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ABSTRACT
A cyber range is a virtual training ground for security experts.
Trainees are separated into attacking and defending teams, whose
roles are either to compromise or to protect some critical infrastruc-
ture. As reuse of a same scenario may significantly reduce training
efficiency, recent research proposed to automate the process of
defining and deploying arbitrarily complex cyber range scenarios
through the use of a virtual scenario description language (VSDL).
However, it remains a challenge to generate VSDL scenarios dy-
namically, i.e. in an adaptive manner, to avoid having to redefine
new VSDL scenarios for each new situation. Moreover, existing
VSDLs often consider limited contextual information (e.g., only the
virtualization budget) and do not link explicitly the vulnerabilities
of their scenarios together, which prevents from proposing scenar-
ios with more advanced cyber security exploits. In this vision paper,
we rely on feature-based context-oriented modelling to generate
relevant cyber range scenarios from an explicit user profile and
exploits described in attack-defence trees. This result has high in-
dustrial potential, as it could enable a kind of on-demand cyber
range scenario generation service.
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1 INTRODUCTION
A cyber range is a virtual training ground to train security experts.
Typically, trainees are split into attack and defense teams, whose
roles are respectively to compromise and to protect some valuable
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information or infrastructure. Such infrastructure is composed of
various potentially vulnerable assets including computers, sensors,
software systems and versions, and network topologies. Such a
system, which represents the configuration scenario of a cyber
range, is often made accessible via the Infrastructure as a Service
(IaaS) virtualisation paradigm [MS14].

Existing cyber ranges such as the NATO lock shield range1 host
only a few and very specific virtual configuration scenarios. This
limits the usage of the range as scenarios may not always match the
needs of trainees. This situation can be explained because the first
ranges did not use virtualisation technology but real hardware and
therefore situations that are not easily reconfigurable or expandable.

Virtualisation principles made it possible to make a large num-
ber of assets accessible in a flexible and efficient way. Researchers
built upon this technology to define virtual scenario description lan-
guages [CRA20]. VDSLs are domain-specific languages to specify
interactions between virtualised assets and hence sets of scenarios.
Such languages allow to represent sets of scenarios that share com-
monalities (topology, type of assets, range of IP addresses, type of
computer), similar to how feature models would represent the com-
monalities of a product line. It is known that VSDL specifications
can be reduced to first order logic formulas [BCD+11]. From such
a specification, one can then instantiate a particular scenario that
matches a specific user virtualisation budget (number of computers,
software version, ...). Infrastructure-as-a-Service (IaaS) is finally
used to deploy the range and the actual training can then start.

Existing VSDL languages still suffer from practical limitations,
however. A first one is that they only take into account the virtu-
alisation budget to extract particular scenarios. Ideally, we should
also take into account other contextual information of the trainees
such as their knowledge or their availability. This could trigger for
example the deployment of an older version of a software system
for which there is a more easily exploitable vulnerability than in
the latest version. A second problem is that although VSDLs allow
linking vulnerabilities to language components, they do not allow
linking vulnerabilities together and therefore exploiting combina-
tions of them to achieve more advanced cyber security exploits.
Costa et al. [CRA20] suggested that the latter could be achieved
by introducing attack-defence trees, i.e. a tree representation for
describing such combinations of exploits. Leafs of such trees repre-
sent attack steps, i.e., vulnerability exploitation. Intermediary nodes
represent combinations of such steps while the root represents an
exploit. Attack trees can be translated to Boolean logic formulas.

1https://ccdcoe.org/exercises/locked-shields
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To offer a solution to the two above limitations of current VSDLs,
we propose a dynamic generation of virtual scenarios which takes
inspiration from feature-based context-oriented modelling [DMDL19,
DMD19]. Stemming from the domain of context-oriented program-
ming, feature-based context-oriented modelling was conceived to
address the problem of describing separately the contextual infor-
mation (contexts) that could affect a dynamically adaptive software
system, from the behavioural adaptations (features) triggered by
such contexts. A context model and feature model express separately
the contexts and features in terms of hierarchical tree structures.
Both models are linked through a context-feature mapping, which
describes what sets of contexts trigger what sets of features. All this
can be reduced to a set of first-order logical formulas [MMDL21].

The main contribution and insight of this vision paper is that
feature-based context-oriented modelling concepts can be exploited
to extend VSDLs with user profile and attack trees. The idea being
to let the context model represent the user profile and the attack
tree, while the feature model is represented through a VSDL. The
mapping can then be used to instantiate a specific VSDL scenario.
As an example, the mapping could associate leaves of an attack
tree to assets that contain such vulnerabilities. In case there is no
mapping between the tree and the VSDL specification, one could
conclude that the corresponding scenario is not appropriate for
the user. Otherwise, a concrete scenario containing the necessary
vulnerabilities is generated and the training can start.

The remainder of this paper is structured as follows. Section
2 introduces and illustrates the notions of feature-based context-
oriented modelling, cyber ranges and attack-defence trees. Section
3 presents and explains our adapted modelling approach in detail,
through each contribution and our case study. The case study that
will be used to illustrate our approach is that of an SDN-based
network. Section 4 shows the overall workflow of how to create a
cyber range configuration scenario using our approach. Section 5
concludes the paper and summarises its main insights.

2 BACKGROUND
In this background section we introduce the underlying principles
and concepts of feature-based context-oriented modelling (2.1),
cyber ranges (2.2) and attack-defence trees (2.3).

2.1 Feature-based context-oriented modelling
Context-Oriented Programming (COP) languages [CH05, HCH08,
GCM+11, SGP11] help developers build context-aware applications.
Based on contextual information sensed from the surrounding
environment, COP programs adapt to their most appropriate be-
haviour at runtime. Feature-Based Context-Oriented Programming
(FBCOP) [DMD19, DMDL19] is a particular class of COP. It com-
bines Context-Oriented Programming, FeatureModelling [KCH+90]
and (Dynamic) Software Product Lines (DSPL) [HT08, ACF+09,
COH14, MCHK17] into a single and unified software development
approach [Duh22].

Both at the modelling and implementation level, FBCOP pro-
grams separate explicitly the different contexts to which the con-
text-oriented program can adapt, from the behavioural adaptations
it exhibits depending on these contexts. A context model describes

the various contexts (noise level, localisation, weather) that repre-
sent the surrounding environment in which the program runs. A
feature model describes the possible behaviours (features) of the
program. Finally, a context-feature mapping expressed in terms
of a set of relations from the context model to the feature model
describes what contexts trigger what features, in order to adapt
dynamically the behaviour of the running system to those contexts.

Figure 1 illustrates the context, feature and mapping model of
a simple FBCOP program, i.e. a smart messaging application that
can adapt or refine some of its behaviour at runtime according to
some contexts. The system’s core functionality consists of Sending
or Receiving messages to and from other users.

Depending on the User Availability and the ambient Noise level,
different Notification mechanisms can be used when receiving a
message. E.g., the messaging application will stay Mute if the user
is Occupied, or when in a Quiet environment like a library. If the
ambient environment is Loud and the user is Available, then the
Notification mechanism is switched to Vibration, as the user would
not hear an Alarm.

In order for an FBCOP application to adapt its behaviour at
runtime to detected context changes, Duhoux et al. proposed a ded-
icated software architecture [DMD19]. Figure 2 depicts the work-
flow of such an architecture, describing how the system is deployed
for each new situation. Let us explain this workflow based on the
example of our smart messaging application.

First, from contextual information gathered about the surround-
ing environment (context data) and taking into account the con-
straints imposed by the context model, the context activation pro-
duces a particular context model configuration (i.e., an instantiation
of the context model where each context is set to be either active
or inactive). An example of such a valid configuration is one where
the User Availability is set to Available, the Noise level is Normal,
and the device used has a AudioCard but no VideoCard.

The second step is finding a corresponding feature model con-
figuration. While there are multiple ways to achieve this, the one
closest to the workflow that we will present in section 4, would be
to make use of a SAT(isfiability) solver. SAT solving can be used to
verify the validity of a partial configuration of a feature model (i.e.
where part of the features are set to active or not, but not all).

Starting from a partial configuration, i.e., the context model
configuration, the feature selection will make use of a SAT solver to
find a complete and valid configuration of the entire feature-based
context-oriented model described by the context model, feature
model and context-feature mapping. This was shown to be possible
in our previous work [MMDL21]. Continuing our example, the SAT
solver would find that we need to activate the Alarm feature, as well
as the Vocal message type. The Photo feature will be left inactive,
as the device does not have a VideoCard.

Next, the Feature activation will activate and deactivate the fea-
tures of the new configuration. This step will also aim to ensure the
configuration of the feature model is valid. This step is not needed
when using a SAT solver since the solver is able to guarantee the
configuration of the feature model. In case the model is invalid, or
if the SAT solver would be unable to find a valid configuration, we
would need to modify the context model configuration so that it
could lead to a valid feature configuration.
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Figure 1: Context-feature model of a simplified messaging application (full version in [MMDL21])

Finally, once a valid feature model configuration is obtained,
it will be deployed in the context-oriented system (by adding all
the activated features to the running system and removing the
deactivated ones). How this deployment process is implemented is
out of the scope of this paper; for more information see [DMD19].
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Figure 2: Workflow of the deployment of a feature-based
context-oriented system.

2.2 Cyber range configuration scenarios
The goal of cyber ranges is to train future security experts through
attack/defense strategies on virtualised infrastructure called config-
uration scenarios. Such scenarios contain elements such as servers,
computers, smartphones, etc. Typically, the features needed to cre-
ate a complete cyber range configuration scenario belong to the
following categories [CRA20]:

• Networking: existing channels and connections, active fire-
walls;

• Hardware: hardware capabilities of the elements, roles;

• Software: operating system running on the nodes, applica-
tions and libraries installed;

• Data: information stored on the nodes, relevant files (e.g.
sensitive information);

• Users and privileges: access to the nodes for users, permis-
sions on the file system;

• Time: change of the infrastructure over time, nomadic nodes,
node or network failures.

Multiple specification languages have been proposed to describe
cyber range configuration scenarios. For example, there is the Infras-
tructure and Network Description Language (INDL) introduced by
Ghijsen et al. [GVDHGDL12] through two virtual infrastructures.
The description language VXDL [KPC08] can define the latency
requirements that the infrastructure must satisfy to achieve its goal.
In recent work, Costa et al. [CRA20] proposed a virtual scenario de-
scription language (VSDL) allowing one to write a set of statements
that fully describes a set of configuration scenarios. Such a set can
then be instantiated and deployed as a virtualised infrastructure,
depending on the available virtualization budget. The virtualiza-
tion budget typically refers to hardware requirements: as a virtual
cyber range scenario is simulated on a machine with limited CPU
frequency and limited storage, the scenario can not allocate more
than this limit to the network’s elements.

A VSDL scenario completely defines a cyber range’s virtual
scenario and is sufficient to instantiate it, as is shown by the sim-
plified workflow depicted in Figure 3. This process is to be read
top-down. Processes are represented by rounded rectangles, and
data by straight rectangles. In short, the goal of this workflow is
to deploy a virtual infrastructure from a VSDL scenario. A VSDL
scenario is first translated into a first-order logic formula with sets
of constraints that include the virtualization budget (see Costa et
al. [CRA20] for details). An SMT solver is then used to instantiate
a concrete scenario that satisfies those constraints. If the VSDL
scenario is unsat (not satisfiable), it must be modified. Otherwise, a
complete scenario is deployed via state-of-the-art technologies like
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Figure 3: VSDL-based workflow for deploying a cyber range
configuration scenario.

OpenStack, Terraform2 and Packer3. Note that some VSDL com-
ponents may contain vulnerability identifiers from the National
Vulnerability Database (NVD)4; if an element contains such identi-
fier, it means that it hosts a vulnerable configuration described in
the NVD (e.g., a specific software or OS version).

Note that these nodes can have software constraints themselves
on some attributes (e.g. the computer does not need more than 128
GB). The values are decided by the SMT solver, which can take
into account all constraints, notably the budget. These constraints
justify the use of an SMT solver, as arithmetic constraints cannot
be handled by a simpler SAT solver.

2.3 Attack-defence trees
Attack-defence trees are hierarchical representations for sets of
exploits [FMDC09, Yes14]. Each leaf represents an attack step (ex-
ploitation of a given vulnerability) while intermediary nodes rep-
resent Boolean combinations of such steps. The root of the tree
localises the set of exploits. For example, consider a volumetric
DDoS, that is a massive set of connections to take down a server.
To perform such an attack, one should first build several botnets to
perform the connections or rent them [HPB18]. The DDoS attack is
itself an attack step participating to the overall objective of making
the target unreachable. Observe that attack trees could be regarded
as Feature Diagrams whose features are the attack steps.

An attack-defence tree that represents a set of exploits on a sim-
ple software-defined networking (SDN) based network [KRV+14] is
given in [HPB18] and depicted in Figure 4. The network is com-
posed of one SDN controller and several SDN switches. A SDN-
based network centralizes the network management through this
SDN controller. In this example, the network is an IT infrastructure
of a public authority which stores critical datasets in its servers.
These servers cannot be accessed from outside, but linked web
servers can be accessed from the Internet. The goal of the tree is to
compromise the network, through three possible approaches: (1)

2https://www.terraform.io/docs
3https://www.packer.io/docs
4https://nvd.nist.gov

information disclosure (i.e. have access to critical data), (2) DDoS
attack, or (3) compromising the SDN controller itself.

3 MODELLING CYBER RANGES
The main feature of a cyber range is its ability to virtualise scenar-
ios on which trainees can exploit vulnerabilities to achieve cyber
security exploits. Cyber range configuration scenarios can be de-
scribed via configuration languages such as VSDL. Such languages
are powerful enough to describe sets of configuration scenarios.
However, they do not take the profile of their users into account, nor
do they allow to model explicitly advanced cyber security exploits.
Our objective is to resolve both issues by following a feature-based
context-oriented modelling approach.

We propose to define a context model consisting of the user pro-
file of the trainees and the attack-defence trees, and a feature model
consisting of a VSDL specification. In such a modelling approach, a
configuration of the feature model would be equivalent to a virtual
network (its elements, with the vulnerabilities injected). Thanks to
a context-feature mapping, this feature model configuration would
be adapted to the needs of the trainees, as defined by a configura-
tion of the context model. This section presents our vision of how
to build such context, feature and mapping models for cyber ranges.
For each of them, we show how to create the model and illustrate
it with an example based on our SDN case study.

3.1 Context model
The context model will consist of two parts:

User profile. The user profile contains the name of the tenant and its
teams (a more mature context model might store the user profiles
of many different teams that come and train with the cyber range).
Other data of interest are the budget or quota of the trainees (which
may constrain the resources to put in the virtual network, e.g.
maximum CPU speed, disk sizes, ...), their skills in cyber security,
as well as the expected training time. The user profile could also
include learning preferences to better choose which attack patterns
should be enabled. This user profile is not exhaustive, and could
be enhanced over time to include additional information relevant
to the trainees. For example, in the future we expect that popular
skill frameworks could be integrated into the user profile, to better
adapt the cyber range scenario to the skills of its trainees. Such
a skills framework is currently being developed by the European
Union Agency for Cybersecurity (ENISA).

Attack-defence trees. The second part of the context model consists
of attack-defence trees. An attack-defence tree has one top-most
node that represents its exploit, and several internal nodes that
describe the attack steps necessary to achieve this goal. In a config-
uration of the context model, an attack step could either be active or
inactive. When an attack step is active, then this attack step should
be possible to execute on the corresponding virtual network. If such
a configuration (i.e. a set of active attack steps) is valid according
to the attack-defence tree, then this configuration represents a co-
herent set of attack steps and its top-most goal will be achievable
in the corresponding cyber range configuration scenario.

This means that not all attack steps will always be possible, and
the virtual networkmay be different according to the selected attack
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Figure 4: An attack-defence tree for an SDN-based network, inspired by [HPB18].

steps. Trainees or their supervisor could select their preferences to
ask for specific attack patterns, in order to vary their experience
and improve reusability of the context model. In the same spirit, as
the attack-defence tree is now explicitly involved in the generation
of a cyber range scenario, we could now consider the skills or
time requirements of the trainees. Indeed, each attack step could
specify the skills or time needed to complete it. Taking the example
of the attack-defence tree depicted in Figure 4, we could set the
difficulty/time required for distributing phishing to easy and fast,
whereas developing and executing malicious statements inside a
protected network could be set to longer and more difficult. This
will be further discussed in Section 3.3.

Lastly, using attack-defence trees as part of the context model
may improve the quality of the cyber range scenario. Indeed, the
virtual network of a cyber range should be realistic (i.e. the vir-
tual network should contain plausible vulnerabilities, and these
vulnerabilities can be exploited to create attacks). However, this
criterion is often implicit and hard to check. We solve this prob-
lem at its source by making attack-defence trees, which consist
of coherent attack patterns, an integral part of the modelling and
generation of scenarios. At the best of our knowledge, using attack-
defence trees as contextual information is a novel approach for
cyber range configuration scenario generation, but also for feature-
based context-oriented modelling.

3.2 Feature model
A virtual network is composed of elements such as servers, comput-
ers, smartphones, and so on, as well as their relations. Such a virtual
network can be described using a language like VSDL [CRA20], in
which each element would correspond to a set of VSDL statements.

For example, a computer in the network would be described by a set
of VSDL statements to specify its OS, CPU frequency, disk sizes, etc.
Each of these elements, i.e. each of these sets of VSDL statements,
could be considered as a separate feature. Another configuration
of that computer would be described by another set of VSDL state-
ments and thus constitute another alternative feature. Whenever
a feature is selected, the element described by that feature will
be included in the generated VSDL scenario, whereas unselected
features would not become part of that scenario.

Note that a feature could either be an entire asset (e.g., the def-
inition of an entire computer), or a smaller part of the definition
of a bigger asset. For example, just setting the OS of a computer
to Windows 7 in order to allow for a certain vulnerability, while
the OS could be set to Windows 10 if the vulnerability is not to be
included. This example also illustrates that not all features can be
selected together (we should select either Windows 7 or Windows
10 on that computer), and that some features require other to be
selected (the features which sets the OS of a computer needs the
computer itself to be deployed to have a meaning). Such constraints
can be expressed in terms of feature-feature constraints as we will
see in Subsection 3.3.

Let us consider the example of a simple SDN-based network that
handles a public healthcare service such as a hospital. The core part
of this network is the SDN controller, which runs on a computer,
that is in charge of managing the hospital’s entire network. In the
connected private servers, sensible data on the health consultations
of its patients is stored. Finally, a website is made available to the
patients to make appointments or to receive diagnostics. Whereas
these three elements are the foundations of the network, other
elements can be added to make the scenario more realistic, or to
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inject more vulnerabilities for the sake of training. For example,
the web site could be hosted on multiple servers, with different
types of services. The hospital could also own an email domain
reserved for professional mails of its employees; in the cyber range
configuration scenario, it would mean that phishing could now
be used against these employees. We now illustrate some of these
features with simple VSDL statements. As stated above, the Core
feature is the network of the hospital.

\\ Core Feature
network Hospital {

gateway has direct access to the Internet;
addresses range from 4.4.4.1 to 4.4.4.64; }

The Computer and Website features each create a new node and
connect it to the hospital network.

\\ Computer Feature
node Computer {

flavour is computer;
not (disk is larger than 128 GB);
not (cpu is faster than 3 GHz);
OS is Windows7 or Windows10; }

network Hospital {
node Computer has IP 4.4.4.3; }

\\ Website Feature
node Website {

flavour is webserver;
disk is larger than 100 GB;
cpu is faster than 8 GHz;
OS is Debian-8; }

network Hospital {
node Website has IP 4.4.4.10; }

The PrivateServers feature adds a new server node and a private
network to which only the Computer node is connected. Observe
how the PrivateServers feature incrementally refines the previously
declared Computer feature by adding an additional property to the
Computer node declared by that feature.

\\ PrivateServers Feature
node PrivateServer {

flavour is server;
disk is larger than 200 GB;
contains (./SensibleData) path;
mounts software SQL Server; }

node Computer {
mounts software SQL Server; }

network ServersNetwork {
addresses range from 1.1.1.1 to 1.1.1.64;
node PrivateServer has IP 1.1.1.5;
node Computer has IP 1.1.1.6; }

3.3 Mapping model
In the previous two subsections we described the contexts and fea-
tures that make up the context and feature models, respectively.
The mapping model is meant to link both models, and to allow find-
ing a valid and relevant feature model configuration from a given
context model configuration. In this section, we list and illustrate

all constraints that imply the contexts or features, including the
ones mentioned in the two previous sections.

In this endeavor, we largely extend the definition of a mapping
model from traditional feature-based context-oriented modelling
since it will not only contain context-feature constraints that de-
termine what contexts will trigger what features, but also context-
context constraints that describe the dependencies between contexts
inside the context model, and feature-feature constraints which de-
scribe intra feature model dependencies. Our mapping model is
thus essentially a set of constraints between contexts and features
(or between themselves) that can be expressed in first-order tempo-
ral logic. One reason for combining these three types of constraints
all into a single mapping model is that we will use an SMT solver
to resolve the constraints, which allows for more complex con-
straints than a SAT solver and will be able to handle the arithmetic
equations.

Context-feature constraints. The main goal of this mapping model,
and closest to the role of the mapping model in the original feature-
based context-oriented modelling approach (cf. Subsection 2.1), is
to declare the context-feature constraints. These define how the
activation of features should be triggered when some contexts are
activated. For example, the vulnerabilities required to execute cer-
tain attack steps should be included in the virtual network. Secondly,
we should not exceed the budget or quota set by the users.

In the following example, we follow NVD5 and use dummy
identifiers for vulnerabilities (V1, V2, V3). Each vulnerability can
be seen as a feature as explained in the previous Subsection, i.e. a
set of VSDL statements linked to the properties of a device that
should eventually be included in the configuration scenario; its
precise specifications can be found in the NVD. Let us consider
again the public healthcare service example and the attack-defence
tree depicted in Figure 4. Some context-feature constraints from
that example are defined hereafter:

𝐷𝑒𝑣𝑒𝑙𝑜𝑝&𝐸𝑥𝑒𝑐𝑆𝑄𝐿𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 ⇒ 𝑉 1_𝑊𝑒𝑏𝑠𝑖𝑡𝑒 (1)

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑎𝑙𝑡ℎ𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 ⇒ 𝑉 2_𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 (2)

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔𝑂𝑝𝑒𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑠 (3)
⇒ 𝑉 3_𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟 ∨𝑉 4_𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔𝑃ℎ𝑖𝑠ℎ𝑖𝑛𝑔 ⇒ 𝐸𝑚𝑎𝑖𝑙𝐷𝑜𝑚𝑎𝑖𝑛 (4)

𝑞𝑢𝑜𝑡𝑎𝐶𝑃𝑈 _𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≥ (5)∑︁
𝑑𝑒𝑣𝑖𝑐𝑒∈𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑑𝑒𝑣𝑖𝑐𝑒 (𝐶𝑃𝑈 _𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Whereas the first three constraints will enable vulnerabilities in
the basics elements of our public healthcare service (which can be
specific versions of software, e.g. V1 would be the VSDL statement
node Computer software version SQLServer is less than 14), the
fourth enables an entirely new element that is the email domain.
5https://nvd.nist.gov

https://nvd.nist.gov
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Constraint (3) permits us to choose one vulnerability among
two, and this choice can be influenced by the other constraints in
the mapping model. For example, vulnerability V3 could require
a CPU frequency of at least 2GHz on the device hosting the SDN
controller, while V4 could require 3GHz. This choice could be sorted
out by the constraint (5), which states that the CPU frequency of all
activated devices should not exceed a given quota set by the users.
In practice, this shall be automatized via a translation to first-order
logic and the use of an SMT solver.

Context-context constraints. In addition to defining the constraints
inside and between attack-defence trees and on the user profiles,
context-context constraints can also link the user profiles and
attack-defence trees through skill and time requirements. Below
is an example of such constraints stating that the average skill re-
quirement (resp. total time) of the activated attack steps should not
exceed the trainees’ skills (resp. time).

𝑇𝑟𝑎𝑖𝑛𝑒𝑒𝑠𝑆𝑘𝑖𝑙𝑙𝑠 ≥
1

𝑁𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑡𝑒𝑝𝑠

∑︁
𝑠𝑡𝑒𝑝∈𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑡𝑒𝑝𝑠

𝑠𝑡𝑒𝑝 (𝑠𝑘𝑖𝑙𝑙) (6)

𝑇𝑟𝑎𝑖𝑛𝑒𝑒𝑠𝑇𝑖𝑚𝑒 ≥
∑︁

𝑠𝑡𝑒𝑝∈𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑𝐴𝑡𝑡𝑎𝑐𝑘𝑆𝑡𝑒𝑝𝑠
𝑠𝑡𝑒𝑝 (𝑡𝑖𝑚𝑒) (7)

Feature-feature constraints. Many constraints on and in between
features are already expressed through VSDL statements (e.g. that
the Computer feature must use one among two specific OS). And
just like in the VSDL-based workflow (Figure 3), constraints on the
vulnerabilities can be expressed and retrieved through the NVD.

Additional feature-feature constraints worthwhile expressing
would be hierarchical constraints akin to constraints in feature
modelling, such as requirements relationships (e.g., a feature that
defines the type of OS of a computer requires this computer to be in
the virtual network) or mutual exclusion (e.g., between two features
that set the version of the same software, on the same device).
Typically, such constraints allow to express relevant variations in
the virtual network enabling different configurations to lead to
different cyber range configuration scenarios.

4 EXTENDEDWORKFLOW
Section 3 sketched a feature-based context-oriented model adapted
to the generation of configuration scenarios for cyber ranges. We
now present a workflow for configuration scenario instantiation
and virtualization that takes this modelling into account. Our work-
flow can be seen as an improvement of Costa’s [CRA20], obtained
by modifying the initialisation steps before deployment. The work-
flow of our approach is shown in Figure 5.

The first step is the definition of the feature-based context-
oriented model, such as defined in the previous section. The pro-
posed modelling approach is supported by different concepts and
technologies, different resources, that are summarized in the top-
most box. Once the model defined, we can start using it to generate
concrete scenarios for trainees. Such scenarios are generated in sev-
eral steps. First, a partial configuration (i.e. a configuration which
contains some context activations, but not all) is obtained by col-
lecting the user profile data of a team of trainees. This user profile

Modelling of the generation of cyber range scenarios
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Figure 5: Workflow of the generation of a cyber range sce-
nario

is usually provided by a trainer that supervises a team of trainees
and who wishes to train them. This data is contained in the context
model (see Section 3.1).

An SMT solver is then used to check the satisfiability of the
partial configuration. If the partial configuration is satisfiable, the
SMT solver will generate a valid complete configuration (i.e. that
satisfies all constraints, and hence all the requirements put forward
by the user profile). Our use of an SMT solver is close to the one in
the VSDL-based workflow as presented by Costa et al. [CRA20] (i.e.
we feed it constraints from a VSDL scenario, through the feature
model), but also to the use of a SAT solver in the deployment of
a feature-based context-oriented software system (we also feed it
a partial configuration to find a complete one). In theory, using a
combination of both approaches is sound with an SMT solver, as it
simply increases the number of constraints it has to handle.

Once a complete configuration is obtained from the SMT solver,
we need to extract the features useful for the virtual network de-
ployment, the virtual scenario definition. Indeed, while the SMT
solver chooses what contexts to activate as well (e.g. which attack
steps were selected), we only need the activated features and hence
the resulting VSDL scenario, to instantiate a virtual network. The
deployment from a model generated by passing a VSDL scenario
to an SMT solver was shown in detail in Costa’s VSDL-based ap-
proach [CRA20]; hence, from this point onwards, the deployment
step is the same as in their workflow. Being able to connect to their
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workflow implies that our proposed approach will likewise be able
to use state-of-the-art technologies (OpenStack, Terraform, Packer)
for the virtual network instantation.

When using the SMT solver, the partial configuration can be
found to be unsatisfiable. There might be two causes: first, the
trainer asked for invalid or too harsh requirements. For example,
the trainer asked for two vulnerabilities to be present in the vir-
tual network; however, both vulnerabilities are incompatible (e.g.
they impose different versions of the same software on a device).
Another likely scenario would be an insufficient budget for their re-
quirements (e.g. specific attack patterns that require large servers);
the model might not find a suitable scenario. The second cause
might be the model itself, which can of course be faulty. For ex-
ample, a trainer rightfully asked for a specific attack pattern with
sufficient budget; however, the defined model doesn’t contain any
combination of features that allows it. In both case, either the user
profile data is modified to suit the current model, or the cyber
range creators modify their models to correct it or to accept new
requirements.

5 CONCLUSION
VSDL is an established language to describe cyber range configura-
tion scenarios. It can be seen as a way to describe sets of configura-
tion scenarios on which cybersecurity specialists can learn how to
protect or attack some infrastructure or information system. One
of VSDL’s current drawbacks, however, is that it doesn’t take into
account user skills and possibilities to accomplish exploits.

In this vision paper we showed how a feature-based context-
oriented modelling approach stemming from COP could be used to
extend VSDLwith user profiles (used to take user skills into account)
and attack-defence trees (used to represent security exploits). Those
two extensions are described within a context model, while the
features to be included in a cyber range configuration scenario are
declared using VSDL. The two models are connected via a mapping.
In addition to this modelling approach, we sketch a full workflow
for the deployment and virtualisation of the configuration scenario
from the model with the help of an SMT solver.

As this is a vision paper, whose main objective is to open up
feature-based context-oriented modelling to a new application area,
we mostly focused on discussing the modelling approach and how
to apply it to a simple case study. Many directions for future work
remain, the first one being to develop this approach as a working
proof of concept. Considering huge case studies may lead to intrigu-
ing combinations of constraints which could make the use of SMT
solving problematic. To overcome this problem we could consider
approximation solvers such as those introduced in [BLM20].

One may also observe that the proposed generation is dynamic,
but the generated scenarios are not. Indeed, while the scenario
plays out, the network’s elements will remain the same. Hence,
another line of future work would consist of adding dynamic com-
ponents, such as time waves [CRA20], to capture the timing evo-
lution of the configuration scenario (e.g., an element only appears
after two hours). Another possible dynamic component would be
agents [YK22] that emulate attacker (or defender) behaviour during
a scenario in order to propose a more realistic experience.

Finally, observe that combining these two different research
domains is beneficial for both. First, it further legitimates the de-
velopment of a feature-based context-oriented modelling approach
that separates the modelling of contexts and features as first-class
citizens. Second, it helps formalizing the relationship between the
various training elements that constitute a cyber range experience.
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