
Building a chain of high-speed VNFs in no time
(Invited Paper)

Tom Barbette, Cyril Soldani, Romain Gaillard and Laurent Mathy

University of Liege
firstname.lastname@uliege.be

Abstract—To cope with the growing performance needs of
appliances in datacenters or the network edge, current middle-
box functionalities such as firewalls, NAT, DPI, content-aware
optimizers or load-balancers are often implemented on multiple
(perhaps virtual) machines.

In this work, we design a system able to run a pipeline of
VNFs with a high level of parallelism to handle many flows. We
provide the user facilities to define the traffic class of interest
for the VNF, a definition of session to group the packets such
as the TCP 4-tuples, and the amount of space per sessions. The
system will then synthesize the classification and build a unique,
efficient flow table. We build an abstract view of flows and use
it to implement support for seamless inspection and modification
of the content of any flow (such as TCP or HTTP), automatically
reflecting a consistent view, across layers, of flows modified on-
the-fly.

Our prototype gives rise to a user-space software NFV data-
plane enabling easy implementation of middlebox functionalities,
as well as the deployment of complex scenarios. Our prototype
implementation is able to handle our testbed limit of ~ 34 Gbps
of HTTP requests (for 8-KB files) through a service chain of
multiples stateful VNFs, on a single Xeon core.

I. INTRODUCTION

According to [?] and [?], there are roughly as many
middleboxes as routers in enterprise networks. A myriad of
middleboxes is also deployed in mobile networks [?]. These
middleboxes are there for good reasons, as they provide
network security as well as performance enhancements.

However, the various middleboxes often complicate net-
work management and operations, as well as slow down in-
novation, because they are often independent systems working
like complete black boxes.

Network Function Virtualization (NFV) is an approach
where middlebox functionality is implemented in software on
commodity hardware, not only rendering the implementation
of middleboxes less opaque, but also supporting the outsourc-
ing of middlebox functionality to the cloud. In NFV settings,
just like in more traditional networks, network packets must
often be treated by several middleboxes, which leads to the
need of chaining several virtual network functions (VNFs)
together.

As exemplified in figure 1, such chains, if built in a
naive way, can easily lead to redundant work, such as packet
classification being performed in each VNF of the chain. And
once a packet has been classified, VNFs will also often perform
another (redundant) lookup to retrieve the state associated with

the corresponding flow, before the packet can be processed.
Those redundant operations, of course, reduce performance.

We therefore propose MiddleClick, a software flow pro-
cessing plateform that explicitly recognizes NFV chains and
automatically provides consolidation to avoid repeated (redun-
dant) work. More precisely, MiddleClick analyzes the various
classification needs of the VNFs in the chain, and synthesizes
a single, non-redundant classifier (see figure 2). Also, once
classified, packets are associated with a Flow Control Block
(FCB), which contains the aggregate state associated with the
flow, by each VNF. By passing the packets with a reference to
their FCB, the VNFs along the chain can easily, and quickly,
retrieve the associated state.

While such consolidation would already prove very useful
in terms of performance, MiddleClick goes further in terms of
facilitating the development of middlebox functionalities.

Indeed, building packet processing systems is often the
realm of specialist "guru" developers, who must juggle the
nitty-gritty details of protocol implementations, as well as low-
level system programming. To facilitate VNF development,
MiddleClick introduces a high-level stream abstraction, which
allows the programmer to concentrate on the functionality
of the VNF, by exposing iterator-like operators to specific
payloads of a flow of packets. MiddleClick then liberates the
programmer from the consequences of stream modifications,
by automatically rippling the effect of those changes to all
protocol layers in the system. In other words, a programmer
working, for instance, on a VNF that modifies web pages no
longer needs to understand the details of the TCP/IP protocol
stack. While most transmission channels are built on top
of HTTPS nowadays, datacenter owners usually decrypt the
traffic at the datacenter entry, exchanging unencrypted data
inside the datacenter itself. Middleboxes can therefore inspect
and potentially modify unencrypted streams. Modifications of a
stream is done without terminating the connection by applying
surgical modifications to the packets, leading to a very efficient
flow modification. This enables future innovations, such as
new TCP extensions as the protocol stack only needs to
understand how to modify the flow and only implements a
few TCP semantics. I.e. the stack behaves as transparently
as possible, being agnostic to changes in congestion or flow
control methods and retransmissions techniques used on any
ends of the connection. Support for heavier semantical changes
such as TCP FastOpen [?] would only need a few lines of code.

MiddleClick exploits user-space I/O frameworks (DPDK
or netmap) so that all VNFs run in user space, freeing
the programmer from the more hostile kernel development



Figure 1: Overall schematic of usual service chain of VNFs broken into basic components.

Figure 2: Overall schematic of the architecture we propose to unify the service chain

environment.

The hardware infrastructure where VNFs are deployed is
inherently parallel (e.g. multicore servers). Exploiting such
parallel compute power is notoriously difficult, so MiddleClick
also provides automated parallelism management, in order to
further lower the bar to VNF programming.

In section II, we explain how the VNFs among the service
chain are combined. From there stems a highly parallelisable
and non-redundant stream architecture that can be used as a
basis to support multiple protocols, as explained in section
III. Section IV reviews the state of the art and our specific
contributions.

Finally, we evaluate the performance of the prototype in
section V, before concluding.

This invited paper provides a high-level view of our
proposed solution and does not focus on the implementation
details of MiddleClick.

II. TRAFFIC CLASS AND SESSION UNIFICATION

Each VNF component declares the kind of packets it wants
(HTTP packets, all TCP packets, . . . ) and, if needed, the defini-
tion of session they want to see (packets grouped by IP pair, by
TCP 4 tuples, . . . ) and an amount of bytes needed per-session,
called the per-session scratchpad. The information provided
by each component is used to derive a unique classification
table that will avoid further re-classification on the packet
header. The classification runs before all VNF components, as
shown in figure 2. The classification can therefore potentially
be offloaded to some specific hardware or use classification
functionalities of the NIC.

Consider figure 3 as a simplified example. This system
handles ARP requests and replies in a packet-based fashion. It
runs a per-session load-balancer for UDP and TCP traffic, but
before that passes HTTP (TCP packets with port destination
80) traffic through some HTTP filter (e.g. a parental filter or
ad-remover). Other TCP traffic is dropped.

The ARP subsystem wants to receive ARP requests and
replies, and needs no session management. The HTTP filter

Figure 3: A small system handling ARP packets and applying
some processing on HTTP traffic, dropping other TCP streams.
It then load-balances UDP and HTTP traffic to some servers.

Rules Flow Control Block

Ethertype ARP Type Proto Dport Sport Dst Src Next hops Session space

ARP Request * * * * * 1, 2 -
ARP Reply * * * * * 1, 1 -

IP * TCP 80 52100 10.0.0.1 89.18.17.216 2, 2, 1 0x1a234579, 0
IP * TCP 80 32100 10.0.0.1 18.17.62.29 2, 2, 1 0x9e5cc632, 1
IP * TCP 80 52100 10.0.0.17 120.12.17.12 2, 2, 1 0xab38977d, 0
IP * TCP 80 PFP PFP PFP 2, 2, 1 TCPSession, int
IP * UDP 32100 32100 10.0.0.78 129.251.324.118 2, 1 0
IP * UDP PFP PFP PFP PFP 2, 1 int

Table I: Unified flow table
needs TCP packets directed to port 80. The load balancer
receives any HTTP or UDP traffic. Both the load-balancer and
the HTTP filter need a per-5-tuple scratchpad to write some
per-session metadata. Note that traffic classes are not limited to
packet fields. E.g., for an ISP a traffic class could be defined as
packets from one ingress to a specified egress, the combination
of the two determining the processing to apply.

A. Traffic class definition

In figure 3, each circle is one step of the classification
which would usually be handled by reading the corresponding
packet fields to decide the next step. The first level has 2
outputs, ARP or IP packets that could be identified as 1 and 2.
Following this idea, reaching a leaf of the classification path
can be considered as following a list of next hop numbers.
White lines in table I shows the resulting flow table.

To each rule will correspond a Flow Control Block (FCB).
Instead of classifying packets at all steps of the processing



chain as with the circles in figure 3, all the necessary informa-
tion is included in the FCB, which starts with the list of next
hops.

class ARPResponder : public FlowElement { public:

ARPResponder() CLICK_COLD;
~ARPResponder() CLICK_COLD;

const char *class_name() const { return "ARPResponder"; }
const char *port_count() const { return PORTS_1_1X2; }
const char *processing() const { return PROCESSING_A_AH; }

FLOW_ELEMENT_DEFINE_SESSION_CONTEXT("20/0001", FLOW_ARP);

[...]
}

Figure 4: Example of session definition for the ARP responder
element. Only the coloured text is specific to our proposal

We based our prototype on FastClick [?], an extension of
the Click Modular Router [?]. Click allows to pipe simple
networking elements together to build a more complex network
function using a simple language. The elements themselves
are written in C++, and implement a few virtual functions to
handle packets and events as defined by the common ancestor
of all elements, the Element class.

Figure 4 shows the changes (in purple) made to the original
ARPResponder element of Click to ask for the traffic class
of ARP packets that are queries (offset 20, value 0001). The
classification rule will be directly used to build the table,
while the usage of the FLOW_ARP constant will be described
in section III-A, in short it will allow the previous context
(Ethernet in this case) to spawn a rule for ARP packets, that is
the equivalent of adding the traffic class 12/0806 but in a more
programmable way, allowing to support tunnelling of protocols
inside others if the previous context was not Ethernet.

B. Session definition

We allow each component to describe, on top of flows,
the sessions they want to see, and an amount of space they
need per-session to write their metadata, the scratchpad. That
space will be assigned in the FCB session space, as in table
I. To define sessions, rules allow special header wildcards
that are Populate From Packet (PFP). The PFP entries mean
that the rule must be duplicated with the exact values of
the fields when the rule is matched. The difference between
defining a rule such as proto = TCP ; dstport = ∗ and
proto = TCP ; dstport = PFP is that the second one will
lead to one session and therefore one scratchpad per TCP
destination port.

Coloured lines in table I show the flow table after receiving
multiple packets that hit each of the PFP rules. Only HTTP
and UDP rules contain PFP field, spawning new rules and
duplicating the session space.

We added a few virtual functions to FastClick, allowing
elements to ask for some traffic class or per-session scratchpad.
Figure 5 shows a more convenient, higher-level abstraction of
a Click element that defines a standard 4-tuple for TCP session
and asks for some space to fit a given structure in the FCB.

C. Service chain definition

In Click, a service chain is defined as a set of elements
piped together. Dispatching traffic according to header fields -

//Per-session data kept for the NAT
struct NATEntryIN {

PortRef* ref;
bool fin_seen;

};

class FlowNAT : public FlowStateElement<FlowNAT,NATEntryIN> {

public:

[...]

FLOW_ELEMENT_DEFINE_SESSION_CONTEXT("12/0/ffffffff "
"16/0/ffffffff 22/0/ffff 20/0/ffff", FLOW_TCP);

void push_batch(int, NATEntryIN*, PacketBatch *);
}

Figure 5: Example of session definition for a self-contained
NAT element
the traffic class classification - is done using a Classifier
element (or a variant such as IPClassifier that provides
more convenience), which dispatches traffic to following ele-
ments according to a given set of rules, as shown in figure 6
(a).

ct :: Classifier(12/0800,
12/0806 20/0001,
12/0806 20/0002);

cp :: IPClassifier(proto tcp, proto udp, -);
cd :: IPClassifier(dst tcp port 80, -);
td :: ToDevice(...)
arp_querier :: ARPQuerier(...) -> td;
lb :: LoadBalancer() -> arp_querier;
FromDevice(...) -> ct;
ct[0] -> cp;
ct[1] -> ARPResponder(...)[0];
ct[2] -> [1]arp_querier;
cp[0] -> cd;
cp[1] -> lb;
cd[0] -> HTTPProcessor() -> lb;

(a)

td ::ToDevice(...);
arp_querier :: ARPQuerier(...) -> td;
lb :: LoadBalancer() -> arp_querier;
fc :: FlowClassifier();
FromDevice(...) -> fc;
fc ∼> ARPResponder(...)[0] -> td;
fc ∼> [1]arp_querier;
fc ∼> HTTPProcessor() -> lb;
fc ∼> lb;

(b)

Figure 6: (a) Click configuration for the example of figure 3.
(b) Corresponding MiddleClick configuration.

In MiddleClick, a FlowClassifier element must
be placed at the beginning of each input path. The
FlowClassifier will traverse the graph, using the traffic
class and session definition to build the flow table as ex-
plained above. In MiddleClick, the Classifier is mod-
ified to expose its rules as a set of traffic classes. The
FlowClassifier will therefore include the classifier’s rules
in the flow table, but also set the next hop number according to
the Click output path in the FCB. Therefore, the Classifier
just has to read the next hop number in the FCB to decide
the output, without classifying in place or even touching the
packet.

Alternatively, figure 6 (b) illustrates a new link syntax
called the context link, ∼>, which will automatically place
a Classifier element according to the traffic classes ex-
ported by all elements to the right of the arrow. Context links
allow to remove the needs for obvious classification. In our
example, the input can directly be tied using the context link
to all ARP elements, the flow defined by the ARP elements will
be used to actually give ARP requests to the ARPResponder,
replies to the ARPQuerier and other packets to the remaining



paths. In many cases, the element will always ask for the same
packets and an explicit Classifier is not needed.

If some elements rewrite headers that have been classified
upon, such as a NAT, no re-classification is done. Indeed,
in most cases the packets still belong to the same session.
If the session must change (e.g. divide a flow in multiple
sub-flows in a dynamic way), the operator can place a new
FlowClassifier in the chain that will assign new FCBs
and therefore new sessions. It is up to the operator to ensure
the service chain is still correct after rewriting, e.g. a firewall
placed after a NAT does not classify on the original addresses.

D. FCB size

All components of the service chain must be visited to
compute the total FCB size. Starting from each input, the
FlowClassifiers visit the downstream components and
computes the total size needed for all of them. When a packet
can traverse parallel paths but never both at the same time,
the same space can be assigned to both paths to optimize
space. The components are then informed of an offset in the
FCB where they will be able to find their requested space. To
avoid needing an indirection table, we prefer to waste some
space and have an offset independent of the input path so each
element has one and only one offset inside all potential FCBs
assigned to packets passing by, eventually leading to some
unused space. In figure 7 it would seem better to keep the Load

Figure 7: Computation of the size and offsets needed for the
FCBs. Nodes contain the size they require in the FCB, while
edges indicate the cumulative needed size (in bits).
Balancer data for UDP at the beginning of the block. But given
that FCBs are pool-allocated, leading to constant memory
allocation and a much easier recycling, and that offsets must
be unique, it would only cause un-ordered access for HTTP
flows.

If the data needed by a middlebox has variable size, the
middlebox may simply ask for space for its static data and
a pointer. The pointer can then be used to keep a reference
to memory allocated when the flow is first seen using another
dynamic memory allocation mechanism, like an efficient pool-
allocator. FCBs are managed in per-thread pools for efficient
allocation and recycling.

III. STREAM ABSTRACTION

At this point of our design, a middlebox developer can
easily receive a bunch of raw packets matching a given flow
along with their FCB. The developer knows directly to which
kind of traffic the given packets belong, as this is marked in the
FCB. If the component asked for some per-session scratchpad,
the middlebox component will also have some space for its
own use in the FCB.

FastClick already implements batching using linked lists
to pass lists of packets between elements, instead of single
packets. In MiddleClick, batches of packets are always packets

of the same session. To avoid having batches that are too small,
the flow classifier has a builder mode to put packets into an
internal ring of batches. For each packet, it searches the ring
for packets of the same session, and append the packet to the
end of the batch if found. When all packets are classified, the
flow classifier sends the session batches to the next element
one by one. Packets are reordered but the relative order inside
the same session is kept.

Hence, any middlebox element knows that it can work on
the payload of the packets of a batch as a single stream of
data.

A. Contexts

Most of the time, a middlebox developer expects a seamless
stream of data, not packets matching a given set of tuples,
but from a given protocol. The developer also wants a way
to touch the data without caring about the protocol details.
Instead of letting each VNFs handle flow reconstruction and
more generically protocol-dependent bookkeeping, we propose
a context-based approach.

We introduce the concept of stream context. Entry and exit
of contexts are done through pairs of IN and OUT elements,
such as TCPIn and TCPOut. Call to the context is done
through function calls to the previous context element. The
previous context element will handle its protocol specifics and
pass the request to the previous one and so on, until the first
entry element (IPIn in most cases) finds no other context
entry.

FromDevice(...) − > FlowClassifier
∼> IPIn

∼> UDPIn(TIMEOUT 300)
∼> WordMatcher(ATTACK, MODE REMOVE)

− > UDPOut
− > IPOut

− > ToDevice(1);

Figure 8: Configuration for a transparent middlebox that re-
moves the word "ATTACK" of UDP flow passing by, even
across packets. As UDP does not implement connection se-
mantics, the UDPIn element can set the session timeout to
some value, here 300 seconds.

Combined with context links, the usually complex Click
manual wiring actually becomes minimal. Figure 8 shows
a very simple example to implement a middlebox that will
remove the word “ATTACK” from UDP flows, even across
packet boundaries. Changing UDPIn/Out with TCPIn/Out
in this example would work, as the WordMatcher element
uses the abstract context system allowing to work on the
“seamless stream” of data and modify it, no matter the
protocol. We keep Click’s modularity but have a much more
streamlined default case. Context links can always be omitted
to use a more refined Classifier if the user wants finer
control on classification.

The context allows to issue requests to act on or modify
the stream. When in a given context, components can use a
content offset, a metadata associated with each packets, to
access the payload directly. On top of these facilities, we
offer multiple abstractions that allow to act on the data as a
stream, without the need to copy the packets payload, like
an iterator that can iterate across packets per bytes or per
chunks. This allows zero-copy inspection of a stream, but



Figure 9: Context approach. Upon entry in a context, the
payload offset is moved forward. When the stream is modified,
higher layers of context take care of the implications, such as
changing the TCP ACK number of the current packet and the
following ones.
still allowing the middlebox component using the higher-level
stream abstraction to access the headers if need be, a feature
all IDS need as some attacks may be based on headers fields.
This abstraction allows to implement new VNF components in
a few lines, that would otherwise appear much more complex.
We already provide multiple generic VNF elements that act on
the current context such as regular expression matcher, packet
counter, load balancer and an accelerated NAT.

When a middlebox is in IP context, the content offset is
set just after the IP header. If the middlebox modifies data in
such a way that the IP packet length changes, the length in
the IP header will be changed when the packet leaves the IP
context, and the checksum will be updated accordingly. This
is showed by the downwards arrows in figure 9.

In TCP context, the offset is moved forward after the TCP
header of each packet. Each context does its own work when
handling a request and then passes the request to the previous
context.

On top of the functions to modify the packets, the context
also allows to determine if a given packet is the last useful
one for the current context. In TCP context, the request will
simply check the TCP session state while HTTP context will
use the value of Content-Length or pass it to the previous
context if unknown. The context also allows to close the
current connection when the context implements support for
a stateful protocol such as TCP and registers a function to be
called when that connection terminates, usually to clean the
session scratchpad.

Modifications that impact the size of a stream are done
through requests to add bytes and remove bytes. The first one is
showed by the green boxes and lines in figure 9. Modification
of the number of bytes in a TCP stream implies a lot of
accounting around acknowledgement and sequence numbers
detailed in section III-C, for the current packet but also the
following ones. The IP header will also need to change if the
packet length changes, so the request is passed to the previous
context.

Figure 10 shows the code for a CRC computation element
using the per-chunk stream iterator. The process_data function
is called when a batch of chunks of payload is available.

struct fcb_crc {
unsigned int crc = 0xffffffff;

};

class FlowCRC : public StackChunkBufferElement<FlowCRC,fcb_crc> {
public:

[...]

int process_data(fcb_crc*, FlowBufferChunkIter&);

inline void release_stream(fcb_crc*) {
//Do something with fcb_crc->crc;

}
};

int
FlowCRC::process_data(fcb_crc* fcb, FlowBufferChunkIter& iterator)
{

unsigned crc = fcb->crc;
while (iterator) {

auto chunk = *iterator;
crc = update_crc(crc, (char *) chunk.bytes, chunk.length);
++iterator;

}
fcb->crc = crc;
return 0;

}

Figure 10: Code for a CRC stream computation element.
When the stream closes, the release_stream function is called,
allowing to do something with the final CRC. If the CRC was
computed as a checksum to check against a database of known
dangerous payload, the process_data could return a negative
value to terminate the connection right away.

B. TCP Flow stalling

One may want to buffer data before letting it go through.
This is, for instance, the caser if the last received packet for the
current session starts with the payload AT, and we’re searching
for (or replacing) occurence of the ATTACK pattern. Therefore
a decision cannot be made before the next chunk of data is
received. While our platform is protocol-agnostic, the TCP
case is chosen to show it is fit for purpose. As a TCP source
may wait for an ACK from the destination before sending more
packets, and buffering data may prevent the destination from
sending that ACK, this can lead to a deadlock. To solve this
issue, the TCP context provides an optional functionality to do
pro-active ACKing.

If enabled, when it receives a request for more packet,
the TCP context sends an ACK for the given packet to the
source with an acknowledgement number corresponding to the
sequence that the destination would have sent. We therefore
keep outgoing pre-ACKed TCP packets in a buffer until the
destination acknowledge them. Buffering is done when a
middlebox component specifies that it may stall or modify
packets, or when the component wants to protect against TCP
overlapping segment attacks [?]. Functions that do not need
to see a stream of data such as NATs or load-balancers do
not need to keep outgoing packets in buffers, as processing
retransmissions does not pose any problems. Buffering is done
by using reference counting, avoiding any packet copy.

Figure 11 shows the code for a simple IPS using the byte
iterator. It is using a DFA (assumed to be already built) with
its state kept inside the FCB. If the iterator is at the end of the
available payload, but the DFA is in the middle of a potential
match, the iterator will be left at the last point known to be
safe in the flow. Packets up to that point will be processed,
others will be kept in the FCB and a request for more data
will be made. This IPS, contrary to most IPS such as Snort
[?] or Suricata [?] is not subject to eviction attacks, as the
state of the matching is kept between windows. Moreover, the



int FlowIDSMatcher::process_data(fcb_ids* fcb,
FlowBufferContentIter& iterator) {

SimpleDFA::state_t state = fcb->state;

//Position in the flow where there is no pattern for sure
FlowBufferContentIter good_packets = iterator;

while (iterator) {
unsigned char c = *iterator;
_program.next(c, state); //Advance the DFA
if (unlikely(state == SimpleDFA::MATCHED)) {

_matched++;
return 1;

} else if (state == 0) {
//No possible match up to this point
good_packets = iterator;

}
++iterator;

}
if (state != 0) {

//No more data, but left in the middle of a potential match
iterator = ++good_packets;

}
fcb->state = state;
return 0;

}

Figure 11: Code for a DFA-based IPS that is not subject to
eviction, and only buffers data when the payload is missing
the next bytes in a state that may lead to the detection of a
pattern
buffering of packets is minimal as only the data part of a
potential match will be kept.

C. TCP Flow resizing

Stalling and re-ordering are requirements for modifying a
stream. Many applications need to modify the stream content.
For the specific web case, examples include rewriting HTTP
traffic to change URLs to CDN-based URLs, ad-insertion or
removal, along with potential new uses enabled by the novel
performance of the lightweight in-the-middle stack we propose
such as per-user targeted HTTP page modification, or a proxy
cache that would include image content in the page itself.
Pages could be translated on the fly to target the user language.
Other non-web usages include some protocol translator, video
transcoding or audio enhancement.

When the middlebox removes or adds data in a TCP stream,
the sequence number must be set accordingly so the destination
does not think the data has been lost or is a duplicate. How-
ever when the destination sends the corresponding ACK, the
number must be mapped back to its original value. The TCP
entry and exit components take care of modifying sequence
and acknowledgement number on the fly by keeping track of
the amount of removed and added bytes on both direction of
the flow.

IV. STATE OF THE ART

[?], [?], [?] implement user-level TCP stacks. In an NFV
context, there is no need to fully terminate the TCP connection,
packets pass through mostly untouched. Moreover, each in-
stance of those stacks will bring up a session classification and
TCP state management, which are factorized in our system.
MiddleClick is able to automatically collect informations from
the middlebox components and provide just enough, tailored
services.

E2 [?], NetBricks [?] and mOS [?] implement in-the-
middle TCP stacks with some similar abstractions, but do not
provide any factorization and acceleration of the full service
chain. Their flow abstraction for stream is limited to a less
flexible window system, and do not provide a generic non-TCP

1KB 8KB 64KB 512KB 4MB 32MB 256MB
File size

0

10

20

30

40

HT
TP

 T
hr

ou
gh

pu
t (

Gb
its

/s
)

Direct
MiddleClick
HAProxy
NGINX

8 32 128 512 2048
Request rate (KRequests/s)

1

10

100

1000

Av
g 

do
wn

lo
ad

 ti
m

e 
(m

s)

Direct
MiddleClick
HAProxy
NGINX

Figure 12: Data downloaded through a load-balancer using 128
concurrent connections. The proxy solution run on one core to
constraint the performance by the CPU and not the test-bench
capacity.
specific stream abstraction nor the session scratchpad facility,
likely losing a lot of performances when the box actually
run many different VNFs. xOMB [?] provides some protocol
independent modules through heavier message buffers, that
eventually leads to performances more than two order of
magnitude below ours (though, their paper is slightly older) for
comparable functionality. Moreover none of those frameworks
support efficient stalling and in-the-middle resizing of flows.
Only the needed protocols layers are invoked according the
context of each components, and when possible the layer is not
left across middleboxes like chaining multiple standard socket-
based application would, i.e. the stream is kept and checksums,
protocols specifics such as ACKs numbers are only recomputed
once for all middleboxes.

OpenBox [?], SNF [?], xOMB [?], NFP [?] and CoMb
[?] optimize the graph to reuse some basic components or
provide better CPU placement. CoMb decouples functions into
common parts to allow to re-use some bricks. OpenBox and
SNF goes a step further by differentiating kinds of bricks
and re-order then - when allowed - to allow further merging
of some bricks. While those works remove some redundant
classification, none of them combine the session classification
or provide an equivalent to the FCB facility.

V. PERFORMANCE EVALUATION

Tests are always done using 3 machines. One client that
generates traffic, a Device Under Test (DUT) and a traffic sink.
The client and dut have a 8-core Xeon E5-2630 v3, 32 GB
of RAM, while the sink has a 16-core E5-2683 v4, 64 GB
of RAM. All machines are interconnected using Intel XL710
2*40G NICs. All experiments are executed 3 time each for 20
seconds.

A. TCP load-balancing reverse proxy

To evaluate the flow performances of our system against
state-of-the art industrial solutions, we built a TCP load-
balancing reverse proxy. The proxy balances in a round-robin



way the incoming HTTP connections to multiple destinations,
making sure that packets of the same session go to the same
destination. It is an application typical of datacenters. The
requests traversing the proxy are NATed, to ensure that the
packets go back through the box so the source IP address can
be set back to the original destination address.

We compared our solution to HAProxy in TCP mode, and
NGINX in load-balancing mode. The proxy load-balances in
a round-robin way the connections towards another NGINX
server running on the sink that listens on 4 IP addresses for
this test. We made requests for file sizes from 0 KB to 256 MB.
The achieved throughput can be seen in figure 12, along with
the average latency to download 8K files under an increasing
request rate. The direct line shows the performance that can be
achieved without the DUT , that is the baseline of the testbed.

Our solution outperforms HA Proxy and NGINX in term
of throughput for every object sizes, ranging from a ∼ 5X
improvement for small file sizes to a ∼ 3X improvement with
bigger file sizes. When the DUT becomes the bottleneck, the
latency increases for the others solutions, while ours achieves
the limit of the testbed.

B. Service chaining

Figure 13 shows the performance of running some service
chains on 1 to 4 cores for 8K HTTP requests. First, we com-
pare NAT implementations using MiddleClick, FastClick, mOS
and the Linux NAT. Both FastClick and MiddleClick actually
achieve the limit of the testbed. That is ∼ 34 Gbps, using a
single core of the dut. Linux and mOS solutions fall far behind.
When adding a statistics VNF simply counting all bytes per-
sessions to the FastClick and MiddleClick solutions, FastClick
performances drop considerably because of the second session
classification. MiddleClick, however, still achieves the limit of
the testbed, as adding this function only extends the flow table
per a few bytes. To further highlight the advantage of using
MiddleClick, we introduce a few more functionalities to the
chain. When adding TCP reconstruction to the MiddleClick
chain, a hit is introduced that lowers performances to 20
Gbps, a cost paid for TCP state management and reordering
of TCP packets. Adding VNFs for flow statistics (byte count
per-session but only for the useful payload), a load balancer,
and a computation of a checksum (similar to the CRC compu-
tation element presented in figure 10 except it does a 4-bytes
checksum) induce very little impact as they will all have their
space in the FCB at the same cost, extended to fit all VNFs of
the service chain by MiddleClick without any manual tuning.
As a point of comparison, mOS with only stream statistics is
performing worst than the MiddleClick chain running 4 more
functions. Adding an IPS (simple string matcher) induces a
bigger hit because of the pattern matching algorithm that must
sill be improved. When using 2 cores, the chains up to the
load balancer achieves ~ 34 Gbps, while 3 cores are enough
to run the chain up to the checksum.

1 2 3 4
Number of cores

0

5

10

15

20

25

30

35

HT
TP

 T
hr

ou
gh

pu
t (

Gb
its

/s
)

MiddleClick NAT
+Stats
+TCP
+Stream stats

+LB
+Checksum
+IPS
FastClick NAT

FastClick NAT+Stats
Linux NAT
mOS NAT only
mOS Stream stats only

Figure 13: MiddleClick advantage when chaining multiple
NFV components compared to two functionally identical
FastClick setups for NAT and Statistics

VI. CONCLUSION

In this work, we have developed a high-speed framework
to build service chains of middleboxes. Our system has better
throughput and latency than other approaches, thanks to the
avoidance of multiple reclassification of packets as they pass
through the various middleboxes in a chain.

Our framework also eases the handling of per-flow or per-
session state. The middlebox developer can specify, in a flexi-
ble way, which flows or sessions the middlebox is interested in,
and the size of the state it needs for each flow/session. Then,
the system automatically provides and manages the associated
per-flow/session storage, which is directly available to the
middlebox components.

Finally, our framework exposes simple stream abstractions,
providing easy inspection of flow content at any protocol
level. The developer only needs to focus on the middlebox
functionality at the desired protocol level, and the framework
will adjust the lower-level protocol headers as needed, even
creating new packets if necessary. Our framework can also
act as a man-in-the-middle for stateful protocols such as TCP,
greatly simplifying high-level middleboxes development, while
avoiding the overhead of a full TCP stack.

Our open-source implementation is available1.

ACKNOWLEDGMENT

This work has been funded by the Fond National de la
Recherche Scientifique (FNRS) through the PDR ePi project.

1https://github.com/tbarbette/fastclick/tree/middleclick


	Introduction
	Traffic class and session unification
	Traffic class definition
	Session definition
	Service chain definition
	FCB size

	Stream abstraction
	Contexts
	TCP Flow stalling
	TCP Flow resizing

	State of the art
	Performance evaluation
	TCP load-balancing reverse proxy
	Service chaining

	Conclusion

