derivatives of f at any order.
We will thus compute the error estimates based on the exact derivatives.

In Chapter 4, we use �nite element solutions and do a posteriori error estimation.
We thus have to approximate third order derivatives of f based on fh. This is indeed



20 Chapter 1 – Introduction

quite classical: Zienkiewicz and Zhu have based their very �rst error estimator based
on a reconstruction of the mechanical stresses σ Zienkiewicz and Zhu (1992a,b).

There are indeed many ways of approximatingD3f based on a givenP 2 �nite el-
ement solution fh: one can compute continuous nodal gradients using least squares
like Zienkiewicz and Zhu (1992a,b), then compute nodal Hessians based on the con-
tinuous gradients using the same procedure, and so forth until the required high
order derivatives are computed.

4.3 Mesh adaptation – the anisotropic case

For the problems with anisotropic features, anisotropic mesh adaptation is a tool that
allows to build optimal meshes by adapting not only the mesh size but also its orienta-
tion and its anisotropy. The classical anisotropic adaptation setting produces straight
sided anisotropic meshes. Even though we are willing to produce anisotropic meshes
that are curvilinear, it is worth to de�ne the key ingredients of classical anisotropic
mesh adaptation because we will use them as well in the curvilinear case.

4.3.1 Metric �eld

We consider the 2D space R2 and a smooth metric �eld g(x) that associates to every
point x of the plane a 2 × 2 symmetric positive-de�nite matrix. If g(x) is di�er-
entiable, it is called a Riemannian metric. Metric �eld g allows to de�ne an inner
product that modi�es the standard de�nition of length, angles and areas. The main
idea of using metric �elds for anisotropic mesh adaptation comes from Hecht et al.
(1997). We are going to de�ne g in such a way that an optimal mesh with respect to
the new inner product will be a unit mesh i.e. a mesh with all its edges of length one
(length is measured with respect to g).

Consider two vectors u and v. The inner product between u and v associated
with g at a point x is de�ned as:

gx(u,v) = 〈u,v〉g(x) = 〈u, g(x)v〉 = uTg(x) v.

If g is symmetric de�nite positive, then this inner product has the right properties of
symmetry and positive:

1. ∀ (u,v) ∈ V × V, gx(u,v) = gx(v,u)

2. ∀u ∈ V, gx(u,u) ≥ 0

3. ∀u ∈ V, gx(u,u) = 0⇒ u = 0

Note that isotropic mesh generation algorithms actually work in the canonical
Euclidean space which can be seen as the particular case of the Riemannian space
for which the metric tensor �eld is the identity matrix scaled by a constant factor.
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4.3.2 Metric-based mesh adaptation

In the standard Euclidean inner product space, the scalar product of two vectors u
and v is de�ned as:

〈u,v〉 = 〈v,u〉 = uTv

and the length of a vector u is de�ned as:

‖u‖ =
√
〈u,u〉 =

√
uTu

and the surface of the parallelogram de�ned by u and v is computed as:

1
2‖u× v‖.

The metric �eld provides a di�erent way to measure the length of a vector or
the angle between two vectors. In a Riemannian metric space (R2, g(x)), the scalar
product of two vectors u and v with respect to the metric �eld g(x) is de�ned as:

〈u,v〉g(x) = 〈u, g(x)v〉 = uTg(x)v.

The length of a vector u with respect to the constant metric �eld g(x) is de�ned as:

Lg(x)(u) = ‖u‖g(x) =
√
〈u,u〉g(x) =

√
uTg(x)u

Now consider a curve C and its smooth parametrization x(t), t ∈ [0, 1]. Then the
length with respect to the metric �eld of C is given by:

Lg(x)(C) =
∫ 1

0

√
ẋTg(x)ẋ dt

where ẋ = dx
dt . Similarly, consider a surface S with its parametrization x(ξ, η),

(ξ, η) ∈ [0, 1]× [0, 1]. Then, the area of S with respect to the metric can be computed
as

Ag(x)(S) =
∫ 1

0

∫ 1

0
det
(
JTg(x)J

)
dξdη

where J is the Jacobian of the parametrization i.e. a 2×2 matrix which two columns
are ∂x

∂ξ
and ∂x

∂η
.

It is then possible to extend the notion of angle within this context. The angle θ
between vectors u and v in metric g(x) is given by

θg(x) = arccos
(

ut g(x) v
‖u‖g(x)‖v‖g(x)

)
.
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Figure 1.12: A smooth curve that goes from x1 to x2

The de�nition of g(x) allows to de�ne the notion of geodesic which is the short-
est path between two points Gu and Yau (2008). The distance between two points x1
and x2 with respect to the metric �eld g(x) is de�ned as

Dv(x1,x2) = min
C

Lg(x)(C)

where C is any smooth curve that goes from x1 to x2 (see Figure 1.12).
In this thesis, we consider meshes and paths between vertices that are mesh

edges. As said before, we restrict our work to quadratic meshes so mesh edges are
at most parabolas. Thus, for a quadratic mesh, the geodesic between two points x1
and x2 it is restricted to the shortest parabola, i.e. the parabola that has the small-
est length with respect to the metric �eld g(x). We will see in further chapters that
only a small subset of all possible parabolas will be considered in order to be able to
compute geodesic parabolas in reasonable time.

Metric based mesh adaptation consists in computing a metric �eld g(x) that
makes lengths Lg(x) adimensional. The main idea is quite simple: eigenvectors of
g(x) are two orthogonal unit vectors v1 and v2 and eigenvalues λ1 and λ2 of g(x)
with respect to the two eigenvectors actually depend on the mesh size h1 and h2 on
the two directions:

λ1 = 1
h2

1
, λ2 = 1

h2
2
.

A vector u with an adimensional length of

L2
g(x)(u) = uT

(
v1 v2

)(λ1 0
0 λ2

)(
vT1
vT2

)
u = λ1

(
uTv1

)2 + λ2
(
uTv2

)2
.

Thus, a vector u = h1v1 has an adimensional length of

L2
g(x)(h1v1) = 1.
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In this thesis, we aim at generating a curved mesh whose edges are of adimensional
length 1 in a given metric �eld. Such a mesh is usually called a unit mesh. Of course,
a mesh being a discrete object, we will relax the constraints on this very strong as-
sessment. A tolerance will be applied on edge lengths: an edge is acceptable in a unit
mesh if its adimensional length is in an interval

Lmin ≤ Lg(x)(u) ≤ Lmax

where Lmax/2 ≥ Lmin and Lmin ≤ 1 ≤ Lmax. We usually choose

0.7 ≤ Lg(x)(u) ≤ 1.4.

We �nally de�ne the unit circle in a Riemannian metric space as the location of
every point that is at distance 1 from a center x0:

Ug(x)(x0) =
{

x ∈ R2 |Dg(x)(x0,x) = 1
}
.

For a constant metric �eld, the unit circles are ellipses. On the contrary, for gen-
eral metric �eld, the unit circles can take many di�erent shapes and may not be
visually convex. In reality, the unit circle may remain convex in the sense that every
geodesic between two points that line inside the circle remains inside the circle. Yet,
there is no strict guarantee of convexity for general Riemannian metrics. Figure 1.13
shows such unit circles for a non-constant toy metric �eld Equation 1.12.

g(x1, x2) =
(
g11 g12
g12 g22

)
=
(

cos θ sin θ
− sin θ cos θ

)( 1
l2min

0
0 1

l2max

)(
cos θ − sin θ
sin θ cos θ

)
with

x = {x1, x2}, r = ‖x‖, θ = arctan(x2/x1),

lmin = ε+ lmax(1− exp(−((r − r0)/h)2).

Let P0 = (x0, y0, z0) be a point on a surface S, and let C be any curve passing
through P0 and lying entirely in S. At P0, the tangent plane (Figure 1.14) to S is the
plane that the tangent lines to all curvesC at P0 lie in. The tangent plane assumption
that is made in all publications up to now is used as an linear approximation to the
function z = f(x, y) with continuous partial derivatives that exist at point (x0, y0):

f(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

This leads to unit circles that are ellipsis and where geodesic remain straight lines
Borouchaki et al. (1997a); Hecht et al. (1997); Bottasso (2004); Huang (2005); Gruau
and Coupez (2005); Alauzet et al. (2006); Huang et al. (2010); Coupez (2011); Huang
et al. (2013); Marcum and Alauzet (2013); Coulaud and Loseille (2016). On Figure 1.15,
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Figure 1.13: Unit circles at di�erent centers for the toy metric - a given metric �eld (Equation
1.12) that allows to compute unit distances.

unit circles corresponding to the principal directions of the metric at point (0, 1.2) are
drawn, both for true geodesics and in the case of the tangent plane approximation.

The main advantage of this approach is that the adaptation mesh is obtained
directly at the mesh generation step rather than doing a modi�cation of an existing
mesh by enrichment or moving points. This statement does not refer speci�cally to
the metric-based approach. The approach consists in three main steps, namely:

1. the de�nition of a suitable anisotropic interpolation error estimate;

2. the construction of an optimal metric �eld;

3. the mesh generation and adaptation with respect to the optimal metric �eld.

4.4 Error estimation – the anisotropic case

Unstructured mesh adaptation has largely proved its e�ciency for capturing the be-
havior of physical phenomena (even if it is not known a priori), improving the ac-
curacy of the numerical solution and reducing the number of degrees of freedom.
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Figure 1.14: The de�nition of tangent plane Gilbert Strang (Mar 30, 2016)
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Figure 1.15: Unit circles at di�erent centers for the toy metric - a given metric �eld (Equation
1.12) that allows to compute unit distances. Left Figure shows circles computed using the exact
geodesics while right Figure assumes a constant metric (tangent plane approximation)
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The aim of an anisotropic mesh adaptation is still to equidistribute the error over
the mesh, and there is an a posteriori correlation between the local mesh element
and the error on the numerical solution. The de�nition of a general purpose error
estimate allows to construct an anisotropic metric �eld that can be used to create an
anisotropic mesh.

4.4.1 Error estimations

Let W l,p(Ω), l,m ∈ N , p, q ∈ [1,∞]. h1,T and h2,T is the element length in the
x and y direction, respectively. Π1

hf is the Lagrangian linear interpolation operator.
The anisotropic error estimate is Apel (1999a)

|f −Π1
hf |Wm,p(T ) ≤ C

α1+α2=l−m∑
α1,α2≥0

hα1
1,Th

α2
2,T |

∂l−mf

∂xα1∂yα1
|Wm,q(T ). (1.12)

We de�ne a invertible a�ne map from the reference triangle T̂ to the element T
as:

x = TT (x̂) = Ax̂ + b,

where A is a matrix and b is a vector.
Using the polar decomposition and the singular value decomposition, we have:

A = (RTΛR)(RTP ),

with R = [r1,T r2,T ]T is the orthonormal matrix and its rows are the eigenvectors
of RTΛR), and Λ = diag(λ1,T , λ2,T ) is the diagonal matrix of the corresponding
eigenvalues with λ1,T ≥ λ2,T .

The anisotropic nature of Equation 1.12 is represented by having preserved sep-
arately the two directions r1,T and r2,T and the corresponding length-scales λ1,T
and λ2,T . We can state the results Formaggia and Perotto (2001) as:

For any f ∈ H2(T ), let f̂ ∈ H2(T̂ ) be the corresponding function de�ned on
the reference element T̂ , the following estimate holds:

|f̂ |H2(T̂ ) ≤
[λ3

1,T

λ2,T
(|rT1,T |Q|r1,T |)2 +

λ3
2,T

λ1,T
(|rT2,T |Q|r2,T |)2

+ 2λ1,Tλ2,T (|rT1,T |Q|r2,T |)2] 1
2 ,

with Q being the symmetric matrix as:

Q =
(
‖ fxx ‖L2(T ) ‖ fxy ‖L2(T )
‖ fxy ‖L2(T ) ‖ fyy ‖L2(T )

)
.
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Let f ∈ H1(T ) and f̂ ∈ H1(T̂ ) be the corresponding function de�ned on the
reference element T̂ , the following inequalities holds:(

λ2,T

λ1,T

) 1
2

|f̂ |H1(T̂ ) ≤ |f |H1(T ) ≤
(
λ1,T

λ2,T

) 1
2

|f̂ |H1(T̂ ).

There exists a constant C = C(T̂ ,Π1
T ) such that the following estimate holds:

‖f −Π1
T f‖L2(T ) ≤ C

[
λ4

1,T (|rT1,T |Q|r1,T |)2 + λ4
2,T (|rT2,T |Q|r2,T |)2

+ 2λ2
1,Tλ

2
2,T (|rT1,T |Q|r2,T |)2] 1

2 ,

|f −Π1
T f |H1(T ) ≤ C

(
λ1,T

λ2,T

) 1
2 [λ3

1,T

λ2,T
(|rT1,T |Q|r1,T |)2 +

λ3
2,T

λ1,T
(|rT2,T |Q|r2,T |)2

+ 2λ1,Tλ2,T (|rT1,T |Q|r2,T |)2] 1
2 .

Let Q1
T be the Clement interpolant Clément (1975) or the Scott-Zhang operator

Apel (1999b); Scott and Zhang (1990), the following estimates holds:

‖f −Q1
T f‖L2(T ) ≤ C

[
λ2

1,Tr
T
1,TGr1,T + λ2

2,Tr
T
2,TGr2,T

] 1
2 ,

with G being the symmetric non-negative matrix as:

G =
∑
T∈PT

‖ fx ‖L2(T )
∫
T

fxfy dx∫
T

fxfy dx ‖ fy ‖L2(T )

 .

4.4.2 Optimal metric �eld

This problem of mesh adaptation is, for a given function, to seek for the optimal
continuous mesh minimizing the interpolation error or meet a given interpolation
error. Thus, in a general framework of unstructured anisotropic mesh adaptation,
one of the most important problem is to reduce the number of freedom degrees while
preserving the desired level of accuracy for the numerical solution.

The aims is to create the optimal mesh M∗, i.e., the optimal continuous metric
g∗(x), to minimize the interpolation error e in Lp norm. We formulate the problem
in two related forms :

1. Given a total number N̄ , to minimize the interpolation error e in Lp norm.

2. Given a interpolation error ē > 0 in Lp norm, to minimize the number of
elements N .
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Based on and taking advantage of well-de�ned Riemannian di�erential geometry,
metric-based mesh generation and adaptation is to generate a quasi-uniform mesh
- specifying the shape, size, orientation of elements with respect to a metric �led
and all geometric operations are performed in the Riemannian metric space. Thus
it is crucial to construct an appropriate metric �eld in the Riemannian metric space.
Considering the optimal metric is to minimizes the interpolation error e, we need
to draw out the relationship between the optimal metric and the interpolation error.
We formulate the problem in two related forms :

1. Given a total number N̄ , to process to the metric analysis: 1) derive optimal
stretching directions; 2) derive optimal sizes.

2. Given a interpolation error ē > 0, to process to the metric analysis: 1) derive
optimal stretching directions; 2) derive optimal sizes.

Mathematically, we need to solve the following minimization problem:

�nd g∗(x) such that min
∫

Ω
‖epg∗(x)(x)‖dx.

Let x0 be a point of domain Ω and Bg(x)(x0) = {x ∈ Ω | dg(x)(x,x0) ≤ 1}
be its unit ball. Geometrically Mbinky et al. (2012), the local optimal metric g∗(x)
is to �nd the maximal unit ball in the isoline 1 of |e(x)| (see Figure 1.16), i.e. in the
vicinity of x0, the local error eg(x) is:

eg(x)(x0) = maxx∈Bg(x)(x0) | f(x)−Πhf(x) | .

Concerning linear k = 1 interpolation, a lot of works Nadler (1985); D’Azevedo
and Simpson (1991); Rippa (1992); Simpson (1994); Cao (2005); Alauzet et al. (2006)
have been done and the conclusion is clear now - say, at a point x, stretching di-
rection is aligned with the eigenvectors of the Hessian 52f(x) and the stretching
length is the square root of the eigenvalues of the Hessian 52f(x), the error e (in
various norms) for the linear interpolation of a function f is nearly the minimum; the
interpolation error is expressed in terms of the Hessian of the solution - a natural con-
nection between the metric-based generation algorithm and the error estimate; the
globally optimal or nearly optimal mesh can be further characterized by the equidis-
tribution of the interpolation error over each element Huang and Sun (2003); Chen
and Xu (2004) Alauzet et al. (2006).

Concerning high order k ≥ 2 interpolation in 2-dimension, we can state the
signi�cant results Mbinky et al. (2012). Based on the Sylvester’s theorem Comon and
Mourrain (1996), rewrite e(x) as:

e(x) =
r(x)∑
i=1

λi(x)(αi(x)x+ βi(x)y)k,
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Figure 1.16: Examples of error models: Pe = 50x3 − 120x2y − 1000xy2 − y3 (left), Pe =
x3−500x2y−500xy2−y3 (right). Representation of their iso-values and their corresponding
optimal ellipse included in the isoline 1(in red) Mbinky et al. (2012).

where r(x) is the decomposition rank.
For real case,

g∗(x) = Q∗T (x)
( 1
h∗1

2(x) 0
0 1

h∗2
2(x)

)
Q∗(x),

and for complex case,

g∗(x) = 2− 1
3 Q̄∗T (x)

( 1
h∗1

2(x) 0
0 1

h∗2
2(x)

)
Q∗(x),

with Q∗T (x) is the real transpose and Q̄∗T (x) is the conjugate complex transpose
of Q∗(x).

The optimal directions

Q∗(x) =
(
α1(x) β1(x)
α2(x) β2(x)

)
.

The optimal sizes

h∗i (x) = 1
|λi(x)| 1k

.

Concerning high order k ≥ 2 interpolation in n ≥ 2-dimension, only a few
works Apel (1999a); Coulaud and Loseille (2016) have been made and the conclusion
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is far from clear until now, and the natural link between the error estimate and the
metric-based mesh generation procedure does not exist anymore. The main issue
lies in converting the interpretation of the k + 1(k ≥ 1) di�erential of the solution
into a metric �eld. It is generally impossible to factor a homogeneous polynomial
in three or higher dimensions into the product of linear and non-negative quadratic
functions. But we know, algebraically, the optimal metric �eld relies on a constrained
minimization, i.e. the smallest bound for theWm,p-error of kth-order interpolations.
A dimensional reduction method can be used to �nd an approximate Q∗(x) to mea-
sure the anisotropic behavior of Ok+1f(x) Cao (2007). A log-simplex algorithm can
be used to derive the local error model of a given initial k-order homogeneous poly-
nomial Coulaud and Loseille (2016). This provides the optimal metric g∗(x).

De�ne the mesh vertices density d =
∏n
i=1

1
hi

(x), the number of elements of the
mesh is:

N(g(x)) = c

∫
x∈Ω

d(x)dx = c

∫
x∈Ω

n∏
i=1

1
hi

(x)dx,

where c is a constant.
Consider error e(x) as:

| e(x) |≤
(
xTg∗(x)x

) k
2 for x = (x, y) ∈ R2.

The global optimal continuous metric is to solve a variational calculus problem:

g∗N̄Lp(x) = min

(∫
Ω
|eg(x)|pdx

) 1
p

= min

(∫
Ω
|xTg(x)x|

kp
2 dx

) 1
p

under the constraint N(g∗(x)) = c
∫

Ω(h1(x)h2(x))−1 = N̄ .
Use the Euler-Lagrange necessary condition

∀δM, δe(g(x), δg(x)) = αδN(g(x), δg(x)),

here α is a constant. We write:

g∗Lp(x)

= c1N

(∫
Ω

(h1(x)h2(x))−
k2p

2(kp+2)

)−1
(h1(x)h2(x))

k
kp+2

(
h−k1 (x) 0

0 h−k2 (x)

)
,

where c1 is a constant.
Given a total number N̄ > 0, the optimal value of the error is:

e∗(x) = c22 k2 N̄− k2
(∫

Ω
(h1(x)h2(x))−

k2p
2(kp+2)

) k
2

(h1(x)h2(x))−
k2p

2(kp+2) ,
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here c2 is a constant.
Given a interpolation error ē > 0, the optimal value of the number is:

N∗ = 2c3ē−
2
k

(∫
Ω

(h1(x)h2(x))−
k2p

2(kp+2)

)
(h1(x)h2(x))−

kp
kp+2 ,

where c3 is a constant.
For a sequence of continuous meshes, a global kth-order of spatial mesh conver-

gence is given:
‖ f(x)−Πk

g∗
Lp
f(x) ‖Lp(Ω)≤

Cst

N
k
2
.

5 | Interpolation error with curvilinear meshes

Error estimates in the context of non-a�ne �nite elements has been proved since
the early e�orts: given a �nite element set K and ‖ · ‖Hm(K) denotes the Sobolev
norms, a general theory Ciarlet and Raviart (1972) have been developed for obtaining
asymptotic estimates of the form ‖ u−Πk

hu ‖Hm(K)= O(hk+1−m) for simplical and
quadrilateral curved �nite elements of isoparametric type, where h is asymptotically
equal to the diameter of K . The paper Botti (2012) compared physical and reference
frame discontinuous Galerkin (dG) discretizations with emphasis on the in�uence of
reference-to-physical frame mappings on the discrete space properties, assessed the
excellence of physical frame discrete spaces in terms of approximation capabilities
as well as the increased �exibility compared to reference frame discretizations - say,
whenever curved elements are considered, non-a�ne reference-to-physical frame
mappings are able to spoil the convergence properties of reference frame discrete
spaces, but this poorly documented drawback does not a�ect basis functions de�ned
directly in the physical frame. In this thesis Chapter 3, we shows that, even if f(x)
is only quadratic in x, i.e., Cijk = 0, the �nite element interpolation error of f(x(t))
with quadratic isoparametric elements does not vanish, due to the curvature of the
curve C.

But we can see by a wise choice of triangle geometry, we still be able to have a
good convergence properties. Let g be the element order and k be the interpolation
order, we have:

g1, kn �nite triangles For such triangles, we have:

||f −Πf || ≤ C1h|f ′|+ C2h
2|f ′′|+ . . .

Where h is the triangle size, and the constants Ci = 0 for i ≤ n which implies that
the term in hn+1 dominates for small h. This works because we have an a�ne trans-
formation for the element which implies that Πf is a polynomial of order n. If we
take non-a�ne elements, this is no more the case. But the interpolate is polynomial
in the reference space so we can look at the error in that space.
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gn, k1 �nite triangles We now look at gn, p1 �nite triangles.
In in�nity-norm, we have:

||f −Πf ||∞Ω = max
e
||f̂e −Πf̂e||∞Ωref

where f̂e is the function mapped into the reference triangle and Πf̂e is the interpo-
late in the reference element which is polynomial. We can bound the error in the
reference triangle the same way we do it for classical FE:

||f̂e −Πf̂e||∞Ωref
≤ C∞|f̂ ′′e |

here C∞ is a constant.
Now, the second derivative of f̂e can be bounded from f ′′ 3:

|f̂ ′′e | ≤ αeh2
e|f ′′|Ωe

where he is the triangle size, and αe are constants that depend on the geometry
of the triangles. If the triangle is linear, αe is equal to 1. αe can be bigger than 1
which can explain the conclusion of Botti—that curved meshes can deteriorate the
convergence—since he did not take curved meshes that are optimal for αe. What
is interesting is that if we choose wisely the mapping of the triangle, then αe can
be smaller than 1 and possibly very close to zero which would implies an order-3
error. If this is true, then for a given �xed point set and a given triangulation (whose
topology is �xed), it is always possible to �nd a geometry of the triangles such that
αe ≤ 1. Indeed, in the worst case, the optimal geometry is for linear triangles for
which αe = 1.

In 1-norm, we have:

||f −Πf ||1Ω =
∑
e

||(f̂e −Πf̂e)Je||1Ωref

where J is the Jacobian determinant. Moreover, we have:

||(f̂e −Πf̂e)Je||1Ωref
≤ C1|f̂ ′′e |max

Ωref
Je

here C1 is a constant.
In 2-norm, we have:

||f −Πf ||2Ω =
√∑

e

||(f̂e −Πf̂e)Je||2Ωref

3We also have: |f̂e| = |f | and |f̂ ′
e| ≤ cehe|f ′| where ce = 1 for a linear triangle.
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and:
||(f̂e −Πf̂e)Je||2Ωref

≤ C2|f̂ ′′e |max
Ωref

Je

here C2 is a constant, and |f̂ ′′e | can be bounded as before and

max
Ωref

Je ≤ βeh2
e

where βe also are constants that depend on the geometry of the triangles and is
bounded by 1 for linear triangles. For a valid curved triangle, we can prove that βe
is bounded by n2 if n is its order.

In all three cases, we obtain this bound:

||f −Πf ||Ω ≤ C max
e

(γeh2
e|f ′′|Ωe)

here C is a constant.
We see that we can do the same developments for high-order interpolation and

obtain the same conclusion, with coe�cients γe that can possibly be reduced by a
wise choice of triangle geometry.
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Abstract

This paper aims at addressing the following issue. Assume a unit square:
Ω = {(x1, x2) ∈ [0, 1] × [0, 1]} and a Riemannian metric gij(x1, x2) de�ned
on U . Assume a mesh T of U that consist in non overlapping valid quadratic
triangles that are potentially curved. Is it possible to build a unit quadratic mesh
of U i.e. a mesh that has quasi-unit curvilinear edges and quasi-unit curvilinear
triangles? This paper aims at providing an embryo of solution to the problem of
curvilinear mesh adaptation. The method that is proposed is based on standard
di�erential geometry concepts. At �rst, the concept of geodesics in Riemannian
spaces is quickly presented: the geodesic between two points as well as the unit
geodesic starting at a given point with a given direction are the two main tools
that allow us to address our issue. Our mesh generation procedure is done in
two steps. At �rst, points are distributed in the unit square U in a frontal fash-
ion, ensuring that two points are never too close to each other in the geodesic
sense. Then, a simple isotropic Delaunay triangulation of those points is created.
Curvilinear edge swaps as then performed in order to build the unit mesh. No-
tions of curvilinear mesh quality is de�ned as well that allow to drive the edge
swapping procedure. Examples of curvilinear unit meshes are �nally presented.

Keywords: curvilinear mesh generation, mesh adaptation, Riemannian metric
�eld, geodesic

1 | Introduction

There is a growing consensus that state of the art Finite Volume and Finite Element
technologies require, and will continue to require too extensive computational re-
sources to provide the necessary resolution, even at the rate with which computa-
tional power increases. The requirement for high resolution naturally leads us to
consider methods with higher order of grid convergence than the classical (formal)
2nd order provided by most industrial grade codes. This indicates that higher-order
discretization methods will replace at some point the �nite volume/element solvers
of today, at least for part of their applications. The development of high-order nu-
merical technologies for CFD is underway for many years now. For example, Discon-
tinuous Galerkin methods (DGM) have been largely studied in the literature, initially
in a quite theoretical context Cockburn and Shu (1989), and now in the application
point of view Kroll (2010). In many contributions, it is shown that the accuracy of the
method strongly depends of the accuracy of the geometrical discretization Bernard
et al. (2009). In other words, the following question is raised: yes, we have the high
order methods, but how do we get the meshes?
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Several research teams are now actively working in the domain of curvilinear
meshing. This new subject is considered as crucial for the future of CFD Slotnick
et al. (2014) and large fundings have been given to some brilliant researchers to allow
innovation in the domain (our colleague Xevi Roca has recently obtained an ERC
starting grant on the subject).

A good research project should ideally be summarized as a simple yet fundamen-
tal question. It is very much the case here. Assume a unit square

Ω = {(x1, x2) ∈ [0, 1]× [0, 1]}

and a smooth function f(x1, x2) de�ned on the square. Consider a mesh T made of
P 2 triangles that exactly covers the square. How can we compute the mesh T that
minimizes the interpolation error ‖Πf−f‖Ω. Here, Π is the so-called Clément inter-
polation of f on the mesh Ern and Guermond (2013). This problem is the problem of
curvilinear mesh adaptation. The solution of that problem requires to address three
main open questions:

1. What is the geometrical structure of the interpolation error in the P 2 case?

2. How can we relate this structure with the geometry/shape of a P 2 triangle?

3. How can we build a mesh made of optimal P 2 triangles?

The �rst question is related to error estimation and we will not deal with it in this
paper.

In this �rst attempt, we will start with a simpler statement. A Riemannian metric
�eld gij(x1, x2) is de�ned on the unit square. This metric �eld is supposed to be the
result of the error estimation. Our aim is thus to build a unit P 2 mesh with respect
to that metric. A discrete mesh T of a domain Ω is a unit mesh with respect to Rie-
mannian metric space g(x1, x2) if all its elements are quasi-unit. More speci�cally, a
curvilinear triangle t de�ned by its list of edges ei, i = 1, 2, 3 is said to be quasi-unit
if all its adimensional edges lengths Lei ∈ [0.7, 1.4]1. Generating unit straight-sided
meshes is a problem that has been largely studied, both in the theoretical point of
view and on the application point of view Frey and Alauzet (2005). Here, our aim
is to allow edges to become curved, leading to unit meshes that would potentially
contain way less triangles.

The paper is structured as follows. Our mesh generation technique essentially
relies on the computation of the shortest parabola between two points and on a unit-
size parabola starting in a given direction. In Section 2, standard notions of geodesics
in Riemann spaces are brie�y exposed. Algorithms that compute geodesic parabolas
are explained as well.

1This range is not arbitrary. When a long edge of size 1.4 is split, it should not become a short edge.
Other authors choose [

√
2/2,
√

2]
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The mesh generation approach that we advocate is in two steps. We �rst generate
the points in a frontal fashion Baudouin et al. (2014). In that process, we ensure that
(i) two points xi and xj are never too close to each other and (ii) that there exist four
points xij , j = 1, . . . , 4 in the vicinity of each point xi that are not too far to xi i.e.
that can form edges in the prescribed range [0.7, 1.4].

Then, points are connected in a very standard “isotropic” fashion. The mesh is
subsequently modi�ed using curvilinear edge swaps in order to form the desired unit
mesh. A curvilinear mesh quality criterion is proposed that allow to drive the edge
swapping process.

In §5, some unit meshes are presented that adapt to analytical metric �elds.

In what follows, we illustrate concepts of unit circle and geodesics using the fol-
lowing toy metric tensor :

g(x1, x2) =
(
g11 g12
g12 g22

)
=
(

cos θ sin θ
− sin θ cos θ

)( 1
l2min

0
0 1

l2max

)(
cos θ − sin θ
sin θ cos θ

)
(2.1)

with
x = {x1, x2}, r = ‖x‖, θ = arctan(x2/x1),

lmin = ε+ lmax(1− exp(−((r − r0)/h)2).

2 | Geodesics

In a Riemannian space, the length of curve C is computed as

LC =
∫
C

√
gijdxidxj

The geodesic between two points x1 and xs is the shortest path C between those
two points. It is possible to compute geodesics by solving a set of coupled ordinary
di�erential equation (ODE). De�ning the so-called Christo�el symbols

Γikl = 1
2g
−1
im

(
∂gmk
∂xl

+ ∂gml
∂xk

− ∂gkl
∂xm

)
= 1

2g
−1
im (gmk,l + gml,k − gkl,m),

the ODE’s of geodesics are written:

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0. (2.2)
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Figure 2.1: Unit circles at di�erent centers for the toy metric (2.1)

2.1 Geodesics and unit circle

Assume a point x = {x1, x2} and an initial velocity ẋ = {cos(α), sin(α)}. Equation
(2.2) allows to compute geodesic C(α) which is the geodesic passing by x and which
tangent vector at x is ẋ. In this work, a simple RK2 scheme is used to integrate
Equation (2.2) explicitly.

The unit circle centered at x is the set of end-points of all geodesics C(α) with
LC(α) = 1 starting at point x. Figure 2.1 shows unit circles with di�erent centers for
the toy metric (2.1).

The tangent plane assumption that is usually made in anisotropic meshing theory
Frey and Alauzet (2005) leads to unit circles that are ellipsis and where geodesic
remain straight lines. Here, Unit circles have a banana shape that di�eres very much
with an ellipsis. On Figure 2.2, unit circles corresponding to the principal directions
of the metric at point {x1, x2} = {0, 1.2} are drawn, both for true geodesics (left)
and in the case of the tangent plane approximation (right).
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Figure 2.2: Unit circles at di�erent centers for the toy metric (2.1). Left Figure shows circles
computed using the exact geodesics while right Figure assumes a constant metric (tangent
plane approximation)

2.2 Geodesic curve between two points

Shooting a geodesic from a point x with velocity ẋ can be solved by integrating the
geodesic ODE (2.2) explicitly in t. Now, consider two points x1 and x2. If our aim is
to �nd a geodesic between those points, we need to integrate the geodesic ODE (2.2)
implicitly. In this work, we choose to simplify that procedure. Quadratic meshes are
considered in this paper, which means that “mesh geodesics” are parabola. In order
to simplify our formulation even more, we assume that the mid point x12 on the
geodesic parabola C12 between x1 and x2 is located on the orthogonal bisector of
segment x1x2 as:

x12 = 1
2(x1 + x2) + α(x2 − x1)× e3 , α ∈ R.

Parametric equation of this geodesic parabola is given by:

C12 ≡ x(t, α) = (1− t)(1− 2t)x1 + t(2t− 1)x2 + 4t(1− t)x3(α)
= x1 + t(x2 − x1) + 4t(1− t)α(x2 − x1)× e3.

Tangent vector at t is computed as,

ẋ(t, α) = (x2 − x1) + (4− 8t)α(x2 − x1)× e3.

So, point x12 is computed by minimizing the length of that parabola

x12 = argmin
α

LC12 =
∫ 1

0

√
ẋiẋj gij(xi, xj) dt (2.3)

using a golden section algorithm.
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x2

C12

e

x1

x12

Figure 2.3: Midpoint x12 of a parabola situated on the orthogonal bissector of the straight line
x1x2

3 | Generation of points

Assume a 1D mesh of the unit square that is compatible with the metric �eld gij(x)
i.e. where every boundary mesh edges is quasi-unit. The main idea here is to proceed
as we did for generating hex dominant meshes Baudouin et al. (2014). The point
sampling algorithm is presented in Algorithm 1.

Algorithm 1 Point sampling for the generation of a unit curvilinear mesh
1: Input: A LIFO queueQ is initialized containing all mesh vertices of the 1D mesh

and a metric �eld gij(x).
2: Output: A list L of accepted vertices
3: while Q is not empty do

4: x← Q: pop vertex x at the begin of the queue
5: Compute g(x) as well as its eigenvectors v1 and v2 at point x
6: Four tentative points x1, x2, x3, x4 are computed at a geodesic distance equal

to 1 in the four directions v1, −v1, v2, −v2 solving Equation (2.2).
7: for i = 1, . . . , 4 do

8: if xi is not too close to any accepted point in L then

9: Add xi at the end of the queue Q
10: end if

11: end for

12: L← L+ x: add x in the list L of accepted vertices
13: end while

Algorithm 1 ensures that there exists no point in the mesh that are too close to
another while, on the other hand, ensuring that there exist 4 points that are su�-
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Figure 2.4: Sampling of points using toy metric (2.1) with parameters ε = 0.01, h = 1/
√

10,
r0 = 0.5 and lmax = 0.3. The square is of size 4× 4 and is centered at (x1, x2) = (0, 0).

ciently close to any point of the mesh. Principal directions of the metric �eld v1 and
v2 are used as a “direction �eld”. This is an arbitrary choice. Yet, it has the advantage
in most cases to generate meshes that are more structured.

Ensuring that two points are not too close is done using a RTree Beckmann et al.
(1990) spatial search structure. The distance between two points is computed as the
shortest parabola in the given metric (see Equation (2.3)). Our sampling algorithm
applied to the toy metric (2.1) provides the set of points of Figure 2.4.

4 | Generation of triangles

The set of points optimally sampled are then triangulated using an o� the shelf con-
strained Delaunay triangulator such as Gmsh Geuzaine and Remacle (2009) or Tri-
angle Shewchuk (1996). We see on Figure 2.5 that isotropic straight sided elements
are not suited for the proposed metric. Here, local mesh modi�cations Li et al. (2005)
will be used to align the mesh with the desired metric. We do not move the points
that are optimally sampled. Only edge swaps will be performed, yet in a non usual
fashion.

High order points are initially placed on every edge of the straight sided mesh
using Equation (2.3). Assume two triangles t1(x1,x2,x4) and t2(x2,x1,x3) that
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Figure 2.5: Constrained Delaunay mesh constructed using sampled points of Figure 2.4. The
triangulation is straight sided. It has been done using no speci�c metric and is thus clearly not
adapted.

share an edge e (see Figure 2.6). Triangles t1 and t2 are possibly curvilinear (as in
the Figure) and we aim at evaluating the opportunity of replacing edge e by edge e′
(edge e′ is the geodesic between x3 and x4). Two indicators will help us to decide
whether an edge swap should be performed:

• The new curvilinear triangles t′1(x4,x3,x2) and t′2(x3,x4,x1) have to be both
valid. The validity criterion that is used is based on robust estimates that have
been developed in Johnen et al. (2013). In short, for t′1, determinants of Jaco-
bians J4 ,J3,J2,J43,J32,J24 are computed at its 6 nodes. A su�cient condition
for triangle t′1 to be valid is

J4 > 0 , J3 > 0 , J2 > 0 , 4J43 > J3 +J4 , 4J32 > J3 +J2 , 4J24 > J2 +J4.

• The quality of the mesh has to be improved by the swap:

min(qg(t1), qg(t2)) < min(qg(t′1), qg(t′2))

where qg(t) is a curvilinear quality measure of triangle twith respect to metric
�eld g.

The quality measure that is used here is a direct extension to standard quality
measures de�ned in Shewchuk (2002). We de�ne

qg(t) = 12√
3

∫
t

√
det g dx

L2
e1

+ L2
e2

+ L2
e3

(2.4)
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Figure 2.6: Curvilinear edge swap.

where e1, e2 and e3 are the three edges of t, Le is the length of e with respect to the
metric. Note that triangle inequality is not necessary veri�ed in Riemannian metrics
i.e. Le1 ≤ Le2 + Le3 is not necessary true. In consequence, quality measure qg(t)
may be larger than one. Edges are swapped until a stable con�guration is found.

5 | Examples

5.1 Unit mesh for the toy metric

Figure 2.7 present meshes for the toy metric (2.1). All triangles are valid by construc-
tion.

Note here that the corresponding P 1 mesh of our P 2 mesh is totally invalid. It is
indeed not possible to generate a P 1 mesh and curving it afterwards without doing
curvilinear local mesh modi�cations (see Figure 2.8).

In the sampling process, points are placed along true geodesics while edges of
the mesh are parabola. Parabola that have the same endpoints as true unit geodesics
could potentially be longer than 1. Even though the number of long edges that are the
consequence of this approximation is quite small, this discrepancy could potentially
become annoying. We have addressed that issue by reducing the size of geodesics
with the aim at producing parabolas that are of the right unit size. With this �x, edge
lengths are in the range [0.701, 1.66] which is very close to the optimal range (see
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Figure 2.7: Curvilinear mesh of the unit square using the toy metric.

Figure 2.8: This Figure depicts the corresponding P 1 straight sided version of the curvilinear
mesh of Figure 2.7. A large amount of the P 1 triangles are invalid while every single P 2

triangle of Figure 2.7 is valid.
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Figure 2.9: Left Figure shows adimensional lengths of edges of the mesh for the toy metric.
Right Figure presents P 2 triangle quality measures (2.4).

Figure 2.9). Note that no short edges can exist in the mesh by construction. Long
edges are due to the inability of the swapping process to connect points that are
close enough without generating invalid P 2 triangles. In further work, other mesh
optimizations will be put into place that could enhance even further the quality of
the P 2meshes. Quality measures (2.4) are also depicted in Figure 2.9.

5.2 Intersection of three toy metrics

This example consists in placing three toy metrics g1, g2 and g3 in the 4× 4 square,
centered at di�erent locations with di�erent mesh sizes and intersecting them Frey
and Alauzet (2005):

g = g1 ∩ g2 ∩ g3.

Meshes are presented in Figure 2.10. A total of 1270 mesh vertices were inserted in
the unit square. Then, 840 curvilinear swaps were performed to produce the �nal
mesh. Edges of the mesh have sizes that are in the range [0.7, 1.8].

To obtain this intersection metric, let g1 and g2 denote these two metrics:

g1(x1, x2) =
(
g111 g112
g121 g122

)
=
(
v11x v12x
v11y v12y

)(
| λ11 | 0

0 | λ12 |

)(
v11x v11y
v12x v12y

)

g2(x1, x2) =
(
g211 g212
g221 g222

)
=
(
v21x v22x
v21y v22y

)(
| λ21 | 0

0 | λ22 |

)(
v21x v21y
v22x v22y

)
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Figure 2.10: Curvilinear mesh of the unit square using the intersection of three toy metrics.

The intersection metric g1 ∩ g2 is then de�ned by

g(x1, x2) =
(
g11 g12
g21 g22

)
=
(
v1x v2x
v1y v2y

)(
| λ1 | 0

0 | λ2 |

)(
v1x v1y
v2x v2y

)
with v1x, v1y, v2x, v2y and λ1, λ2 computed in the Algorithm 2.

Then, we can compute the intersection of more metrics:

g1 ∩ · · · ∩ gn = (((g1 ∩ g2) ∩ g3) ∩ · · · ) ∩ gn.

And, we can use a weight wi, i = 1, 2, · · · , n for each metric:

w1g1 ∩ · · · ∩ wngn = (((w1g1 ∩ w2g2) ∩ w3g3) ∩ · · · ) ∩ wngn.

5.3 Other analytical metrics

We have used our technique to adapt to iso-zero of two functions (Figure 2.11 and
Figure 2.12). Our procedure seems to remain stable and robust for thicker and thinner
adaptations.

6 | Conclusions

In this paper, a new methodology for generating unit curvilinear meshes has been
proposed. The method guarantees two important properties in the �nal mesh:
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Algorithm 2 Metric Intersection
input : two given metrics g1 and g2
output: a intersection metric g = g1 ∩ g2

if λ11/λ12 >= λ21/λ22 then

λ21 = v11x ∗ v11x ∗ g211 + 2 ∗ v11x ∗ v11y ∗ g212 + v11y ∗ v11y ∗ g222;
λ22 = v12x ∗ v12x ∗ g211 + 2 ∗ v12x ∗ v12y ∗ g221 + v12y ∗ v12y ∗ g222;
C = v11x;
S = v11y;

else

λ11 = v21x ∗ v21x ∗ g111 + 2 ∗ v21x ∗ v21y ∗ g112 + v21y ∗ v21y ∗ g122;
λ12 = v22x ∗ v22x ∗ g111 + 2 ∗ v22x ∗ v22y ∗ g121 + v22y ∗ v22y ∗ g122;
C = v21x;
S = v21y;

end

end

if λ11 > λ21 then

λ1 = λ11
else

λ1 = λ21
end

end

if λ12 > λ22 then

λ2 = λ12
else

λ2 = λ22
end

end

g11 = C ∗ C ∗ λ1 + S ∗ S ∗ λ2;
g12 = C ∗ S ∗ (λ1 − λ2)
g21 = C ∗ S ∗ (λ1 − λ2)
g22 = C ∗ C ∗ λ2 + S ∗ S ∗ λ1;
v1x = C, v1y = S, v2x = −S, v2y = C
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Figure 2.11: Curvilinear mesh adapted to capture (x1)4 + (x2)4 = R4 .

Figure 2.12: Curvilinear mesh adapted to capture (x1)2 + 2(x2)4 = R4.

1. Generated meshes are valid. The validity of the initial curved mesh (before
edge swapping) guaranteed whatever the smoothness of the metric g, given
that mesh edges are only parabola and mid-points are located according to
parabola geodesic. This important property is due to the fact that P2 meshes
are valid at any point of the algorithm. The initial mesh is curved along geodesic.
A backtracking (constrained optimization: minimize the length of the parabola
while keeping both neighboring triangles valid) step is applied to ensure that
every triangle of the mesh is valid. Then, edge swaps are only applied if ele-
ments are valid. Note that the validity criterion that is used is robust.

2. No short edges will be exist in the mesh. A spatial search procedure is used for
ensuring that any point that is inserted is not too close in the sense of geodesics
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than any other point.

This work is now being extended to true adaptation i.e. adapting a mesh to a
given function f(x1, x2). Even though metrics are still the right tool for driving
mesh adaptation at higher orders, basing g on Hessians of f is not correct anymore
for higher orders of approximation. Our future work will be to build metric �elds
that are suited for high order.
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Abstract

We propose a new framework for the generation and adaptation of unit
curvilinear P 2 meshes in dimension 2. In this approach, curvature is not only
used to match curved boundaries but also to capture features of the interpolated
solutions, and it results in meshes that would not have been achievable by simply
curving a posteriori a straight-sided mesh. We proceed as follows. Starting with a
smooth function f(x, y), a metric �eld, based on f and its derivatives up to order
3, is constructed. A unit P 2 mesh is then generated, with edges within an adi-
mensional length range of [0.7, 1.4] with respect to this metric �eld. Points are
then spawned in such a way that their geodesic distance corresponds to edges of
unit size, and these points are then connected in a standard isotropic fashion. A
curvilinear mesh quality criterion is then proposed to drive the mesh optimiza-
tion process. The triangulation is subsequently modi�ed using straight-sided
edge swap, straight-sided edge curving, curvilinear edge swap and Curvilinear
Small Polygon Reconnection (CSPR) to form the desired unit mesh. A unit curvi-
linear mesh containing only valid “Geodesic Delaunay triangles” is obtained this
way. A number of application examples are presented in order to demonstrate
the capabilities of the mesh adaptation procedure. The resulting adapted meshes
allow, most of the times, a signi�cant reduction of the interpolation error com-
pared with straight-sided P 2 meshes of the same density.

Keywords: curvilinear mesh generation, mesh adaptation, Riemannian metric
�eld, geodesic, analytic functions, high-order error, �nite element method

1 | Introduction

Scienti�c computing is now an old science. Solving partial di�erential equations on
a computer is a very common task for aerospace/chemical/ mechanical/electrical en-
gineers. Still, numerical methods for PDEs that have reached a production level such
as �nite elements are, for most of them, based on numerical schemes that are of the
second order of accuracy. Some applications in �uid mechanics or in electromagnetic
nonetheless require numerical schemes that are of higher order of accuracy (those
schemes are sometimes called high �delity schemes). It has been proved in many
contributions that high-order �nite element schemes require high-order meshes, i.e.,
meshes that capture the curvilinear features of the geometry with a high �delity as
well Bernard et al. (2009). In the last decade, a signi�cant part of the research in
mesh generation has thus been devoted to the generation of body �tted curvilinear
meshes. The main issue of generating curved meshes is that there exists for now
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Figure 3.1: Illustration of the whole process of curvilinear mesh generation and adaptation
based on a given analytic function. The top left image represents the function(3.19) on the
unit square. The top center image depicts the metric �eld M(x) computed as explained in
section 3. The top right image shows the point spawned according to this metric �eld. The
bottom left image is the straight-sided anisotropic mesh based on the spawned points. The
bottom center image shows the initial curvilinear mesh, with the edges colored according to
their adimensional lengths. Finally, the bottom right image is the adapted anisotropic mesh
including the new Curvilinear Small Polygon Reconnection (CSPR) procedure.

no algorithm that actually generates a P 2 mesh in a direct fashion. State-of-the-art
methods generate a straight-sided mesh and place high-order points on the CAD
geometry. Then, invalid elements are untangled using various approaches Fortu-
nato and Persson (2016); Hartmann and Leicht (2016); Moxey et al. (2016); Karman
et al. (2016); Ruiz-Gironés et al. (2016); Toulorge et al. (2013); Remacle et al. (2013b).
Nowadays, body �tted curvilinear meshes start to be used in an industrial context
Kroll (2006); Kroll et al. (2015).

High-order meshes have exclusively been used for increasing geometrical accu-
racy, i.e., to make the mesh represents the geometry of curved parts with high �delity.
The natural extension of the use of curvilinear meshes is high-order/curvilinear mesh
adaptation. In the linear case, extensive work has been done in anisotropic mesh
adaptationAlmeida et al. (2000); Buscaglia and Dari (1997); Castro-Díaz et al. (1997);
Formaggia et al. (2004); Dompierre et al. (1997); Huang (2005); Frey and Alauzet
(2005); Gruau and Coupez (2005); Li et al. (2005); Tam et al. (2000); Pain et al. (2001).
The concept of metric tensor is always central in anisotropic adaptation: it allows to
de�ne mesh sizes and directions that allow to minimize the interpolation error Schall
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et al. (2004); Courty et al. (2006); Chen et al. (2007); Alauzet et al. (2006); Loseille and
Alauzet (2011a,b). Yet, all those methods end up with a straight-sided mesh.

This paper is in line with recent paper Zhang et al. (2018) which have provided
an embryo of solution to the problem of curvilinear mesh adaptation. In Zhang et al.
(2018), an analytical metric �eld was assumed and unit P 2 meshes were generated
based on that metric. In the present paper, we essentially tackle two additional prob-
lems that allow to move forward to “true anisotropic curvilinear mesh adaptation”
(i.e., optimizing a mesh based on a high-order �nite element solution):

1. P 2 error estimates that are currently used in the literature are based on the
implicit hypothesis that underlying meshes are straight-sided. Assuming a
function f(x, y) ∈ C3, we construct a metric �eld that does not assume mesh
edges to be straight-sided.

2. The mesh generation procedure that we use for generating the curvilinear
meshes is based on the one of Zhang et al. (2018). Yet, we show that using
edge swaps only does not always allow to reach a unit mesh. We propose a
more general operator - curvilinear small polygon reconnection - that allows
to reconnect points in a wider range and generate P 2 unit meshes very ro-
bustly.

The paper is structured as follows: in Section 2, a brief review of the interpo-
lation error and algorithm that compute geodesic parabolas is presented; Section 3
describes a new idea of the de�nition of the metric �eld that takes into account the
curvilinear nature of the mesh; in Section 4, we give a simple illustrative example; in
Section 5, we describe and detail the mesh generation approach. The whole process
of curvilinear mesh adaptation will be explained based on a running example. All
the stages of that process are illustrated in Figure 3.1. Interpolation error is analyzed
at the end of the paper.

2 | Interpolation error

2.1 A point of departure

This section starts with a small re�ection about a very interesting paper published
in 2011 by Lorenzo Botti Botti (2012). In his paper, Botti shows that, in a standard
�nite element context, curving a mesh may have a dramatic cost in terms of the
quality of the �nite element interpolation. When we �rst read this paper, we were
already working in curvilinear meshing: we were thus quite puzzled by Botti’s con-
clusions. Clearly, using P 2 meshes and P 2 �nite elements (isoparametric �nite ele-
ments) causes the interpolation to barely pass the patch test. Such an interpolation
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Figure 3.2: ideal elements

is not able to exactly represent a quadratic function in the x plane which causes
damages to the approximation properties of the element.

Now imagine a function f(r, θ) in polar coordinates that is, say, parabolic in
r and θ. On the one hand, f is not polynomial in Euclidean coordinates. On the
other hand, with a mesh whose edges are aligned with er and eθ there would be
no interpolation error at all with P 2 �nite elements. In Fig. 3.2, the straight-sided
anisotropic triangle does its best to align with the isolines of function f whereas the
curvilinear quadrangle is able to align with the solution. With a same mesh size,
a much lower interpolation error is expected with this quadrangle than with the
triangle. This is our starting point: optimal curvilinear edges should be adapted to
match the local parametrization of f .

Let thus f(x) ∈ C3 be a three time di�erentiable function, with x = (x1, x2).
Its derivatives up to order 3 are respectively its gradient

Gi = ∂f

∂xi
,

its hessian

Hij = ∂Gi
∂xj

= ∂2f

∂xi∂xj
,

and its third order derivative tensor

Cijk = ∂Hij

∂xk
= ∂3f

∂xi∂xj∂xk
,

with i, j, k = 1, 2.

Based on these derivatives of f(x), we present an approach to compute a metric
�eld M(x) that takes into account the curvilinear nature of the P 2 mesh of f(x).
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2.2 Parabolic edges

This paper having the aim of building P 2 meshes, the mesh edges are going to be
represented by parabolas.

In our approach, the set of parabolas that connect the points X1 and X2 is re-
stricted to those with the midpointX12

X12 = X1 +X2

2 + α (X2 −X1)× e3 , α ∈ R

located on the orthogonal bisector of the segmentX1X2, as shown in Fig. 3.3.

x1

x2x12

Figure 3.3: MidpointX12 of a parabola situated on the orthogonal bisector of the straight line
X1X2.

The parametric equation of the parabola is then given by

C ≡ x(t)
= (1− t)(1− 2t)X1 + t (2t− 1)X2 + 4t (1− t) x12(α)
= X1 + t (X2 −X1) + 4t (1− t)α (X2 −X1)× e3

= X1 + thu+ 4th (1− t)α b, (3.1)

where u = (u1, u2) is the unit vector parallel to X2 −X1, h = ‖X2 −X1‖ and
b = u × e3. Here, α is the only unknown coe�cient that allows to move midpoint
X12 along b and it is computed in such a way that the length of that parabola is
minimized. This minimization is performed using a golden section algorithm.

2.3 Interpolation error and mesh size

Assume a curve x(t) , t ∈ [0, 1], a function f(x(t)), and its quadratic Lagrange inter-
polate π2f(x(t)). On basis of a Taylor expansion, one knows that the interpolation
error can be bounded as follows:

max
t∈[0,1]

|f(x(t))− π2f(x(t))| ≤ 1
6 sup
t∈[0,1]

∣∣∣∣d3f(x(t))
dt

∣∣∣∣ . (3.2)



§2 Interpolation error 57

When C is a straight edge (i.e., α = 0 in (3.1)), one has

ẋ(t) = hu (3.3)

so that
d3f(x(t))

dt3
= Cijk ẋ

iẋj ẋk = h3Cijk u
iujuk,

and (3.2) becomes

max
x∈C
|f(x)− π2f(x)| ≤ h3

6 sup
x∈C

∣∣Cijk(x)uiujuk
∣∣ , (3.4)

whereCijk = Cijk(x(t)), and repeated indices are implicitly summed over (Einstein
summation).

Now, if C is the parabola (3.1), we have

ẋ(t) = hu+ αh (4− 8t) b , ẍ(t) = −8αhb,

and it is easy to show that

d3f(x(t))
dt3

= Cijkẋ
iẋj ẋk + 3Hij ẋ

iẍj (3.5)

and
max
x∈C
|f(x)− π2f(x)| ≤ h3

6 sup
x∈C

∣∣Cijkẋiẋj ẋk + 3Hij ẋ
iẍj
∣∣ .

Equation (3.5) shows that, even if f(x) is only quadratic in x, i.e., Cijk = 0, the �nite
element interpolation error of f(x(t)) with quadratic isoparametric elements does
not vanish, due to the curvature of the curve C. This was the observation of Botti in
Botti (2012) - say, in a standard �nite element context, curving a mesh may have a
dramatic cost in terms of the quality of the �nite element interpolation.

A relationship similar to (3.3) is needed for the parabolic case, and it is convenient
to derive it to reparametrize the curve x(t) by arc length, i.e., with the arc length

s(t) =
∫ t

0
|ẋ(u)|du (3.6)

as parameter. One has then

∂sx(s) = g + sκ e3 × g,

where g is the unit vector tangent to the curve, and κ the geodesic curvature, using
the basis vectors of a Darboux frame Radzevich (2013). One has now the relationship
equivalent to (3.3) for the parabola,

ẋ(t = 0) = ∂sx(s = 0) ∂ts(t = 0)
= g |ẋ(0)| = Lg
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with
L = h

√
1 + 16α2.

Moreover, one can show that

(I− ggT )ẍ(t = 0) = κ(e3 × g)L2.

Assuming that (I−ggT )ẍ(t = 0) is not too di�erent from ẍ(t = 0), and thatCijk(x)
and Hij(x) do not vary too much over C, one can write

max
x∈C
|f(x)− π2f(x)| ≤

L3

6
∣∣Cijk(x)gigjgk

∣∣+ L3

2
∣∣Hij(x)giκ(e3 × g)j

∣∣
although doing so may be too conservative in the sense that this estimate assumes
that errors due to polynomial approximation and geometry add to each other while
they may actually balance each other. We thus stick to

max
x∈C
|f(x)− π2f(x)| (3.7)

≤ L3

6 sup
t∈[0,1]

∣∣Cijk(x(t)) gigjgk + 3Hij(x(t)) giκ(e3 × g)j
∣∣ .

If we pose
E =

∣∣Cijk(x) gigjgk + 3Hij(x) giκ(e3 × g)j
∣∣ , (3.8)

the interpolation error is thus of the form ε ' L3/6E, and since the goal is to adapt
the meshsize in order to have an error equidistribution ε among edges, we choose

L = (6ε/E)1/3. (3.9)

3 | Construction of the metric �eld

A classical technique in anisotropic mesh generation consists in de�ning an auxiliary
metric �eld M(x) under which the sought anisotropic mesh is a unit mesh, i.e., a
mesh with edges of approximately unit length. This metric �eld is de�ned by two
orthogonal unit vectors g1 and g2 and two mesh sizes h1 and h2 at every point p of
the domain. It is customary to choose the vectors g1 and g2 as the eigenvectors of
the Hessian Hij , so that one has

M(x) =
(
g1 g2

)( 1
h2

1
0

0 1
h2

2

)(
g1 g2

)T
. (3.10)

This arbitrary choice has two principal virtues:



§3 Construction of the metric field 59

1. It allows a maximum amount of anisotropy in the P 1 case.

2. If the function f is C2, g1 and g2 are continuous and mesh orientation varies
smoothly.

The meshsizes h1 and h2 are calculated so as to maintain the interpolation error
below a prescribed target error ε. We shall try to keep up with these properties in
the context of curvilinear meshes.

The main idea is to assume that the edges of the anisotropic mesh at point p are
oriented along either the iso-contour of f or the direction of the gradient ∇f , i.e.,
along the curves de�ned as follows:

1. Curve C1 ≡ x1(t) is the quadratic approximation of the iso-contour f(x1(t)) =
f(p).

2. Curve C2 ≡ x2(t) is the quadratic approximation of the local downhill gradient
going through p.

Here again, it is convenient to work with curves parametrized by arc-length. Let

C1 ≡ x1(s) = p+ g1s+ κ1g2
s2

2 (3.11)

and
C2 ≡ x2(s) = p+ g2s+ κ2g1

s2

2 . (3.12)

with, as explained above, the unit tangent vectors

g1 = ∇⊥f |p
‖∇⊥f |p‖

= 1
(f2
x1 + f2

x2)1/2

(
−fx2

fx1

)
,

g2 = ∇f |p
‖∇f |p‖

= 1
(f2
x1 + f2

x2)1/2

(
fx1

fx2

)
where the shorthand notations

fx1 = ∂f

∂x1 (p) , fx2 = ∂f

∂x2 (p)

have been used.
Taylor expansion limited to order 2 of f(x) around p writes

f(x) ' f(p) + ∇f |p (x− p)

+ 1
2(x− p)T H|p (x− p). (3.13)
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If the curve x1(s) runs along the isovalue of f , one can write f(x1(s)) = f(p) and,
using (3.11), one can write

x− p ≡ x1(s)− p = g1s+ κ1g2
s2

2

to be inserted into (3.13) to give

∇f |p · g1︸ ︷︷ ︸
=0

s+
[
κ1∇f |p · g2 + gT1 H|p g1

] s2

2 + O(s3) = 0

Since the equation is true in a neighborhood of s = 0, the quantity between bracket
must vanish, and the identity

κ1∇f |p · g2 + gT1 H|p g1 = 0

gives the expression of the curvature κ1 needed to �nalize the identi�cation of the
curve (3.11)

κ1 = −g
T
1 H|p g1

∇f |p · g2

=
−f2

x2fx1x1 + 2fx1fx2fx1x2 − f2
x1fx2x2

(f2
x1 + f2

x2)3/2 .

Next, we turn to the second curve (3.12), which is to be aligned with ∇f(p). A
Taylor expansion around p of the gradient this time gives

∇f(x) ' ∇f |p +H|p(x− p) (3.14)

with, using (3.12),

x− p ≡ x2(s)− p = g2 + κ2g1
s2

2 . (3.15)

On the other hand, one has

∂x2(s)
∂s

= g2 + κ2g1 (3.16)

and the alignment of the curve with the gradient reads

∇f(x2(s))× ∂x2(s)
∂s

= 0, (3.17)

where × is the vector product. Substituting (3.14), (3.15) and (3.16) into (3.17) yields

∇f |p × g2︸ ︷︷ ︸
=0

+ [κ2∇f |p × g1 + (H|p g2)× g2] s+ O(s2) = 0.
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Again, as this equation is true in a neighborhood of s = 0, the quantity between
bracket must vanish. Noting that, for any vector V , one has V × g2 = V · g1
and V × g1 = −V · g2, one obtains for the curvature κ2 needed to �nalize the
identi�cation of the curve (3.12) the expression

κ2 = gT1 H|pg2

(f2
x1 + f2

x2)1/2g2 · g2

=
fx1fx2(fx2x2 − fx1x1) + (f2

x1 − f2
x2)fx1x2

(f2
x1 + f2

x2)3/2 .

Using (3.8), we can thus �nally write

E1,2 =
∣∣∣Cijk(p)gi1,2g

j
1,2g

k
1,2 + 3κ1,2Hij(p)gi1,2g

j
2,1

∣∣∣ .
Using (3.9), the mesh sizes are �nally de�ned by

h1,2 = L1,2 = (6ε/E1,2)1/3. (3.18)

Two remarks need to be made regarding the error estimate that has just been
proposed. At �rst, some modi�cation is clearly needed whenever fx1 = 0 or fx2 = 0,
i.e., when the function is locally constant. In order to de�ne M everywhere in the
domain, orthogonal directions g1 and g2 are computed everywhere where ∇f does
not vanish. Then, well-de�ned directions are extended by a smoother borrowed from
our cross �eld solver Beaufort et al. (2017). When the function f is constant, mesh
sizes are limited to a user de�ned maximal size hmax.

Finally, we can note that the orthogonal directions g1 and g2 that has been chosen
here are somewhat arbitrary. There might be other choices that have some advan-
tages over the eigenvectors of H . Yet, the analytical example described in §4 shows
that our choice makes sense.

4 | A simple illustrative example

Assume function f(x1, x2) = (x1)2+(x2)2 andP 1 interpolation on triangles, on the
standard context of straight-sided mesh adaptation, we clearly see f as an isotropic
function, and its hessian being

H =
(

2 0
0 2

)
.

In the context of standard P 1 adaptation, the optimal mesh is isotropic and its size
for having an interpolation error of ε2 is L = ε.
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Now, the same function, which is isotropic in Euclidean coordinates (x1, x2), is
actually anisotropic in polar coordinates. There, f(r, θ) = r2 is independent of θ. If
the mesh “mimics” polar coordinates, we could potentially have a signi�cant gain by
going anisotropic.

Now, let us allow the use of quadratic triangles and consider point (x1, x2) =
(a, 0), we have

κ1 = − 1√
(x1)2 + (x2)2

and κ2 = 0

and then

x1(t) =
(
a− t2

2a
t

)
and x2(t) =

(
a+ t

0

)
.

Along x1(t), the function

f(x1(t)) = t2 +
(
a− t2

2a

)2

= a2 + t4

4a2 ,

is a constant up to orderO(t4). Assuming a linear interpolation of f , i.e., π1f(x1(t)) =
f(0) + f ′(0)t = a2, the exact error is bounded by

∣∣f(x1(t))− π1f(x1(t))
∣∣ =

∣∣∣∣ t44a2

∣∣∣∣ < ε2

so that |t| <
√

2εa = L1.

Along the perpendicular curve x2(t), we have f(x2(t)) = (a+ t)2 and∣∣f(x2(t))− π1f(x2(t))
∣∣ =

∣∣(a+ t)2 − a2 − 2at
∣∣

= |t2| < ε2

which is independent of a. Thus, the optimal mesh has a constant mesh size L2 = ε.
The optimal mesh is thus anisotropic with an anisotropic scale factor equal to

L1

L2
=
√

2a
ε
.

So, far away from the origin (a� 0), the optimal mesh is highly anisotropic.

Now, whenever the exact solution is unknown, but we can still estimate the
derivatives of the numerical approximation, an estimator similar to the one explained
in the previous section can be used. We have

d2f(x2(t))
dt2

= Hij ẋ2
iẋ2

j + 2Giẍ2
i = 2.
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Our proposed estimate leads to

|f(x2(t))− π1f(x2(t))| ' L2
2

2

∣∣∣∣d2f(x2(0))
dt

∣∣∣∣ = L2
2 < ε2

which yields L2 < ε.
The second order derivative along x1(t), on the other hand, is computed as

d2f(x1(t))
dt2

= Hij ẋ1
iẋ1

j︸ ︷︷ ︸
2( ta )2+2

+ 2Giẍ1
i︸ ︷︷ ︸

−2+( ta )2

= 3
(
t

a

)2

and vanishes for t = 0. This indicates that our estimate allows choosing L1 arbitrar-
ily large, which should come as no surprise, since in this case, the “true” anisotropic
ratio is large, and probably beyond the capabilities of the mesh generator in terms of
anisotropic elements.

5 | Mesh adaptation

This section describes our mesh generation and adaptation approach. For illustrating
the di�erent steps of the procedure, the following analytic function

f(x) = arctan(10(sin(3πy/2)− 2x))) (3.19)

will serve as running example. Figure 3.1 shows the general behavior of f(x) on the
unit square as well as the di�erent steps of the procedure.

xc1

xc2

xc3

xc4

ec

e'c
xc23

xc42

xc43

xc12

xc31

xc14

Figure 3.4: Curvilinear edge swap.

5.1 Generation of corner points

Our meshing approach is not the usual one, for which points and triangles are gener-
ated at the same time. In our approach, points are generated �rst, and then connected
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Figure 3.5: All curvilinear triangulations of a 4-cavity. There are 20 distinct triangles {0, 1, 2},
{0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {0, 1, 4}, {0, 2, 4}, {1, 2, 4}, {0, 3, 4}, {1, 3, 4}, {2, 3, 4},
{0, 1, 5}, {0, 2, 5}, {1, 2, 5}, {0, 3, 5}, {1, 3, 5}, {2, 3, 5}, {0, 4, 5}, {1, 4, 5}, {2, 4, 5},
{3, 4, 5}. in the T4 = 14 triangulations shown in the Figure.

in a second step. Points are generated using the frontal algorithm described in Bau-
douin et al. (2014); Gu and Yau (2008). In short, one proceeds as follows. The points
of the domain boundary are inserted in a queue. Then, the point at the end of the
queue is popped out, and 4 neighbor points are created, located at unit distance from
it along the parabolas ±x1 and ±x2, provided they are not too close to already ex-
isting points. This algorithm ensures thus that (i) two points xi and xj are never too
close to each other and (ii) that there exist four points xij(j = 1, 2, 3, 4) at unit dis-
tance from each point, i.e., that can form with it edges whose length is in the range
[0.7, 1.4]. Figure 3.1 shows the points generated with a metric �eld based on a target
error ε = 0.02.

5.2 Generation of a straight-sided anisotropic mesh

The generated points are then connected together using a standard anisotropic mesh
generator based on the metric �led M(x) Dobrzynski (2012). Figure 3.1 shows the
resulting straight-sided mesh. The connectivity of this mesh is however not optimal.
Yet, it constitutes a good starting point for constructing the unit curvilinear mesh
that will further reduce the interpolation error.

5.3 Curving the straight sided mesh

The straight edges of the mesh are now to be transformed into parabolas. This op-
eration is however endowed with the risk of creating invalid P 2 triangles. The fol-
lowing backtracking procedure allows however to provide a provably valid P 2 mesh.
At �rst, invalid triangles are identi�ed using the simple and robust validity criterion
described in Johnen et al. (2013). Since straight-sided triangles are always valid, the
3 mid-edge points of a given invalid triangle T are moved simultaneously backwards
towards the mid points of the straight edges, until the triangle becomes valid again.



§5 Mesh adaptation 65

All triangles sharing an edge with T are then checked, and if needed added to the
list of invalid triangles. This algorithm always terminates, and as for limit case the
recovery of a straight-sided mesh. Yet, in general, mild modi�cations of the initial
curvilinear mesh are su�cient to restore a valid mesh.

It is very important at this point to ensure that one has a valid curvilinear mesh,
since all subsequent optimization operations will improve the mesh quality, and thus
per de�nition always preserve the validity of the mesh.

The �rst mesh improvement method is a basic curvilinear edge swap (see Fig-
ure 3.4). Assume two curvilinear triangles Tc1(xc1,xc2,xc3) and Tc2(xc1,xc4,
xc2) sharing a common edge ec. Let e′c be the geodesic between xc3 and xc4. The
curvilinear edge swap operator evaluates the opportunity of replacing edge ec by
edge e′c. Two indicators decide whether the edge swap should be performed:

1. The new curvilinear triangles T ′c1(xc1,xc4,xc3) and T ′c2(xc4,xc2,xc3) have to
be both valid, according to the criterion based on robust estimations developed
in Johnen et al. (2013).

2. The quality of the mesh has to be improved by the edge swap:

min(qct′c1
(M(x)), qct′c2

(M(x)))
> min(qctc1(M(x)), qctc2(M(x)))

where qct(M(x)) is the curvilinear quality measure of triangle Tc with respect
to metric �eld M(x).

The quality measure used here is a straigthforward extension of the standard
quality measure de�ned in Shewchuk (2002). We de�ne:

qct(M(x)) = 4
√

3
L(M(x))

∫
tc

√
|M(x)| dx (3.20)

with
L(M(x)) = L2

ec1
(M(x)) + L2

ec2
(M(x)) + L2

ec3
(M(x)),

where ec1, ec2 and ec3 are the curvilinear edges of Tc, and Lec1 , Lec2 and Lec3 are
their geodesic lengths according to the metric �eld M(x)).

Note that triangle inequality is not necessary veri�ed in Riemannian metrics, i.e.,
the inequality Lec1 < Lec2 +Lec3 does not always hold. In consequence, the quality
measure qct(M(x)) may be larger than one. Edges are swapped until a stable con�g-
uration is found. Here, we generalize Delaunay triangulation to Geodesic Delaunay
triangulation Gu and Yau (2008).
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Figure 3.6: Mesh quality improved by CSPR(Curvilinear Small Polygon Reconnection).

5.4 Curvilinear Small Polygon Reconnection

The mesh curving procedure explained in the previous section 5.3 is very similar
to the one proposed in Zhang et al. (2018). In this paper, we pointed out that this
operation never produces short edges by construction. Figure 3.1 shows the curvi-
linear mesh generated through basic curved swaps, and one can indeed check that
no short edges has been generated. The shortest edge has an adimensional length
of 0.837 > 0.7. Yet long edges exist, with a maximum edge length of 1.82 > 1.4.
Long edges may remain in the mesh, due to the inability of the basic edges swap pro-
cess to properly connect points that are close with respect to the metric M without
generating invalid P 2 triangles.

This issue is �xed in this paper by introducing a new local mesh optimization op-
erator, called Curvilinear Small Polygon Reconnection (CSPR), that allows overriding
local quality maxima to further enhance the overall quality of the P 2 mesh.

The CSPR is the curvilinear version of the small polygon reconnection (SPR) tech-
nique, a local mesh modi�cation operator initially proposed by Liu Jianfei (2006).
Considering a n-cavity, i.e., a set of n contiguous triangles with no internal vertex
and with n+ 2 boundary vertices, the SPR algorithm �nds the best triangulation of

the n-cavity among all possible triangulations. Catalan numbers Tn = 1
n+ 1

(
2n
n

)
give the number of possible triangulations of a n-cavity, which can be all found using
a branch and bound algorithm Marot et al. (2020). In our work, all triangulations of
n-cavities with n < 10 have been tabulated, so as to avoid any on-the-�y combinato-
rial computations of triangulations. Figure 3.5 shows all triangulations of a 4-cavity
and the corresponding curved mesh with respect to the running test case metric.

The CSPR requires cavities, which are obtained in two ways:

1. Along unit geodesics: consider all unit geodesic connecting the points of the
mesh. Whenever those geodesics are not in the mesh, form cavity with all the
triangles that intersect that geodesic.
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Figure 3.7: 1-norm, 2-norm,∞-norm interpolation error of analytic function f(x) (3.19), the
points 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 respectively correspond to mesh size uniform scaling
factors a = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.3, 1.4, 1.5. The mesh size La with a is La =
L/a2 and L be the mesh size computed by (3.9).

2. Choose a long edge (L > 1.4) and form cavity with its two adjacent curvilinear
triangles. If there are other long edges in those triangles, repeat the process.

In the process, if an internal edge has the same two points as before, we will keep
the midpoint as before, otherwise, we compute a new midpoint; for all boundary
edges, we always keep the same midpoint as before. For each possible swapped
con�guration, if the worst quality of all the elements is improved, the con�guration
is kept and will be in the new mesh unless another swapped con�guration provides
a better quality improvement. It works as:

i. The new curvilinear triangles t′c1(xc1 ,xc2 ,xc3), t′c2
(xc2 ,xc3 ,xc4), . . .,

t′cn(xcn ,xcn+1 ,xcn+2) have to be all valid. The validity criterion that is used
is the same one for curvilinear edges swap in Section 5.3.

ii. The quality of the mesh has to be improved by the reconnection:

min(qct′c1
(M(x)), qct′c2

(M(x)), . . . , qct′cn (M(x)))

> min(qctc1
(M(x)), qctc2

(M(x)), . . . , qct′cn (M(x)))

where qct(M(x)) is the curvilinear quality measure of triangle tc with respect
to metric �eld M(x) - the same one for curvilinear edges swap in Section 5.3.

Figure 3.6 illustrates the CSPR applied to the running example. A �rst 3-cavity
is constructed with all elements crossing the green geodesic between points 16 and
32. This cavity is remeshed using CSPR, producing a mesh that is better, but still not
optimal. Indeed, a shorter curvilinear edge still exists between points 38 and 32 that
is not in the mesh. A 5-cavity is then constructed around this edge, and remeshed to
eventually produce an optimal mesh.
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6 | Interpolation error

We complete our analysis by running our algorithm using the same function (3.19),
but now de�ned on the geometrically non-trivial domain depicted in Figure 3.8, and
by analyzing whether or not the curvilinear mesh adaptation reduces the interpola-
tion error.

Figure 3.8: Curvilinear mesh adaptation based on function (3.19) on a mechanical part.

In order to compare the level of accuracy reached by meshes generated with our
method or by meshes generated with a conventional straight-sided anisotropic mesh
adaptation, the∞-norm, the 1-norm and the 2-norm of the quadratic interpolation
error are computed with both meshes, and plotted against the number of triangles
of the mesh. Eleven di�erent meshes were generated, by varying a global mesh size
uniform scaling parameter a between 0.4 and 1.5. The convergence curves are shown
in Figure 3.7. The numerical results show that our adapted curvilinear meshes allow
a signi�cant error reduction of about 50% with respect to straight-sided P 2 meshes
of the same size. This mainly attributes to the numerical solutions of middle points
of curvilinear meshes is more exact than numerical solutions of middle points of
straight-sided P 2 meshes. Figure 3.9 shows that the case a = 1.2 (8th point) is an
outlier. As shown in Figure 3.9, this is due to the persistence of long edges that the
CSPR has not been able to remove.

7 | Conclusions

Building on the paper Zhang et al. (2018), which provided an embryo of solution to
the problem of curvilinear mesh adaptation, we have extended our work to the true
P 2 mesh adaptation, i.e., the adaptation of a P 2 mesh to a given function f(x, y). A
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Figure 3.9: Adapted curvilinear meshes for computing interpolation error 1-norm, 2-norm,
∞-norm at points 7-left, 8-middle, and 9-right(the same points 7, 8, and 9 in Figure 3.7 of
curvilinear mesh).

methodology for building a speci�c metric �eld suited for this P 2 mesh adaptation
has been explained, and a new local mesh modi�cation operator called Curvilinear
Small Polygon Reconnection (CSPR) has been developed to build the optimal curvi-
linear triangulation of a given curvilinear polygon/cavity. This paper focuses, for
didactically reasons, on a single running example function (3.19), but the methodol-
ogy has been applied successfully to other functions, with similar conclusions. The
method is however not yet able to build a unit mesh in all cases. Figure 3.9 shows
that, long edges may sometime fail to be eliminated by the CSPR, leaving an eventu-
ally interpolation error that is not better than a P 1 meshes. Yet, in most of cases, a
clear reduction of the interpolation error is observed when curving the elements.

For the failure of the method to build a unit mesh in all cases, it maybe attribute
to: the adimensional length used to insert points is 1.0 and the adimensional length
used to check if two points are two close is 0.7, this may result the geodesic between
two points is about 1.7, and this maybe be �xed by change the the adimensional
length used to insert points to between 1.0 and 0.7.

Our next move will be to replace the analytical functions with high-order �nite
element solutions. We foresee new issues there, like the accurate computation of the
third order derivatives of �nite element solutions. For 3D, the approach is straight-
forward by constructing a 3D metric �eld and computing 3D geodesics, it maybe
time cost but still in control.
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4
Curvilinear mesh adaptation for a

numerical solution

Up to now, we only have considered analytical functions f(x, y) for adapting the
meshes. This essentially means that we can compute all derivatives of f without
making any error. In this Chapter, we go forward and use computational �uid dy-
namics (CFD) results to create adapted meshes. The CFD code that is used is the
research code of Arthur Bawin and we thank him warmly for his help.

The CFD code that is used here is a high order �nite element code. The �nite el-
ement approximation that is used is continuous. Standard Lagrange shape functions
on (possibly) curvilinear triangles are used to approximate velocity and pressure �eld.

71
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1 | Computing derivatives

Assume a high order mesh with n nodes and a �nite element solution of the form

uh(x, y) =
n∑
i=1

φi(x, y)ui

where φi are high order nodal shape functions and ui nodal values. We call Sh the
high order �nite element space uh ∈ Sh. Zhang and Naga introduced in Zhang and
Naga (2005) a new gradient recovery operatorGh : Sh → Sh×Sh that computes a
high order version of the two components of gx(x, y) = ∂xuh and gy(x, y) = ∂yuh
of the gradient of uh in such a way that gx ∈ Sh and gy ∈ Sh.

Second order derivatives are computed using Gh applied to gx and gy . Higher
order derivatives are then computed by applyingGh to higher and higher derivatives.
We have to confess that the quality of the recovery process degrades when Gh is
applied several times. Yet, the third order derivatives that are required here seem to
be su�ciently smooth to compute metrics that are not too oscillatory.

2 | Vortex in a box

The vortex in a box is a standard case that tests the ability of the scheme to accurately
resolve thin �laments on the scale of the mesh which can occur in stretching and
tearing �ows. Assume a stream function of the form:

Ψ(x, y) = 1
π

sin2(πx) sin2(πy).

Stream function Ψ allows to de�ne a divergence free velocity �eld u = (ux, uy) that
is computed as:

ux = ∂Ψ(x, y)
∂y

= sin(2πy) sin2(πx)

uy = −∂Ψ(x, y)
∂x

= − sin(2πx) sin2(πy)

The box we are dealing with is a square of size [0, 1]× [0, 1]. The evolution equation
that is computed here is pure advection. Assume a function φ(x, t) with φ(x, 0) that
is the squared distance function to a disk of radius 0.15 placed at (0.75, 0.75):

φ(x, 0) = (x− 0.75)2 + (y − 0.75)2 − 0.152.

We solve
∂φ

∂t
+ u · ∇φ = 0.
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The �ow satis�es ux = uy on the boundaries of the unit square, so φ remains con-
stant and equal to its initial value on the boundary.

We have used Arthur Bawin’s high order code (quadratic �nite elements) and
have computed high order curvilinear meshes at di�erent timesteps. Figure 4.1 shows
that the resulting function φ stretches out the circle into a very long, thin �laments.

We see in Figure 4.1 that our high order mesh procedure has the ability of cap-
turing the highly anisotropic and curvilinear features of the solution in a quite im-
pressive manner. To our best knowledge, this is the �rst time one shows an adapted
curvilinear high order mesh applied to a �nite element solution. We see that our
point insertion procedure was able to produce meshes that are structured in good
portions of the domain. The story is not over: our methodology has its drawbacks.
Sole elements are unnecessarily curved, especially when the error is very low (see
for example the middle of the square in Figure 4.1). This is essentially due to the
fact that there is not much of an error di�erence between possible paths that de�ne
a curvilinear edge when the error is very low. This could be prevented by giving
preference to straight sided edges when error are small.

3 | Lid driven cavity

The lid-driven cavity is a standard test case that serves as a benchmark for testing
numerical methods. A comprehensive review is provided in Bruneau and Saad (2006)
Kuhlmann and Romanò (2019). We are dealing with a square cavity consisting of
three rigid walls with no-slip conditions and a upper lid moving with a tangential
unit velocity. The lower left corner has a reference static pressure of 0. We are
interested in the velocity and pressure distribution for a Reynolds number of 400.
We of course use here a polynomial order of k = 2.

At such a low Reynolds number of 400, Navier-Stokes’s equations provide a
steady state solution. We have thus computed the solution on a �rst mesh and have
done the curvilinear adaptation in a second time. Figure 4.2 shows the two compo-
nents of the velocity as well as some of the computed derivatives of the velocity. We
see that high order derivatives are noisier and noisier when the order of the derivative
increases. The mesh was initially re�ned anisotropically using method advocated in
Hecht and Kuate (2014). Derivatives were computed on that initially adapted mesh
and a curvilinear mesh was subsequently produced (see Figure 4.3). Here, the mesh
is less impressive than the one of the vortex in the box. Curvilinear features are not
so present in that �ow. Yet, we see that the mesh was able to smoothly follows the
shape of the main vortex and that it was able to capture the upper boundary layer
in a pretty structured fashion. We believe that, even though those results are very
preliminary, that our methodology for generating high order curvilinear meshes is
promising and will de�nitively be able to tackle more complex problems in a near
future.
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Figure 4.1: Function φ at increasing time steps together with the underlying curvilinear mesh.
All meshes were computed for a target error of ε = 0.01.



Figure 4.2: The two components of the velocity for the lid driven cavity (top �gures) and high
order derivatives ∂2uy

∂x2 and ∂3uy
∂x∂y2 .



Figure 4.3: Adapted mesh for the lid driven cavity as well as the norm of the velocity√
u2

x + u2
y.
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5
Conclusion

A research journey As a pioneer, in the research journey of curvilinear mesh
generation and adaptation, we start from summary ideally the research project as a
simple yet fundamental question: assume a unit square

Ω = {(x1, x2) ∈ [0, 1]× [0, 1]}

and a smooth function f(x1, x2) de�ned on the square, and consider a mesh T made
of P 2 triangles that exactly covers the square, how can we compute the mesh T that
minimizes the interpolation error ‖Πf − f‖Ω. Here, Π is the nodal interpolation of
f on the mesh Ern and Guermond (2013). This problem is the problem of curvilinear
mesh adaptation.

We state the problem as to build a unit curvilinear mesh, i.e. build a mesh with
unit edge lengths that are possibly curvilinear.

77
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Our goal is:
FINITE ELEMENT SOLUTION→ UNIT CURVILINEAR MESH

We solve the problem in three stages of increasing complexity:

1. Stage 1 - Chapter 2
Input metric �eld g(x,y)→ UCM

2. Stage 2 - Chapter 3
Input analytical function f(x,y)→ g(x,y)→ UCM

3. Stage 3 - Chapter 4
Input FEM solution→ g(x,y)→ UCM

In this �rst stage, a Riemannian metric �eld gij(x1, x2) is de�ned on the unit
square. This metric �eld is supposed to be the result of the error estimation. Our aim
is thus to build a unit P 2 mesh with respect to that metric. A discrete mesh T of a
domain Ω is a unit mesh with respect to Riemannian metric space g(x1, x2) if all its
elements are quasi-unit. More speci�cally, a curvilinear triangle t de�ned by its list of
edges ei, i = 1, 2, 3 is said to be quasi-unit if all its adimensional edges lengths Lei ∈
[0.7, 1.4]1. Generating unit straight-sided meshes is a problem that has been largely
studied, both in the theoretical point of view and on the application point of view
Frey and Alauzet (2005). Here, our aim is to allow edges to become curved, leading to
unit meshes that would potentially contain way less triangles. Our mesh generation
technique essentially relies on the computation of the shortest parabola between two
points and on a unit-size parabola starting in a given direction. In Section 2, standard
notions of geodesics in Riemann spaces are brie�y exposed. Algorithms that compute
geodesic parabolas are explained as well. The mesh generation approach that we
advocate is in two steps. We �rst generate the points in a frontal fashion Baudouin
et al. (2014). In that process, we ensure that (i) two points xi and xj are never too
close to each other and (ii) that there exist four points xij , j = 1, . . . , 4 in the vicinity
of each point xi that are not too far to xi i.e. that can form edges in the prescribed
range [0.7, 1.4]. Then, points are connected in a very standard “isotropic” fashion.
The mesh is subsequently modi�ed using curvilinear edge swaps in order to form
the desired unit mesh. A curvilinear mesh quality criterion is proposed that allow to
drive the edge swapping process.

The method guarantees two important properties in the �nal mesh:

1This range is not arbitrary. When a long edge of size 1.4 is split, it should not become a short edge.
Other authors choose [

√
2/2,
√

2]
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1. Generated meshes are valid. This important property is due to the fact that
P2 meshes are valid at any point of the algorithm. The initial mesh is curved
along geodesic. A backtracking step is applied to ensure that every triangle
of the mesh is valid. Then, edge swaps are only applied if elements are valid.
Note that the validity criterion that is used is robust.

2. No short edges will be exist in the mesh. A spatial search procedure is used for
ensuring that any point that is inserted is not to close in the sense of geodesics
than any other point.

In the second stage, our work is being extended to true adaptation i.e. adapting
a mesh to a given function f(x1, x2). Even though metrics are still the right tool for
driving mesh adaptation at higher orders, basing g on Hessians of f is not correct
anymore for higher orders of approximation. We build metric �elds that are suited
for high order. In this approach, curvature is not only used to match curved bound-
aries but also to capture features of the interpolated solutions, and it results in meshes
that would not have been achievable by simply curving a posteriori a straight-sided
mesh. We proceed as follows. Starting with a smooth function f(x, y), a metric
�eld, based on f and its derivatives up to order 3, is constructed. A unit P 2 mesh is
then generated, with edges within an adimensional length range of [0.7, 1.4] with re-
spect to this metric �eld. Points are then spawned in such a way that their geodesic
distance corresponds to edges of unit size, and these points are then connected in
a standard isotropic fashion. A curvilinear mesh quality criterion is then proposed
to drive the mesh optimization process. The triangulation is subsequently modi-
�ed using straight-sided edge swap, straight-sided edge curving, curvilinear edge
swap and Curvilinear Small Polygon Reconnection (CSPR) to form the desired unit
mesh. A unit curvilinear mesh containing only valid “Geodesic Delaunay triangles”
is obtained this way. A number of application examples are presented in order to
demonstrate the capabilities of the mesh adaptation procedure. The resulting adapted
meshes allow, most of the times, a signi�cant reduction of the approximation error
compared with straight-sided P 2 meshes of the same density.

We essentially tackle two additional problems that allow to move forward to “true
anisotropic curvilinear mesh adaptation” (i.e., optimizing a mesh based on a high-
order �nite element solution):

1. P 2 error estimates that are currently used in the literature are based on the
implicit hypothesis that underlying meshes are straight-sided. Assuming a
function f(x, y) ∈ C3, we construct a metric �eld that does not assume mesh
edges to be straight-sided.

2. The mesh generation procedure that we use for generating the curvilinear
meshes is based on the one of Zhang et al. (2018). Yet, we show that using
edge swaps only does not always allow to reach a unit mesh. We propose a
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more general operator - curvilinear small polygon reconnection - that allows
to reconnect points in a wider range and generate P 2 unit meshes very ro-
bustly.

In the third stage, we go forward and use computational �uid dynamics (CFD)
results to create adapted meshes. The CFD code that is used here is a high order
�nite element code. The �nite element approximation that is used is continuous.
Standard Lagrange shape functions on (possibly) curvilinear triangles are used to
approximate velocity and pressure �eld.

General conclusions Many physical problems shows a anisotropic feature -their
solutions change more signi�cantly in one direction than the others. For these prob-
lems with anisotropic solution features, a properly anisotropic mesh will be able to
improvement signi�cantly in accuracy and e�ciency - to e�ciently improve the ratio
between solution accuracy and the number of degrees of freedom. Based on and tak-
ing advantage of well-de�ned Riemannian di�erential geometry, metric-based mesh
generation and adaptation is to generate a quasi-uniform mesh - specifying the shape,
size, orientation of elements with respect to a metric �led and all geometric opera-
tions are performed in the Riemannian metric space. Thus it is crucial to construct an
appropriate metric �eld in the Riemannian metric space and an adapted anisotropic
mesh in a Riemannian metric space is simply same than a uniform mesh in the Eu-
clidean space. The main advantage of this approach is that the adaptation mesh is
obtained directly at the mesh generation step rather than doing a modi�cation of an
existing mesh by enrichment or moving points.

In this thesis, we propose a new framework for the generation and adaptation of
unit curvilinear P 2 meshes in dimension 2. In this approach, curvature is not only
used to match curved boundaries but also to capture features of the interpolated
solutions, and it results in meshes that would not have been achievable by simply
curving a posteriori a straight-sided mesh.

We essentially tackle three fundamental problems:

1. What is the geometrical structure of the interpolation error in the P 2 case?

2. How can we relate this structure to the geometry/shape of a P 2 triangle?

3. How can we build a mesh made of optimal P 2 triangles?

To solve all these problems, we propose a new framework of curvilinear mesh
adaptation in this thesis:

1. Metric �eld construction
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2. Generation of points
Point sampling on the boundary

Point sampling in the domain

3. Straight-sided mesh generation and adaptation
Triangulation

Straight-sided edges swap

4. Curvilinear mesh generation and adaptation
Straight-sided edges curving

Curvilinear edges swap

Curvilinear Small Polygon Reconnection

In the new framework, we develop seven important algorithms:

1. Metric �eld construction

- Toy metric �eld

- Analytic function metric �eld

- Numerical solution metric �eld

2. Aligned physical-space-based geodesic points

3. Aligned metric-based geodesic points

4. Generation of a straight-sided anisotropic mesh

5. Ensure-valid curving

6. Ensure-valid curvilinear edge swap

7. Curvilinear Small Polygon Reconnection (CSPR)

We develop two important mathematical tools:

1. Geodesic of given length

2. Geodesic between two given points

The overall methodology is implemented in a 2D process that is fully extendable
to 3D.

A new framework of curvilinear mesh adaptation in 3D:
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1. Metric �eld construction in 3D

g(x1, x2, x3)

=

g11 g12 g13
g21 g22 g23
g31 g32 g33


=

v1x v2x v3x
v1y v2y v3y
v1z v2z v3z

h2
1(x) 0 0
0 h2

2(x) 0
0 0 h2

3(x)

v1x v1y v1z
v2x v2y v2z
v3x v3y v3z



2. Generation of points in 3D
Point sampling on the 1D boundary line

Point sampling on the 2D boundary surface

Point sampling in the 3D domain

3. Straight-sided mesh generation and adaptation in 3D
Triangulation/tetrahedronation in 3D
Straight-sided edges swap in 3D
Straight-sided faces swap in 3D

4. Curvilinear mesh generation and adaptation in 3D
Straight-sided edges curving in 3D
Curvilinear edges swap in 3D
Curvilinear faces swap in 3D
Curvilinear Small Polygon/Polyhedron Reconnection in 3D

To extend two important mathematical tools in 3D:

1. Geodesic of given length in 3D
In a 3D Riemannian metric space, given one point x = {x1, x2, x3} and one
direction v = {v1, v2, v3}, to �nd the geodesic starting from the point x in
this direction v, and the length of geodesic equal to a given length LC . We
formulate the problem of �nding geodesics in a Riemannian metric space as the
problem of solving a system of ordinary di�erential equations, i.e, if we know
two initial conditions, a start point x = {x1, x2, x3} and an initial direction
v = {v1, v2, v3}, we will be able to �nd geodesic C by integrating with those
two initial conditions by taking x = {x1, x2, x3} as the initial position and
v = {v1, v2, v3} as the initial velocity.
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2. Geodesic between two given points in 3D
We attempt to compute a geodesic from a point xstart

(
x1

1, x
2
1, x

3
1
)

to another
point xend

(
x1

2, x
2
2, x

3
2
)

, for ∀xstart,xend ∈ R3. In other words, given two
points xstart and xend in a 3D Riemannian metric space, the task is to �nd
a geodesic joining xstart and xend. Equivalently, we want to �nd a path C
whose coordinates satisfy the di�erential equations

d2xi

dt2
+ Γijkl

dxj

dt

dxk

dt

dxl

dt
= 0.

Assuming the geodesic to be a parabola, with

ẋ =
(

(xend − xstart)−
ẍ
2

)
we have

x(t) = xstart +
(

(xend − xstart)−
ẍ
2

)
t+ ẍ t

2

2 .

In order to simplify even more our formulation, we assume that the midpoint
xmid(x1, x2, x3) on the geodesic parabola C12 between xstrat(x1, x2, x3) and
xend(x1, x2, x3) is located on the orthogonal bisector plane S3(x1, x2, x3) of
segment xstratxend.
The point xmid(x1, x2) is computed by minimizing the length of that parabola

xmid(x1, x2, x3) = argminLC

=
∫ 1

0

√
gijk(t) dxi(t) dxj(t) dxk(t) , i, j, k = 1, 2, 3

Perspectives Numerical simulation has become an integral part of the design pro-
cess in science and engineering Alauzet and Loseille (2016). The computational
pipeline emphasizes the central role of meshing in scienti�c computing:

CAD →MESH → SOLV ER→ V ISUALIZATION/ANALY SIS.
From a rational point of view, we want to completely tract the problems, but in

the �eld of computational science, being able to predict numerically all the features of
complex physical phenomena with complex geometries remains an unachieved goal
- such an ability would bring opportunities in a better understanding of complex
physical phenomena. In the context of scienti�c computing, the mesh is used as a
discrete support for the considered numerical methods. As a consequence, the mesh
greatly impacts the e�ciency, the stability and the accuracy of numerical methods.
The goal of anisotropic mesh adaptation is to generate a mesh which �ts the appli-
cation and the numerical scheme in order to achieve the best possible solution. It is
thus an active �eld of research which is progressing continuously.
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The development of high-order numerical technologies for engineering analy-
sis has been underway for many years now. Compared to standard second-order-
accurate numerical schemes, high-order methods exhibit superior e�ciency in prob-
lems with high resolution requirements, because they reach the required accuracy
with much coarser grids. In many practical applications, high-order methods - show
high accuracy with a lower computational cost and converge exponentially with the
order of the approximating polynomial - have attracted considerable attention.

In �nite element methods, high-order methods can provide a higher rate of so-
lution convergence than their lower-order methods, have the potential to achieve
higher accuracy with reduced computational cost; but a piecewise linear mesh at
curved domains may introduce inaccuracies in shape, �nite element solutions, and
surface normal vectors (which are important for computer graphics); thus, some ap-
plications require curvilinear mesh to match a curved domain. Alignment and or-
thogonality of elements can be highly desired near the boundaries of the geometry,
it is needed to curve to high order meshes and ensure that the resulting mesh is valid
and matches the boundary geometry. To generate a high-quality mesh is the �rst
step in numerical simulations of PDEs. In order to produce good quality meshes, the
method to generate high-order curvilinear mesh - the curvilinear elements well ap-
proximate the curved boundaries - is needed, i.e. curved domains are approximated
with elements whose faces are described by parametrized quadratic, cubic, bilinear,
or trilinear patches. It is also need to match the feature of numerical simulations of
PDEs which always be complex and curved.

Since the end of last century, metric-based anisotropic mesh adaptation have
proved the e�ciency to improve the ratio between solution accuracy and the number
of degrees of freedom on many real-life problems; now, curvilinear mesh generation
and adaptation have also proved a better e�ciency.

But we still face both theoretical and practical di�culties to attain e�cient adap-
tive methods for numerical computations and to assess adaptive computations, such
as the adaptive detection and capturing of all the features of the solution, optimal
mesh; for curvilinear mesh, we face more di�culties, such as adaptive all the curved
features of the solution.

This means the story of mesh generation need and will continue, and its sub-
story - curvilinear mesh generation and adaptation - just began and will become an
important and excellent in the near future. Base on our work until now, it can be
continue in the line:

For the problems with curved anisotropic features, curvilinear anisotropic mesh
adaptation - improves computational e�ciency and enhances the solution accuracy
- adapts the mesh size, shape and orientation and involves three key factors: error
estimates, metric construction and curvilinear anisotropic mesh generation.

1. Derivatives recovery
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The kth polynomials interpolation error depends on the k + 1th derivatives
of the interpolated function u, and accurately understanding the anisotropic
behavior of 5k+1u To handle k (an arbitrary integer) high order mesh adap-
tationin, - it is an extension of the P1 adaptation metric based methods to the
case of the Pk - the main issue lies in extend the interpretation of the k + 1
di�erential of the solution u into an appropriate metric �led in the Riemannian
metric space, with respect to which we then generate a unit mesh. Since only
the discrete solution uhis known, we never be able to use the exact derivatives
of the function f , only its point-wise values are used to recover the di�erential
form of order k+ 1. Once the numerical k+ 1 di�erential form of the smooth
solution f is recovered, we can use it to construct the optimal metric M(k).
For recovery procedure, L2-projection operator can be applied to these hes-
sians Clément (1975); Zienkiewicz and Zhu (1992a,b), doubleL2-projection, the
least square method or eventually the Green formula based approach Frey and
Alauzet (2005) can also be applied; Buscaglia et al. (1998) discussed Hessian-
based adaptivity (HBA) based on the recovery of the Hessian of the exact so-
lution, reported several recent advances in HBA methods and extended to 3D,
and discussed the justi�cation and better boundary treatment of Hessian re-
covery; Picasso et al. (2010, 2011) studied numerical methods to approach the
second order derivatives of the exact solution f using the piece-wise linear �-
nite element approximation fh. In the framework of the Laplace problem and
the Poisson problem with continuous, piece-wise linear �nite elements, the
convergence of numerical methods to approach second derivatives has been in-
vestigated. Numerical results show that the quality of the results of all methods
considered strongly linked to the mesh topology and that no convergence can
be insured in general in 2D and 3D, but there is no blow up and the values ob-
tained are probably accurate enough in order to be used as re�nement or coars-
ening criteria in adaptive algorithm. Rusinkiewicz (2004) presents a �nite-
di�erences approach for estimating curvatures on irregular triangle meshes
that may be thought of as an extension of a common method for estimating
per-vertex normals, generalizes naturally to computing derivatives of curva-
ture and higher-order surface di�erentials and is e�cient in space and time.
The results in signi�cantly fewer outlier estimates while more broadly o�er-
ing accuracy comparable to existing methods. Zhang and Naga introduced in
Zhang and Naga (2005) a new gradient recovery operatorGh : Sh → Sh×Sh
that computes a high order version of the two components of gx(x, y) = ∂xuh
and gy(x, y) = ∂yuh of the gradient of uh in such a way that gx ∈ Sh and
gy ∈ Sh. We still need to �nd better derivatives recovery methods in order to
have an exact derivatives of numerical solution.

2. Error estimation

The aim of mesh adaptation is to seek for the optimal continuous mesh min-
imizing the interpolation error for a given function (i.e, a given analytic met-
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ric �eld, a given analytic function, a given numerical solution of PDEs), and
thus are relative to the prediction of the interpolation error both in magni-
tude and rate of convergence. In a general form, the problem is to �nd the
optimal mesh that minimizes the error for a given function and require the
simultaneous optimization of both the mesh geometry and topology, and thus
is a global combinatorial problem cannot be considered practically and need
to simply to approximate the solution. A common simpli�cation is to perform
a local analysis of the error instead of considering the global problem, such as:
Formaggia and Perotto (2001); Picasso (2003); Frey and Alauzet (2005); Huang
(2005) derive a local bound of the interpolation error and transform it into a
metric-based estimate; Cao (2005) derives the optimal element shape. A lo-
cal problem as they act in the vicinity of an element, if consider directly the
minimization on a discrete mesh, such error minimization is equivalent to a
steepest descent algorithm that converges only to a local minimum with poor
convergence properties. Contrary to discrete-based study, the continuous for-
mulation succeeds in solving globally the optimal interpolation error problem
by using powerful mathematical tools such as calculus of variations. Unicity
of the solution along with an optimal bound of the interpolation error are de-
duced from this analysis. It is critical to de�nite a good local error and a good
global error in a numerical solution, thus we need to research di�erent error
models respect to di�erent problems.

3. Problem-based metric construction

Based on and taking advantage of well-de�ned Riemannian di�erential ge-
ometry, metric-based mesh generation and adaptation is to generate a quasi-
uniform mesh - specifying the shape, size, orientation of elements with respect
to a metric �led and all geometric operations are performed in the Riemannian
metric space. Thus it is crucial to construct an appropriate metric �eld in the
Riemannian metric space.

From a theoretical point of view, a continuous metric �eld could be a direct way
to represent the underlying Riemannian space, in which the measurement of
length varies at each point and direction. Such a metric tensor is often given
on a background mesh, either prescribed by the user or chosen as the mesh
from the previous iteration in an adaptive solver.

In mesh generation and �nite element analysis, measuring their anisotropic be-
havior is the key for anisotropic mesh design and re�nement Apel (1999a) and
in order to determine an ideal element orientation, shape and size, one needs
to de�ne the principal direction and the strength to characterize the anisotropic
behavior of the derivative tensors; in order to minimize linear interpolation
error, the eigenvalues and eigenvectors of Hessian matrices can be used to de-
termine the element aspect ratio and mesh alignment direction for anisotropic
mesh generation or re�nement, e.g., Borouchaki et al. (1997a,b); Cao (2005);
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D’Azevedo and Simpson (1991); Formaggia and Perotto (2001); Habashi et al.
(2000); Ait-Ali-Yahia et al. (2002); Dompierre et al. (2002); Nadler (1985); Rippa
(1992); Shewchuk (2002); Simpson (1994); in the case of quadratic or higher-
order interpolations, the error is determined by the third-order or higher-order
partial derivatives of the interpolated functions that very few work has been
done, such as Cao (2008) developed a method to measure the orientation and
anisotropic ratio of the higher-order derivative tensors for two-dimensional
functions. The technique is based on decomposing the homogeneous polyno-
mials for directional derivatives into the product of linear and non-negative
quadratic polynomials, then the anisotropic measure is de�ned by the direc-
tions of the lines and ellipses corresponding to those factors, an interpolation
error estimate is further derived on anisotropic meshes that are quasi-uniform
under given metrics, and optimal mesh metrics can be identi�ed to minimize
the error bound in various norms.
In practice, the most well established error analysis enables to calculate a met-
ric tensor on an element basis, but it is also able to to calculate a metric tensor
on an edge basis Duan Wang and Yan (2010); Coupez (2011) or an node basis,
such as reference Coupez (2011) presents propose to build a metric �eld di-
rectly at the nodes of the mesh for a direct use in the meshing tools: the unit
mesh metric is de�ned and well justi�ed on a node basis, by using the statis-
tical concept of length distribution tensors; the interpolation error analysis is
performed on the projected approximate scalar �eld along the edges; the error
estimate is established on each edge whatever the dimension is. It enables to
calculate a stretching factor providing a new edge length distribution, its asso-
ciated tensor and the corresponding metric and the optimal stretching factor
�eld is obtained by solving an optimization problem under the constraint of a
�xed number of edges in the mesh. For de�ning the metric tensor, the proce-
dure developed on interpolation error also be applied to other types of error
estimates, such as a posteriori error estimates and estimates for truncation er-
ror. It is also a good idea to construct a metric �eld with respect to problem:
feature-based: to derive the best mesh to compute the characteristics of a given
sensor; goal-oriented: to derive the best mesh to observe a given scalar func-
tional.

4. Mesh optimization strategies

It is well known the quality of meshes to a�ect both the e�ciency and the accu-
racy of the numerical solution of application problems, especially for problems
with complex geometric domain. Freitag and Ollivier-Gooch (2000) shows that
the cost of mesh improvement is signi�cantly less than the cost of solving the
problem on a poorer quality mesh. To provide the applicability of the method
to computational complex problems, great e�orts have been made to ensure
a good con�guration of nodes and elements in all of mesh generating meth-
ods Li et al. (2001); Jianfei (2003); Chung et al. (2003); Lo and Wang (2005), lots
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of works Joe (1991a,b, 1995); Dari and Buscaglia (1994); Zavattieri et al. (1996);
Freitag and Ollivier-Gooch (1997); Lo (1997); Freitag and Plassmann (2000); Sun
and Liu (2003) and it still needed to improve the quality of mesh further.
Unlike some studies Kennon and Dulikravich (1986); Zhang and Trépanier
(1994); Lo (1997); Jianfei et al. (2006) points out - in sense of quality, the bad
elements produced in mesh generation only accounts for a small part in the
whole mesh, and this small part of bad elements will often greatly deteriorate
the accuracy of solution. Therefore, in this paper the quality of a mesh is de-
�ned as the quality value of the worst element in the mesh and the quality
improvement begins from the worst element.
Mesh improvement procedure contain two main categorie: geometrical op-
timization - node repositioning or smoothing - relocates mesh points to im-
prove mesh quality without changing mesh topology, Zavattieri et al. (1996);
Lo (1997); Freitag and Ollivier-Gooch (1997, 2000); Sun and Liu (2003); Chen
et al. (2004); Alliez et al. (2005); topological optimization - local transformation
or reconnection - changes the topology of a mesh, i.e. node-element connectiv-
ity relationship, Zavattieri et al. (1996); Lo (1997); Freitag and Ollivier-Gooch
(1997); Joe (1991a, 1995). Local mesh modi�cations typically involves: edge
�ipping, edge collapsing, edge splitting; and node removal, node reposition-
ing and degree relaxation. Mesh quality can often be improved through the
use of algorithms based on local reconnection schemes, node smoothing, and
adaptive re�nement or coarsening. Jianfei et al. (2006) recently proposed the
strategy of optimal tetrahedralization for small polyhedron and correspond-
ing small polyhedron reconnection (SPR) operation, which seeks the optimal
tetrahedralization of a polyhedron with a certain number of vertexes and faces
instead of choosing the best con�guration from several possibilities within a
small region that consists of a small number of tetrahedra. In this thesis, we
extend straight-sided edge �ip to curvilinear edge �ip and Small Polyhedron Re-
connection (SPR) to Curvilinear Small Polyhedron Reconnection (CSPR) with re-
spect to a metric �led. It is still a very important topic to research more very
robust mesh optimization strategies to improve mesh quality.

5. Validity and quality measure

What is a good mesh? What is a good element? Provably good mesh gener-
ation is needed to have a good solution. The accuracy of the approximation
depends on the sizes and shapes of the elements, the quality of the created ele-
ments is certainly one of the most important characteristics in mesh generation
and thus for methods to assess validity and quality of such meshes.
For the quality of the �nite elements, there are geometric quality measures and
Jacobian-based quality measures. Geometric quality measures are constructed
from geometric characteristics, such as the length of the edges, the 2D area
of the elements, the 3D volume of the elements, the radii of the inscribed 2D
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circumscribed circles and the radii of the inscribed 3D circumscribed spheres;
Jacobian matrix of the mapping between the reference element and the phys-
ical element contains all the distortion information and is de�ned for every
order and every type of element, thus Jacobian-based measures are essentially
pointwise within the element and are a more natural �t to de�ne quality mea-
sures Field (2000); Shewchuk (2002). More sharp and exact validity and quality
measure is still very needed in the mesh research in the future, even for high-
order and curvilinear mesh.

6. 3D problems

3D meshing is much more complicated and the bare existence of such 3D
meshes is not guaranteed, thus 3D anisotropic mesh adaptation is even more
complicated. "Mesh generation in three dimensions is a di�cult enough task
in the absence of mesh adaptation, and it is only recently that satisfactory
three-dimensional mesh generators have become available. Even now, they do
not exhibit the robustness and reliability that one has come to expect in two
dimensions. Mesh alteration in three dimensions is therefore a rather perilous
procedure that should be undertaken with care." Baker (1997). In 3D, only
a few works exist, and it is needed to fully extend the overall methodology
implemented in a 2D process to 3D process.

7. Space-time problems

More complex industrial unsteady problems - space-time problems - involve
moving geometries. These simulations are time consuming. Using curvilinear
mesh adaptation is a way to enhance the accuracy and reduce the cost. Extend-
ing curvilinear mesh adaptation to this context requires to take into account
the mesh motion inside the derivatives recovery, the error estimate, the met-
ric construction, the adapted mesh generation process, the validity and quality
measure and mesh improvement/optimization strategies.

There is still a very long road to explore in the way of mesh generation. The
aim, from a theoretical and practical point of view, in the end of the story is to build
a optimization - scalability, robustness, accuracy - framework of curvilinear mesh
generation and adaptation to predict the behavior of any physical problems - complex
space-time problems - in 2D and 3D.
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