
Efficient MoM simulation of 3D metallic antenna
connected to finite ground plane

Jean Cavillot, Christophe Craeye
ICTEAM
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Abstract—An efficient method is presented to simulate a 3D an-
tenna connected to a finite ground plane itself lying on a layered
medium. The spectral interactions between equivalent currents
of the antenna and the finite ground plane are accelerated thanks
to an asymptotic extraction of the integrated spectrum. The term
accounting for the asymptotic part is obtained in free-space.
Besides, efficient techniques for finite ground planes of canonical
shapes cannot be considered in this case because the connection
between the ground plane and the antenna is established with
a fine mesh region which breaks the symmetries of the finite
ground plane equivalent currents. Here a method to remedy this
issue and which efficiently simulates defected rectangular ground
planes is presented. The method is based on Toeplitz matrices and
the defect is taken into account by exploiting a memory-efficient
direct method.

Index Terms—Method of Moments, Finite ground plane, In-
homogeneous plane waves, Toeplitz

I. INTRODUCTION

Many applications including radio astronomy [1] and syn-
thetic aperture radars (SAR) [2] use 3D metallic antennas
on top of finite platforms. The finite aspect of the platform
has an impact on the antenna input impedance and radiation
pattern. These effects are usually taken into account using the
method of images which assumes an infinite ground plane. In
some cases, this assumption is too restrictive and the antenna
parameters are significantly different when considering the
finite aspect of the ground plane. For example, this can have a
serious impact if the antennas are used for pattern-nulling. The
performance will deteriorate if the pattern zeroes obtained with
the infinite ground plane assumption are in practice shifted or
degraded due to the finite platform aspect. This issue is of
great importance in applications like radio astronomy where
pattern-nulling is used to cancel interferences from unwanted
sources such as the sun in order to achieve high sensitivity.
Accurate pattern nulling [3] is also of great importance in
telecommunication systems to cancel interference with unde-
sired sources while receiving a signal from a given direction. A
good knowledge of the pattern which includes the finite ground
plane can prevent the degradation of the signal-to-noise ratio.
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Finite ground planes are electrically large objects, which
means that their inclusion in the simulation model alters the
performance in terms of memory storage and simulation time.
That is why solvers based on the integral equations (IEs)
such as the classical Method of Moments (MoM), known for
their accuracy, are inconvenient in those problems. Previously,
asymptotic methods including the uniform theory of diffraction
(UTD) were used to study the impact of the ground plane [4],
[5]. Other techniques separate the problem into two distinct
domains: one domain corresponding to the antenna and its
direct surrounding where the MoM is used and one domain
corresponding to the platform where the physical optics (PO)
is applied [6]. The results obtained with this technique can
be improved by iterating between those two regions [7]. Hy-
bridized techniques based on multilevel fast multipoles were
also used to simulate arrays on large and complex platforms
[8].
In radio astronomy, some experiments are conducted with a
single antenna lying on a finite ground plane, itself lying
on soil [9]–[11]. The soil is generally modeled as a layered
medium, which means that the spectral formulation of the
MoM is more convenient in this situation. In [12], [13] a
spectral method based on inhomogeneous plane waves is
developed to compute the MoM interactions between the
antenna and the finite ground plane. In this formulation, the
soil is taken into account through a wavenumber-dependent
reflection coefficient. While this method shows great efficiency
when there is some distance between the antenna equivalent
currents and the ground plane, its performance degrades when
the antenna is directly connected to the ground plane. In that
case, the plane wave spectrum that needs to be integrated to
compute the interactions between equivalent currents close
to the ground plane and the ground plane itself is slowly
converging and a great number of integration points is needed.
In this paper, we consider that the antenna is connected to the
ground plane through strictly vertical conductors. This allows
one to apply a Kummer extraction, which consists of directly
extracting an asymptotic part of the spectrum of interaction
and accounting for it in free-space [14].
Once the interactions between the antenna and the ground
plane are calculated, the MoM linear system of equations can
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be solved. Efficient methods have been used to solve the MoM
for canonical shapes of the finite ground plane [13], [15].
However, when the antenna is directly connected to the ground
plane, a fine mesh region is established at the connection points
and the translational or rotational symmetries of the ground
plane equivalent currents are broken. Here we remedy this
problem by creating an artificial defect in a regular ground
plane where the fine mesh region can be placed. This defect
is taken into account using direct methods afterwards.

II. METHOD OF MOMENTS

A. Antenna connected to ground plane

Let us consider a 3D metallic antenna connected to a finite
ground plane [9], [10] as depicted in Figs. 1, 2. We consider a
frequency of 60 MHz. The antenna is divided into four regions:
the top of the antenna (green region), the bottom of the antenna
(red region), the fine mesh region connecting the antenna to
the ground plane (black region) and the ground plane (blue
region). The red region corresponds to all equivalent currents
located below the plane z = λ0/20 where λ0 is the free space
wavelength. The ground plane is lying on top of a semi-infinite
or multilayered soil. The MoM system of linear equations
reads: 

Zbb Zbk Zbr Zbg
Zkb Zkk Zkr Zkg
Zrb Zrk Zrr Zrg
Zgb Zgk Zgr Zgg

 i = v, (1)

where Zmn is a the MoM matrix of interactions between
regions m and n. The subscripts b,k, r, g correspond to the
blue, black, red and green regions, respectively. i contains the
current coefficient and v is the excitation vector.

Fig. 1. 3D metallic antenna lying on finite ground plane.

B. Interactions using inhomogeneous plane waves

The MoM interactions between the green part and the blue
or the black parts can be computed using inhomogeneous plane
waves. Using the mathematical definitions of [12], [16], [17]

Fig. 2. 3D metallic antenna lying on finite ground plane: top view.

the interaction between the green part of the antenna and the
blue region read:

Zgb =
−j k0 η0

(2π)
2

∫∫ [
Fg,TE F ∗∗b,TE (1 + ΓTE)

+ Fg,TM F ∗∗b,TM (1 − ΓTM )
] 1

2jkz
dkx dky

(2)

where k0 is the free space wavenumber, η0 is the free space
impedance, Γp is the reflection coefficient for polarization p
(TE or TM) due to the presence of the soil [18]. Fg,p and F ∗∗b,p
are defined as the radiation patterns with polarization p of the
green and blue domains respectively. The radiation patterns
FR,p and F ∗∗R,p of a given region R are defined as follows:

FR,p(kx, ky) =

∫∫∫
V ′

êdp · ~JR(~r′) ej(kxx
′+kyy

′−kzz
′)dV ′ ,

(3)

F ∗∗R,p(kx, ky) =

∫∫∫
V ′

êup · ~JR(~r′) e−j(kxx
′+kyy

′−kzz
′)dV ′ ,

(4)
where ~JR(~r′) is the current density of the region R, êp is
the polarization vector of polarization p and the superscripts
u, d indicate upwards or downwards propagating waves,
respectively [16].

C. Kummer extraction combined with inhomogeneous plane
waves

When considering the MoM interactions between the red
part of Fig. 1 and the ground plane, the inhomogeneous plane
waves method looses its efficiency. Indeed the equivalent
currents of the antenna are very close to the ground plane
which means that the inhomogeneous plane waves spectrum
to integrate is slowly converging and requires more integration
points. In this paper, we use a Kummer extraction that allows
one to account for the asymptotic part of the spectrum through
a weighted free-space term [14]. After extraction of the
asymptotic part, the filtered spectrum can be integrated with
inhomogeneous plane waves.
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Let us consider the interaction between the vertical equivalent
currents of the red region and the ground plane, the MoM
matrix of interaction can be obtained as follows:

Zrb =
−j k0 η0

(2π)
2

∫∫ [
Fr,TM F ∗∗b,TM (1 − ΓTM )

]
1

2jkz
dkx dky.

(5)

This equation only contains TM polarization because the
electric field radiated by vertical equivalent currents only
produces a TM component. Thanks to this property, equation
(5) can be decomposed into two terms. In the first term, the
asymptotic part of the inhomogeneous plane waves spectrum
is removed:

Zfilt
rb =

−j k0 η0
(2π)

2

∫∫ [
Fr,TM F ∗∗b,TM

((1 − ΓTM ) − (1 − Γas
TM ))

] 1

2jkz
dkx dky,

(6)

where the superscript filt indicates that the spectrum is filtered
and where Γas

TM corresponds to the asymptotic part of the
reflection coefficient and is not wavenumber-dependent. The
second term compensates for the removal of the asymptotic
part and corresponds to the free space interaction matrix
multiplied by a constant:

Zas
rb = (1 − Γas

TM ) Zfs
rb, (7)

where the superscript fs indicates that the interactions are
computed in free-space. Finally, these results are added up
to obtain:

Zrb = Zfilt
rb + Zas

ga. (8)

The filtering effect is illustrated for the Green’s function in Fig.
3. For this result, we consider a semi-infinite soil of relative
permittivity εr = 4.8. In this case, Γas

TM = (εr − 1)/(εr + 1).
The blue curve is the Green’s function, the red curve approx-
imates the asymptotic part of the Green’s function and the
yellow curve is the difference between the first two curves.

Fig. 3. Spectral Green’s function: asymptotic extraction.

D. Defected rectangular ground plane

Let us first consider a perfect rectangular ground plane. If
it is meshed with rooftop basis functions and represented with
repeating smaller rectangular domains [15], the ground plane
MoM matrix of interactions is Toeplitz-block Toeplitz:

T =


T11 T12 · · · · · · T1N

T21 T11 T12 · · · T2N

... T21 T11
. . .

...
...

. . . . . . . . . T12

TN1 TN2 · · · T21 T11

 (9)

with N the number of repeated rectangular domains and Tij

denoting the interaction between domain i and domain j. This
property enables the low memory storage of the inverse of T,
which can be written as a sum of products of block-circulant
matrices [15], [19]:

T−1 =
1

2
(M1M2 − M3M4) (10)

where M2, M4 are block-circulant matrices and M1, M3 are
block skew-circulant matrices. Those matrices can be obtained
by solving the systems of linear equations involving the matrix
T in equations (15)-(18) of [19]. The block-circulant structure
of the matrices M1,M2,M3,M4 enables the use of the FFT
to compute any matrix-vector product with T−1. From here,
let us suppose that one needs to remove some of the ground
plane basis functions to include the black region as shown in
Fig. 1. This creates a defect in the finite ground plane and
the MoM matrix of interaction of the blue part is no longer
Toeplitz-block Toeplitz. This section shows how to efficiently
compute the inverse of the MoM matrix associated with the
defected rectangular ground plane with low memory storage.
In order to take into account the defected region, zeroes are
included in the rows of T having indices which correspond to
the defected region. The new matrix, obtained after the zeroes
inclusion in T, can be written:

E = (I− Is) T + Is = (I− Is + Is T−1) T = W T (11)

where I is the identity matrix and Is is a diagonal matrix with
ones on the entries corresponding to the defect. From there,
the inverse of E can be written as follows:

E−1 = T−1(I− Is + Is T−1)
−1

= T−1W−1. (12)

A compact representation of W−1 can be found. This represen-
tation is composed of the matrix T−1, and an additional matrix
corresponding to the size of the defect. While this matrix is
not easily obtained in terms of computational complexity, this
formulation is certainly memory-efficient. Finally, the MoM
system of linear equations in (1) can be solved using the
Schur’s complement [15]. To that end, we first rewrite it as
follows: [

E B
C D

] [
ie
id

]
=

[
ve
vd

]
, (13)

where the matrix E accounts for the defected ground plane
and where the matrices B,C,D account for the antenna and
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the black domain. The subscript e indicates the defected
ground plane and the subscript d represents the red, green and
black regions (see Fig. 1). Using the Schur’s complement, the
solution of the linear system of equations can be obtained as
follows:

(
−C T−1W−1B + D

)
id =

(
vd − C T−1W−1 ve

)
ie = T−1W−1 (vt − B id).

(14)

where it is assumed that a matrix of same size as D is
invertible, which is generally the case for classical antennas.
The advantage of this method lies in the compact form of the
defected ground plane MoM matrix and its fast multiplication
with the use of FFTs.

E. Radiation pattern

Using the methods described above, the radiation pattern of
the antenna on a finite ground plane above a semi-infinite soil
is calculated. Fig. 4 compares the radiation pattern obtained
with the infinite ground plane assumption with the ones
obtained with a soil of relative permittivity εr = 1 and
εr = 5 − 6j. A rectangular ground plane of size 20 m ×
20 m is selected for the two latter cases. Although the ground
plane is relatively large (4λ0 × 4λ0), a significant difference
between those three patterns is observed.

Fig. 4. Comparison of the radiation pattern obtained with the infinite ground
plane case, with a 20 m × 20 m finite ground plane in free space and above
a lossy soil of relative permittivity εr .

III. CONCLUSION

This paper presents an efficient method to deal with the
close range spectral MoM interactions between a 3D antenna
and a finite ground plane lying on a layered medium. This
method is based on an asymptotic extraction of the integrated
spectrum which allows the use of fewer integration points
while the asymptotic term is computed in free space. Besides,
a technique is presented to benefit from the symmetries of
the rectangular ground plane even if that plane is locally
defected. It makes use of an interesting property of the

inverse of Toeplitz matrices. The additional memory storage,
besides the one needed for the rectangular ground plane (linear
complexity), corresponds to a matrix of the size of the defect.
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