
Sparkle: Speculative Deterministic Concurrency
Control for Partially Replicated Transactional Stores

Zhongmiao Li1,2, Paolo Romano2, and Peter Van Roy1

1Université catholique de Louvain, 2Instituto Superior Técnico, Lisbon University & INESC-ID

Abstract—Modern transactional platforms strive to jointly
ensure ACID consistency and high scalability. In order to pursue
these antagonistic goals, several recent systems have revisited the
classical State Machine Replication (SMR) approach in order to
support sharding of application state across multiple data parti-
tions and partial replication. By promoting and exploiting locality
principles, these systems, which we call Partially Replicated State
Machines (PRSMs), can achieve scalability levels unparalleled by
classic SMR. Yet, existing PRSM systems suffer from two major
limitations: 1) they rely on a single thread to execute or serialize
transactions within a partition, thus failing to fully untap the
parallelism of multi-core architectures, and/or 2) they rely on
the ability to accurately predict the data items to be accessed by
transactions, which is non-trivial for complex applications.

This paper proposes Sparkle, an innovative deterministic
concurrency control that enhances the throughput of state of
the art PRSM systems by more than one order of magnitude
under high contention, through the joint use of speculative
transaction processing and scheduling techniques. On the one
hand, speculation allows Sparkle to take full advantage of modern
multi-core micro-processors, while avoiding any assumption on
the a-priori knowledge of the transactions’ access patterns, which
increases its generality and widens the scope of its scalability.
Transaction scheduling techniques, on the other hand, are aimed
to maximize the efficiency of speculative processing.

I. INTRODUCTION

Nowadays, large-scale online services are faced with a
number of challenging requirements. On the one hand, to
tame the growing complexity of applications, distributed data
storage systems have started embracing strong, transactional,
semantics [6]. On the other hand, a number of works [20]
have shown that the profitability of large-scale online services
hinges on their ability to deliver low latency and high avail-
ability — an arduous goal given the sheer volume of traffic
and data that modern applications need to cope with.

The above trends have fostered significant interest in the
design of high performance transactional platforms capable
of ensuring strong consistency and fault-tolerance even when
deployed on large scale infrastructures, e.g., [5], [32], [42].
The techniques proposed by recent works in this area extend
the classic State-Machine Replication (SMR) approach [40], a
long-studied technique for building strongly consistent, fault
tolerant systems. In a nutshell, SMR operates according to
an order then execute approach: replicas rely on a consensus
protocol [26] to agree, in a fault-tolerant way, on a total order
in which transactions should be executed — which we refer to
as final order. Transactions are then executed at each replica

using a deterministic concurrency control, which ensures that
their serialization order is equivalent to the final order [19].

Several recent works [5], [32], [42] have focused on address-
ing what is arguably the key scalability limitation of the classic
SMR approach, namely its full replication model, by sharding
applications’ state across multiple partitions, which are then
replicated across a number of machines. This approach, which
we call Partially Replicated State Machine (PRSM), allows,
at least theoretically, for scaling out the volume of data main-
tained by the platform, as well as the achievable throughput,
by increasing the number of data partitions.

However, the partial replication model at the basis of the
PRSM approach introduces also a major source of complexity:
how to efficiently regulate the execution of transactions that
access multiple partitions. While single-partition transactions
(SPTs) can be processed at the partitions they access as in
classic SMR systems, multi-partition transactions (MPTs) need
to access data hosted at remote partitions and, as such, the
deterministic concurrency control also needs to cope with
distributed inter-partition conflicts and enforce a transaction
serialization order deterministically across replicas.

A simple approach to ensure that, at each partition’s replica,
the transactions serialization order is equivalent to the final
order is to execute all the transactions in a partition’s replica
sequentially [5], [23]. Unfortunately, this solution limits the
maximum throughput achievable by any partition to the pro-
cessing rate of a single thread, failing to fully untap the
performance potential of modern multi-core systems.

Other approaches, like Calvin [42], enable multiple threads
to process a partition’s transactions concurrently [34], [42],
but employ deterministic concurrency control techniques that
suffer from two crucial limitations: (i) they rely on a single
thread to schedule, in a deterministic way, the execution of
all transactions, which inherently limits the scalability of the
solution, and (ii) they assume the ability to accurately predict
the data items to be accessed by transactions, which is a non-
trivial task for complex, real-life applications [1].

This work tackles the above discussed limitations by intro-
ducing Sparkle, a novel distributed deterministic concurrency
control that enhances the throughput of state of the art PRSM
systems by more than one order of magnitude through the use
of speculative transaction processing techniques.

Speculation is used in Sparkle to allow transactions to
be processed “out of order”, i.e., to be tentatively executed
in a serialization order that may potentially differ from the

one established by the replica coordination phase. Thanks to
speculative execution, not only can Sparkle take full advantage
of modern multi-core CPUs — by avoiding inherently non-
scalable designs that rely on a single thread for executing [5]
or scheduling transactions [42]. It also avoids any assumption
on the a-priori knowledge of the transactions’ working sets,
thus increasing the solution’s generality.

The key challenge one has to cope with when designing
speculative systems, like Sparkle, is to minimize the cost and
frequency of misspeculation, which, in Sparkle occur when
two conflicting transactions are speculatively executed in a
serialization order that contradicts the final order dictated by
the replica coordination phase. This problem is particularly
exacerbated in PRSM systems, since misspeculations that
affect a MPT (e.g., exposing inconsistent data to remote
partitions) can only be detected by exchanging information
among remote partitions. As such, the latency to confirm the
correctness of speculative MPTs is order of magnitudes larger
than for the case of SPTs, and can severely hinder throughput.

Sparkle tackles these challenges via two key, novel, tech-
niques, which represent the main contributions of this work:
Sparkle’s deterministic concurrency control, which combines
optimistic techniques with a timestamp-based locking scheme.
The former aims to enhance parallelism. The latter increases
the chances that the spontaneous serialization order of transac-
tions matches the one established by the replica coordination
phase and allows for detecting possible divergences in a timely
way, reducing the frequency and cost of misspeculations.

Sparkle strives to remove the inter-partition confirmation
phase of MPTs from the critical path of execution of other
transactions via two complementary approaches: i) controlling,
in a deterministic way, the final order of transactions, so
as to schedule MPTs that access the same set of partitions
consecutively; ii) taking advantage of this scheduling tech-
nique to establish the correctness of MPTs via a distributed
coordination phase, which we call Speculative Confirmation
(SC). SC is designed to minimize overhead, by exploiting
solely information opportunistically piggybacked on remote
read messages exchanged by MPTs, and maximize parallelism,
by removing the MPT coordination phase from the critical path
of transaction processing.

Via an extensive experimental study, based on both synthetic
and standard benchmarks, we show that Sparkle can achieve
more than one order of magnitude throughput gains versus
state of the art PRSM systems [5], [42], while ensuring robust
performance even when faced with challenging workloads
characterized by high contention and frequent MPTs.

The reminder of the paper is organized as follows. §II
discusses related work. §III defines the assumed system model
and §IV describes the execution model of generic PRSM sys-
tems. §V details the Sparkle protocol, which is experimentally
evaluated in §VI. §VII concludes the paper.

II. RELATED WORK

Transactional stores. A large body of works has investigated
how to build consistent, yet scalable, transactional stores.

Existing systems can be coarsely classified based on whether
they adopt the deferred update replication (DUR) [22] or the
state-machine replication (SMR) [26] approaches. In DUR-
based systems, e.g. [6], [25], [31], [45], transactions are first
locally executed at a single replica and then globally verified,
via an agreement protocol based on consensus [22] and/or Two
Phase Commit [16]. Speculation has been employed in DUR-
based solutions either at the level of the local concurrency
control scheme (e.g., exposing pre-committed state rather than
blocking processing [31], [36]) or at the consensus level (e.g.,
skipping communication steps in absence of conflicts among
concurrently submitted transactions [25], [35], [45]).

Unlike DUR-systems, with SMR, e.g., [11], [42], replicas
first agree on the serialization order of transactions, using
consensus-based coordination schemes, and then execute them
using a deterministic concurrency control. The DUR and
SMR approaches have complementary pros and cons and are
fit for different workloads [7], [8], [44]. The focus of this
work is on SMR-based systems, which excel in contention-
prone workloads, whereas DUR systems can suffer from lock-
convoying and high abort rates [44].

Partially-replicated state machines. The PRSM ap-
proach [5], [30], [32], [42] extends the classic SMR scheme
to support a more scalable partial replication model. Existing
PRSM systems rely on diverse techniques to implement a
deterministic concurrency control.

Some approaches eliminate the possibility of non-
deterministic execution [5], [23] by allowing the execution
of only a single thread per partition. This approach spares
from the use (and cost) of any concurrency control, but it
also inherently limits the maximum throughput achievable
by any partition to the processing rate of a single thread.
Some works [23], [27] have argued that this limitation can be
circumvented by using a larger number of smaller partitions,
delegating each partition to a different thread of the same
machine. However, this approach can increase significantly the
frequency of MPTs, since, when using smaller partitions, it
is more likely for transactions to access data scattered over
multiple partitions. Accesses to multiple partitions, even if
maintained by the same machine, impose severe synchroniza-
tion overheads among the different instances of the same MPT
running at different partitions, which need to block until the
corresponding remote instances execute and disseminate data
to other partitions (see §VI).

Other systems, e.g., [34], [42], conversely, allow for con-
current execution of transactions and enforce deterministic
execution by relying on a single thread to acquire, according
to the final order, the locks required by transactions, before ex-
ecuting them. Unfortunately, as we show in Sec. VI, in typical
OLTP workloads dominated by short running transactions, the
scheduler thread quickly becomes a bottleneck as the degree of
parallelism increases. Further, in order to acquire all the locks
needed by a transaction before its execution, these solutions
require mechanisms for predicting the transaction’s data access
pattern — a non-trivial problem in complex real-life appli-

cations [1]. The solutions proposed in the literature to cope
with this issue are quite unsatisfactory: existing techniques
either require programmers to conservatively over-estimate
the transaction’s working set [34] (e.g., at the granularity of
transaction tables, even though transactions need to access just
a few tuples), or they estimate it by simulating the transactions
execution, and then abort them if the working set’s estimation
turns out to be inaccurate during (real) execution. The former
approach can severely hinder parallelism. The latter can impair
performance in workloads that contain even a small fraction
of, so called, dependent transactions [42], i.e., whose set of
accessed data items is influenced by the snapshot they observe.

Sparkle tackles these limitations by combining speculative
transaction processing techniques — which exploit out of
order processing techniques to enhance parallelism with no a
priori knowledge of transactions’ working sets — and schedul-
ing mechanisms — which redefine, in a deterministic way, the
serialization order of transactions established by the ordering
phase to minimize the cost of detecting misspeculations.

Deterministic execution. The problem of designing efficient
deterministic concurrency controls has also been studied for
classical SMR systems adopting a full replication model [18],
[19], [24], [33], [36]. Some of these works, e.g., [19], [24],
[36], employ speculative transaction processing techniques, as
in Sparkle. Though, unlike these solutions, Sparkle targets a
partial replication model, which, as already discussed, raises
additional challenges related to the processing of MPTs.
Analogously to Sparkle, Eve [24] incorporates scheduling
techniques to maximize the efficiency of speculation. However,
unlike Sparkle, Eve’s scheduling mechanism requires a priori
knowledge on transactions’ conflict patterns.

The deterministic concurrency control of Sparkle has re-
lations also with the works on deterministic execution of
multi-threaded applications, typically aimed at debugging and
testing [2], [3], [9], [10], [39]. These mechanisms intercept
all non-deterministic events affecting threads’ execution (to
be later replayed). In the context of SMR/PRSM systems,
though, a deterministic concurrency control scheme has to
tackle a different problem: ensuring that the serialization order
of transactions is equivalent to the one established by the
replica coordination phase.

III. SYSTEM AND TRANSACTION MODEL

System model. We consider the typical system model assumed
by PRSM approaches, e.g., [5], [30], [42], in which application
data is sharded across a predetermined number of partitions,
each of which is replicated over a set of servers, which
we refer to as replication group. In the following, we use
the terms partition’s replica and server, interchangeably. The
architecture illustrated in Fig. 1 depicts a possible scenario, in
which every partition is replicated in every data center. This
deployment provides disaster tolerance, while allowing MPTs
to be ordered and executed without requiring communication
across data centers [42]. However, our model is generic enough

DC2

Replication
group1

Replication
group2

Replication
group3

Partition3

Partition3Partition2

Partition2Partition1

Partition1

DC1

2 Replication

1 Batching

4 Execution3 Dispatching

1 Batching

Fig. 1: Example of a typical deployment scenario for Sparkle.

to support scenarios in which certain data partitions may be
replicated only in a sub-set of the available data centers.

We assume that servers may crash and that there exists
a majority of correct replicas of each partition. While the
techniques adopted by existing PRSM systems during the
ordering phase are orthogonal to this work, they are normally
based on consensus protocols. Therefore, we assume that the
synchrony level in the system is sufficient (e.g., eventual
synchrony [12]) to allow implementing consensus [13].

Transaction model. Sparkle provides a basic CRUD transac-
tional interface (create/insert, read, update and delete). Trans-
actions can be aborted and re-executed multiple times before
they are committed. We call the various (re-)executions of a
transaction transaction instances.

Like in any PRSM system, e.g. [5], [30], [42], we assume
that the transaction logic is deterministic and that, given a
transaction and its input parameters, it is possible to identify
which data partitions it accesses. This information is exploited
to order and execute transactions only at the data partitions
they actually access. Such an assumption is typically easy to
meet in practice, given that data partitions are normally quite
coarse grained. In fact, overestimating the set of partitions
accessed by a transaction does not compromise consistency,
but only impacts efficiency by causing unnecessary order-
ing and transaction execution. Unlike other PRSM solutions,
e.g., [42], we do not assume any fine-grained information on
the individual data items that transactions access.

As mentioned, we distinguish between single and multi
partition transactions (SPTs and MPTs, respectively). We refer
to the instances of an MPT at the various partitions it accesses
as sub-transactions or siblings, and denote the set of partitions
involved by an MPT T using the notation involved(T). Unlike
SPTs, which execute independently at each replica, MPTs
require, in the general case, communication among siblings,
as they may need to access data stored on remote partitions.

When a sub-transaction reads a local key for the first time,
it disseminates the corresponding value to its siblings; when
a sub-transaction issues a read to a remote key which has not
been received yet, it blocks until the value is received. As
remote keys do not need to be maintained locally, writes to
remote keys are only applied to a private transaction’s buffer
(to be available if they are later read by the same transaction)
that is discarded after the transaction’s commit.

IV. PRSM MODEL

Sparkle is a deterministic distributed concurrency control
designed to accelerate the execution phase of a generic PRSM
system, e.g., [5], [30], [42], which operates according to the
abstract order-then-execute model defined below.
Ordering phase. The protocol used during the ordering phase
is irrelevant for Sparkle, provided that the final order it
establishes ensures the following properties:

1) all the (correct) replicas of the same partition deliver
the same sequence, B1, . . . , Bn, of transaction batches,
where each batch contains the same totally ordered set
of (single- or multi-partition) transactions;

2) if an MPT T is delivered in the i-th batch by a partition,
then T is delivered in the i-th batch of all the partitions
it involves;

3) for any pair of MPTs, say T1 and T2, that access a set of
common partitions, say S = {P1, . . . , Pn}, T1 and T2

are ordered in the same way by all the (correct) servers
that replicate any partition in S, i.e., either ∀Pi ∈ S
T1 → T2 or ∀Pi ∈ S T2 → T1;

4) the relation < is acyclic, where < is defined as follows:
T < T ′ iff any partition delivers T and T ′ in that order.

The ordering phase establishes a total order on the trans-
actions executing at each partition, whereas the transactions
executing at different partitions are only partially ordered. We
refer to the order established by this phase as final order. We
call the transactions ordered before/after a transaction T , T ’s
preceding/following transactions, respectively.

Existing PRSM systems ensure the above properties in
different ways. Calvin, for instance, relies on a two-phase
scheme (see Fig. 1). In the first one, called replication phase,
servers periodically batch, e.g., for 5-10 msecs, the transac-
tions received from clients and submit the resulting batch to an
intra-partition consensus service. This merges the transactions
gathered by every replica of a given partition and replicates
them in a fault-tolerant manner. In the second phase, called
dispatching phase, all partitions within the same DC exchange
the transactions they delivered during the first phase. This
ensures that MPTs are delivered at all the partitions that
they need to access. Finally, the transactions gathered during
the dispatching phase are deterministically sorted to ensure a
consistent final order across all the replicas of every partition.
Execution phase. Once the ordering phase is completed,
transactions are executed at all the partitions’ replicas they
involve. As already mentioned, in order to ensure inter-replica
consistency, the execution phase must guarantee that, at all
the the replicas of a partition, the transactions delivered by the
ordering phase are executed according to the same serialization
order, i.e., their execution history is equivalent to a common
sequential history. Sparkle’s concurrency control ensures this
guarantee, while allowing transactions to be executed concur-
rently. As such, it ensures serializability semantics [4]. Further,
if the protocol used during the ordering phase ensures real-time
ordering between transactions (i.e., given two transactions T1,
T2, where T1 precedes T2 according to real-time order, T1

is serialized before T2 by the ordering phase) then Sparkle
globally guarantees strict serializability.
Failure handling. Dealing with failures is relatively simple
in PRSM-based systems (including Sparkle). Since all correct
replicas of a partition deliver the same transactions in each
batch, MPTs can fetch remote data from any available replica.
In order to provide end-to-end fault-tolerance guarantees, in
case the replica originally contacted by a client fails (or is sus-
pected to have failed), the client can contact any other replica
provided that some complementary mechanism is employed
to ensure exactly-once semantics [15], [37].

V. SPARKLE

This section describes Sparkle’s deterministic concurrency
control scheme. We start by discussing the processing of SPTs
(§V-A) and MPTs (§V-B). Finally, we discuss how to optimize
the treatment of read-only transactions (§V-C).

A. Single partition transactions

To maximize parallelism, Sparkle employs a multi-
versioned, optimistic concurrency control that imposes no
constraints on the processing order of transactions. Denoting
with local_ts the logical timestamp that reflects the final order
at a partition, threads select as the next transaction to start, the
one with the smallest local_ts value. However, as transactions
are processed concurrently, they can be speculatively executed
according to a spontaneous, non-deterministic serialization
order that contradicts the final order.

To ensure consistency, Sparkle guarantees that a final
committed transaction must have observed a snapshot that
includes the versions produced by all its preceding transactions
(according to the final order). This property is enforced by
letting a transaction T final commit only if all its preceding
transactions have final committed and if T did not miss any
of the updates they produced — which can happen if T reads
a data item before any of its preceding transactions writes to
it, i.e., a write-after-read conflict. Misspeculations are detected
at run-time, leading to the automatic abort and restart of the
affected transactions. Transactions are restarted with the same
timestamp to ensure deterministic execution across replicas.

In order to enhance efficiency and reduce the chance
of misspeculations, Sparkle incorporates a timestamp-based
locking scheme. The timestamp of transactions, i.e. local_ts,
establishes a total order on item versions created by final
and speculatively committed transactions, and also defines the
visibility of versions: a transaction only reads the latest version
produced by speculatively or final committed transactions
ordered before it. When writing a data item for the first
time, a transaction T locks the data item, which prevents it
from being accessed by T ’s following transactions before T
finishes execution. Also, when writing, T inspects the data
item’s read_dependencies. These register which transactions
have already read this data item, and allow T to abort any
following transaction that missed T ’s updates. Correspond-
ingly, when reading, it is checked if a transaction with a lower
timestamp has locked the data item: in the negative case, the

reader registers its timestamp in read_dependencies to notify
future writers; else, the execution of the reader transaction is
suspended till the writer completes.

Next, we provide additional details on the management of
SPTs. Due to space constraints, we omit the corresponding
pseudo-code, which is available in our technical report [29].

Start. Upon activation, each transaction initializes three main
data structures: its readset, writeset and abort_flag. The
readset and writeset are private buffers that store the
data items read and updated by the transaction, respectively.
abort_flag is used to check whether the transaction has been
aborted by other transaction.

Execution. During its execution, a transaction T may read and
update multiple data items. Before executing any operation, T
checks its abort_flag to determine if it has been flagged for
abort by some preceding transaction. In this case, T is aborted
and re-executed. Prior to its first update to a data item, T
tries to obtain an exclusive lock to it. If the lock is held by a
different transaction T ′ that follows T in the final order (i.e.,
the local_ts of T ′ is larger than that of T), T ejects T ′ from
the lock and sets the abort_flag of T ′ to true. Conversely,
if the locking transaction T ′ precedes T , T waits for T ′ to
finish execution. Once T successfully obtains the lock on the
data item, it applies the update to its writeset.

While executing a read operation, T first attempts to read
from its writeset and readset, to return any version it has
previously written or read. Else, T redirects its read to the data
store and checks the state of the lock guarding the data item
it intends to read. Similar to the above locking procedure, T
is suspended if the data item is currently being locked by any
of its preceding transactions. Otherwise (i.e., the item is not
locked, or locked by T ’s following transactions), T scans the
version list and returns the version with the largest timestamp
smaller than its local_ts. Note that this may not be the version
that T would observe, had transactions been executed serially
according to the final order, as other transactions preceding
T may later produce more recent versions. Thus, unless there
are no uncommitted transactions preceding T , T appends its
local_ts to the read_dependencies of the data item. This
allows aborting T if a write-after-read conflict is later detected.

Suspended transactions. As mentioned, a transaction T is
suspended if it tries to read/update a data item that is currently
being locked by a preceding transaction. In that case, the
thread executing T can start executing the next unprocessed
transaction according to the final order, so to enhance paral-
lelism. T will eventually be unblocked when the contending
transactions release the lock requested by T . At this point, the
thread responsible of T can resume its execution.

Speculative/final commit. After completing its execution, T
attempts to speculatively commit, so to make its writes visible
to other transactions. For each data item it updated, T inserts
a new version in the item’s version chain, timestamped and
ordered by its local_ts, and releases the corresponding lock.
Then, T checks the read_dependencies tracked by this data

item and aborts any (therein registered) transaction with a
larger timestamp (as they missed T ’s update on this item) by
setting their abort_flag to true. Additionally, T prunes the
identifiers of any final committed transaction still tracked in
read_dependencies, which are unnecessary as they no longer
risk to abort. While applying its updates, if T finds that any of
its obtained locks has already been preempted, it aborts itself
by removing all inserted versions and releasing any remaining
lock. Else, T is considered to be speculatively-committed.

Next, T checks if it can final commit, which is only possible
if i) all its preceding transactions have already committed and
ii) its abort_flag is still false. As T ’s updates have already
been applied in the previous step, the final commit logic is
very fast, requiring essentially to only increase the counter
that tracks the timestamp of the most recent final committed
transaction. Recall, in fact, that the read_dependencies of
final committed transactions are pruned in an opportunistic
way by transactions that update those data items in the future.

If T can not be final committed, yet, the thread processing
T simply executes the next unprocessed transaction and peri-
odically checks the state of T , to final commit it, if possible.

Abort. T can only be aborted due to data conflicts with
preceding transactions, either because T missed updates from
a preceding transaction, or because any of its locks was
preempted by a preceding transaction. If either case occurs,
T ’s abort_flag is set to true. Then, T aborts by releasing all
its locks and removing any version it has inserted in the data
store (in case T had speculatively committed).

B. Multi Partition Transactions

During their execution, the sub-transactions of an MPT
disseminate the results of read operations on local data items
to the other involved partitions (§III). By letting MPTs execute
speculatively, i.e., without waiting for the final commit of their
preceding transactions, then a MPT sub-transaction may miss
a local data item version not yet produced by a preceding
transaction and send inconsistent data to its siblings.

We define a global consistent snapshot for a MPT T
as the union of the local consistent snapshots at all the
partitions involved by T , where a local consistent snapshot
for T at partition X is obtained by serially committing all the
transactions preceding T according to the final order at X .

The key challenge to ensure safe speculative execution of
MPTs lies then in detecting if an MPT instance observed a
global consistent snapshot and can, thus, be final committed.

Batches of homogeneous MPTs. To simplify presentation,
we describe the proposed solution by first assuming that 1)
all transactions delivered during the ordering phase are MPTs
that access the same set of partitions, noted P , and 2) different
batches are never concurrently executed. In the following we
use the term homogeneous MPTs to denote a set of MPTs
that access the same set of partitions. We will later discuss
why this assumption is needed and how to cope with generic
batches composed by SPTs and heterogeneous MPTs later.

!"#
!$#

Partition X

Partition Y

LAN
:0

LA
N

:0

LAN
:0

LA
N

:0

LA
N

:0

LAN
:1

GAV:[1,0]
AS:{}

Final GAV
T3 :[0,0]

Final GAV
T3:[0,0]

Final GAV
T2 :[1,0]

G
AV

:[0
,0

]
AS

:{}

GA
V:

[1
,0

]
AS

:{}

Final GAV
T2:[1,0]

w(k)ß1

r(k)à0

!$%
!"%

G
AV:[0,0]

AS:{!$ #,1}

data msg.

SC msg.

Spec.
Commit

Final
Commit

Local
Abort

Remote
Abort

Fig. 2: Exemplifying the execution of MPTs.

Identifying transactions and snapshots. We define the LAN
(Local Abort Number) of a transaction instance TX executing
at partition X as the number of times that T aborted and
restarted at X due to local conflicts. Sparkle ensures that the
only cause of local aborts for a transaction TX

i (i denoting the
final order of T at X) is a conflict with some local transaction
that precedes TX

i in the final order. It follows that when the
last transaction, say TX

i , that precedes a MPT, say TX
i+1, at

partition X final commits, any instance of Ti+1 at X (currently
active or subsequently activated) is guaranteed not to undergo
any further local abort and to observe a locally consistent
snapshot. We call the LAN of this instance of TX

i+1 the final
LAN of transaction TX

i+1.
LANs allow for tracking aborts due to local conflicts, but

not aborts due to remote conflicts. These occur in case a
sibling executing at a remote partition Y had previously sent
inconsistent data and has to be restarted. We address this issue
by associating with a sub-transaction instance TX a vector
clock, called GAV (Global Abort Vector). The GAV of TX

maintains an entry for each partition Y ∈ P and it stores: in
the entry associated with the local partition X , the LAN of TX ;
for every entry associated with a remote partition Y 6= X , the
LAN of the transaction instance TY , running at partition Y ,
from which TX received remote data.

The GAV of a transaction instance TX serves to identify the
snapshot it observed and to establish its consistency. Indeed, if
the GAV of TX contains, in each of its entry, the final LAN of
every sibling, then TX must have observed a consistent global
snapshot — as this implies that, at every involved partition,
TX observed a local consistent snapshot. We call such a GAV
the final GAV for TX , or simply for T , as all siblings of T
share the same final GAV.

Determining the final GAV. Sparkle determines the final GAV
via a speculative confirmation (SC) scheme. When TX

i specu-
latively commits, TX

i broadcasts to its siblings a SC message
containing its GAV, and an abort set which contains the
identifier and LAN of every local transaction instance aborted
by TX

i .
Partition X can determine the final GAV for TX

i only if:
C1. TX

i−1 has been final committed.

C2. For each partition Y ∈ P , X received an SC message
from TY

i−1 tagged with the final GAV of Ti−1.

When these two conditions hold the final GAV of Ti is
computed as follows: for each involved partition Y , the Y -
th entry of Ti’s final GAV is the largest LAN specified for TY

i

in the abort set of any SC message received from Y .
The above mechanism is defined in a recursive way, as the

final GAV of Ti can only be computed once Ti−1 has final
committed. This implies, in its turn, that the final GAV of Ti−1
must also be known - as MPTs are final committed only after
their final GAV is known. The base step of this recursion is the
first transaction in the batch, noted TX

1 , which is guaranteed
to never abort. As such, all the entries of T1’s final GAV
are necessarily equal to zero and TX

1 can be used an initial
“anchor” to bootstrap the SC scheme: as TX

1 speculatively
commits, it can be immediately final committed; when X
receives the SC messages from all the siblings of T1, since
these SC messages are tagged with T1’s final GAV, X can
determine the final GAV of T2, and so forth.

Figure 2 exemplifies a scenario in which TX
1 aborts the

first instance of TX
2 due to a local conflict on data item k and

notifies partition Y via an SC message (the SC message is sent
by TX

1 upon final commit since, being the first transaction of
the batch, it cannot abort and omits the speculative commit
phase). Upon reception of TX

1 ’s SC message, Y establishes
the final GAV for T2, i.e., [1,0], and TY

2 restarts with that GAV.
When this instance of TY

2 speculatively commits, it emits an
SC message that is used at partition X to establish the final
GAV for T3. After speculatively committing, the instance of
TY
2 with GAV=[1,0] can be final committed, since its GAV

coincides with T 2’s final GAV.
Pseudo-code. Alg. 1 shows the pseudo-code for managing
a homogeneous batch of MPTs at partition X . To simplify
presentation we assume FIFO-ordered channels. We omit
discussing write operations, as these are managed as in SPTs.
Data structures. Each partition maintains two data-structures
for each MPT T : i) GAV: T ’s currently known Global Abort
Vector; ii) SCMSG_GAV: a map that stores, for every sibling
sub-transaction TY , with Y ∈ P , the GAV of the most recent
SC message received at X from any instance of TY . Addition-
ally, for each MPT instance T ∗ the following data-structures
are used: i) RS/WS, which store the transaction instance’s read-
set and write-set, respectively; ii) the ABORTSET, a map that
stores the largest LAN of any local transaction so far aborted
by T ∗. At any time, at partition X for an MPT T there is
at most one active instance T ∗ that is associated with the
current GAV of T at X: upon its activation, T ∗ is associated
with the currently known GAV for T and whenever the GAV
of T changes, T ∗ is aborted and a new instance is restarted
associated with the new GAV.
Read logic. When T ∗ reads a key, it first checks if it previously
wrote to or read it. In these two cases the value stored in T ∗’s
write-/read-set is returned, respectively. Else, i.e., first access
to a key, if the key is local, T ∗ fetches its value from the
local storage and broadcasts it to its siblings. This message is

tagged with the transaction instance’s LAN, which coincides
with the local entry of the GAV of T . If the key is hosted at a
remote partition, say Y , T ∗ waits for the key’s value from Y
and checks if the received LAN is larger than the Y -th entry of
the GAV of T . In this case, T ∗ had previously received stale
data from a sibling running at Y , which later aborted. Thus,
T ∗ is aborted and restarted. If the LAN of the value received
from Y coincides with the Y -th entry of the GAV of T at X ,
instead, the value is added to the read-set and is returned.

Handling aborts. When T ∗ aborts a local transaction instance
T ′∗ (l. 13), the local entry of the GAV of T ′, i.e., its LAN, is
increased. Next, T ′∗ and its LAN are added to the ABORTSET
of T ∗ and a new instance of T ′ is activated. The read-set of
this new instance is initialized with a clone of the read-set
of its previous “incarnation”, purged of any local data. This
ensures that the new transaction instance retains any remote
data received so far, avoiding re-fetching it remotely.

When X learns about the abort at a remote partition Y
of an instance of transaction T with a given LAN (l. 18), X
accordingly updates the Y -th entry of T ’s GAV and aborts any
local instance of T . The restarted instance of T inherits, in
this case, the read-set of its previous incarnation purged of
any data previously received from Y , with one exception: if
the remote abort is detected when receiving a remote value
(l. 11), this value belongs to a fresh remote snapshot at Y and
can be retained in the read-set.

Commit logic. When T ∗ completes its execution (l. 23), it
speculatively commits and broadcasts SC messages to all
partitions in P . The SC messages disseminate the ABORTSET
of T ∗, informing remote partitions about the local transaction
instances aborted by T ∗ at X . Upon reception of a SC message
from partition Y (l. 34): i) the SCMSG_GAV associated with
partition Y is updated with the GAVmsg of the transaction
instance that sent the SC message; ii) for any transaction T ′

included in the SC message’s ABORTSET, if the corresponding
LAN is larger than the Y -th entry of the GAV of T ′, it
means that X detected a new remote abort at Y . Thus, the
remoteAbort() method is called.

For T ∗i to be final committed, its GAV must coincide with
the final GAV for Ti. This is determined (l. 29) after waiting for
transaction Ti−1 (i.e., the transaction immediately preceding
Ti) to have final committed (Cond. C1), which implies that the
final GAV of Ti−1 is known. So, to determine the final GAV of
Ti, it suffices to wait for the reception, from every remote
partition, of an SC message tagged with the final GAV of
Ti−1 (Cond. C2, l. 33). After this moment, in fact, no instance
of Ti can any longer be aborted at any partition. Thus, if a
speculatively committed transaction instance T ∗ returns from
waitFinalGAV() without being aborted, it means that none of
the instances of T ’s preceding transactions have invalidated
T ∗ global snapshot. In this case, T ∗’s GAV coincides with the
final GAV for T and T ∗ can be final committed.

Implicit dissemination of SC messages. To reduce the overhead
of the SC mechanism, Sparkle exploits a key optimization,
not reported in the pseudo-code: instead of sending ad hoc

Algorithm 1: MPT execution at partition X
Data structures associated with an MPT T :
Array of int[numPartitions] GAV . Current known GAV of T .
Array of GAV[numPartitions] SCMSG_GAV . GAVs of the last SC

. ... msg received from each partition
Data structures associated with every instance T ∗ of an MPT T :
map<keyID,value> RS,WS . read- and write-set of T ∗.
map<TID,int> ABORTSET . Map storing the LANs of any

....local tx. instance aborted by T ∗.

1 read(TxInstance T ∗, Key k):
2 if k ∈ T ∗.WS return T ∗.WS.get(k) . Check if T ∗ wrote to k.
3 if k /∈ T ∗.RS . Check if T ∗ already read k.
4 if k is local
5 T ∗.RS.set(k, localRead()) . Store loc. value in read-set
6 send <k, T ∗.RS.get(k), T .GAV[X]> to T ’s siblings
7 else . Remote key, wait for its value from corr. partition.
8 wait receive <k, v, LAN> s.t. LAN ≥ T .GAV[k.locPart()]
9 T ∗.RS.set(k,v) . Store remote value in read-set.

10 if LAN > T .GAV[k.locPart()] . Remote sibling has aborted.
11 remoteAbort(T , k.locPart(), LAN, <k, v>)
12 return T.RS.get(k)

13 localAbort(TxInstance T ∗,TxInstance T ′∗) . T ∗ aborts T ′∗.
14 T ′.GAV[X]++
15 T ∗.ABORTSET.add(< T ′, T ′[X] >)
16 restart a new instance of T ′, cloning its RS from T ′∗...
17 ...and removing any local key from it

18 remoteAbort(Tx T , Partition Y , int lan, <Key k, Value v >):
19 T .GAV[Y]=lan . Update LAN of tx T at partition Y .
20 if ∃ an active instance T ∗

21 restart a new instance of T ′, cloning its RS from T ′∗...
22 ...and removing from it any key received from Y except for k

23 tryCommit(TxInstance T ∗):
24 speculativeCommit(T ∗) . Spec. apply T’s writes to local keys.
25 send <SC, T ∗.ABORTSET, T , T .GAV> to T’s siblings
26 waitFinalGAV(T)
27 . This tx. instance has the final GAV if it did not abort so far.
28 finalCommit(T ∗)

29 waitFinalGAV(Tx T):
30 T ′ ← T .getPrecedingTx()
31 wait until T ′ has final committed . Cond. C1.
32 ∀Y ∈ T .remotePartitions()
33 wait until T ′.GAV = T ′.SCMSG_GAV.get(Y) . Cond. C2.

34 upon receiving <SC, ABORTSET, T , GAVmsg> from partition Y
35 T .SCMSG_GAV[Y]← GAVmsg . Store GAV of last SC from Y .
36 for each < T ′, LAN > ∈ ABORTSET . For each tx aborted by T .
37 if LAN > T ′.GAV[Y]: . Skip aborted txs we already know of
38 remoteAbort(T ′, Y , LAN,< ⊥,⊥ >)

SC messages, these are piggybacked on the messages used by
MPTs to disseminate the results of read operations.

Dealing with heterogeneous MPTs The correctness of the
SC mechanism presented above hinges on the assumption that
the batch is composed solely by MPTs accessing the same
partitions. This ensures that the first MPT of the batch never
undergoes aborts. Clearly, this property no longer holds if
batches are composed by mixes of SPT and MPTs involving
heterogeneous sets of partitions. In fact, in the general case, a
(multi-partition) transaction can undergo an unknown number
of aborts if it is preceded even just by a single transaction (nd
is executed concurrently with it.

To cope with the above problem, Sparkle only allows
executing an MPT, if all its preceding uncommitted transac-
tions are either read-only transactions (ROTs) or homogeneous

MPTs of this MPT. While trivially ensuring the correctness
of the SC mechanism, if naively employed, this technique
can also significantly hinder parallelism. For instance, if three
homogeneous MPTs are interleaved by two SPTs, then these
three MPTs have to be executed sequentially.

Sparkle tackles this issue via a scheduling mechanism,
which operates as follows. First, upon delivery of a trans-
action batch, at the end of the ordering phase, each partition
deterministically reorders the MPTs in the batch by grouping
them according to the set of partitions they access1. The
resulting final order is composed by a sequence G1, . . . , Gn

of transaction groups, where each group Gi contains the
transactions that access the same set of partitions. Next,
each partition deterministically re-orders its SPTs and ROTs,
serializing them in between each pair of consecutive MPT
groups, with the goal of “spacing them out”. The number
of SPTs and ROTs serialized in between two groups are
calculated in a deterministic fashion, with the goal of ensuring
that each group interval is filled with an even number of
SPTs/ROTs. Note that since MPTs can not be executed while
there are preceding active SPTs, in between two groups we
always place SPTs before ROTs, to space out SPTs and the
following MPT group. Note that since only transactions of the
same batch can be reordered, and that these are necessarily
concurrent, scheduling does not compromise real-time order.

C. Read-only Transactions

Since ROTs do not alter the state of the data store, they
can be executed at a single partition’s replica and serialized
in an arbitrary order, provided that they observe a consistent
snapshot of the data store. To minimize overheads, in Sparkle
ROTs are executed concurrently with the remaining update
transactions, but in a non-speculative fashion, i.e., by assigning
them a timestamp associated with a final committed transac-
tion. This allows sparing ROTs from the overheads associated
with registering themselves among the read dependencies of
the keys they read — which becomes unnecessary since, being
serialized after a final committed update transaction, ROTs are
guaranteed to observe a stable snapshot.

While single partition ROTs can be freely assigned any
serialization order by their local partition, this is not the case
for read-only MPTs. In this case, it is necessary to ensure
that a read-only MPT is assigned the same serialization order
at all the partitions it involves. Sparkle tackles this problem
through a deterministic scheduling policy, which serializes
every read-only MPT before any other transaction of their
batch — this ensures the stability of the snapshot over which
they are executed and allows them to be executed in a non-
speculative fashion, analogously to read-only SPTs.

VI. EVALUATION

This section is devoted to experimentally evaluate Sparkle,
by comparing it with two state of the art PRSM systems,

1The current prototype uses a single thread to re-order transactions, as in
all tested workloads the scheduling thread was never the bottleneck.

namely S-SMR [5] and Calvin [42]. Due to space constraints,
we omit some evaluation results, which can be found in [29].

We implemented Sparkle and S-SMR, based on Calvin’s
code base [41]. The original code base uses STL’s
unordered_map as the in-memory back-end to store data,
which we found out to become the system’s bottleneck at
high thread counts. Therefore, in our implementation, we
replaced it with concurrent_hash_map from Intel’s TBB
library [21]. The repository containing the code used in this
study is publicly accessible [28].

To quantify the scalability of Sparkle on large multi-core
architectures (§VI-B) we use a machine equipped with two
Intel Xeon E5-2648L v4 CPUs, consisting in total of 28 cores
(56 hardware threads). All other experiments were conducted
on the Grid’5000 cluster [17] using 8 genepi machines, each of
which has two 4-cores Intel Xeon E5420 QC CPUs. Unless
otherwise noted, all protocols use three cores for auxiliary
tasks needed for the evaluation (e.g., network communication
and workload generation); other than that, Calvin dedicates
one core for serializing lock requests and four other cores to
execute transactions, Sparkle uses five cores to execute trans-
actions, and S-SMR only uses one core to execute transactions.

The presented results are the average of three runs. We also
report the results’ standard deviation, but since the differences
in performance across different runs are usually within 5%, in
various plots, standard deviations are not visible.

As in prior work [42], we emulate the ordering phase
by injecting a 200ms delay and use 10 milliseconds batch
time. To avoid overloading the system, we adjust the arrival
rate to be 10%-20% larger than the maximum sustainable
throughput (determined via a preliminary test). Therefore,
batch sizes vary depending on the workload, ranging from 10s
to 100s of transactions. Omitting the ordering phase allows
for focusing the evaluation on scenarios where throughput is
bottlenecked by the execution phase. This is typically the case
when one employs batching techniques [14], [38] to increase
the maximum throughput sustainable by the ordering phase. As
for the choice of the delay of the ordering phase, we argue that
using smaller values would reduce user perceived latency but
it would not affect the throughput of the considered solutions.

A. Benchmarks

Synthetic benchmark. In this benchmark each partition con-
tains one million keys, split in two sets, which we call “index”
and “normal” keys, respectively. All transactions start by
reading and updating five index keys selected uniformly at
random. If the transaction is a ‘dependent transaction’, it reads
five additional normal keys, whose identity is determined by
the values read from the five index keys (i.e., the read- and
write-set of dependent transactions can only be determined
during execution). Else, if the transaction is non-dependent,
it reads and updates five randomly selected normal keys. If a
transaction accesses more than one partition, it divides equally
its accesses among its involved partitions. For instance, if a
dependent transaction accesses two partitions, then it accesses
three index keys and three normal keys of a partition and

1 10 20 30 40 50

Number of cores

0

20000

40000

60000

80000

100000

120000

140000
C

o
m

m
it

te
d
 t

x
s/

se
c

No CC
Sparkle
Calvin
S-SMR

(a) No conflict.

10 20 30 40 50

Number of cores

0

5000

10000

15000

20000

25000

C
o
m

m
it

te
d
 t

x
s/

se
c

Sparkle
Calvin
S-SMR

1 10 20 30 40 50

Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

A
b
o
rt

 r
a
te

(b) High conflict.
Fig. 3: Single node deployment, TPC-C 90% update workload.

0.0

0.2

0.4

0.6

T
h
ro

u
g
h
p
u
t

(M
 t

x
s/

se
c)

Calvin:MC Calvin:LC Sparkle:MC Sparkle:LC S-SMR

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100

(a): 0% MPTs

0.0

0.2

0.4

0.6

0.8

1.0

A
b
o
rt

 r
a
te

0 20 40 60 80 100

(b): 1% MPTs

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

(c): 10% MPTs

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

(d): 50% MPTs

0.0

0.2

0.4

0.6

0.8

1.0

Percentage of dependent transactions (%)

Fig. 4: 8 nodes cluster, synthetic benchmark generating workloads with varying contention level, percentage of MPTs and of dependent
transaction. MC stands for medium contention and LC for low contention.

the other two index and two normal key from the second
partition. Multi-partition transactions, unless otherwise noted,
always access two partitions.

We shape the workloads generated via this synthetic bench-
mark by varying three parameters: contention level (low and
medium contention), percentage of dependent transactions
(0%, 1%, 10%, 50% and 100%) and percentage of distributed
transactions (0%, 1%, 10% and 50%). We control contention
by varying the number of index keys of each partition (using
the remaining keys as normal keys): in the low contention
scenario, partitions use 50000 index keys; 1000 index keys per
partition are used, instead, for the medium contention case.

TPC-C. The TPC-C benchmark [43] has five transaction
profiles: NewOrder, Payment, OrderStatus, StockLevel and
Delivery. NewOrder and Payment are update transactions that
access a warehouse hosted on a remote partition with proba-
bility 10% and 15%, respectively. OrderStatus and StockLevel
transactions are read-only, single-partition transactions (SPTs).
Delivery transactions are update SPTs. Finally, NewOrder and
Payment are independent transactions, while the other three
are dependent transactions (i.e., their working set depends on
the database state and cannot be predicted statically).

We consider three different transaction mixes, containing
10%, 50% and 90% update transactions. All transaction mixes
always contain only 4% of Delivery transactions, while the
other two update and read-only transactions evenly share the
rest of the proportion. Except in §VI-B, we populate 12
warehouses per data partition in all TPC-C experiments.

B. Single node deployment

Before testing Sparkle in distributed settings, we focus on
single node performance, evaluating its scalability on a large

multi-core machine equipped with 56 hardware threads.
When testing Sparkle and Calvin we deploy a single data

partition, and increase the total number of worker threads up to
50, dedicating 6 threads to workload generation. Conversely,
since S-SMR can only utilize one worker thread per data
partition, the only way to let it exploit the parallelism of the
underlying architecture is by varying the number of partitions,
which we increase up to 50 (using the same amount of data).
We use the 90% update TPC-C workload, and adjust the
contention level by varying the number of warehouses to
generate two extreme scenarios: a very high conflict workload,
in which only a single warehouse is populated, and a no
conflict workload, in which we populate a large number
of warehouses (200) and alter the workload to generate
no conflicts (by having concurrent requests access disjoint
warehouses). For the no-conflict workload, we consider an
additional NoCC baseline, i.e., a protocol which implements
no concurrency control whatsoever. This represents an ideal
baseline that allows us to better understand the scalability limit
and overhead of each protocol.

Fig. 3a reports the performance of the considered protocols
using the no-conflict workload. As we can see, Sparkle has
almost identical throughput to the ideal NoCC baseline up
to 30 threads, incurring less than 20% overhead with 40
and 50 threads. These results clearly highlight the efficiency
and practicality of Sparkle’s concurrency control. Conversely,
Calvin’s throughput only scales up to five threads (one locker
thread and four worker threads). At higher thread counts, the
scheduling thread turns into the system’s bottleneck, severely
hindering its scalability. Last but not least, we can see that S-
SMR achieve good scalability and outperforms Calvin when
using more than 25 threads. However, S-SMR achieves 2.6×

0

10000

20000

30000

40000

50000

T
h
ro

u
g
h
p
u
t

(t
x
s/

se
c)

 10% update 50% update 90% update
0.0

0.2

0.4

0.6

0.8

1.0

A
b
o
rt

 r
a
te

Calvin

Sparkle

S-SMR

Fig. 5: 8 nodes cluster, TPC-C workloads.

lower throughput than Sparkle at 50 threads. This is due
to the fact that, in this workload, approximately 10% of
transactions access a remote warehouse, which with S-SMR
may be stored on a different partition (unlike Sparkle and
Calvin, which do not need to use multiple partitions per node
to enable parallelism). Despite in this test, communication
between the sub-transactions of a MPT take place via efficient
Unix Domain sockets, MPTs impose a large overhead as
the data exchanges between sibling sub-transactions impose a
synchronization phase between the worker threads of different
partitions and leads to frequent stalls in the processing.

In the high contention workload (Fig. 3b), the absolute
peak throughput achieved by Sparkle is clearly lower than
in the previous scenario. Yet, we observe up to approx. 6×
speed-up versus the best baseline, i.e., Calvin, which scales
only up to 5 threads, as in the previous workload, before
being bottlenecked by the sequencing thread. This striking
performance gain is achieved despite, as expectable, Sparkle
incurs a high contention rate, given its speculative nature
and the high probability of conflicts between of transactions.
The most dramatic performance drop, though, is experienced
by S-SMR. In this case, when using more than a single
thread, the data (which is populated with a single warehouse)
has to be sharded over multiple partitions (in this case we
partition by district up to 10 threads, and then using random
hashing), forcing most transactions to access more than a
single partition. This is particularly onerous for long read-
only transactions, such as OrderStatus, which access hundreds
of keys and force the worker threads of different partitions to
synchronize hundreds of times to process a single transaction.

C. Distributed deployment

Let us now analyze the performance of Sparkle when de-
ployed over a medium scale cluster encompassing 8 machines.

We start by presenting, in Fig. 4, the results for the synthetic
benchmark considering four scenarios, which differ by the
percentage of MPTs they generate. In each of the 4 plots in
Fig. 4 we vary, on the X-axis, the percentage of dependent
transactions, and report throughput and abort rate for all the
considered solutions when using a low (LC) and medium
contention (MC) workload. For the case of S-SMR, since its
performance is oblivious to the contention level (given that it
processes transactions sequentially at each partition), we only
report results for the LC workload.

First, let us discuss Fig. 4a first, which reports results for
a workload that does not generate any MPT. We can see that
Sparkle overall achieves the highest throughput, and that its
performance is slightly reduced in the MC workload, but is
not affected by the rate of dependent transactions. In this
scenario S-SMR also achieves approx. 60% lower throughput
than Sparkle. This can be explained considering that Sparkle
(and Calvin) can process transactions concurrently, using all
the available cores (5 in this testbed), whereas S-SMR’s single
thread execution model intrinsically limits its scalability.

Finally, looking at Calvin’s throughput, we can see that
its throughput reduces dramatically as the ratio of dependent
transaction increases. Nevertheless, even with 0% of dependent
transaction, Calvin’s throughput is throttled by its scheduling
thread, which leads it to achieve lower throughput than both
Sparkle and S-SMR. With 100% of dependent transactions,
Calvin thrashes, as the likelihood for dependent transactions
to be aborted (possibly several time) quickly grows even
in low/medium conflict workloads. In fact, Calvin needs
to execute a so called reconnaissance phase for dependent
transactions to estimate their read- and write-sets, and if
the prediction turns out to be wrong during execution, these
transactions have to be aborted and re-executed. Note that the
high frequency of abort of dependent transactions imposes
overhead not only to worker threads, but also to Calvin’s
scheduler thread – upon each abort and restart of a (dependent)
transaction, the scheduler thread has to release and acquire its
locks, incurring non-negligible overhead.

Figs. 4b, 4c and 4d report the results obtained when increas-
ing the percentage of MPTs to 1%, 10% and 50%, respectively.
The first observation we make is that that S-SMR’s throughput
drops significantly as the rate of MPT grows. As already
mentioned in §VI-B, MPTs incur a large overhead with S-
SMR, due to the synchronization they impose between the
worker threads of different partitions. Since S-SMR uses a
single worker thread per partition, whenever a MPT is forced
to block waiting for remote data from a sibling partition, no
other transaction can be processed at that partition — unlike
in Calvin or Sparkle. In distributed settings, as the communi-
cation latency between partitions is strongly amplified (with
respect to the single machine scenario considered in §VI-B)
the performance toll imposed by MPT also grows radically and
S-SMR’s throughput is severely throttled by network latency:
with 50% MPTs, S-SMR’s throughput drops by about 40×
compared with the case of no MPTs!

The throughput of Calvin and Sparkle throughput reduces
more gradually as the MPT increases. This is because both of
them allow activating the processing of different transactions,
whenever an MPT is blocked waiting for remote data. Similar
to what already observed in Figure 4a, also in this case, the
throughput of Calvin drops dramatically in presence of even
a small fraction of dependent transactions, approximately by
a factor 2× with as low as 10% dependent transactions.

By analyzing Sparkle, we see that although its throughput
also reduces with distributed transactions, its throughput is
not affected as significantly as with S-SMR. It is also worth

1 20 40 60 100

Percentage of distributed transactions (%)

0

1

2

3

4

5

6

7

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

Sparkle: CC

Sparkle: SC

Sparkle: SC Schedule

Fig. 6: Throughput of Sparkle : CC, Sparkle : SC and
Sparkle : SC + schedule, normalized to that of Sparkle : Cons,
while varying the percentage of MPTs.

noting that in the 50% MPTs scenario and in absence of de-
pendent transactions, Calvin achieves 30% higher throughput
than Sparkle. This can be explained by considering that, in
this workload, Calvin’s throughput is upper bounded by the
processing speed of MPTs (which take orders of magnitude
longer than SPTs) and not by its scheduling thread. Also, due
to its pessimistic/lock-based nature, Calvin does not require
MPTs to undergo a confirmation phase. Despite Sparkle strives
to minimize the performance impact of the MPTs’ confirma-
tion phase (via the combined use of scheduling techniques
and of the SC mechanism), this still introduces additional
communication overhead. Nonetheless, we highlight that, in
the 50% MPT scenario, Sparkle outperforms Calvin as soon
as the ratio of of dependent transactions is as large as 1%,
achieving an average throughput gain (across the considered
MPT ratios) of more than one order of magnitude. Analogous
gains are observed also with respect to S-SMR.

Next, we present the results obtained using the TPC-C
benchmark. Figure 5 shows that Sparkle outperforms Calvin
and S-SMR in all workloads, with peak gains of approx. 3×
and approx. 4×, respectively. The key reason why S-SMR
achieves relatively poor performance is that these three TPC-
C workload generate a small, but not negligible fraction
(varying from approx. 1%, for the 10% update workload,
to approx. 10%, for the 90% update workload) of MPT
transactions. Calvin’s performance, instead, can be explained
considering that three out of the five transaction profiles
are dependent transactions, which impose heavy load on the
locking thread and are prone to incur frequent restarts.

1) Benefits of SC and scheduling: Next, we conduct an
experiment aimed to quantify the performance benefits brought
about by using, either jointly or in synergy, two key mecha-
nisms used by Sparkle to regulate MPT’s execution: SC and
scheduling. Further, we aim to quantify to what extent the use
of speculative transaction processing (in particular allowing
MPTs to disseminate speculative data to their siblings) can
enhance the throughput of MPT transactions. To this end, we
compare the performance of four Sparkle variants:
• Sparkle:Cons: a conservative variant in which MPTs are
only allowed to send remote data to their siblings if they are
guaranteed to have observed a locally consistent snapshot, i.e.,
if their preceding transaction has final committed. This spares
MPTs from the need (and cost) of any confirmation, but also
throttles down throughput severely as it precludes any form of

parallelism between MPTs in execution at the same partition.
• Sparkle:CC: in which, as in Sparkle, MPTs disseminate to
their siblings the data they read locally in a speculative fashion.
Unlike Sparkle, though, this variant uses a conservative con-
firmation (CC) scheme, which sends confirmation messages
only when transactions final commit, and not when they
speculatively commit. The CC scheme is significantly simpler
than SC, as, with CC, a transaction generates exactly one
confirmation message, and not an a priori unknown number, as
it is the case for SC. However, with CC, a partition can send
the confirmation for its i + 1-th transaction, only upon final
committing its i-th transaction, which, in its turn, depends on
the reception of the confirmation message that is only sent
upon the final commit of the i − 1-th transaction. Thus, the
throughput of MPTs becomes inherently upper bounded by the
rate of completion of the inter-partition confirmation phase,
which involves an all-to-all synchronous communication be-
tween the involved partitions.
• Sparkle:SC, which uses SCs but not scheduling;
• Sparkle:SC+Schedule, which uses SC and scheduling.

We use the low conflict micro benchmark configuration
and generate varying ratios of MPTs. For better readability,
in Fig. 6 we report the normalized throughput of the three
protocols allowing speculative reads across partitions against
Sparkle:Cons. The plot allows us to draw three main conclu-
sions. First, all variants achieve significant (up to approx. 3×)
w.r.t. Sparkle:Cons, confirming the relevance of using specula-
tive processing techniques to cope with MPTs. Second, unless
coupled with scheduling, SC provides no perceivable benefit
with respect to a simpler CC approach: without scheduling,
most MPTs need to resort to using a CC scheme, hence the
throughputs of Sparkle:CC and Sparkle:SC is almost identical.
Finally, it allows us to quantify the gains reaped through the
joint use of scheduling and SC: up to 2× throughput increase
when compared to Sparkle:CC.

VII. CONCLUSIONS

This paper introduced Sparkle, a novel distributed de-
terministic concurrency control for partially-replicated state
machines, which achieves significant performance gains over
state of the art PRSM systems via the joint use of specu-
lative transaction processing and scheduling techniques. Via
an extensive experimental study encompassing both synthetic
and realistic benchmarks, we show that 1) Sparkle has neg-
ligible overhead compared with a protocol implementing no
concurrency control, in conflict-free workloads, 2) Sparkle can
achieve more than one order of magnitude throughput gains,
comparing with state of the art PRSM systems, in workloads
characterized by high conflict rates and frequent MPTs.

Acknowledgements. We are grateful to our shepherd Alexey
Gotsman and the anonymous reviewers. This work is partially
funded by the LightKone project (732505) in the EU H2020
Programme, the Erasmus Mundus Doctorate Programme
(2012-0030) and by FCT projects UID/CEC/50021/2019 and
PTDC/EEISCR/1743/2014.

REFERENCES

[1] A. L. P. N. Alonso. Database replication for enterprise applications.
PhD thesis, Universidade do Minho, 2017.

[2] C. Basile, Z. Kalbarczyk, and R. Iyer. A preemptive deterministic
scheduling algorithm for multithreaded replicas. In Proc. of the 33th
International Conference on Dependable Systems and Networks, pages
149–158, June 2003.

[3] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic execution
hammer: How well does it actually pound nails. In Proc. of the 2nd
Workshop on Determinism and Correctness in Parallel Programming,
2011.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control
and recovery in database systems. 1987.

[5] C. E. Bezerra, F. Pedone, and R. V. Renesse. Scalable state-machine
replication. In Proc. of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pages 331–342, June
2014.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford. Spanner: Google’s globally-distributed database. In
Proc. of the 10th USENIX Symposium on Operating Systems Design
and Implementation, pages 261–264, Hollywood, CA, 2012. USENIX
Association.

[7] M. Couceiro, D. Didona, L. Rodrigues, and P. Romano. Self-tuning in
Distributed Transactional Memory, pages 418–448. Springer Interna-
tional Publishing, Cham, 2015.

[8] M. Couceiro, P. Ruivo, P. Romano, and L. Rodrigues. Chasing the
optimum in replicated in-memory transactional platforms via protocol
adaptation. IEEE Transactions on Parallel and Distributed Systems,
26(11):2942–2955, Nov 2015.

[9] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. Dmp: deterministic shared
memory multiprocessing. In ACM SIGARCH Computer Architecture
News, volume 37, pages 85–96. ACM, 2009.

[10] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. Rcdc: a
relaxed consistency deterministic computer. In ACM SIGPLAN Notices,
volume 46, pages 67–78. ACM, 2011.

[11] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone.
Clock-rsm: Low-latency inter-datacenter state machine replication using
loosely synchronized physical clocks. In Proc. of the 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, pages 343–354. IEEE, 2014.

[12] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, 1985.

[14] R. Friedman and R. van Renesse. Packing messages as a tool for
boosting the performance of total ordering protocols. In Proc. of the
Sixth IEEE International Symposium on High Performance Distributed
Computing, pages 233–242, Aug 1997.

[15] S. Frølund and R. Guerraoui. e-transactions: End-to-end reliability for
three-tier architectures. IEEE Transactions on Software Engineering,
28(4):378–395, Apr. 2002.

[16] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In Proc. of the 22nd ACM International Conference on
Management of Data, pages 173–182. ACM, 1996.

[17] Grid’5000. https://www.grid5000.fr/, 2018.
[18] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. Rex:

Replication at the speed of multi-core. In Proc. of the Ninth European
Conference on Computer Systems, page 11. ACM, 2014.

[19] S. Hirve, R. Palmieri, and B. Ravindran. Archie: a speculative replicated
transactional system. In Proc. of the 15th International Middleware
Conference, pages 265–276. ACM, 2014.

[20] T. Hoff. Latency is everywhere and it costs you sales - how to crush it.
High Scalability, july, 25, 2009.

[21] Intel. Threading building blocks. https://www.threadingbuildingblocks.
org/, 2018.

[22] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso.
Improving the scalability of fault-tolerant database clusters. In Proc. of
the 22nd International Conference on Distributed Computing Systems,
pages 477–484, July 2002.

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J.
Abadi. H-store: A high-performance, distributed main memory transac-
tion processing system. Proc. of the VLDB Endowment, 1(2):1496–1499,
Aug. 2008.

[24] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin.
All about eve: Execute-verify replication for multi-core servers. In
Proc. of the 10th USENIX Symposium on Operating Systems Design
and Implementation, pages 237–250, Hollywood, CA, 2012. USENIX.

[25] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. Mdcc:
Multi-data center consistency. In Proc. of the 8th ACM European
Conference on Computer Systems, pages 113–126. ACM, 2013.

[26] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, May 1998.

[27] J. Li, E. Michael, and D. R. Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In Proc. of the 26th
Symposium on Operating Systems Principles, pages 104–120. ACM,
2017.

[28] Z. Li. Sparkle codebase. https://github.com/marsleezm/spec_calvin.
[29] Z. Li, P. V. Roy, and P. Romano. Sparkle: Scalable speculative replication

for transactional datastores. Technical Report 4, INESC-ID, May 2018.
[30] Z. Li, P. Van Roy, and P. Romano. Enhancing throughput of partially

replicated state machines via multi-partition operation scheduling. In
Proc. of the IEEE 16th International Symposium on Network Computing
and Applications, pages 1–10. IEEE, 2017.

[31] Z. Li, P. Van Roy, and P. Romano. Transparent speculation in geo-
replicated transactional data stores. In Proc. of the 27th International
Symposium on High-Performance Parallel and Distributed Computing,
pages 255–266. ACM, 2018.

[32] P. J. Marandi, M. Primi, and F. Pedone. High performance state-machine
replication. In Proc. of the 41st IEEE/IFIP International Conference on
Dependable Systems and Networks, pages 454–465. IEEE, 2011.

[33] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting stm repli-
cation via aggressively optimistic transaction processing. In Proc. of
the Ninth IEEE International Symposium on Network Computing and
Applications, pages 20–27, July 2010.

[34] M. Patiño-Martinez, R. Jiménez-Peris, B. Kemme, and G. Alonso.
Middle-r: Consistent database replication at the middleware level. ACM
Transactions on Computer Systems, 23(4):375–423, 2005.

[35] F. Pedone and A. Schiper. Handling message semantics with generic
broadcast protocols. Distributed Computing, 15(2):97–107, 2002.

[36] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues.
Specula: Speculative replication of software transactional memory. In
Proc. of the 31st IEEE International Symposium on Reliable Distributed
Systems, pages 91–100, 2012.

[37] F. Quaglia and P. Romano. Ensuring e-transaction with asynchronous
and uncoordinated application server replicas. IEEE Transactions on
Parallel and Distributed Systems, 18(3):364–378, March 2007.

[38] P. Romano and M. Leonetti. Self-tuning batching in total order
broadcast protocols via analytical modelling and reinforcement learning.
In Proc. of International Conference on Computing, Networking and
Communications, 2012.

[39] M. M. Saad, M. J. Kishi, S. Jing, S. Hans, and R. Palmieri. Processing
transactions in a predefined order. In Proc. of the 24th Symposium on
Principles and Practice of Parallel Programming, pages 120–132, New
York, NY, USA, 2019. ACM.

[40] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
1990.

[41] A. Thomson. Calvin codebase. https://github.com/yaledb/calvin.
[42] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.

Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proc. of the 39th ACM SIGMOD International Conference
on Management of Data, pages 1–12. ACM, 2012.

[43] TPC-consortium. Tpc benchmark-w specification v. 1.8. http://www.
tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[44] P. T. Wojciechowski, T. Kobus, and M. Kokociński. State-machine and
deferred-update replication: Analysis and comparison. IEEE Transac-
tions on Parallel and Distributed Systems, 28(3):891–904, March 2017.

[45] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R.
Ports. Building consistent transactions with inconsistent replication. In
Proc. of the 25th Symposium on Operating Systems Principles, pages
263–278. ACM, 2015.

https://www.grid5000.fr/
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://github.com/marsleezm/spec_calvin
https://github.com/yaledb/calvin
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

