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Abstract: Among the different thermo-chemical recycling routes for plastic waste valorization, gas-

ification is one of the most promising, converting plastic waste into syngas (H2+CO) and energy in 

the presence of an oxygen-rich gas. Plastic waste gasification is associated with many different com-

plexities due to the multi-scale nature of the process, the feedstock complexity (mixed polyolefins 

with different contaminations), intricate reaction mechanisms, plastic properties (melting behavior 

and molecular weight distribution), and complex transport phenomena in a multi-phase flow sys-

tem. Hence, creating a reliable model calls for an extensive understanding of the phenomena at all 

scales, and more advanced modeling approaches than those applied today are required. Indeed, 

modeling of plastic waste gasification (PWG) is still in its infancy today. Our review paper shows 

that the thermophysical properties are rarely properly defined. Challenges in this regard together 

with possible methodologies to decently define these properties have been elaborated. The com-

plexities regarding the kinetic modeling of gasification are numerous, compared to, e.g., plastic 

waste pyrolysis, or coal and biomass gasification, which are elaborated in this work along with the 

possible solutions to overcome them. Moreover, transport limitations and phase transformations, 

which affect the apparent kinetics of the process, are not usually considered, while it is demon-

strated in this review that they are crucial in the robust prediction of the outcome. Hence, possible 

approaches in implementing available models to consider these limitations are suggested. Finally, 

the reactor-scale phenomena of PWG, which are more intricate than the similar processes—due to 

the presence of molten plastic—are usually simplified to the gas-solid systems, which can result in 

unreliable modeling frameworks. In this regard, an opportunity lies in the increased computational 

power that helps improve the model’s precision and allows us to include those complexities within 

the multi-scale PWG modeling. Using the more accurate modeling methodologies in combination 

with multi-scale modeling approaches will, in a decade, allow us to perform a rigorous optimization 

of the PWG process, improve existing and develop new gasifiers, and avoid fouling issues caused 

by tar. 
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1. Introduction 

Over the years, technological advances, population increase, and lifestyle changes 

have increased the amount of municipal solid waste (MSW), including food residue, wood 

waste, paper, textiles, plastics, and rubber. Although the rate of plastic production 

increase has been decreasing in recent years [1–3], and the world’s plastic production has 

been decreased by around 0.2% in 2020 compared to 2019 [4], the amount of plastic waste 

(PW) to be treated is still huge. Failure in the management of this waste results in 

catastrophic environmental problems. As an example, according to Cordier and Uehara 

[5], the estimated annual amount of PW entering the oceans is 4.8 MT and the total amount 

of plastics in the oceans could increase from 79.24 MT in 2010 to 183.14 MT (the worst-

case scenario) in 2030. Moreover, the energy required for the production of plastics, 

similar to many other industrial processes, is associated with a huge amount of CO2 

emissions, causing another important environmental problem. 

To deal with and manage this waste, different treatment methods are used, including 

landfilling, mechanical recycling, energy recovery, and thermo-chemical recycling. 

Depending on the location and specific requirements, each of these methods has its 

benefits and disadvantages. However, landfill sites shortage [6] and global warming are 

becoming serious deterrents to continuing landfilling and energy recovery, respectively. 

Hence, in the shift towards a circular economy for plastics, several recycling pathways 

have been investigated and in some cases commercialized. A higher increase rate of 

recycling compared to the energy recovery and negative trend of landfilling demonstrates 

the growing interest in recovering PW (Figure 1). 

It is worth mentioning that other than the recycling methods, alternatives can also 

fulfill reaching the circular economy goal. One of the important alternatives can be the 

reuse of the plastic waste in the construction industry [7,8], e.g., using PET and/or poly-

olefinic wastes in concrete, paving, soil-cement blocks, mortar, unfired clay brick, asphalt-

concrete mixtures [7], or masonry bricks [9]. Although the use of plastic waste in construc-

tion is still limited, it can compensate for the limitations that are faced in the recycling 

routes of the plastic circular economy. They not only help in reducing the problems asso-

ciated with plastic wastes, but the construction industry can also benefit from it by de-

creasing the depletion of natural resources [8]. 

 

Figure 1. The evolution of the share of treatment methods for the post-consumer (PC) plastic waste 

in EU member states, Norway, Switzerland, and the United Kingdom (adapted from [4]). 
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Mechanical recycling and re-extrusion are currently the most commercialized routes 

contributing to the current recycling rates of plastics, but they face limitations related to 

the quality of regranulates. End markets for these recyclates are limited due to uncertainty 

about their technical properties and other issues such as color and odor [10]. Although 

some new advancements have been made—such as using the polymer waste in 3D 

printing [11]—the thermo-chemical recycling pathway is intriguing and promising since 

it produces, or leads to the production of, a wide variety of products, including syngas, 

liquid pyrolysis oil, monomers, and petrochemical feedstock [12], as well as energy. 

Hence, this method is one of the options that can close the loop from PW to plastic 

production, to achieve a circular economy (Figure 2). 

 

Figure 2. Thermo-chemical recycling path of the plastic circular economy (adapted from [3]). 

Thermo-chemical recycling encompasses chemolysis, pyrolysis, gasification, fluid 

catalytic cracking (FCC), hydrogen technologies, and the KDV (Katalytische Drucklose 

Verölung in German or catalytic pressure-less depolymerization) process, which are 

explained extensively by Ragaert et al. [12]. Via catalytic routes for thermo-chemical 

recycling [13], some more unique products, such as carbon nanotube—a nano-scale 

hollow cylindrical structure—can also be produced. Moreover, the thermo-chemical 

recycling route can process a mixture of PW streams [14] without the need for substantial 

pre-treatment steps [15]. 

One of the most promising thermo-chemical recycling routes of PW is gasification, 

which is defined as a process to convert carbon-containing materials into 

synthetic/synthesis gas (H2 + CO) or so-called syngas, and is conducted at high 

temperatures (e.g., 850 °C) and usually at atmospheric pressure. This fact can be 

understood from the strong increase in the number of publications and citations in the 

field of plastic waste gasification (PWG) and its modeling (Figure 3). Considering this 
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trend and the extensive efforts that should be made to solve the problem of plastic waste, 

the goal of this review is to assess the opportunities and challenges of PWG from the 

viewpoint of multi-scale modeling. To do so, first, the process and its multi-scale modeling 

perspective in this review should be understood and clarified, which is summarized in 

Section 2. Afterward, opportunities and challenges in modeling this process on different 

scales, from molecular to the reactor, are reviewed, which span modeling the: 

thermophysical properties, reaction kinetics, internal and external transport phenomena 

together with phase transformations, and multi-phase flow modeling. 

 

Figure 3. Increased number of publications and citations related to the PWG and modeling of PWG 

(extracted from [16]). 

2. Plastic Waste Gasification: A Promising, but Less Mature Recycling Route 

Figure 4 demonstrates a simplified schematic of sequences occurring during 

gasification. PWG starts with melting of the PW, which is followed by pyrolysis, 

evaporation, and gasification. In pyrolysis, the cracking of the molecules in the liquid 

phase occurs. Some of the lighter species that are produced during this step are transferred 

to the gas phase (evaporation) [17], while the molten phase contains the depolymerized 

intermediates, including oils and waxes, cyclic compounds, diesel, and naphtha [18]. 

Subsequently, gas-phase pyrolysis and/or gasification reactions occur. Moreover, the 

produced char takes part in the gasification reactions. Typically gasification agents such 

as air or a mixture of air and steam are present in the reactor, depending on the desired 

product distribution and heating value [19] and the available separation technologies 

downstream. 

2.1. Opportunities and Challenges of PWG 

The opportunity that PWG offers is having more flexibility in processing different 

mixtures of plastic types, together with other feedstock, such as coal and biomass [19], 

which has made it a stronger thermo-chemical recycling route compared to other methods 

[20]. This can be attributed to the higher temperature environment, which results in 
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smaller and more stable components. Another advantage is that this process is usually 

conducted without a catalyst, eliminating concerns about deactivation by impurities [21]. 

Although this process is beneficial because of the abovementioned facts, its complexity 

should not be underestimated, as described below. 

 

Figure 4. An overview of the plastic gasification process and the reactions taking place (the equa-

tions are taken from [20,22–25]). The separation of the hydrocarbons/partially cracked plastics and 

char is for the sake of illustration. Otherwise, they are present simultaneously in the reactor. 

First, real-world PW streams show a wide variety of polymer compositions [10], and 

the process has to deal with changing feedstock composition, which results in non-

negligible changes in its product distributions [26,27]. Moreover, the presence of 

impurities in PW makes the situation more complicated. Hence, substantial upgrading of 

the syngas is required before being used in downstream processes such as Fischer-

Tropsch synthesis (FTS) [28]. 

Second, the product distribution/properties from the gasification of a mixture of PW 

cannot be derived as a weighted average of the products from the individual gasification 

of each type of plastic in the mixture [29]. Understanding how impurities and mixing 

influence the outcome of PWG could be one of the important challenges toward upscaling 

PWG. 

Third, the operation of the PWG process is complex and different from other 

gasification technologies, e.g., for coal or biomass, due to the presence of molten plastic 

[6,12,30]. This is while many of the designs and operations of the PWG are based on 

experience from coal or biomass gasifiers. This can be inferred from the review articles in 

the field of gasification (general) or PWG [20,25,31–36], in which no (or very small) 

discussion has been made on the presence of molten plastic and liquid phase.  

2.2. Numerical Modeling 

Considering the above-mentioned complexities and challenges, to properly 

understand this process, experimental studies can be carried out. Nevertheless, such 

experimental approaches are time-consuming and resource-intensive, and scale-up 

studies using experimental approaches remain not straightforward. Fortunately, a 



Materials 2022, 15, 4215 6 of 83 
 

 

combination of experimental work and a validated numerical framework can be a solution 

to assess and optimize the performance of new reactor designs and process configurations 

at a much lower cost. This is valid for all processes in general. However, since the 

gasification of PW is less mature than of other feedstock, such as coal or biomass, the 

numerical studies are typically (over)simplified. 

One of the numerical approaches to assess this process thoroughly is multi-scale 

modeling. Multi-scale modeling covers time and length scales that allow us to span from 

sub-atomic to chemical plants the size of small cities. In principle, all the phenomena even 

in plant size are happening on sub-atomic scales. However, due to the unfeasibility of 

modeling the whole process on this scale, some possible solutions can be used to decrease 

the computational cost. For example, the concept of rate-determining step can be used to 

decrease the size of reaction kinetic network, continuum description of solids can exclude 

the necessity of defining each particle in a computational fluid dynamics (CFD) 

framework, and Reynolds-averaging can decrease the computational cost of the 

instantaneous definition of turbulent fluctuations within a CFD framework. These 

solutions, in general, are called scale-bridging strategies that make calculations 

computationally tractable but introduce closure problems. This means that it is possible 

to simulate the small-scale phenomena (at a lower resolution and sometimes on larger 

scales), by creating models that predict the effect of sub-scale phenomena. In fact, multi-

scale modeling is a framework in which different phenomena are modeled at different 

scales and subsequently, they become connected to each other via scale-bridging 

strategies, which are closure models and correlations. 

In the field of PWG, the reactive CFD simulations can be considered as an example 

of a multi-scale modeling framework, which can include the kinetic model, transport 

phenomena at the particle scale, and the reactor model that is ultimately implemented for 

process designs or reactor optimization [37]. To date, many of the numerical modeling 

and simulation studies poorly address all the aforementioned (and other) complexities. 

At the molecular scale, kinetic modeling and simulation of PWG are usually based 

on a single polymer type and the feedstocks are not described in detail. Hence, for 

numerically capturing the effect of a more complex feedstock, a more fundamental kinetic 

model, and hence, a more detailed description of the feed and its properties are needed. 

At the particle scale, the definition of gasification is simplified and different phenom-

ena—e.g., melting, evaporation, internal transport limitations—are usually neglected. Fig-

ure 5 shows one of the possible routes of PWG in which plastics enter the reaction envi-

ronment as a solid particle, in a comprehensive approach (a), as well as a simplified one 

(b). The outer layer of the plastic starts melting due to the external heat transfer. This melt 

front, which includes a transition mushy zone, moves toward the center while in the 

melted outer layer, decomposition, pyrolysis, and evaporation occur. Internal transport 

limitations can affect the rate of transfer of heat and mass to different layers and locations. 

This can be a reason for non-uniform but shell-progressive melting of the particle [38]. 

Non-uniform temperature/concentration profiles, as well as the presence of bubbles as the 

result of evaporation, can also be seen in this figure. 

Considering the whole process, reactor scale phenomena are crucial in determining 

the hydrodynamic behavior and temperature/product distribution of the gasifier. 

Different types of gasifiers can be used for the PWG, such as fixed bed [39] and moving 

bed reactors [40]. The most commonly used reactor type for PWG is the fluidized bed (FB) 

and hence, this reactor type is the main focus of this review. Dual fluidized bed reactors 

(DFB) are the extension to the conventional FB [26] that can be used in this process. 

Conical-spouted bed reactors [41–44] are another type of FB gasifier that offers a wide 

range of operability from the particle size point of view [20] and for preventing 

agglomeration and defluidization [45] due to the strong circulation patterns of the solid 

particles in the reactor. Melting can cause agglomeration of the sticky particles and 

eventually defluidization [19]. Furthermore, molten particles might stick to the walls or 

form a layer on them. However, these phenomena are also often neglected. Other 



Materials 2022, 15, 4215 7 of 83 
 

 

technologies can be also used in this process, such as vortex reactor or vortex chamber 

[46,47], plasma technology [48], entrained flow gasifiers [29], rotary kiln reactor [49], and 

moving-grate gasifiers [50].  

 

Figure 5. Simplified schematic of the sequential phenomena happening during the solid plastic py-

rolysis and gasification (adapted from [38,51,52]); (a) Comprehensive modeling approach: (1) Po-

rous solid plastic core; (2) Melt front; (3) Liquid layer; (4) Pyrolysis and evaporation (devolatiliza-

tion) layer; (5) Gasification layer (including char); (6) Bubbles present in the liquid layer as the result 

of pyrolysis and evaporation; (7) Vortex-pattern flows as the result of Marangoni and convection 

effects; (8) Diffusive transport phenomena; (9) Possible temperature (or concentration) profile as the 

result of internal circulations in the liquid phase; (10) Internal radiative and conductive heat transfer; 

(11) Conductive and convective heat and mass transfer; (12) Radiation and convective heat and mass 

transfer; (13) Mass diffusion; (14) Heat of melting; (15) Heat of decomposition and evaporation; (16) 

Heat of gasification; (b) An example of a simplified approach: (1) Solid plastic core; (2) Sharp melt 

front; (3) Liquid layer; (4) Pyrolysis and evaporation (devolatilization) layer; (5) Gasification layer 

(including char); (6) Infinite internal heat and mass transfer; (7) Convective heat and mass transfer; 

(8) Heat of melting; (9) Heat of decomposition and evaporation; (10) Heat of gasification; A detailed 

description of each part is given throughout this review. 

The flow pattern in the fluidized bed reactor types can get complex. Simplified 

reactor models don’t reflect the precise hydrodynamic behavior and temperature profile 

throughout the reactor, especially the FB reactors, and hence they under- or over-predict 

the formation of side products. As an example, the residence time and temperature are 

two important parameters in determining the tar formation and its type [20]. A simplified 

reactor model can result in an incorrect prediction of tar formation—as the result of 

inaccurate residence time and temperature distribution prediction. This can lead to 
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fouling issues that are resulted from tar condensation [6] in the reactor and downstream 

units. 

2.3. Multi-Scale Modeling of Plastic Waste Gasification 

Figure 6 illustrates different scales of a thermo-chemical conversion of a solid 

feedstock. At the molecular level, modeling the feedstock properties and the chemical 

reactions is done. Rate of the chemical reactions can be affected by internal transport 

limitations and interfacial transport phenomena. Hence, the kinetic models are coupled to 

these transport phenomena and phase transition models, which are usually assessed at 

the particle scale. Finally, the reactor model accounts for the multi-phase flow and 

turbulence. To include all or parts of these scales in a multi-scale framework, they have to 

be connected to each other, which is done by scale-bridging strategies. 

 

Figure 6. An overview of the multi-scale nature of plastic gasification (adapted from [53–55]). 

In this context, the objective of the following sections is to review modeling 

approaches for PWG from a multi-scale modeling point of view, which was described 

above. This allows identifying the challenges and opportunities of PWG in general, but of 

a model-based design in particular. The starting point of modeling PWG is to describe the 

properties of the feedstock—discussed in Section 3. In Section 4, the most important 

phenomena at the molecular scale, i.e., the reactions and kinetic modeling are discussed. 

Sections 5 and 6 cover the phenomena that are usually associated with the particle-scale 

resolution, including internal transport phenomena, phase transformations, and 

interfacial transport phenomena. In Section 7, the multi-phase flow modeling in the 

reactor scale using the engineering or computational fluid dynamics (CFD) approaches is 

assessed. To the best of the authors’ knowledge, few studies are focusing specifically on 

modeling the PWG process at different scales [29,56–65]. The analysis that is made during 

the next sections is used to provide conclusions to bring the first principles-based multi-

scale modeling of PWG a step closer.  
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Finally, it is worth mentioning that the PWG can be done in different ways, and 

hence, in this review, four most commonly encountered situations/routes will be 

considered: 

1. The plastic, in the solid phase, is fed into the reactor 

2. The plastic is melted first and then fed into the reactor to cover the fluidization agent 

or to be present as liquid droplets. The latter is reported very rarely [66]. 

3. The plastic is melted first but fed as a layer into a falling film reactor [67]. 

4. A bulk of molten plastic is present in the reactor and the gas phase is present as a 

bubble. This can be found in stirred reactor technologies [68,69]. 

In this regard, some simplifying assumptions can be of great help in modeling PWG 

in some of these situations. One of the important ones—which can be observed in most of 

the available numerical studies for PWG—is considering only gas and solid phases, i.e., 

similar to biomass or coal gasification. This can be a strong assumption. However, for 

certain cases, similarities with biomass and coal gasification can be observed and used to 

adapt modeling approaches developed for these applications. Besides, for the second 

situation mentioned above, if the operation allows, a thin layer of molten plastic covers 

the fluidization agents [45], so that the effects of liquid presence can be neglected. 

Consequently, this case can also be considered a gas-solid-only system. Otherwise, when 

the plastic is melted in the reactor or a thick layer of molten plastic covers the fluidization 

agent, the transport phenomena in the liquid and gas phases (ideally) should be 

considered. In this review, we tried to discuss multi-scale modeling approaches for these 

types of operations together with their simplifying assumptions.  

3. Thermophysical Properties 

Determining the initial conditions and thermophysical properties is one of the im-

portant challenges in modeling PWG since it can substantially and negatively affect the 

outcome of even high-fidelity models if they are not defined correctly. This is due to the 

presence of chain length distribution, additives, particle size distribution, and the pres-

ence of a mixture of many different species in all phases. 

3.1. Individual Species 

The first step in determining the thermophysical properties in a model is to choose 

which species should be included. Defining the species as reactant and product depends 

on the detail level of the kinetic model that is going to be implemented (Section 4). After-

ward, the properties of the individual species that are present in the system should be 

specified. For the solid phase, only the thermal properties are essential, i.e., the heat ca-

pacity, enthalpy, thermal conductivity, and radiation properties, because only heat trans-

fer and melting [70–72] are important for this phase. These properties can be determined 

experimentally or numerically. In the conventional methods, usually, experimental tech-

niques are used to determine the properties, while in the more advanced methods, nu-

merical techniques are of great help. 

3.1.1. Conventional Methods 

In the conventional (mainly experimental) methods, often a constant value [70] or a 

temperature-dependent relation [72] is reported. This method is usually used in multi-

scale modeling of PWG or similar processes due to its low computational cost. For several 

reasons, a more robust alternative method to the experimental approach can be the com-

putational methods, which are discussed in the next paragraphs. 

First, it has been proven that the accuracy of the experimental values, e.g., heat ca-

pacity, can be doubtful. In some cases, significant inconsistencies in the reported values, 

even for the well-characterized polymers, have been observed [73]. 

Second, some of the properties are easier to be determined by simulation rather than 

the experimental methods [74]. As an example, anisotropy in the thermal conductivity of 
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polystyrene has been demonstrated via molecular simulation and this can affect the heat 

transfer behavior of this polymer. 

Third, different studies have shown the dependence of different transport properties 

of polymers, e.g., viscosity and diffusion, on the chain length because they are functions 

of the molecules’ arrangements [75]. Also, collision and phonon vibrations affect those 

values [76]. Hence, especially in the case of PW, it is possible that the available data cannot 

be used for all the molecules and species that are present in the system, and some experi-

mental-based correlations should be developed for each specific species [77]. Conse-

quently, for the less known and complicated molecules, the computational methods are 

preferred compared to the classical methods [78], since they give more insight into the 

molecular structure and are supposed to better predict the behavior of molecules in dif-

ferent conditions. 

Determining the thermophysical properties in the liquid and gas phases is supposed 

to be more challenging, due to the presence of many more different species compared to 

the solid phase. Similar to the solids, conventional experimental methods can be used to 

obtain the thermophysical properties of liquid- and gas-phase species. The recent devel-

opments of state-of-the-art experimental methods in the field of microfluidics [79]—which 

can measure the properties at high temperature and pressure—can be an opportunity in 

this field. Nevertheless, determining the properties of the complex matrix of the PWG 

process using these methods, may not be less intricate and costly than the numerical meth-

ods. 

Besides the experimental methods, conventional theoretical approaches can be also 

used for calculating thermophysical properties, e.g., the standard kinetic theory expres-

sions to derive the transport properties of the gas species [80]. However, the challenge is 

implementing these conventional methods for the wide range of components that are pre-

sent in the molten and gas phases. Hence, it can be concluded that, if a model is available 

to estimate these properties based on the atomic structure and/or molecular properties of 

the polymer [73], the prediction of the values as the result of a change in the molecule can 

be easier. Molecular dynamics (MD) methods [75,76] are powerful tools in this regard and 

are discussed in the following paragraphs. 

3.1.2. Advanced Numerical Methods 

Conventionally, the role of numerical methods in determining the thermophysical 

properties was limited to correlating the experimental data [81]. On the contrary, fully 

theoretical methods, which date back to the 1930s [82], are based on the atomic interac-

tions in the molecules. The opportunity that lies in the molecular and atomic scale simu-

lation approaches, versus the classical methods, is the ability to predict a large number of 

the thermophysical properties, from vapor pressure to viscosity of molecules at different 

levels of complexities and a wide range of operating conditions [78]. In general, the ab-

initio method [82] and molecular simulations [78] are mainly used for fundamentally de-

riving the properties of a molecule. As an example, De Tar et al. [82] proposed an ab-initio 

method using vibrational frequencies, without any tuning, to calculate the heat capacity, 

enthalpy, and entropy of a series of alkanes. The other properties can be also obtained 

similarly, the details of which are not in the scope of this review and can be found in the 

literature [83]. Implementing these methods strongly depends on the available resources 

and the economy of the problem. The current economy doesn’t allow using ab initio or 

MD simulations in large scale multi-scale frameworks, e.g., CFD simulations. Hence, the 

conventional methods are still favorable in these cases. 

Using MD methods in predicting transport properties such as the thermal conduc-

tivity of polymers [84] becomes interesting, especially for the transition between different 

phases. According to Henry and Chen [85], polymers are materials with low conductivity. 

However, a single polyethylene chain can show a high thermal conductivity, as was 

demonstrated by the MD method. This can demonstrate that the thermal properties of 

polymers change during their phase transformation [86]. Hence, it can be concluded that 
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numerical models at the molecular levels, if the economy allows, can be used to improve 

the performance of the multi-scale modeling frameworks where polymer melting and 

transformation occur. Implementing these models as an integrated part of the multi-scale 

simulation framework for the whole PWG process is still impossible because of the com-

putational limitations. Nevertheless, they can be used to develop scale-bridging correla-

tions to better predict the thermophysical properties of the materials as a function of larger 

scale phenomena, thus decreasing computational costs while introducing the closure 

models. 

3.2. Effective Properties 

In the cases that the intrinsic properties of a species change due to: 

1. Structural effects 

2. The presence of impurities, or 

3. Internal motions (in the liquid phase) 

Using the effective properties is a method to include those effects. In the solid phase, 

these effective properties are considered to correct the transport properties affected by 

structural characteristics of the solids, i.e., the porosity and tortuosity [87]. Another effec-

tive property that can be considered for the plastic while it is still solid is the effective 

thermal conductivity due to the radiation inside the porous polymer [86]. This has been 

shown in Figure 5. 

The presence of non-native species/phases can also affect the properties. For the ma-

terials, such as composites, which are mixtures of different materials including polymers, 

the effective thermal conductivity can be calculated as a function of the thermal conduc-

tivity of different materials that are used in the composite structure [88]. Similarly, for the 

plastic in the molten phase, the presence of bubbles can impose effective properties. This 

has not been studied yet for plastics, but the approaches in similar works can be of help 

in this regard. Sakiyama et al. [89] have assessed the effect of volume fraction of gas bub-

bles in the food gels on its thermal conductivity and concluded that the effective thermal 

conductivity for this case is a function of the volume fraction of dispersed and continuous 

phases. 

Besides the presence of impurities or gas bubbles in the liquid phase, the effective 

properties can be defined if recirculations and vortex flow inside droplets [90] are present. 

These recirculations are internal motions inside the liquid droplet caused by different fac-

tors such as thermocapillary effects [91], which are discussed more in Section 5. 

3.3. Mixture Properties 

After determining the individual species’ properties, they should be assessed in the 

mixtures that are present in a PWG process. For the solid phase, this is done via simple 

mass-weighted averaging methods since the mixing of solid plastic is on particle scales 

and it doesn’t have any effect on their properties at the molecular level. Nevertheless, in 

liquid and gas phases, the presence of different species affects their individual properties. 

As an example, in a multi-component gas, if the mixture contains components with a large 

difference in polarity, the molar average of thermal conductivity is less than the real ther-

mal conductivity value of the mixture. In the opposite case, i.e., for non-polar gas mix-

tures, the molar average value is larger than the real value and this deviation becomes 

larger if the molecular weight/size difference of components is large. Similarly, in the case 

of organic liquids, the thermal conductivity of the mixture is usually less than the average 

of the components’ thermal conductivity [92]. Hence, a more complex formulation for the 

multi-component system, beyond the simple averaging methods for the mixtures [80], is 

required. However, this depends on the required resolution of the simulation framework, 

as well as the available computational resources. With the current infrastructure, for the 

large-scale simulation, simplifying assumptions or simple averaging is preferred over 

complex mixture properties calculations. 
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In the simulations that are directly or indirectly related to the PWG, the mixing rules 

are not usually discussed, while for different properties, different mixing rules are 

available in the literature [92], as are mentioned in Table 1. Even though implementing 

these mixing rules is very complicated and computationally expensive, they don’t always 

provide precise results and different mixing rules can result in different results [93]. 

Hence, to save the computational resources and based on the problem economy, first, it 

should be determined if using complex mixing rules are beneficial and feasible. MD 

simulations can also be used in this regard. Ferkl et al. [93] used MD simulations as a 

reference to determine the best mixing rule for their desired mixture. It can be concluded 

that although using molecular simulations in the multi-scale platforms may not be feasible 

yet, they can be used as a validation tool for the simplified models that are applied for 

calculating the thermophysical properties of the pure components or their mixture. 

Table 1. Examples of different methods to calculate the transport properties of a multi-component 

gas or liquid phase [92]. 

 Gas Liquid 

Viscosity 

 Reichenberg method 

 Wilke method 

 Herning and Zipperer 

approximation 

 Grunberg and Nissan method 

 UNIFAC-VISCO method 

 Teja and Rice method 

Thermal Conductivity 

 Wassiljewa Equation 

 Mason and Saxena  
Modification 

 Filippov Equation 

 Jamieson correlation 

 Baroncini correlation 

 Rowley method 

 Power Law method 

Diffusion Coefficient 

 Stefan-Maxwell  
equation 

 Blanc’s law 

 Perkins and Geankoplis 

correlation 

 Takahashi et al. correlation 

 Kooijman and Taylor 

correlation 

 Kett and Anderson method 

Finally, it is worth mentioning that in some situations, for the sake of the problem’s 

economy, calculating the transport properties can be simplified or avoided, such as when 

the heat diffusion is so fast that the particle or droplet can be considered as isothermal, or 

in the case that the turbulent viscosity is dominant over the molecular viscosity. Hence, 

the limiting steps in the transport phenomena can be determined first to avoid the effort 

and computational costs devoted to determining accurately the transport properties. 

4. Reaction Kinetics 

The reactive part of PWG was demonstrated in Section 2. The kinetic modeling of 

these reactions is complicated due to various reasons such as the inherent complexity of 

free-radical chemistry, the chain-length distribution of the polymer molecules [94], 

presence of the liquid, gas, and solid phases [95], the effect of interaction between different 

PW types [96], and also the effect of impurities [97], among others.  

The main focus of other review articles on kinetic modeling is the pyrolysis of the 

neat polymers [32,95,98–100]. Although the gasification process includes pyrolysis 

reactions, it is distinct from the pyrolysis process by three distinguishing factors, which 

are the temperature range, the presence of gasification agent, and the char gasification 

reactions, which are discussed more in the following parts. 
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4.1. Challenges Faced in Gasification and/vs. Pyrolysis 

In general, kinetic modeling of pyrolysis and gasification of PW faces some chal-

lenges, some of which are specific to gasification. In the following sub-sections, these chal-

lenges are reviewed. 

4.1.1. Diverse Micro-Scale Characteristics of Plastics 

One of the reasons that complicates the kinetic modeling of PWG is the large variety 

in the chain-length distribution (or molar mass distribution) of molecules compared to 

other free radical processes such as steam cracking, oxidation, or combustion. This means 

that the kinetic models for PWG need to be huge because they should, in theory, consider 

all species where the initiation reactions take place. Inevitably this gets even more 

complex because the chain-length distribution changes while the polymer is being 

degraded in the pyrolysis reactions (Figure 7). Diverse chain length distribution of 

polymers from different sources increases these complexities. Consequently, defining a 

fixed initial condition for the composition and chain length distribution for modeling the 

gasification of PW is challenging [94]. Other polymer micro-scale characteristics, such as 

backbone structure and the pendant groups, also affect their degradation behavior [32]. 

 

Figure 7. The initial, and transformation of the, chain-length distribution (molar mass distribution) 

of a type of Poly(styrene peroxide) (P12) during the thermal degradation, predicted by a tree-based 

kinetic Monte Carlo coupled to an artificial intelligence tool. Reprinted (adapted) with permission 

from [94]. Copyright 2021 American Chemical Society. 

In the case that PW composition is uncertain, an alternative solution to obtain the 

product distribution of high-temperature gasification of solid waste can be using the 

thermodynamic modeling of equilibrium state. Under some conditions, such as high tem-

perature and/or high residence time, where reaching the thermodynamic equilibrium is 

probable, thermodynamic equilibrium models could be of great assistance in reducing the 

complexity and cost of the simulations. Two main methods are commonly utilized in ther-

modynamic equilibrium modeling; the principle of both is the same and that is the reduc-

tion of Gibbs free energy. 
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The first method is based on the minimization of the total Gibbs free energy of the 

system that contains the species that are supposed to be present in the reaction environ-

ment [101]. The objective is to minimize the total sum of the species Gibbs free energy and 

the constraint is that the elemental balance should be met and none of the values should 

be negative. The advantage of using this method, which is also called the non-stoichio-

metric [102] or differential approach [101], is its self-governing characteristic, i.e., it is in-

dependent of any reaction mechanism. This method is advantageous in complex systems 

where the main reactions are still unknown. 

The second model is developed according to the equilibrium constant principle [103–

105] in which all (selective) reactions are pushed toward equilibrium. Hence, the Gibbs 

free energy of the system is minimized with regard to the reaction mechanisms that have 

been chosen [106]. One of the types of this method is called Series Reactor Method. In this 

method, it is assumed that each reaction is done separately in individual reactors that 

reach the equilibrium conditions sequentially. The unknown values of the problem are 

the concentration of the species, which are calculated by solving a set of equations, con-

sisting of elemental balances, energy balances, and the equilibrium constants of the reac-

tions. 

4.1.2. Coupling of Available Kinetic Models 

Although to the best of the authors’ knowledge, the numerical studies specifically 

focusing on the gasification of plastics are very scarce [29,57], the kinetic models on dif-

ferent parts of the process, i.e., pyrolysis, homogeneous reactions, and heterogeneous gas-

ification reactions are widely available in the literature. Hence, it is possible to couple 

those separate kinetic models to construct the overall reaction network for the gasification 

process. However, this should be done with precautions since each individual model may 

not be predictive over a wide range of conditions. This is mainly due to the temperature 

range and presence of gasification agents, in addition to the difference in micro-scale 

properties of different polymers. 

First, many of the available kinetic models for pyrolysis are validated against the ex-

perimental data, such as TGA (Thermo Gravimetric Analysis) performed at relatively low 

temperatures. Usually, the maximum temperature of TGA experiments is 800 °C 

[29,95,96,107–109]) while gasification is usually done in the range of 700–1000 °C [20]. This 

obviously decreases the reliability of the model, especially because at high temperatures 

alternative chemistry can become important for both pyrolysis and gasification [110]. 

Secondly, the presence of the gasification agent can also affect the kinetics of the py-

rolysis process and, as is demonstrated here, this effect cannot be captured by simply cou-

pling the pyrolysis and gasification reactions. Pyrolysis of the polymers consists of a series 

of radical chain reactions [95] of primarily heavy hydrocarbons in the liquid phase with, 

among others, diffusion-controlled recombination steps [111]. Isolating the intrinsic chem-

ical reaction completely from these physical phenomena is difficult, especially because 

they are validated against TGA data [112], which may include transport limitations. 

Hence, if transport limitations cannot be isolated, they need to be considered. This is while 

the presence of a gasification agent can affect the transport limitations in the liquid phase. 

As was illustrated by Kashiwagi et al. [113], the concentration of the oxygen in the gasifi-

cation agent affects the gasification kinetics, as well as the size and frequency of the bubble 

formation in the melt. Consequently, it is expected that to extend the applicability of a 

kinetic model for the gasification process, they are validated in a higher temperature range 

and the presence of the gasification agent [114] and looking at effects such as bubble for-

mation and bubble transport. 
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4.1.3. Presence of Char 

Modeling the char gasification reactions is the other main challenge of gasification 

compared to pyrolysis. In principle, the gasification of the most common plastics is not 

associated with a large amount of char that affects the process substantially [20]. However, 

in the design and optimization of large-scale PWG plants, to increase the syngas quality 

and optimize the gasification reactions, char gasification can become an important part. 

This is justified by two main reasons: first, not all the PWG produces a negligible amount 

of char. PVC can yield up to 4.6% of char after being devolatilized for 15 s at 850 °C [115], 

FB air gasification of polypropylene can lead to the production of 15% (wt/wt Polypropyl-

ene (PP)) of char at an equivalence ratio of 0.2 [116], or 14 wt% of char can be produced in 

gasification of Polyethylene (PE) packaging boxes in a semi-batch pilot plant [117]. Sec-

ond, as PWG will start from mixed plastic waste (MPW), chars are inevitably produced in 

a non-negligible amount because of the presence of other components in MPW, such as 

fibers, papers [20], dirt, or food residue, which promotes the char forming reactions [97]. 

4.2. Global vs. Detailed Kinetic Models 

In general, two different methods are applied: global and mechanistic methods, 

which are explained in more detail in the following paragraphs.  

4.2.1. Global Kinetic Models 

The first and simplest method for kinetic modeling of gasification reactions is the 

global approach. This method is relatively straightforward and computationally less ex-

pensive. The starting point is that a limited number of simplified reactions are considered 

using pre-defined lumped components, such as gas, oil, and char. First, the decomposition 

is modeled and then a series of gasification reactions are added that convert the pyrolysis 

products, e.g., hydrogen, carbon monoxide, carbon dioxide, paraffins, olefins, and char, 

which can be observed in Figure 4. Hence, the gasification reactions, which mainly include 

steam reforming, dry reforming, water-gas, water-gas shift, partial oxidation, Boudouard, 

methanation, equimolar, and hydrogasification reactions, promote syngas production. 

These reactions are well-known reactions and their kinetic data are usually available in 

the literature. Nevertheless, the degradation step of polymers is complex and has been 

treated by different methods and perspectives in the literature. 

In a kinetic modeling study of the thermochemical conversion of PE and Polystyrene 

(PS), Koo et al. [118] considered five different lumped components—PW, activated plastic, 

gas, oil, and char—in five different global kinetic model scenarios, including first-order 

irreversible reactions. The schematic of these different scenarios is illustrated in Figure 8. 

In four out of five models, the activated plastic is present and converted to different 

lumped components (gas, oil, char). According to Koo et al. [118], the second model results 

in the most accurate one for pure PE and PS. Activated plastic in these models is a pseudo-

species intermediate product that is ultimately decomposed to the pyrolysis products. 

This approach—considering intermediate pseudo-species—is a common practice used to 

reflect the effect of some complex steps—such as “initiation reaction” [119]—which cannot 

be included in the model due to the computational costs. 
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Figure 8. Five different proposed scenarios for the global kinetic model of plastic waste (PE + PS) 

pyrolysis (adapted from [118]). 

In cases where only the degradation rate—and not the product distribution—is of 

interest and a mixture of different types of feedstock is the target, one opportunity for 

using the global method is to consider multiple single-step degradation reactions for each 

component. Then, the kinetic data for each reaction can be obtained by fitting the 

weighted sum of those reactions against the TGA results [120]. This can get more 

advanced by assuming multiple reactions for the degradation of each component and 

considering a distribution of activation energy for those reactions, in a so-called 

“distributed activation energy model” (DAEM) [121]. 

In some situations, for the sake of the problem’s economy, it is possible to use some 

simplifying assumptions. As reported by Martínez-Lera and Pallarés Ranz [122], based on 

the studies done by Conesa et al. [123] and Hoffmann et al. [124], two orders of magnitude 

can be the difference between characteristic times of pyrolysis and mixing in the FB 

gasification of polyolefins at 850 °C. Hence, it is a logical assumption that the 

devolatilization is an instantaneous step compared to the other ones. Subsequently, for 

the pyrolysis model, they assumed it as instantaneous. The devolatilization’s product 

distribution was obtained based on the experimental data as a function of the reactor 

temperature [122]. Finally, for the homogeneous reactions, they used a global mechanism 

of 18 reactions, the input of which are the products of instantaneous pyrolysis. 

Based on the discussions above, the main advantage of the global reaction kinetic 

models is their simplicity (maximum few tens of reactions and species—Table 2). This 

advantage comes with a disadvantage: inaccuracy and limited range of applicability. 

Determining the lumped components and reactions depends basically on the problem, 

i.e., the available experimental data [122] and also, the level of details of the feedstock. 

Another weakness is the different definitions of feedstock in various models. Hence, 

it is not possible to reliably generalize a global kinetic model that is obtained for a special 
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type of feedstock with specific reactor and experimental conditions, and use it for another 

case as a fully predictive model. For this reason, many discrepancies can be observed in 

the kinetic parameters for the pyrolysis of the same polymer types by different researchers 

[98]. Consequently, considering the improved computational resources, the models that 

better describe the molecular interactions of the PWG reactions should be used. 

4.2.2. Detailed Kinetic Models 

The most comprehensive method of kinetic modeling that can be used for PWG is 

the mechanistic approach, which provides a detailed description of the radical chain 

mechanism that is typical for most of the polymers and include initiation, propagation, 

and termination reaction classes [108]. In this approach, all known initiation mechanisms, 

the carbon atom number at which this happens, the interaction of intermediate product, 

and the termination steps, together with the probability of their occurrence, are 

considered. This way, a network of single-step elementary reactions is created, which 

describes molecular-level interactions. As a result, the construction of the reaction 

network is independent of the feedstock. Detailed kinetic modeling of the plastic 

gasification reactions includes three main steps: description of the feedstock, modeling 

the pyrolysis/devolatilization of the molten phase, and modeling the gasification 

reactions. These are explained in detail in the following sub-sections. 

Feedstock Description 

Creating a comprehensive kinetic model without having a correct description of the 

feedstock is inefficient since it can not predict the product distribution well. Hence, the 

first step in detailed kinetic modeling of plastic waste is the feed description, which is also 

demonstrated by Sommariva et al. [125] who studied the modeling of fixed bed gasifiers. 

Especially for the gasification, in which char gasification reactions play an important role, 

the feedstock characterization is of paramount importance. As was mentioned before, dif-

ferent polymer types and impurities that are present in the real-world PW can produce a 

considerable amount of char [20,115–117] and this affects the overall kinetic of the PWG 

process. Moreover, the characteristics of chars from different sources can be different [117] 

and this can have a remarkable effect on their gasification reactivity [126,127].  

If the feedstock of the gasification is an individual polymer type, the starting point 

can be a well-defined structure and composition [125]. Modeling of the feedstock gets 

more complicated in the case of mixed plastic waste [128], including different polymer 

types, additives, and impurities. This is usually done by defining a few reference com-

pounds [125]. As an example, Figure 9 illustrates a Refuse Derived Fuel (RDF) composi-

tion by considering PE, lignin, and cellulosic materials, in a framework of carbon and hy-

drogen weight percent. A similar approach can be also used to describe plastic waste 

streams. The available databases, such as Phyllis [128] can be used as a reference for de-

termining the initial constituents of the waste stream (as is also illustrated in Figure 9). 

Besides the databases, the experimental techniques can be used to define the composition 

of the feedstock, such as, among others, sink–float processes or hyperspectral imaging 

[129]. To avoid the complexities associated with the abovementioned methods, simplified 

models for the feedstock can be defined. As an example, McGhee et al. have considered a 

combination of PVC and biomass as a model for MSW [130].  
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Figure 9. Typical compositions of different RDF in terms of C and H (wt% ash-free) (redrawn from 

[125]). Black circles represent different data points. Reprinted from Computers and Chemical Engi-

neering, Vol. 35, S. Sommariva, R. Grana, T. Maffei, S. Pierucci, E. Ranzi, A kinetic approach to the 

mathematical model of fixed bed gasifiers, Pages No. 928–935, Copyright (2011), with permission 

from Elsevier. 

After determining the initial composition of the waste stream, the detailed 

description of each compound, for which the multi-step devolatilization kinetic is going 

to be applied [125], should be determined [131]. If a virgin neat polymer is considered, the 

most important parameter in this regard is the chain length distribution. Also, a simplifi-

cation can be to assume an idealized monodispersed polymer [132]. 

Devolatilization 

Upon having a clear picture of the feedstock, the devolatilization modeling can be 

applied. In the devolatilization step, pyrolysis in the molten phase and the subsequent 

evaporation are present. The evaporation is discussed in Section 6.2 and the focus of this 

subsection is on the pyrolysis reactions. Two of the common approaches that are 

implemented in the mechanistic modeling of polymer degradation are Method of 

Moments (MOM) and Kinetic Monte Carlo (kMC). The former, which is a continuous 

kinetic modeling technique [17], has been utilized more frequently for mechanistic 

modeling [99]. A detailed description of each method is provided by Dogu et al. [98]. 

The challenge of using these methods is their high computational costs, which makes 

it difficult to use them in a multi-scale framework such as reactive CFD simulations. 

However, from the computational cost point of view, an advantage is found in the MOM 

approach compared to the kMC, because it reduces the number of mass balance equations 

of the chain species and provides average-based data in each time step, such as averages 

of molecular weight and branching density [133]. Nevertheless, this advantage is brought 

along a disadvantage of providing imprecise information on the monomer sequences and 

structural defects [98]. Moreover, it doesn’t give a detailed distribution of the molar mass 

and branching density [133]. On the other hand, kMC method is a stochastic approach 
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that can track each molecule [134] and provide more accurate and robust results. 

However, this is done at the expense of computational and time resources. Once the 

reaction families, mechanisms, and the initial species to be present in the network are 

known, computer software packages [95,135] should be used to create a huge network of 

individual reactions [98] out of the pre-defined families of compounds and reactions. 

Hence, the crucial part is to understand all the possibilities and reactions that could 

happen and include all of those in the kinetic model. 

A newly developed kMC-based method by De Smit et al. [136] can be used to predict 

more accurately the kinetics of polymerization as well as the thermo-chemical recycling 

of the polymers. This can be done by tracking each molecular structure within a chain and 

handling the long polymer chain data [136]. As can be observed in Figure 10, the method 

starts from the initial reaction conditions, followed by the selection of the reaction type, 

which is based on their probabilities. The probabilities are a function of the kinetic data, 

the molecular diffusion parameters, and the reactant concentrations. Afterward, as the 

result of the reaction, the initial data regarding the molecular structures change and the 

matrix-based data storage is updated for the sequence and segment length. Subsequently, 

the reaction conditions and the conversion is updated [136]. This procedure is illustrated 

for polymerization, but the same logic is applied for the reverse reaction, which is 

thermochemical conversion. As it can be inferred from this procedure, and as was 

mentioned before, the computational cost of this method is high. In this regard, hybrid 

kMC models exist that can be an option to decrease the computational load of the reaction 

kinetic modeling efforts [98]. 

 

Figure 10. The flowchart of the mechanistic modeling approach (kMC) for the polymerization pro-

cess developed by De Smit et al. [136], which tracks individual species and provides detailed infor-

mation about the molecular structures within a chain. Reproduced from [136] with permission from 

the Royal Society of Chemistry. 

Gasification 

Detailed kinetic modeling has been also developed for the homogeneous and 

heterogeneous gasification reactions of PWG in addition to the pyrolysis. For the former, 
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an opportunity lies in the numerous kinetic models for different fuels that have been 

developed and are available in the literature. As an example, the CRECK Modeling Lab 

(Milan, Italy) [137] developed different mechanisms, starting from a mechanism for 

syngas with 21 species and 62 reactions up to a mechanism for C1 to C16, at low and high 

temperatures, including 621 species and 27,369 reactions [137]. 

For the heterogeneous char gasification reactions, usually, the global single-step 

reactions are considered, which are illustrated in Figure 4. Char from the waste pyrolysis 

has a porous structure [138]. Consequently, at high temperatures [139], internal heat and 

mass transfer models should be coupled to the kinetic models to better predict the 

apparent rate of the char gasification reactions. However, the common models for char 

gasification, such as the unreacted shrinking core model [139] and homogeneous model 

[140] don’t consider the diffusion limits. Only the random pore model [141] accounts for 

the porous structure of the char, by including the porosity, pore length, and the specific 

surface area in the reaction kinetic equation [142]. 

The activity of char can also affect the kinetics of char gasification reactions. The loss 

of reactivity due to the so-called “thermal annealing” can be captured using (semi-

)detailed approaches [143]. Chemisorption of the oxygen-containing gases on the surface 

to form carbon-oxygen complexes, the transformation of the surface species, and 

desorption of the oxygen-containing products can be the steps to be considered in the 

semi-detailed mechanism [143]. Overall, the rate-determining steps in the gasifiers can be 

the char gasification [125], and hence, it should be modeled precisely to reflect the correct 

performance of the whole reaction kinetic network. 

Challenges and Opportunities 

As an example of the kinetic models that are specifically developed for the 

gasification of PW, Horton et al. [57] developed a molecular-level kinetic model for the 

gasification of common plastic types. This model includes 283 reactions and 85 species 

accounting for pyrolysis, char formation, and gasification reactions. To the best of the 

authors’ knowledge, other PWG studies use global kinetic models. 

Coupling 

Despite the related challenges (Section 4.1.2), coupling different detailed kinetic 

mechanisms can end up in a united PWG framework, with some advantages: 

1. The mechanistic models are feedstock independent. Hence, they are supposed to 

perform properly for different compositions and feedstock characteristics. Moreover, 

the similarities in the polymer segments and reaction families make it less 

burdensome to introduce new polymer types. 

2. The presence of different gasification agents with different concentrations can be 

taken into account in a single model. This may also reflect the synergistic effects as a 

result of gasification with multiple gasification agents. As it can be seen in the 

developed detailed kinetic models [137], all the gasification agents are present and 

based on their concentration, their contribution to the overall gasification process is 

accounted for. 

3. To introduce new species, only the initial propagation and decomposition steps 

should be defined [107]. Hence, reliable modification of the model can be done easily 

in this approach. 

Size of the Reaction Network 

The detailed kinetic models that can be used in the PWG are supposed to include a 

large reaction network: The detailed kinetic mechanism for a simple oxidation case of C1-

C16, can include 621 species and 27,369 reactions [137], or the automated reaction kinetic 

network of naphtha steam cracking (which can be considered as a similar process to 

gasification), can encompass 1947 species and 82,130 reactions [144]. For polymers, the 

network size can grow exponentially. This can pose two important challenges: on the one 

hand, generating such a huge network is a cumbersome task; On the other hand, 
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implementing the produced reaction network in higher scale frameworks, e.g., CFD, is 

unfeasible because of their high computational costs. To overcome these two challenges, 

some possible solutions are introduced in the next paragraphs. 

For the first challenge, i.e., creating the reaction network, the existence of many 

species and reactions of similar types may allow applying the single event approach and 

Evans-Polanyi relation [145]. This imposes a dependency of the kinetic parameters for 

similar reactions and hence, decreases the design and computational efforts in creating 

the network of a large number of reactions. Besides that, automatic network generation 

tools have been developed over the past decades, which are discussed more in the next 

paragraph. 

State-of-the-art network generators, for example, the Reaction Mechanism Generator 

(RMG [146]) or Genesys [135], use a series of user-defined reaction templates to iteratively 

expand a network of so-called elementary reactions. Figure 11 illustrates the flow diagram 

that is used in an automatic reaction network generation (Genesys), proposed by 

Vandewiele et al. [135]. Many challenges in automated network generation have been 

successfully tackled over the years—including symmetry detection of molecules [147], 

taking stereochemistry into account [148,149], and predicting molecular properties 

[150,151]. However, one challenge still remains: kinetic model generators all rely on pre-

defined reaction templates, which limit the reactions in the model to those anticipated by 

the user or developer. One method that has shown potential for explorative reaction 

network generation is potential energy surface scans, the details of which can be found 

elsewhere [152,153]. 

For the second challenge related to the large size of the reaction network, it is possible 

to reduce the number of reactions and species in a controlled (rule-based) manner. This 

can be done via the so-called reduction methods, before or after the generation of the 

detailed kinetic models [131]. The former is done by applying some reaction network 

parameters limits, e.g., the molecule size, type, number, and reaction families, among 

others. If this method is not done with enough care, it can cause an unconscious loss of 

information. This is because there could be some important molecules and/or reactions, 

the presence of which has not been even taken into account from the beginning because 

of limiting the types of molecules, reactions, etc. Hence, to cautiously perform the 

mechanism reduction, the best approach for the PWG process is the second option, which 

is to create the full reaction network first and then, intelligently reduce its size. Different 

reduction techniques in this option are global reduction, response modeling, chemical 

lumping, statistical lumping, and detailed reduction [131]. The most common ones are 

lumping and detailed reduction, which are described in the next paragraphs. 

In the lumping method, the chemical species are lumped together based on their 

chemical structure or reactivity [107,154]. The species that are in equilibrium with each 

other can be also lumped together [131]. For this method to be applied, a fundamental 

understanding of the reaction chemistry is required to reliably lump the species and 

reduce the mechanism [154], without losing too much information. Lumping can also be 

done according to some predefined mathematical rules [154,155]. 

In the other common reduction technique, which is the detailed reduction, e.g., the 

one proposed by Wang and Frenklach [156], the reactions are removed based on the 

redundancy principle [157]. This means that the less important reactions—compared to 

predefined limiting reactions—are removed [131,154]. In contrast to the other reduction 

methods, which are usually case dependent, this method is more general [131]. Besides 

the detailed reduction method that tries to remove the reactions, similar methods can also 

be applied to remove species. For example, in the directed relation graph (DRG) method 

[158], the species that have a less important role in the production of crucial species (which 

have been selected before), are removed from the network [154,157]. 
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Figure 11. The algorithm of Genesys to create a reaction network by applying the pre-defined reac-

tion families on the unreacted molecules (redrawn from [135]) Reprinted from Chemical Engineer-

ing Journal, Vol. 207–208, Nick M. Vandewiele, Kevin M. Van Geem, Marie-Françoise Reyniers, Guy 

B. Marin, Genesys: Kinetic model construction using chemo-informatics, Pages No. 526–538, Copy-

right (2012), with permission from Elsevier. 

It is also possible to couple different techniques to efficiently and reliably reduce the 

available mechanism. Hence, an initial reduction can be performed by lumping the species 

and reactions and then reducing them based on the detailed reduction or similar methods. 

Stagni et al. performed a similar reduction procedure for the detailed kinetic mechanism 

of n-heptane and n-dodecane oxidation and implemented the final results in CFD 

simulation of the laminar flames [154].  

Based on what was discussed on different kinetic modeling approaches, including 

the global and detailed ones, as well as the reduction methods, Table 2 summarizes the 

main features of each approach, with some perspective on the gasification of plastic 

wastes. 

Table 2. Overal comparison of different kinetic modeling approaches with a focus on multi-scale 

modeling of PWG. 

 Global Modeling 
Mechanistic (Detailed) Modeling 

MOM kMC 

Requires detailed feedstock description 
No 

(pre-defined lumps) 
Yes 

Degree of complexity Low Medium High 

Degree of details on the product description Low 
Medium 

(average properties) [98] 

High 

(full molecular detail) 

[98] 

Computational cost Low Medium High 

OM of number of species 50 
100–1000 [154] 

(Reduced: 10–100) 

1000–10,000 [154] 

(Reduced: 10–100) 

OM of number of reactions 50 
1000–50,000 [154] 

(Reduced: 100–1000) 

1000-50000 [154] 

(Reduced: 100–1000) 

Common application CFD/1D Models 
1D Models 

(Reduced: CFD) 

Feedstock independent No Yes 

Reliable coupling to other kinetic models No Yes 

Adaptability to new species (and gasification agents) No Yes 
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Reliable temperature extrapolation No Yes 

Needs reaction network generator (extra complexity) No Yes 

Ability to consider dynamic char activity No Yes 

4.2.3. Validation Challenges 

Validation of kinetic models is challenging because of the complex behavior of feed-

stock, limits in the experimental techniques, and the dependency on the flow regime. Re-

garding the first, the synergistic effect of the plastic mixture is a fact that has been proved 

previously [29] and is difficult to be addressed in a kinetic model. According to Briceno et 

al. [159], the apparent activation energy of the degradation for a mixture of PP and HDPE 

is lower than the pure HDPE, and for the mixture with high content of PP and HDPE, is 

lower than the pure PP. Predicting the interaction between different polymers is not an 

easy task, since it is a function of different parameters, such as the reactivity of their inter-

mediate products, the similarity of the polymer types to each other, the concentration of 

each component, and their mixing degree [160]. 

The second problem is the validity of the experimental data. Many of the kinetic 

models are validated against the TGA data, while there are different problems associated 

with these data: 

1. TGA data include the evaporation rates, which are not equal to the degradation rates. 

So, if a kinetic model is validated against it, in FB regimes with higher evaporation 

rates, it is supposed to underestimate the devolatilization rate (if the evaporation and 

degradation models are not decoupled). 

2. The reactive environment affects the degradation and the evaporation rate of poly-

mers, as was discussed in Section 4.1.2. 

3. It can include the internal heat and mass transfer limitations, which are not consid-

ered in the kinetic models. For large sample sizes [161], providing the isothermal 

conditions is not possible, and for samples with weak mass transfer properties, con-

centration gradients are observed within them [162]. Even if in a kinetic model, the 

effect of diffusion limits on the kinetic parameters is considered [111], two other prob-

lems can be raised: First, this shows the incapability in deriving the pure intrinsic 

kinetic data; and second, the mixing degree and mass transfer limitations can be dif-

ferent from the conditions in which this kinetic model is derived. Hence, this in-

creases the uncertainty in using this kinetic model in different conditions. 

4. It is not possible to measure the concentration of reacting species in the liquid phase, 

or the products right after being produced in the gas phase. Hence, secondary reac-

tions can and will happen. 

5. The uncertainty related to enough sensitivity of the balance used in the TGA instru-

ment is another challenge [162]. 

6. The effect of radiation on the sample in high temperatures is different for the samples 

with different absorption properties [162]. 

The value of TGA-based data for measuring degradation rates has been heavily de-

bated for decades [17]. To overcome some of the problems, TGA experiments should be 

modified so that heat and mass transfer play a less dominant role [161]. Moreover, new 

experimental methods have been developed in recent years, which can help improve ob-

taining the intrinsic kinetic data, such as fluidized bed TGA (FB-TGA) [163], which is also 

called micro fluidized beds (MFB) [164], and microwave thermogravimetric analyzers 

(MWTGA) [165] (the details of which are not in the scope of this review). 

The last important point is that the kinetics can also rely on the flow regime and up-

stream of the process. If a high mixing level in the molecular scale is achieved beforehand, 

the produced radicals from different polymer types can interact and promote or inhibit 

the volatilization phenomena [96]. This may affect the product distribution, though small. 
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5. Internal Transport Limitations 

The observed devolatilization rate is largely affected by internal transport 

phenomena, besides the intrinsic kinetics. Indeed, due to the fast reaction kinetics of 

pyrolysis and gasification [122,166], the internal heat and mass transfer may become the 

rate-limiting steps [161,167] (especially because plastics have shown poor heat and mass 

transfer characteristics [52,168], even in the molten phase [169]). 

5.1. Internal Mass Transfer 

5.1.1. Solid Phase 

Considering the solid phases present in the system (not-melted plastic and char), the 

internal mass transfer limitations are only important for the char gasification reactions, 

because in the solid plastic particles, until they are melted, no significant gas-solid 

interactions have been reported in the literature. Determining the role of mass diffusion 

limits for the char gasification reactions in the PWG process is a challenge due to the often-

unknown properties of char. Chars from different feedstock, or produced under different 

conditions, have a variety of characteristics and morphological properties. First, the pore 

distribution function should be defined, and then, depending on the temperature and 

pore sizes, the importance of internal mass transfer can be assessed [170]. At the common 

temperature range of gasification (700–1000 °C) [20], the role of molecular or Knudsen 

diffusion is more important than the gasification reaction [170]. This has been confirmed 

also in the simulation framework recently developed by Schulze et al. [171] who assessed 

the CO2 gasification of char in a TGA instrument. This trend can be changed due to the 

decrease in char reactivity caused by thermal annealing, which should be assessed via the 

coupling of a semi-detailed model of char gasification and diffusion models [143]. 

5.1.2. Liquid Phase 

The mass transfer limitations inside the molten plastic phase are important 

phenomena to be taken into account [172]. As was discussed in the previous section, the 

diffusion of radical species and their mixing has an important effect on the observed 

recombination and termination reaction rates [96] during plastic pyrolysis. This becomes 

even more pronounced when different types of polymers are mixed and a wide range of 

intermediate products makes multi-component diffusion problems very complicated. 

This is further discussed in Section 6.2.2: Multiple Components. 

Another important limit can be the resistance against the transfer of bubbles formed 

inside the liquid layer [173]. This may be more clear by referring to Error! Reference 

source not found.. In this figure, it is assumed that pyrolysis and evaporation happen in 

the liquid layer. Hence, it is possible that some cracked species are evaporated, which 

should be transferred to the surface to participate in further pyrolysis and gasification 

reactions. In cases of the very small length scale of the liquid layer (e.g., when a very thin 

layer of molten plastic covers the solid fluidization agent [45]), it is logical to neglect this 

resistance. Otherwise, where the length scale of the liquid layer is large, this limitation 

should be considered because if the bubble transfer time is not short enough, the mass 

transfer between the vapor and the liquid phase can result in a composition change of the 

bubble. To simulate this phenomenon, the modeling and simulation work on the 

microbubble rising in a liquid phase can be inspiring [174].  

Simplifying Assumptions 

The discussions above concern the PWG, which is a reactive system. Nonetheless, 

even for simpler, non-reactive cases of multi-component evaporation, a normal practice 

in modeling such cases is to neglect the internal mass transfer limitations [175–179]. This 

can be a correct assumption if other phenomena in series with the diffusion are rate-lim-

iting, or if the size of the liquid droplet or the thickness of the liquid layer is so small that 

the rapid mixing (or infinite diffusivity [180]) assumption can be applied [176]. However, 
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in the case of a large droplet/thick layer of molten plastic, rapid mixing is unlikely. It has 

been shown that even at the very high circulations inside the liquid phase (which can 

result in rapid mixing), the length scale of the diffusion can be reduced only to a maximum 

of three times [180]. Hence, especially in the high viscosity liquids, such as molten plastics, 

in which the internal circulations (and hence mixing) are weaker [51], infinite diffusivity 

can be a very strong assumption.  

In modeling the mass transfer limitations in multi-component evaporation cases 

(which happens during PWG) other simplifying assumptions also exist that should be 

treated carefully for the PWG process. First, which is more important for the droplet 

phase, is assuming symmetry in internal transfer phenomena in the liquid phase. This has 

been used in many references in the related fields, such as evaporation 

[172,173,175,177,181,182]. This assumption requires that internal motions and non-radial 

gradients inside the liquid droplet are neglected [172], which is not always the case for the 

PWG processes. The internal motions can be due to the thermocapillary effects, which are 

called the thermocapillary Marangoni convection, and is the result of surface tension 

gradients [91,172]. Another possibility is that the internal recirculation motions in the 

systems are due to the high convective fluxes and particle movements, which affect the 

internal heat and mass transfer [173]. These effects can be taken into account by either 

applying a correction factor and deriving an effective parameter or modeling the internal 

motions [90]. The former is a more computationally efficient method. 

5.2. Internal Heat Transfer 

Modeling the heat transfer may be more crucial than the mass transfer, due to the 

effect of temperature. With typical PWG activation energies and at typical temperatures 

for PWG, a deviation in temperature of merely 10 °C can change the reaction rates by over 

20% [166]. This demonstrates the importance of correctly predicting the temperature on 

all the scales. 

5.2.1. Solid Phase 

For the solid phase, the important point to take into account is using the effective 

thermal conductivity (Section 3.2) due to the porosity of the plastics [87] and char [138]. 

However, due to the high thermal conductivity of the char core [183], the Biot number of 

this phase in the PW gasifiers becomes low and consequently, it is logical to neglect the 

heat transfer resistance and assume a uniform temperature inside it. 

5.2.2. Liquid Phase 

Regarding the liquid phase, the temperature difference throughout the droplet can 

become large (up to 80 °C [51]). This temperature difference can cause a change in the rate 

of pyrolysis reactions by an order of magnitude or even more. The temperature 

distribution inside the molten plastic can be modeled via the simple conductive heat 

transfer term that appears in the energy equation. However, the challenge is to simulate—

or include the effect of—thermocapillary Marangoni convection and internal circulations, 

which was also discussed in Section 5.1.2: Simplifying Assumptions. This type of heat 

transfer can be also called circulative heat transfer [51]. In high-temperature convective 

regimes, the internal circulation has a great impact on the temperature distribution in a 

liquid droplet [51]. To assess the effectiveness of the thermocapillary convection on the 

temperature distribution inside a liquid droplet, the dimensionless Marangoni number 

can be used [91,184]: 

�� = −
��

��
×

Δ� ��� �

� �
, (1)

where �� is the dimensionless Marangoni number, the term 
��

��
 indicates the variation 

of surface tension with temperature, ��  is the specific heat capacity, �  is the 
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characteristic length, � is the fluid density, � is the thermal conductivity of the fluid, 

and �  is its dynamic viscosity. This number shows the ratio between the effect of 

Marangoni transport to diffusive transport. For each case, based on different liquid 

properties and particle size, a critical Marangoni number can be defined [91,184] above 

which the Marangoni effects should be taken into account in the internal heat transfer 

modeling. 

The effects of the circulative heat transfer can be to an extent that, the minimum 

temperature occurs at a location close to the center of the Hill vortex, and not the droplet 

center (Figure 5). Wong and Lin [51] concluded that although the vortex model can 

qualitatively predict the temperature trends, they can not precisely reproduce the 

experimental temperature distribution through the liquid droplet. Hence, they applied an 

effective conductivity term in their simulations to account for both the conductive and 

circulative heat transfer.  

The study done by Shinjo et al. [185] is a great hint for detailed modeling of 

temperature distribution in molten plastic under pyrolysis reactions in a convective 

regime. The goal of their study is to model the heat transfer in a water-oil emulsion and 

can be ultimately used in the assessment of the micro-explosion and puffing of the water 

in the emulsion. This phenomenon can be analogous to the formation of bubbles due to 

the cracking of the species in the molten liquid. They developed a model (including the 

Marangoni effects) for the heat transfer inside the liquid particles in a convective regime, 

which incorporates the angular dependency of the effective thermal conductivity and 

takes into account the eccentricity of the temperature distribution inside the liquid 

droplet. 

As can be inferred from this part, an important challenge in modeling the heat 

transfer in the particle scale of the PWG is the internal motions. Hence, the effect of 

viscosity becomes very crucial because of its effect on the internal motions and 

temperature distribution inside the liquid droplet. From Equation (1) and also as was 

demonstrated by Wong and Lin [51], higher viscosity of the liquid results in 

1. A weaker effect of Marangoni convection (and hence weaker internal motions or 

circulative heat transfer); and 

2. Monotonically decreasing temperature profile toward the center of the droplet. 

Hence, due to the high viscosity of molten plastic liquids (� > 10  Pa·s [186]), to de-

crease the computational costs, it is logical to neglect the internal circulative heat transfer. 

Nevertheless, this should be further studied because, first of all, the molten plastics have 

shown non-Newtonian behavior [187,188]; and second, the temperature affects their rhe-

ological behavior [189]. Hence, it can be concluded that in high temperature and strong 

convective fluxes of the PWG, the viscosity of molten plastic can become low and result 

in a high Marangoni number. 

Considering all of these complexities and uncertainties regarding the important (or 

on the other side, negligible) influence of thermocapillary effects on the internal heat 

transfer, one of the best approaches to assess this problem can be using high-resolution 

numerical simulation, such as particle resolved direct numerical simulation (PR-DNS).  

It can be concluded that considering the complexities of simulating internal heat and 

mass transfer besides the improved simulation frameworks and computational resources, 

the best approach is to first assess in detail the degree of impact of ignoring those 

complexities. The work of Haim and Kalman [190] is an example of such an assessment; 

they coupled an internal heat conduction model to an Eulerian–Lagrangian framework to 

determine the conditions in which it is possible to neglect the internal heat transfer 

resistances. 

6. Phase Transformations and Interfacial Transport Phenomena 

In this section, first, the available approaches for the melting process are reviewed 

together with their applicability and challenges for the PW. Afterward, different 



Materials 2022, 15, 4215 27 of 83 
 

 

approaches that are available for modeling the evaporation of a multi-component 

hydrocarbon droplet are discussed. Finally, the interfacial heat, mass, and momentum 

transfer are assessed, which can affect both melting and evaporation as well.  

6.1. Melting 

The melting process is an important step and can be performed in-situ, meaning solid 

feeding, or ex-situ, meaning feeding with an extruder or so. There are some advantages 

in ex-situ liquefaction of PW in the PWG [30] including mild cracking of plastics, dehalo-

genation, and decreasing the thermal load of the reactor, among others. However, in some 

other cases, the plastics are fed into the reactor as solid particles.  

At the particle scale, melting is a non-linear displacement of the interface and its rate 

is a function of the amount of absorbed or desorbed latent heat at the boundaries [191], 

described by the following equation, called the classical Stephan condition: 

�� �
��

��
� =  �� �

���

��
� − �� �

���

��
�. (2)

where � is the density, � is the latent heat of fusion, � is the solid-liquid interface posi-

tion, �� and �� are the thermal conductivity of the solid and liquid phases, respectively, 

�� and ��  are the temperature of the solid and liquid phases, respectively, and � is the 

spatial coordinate. 

Melting of polymers and its modeling is associated with some extra complexities, 

which are explained in the following subsections. 

6.1.1. Melting Phenomenon 

Melting of polymers is more complicated than lower molecular weight molecules for 

three reasons: 

1. The presence of long-chain molecules; in the melting process, these long-chain mol-

ecules should get aligned [192]. 

2. The associated melting kinetics of polymers are more complicated compared to, e.g., 

metals [193], amongst others, due to their molecular chain folding [192]; and 

3. It has been recently demonstrated that polymer melting can be a continuous phe-

nomenon at the molecular scale [194]. 

In addition to the points above, high melt viscosity, low melting temperature, and 

partial crystallization characteristics—which becomes even more complicated in the case 

of PW that contains impurities [193]—increase the complexity of modeling melting in the 

PWG process. Finally, the cooling effect, which is usually neglected [195], can be another 

complexity.  

Considering these complexities, it is necessary to assess the melting process funda-

mentally at the molecular level to improve capturing the behavior of different types of 

plastics in all phases under a heating environment. Similar to the thermophysical proper-

ties, the fundamental understanding of the melting process can be done via the molecular 

simulation approaches [194,196,197], the details of which are not explained in this review. 

In the following sub-sections, the focus is on the models implemented for melting in the 

particle scale. 

6.1.2. Melting Models 

In the following sub-sections, different general approaches that are available to 

model the melting process of polymers are explained, being extrusion, enthalpy, phase 

field, and reaction models. 
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Extrusion Models 

The main modeling and simulation studies of plastics and polymer melting date back 

to the 1960s [71,198] when the main focus was on screw extruders [199]. In most of these 

simulations, the model is constructed based on: 

1. The conventional conductive heat transfer 

2. The pressure and shear forces [200] 

3. The characteristics of the extruder, e.g., the rotational velocity [71] 

4. Simplifying assumptions such as sharp melting of the plastics. 

Hence, this phenomenon is modeled in an extrusion process, without any transition 

in which plastics are not typically reacting or forming a gaseous state. These types of mod-

els are in fact multi-scale frameworks for the melting process in an extruder, which in-

clude scale-bridging techniques the goal of which is to reduce the complexities associated 

with the smaller scale phenomena. However, more recent research on extrusion modeling 

includes also the particle-resolved simulations in which progressive melting of particles 

is considered. As an example, Celik et al. [201] considered the pellets as discretized parti-

cles in simulating single-screw extrusion. In this approach, each particle is considered as 

a sphere with a desired number of shells. In each time step, the temperature of each shell 

is calculated, and based on the melting rate, the melting of the outermost layer is simu-

lated.  

In this approach, which is called “front tracking” [202], a sharp interface between the 

molten phase and the solid phase is considered (Figure 5b). However, in reality, polymer 

melting is characterized by a continuous transition between the solid and liquid phases, 

in which both of them are present in the melting zone [202] (Figure 5a). Hence, the front 

tracking models are in fact a specific form of continuous models, but with an infinitesi-

mally small thickness of solid-liquid interface and the changes between the two zones are 

step changes. Consequently, they are not able to reconstruct the transition zone between 

solid and liquid. To get a better insight into the melting process at particle scale with 

higher resolutions, two other approaches can be helpful, which are enthalpy-based and 

phase-field models. The first one is considered to be an easier approach [203] compared 

to the second one and has been used more frequently in the literature. 

Enthalpy-Based Models 

In the enthalpy-based models, the melting region is considered as a mixture of solid 

and liquid phases. Then, the temperature or enthalpy distribution throughout this region 

is obtained via solving a continuous heat transfer model, without specifying the solid or 

liquid phase. However, the phase properties, such as heat capacity, are different for the 

solid and liquid phases. This is considered in the heat transfer model by assuming a con-

tinuous function for that property from the solid phase to the liquid phase. This way, it is 

possible to take into account the latent heat evolution [202] in the melting zone (mushy 

zone). The share of phases in the melting zone is determined based on the volume fraction 

[70,72,204]. In fact, the interface is reconstructed as a region with a distribution of the liq-

uid volume fraction [203]. This volume fraction can be expressed based on the enthalpy 

or temperature distribution. Different functions can be used in this regard. As an example, 

Wang et al. [204] have considered Equation (3) to define the volume fraction as a linear 

function of enthalpy of solid and liquid phases: 

�� =

⎩
⎨

⎧
0 �� � ≤ �� 
� − ��

�� − ��

�� �� < � ≤ ��

1 �� � > ��

. (3)

where � is the volume fraction, � and � subscripts define the solid and liquid phases, 

and � indicates the enthalpy. Hence, in this method, since one equation is considered for 

the whole region, the discretized space to solve the governing equation doesn’t need to be 
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changed according to the interface displacement (the Stephan problem [191]). This ap-

proach is called the fixed-grid approach [202]. 

The application of the enthalpy-based model is straightforward because it is suffi-

cient to only add a transition function for the enthalpy or specific heat capacity [70,72].  

Phase-Field Models 

In the phase-field modeling approach, the transition between the solid and liquid 

phases is reflected as the free energy density at the interface, instead of the latent heat and 

enthalpy. Except for this difference, the logic of implementing this modeling approach is 

similar to the enthalpy-based approach. The free energy density at the interface is defined 

as a function of a crystal order parameter [193]. This parameter determines the free energy 

density and changes in the boundaries while melting [205]. It is a continuous function 

ranging from zero at the melt state to one at the solidified state [193]. 

The advantage of the phase-field model over the enthalpy-based model is that it is 

based on the crystal structure of the polymer and this provides the possibility of develop-

ing the model based on the plastic type more fundamentally, rather than using the en-

thalpy of solid and liquid phase, which are usually derived experimentally [201]. How-

ever, the challenge associated with the phase-field model is obtaining the free energy den-

sity function of the feedstock [205]. Moreover, the phase-field model is designed only for 

the transformation process, in which the melting has already started and the interface is 

known. In other words, it cannot be used to simulate a process, during which the melting 

starts [205]. Consequently, to model starting the melting process during PWG, the en-

thalpy-based one is likely to be the better approach. 

Reaction-Type Models 

To decrease the computational costs while reflecting the melting process in the sim-

ulation framework, another modeling approach is to assume melting as a reaction that 

converts the solid phase to the liquid phase [38]. This has been done by introducing the 

kinetic parameters [38] of the “melting reaction”. It is possible to obtain these parameters 

via differential scanning calorimetry (DSC) techniques [38,206]. This approach incorpo-

rates the effect of the melting process in the global time scale of the PWG while avoiding 

the detailed complexities of modeling this process.  

6.1.3. Application in the Multi-Scale Framework 

Different modeling approaches of melting can be incorporated into various multi-

scale modeling frameworks of the multi-phase flows. As was mentioned in Section 6.1.2: 

Extrusion Models, the extrusion model can be considered a multi-scale framework. Be-

sides, the enthalpy-based and phase-field models can be implemented in other multi-scale 

modeling frameworks, such as the Lattice-Boltzmann Method (LBM) [203,207] or Volume 

of Fluid (VOF) [208]. It is worth mentioning that implementing this process in the multi-

scale simulation framework is challenging. This can be inferred also from the limitations 

of modeling melting even in the commercial simulation packages [208]. These limitations 

demonstrate that multi-scale modeling of the PWG in one software package is challenging 

and hence, further studies need to be done to implement modeling this phenomenon in a 

multi-scale modeling framework. 

6.2. Evaporation 

Evaporation is a crucial step that transfers the pyrolysis products to the gas phase 

where the main oxygen-containing gasification reactions take place. In this section, the 

focus is on the general modeling approaches of evaporation, together with the complexi-

ties and simplifying assumptions that are usually implemented in this regard. 
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6.2.1. From 0D to 1D Models 

The simplest approach to modeling evaporation is the zero-dimensional framework, 

which is usually used in CFD to save computational costs [209]. In this approach, the tem-

perature and concentration distribution throughout the liquid droplet or the interface is 

not of interest, and heat and mass transfer inside the droplet is considered infinite. Over-

all, the evaporation mass rate and the change of the liquid droplet size are the most im-

portant results that are obtained in this approach. Using the 0D model may result in a 

deviation from the experimental data, e.g., predicting only slow evaporation rates, while 

not performing well in the high evaporation rates [209]. 

To increase the simulation results precision, a one-dimensional framework with fi-

nite heat and mass transfer is considered. This is done by assuming the presence of sym-

metry in the particle shape, as well as the internal transport phenomena. Implementing 

these models in higher-scale simulation frameworks significantly increases the computa-

tional time. In this approach, the classical heat and mass balance equations inside the 

droplet can be coupled to the film theory [210,211] that is usually considered in modeling 

the evaporation process. If the evaporation rate is not large, or convective fluxes are not 

important, the problem can be considered as so-called diffusion-controlled [208] and it is 

modeled by having the mass transfer coefficient and the concentration gradient between 

the interface and bulk gas phase. On the other hand, in cases of high evaporation rates in 

which the Stefan flow becomes important, or in cases of high flow of gas, e.g., in fluidized 

cases in which the convection becomes important, the Sherwood and Nusselt numbers 

should be incorporated into the equations [212]. This situation can be called the convec-

tion-diffusion controlled model [208]. This is an important feature that can be used for the 

FB gasification systems in which high relative velocity (gas to solid/liquid slip velocity) is 

desired to intensify the heat and mass transfer. 

A transient modeling approach between 0D and 1D is called a quasi-dimensional 

model [209,213]. In this approach, which has been used for non-reactive systems, instead 

of solving the transport equation for the internal heat and mass transfer, a presumed 

quadratic polynomial is considered for the temperature and concentration gradients 

within the multi-component liquid. The constants of these polynomials for the tempera-

ture profile are expressed as a function of the surface and average temperature. In a simi-

lar manner, the concentration profiles are derived. Consequently, the concentration and 

temperature gradients are implicitly taken into account in the evaporation model, while 

avoiding adding heat and mass transfer equations into the system. Hence, the imposed 

gradients within the droplet account for the internal transport limitations. Figure 12 illus-

trates three different modeling approaches that were explained above. 

 

Figure 12. Schematic illustration of different approaches in modeling vaporization (adapted from 

[209]). The red line and curves are related to the temperature and concentration profiles within the 
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liquid region in a multi-component fuel under vaporization. The dashed circles around the droplets 

represent the gas-liquid interface. 

6.2.2. Modeling Complexities for PWG 

Multiple Components 

The most crucial aspect in modeling evaporation in the PWG process is the multi-

component nature of the molten phase. The molten phase in PWG is supposed to include 

a wide range of molecules from small to heavy hydrocarbons, together with other impu-

rities. Each of these components with different thermophysical properties makes model-

ing this phenomenon complicated. Even in the case of a few components, precisely calcu-

lating the evaporation rates is considered a difficult task [214].  

Different approaches have been proposed to include different components in an 

evaporation model. These approaches are continuous multi-component (CMC), discrete 

multi-component (DMC), and hybrid multi-component (HMC) models [179]. 

In the CMC model, the multi-component liquid is considered as a distribution of 

molecules based on, e.g., molecular weight, and methods of continuous thermodynamics 

are used in this regard [215]. This approach is well suited for PWG, in which the liquid 

droplets may encompass a wide range of products. However, although it saves the com-

putational costs, this cannot be coupled to the detailed kinetic models, since it cannot track 

each individual species [179]. DMC is, on the other hand, a simulating approach in which 

all the species are tracked individually. This method is the normal practice in most of the 

evaporation studies (Table 3). 

In the hybrid model, different classes of species are defined and a distribution of a 

characteristic, e.g., molecular weight, is assigned to each class [179] to reflect the presence 

of different species in each class. A class may also include only one species. So, in princi-

ple, the problem is reduced to the number of classes instead of the number of individual 

species, while it is possible to track the changes in the distribution of species in each class. 

This approach is somehow similar to the lumping procedure or global kinetic modeling 

approach in kinetic modeling. An important and challenging fact about this approach is 

how to couple this model to a kinetic model, which should be further investigated. The 

hybrid models can be computationally efficient and their results are acceptable compared 

to the DMC approach [179]. Overall, if the goal is to couple the evaporation model with 

the chemistry, considering improvements in the computational resources, the only avail-

able solution seems to be the DMC approach. 

Mass Fraction at the Interface 

In quasi- and one-dimensional models, an important value is the components’ mass 

fraction at the interface between the liquid and bulk gas phase. In this regard, many re-

searchers assume the vapor-liquid equilibrium, while it has been shown that this assump-

tion is not necessarily correct, especially in the case of small droplet size, high tempera-

ture, and high convective regimes [216]. Consequently, although the intensified and 

highly convective regimes are desirable, they can complicate the modeling of this phe-

nomenon. Hence, to increase the precision of the model, the effect of non-equilibrium con-

ditions can be taken into account for the intensified processes or in the practical conditions 

[217]. 

Non-Ideal Behavior 

In calculating the equilibrium (or non-equilibrium) composition at the interface, the 

deviation from the ideal situation [218] of the liquid droplet is an important parameter. 

Usually, the equilibrium concentration of the components at the interface is calculated via 

the ideal Rault’s law. However, to increase the reliability of the model, the modified 

Rault’s law by considering the activity coefficients of the components should be taken into 

account [219]. These activity coefficients can be calculated via the UNIFAC approach 
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[220]. This way, it is possible to account for the size and shape of the molecules as well as 

the interaction between the functional groups, which are important parameters for the 

cracked molecules in the liquid phase during the pyrolysis of PW. As the result of non-

ideality in the droplet, the concentration gradient is observed in the multi-component liq-

uid droplet. However, by evaporation of the molecules with larger activity coefficients, 

the non-ideality decreases, and a more homogeneous concentration distribution of com-

ponents in the liquid droplet is obtained in the later stages of the evaporation process 

[219]. It is worth mentioning that non-ideal effects at low temperatures are typically more 

significant than at high temperatures [219]. Hence, in the case of gasification with high 

temperature and low pressures, it is possible to neglect the effect of non-ideality [172] if 

the computational costs are a constraint.  

Role of Radiation 

At high temperatures, radiation plays a significant role to the extent that, when con-

sidering the radiation contribution in a simulation, by increasing the temperature from 

503 to 703 K, the time for converting the multi-component hydrocarbon liquid droplet to 

the gas phase decreases by 48% [219]. This contribution is incorporated in the effective 

enthalpy of evaporation and the heat balance equation of the droplet [219]. Hence, it is 

expected that this phenomenon is much faster in gasification, compared to pyrolysis, be-

cause of the higher temperatures of the former. 

Role of Surface Area 

Another important parameter to correctly estimate the evaporation rate is the surface 

area, which is in fact crucial for the rate of all transport phenomena. In general, to account 

for the effect of surface area, in the case of solid particles, averaging the surface area of the 

particles that are being fed to the system can be a solution. However, for the systems tak-

ing into account liquid droplets, this is more complicated. This can be done in a simplified 

case by solving a transport equation if it is assumed that instead of one droplet, n droplets 

are present in the system. Subsequently, a transport equation for the number density per 

unit mass can be coupled to the other transport equations to account for the effect of the 

number of particles in the total surface area of a liquid. Furfaro et al. [221] implemented 

this approach to take into account the multiple droplet effect (instead of a single droplet) 

in the study of droplet evaporation. Finally, the coalescence and breakup of the drop-

lets/bubbles and their size distribution can be also taken into account, which is more re-

lated to the reactor scale modeling and will be discussed more in Section 7. 

6.2.3. Simplifying Assumptions 

In simulating the evaporation of multi-component fuels, there are some common 

simplifying assumptions in the literature that allow simulating the PWG at lower compu-

tational costs. These assumptions include but are not limited to: 

1. Considering the liquid as a spherical droplet 

2. The presence of an inert atmosphere 

3. Negligible diffusion of the gas to the liquid  

4. Negligible mass diffusion due to temperature and pressure gradients 

Some of these simplifications can be observed by comparing parts a and b of Figure 

5. However, one should be careful about applying these assumptions in the PWG. One of 

the most important ones is assuming non-reactive conditions [175,216]. If the goal is to 

simulate evaporation during the PWG, this assumption neglects the presence of a gasifi-

cation agent and the gas phase reactions that change the composition of the gas in the 

vicinity of the liquid droplet. This can change the gas thermophysical properties and com-

position, which strongly changes the evaporation rate [172] and affects the concentration 

gradients. 
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Table 3 provides an overview of different simulation studies that are focused on the 

evaporation of multi-component liquids. This table includes both liquid droplets and film. 

The latter can be used in the falling film reactors or to simulate the possible liquid layers 

that are attached to the reactor walls. This table also includes whether the internal and 

external heat and mass transfer have been considered or not, which is helpful for Section 

6.3. 

Based on what is observed in Table 3, some important points can be concluded that 

are helpful in creating a simulation framework for PWG in particle scale: 

1. The heaviest component that has been implemented in these simulations is C20. Alt-

hough the table doesn’t cover all the available studies in this regard, it can demon-

strate that in general, not all the components available in the liquid phase of PW dur-

ing the pyrolysis have been assessed extensively. Hence, one of the main areas to be 

focused on is the assessment of the cases that, from the components’ point of view, 

are closer to what is happening in PWG. 

2. The shape of the liquid phase is important in simulations. In each study, either spher-

ical or film shape is assessed. This is while different shapes can be simultaneously 

present in PWG, e.g., it can be droplet, agglomerate, or the liquid film on the wall. 

Besides, in all cases in the table, a uniform characteristic length of the liquid phase is 

considered, while the shapes that are present in the PWG are not perfect spheres or 

liquid film. This demonstrates the complexity that is faced in PWG due to the shape 

imperfections. 

3. Most of the cases consider the ideal gas assumptions and this can be true due to the 

high temperature and low pressure [172,219]. However, for the liquid phase, due to 

the presence of multiple components with different properties, this is not necessarily 

true. Implementing the non-ideal conditions for a large number of components is a 

challenge itself. 

4. Many of the studies use the DMC approach. This demonstrates that the simulation 

of the evaporation in the PWG can also be done in this approach at a logical compu-

tational expense and hence, can be coupled to the available detailed kinetic models 

for the plastic pyrolysis. 

As it was demonstrated in this part, similar to other parts, available simulation stud-

ies of evaporation are based on simplifying assumptions. Hence, they can be improved by 

removing those simplifying assumptions. Open-source platforms have been recently de-

veloped in this regard, such as OpenSMOKE++ [222] and DropletSMOKE++ [214], which 

can be used and developed further to incorporate the abovementioned items in the simu-

lation framework of evaporation. 

6.3. Interfacial Heat and Mass Transfer 

The effect of interfacial heat and mass transfer in the simulation framework gains 

special importance in the case of scale-up, where the role of these phenomena becomes 

crucial [98]. Different approaches and correlations can be implemented in this regard. 

However, the main challenge would be choosing the best available (Nusselt and Sher-

wood) correlations for the transfer coefficients. Hence, the focus is not on the details of all 

the modeling approaches for the interfacial transport phenomena, but to assess the 

challenges that are related to using those correlations in the PWG process. 

6.3.1. Empirical-Based Correlations 

The parameters used in various proposed correlations are obtained via empirical or 

numerical approaches [223]. The empirical approaches, which are the more classical ones, 

are extensively used in large-scale simulation frameworks [224–226]. To name a few: 

Ranz-Marshall [227] and Gunn [228] for the Nusselt correlations. The advantage of using 

these correlations is their wide application in the literature and their simple implementa-

tion in the numerical modeling framework of the PWG. However, the drawback of using 
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these empirical correlations in the PWG is that they are based on simplified transfer mod-

els and developed for general purposes and idealized conditions [229]. Hence, their va-

lidity is questionable for complex reactive flows. This can be inferred from the observed 

differences between different correlations that are more recently developed for various 

simple fluid–solid systems (Table 4). Even if the goal is to derive the empirical correlation 

specific to the desired PWG system, another challenge would be the complexity of the 

experiment and process based on which the correlation should be derived. Besides, em-

pirical closures should be simplified to provide information on the mean thermal dynamic 

characteristic of the system [223]. Consequently, considering the advances in numerical 

simulation methods, such as PR-DNS or LBM, precisely deriving the correlation parame-

ters via numerical methods might be a safer approach for PWG. 

6.3.2. Numerical-Based Correlations 

With the recent development and improvements in numerical resources, high-reso-

lution numerical simulations, such as PR-DNS, can be used as virtual experiments to ob-

tain the parameters for the interfacial heat and mass transfer correlations. An example of 

a robust simulation in this regard is the framework that has been developed by Hardy et 

al. [230]. They coupled the weakly compressible approximation and the Brinkman penal-

ization method in a PR-DNS framework. Such a framework can be used as a base to de-

velop correlations for interfacial heat and mass transfer in PWG since it was created spe-

cifically for reacting gas-solid flows. 

Table 4 summarizes the recently numerically developed correlations for the Nusselt 

number [223]. It is important to notice different cases and conditions for which the corre-

lations are derived: 

1. Each of them is derived for a specific range of void fraction and Reynolds and Prandtl 

numbers 

2. For the special case of gasification in supercritical water (which can be used for the 

PWG as well [231]) specific correlations have been developed [232–234] 

3. For the particles with different shapes, the Nusselt correlations have been developed, 

including the incident angle of the particles [233] 

4. Depending on the direction of heat flow, the Nusselt correlation is different, due to 

the different behavior of water properties in the heating and cooling process at su-

percritical conditions [234] 

It is worth mentioning that this discussion was based on the heat transfer and a sim-

ilar discussion can be made for the Sherwood number correlations that are implemented 

in the interfacial mass transfer, and hence, are not explained here.  

Considering the abovementioned facts, it can be concluded that even with precise 

numerical methods, for each specific condition, a different correlation should be derived 

to correctly reflect the heat and mass transfer behavior of that specific system. Conse-

quently, to simulate the interfacial heat and mass transfer for PWG: 

1. The application of the classical empirical correlations for the complex systems is in 

doubt because it has been shown that for each case, a different correlation (which has 

been validated against the experimental data) should be developed 

2. The numerical tools have been advanced enough to be used for developing new cor-

relations for each specific condition of PWG process. This way, it is possible to in-

crease the precision of the interfacial heat and mass transfer models used in this pro-

cess.
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Table 3. Overview of simulation works for evaporation of multi-component mixtures. 

Feedstock Liquid Shape Ideality 

Spherical  

Droplet/ 

Uniform Film 

Thickness 

0D/1D 

Internal 

Heat/Mass 

Transfer 

External 

Heat/Mass 

Transfer 

Reactive Radiation Equilibrium Approach Ref 

H2O, CH3OH, C2H5OH, 1- 

C4H9OH, n-C7H16, n-C10H22 
Droplet 

Real fluid (UNI-

FAC), ideal gas 
Yes 0D No/No No/No No No Yes DMC [175] 

C2H5OH, n-C5H12, cyclo-

C5H10, 1-C6H12, n-C7H16, 

C7H8, iso-C8H18 

Droplet 

Real fluid (UNI-

FAC), Ideal mixture 

for the gas phase 

Yes 1D Yes/Yes Yes/Yes Yes Yes Yes DMC [172] 

iso-C6H14, n-C7H16, iso-C8H18, 

cyclo-C9H18, n-C10H22, ben-

C10H14, n-C11H24, n-C12H26, 

ben-C12H18, n-C13H28, n-

C14H30, n-C15H32, n-C16H34, n-

C17H36, n-C18H38, n-C19H40, n-

C20H42, n-C21H44, n-C22H46, n-

C30H62 

Droplet Real fluid, Real gas Yes 1D Yes/Yes Yes/Yes No - No DMC [216] 

n-C6H14, n-C7H16, iso-C8H18, n-

C10H22 
Film 

Ideal fluid, Ideal 

gas 
Yes 1D Yes/No - No - Yes DMC [176] 

C4H9OH, C7H8, n-C10H22 Droplet 
Non-Ideal fluid  

(UNIFAC) 
Yes 1D Yes/Yes Yes/Yes No Yes Yes DMC [219] 

n-C7H16, n-C16H34 Film Ideal gas Yes 1D 

Yes/Yes 

(polynomial 

expressions) 

Yes/Yes No - Yes DMC [181] 

C10H22, C16H34 Film 
Ideal and Non-Ideal 

Gas 
Yes 

1D /Quasi-Di-

mensional 

Yes/Yes 

(polynomial 

expressions) 

Yes/Yes No - Yes DMC [213] 

C7H16, C10H22, C16H34 Droplet Ideal Gas Yes 1D Yes/Yes Yes/Yes No - Yes DMC [173] 

n-C5H12, iso-C5H12, C7H16, 

iso-C8H18, C9H20, C10H22, 

C12H18, C12H26, C16H34, C20H42 

Droplet 
Ideal and Non-Ideal 

Gas 
Yes 

1D /Quasi-Di-

mensional 

Yes/Yes 

(polynomial 

expressions) 

Yes/Yes No Yes Yes DMC [209] 

H2O, CH3OH, C2H5OH, 

C3H6O, C4H9OH, 3-C5H10O, 
Droplet -  1D No/No 

No (Isother-

mal)/Yes 
No - - DMC [177] 
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C8H18, C10H22, C12H26, C14H30, 

C16H34  

(Stefan-Max-

well ap-

proach) 

Air, H2O Droplet Ideal Gas 

Yes (Including 

the number of 

droplets) 

1D Yes/Yes Yes/Yes No - - DMC [221]  

C7H8, tr-C10H18, C12H26, iso-

C16H34 
Droplet 

Ideal/Real Gas/Liq-

uid 
Yes 0D Yes/Yes Yes/Yes Yes No Yes DMC [235] 

n-Paraffin, Iso-Paraffin, Cy-

clo-Paraffin, Aromatics, Ole-

fin 

Droplet 
Real Fluid, Ideal 

Gas (Modified) 
Yes 1D Yes/No Yes/Yes No No Yes DMC [179] 

C2H6O (DME), C7H16 Droplet 
Real Fluid (UNI-

FAC), Ideal Gas 
- 0D - - No - No (LK) DMC [217] 

C2H5OH, iso-C5H12, iso-

C6H14, iso-C7H16, iso-C8H18, 

C9H20, C10H22, C12H26 

Droplet 
Real Fluid (Wilson 

equation), Ideal Gas 
Yes 1D Yes/Yes Yes/Yes No No Yes DMC [182]  

C7H16, C10H22 Droplet Real/Ideal Gas Yes 1D No/No Yes/Yes No No Yes DMC [178] 

iso-C5H12, iso-C6H14, iso-

C7H16, C7H8, iso-C8H18, C9H20, 

C10H22, C12H26, C14H30, C16H32, 

C18H34 

Droplet Ideal Fluid Yes 

1D (Imple-

mented in 

multi-dimen-

sional CFD) 

Yes/No Yes/Yes No No Yes 

DMC  

(Derived from 

CMC) 

[236] 
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Although numerical simulations such as PR-DNS are performed with high resolu-

tion, they are also limited because they are usually used for changing a few dimensionless 

numbers simultaneously and in a limited range [229]. The challenge in this field is how to 

deal with high values of the Prandtl and Schmidt numbers, which can occur in real sys-

tems. This causes a decrease in the size of the heat and mass boundary layers and imposes 

the necessity of higher resolution simulations, resulting in high computational costs. 

Moreover, coupling transport phenomena, the presence of multi-component systems (es-

pecially for the mass transfer), the presence of non-spherical particles, and experimental 

validation of the results are other difficulties in this regard [229].  

To partially overcome the abovementioned challenges, an opportunity lies in 

merging different correlations that are developed for a specific range of applicability. Zhu 

et al. [223] have proposed a Nusselt/Sherwood correlation based on 145 PR-DNS results 

from six different references to be used in a wider range of conditions. Another goal of 

this correlation is to reflect the effect of coupled-transport phenomena including the effect 

of reactions. This was done by considering two extreme cases of Damköhler number (��), 

which is 1 for the slow reactions and infinity for the extremely fast reactions. These 

correlations are derived for the particle-fluid system, performing relatively well for the 

non-spherical particles, for a range of 0.35 to 1 for the � and 0 to 550 for ��. This approach 

shed a light on the importance and necessity of the machine learning application for the 

multi-scale modeling [55] of PWG, due to the presence of different regimes, conditions, 

and reactions that are observed in different locations of the reactor. 

The focus of the discussions above was based on the gas-solid-only assumption. 

However, the same challenges and opportunities are expected for the situations in which 

the presence of liquid is considered, e.g., for the molten plastic droplet [237,238], the flu-

idization agents covered by the molten plastic layer [45], and the falling film reactors 

[67,169,239]. 

6.3.3. Determining the Limiting Step  

As was demonstrated (Error! Reference source not found. and Error! Reference 

source not found.), the sequence of chemical and physical phenomena occurring from 

molecular to reactor scales determines the overall performance of gasification. 

Dimensionless numbers are great tools in determining the limiting steps in this sequence. 

The first important one is the Biot number, which determines the dominant heat transfer 

mechanism by comparing the internal and external heat transfer, as: 

�� =
ℎ ∙ �

�
. (4)

where ��  is the Biot number, ℎ  is the convective heat transfer coefficient, �  is the 

characteristic length, and � is the thermal conductivity. 

Hence, for large Biot numbers, the limiting heat transfer mechanism is the internal 

one. In this case, it is possible to neglect the interfacial heat and mass transfer limitations. 

The other two important dimensionless numbers are pyrolysis numbers, proposed by 

Pyle and Zaror [240], which are defined as: 

��� =
�

� ∙ �� ∙ �� ∙ �
, (5)

���� =
ℎ

� ∙ �� ∙ � ∙ �
. (6)

In Equations (7) and (8), �  is the thermal conductivity,  ℎ  is the convective heat 

transfer coefficient, � is density, �� is the specific heat capacity, � is the characteristic 

length, and � is the reaction kinetic constant. ���, the first pyrolysis number, defines the 

relationship between the rate of internal heat transfer and the reaction rate. ���� , the 

second pyrolysis number, defines the relationship between the rate of external heat 
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transfer and the reaction rate. In Equations (5) and (6), � is the thermal conductivity, ℎ is 

the convective heat transfer coefficient, � is density, �� is the specific heat capacity, � 

is the characteristic length, and � is the reaction kinetic constant. In cases that �� ≫ 1, 

i.e., the internal resistances dominate the heat transfer rate, the competition is between the 

internal limitations and the reaction kinetics. In this case, the first pyrolysis number 

(Equation (5)) is utilized since it compares the velocity of the temperature front and the 

reactions taking place. Hence, for large ���  number, the internal transfer limitations are 

not the impediment to the pyrolysis reactions. This situation is expected to be observed in 

the cases of having a small characteristic length. Otherwise, in falling film technologies or 

the conventional FB in which a large characteristic length of the molten phase presents, 

the internal transport limitations can become an important and limiting step. On the other 

hand, for �� ≪ 1, the external resistances are the limiting steps for heat transfer. In that 

case, the second pyrolysis number (Equation (6)), which is also called the external 

pyrolysis number [240], determines the dominancy of the kinetics versus the external heat 

transfer. This number is derived from the multiplication of the first pyrolysis number and 

the Biot number to change the scenario from the internal limits to the external limits. 

Similar to the first pyrolysis number, in the case of a large external pyrolysis number, the 

process is controlled by the pyrolysis kinetic. 

Different references [98,240,241] have used these dimensionless numbers to compare 

the importance of different steps. Nevertheless, determining �, which is the rate constant, 

is not clear. In the main reference that has introduced the pyrolysis number [240], this 

constant is defined as the “(first order) velocity constant for the intrinsic pyrolysis 

reaction”. Considering the discussions and complexities of the kinetic modeling of the 

plastic pyrolysis in Section 4, if the rate constant of a one-step first-order reaction is used 

for pyrolysis, it can not be representative of the intrinsic kinetics of pyrolysis reactions. 

Hence, these numbers are expected to be useful only in the engineering and global 

assessment of the process and not the detailed multi-scale modeling approaches. Thus 

detailed numerical modeling of particle scale, even in 1D, can help in determining the 

limiting step for the desired PWG operation and conditions. This way it is possible to 

minimize the computational cost of the multi-scale modeling of such a process, by 

neglecting the faster steps in the simulation framework. 

6.4. Momentum Transfer 

The momentum transfer is also important in determining the overall performance of 

the PWG on the particle scale. External convective fluxes and momentum transfer can 

alter the internal heat and mass transfer inside the molten phase [173], due to their 

possible effects on the internal circulation patterns. More importantly, they can determine 

the flow regime in the multi-phase system in the reactor scale, as will be explained in 

Section 7. 

For the case of a gas-solid system (e.g., for char gasification, solid plastic before 

melting, or gas-solid-only assumption), the effect of the momentum transfer is only on the 

flow pattern in the reactor scale. The role of momentum transfer becomes more notable if 

the PWG simulation framework includes the liquid phase, since it also has an impact on 

the internal heat and mass transfer, in addition to the flow behavior, due to: 

1. The Marangoni effects [210] and internal circulation flow inside the liquid [51,90,173] 

2. The role that it plays in the interaction between the particle/droplet/bubbles and 

change in the interfacial area and shapes as the result of agglomeration, coalescence, 

and breakup 

Hence, it is crucially important to precisely include momentum transfer in the 

simulations. 

Different mechanisms contribute to the momentum transfer between phases and the 

forces exerted on each phase, the most important of which are the drag, lift, virtual mass 

[242], and buoyancy forces [243]: 
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1. The drag force is the main contributing force in the momentum transfer, which acts 

against the fluid flow direction to resist the motion of a particle, droplet, or bubble. 

This force is a function of fluid density, dispersed phase diameter, the slip velocity 

(difference between the velocity of the continuous and discrete phase), and a drag 

coefficient. 

2. The lift force acts perpendicular to the flow direction and is the result of turning of 

the fluid because of the presence of the discrete phase. 

3. The virtual mass force is the result of acceleration of the discrete phase, i.e., change 

of its relative motion compared to the fluid phase. This imposes an extra force as an 

extra mass or “added mass” in the acceleration force. 

4. The buoyancy force acts against the gravity force as the result of the difference 

between the density of the fluid and the discrete phase 

The schematic of these forces is shown in Error! Reference source not found.. This 

figure is based on the gas-solid fluidized bed reactor. However, similar forces act on the 

discrete phase in all systems, i.e., on solids, droplets, or bubbles. 

6.4.1. Drag Force 

In the case of the gas-solid-only assumption, drag is the most contributing force in 

the momentum transfer. Similar to the interfacial heat and mass transfer, several 

correlations are available in the literature for the drag coefficient [242,244,245]. The 

frequently used ones are Gidaspow [246], Syamlal O’Brien [247], and energy minimization 

multiscale (EMMS) [248], to name a few. The challenge in PWG, however, is correctly 

implementing the drag force. The size of the particle is important because it accounts for 

the surface area that causes the drag. Hence, if the shape of the particle is not a perfect 

sphere, the drag force can be two to three times larger than the perfect sphere conditions 

[245]. Consequently, for PW feedstocks, which are not necessarily perfect spherical 

particles/droplets, special care should be taken. This, in situations where the liquid 

characteristic length is not small enough to be neglected, becomes more critical. This is 

because of the dynamic changes and deformations in the shape of particles and droplets, 

as well as their possible coalescence and break-up. Otherwise, similar to gas-solid systems, 

different drag correlations for the gas-liquid systems [242,249,250] can also be used to 

define the momentum transfer between the gas and liquid phases. 

To deal with the non-sphericity, several correlations for the drag coefficient have 

been developed [244] in which a shape dependant parameter is incorporated. This 

parameter can include sphericity, circularity, aspect ratio, flatness, and elongation, among 

others [251]. In most of those correlations, the sphericity parameter is used to account for 

the shape non-idealities, and this has been the recommended shape factor for the 

microplastics as well [251]. This parameter is defined as the ratio of the surface area of a 

volume equivalent sphere to the actual surface area: 

� =
�������

�������

. (7)

where � is the sphericity parameter and � is the surface area. 

In the most simplified approach to taking the non-sphericity into account, the particle 

size is multiplied by the sphericity parameter [252]. Thus, the effect of shape non-idealities 

appears directly in the drag force, and not the drag coefficient. As a result, the drag force 

always increases for the discrete phase with a sphericity of less than 1. In more precise 

and complicated approaches, the sphericity parameter is used in the correlations of the 

drag coefficient and this can impose a non-linear behavior of the drag force versus the 

sphericity parameter [253,254]. 
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Table 4. Recently developed Nusselt correlations via numerical methods for the particle-fluid systems (adopted from [223]). Reprinted from Chemical Engineering 

Journal, Vol. 374, Li-Tao Zhu, Yuan-Xing Liu, Zheng-Hong Luo, An enhanced correlation for gas-particle heat and mass transfer in packed and fluidized bed 

reactors, Pages No. 531–544, Copyright (2019), with permission from Elsevier. 

Correlation Method 
Limit 

Year Ref 
� �� �� Shape/Conditions 

�� = (7 − 10ɛ + 5ɛ�) �1 + 0.1���.���
�
�� + (1.33 − 2.19ɛ + 1.15ɛ�)���.����/� DNS 0.4–0.9 10–100 1.0 Spherical 2014 [255] 

�� = (−0.46 + 1.77ɛ + 0.69ɛ�)/��  +  (1.37 − 2.4ɛ + 1.2ɛ�)���.����/� PR-DNS 0.5–0.9 1–100 0.7 Spherical 2015 [256] 

�� = 2.67(±1.48) + 0.53���.�����.�� PR-DNS 
0.351–

0.367 
9–180 0.5–1.0 Spherical 2017 [257] 

�� = 1.77(±1.39) + 0.29��.�����.�����.� PR-DNS 
0.418–

0.526 
9–180 0.5–1.0 Cylindrical 2017 [258] 

�� = (1.49 − 0.88ɛ + 0.078ɛ�)(2.458 − 0.042���.�����/�)  + (1.114 − 0.62ɛ
− 0.08ɛ�)���.����/� 

PR-DNS 0.65–0.9 10–200 0.74 Ellipsoidal 2017 [259] 

�� = (8.35 − 7.4ɛ)�1 − 0.11���.����/�� + (3.92 − 7.67ɛ + 3.96ɛ�)���.����/� DNS 
0.877–

0.948 
0–550 1 

Cellular porous me-

dia 
2018 [260] 

�� = (2 + 0.77ɛ + 0.64ɛ�) + (0.6 + 1.1ɛ)���.����/� LBM 0.5–0.9 1–100 0.7 Sphere 2019 [261] 

�� = (3.2846 − 5.1844ɛ + 3.1741ɛ�)�1 + 0.7���.������
���.����� + (1.3715

− 1.3531ɛ + 0.334ɛ�)���.�������.��� 
DNS-LBM 0.6–1.0 20–500 0.5–1.5 Sphere 2019 [262] 

�� = 0.3832���/����/�����.���� − 0.0641��
�
���

�
����.���� + 5.1188���.���� PR-DNS - 10–200 3.07 

Spheroid  

(Ar = 0.5–2.5)/SCW 
2019 [232] 

�� = 0.3695���/����/�����.���� − 0.0387��
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Figure 13. Schematic representation of different forces that contribute to the momentum transfer 

between phases (adapted from [263]). Indices 1 and 2 are related to the primary/fluid phase and the 

discrete phase, respectively. 

Besides the sphericity parameter, other shape-dependant parameters have also been 

implemented in the drag coefficient correlations to increase the precision of the drag force 

predictions. The reason lies in the fact that the sphericity parameter (�) can not always 

reflect the shape non-ideality effects and the particle orientation. Moreover, for some 

situations such as spheroids in the Stokes region or lengthwise plates at high �� 

numbers, smaller drag forces have been recorded [264]. This is while the sphericity-

parameter-based correlations (such as Haider and Levenspiel [254]), predict a larger drag 

coefficient for these situations, due to the decrease in their sphericity [264]. As an example 

of a more precise correlation for special shapes, Holzer et al. [264] used two different shape 

factors, called crosswise and lengthwise sphericity. In another, more frequently used 

approach, Dioguardi et al. [265] used a different definition of the shape factor (�),which 

is defined by Dellino et al. [266]: 

� =
�

�
 (8)

as the ratio between the sphericity parameter (�) and the circularity (�). The circularity is 

defined as the ratio of two different perimeters by Equation (9): 

� =
���

��

 (9)

���  is the maximum projection perimeter and ��  is the perimeter of the circle 

equivalent to the maximum projection area of a particle. Using this shape factor, 

Dioguradi et al. [265] developed a correlation for the drag coefficient, which is validated 

against the spherical and non-spherical particles. This can be useful in the case of having 

a range of different shapes of particles, and hence, is practical for the PW feedstock, which 

was proved by Van Melkebeke et al. [251] as well. 

Although its application is different from the gasification process, the research done 

by Van Melkebeke et al. [251] could be of great help, which assesses different shape-

dependent drag models on the sinking behavior of micro-plastics. A wide range of 
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particles size (0.63 to 3.48 mm), plastic types (HDPE, PET, PP, PS, PE, and PVC), and shape 

factor (sphericity from 0.04 to 0.97) were studied in their work. They declared that the 

recent non-spherical drag model of Dioguardi et al. [265] shows the best performance to 

study the microplastic potential remediation techniques. This demonstrates the extensive 

work that should be done to only validate a drag model for a specific case, e.g., in this 

case, the sinking behavior of microplastics.  

Non-sphericity is not the only factor that impacts the drag force. It has been proven 

by Zhang et al. [267] that the drag force of a particle in the presence of homogeneous and 

heterogeneous reactions is different from a simple particle with outflow in non-reactive 

conditions. This is supposed to be more pronounced in the gasification process compared 

to pyrolysis, due to subsequent homogeneous and heterogeneous gasification reactions 

around the particles/droplets (Figure 5). 

High-resolution numerical simulations can be done to study the effect of a 

combination of different affecting parameters, such as the shape, temperature, and 

chemical reactions. To the best of the authors’ knowledge, this has not been done yet for 

the PWG or similar processes. However, they have been done in separate studies. As was 

mentioned above, Zhang et al. [267] studied the drag force for a burning particle using 

particle-resolved simulations and concluded that the drag force of a reactive particle is 

higher than the non-reactive one. They declared that the changes in the flow pattern 

(because of the Stefan flows prompted by the heterogeneous reactions), as well as the 

recirculation wake, will change the drag force.  

In another study, Sanjeevi et al. [268] performed a direct numerical simulation using 

the Lattice-Boltzmann method to develop a correlation for the drag coefficient of non-

spherical particles, which accounts for their incident angle. Nonetheless, this comes with 

a high computational cost. Moreover, the computational cost increases when having 

different shape factors (which is usually the case for real-world PW). So, different classes 

of particles should be defined in the simulation framework.  

6.4.2. Non-Drag Forces 

Besides the drag force, other forces can also be important in the momentum transfer 

between phases. However, this depends on the different situations in which the PWG is 

being operated and how precise the simulation results should be. Papadikis et al. have 

taken into account the buoyancy and virtual mass forces and neglected the lift force in 

modeling a fast pyrolysis process in a FB reactor [243,269]. On the other hand, Armstrong 

et al. have reported that the lift and virtual mass force are neglected in a gasifier simulation 

by indicating that the lift force is highlighted only in the case of large particles [270]. This 

could be important in the case of PWG since if the PW is not pretreated well, 

nonuniformity or large sizes of particles are present in the system [251].  

If the presence of a liquid phase is considered, the role of other forces in the 

momentum transfer between the phases depends on the operation. For the falling film 

systems, only the drag force is important and other forces are not usually assessed 

[169,239,271]. However, non-drag forces become more important in the case of the 

presence of liquid in the system [242] for the bubbly or droplet regimes. In any case, the 

drag force is still the most important while the importance of the lift force is still 

questionable [242] and the significance of the virtual mass force is only in the regimes with 

high-frequency fluctuations of the slip velocity [272]. Consequently, to the best of the 

authors’ knowledge, there are no clear criteria to determine the importance of other non-

drag forces [273]. 

Hence, for the case of PWG, as far as the availability of the computational resources 

is not a concern, a conservative approach is to include the non-drag forces, since they 

increase the precision. As an example, Duguay et al. [274] assessed different interfacial 

momentum transfer models in a bubble-induced recirculatory flow. They demonstrated 

that neglecting the lateral lift force could end up in unreliable predictions of the system 

behavior, such as a 40% underestimation of volumetric fluid flux through a specific plane. 
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Consequently, this should be assessed for each case individually to determine the 

importance of the non-drag forces. It is worth mentioning that, the complexities that were 

discussed for determining the drag force in the PWG are valid for the non-drag forces as 

well. 

7. Multi-Phase Flow Modeling 

One of the most crucial parts of the PWG process in a multi-scale framework is the 

multi-phase flow modeling of this process inside the reactor. This is because it determines 

the effect of the flow behavior and reactor scale phenomena on the process outcome and 

includes many different parameters. Some small changes in the design of a plastic gasifier 

can change the product distribution a lot, which can be due to the velocity profile, but also 

the temperature profile. Yamamoto et al. have reported that the optimized location of 

oxygen blowing could minimize the volume of produced dioxins [275]. A similar effect 

can be seen in the reduction of tar production as the result of the location of injecting the 

feedstock in a co-gasification process [276,277]. 

The performance of multi-phase flow PWG reactors is determined by the flow 

pattern and reaction kinetics, as well as all other parameters that were discussed in this 

review. The flow pattern determines the residence time, and this parameter, together with 

the kinetics and transport phenomena, determines the product distribution. To obtain the 

flow pattern behavior in the simulations, the effects of turbulence, interactions with the 

walls or reactor internals, and phase interactions can be accounted for, either by explicitly 

calculating these phenomena or through correlations, referred to as closure models. In this 

regard, time scales of chemistry, mass, momentum, and heat transfer play important roles. 

If they are different enough to make one of them the limiting step, one can simplify the 

model (e.g., consider only chemistry or only mass transfer) without losing much precision. 

Otherwise, the effects of different phenomena at different scales should be coupled to the 

hydrodynamics—and the interaction between phases and with the reactor walls and 

internals at different locations of the reactor—to predict the overall outcome of the 

process. Consequently, different approaches and methods have been devised with 

different levels of detail, complexity, and of course, computational costs to simulate a 

process at a reactor scale. In this section, the focus is not on the details of all the reactor 

modeling approaches but is on how different approaches can handle the phenomena and 

facts that are specific to the PWG. 

The multi-phase flow simulation of PWG [29] or similar processes, such as municipal 

solid waste gasification [278–280], is usually based on coal or biomass gasification, while 

PWG is different from conventional solid fuel gasification and more complex, due to the 

presence of molten plastic [38]. This can impose a different behavior between 

particles/droplets due to their stickiness [281]. Hence, they may cause coalescence and 

breakup [282], aggregation in presence of fluidizing agent [282], or change their elastic 

behavior [283]. The same holds for the particle/droplet–wall interaction and may end up 

forming a layer of molten plastic on the reactor wall, similar to the slag layers in the coal 

gasification process [284]. A similar phenomenon is present in the thermochemical 

recycling of PW due to the presence of impurities in the waste streams [285]. Besides, due 

to the same reason, it is possible that the flow regime changes in some areas of the reactor, 

and the dispersed phase changes from the solid/liquid phase to the gas phase, and vice 

versa [286]. This is while the application of some models such as the drag model is valid 

based on a fixed dispersed phase, such as the Gidaspow drag model [246]. Finally, the 

molten plastics behave as a non-Newtonian liquid [187,188], which affects the flow pattern 

in the reactor. 

Besides neglecting the presence of molten plastic, some other simplifying 

assumptions, which are also used in the simulation of coal and biomass gasification, can 

make the simulation results unreliable. One of the important assumptions is neglecting 

the particle size distribution, which can affect the: flow pattern, the particle-particle, 

particle-wall, and inter-phase interactions. Even if it is assumed that the feed is 
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monodispersed, the shape and size of the particles change during the pyrolysis and 

gasification, and hence, their interactions with each other, the wall, and the gas phase may 

change. Other than that, the simulations are usually done assuming the solid fuel as a 

perfect soft-surface sphere, while this is not the case in reality. 

In this section, it is tried to provide guidelines that can be implemented to solve the 

abovementioned challenges for the PWG process. However, first, it is necessary to provide 

short explanations of different modeling approaches together with simulation works that 

have used them for the PWG (and in some cases, similar processes). 

7.1. Reactor Modeling Approaches 

Reactor modeling approaches can be divided into two main categories: the 

engineering models and the 3D CFD models. Figure 14 illustrates these approaches, which 

are briefly explained in the next sections. Since the current state-of-the-art main 

technology of gasification is the FB reactor, the main focus of this section is on this 

technology as well. 

7.1.1. Complex vs. Ideal Models 

Besides the engineering or CFD models that are described in the subsections below, 

it is worth mentioning that in the initial phases of the study, it should be assessed and 

decided if using a complex model is necessary or not. First, the degree of complexity of 

different models in a multi-phase flow should be compatible with each other. Bal and Rein 

have demonstrated that to have a reliable model for the pyrolysis of non-charing 

polymers, if a simple heat transfer model is used, implementing the complex kinetic 

model is not justified. The reason is that the degree of complexity of the heat transfer 

model substantially affects the final results [287]. If the surface temperature of the polymer 

is not predicted correctly, the most comprehensive kinetic models won’t result in correct 

product distribution.  

 

Figure 14. Illustration of different multi-phase flow modeling approaches for the fluidized bed tech-

nology (adapted from [169,288]). 

Secondly, it should be analyzed under what conditions ideal-flow models—i.e., 

batch, continuous-stirred-tank, and plug-flow-reactor—can be used and when the flow 

pattern has to be calculated in detail in three dimensions. As was mentioned before, this 

depends on how the time scales of different phenomena at different locations compare. 

As an example, if the limiting step in the heat transfer is in the reactor wall compared to 
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the radial heat transfer, then a 1D model with a closure model for the wall heat transfer 

coefficient would suffice to predict the desired outcome compared to a 2D or 3D model. 

Considering the mass transfer, if in a system the mixing is perfect, then a CSTR model 

would result in the desired outcome. On the other hand, if there is no perfect mixing and 

back-diffusion compared to the convection, then the Péclet number is high and a PFR 

model can be considered for the system. However, determining these regimes, especially 

for complex processes and reactor configurations is not straightforward. 

Experimental techniques can be used to assess the flow regime and determine 

whether it can be a candidate to be modeled as an ideal CSTR or PFR, by determining the 

residence time distribution [289] or degree of mixing [290]. The challenge associated with 

the experimental approaches is that for every configuration, particle type, and flow 

condition, the experiment should be repeated. Consequently, another alternative that can 

be less expensive is using numerical methods. 

Simple non-reactive CFD simulations can be used in this regard. If the simulation 

results show ideal behavior, an ideal reactor model can be used to implement the kinetic 

models. In a more advanced version of this approach, it is possible to mimic the system 

behavior by considering ideal reactor models for different areas. This can be done via 

Equivalent Reactor Network (ERN) generation. In these approaches, based on the flow 

behavior in different zones of the reactor, it is divided into a network of simplified ideal 

reactors and then the reactive simulations are done for that network to decrease the 

computational costs. Following this approach, Du et al. [61] created an ERN of a spouted 

bed reactor for air gasification of PE (Figure 15). They divided their reactor into CSTR, 

PFR, and equilibrium reactor models (Section 4.1.1), using the auto-zoning technique 

[291,292]. If these simplifications cannot be done and the time scales overlap, more 

advanced reactor models should be used, which are described briefly in the next 

subsections. 

 

Figure 15. Schematic of the spouted bed reactor divided into five zones, based on the streamlines 

and flow regimes obtained by the CFD simulations to be used in the ERN model. Reprinted 

(adapted) with permission from [61]. Copyright 2014 American Chemical Society. 

7.1.2. Engineering Models 

In the simplest approach of simulating the multi-phase flow within a non-ideal 

reactor model, the engineering models are usually developed in 1D (the axial direction—

see Figure 14), which are justified by the fact that there are no radial temperature gradients 

inside the reactor, except in the near-wall region (high radial thermal conductivity). Using 

these models, it is possible to capture the transport phenomena between different phases 

at a low computational cost and without the need to solve the Navier-Stokes equations. 

Different types of fluidized beds can be modeled via this approach. One of the 

methods in this approach is the bubbling flow model, which is usually referred to as the 

“two-phase flow model” [293,294]. In this method, the reactor is considered to operate in 
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two different phases (Figure 14). One phase, which is called the bubble phase (or low-

density phase), is composed of the gas phase. Bubbles are in contact—through their 

surface—with the second phase, which is called emulsion (or high-density phase) and 

includes the mixture of gas and solid. The bubble phase is considered to be in plug flow, 

while for the emulsion phase, axial dispersion is introduced in the model to account for 

the back-mixing of the particles in the bed. Homogeneous reactions take place in the 

bubble phase and both homogeneous and heterogeneous reactions are assumed to occur 

in the emulsion phase. This approach has been the most utilized model for FBs [122] in 

engineering applications and was used widely in the modeling of coal [295,296] or 

biomass [297,298] pyrolysis and gasification in FB reactors. Hence, for the PWG with the 

gas-solid-only assumption, these research studies can be of great help. Table 5 shows a 

number of research studies that implemented this approach for gasification of PW, as well 

as coal and biomass. 

To summarize the engineering models section, it is worth reviewing the literature in 

this regard. Slapak et al. utilized a two-phase model (including the kinetics of carbon 

steam gasification) to determine the minimum height of the fluidized bed for the steam 

gasification process for PVC waste [299]. No further details are provided by the authors 

regarding the two-phase model and its results. In the other work, Martínez-Lera and 

Pallarés Ranz [122] developed a modified two-phase model for the polyolefin gasification. 

They considered LDPE (Low-Density Polyethylene) as the reference feedstock. Their 

model includes three main parts: hydrodynamics, pyrolysis, and homogeneous reactions. 

For hydrodynamics, an important issue associated with the two-phase model is the 

production of a large amount of gas in the emulsion phase compared to the circulating 

gas [122]. This affects the void fraction. To deal with this problem, they implemented the 

method of De Souza-Santos [300], which takes into account the effect of generated gas via 

implementing an expansion factor, to increase the precision of the emulsion phase void 

fraction in different locations of the reactor. Further details about different correlations in 

this regard can be found in the review article by Gómez-Barea and Leckner [301]. For the 

pyrolysis model, they assumed it as instantaneous, and for the homogeneous reactions, 

they used a global mechanism of 18 reactions. 

From Table 5 it can also be noticed that many of the large-scale reactors are modeled 

using this engineering approach. Moreover, they are mainly developed using in-house 

code. These two demonstrate the simplicity and lower computational costs of the two-

phase model compared to the more complex simulation frameworks such as CFD. 

Finally, it is worth mentioning that for the molten plastic gasification in a bubbly flow 

regime, some similar approaches can also be used to save computational costs. Due to the 

high viscosity of the molten plastics, which makes their mixing imperfect, the ideal models 

can not be used. According to Degaleesan et al. [302], the difference between the reactor 

sizes, using the ideally fully mixed and non-perfectly mixed liquid, can be up to 20 times. 

Hence, to be able to capture this phenomenon while avoiding the high computational 

costs of CFD simulations, some simplified reactor models, the so-called compartment 

models, can be used which are similar to creating the ERN model [61] (which was 

described earlier). Consequently, compartmentalization can also be done based on the 

prior knowledge about the flow regime, obtained via, e.g., CFD simulations [303]. The 

concept of this approach is to divide the reactor into different compartments, each of them 

as plug flow, axial dispersion model, or ideally mixed reactors. After dividing the reactor 

into different compartments, the desired transport equations between the compartments 

are solved or correlations are used to obtain the desired velocity, temperature, or 

concentration profile throughout the reactor [304,305]. The advantage of using this 

approach is that it is possible to apply the axial dispersion models [302] and coalescence 

and breakup of the bubbles [305], and calculate the gas hold up, bubble size, species 

concentrations, and diffusion and convection velocities, within different regions of the 

reactor. 
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7.1.3. 3D Computational Fluid Dynamics 

A more comprehensive technique to assess the process in the reactor scale when the 

time scales overlap and a high-resolution simulation of the reactor is needed, is the CFD 

simulation. This technique has been used since the 1960s. However, considering its high 

computational costs, it has gained much more attention only recently (based on the 

statistics from [16]) due to the higher available computational resources. It is worth 

clarifying at the beginning of this section that CFD, in this review, refers to both fluids-

only and coupled fluid-discrete phases (solid particles/liquid droplets/bubbles). 

Moreover, the CFD approaches, such as DNS or PR-DNS, that are usually used to study 

the particle scale phenomena [229,232,234,255,256,262], such as internal and external 

transport phenomena, are not discussed in this section, but the examples of their 

application have been provided in Sections 5.2 and 6.3. In the CFD simulations, mainly 

two different approaches can be used to deal with different phases: Eulerian-Eulerian (E-

E) and Eulerian-Lagrangian (E-L). The general concept of these approaches together with 

their examples in the PWG or similar processes are discussed below. 

Eulerian-Eulerian 

In the E-E approach, the phases are assumed to be continuous interpenetrating flows 

of fluid elements. In this case, the presence of different phases in a cell is determined by 

the volume fraction and the conservation equations are solved for each phase by 

considering a common pressure for them as a common practice [306]. The equations of 

this approach are described in the Supplementary Information. To simulate the solid 

phase using this approach, the kinetic theory of granular flow (KTGF) [307] is used to 

close the solid-phase momentum equations [46], by using various empirical closure 

models [308,309]. Consequently, for the cases with the gas-solid-only assumption, the E-

E simulation of the PWG is similar to the one for biomass or coal gasification. 

If the PWG is going to be done by covering a layer of molten plastic on the fluidizing 

agent [45], the gas-solid-only assumption can also be helpful. However, the 

hydrodynamic coefficients, such as specularity and restitution—which reflect the 

particle–wall and particle–particle interactions, respectively—should be adjusted to 

account for the effects of the molten plastic layer. In other situations, the molten plastic 

can dominate the PWG and substantially affect the flow behavior.  

One of these situations is doing the PWG for a bulk of liquid (e.g., in the stirred 

reactors [68,69]) with the injection of a gasification agent—which is rarely reported. 

Bubbly flow CFD simulation studies can be helpful in such cases of PWG. In these 

systems, in addition to the drag force, other forces exerted on the bubbles, i.e., the lift, 

virtual mass, buoyancy, etc., should be taken into account. The other situation is the 

molten plastic droplet-only system, which is also rarely reported in the literature. As an 

example of this case, Yuan et al. [66] proposed a gas-liquid fluidized bed system with the 

goal of chlorine removal of PVC before pyrolysis. This system can be also simulated in an 

E-E framework. Bubbly flow and droplet regimes are associated with some challenges, 

such as bubbles/droplet coalescence and breakup, which are discussed later in this section. 

To better capture the complexities associated with the presence of liquid in the 

system using an E-E framework, another approach is a special version of E-E, which is 

called the Volume of Fluid (VOF) method [249,271], in which the interface of the 

immiscible fluids can be tracked. In this approach, shared conservation equations are 

solved for phases in each cell. VOF is usually used for cases in which a relatively large 

interface between the gas and liquid is present. The simplified schematic of this approach 

has been illustrated in Figure 14. Due to the stickiness of the molten plastics and their 

tendency for coalescence and agglomeration (which makes relatively large clusters), a 

large interface between phases is created. Consequently, the VOF method can be a better 

approach to simulate these situations, e.g., for the rotary kiln pyrolysis [310]. A similar 

situation—i.e., large interface between the gas and liquid phase—is observed also in the 
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falling film systems [67,169,311]. One of the drawbacks of this method is the required 

high-resolution spatial discretization to track the surface in the cells, which increases the 

computational costs. Developing solvers based on the GPU (Graphics Processing Unit) 

architecture [312] is a solution for this problem, which provides an opportunity to increase 

the precision and resolution of the simulations, and is discussed in more detail at the end 

of the section. 

Table 6 provides more details on simulation studies of the PWG or similar processes 

using the E-E approach. As can be observed in this table, most of the E-E studies specific 

to PWG are non-reactive. Lee et al. have studied the hydrodynamic of a circulating 

fluidized bed reactor (CFB) to gasify the PW with circulating sand [313]. The goal of this 

study is to find the optimum condition—in this case, the gas superficial velocity and PW 

particle diameter—under which the solids create a uniform circulating flow. Although 

they determined the optimized values, they implemented simplifying assumptions such 

as the gas-solid-only system and mono-dispersed spherical particles. In another study, Du 

et al. [61] implemented an E-E approach to study the hydrodynamics of a spouted bed 

reactor for polyethylene air gasification to create the ERN for their reactive simulations. 

The details of this study have been discussed earlier in this section. 

In a different approach and for the molten plastic, Yin et al. [311] have studied a 

falling film reactor—based on the PP pyrolysis—to assist with the design of this special 

type of reactor. They incorporated the evaporation model of the molten plastic in their 

simulations. It was illustrated that the evaporation behavior of the molten plastic on a hot 

surface is similar to water evaporation, and hence, the same methodology for simulation 

of water evaporation can be used in this reactor configuration. A very simplified lumped 

kinetic model was used for the PP pyrolysis. They used the VOF method to simulate the 

system’s hydrodynamics. One important aspect of their study is the heat transfer from the 

wall to the molten phase. To obtain the “effective” conductivity of the PP, they conducted 

an experiment that showed a strong dependence of this parameter on the temperature. 

They also further investigated, experimentally and numerically, the heat transfer 

characteristics of the molten plastic (PE, PP, PS, and their mixture) [67] for the same reactor 

configuration. To increase the precision of their simulation, in another research, they 

modified the VOF method to include the effect of the drag force [169]. They used the air-

water system for the initial studies and then implemented the framework for the molten 

plastic pyrolysis. 

An important parameter reported in Table 6 is the gas-phase residence time, which 

is crucial in determining the product distribution and tar formation [20]. However, as can 

be observed from this table, similar to the engineering approach, this value has not been 

reported in many of the E-E simulation works. 

Eulerian-Langrangian  

In the E-L approach, the fluid phases are treated in the same way as in the E-E 

approach. However, to deal with the dispersed phase (solid particles, liquid droplets, or 

gas bubbles in a bubbly flow regime), they are tracked individually (the focus of this 

section) or simulated as a cluster of particles/droplets/bubbles. Their motion is governed 

by Newtonian equations and they are coupled to the continuous fluid phases to transfer 

momentum, heat, and mass. This, of course, comes at an additional computational cost 

but provides more accuracy compared to the E-E approach. The equations of this 

approach are also described in the supplementary information.
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Table 5. Overview of fluidized bed gasification studies using two-phase modeling in engineering approach for different feedstocks 

Feed Gasification Agent 

Time(Reaction/ 

Space/Residence) 

(s) 

Plant Size 

(OM-m3) 

Bed 

Material 

Temperature 

(°C) 
Kinetic Software/Code Ref 

Plastic (PVC) Steam - Lab Alumina ~900 - Inhouse  [299] 

Plastic (Poly Olefin) Air-Steam 
Pyrolysis: 0.02 

Mixing: 5.4 

Pilot (0.02 & 

0.67) 
- 700–850 Global Inhouse  [122] 

Coal, petcoke Oxygen-Steam - 
Commercial 

(72) 
- 

1100 

(Non-

isothermal) 

Global Inhouse  [314] 

Coal, limestone, inert material Air-Steam-Carbon Dioxide 
Devolatilization: 

<10 
Pilot (0.07) 

Limeston

e, Sand 
600–1000 Global Inhouse (FORTRAN) [315] 

Coal Air-Steam - 
Lab & Pilot 

(2.6) 
Dolomite 

750–950 

(Non-

isothermal) 

Global Inhouse  [296] 

Coal Oxygen-Steam 
Particle residence: 

3600 
- - 

700–900 

(Isothermal) 
Global Inhouse  [295] 

Biomass (Wood) Air-Steam - Pilot (0.57) - 900–950 Global Inhouse  [297] 

Biomass (Wood powder) Air-Steam - - - 700–900 Global Inhouse (MATLAB) [316] 

Biomass (Straw) Air-Steam - - - - Equilibrium Inhouse (FORTRAN) [317] 

Biomass (Sawdust) Air - - Sand 600–1600 Global Inhouse  [318] 

Biomass (Sawdust) Air-Oxygen-Steam Reaction: 140–3000 
Pilot (0.06 & 

2) 

Ofite, 

Quartz & 

Silica 

Sand 

700–900 Global Inhouse  [319] 

Biomass (Pine Sawdust, Rice 

husk) 
Air-Steam - 

Lab (0.003) & 

Pilot (0.2) 
- 665–900 Global Inhouse (FORTRAN) [298] 

Biomass (Beech Wood) Air-Steam 
Gas residence time 

in the freebord: 2-4 
Pilot (0.02) 

Silica 

Sand 
800–815 Global Inhouse  [320] 
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The E-L approach is divided into two main categories: the unresolved and resolved 

approaches, which are illustrated in Figure 14. In the first approach, the fluid part is not 

spatially resolved around the discrete phase [321]. Hence, the cell-average quantities are 

applied to the particles present in the cell and the effect of particle motions on the flow 

behavior is determined based on their volume fraction [288]. The common practice in this 

approach is to use the cells that are at least three to five times larger than the particle size 

[322]. Consequently, the heat, mass, and momentum transfer between them is expressed 

by closure models [321] since the phase interactions are not resolved on the particle 

surface, but the average quantities are used. 

The second approach is called the resolved CFD-DEM (Discrete Element Method) 

[321] (or DNS-DEM [288]). In this approach, the fluid phase grid is resolved around the 

particle surface, allowing to perform DNS. This method, which is called also Particle-

Resolved DNS, as was discussed in Sections 5.2 and 6.3, can be used to derive the closure 

models for the interfacial transport phenomena. The drawback of this approach is the high 

computational cost, in which small time-steps and non-dissipative discretization schemes 

are required and each individual particle should be tracked. This, for a reactive case, can 

result in an enormous number of equations (of the order of 1 × 107–1 × 1010) that should be 

solved in each iteration for each time step. 

For simulating the PWG with the gas-solid-only assumption in the E-L framework, 

the normal gas-solid simulations with the spring-dashpot-slider assumption [323]—to 

calculate the normal and tangential contact forces in the solid phase—can be 

implemented. However, to include the presence of molten plastic, the framework should 

be extended. The presence of liquid can affect the interaction between particles and also, 

between reactor walls and particles. The collision between the particle and particle and/or 

wall can result in attachment, and in some cases, rebounding (depending on the 

conditions, e.g., collision intensity, the cohesive forces, the velocity, liquid properties, etc. 

[324]). 

For cases in which a relatively large interface between the gas and liquid is present, 

and the presence of a solid phase is also important, different approaches in the E-L method 

can be followed. According to Sun and Sakai [325], many of the conventional methods to 

simulate the solid particles in a gas-liquid-solid framework, such as CFD-DEM [326] or a 

combination of DEM and E-E [327], suffer from different sources of inaccuracy. These can 

include: using empirical closure models for fluid-bubble interactions, using different and 

separate drag models for continuum and disperse phase, and inconsistent fluid-particle 

interaction models, among others. To remove these limitations and improve the precision 

of simulating such a complicated case, they developed a new E-L framework (DEM-VOF) 

[325]. In their framework, the fluid phases are a continuum, separated by an interface. 

They are simulated by the VOF method and solid particles are simulated using the DEM 

particle tracking algorithm. The details of this approach can be found in [325,328,329].  

An overview of some E-L CFD simulation studies, which can be helpful for the 

simulation of the PWG process is provided in Table 7. Among the CFD studies specific to 

the PWG, Janajreh et al. employed an E-L method to assess the feasibility of gasification 

for different PW types [29]. They simulated an entrained flow gasification in a drop tube 

reactor, in the presence of air, with particles of 134 μm in diameter. They run the 

simulations in an ANSYS Fluent environment and have validated their result against the 

experimental data of a drop tube reactor. To the best of the authors’ knowledge, except 

for the devolatilization kinetics, no other phenomena or models specific to the PWG (such 

as particle size change, melting, sticking of the particles, coalescence, and breakup) have 

been reported to be considered in this research.
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Table 6. Overview of Eulerian-Eulerian simulation studies for different feedstocks and reactor designs that can be used as a guide in the PWG simulations. 

Feed Type 
Gasification  

Agent/Process Gas 

Gas  

Residence/ 

Space Time 

(s) 

Plant Size 

(OM-m3) 
Bed Material 

Temperature 

(°C) 
Phase Software/Code Ref 

Plastic (Waste) Circulating FB Air 1–3 0.1 m3 Sand - GS MFIX [313] 

Plastic (PE) Conical Spouted Bed Air-Steam ~3 
Lab (0.001) 

Pilot (0.03) 
Sand 800–900 GS 

Fluent + 

Aspen Plus 
[61] 

Molten Plastics (mix PE, PP, 

and PS) 1 
Falling Film Nitrogen - Lab (0.002) - 550–650 GL OpenFOAM [169] 

Molten Plastic (PP) 1 Falling Film Nitrogen - Lab (0.00004) - 460–500 GL Fluent [311] 

Molten Plastic (PE, PP, PS, 

mix) 1 
Falling Film Nitrogen - Lab (0.002) - 550–625 GL - [67] 

MSW, RDF Plasma (Fixed Bed) Air-Steam - - - ~2200 (max) GS 
Inhouse (COM-

MENT) 
[330] 

MSW, Biomass (Coffee 

husk, Forest residues, Vines 

pruning) 

Bubbling FB Air-Steam - 
Semi-Indus-

trial (0.8) 

Dolomite (Ex-

perimentally) 
500–1000 GS Fluent [278] 

MSW Bubbling FB Steam - 
Semi-Indus-

trial 
- 850 GS - [331] 

MSW Bubbling FB Air - 
Semi-Indus-

trial (0.8) 

Dolomite (Ex-

perimentally) 
700–900 GS Fluent [332] 

MSW Bubbling FB Air-Carbon Dioxide - 
Semi-Indus-

trial (0.8) 

Dolomite (Ex-

perimentally) 
500–900 GS Fluent [279] 

MSW Bubbling FB 
Air-Steam-Carbon Di-

oxide 
- 

Semi-Indus-

trial (0.8) 

Dolomite, 

NiO/MD Cat-

alyst 

700–900 GS Fluent [333] 

MSW Bubbling FB Air - 
Semi-Indus-

trial (0.8) 
- 500–700 GS Fluent [280] 

MSW Bubbling FB Air - 
Semi-Indus-

trial (0.8) 

Dolomite (Ex-

perimentally) 
~ 500–700 GS Fluent [224] 
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MSW Plasma/Melting Air-Steam - Pilot (2.7) - ~2200 max GS Fluent [225] 

MSW Plasma/Melting Air - - - - GS - [65] 

Biomass & Plastic (Wood, 

PE) 1 
Rotary Kiln - - - - - GS Fluent [310] 

Biomass Circulating FB Air - Pilot (0.2) - ~400–1000 GS Fluent [334] 

Biomass (Bagasse, Rice 

husk, Switchgrass) 
Bubbling FB Nitrogen - Lab (0.006) Sand 400–600 GS Fluent [335] 

Biomass (Coffee husk) Bubbling FB Air - Pilot - ~600–1400 GS 
Inhouse 

(COMMENT) 
[336] 

Biomass (Forest residues) Bubbling FB Air - Pilot (1) Dolomite ~ 800 GS Fluent [337] 

Biomass (Forest residues, 

Peach Pits, Ground Coffee) 
Plasma Air-Steam - - - 1000–2000 GS 

Inhouse (COM-

MENT) 
[338] 

Biomass (Pinewood) Vortex Reactor Nitrogen 
<1 (order of 

ms) 
Lab (0.0001) - 500–600 GS Fluent [339] 

Biomass (Wood) Bubbling FB Air - Lab (0.0004) Sand ~ 900 GS 
Inhouse 

(FORTRAN) 
[340] 

Biomass (Wood) Bubbling FB Air - 
Lab-Pilot 

(0.01) 
- 700–750 GS 

Modified 

K-FIX 
[341] 

Biomass (Wood) Bubbling FB Air - Lab (0.0004) Sand 850 GS MFIX-based [342] 

Biomass (Wood) Bubbling FB Air - 
Lab-Pilot 

(0.01) 
- ~400–800 GS - [343] 

Biomass (Wood) Fixed Bed Air-Steam - Pilot (0.22) - ~450–1000 GS Fluent [344] 

Biomass (Wood) Fixed Bed Air-Steam 
<1 (order of 

ms) 
- - ~650–1300 GS - [345] 

Coal Bubbling FB Air-Steam - Pilot (0.07) - ~400 GS OpenFOAM [306] 

Coal Bubbling FB Air-Oxygen-Steam - Pilot (1) Silica Sand ~900 GS Fluent [346] 

Coal Bubbling FB Air - Lab (0.1) - ~600–1000 GS Fluent [347] 

Coal Bubbling FB Air-Steam - Lab (0.07) Limestone 812, 855 GS ANSYS [270] 

Coal Bubbling FB Air-Steam - Lab (0.07) Sand 821, 846, 855 GS - [348] 

Coal Bubbling FB Air-Steam - Lab (0.07) - 812-866 GS - [349] 
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Coal Entrained Flow Air - 
Commercial 

(15) 
- ~370–2000 GS 

CFC code 

PHOENICS (In-

house) 

[350] 

Coal Fixed Bed Air-Steam - Lab (0.01) - ~600–1300 GS MFIX [351] 

Glycerin solutions contain-

ing xanthan gum 2 
Bubble Column Air - Lab (0.01) - 25 GL CFX (MUSIG) [352] 

Glycerol FB Steam - 0.001 Sand 600–750 GS Fluent [353] 

Manure Slurry 2 Anaerobic Digester - - 
Industrial 

(791) 
- 35 GL Fluent [354] 

Water Bubble Column Air - - - - GL OpenFOAM [355] 

Water Bubble Column Air - Lab (0.01) - Room GL OpenFOAM [286] 

Water 3 Bubble Column Air - 
Lab (0.007) 

Pilot (4) 
- - GL 

OpenFOAM 

(OpenQBMM) 
[356] 

Water Laboratory Tank Air - Lab (0.02) - 22 GL OpenFOAM [274] 

Water 3 Vertical Tube Air - Lab (0.01) - - GL 

OpenFOAM 

(twoWayGP-

BEFoam) 

[357] 

Water 4 Bubble Column Air - Lab (0.07) - - GL - [358] 

Water 4 Bubble Column - - - - - GL - [359] 

Water 4 Bubble Column Air - 
Lab (0.007) 

Pilot (0.27) 
- 30 GL CFX [360] 

1 VOF method was used. 2 Non-Newtonian fluid. 3 Quadrature-Based Method of Moments (QBMM) method was used. 4 Population balance model (PBM) was 

implemented. 
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Simulation of similar processes to PWG can be also of great help. Zhong et al. [226] 

have simulated the gasification process of pitch-water slurry in two different types of 

gasifiers using the E-L method. A down-draft single nozzle (pilot-scale) and an opposed 

multi-nozzle (industrial-scale) entrained-flow gasifier were simulated in this study. Pitch, 

which is produced from the deasphalting unit, is a heavy compound with a high softening 

point [226]. Hence, it can be very similar to plastics from the gasification behavior point 

of view. To validate their framework, they first simulated the gasification of OrimulsionTM 

(an emulsion of 70% bitumen and 30% water) in the presence of oxygen. Then, they 

assessed two different gasifiers for the oxygen-gasification of pitch-water slurry. In this 

study, the pitch particles are surrounded by a water layer to form the pitch-water slurry 

to be pumped at the top of the gasifier. The simulation framework in this study includes 

models for slurry atomization, water evaporation, pitch pyrolysis, and heterogeneous and 

homogeneous gasification reactions. A global reaction scheme of 12 reactions is 

considered for pyrolysis and gasification reactions. Although water evaporation and pitch 

pyrolysis is considered in the mass evolution of the particle, the effect of water on the 

hydrodynamic behavior of the particles has not been reported. They also studied the 

particle residence time and their conversion, which can be an important parameter also in 

the PWG. 

From Table 6 and 7, it can be observed that the average size of the units assessed by 

different E-L approaches is smaller than the ones modeled by the E-E approach. This 

demonstrates the limits of the E-L method due to the computational costs. However, with 

the increase in computational power and the more precise results of this approach, it is 

expected that, in the near future, the PWG units will be designed and optimized using this 

approach. 

7.2. Multi-Phase Flow Modeling Challenges and Possible Solutions 

The simplifying assumptions (mentioned at the beginning of this section) can 

negatively affect the simulation results and their reliability to be used as design and 

optimization tools. This is while there are some possible solutions to remove those 

assumptions and increase the precision of the simulations. In the following subsections, 

these challenges and possible methods to overcome them in different modeling 

approaches are discussed. 

7.2.1. Irregular Shape 

If the gasification plant is used to gasify the real-world solid plastic, the feedstock 

particles are normally in different shapes and roughness. The variety in particle shape of 

the PW feedstock is a challenge to be dealt with in the reactor-scale simulations in E-E and 

E-L frameworks. According to Athanassiadis et al. [361], the particle shape has a strong 

impact on their stress-strain relationship and they declared that this is attributed to their 

different contact types, as the result of different shapes [362]. 

In the E-E framework, a detailed description of the particle shapes is not possible 

since they are defined as a fluid phase. However, an important parameter in this regard 

is the drag force, which was discussed in Section 6.4.1 and the non-spherical drag 

correlations can be found in the review article of Ullah et al. [244]. The more challenging 

part of this problem is that the shape of the particles and their non-sphericity changes due 

to the attachment of the particles, or their consumption in the pyrolysis and gasification 

reactions. To the best of the authors’ knowledge, this has not been studied yet for PWG, 

while it can have drastic effects on the results.
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Table 7. Overview of Eulerian-Lagrangian simulation studies for different feedstocks and reactor designs that can be used as a guide in the PWG simulations. 

Feed Type 
Gasification 

Agent/Process Gas 
SRT (s) 

Plant Size 

(OM-m3) 

Bed Mate-

rial 

Tempera-

ture (K) 

Lagrangian 

Approach 
Software Ref 

Plastic (PE, PP, PS, mix) Entrained Flow Air - Lab (0.005) - ~50–1100 - Fluent [29] 

Pitch-water slurry Entrained Flow Oxygen 0–50 
Pilot (0.2)/In-

dustrial (33) 
- ~1500  - Fluent [226] 

- Conical Spouted Bed Air - Lab (0.001) ZiO2 25 DEM Fluent [363] 

Biomass Bubbling FB Air-Steam - Lab (0.003) Sand ~800–900 DEM - [323] 

Biomass Spouted Bed + DFB Steam - 

SB Lab 

(0.01)/DFB Pilot 

(0.3) 

Silica Sand 820–870 MP-PIC OpenFOAM [364] 

Biomass (Almond prunings) DFB Steam 
Up to 

~100 
Pilot (0.7) Sand ~400–900 MP-PIC OpenFOAM [365] 

Biomass (Glucose) FB Super Critical Water - Lab (0.001) Quartz Sand ~500–600 DEM Fluent [366] 

Biomass (Pinewood) Bubbling FB Steam-Nitrogen - Lab (0.06) Sand 820–920 CGM & DEM 
STAR-

CGM+12.02 
[367] 

Biomass (Pinewood) Bubbling FB Steam-Nitrogen - Lab (0.0005) Sand 820–920 DEM OpenFOAM [368] 

Biomass (Pine, Beech, Holm 

oak, Eucalyptus) 
Conical Spouted Bed Steam-Argon - Lab (0.01) Sand 770–920 MP-PIC OpenFOAM [369] 

Biomass (Pine, Beech, Holm 

oak, Eucalyptus) 
Entrained Flow Air-Steam 

Up to 

~2.5 
Lab (0.01) - 1000–1400 - OpenFOAM [370] 

Biomass (Raw, Torrefied) FB Air-Nitrogen-Steam - Lab (0.0001) Olivine 750–850 DEM OpenFOAM [371] 

Biomass (Raw, Torrefied) (For-

est residues, Spruce) 
Entrained Flow Air-Steam - Lab (0.01) - 1400 - OpenFOAM [372] 

Biomass (Rice husk) Entrained Flow 
Oxygen-Steam-Car-

bon Dioxide 
- Lab (0.01) - 1400 - OpenFOAM [373] 

Biomass (Rice husk, Cotton 

stalks, Sugarcane bagasse, Saw-

dust) 

Concentric tube en-

trained flow 
Oxygen - Pilot (0.25) - ~900–2300 DPM Fluent [374] 

Biomass (Sawdust) Entrained Flow Air  Lab (0.015) - 800–1000 DPM Fluent [375] 
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Biomass (Sawdust, Cotton 

trash) 
Entrained Flow Air-Steam - Pilot (4) - ~800–1100 - CFX [376] 

Biomass (Wood pellet) FB Steam 
Up to ~ 

36 
Lab (0.02) Sand ~600–800 CGM-DEM Fluent [377] 

Biomass (Wood) Bubbling FB Steam - Lab (0.06) Sand 820 DEM 
Inhouse 

(MFIX-DEM) 
[378] 

Biomass (Wood) FB Air 
Up to ~ 

84 
Lab (0.01) Charcoal ~500–700 DEM - [379] 

Coal Bubbling FB Air-Steam 
Up to ~ 

20 
Lab (0.07) Sand ~ 800 MP-PIC OpenFOAM [380] 

Coal Circulating FB Air - Pilot (0.2) Sand ~600–850 MP-PIC - [381] 

Coal Circulating FB 
Carbon Dioxide-Oxy-

gen-Nitrogen 
- Pilot (0.03) Sand ~950 (max) 

DPM + MP-

PIC 

Fluent + 

CPFD Barra-

cuda 

[382] 

Coal Entrained Flow Oxygen-Steam - Industrial - 1370–1620 - Fluent [383] 

Coal Entrained Flow Air-Steam - Lab (0.004) - ~200–1850 - Fluent [384] 

Coal Entrained Flow Air - Pilot (0.26) - ~700–1900 - 
CFX + 

FORTRAN 
[385] 

Coal 
Two-stage Entrained 

Flow 
Oxygen - Industrial (32) - ~700–2100 DPM Fluent [386] 

Coal Updraft gasifier Air-Steam - Industrial (60) - ~500 (mean) DPM Fluent [387] 

Water 1 Bubble Column Air - Lab (0.01) - - DEM OpenFOAM [388] 

Water 1 Bubble Column Air - Lab (0.01) - - DEM OpenFOAM [389] 
1 Gas-Liquid system.  
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In the unresolved E-L framework, the same approach can be followed to include the 

effect of particle shapes in the phase interaction and drag force. In the resolved 

simulations, the phase interactions are calculated directly on the particle surface and don’t 

need the closure models. Moreover, if every particle is tracked in the E-L framework, e.g., 

the DEM method, extra precision can be added to the simulations regarding the particle 

shape. There are two main approaches in the DEM simulations to model irregular particle 

shapes [390]. The first one is the single-particle approach in which fixed shapes, such as 

circular, ellipse, polygon, superquadrics, or arbitrary shapes are considered to 

approximate the shape of the desired particles. The drawback of this approach is the limit 

in the number of pre-defined shapes and less accuracy because of the approximations that 

are used in this method. The second approach is called composite, clustering [390], or 

multi-sphere [362] method. In this method, the non-spherical shapes are reconstructed by 

a set of attached regular shapes, which form a cluster of particles. Consequently, each 

irregular particle counts as the number of its sub-particles. Besides, the contact of the 

particles in the DEM framework is calculated based on the contact between their sub-

spheres [362], and this results in higher computational costs, which is the drawback of this 

method [390]. It has been demonstrated that since the interactions of each of the sub-

particles have to be taken into account, this can cause a non-linear increase in the 

computational cost [391]. 

The irregular shapes can be also added to simulations in case of having liquid in the 

system. If the bubbly flow is considered for the PWG, the shape deformation of bubbles 

can be also captured in an E-L framework. In the high-viscous non-Newtonian molten 

plastic, this deformation becomes more important since the stabilization time for 

deformed bubbles is higher compared to the normal liquids. The solver (set of models) 

developed by Peña-Monferrer et al. [389] in the OpenFOAM environment can be a useful 

tool/guide in this regard. In this solver, it is possible to track the bubble path and 

expansion—although the coalescence and break-up of the bubbles are ignored to isolate 

the bubble dynamics and its interaction with the main fluid. Moreover, the bubble’s 

deformation is considered only in the case that they collide with each other or the wall. In 

this approach, the volume of the bubbles is considered to be constant and their surface is 

deformed. 

7.2.2. Roughness 

Besides the particle shape, their roughness can also play an important role in their 

hydrodynamic behavior and interactions with other particles, as well as the other phases. 

This can not be accounted for in the normal E-E simulations. The reason lies in the fact 

that most of the KTGF models don’t take into account particle roughness [392] and 

rotation, though this has been shown to have important effects on the stresses in a quasi-

static regime [393]. Modified KTGF models can partially solve this problem. 

Yang et al. have developed a modified KTFG model to take into account the particle 

roughness and their rotation [392]. A first-order velocity distribution function was 

obtained for the particles, which takes into account particle rotation and friction. This has 

been done by considering the tangential restitution coefficients, as well as the friction 

coefficient. Similarly, they developed expressions for the flux of translational and 

rotational fluctuation energy. This was used to account for both the particle slip at the wall 

and for sticking particle–wall collisions. This resulted in defining a new boundary 

condition for the particle slip velocity [394]. The modified model was compared to the 

original KTGF, as well as similar friction-included KTGF models, and demonstrated 

acceptable results. Moreover, the performance of the model together with the developed 

boundary conditions was validated against the results of an E-L CFD simulation approach 

[395] and the experimental data of Magnetic Particle Tracking [396]. 

The particle roughness is in fact due to its irregular surface shape but on a very small 

scale. So, in principle in the E-L approach, it can be considered by modeling the particle’s 

irregular surface shape. However, it requires a very fine resolution of mesh so it can 
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capture the surface’s irregular shapes [397]. Hence, in the DNS, this may be possible but 

increases substantially the computational cost, which is not desirable. Consequently, the 

friction factor can be increased in their contact model to capture the particle surface 

roughness [398]. 

7.2.3. Polydispersity 

The polydispersity of particles can be due to the feedstock characteristic or the 

consumption of the particles and changing their size. The agglomeration and detachment 

of the particles can be also another reason for variations in the particle size [399], which is 

discussed in the next sub-section. The same is observed for droplet and bubbly flow 

regimes. This can have drastic effects on the simulation results since it directly affects the 

interfacial area for the heat, mass, and momentum transfer. 

As was also declared by Sia et al. [335] the conventional single-dispersed-phase E-E 

framework is not capable of handling well the polydispersed systems such as PWG. 

However, there are possibilities to take into account the polydispersity (due to the 

feedstock characteristic) using the more recent E-E approach. The first one is to use 

multiple solid phases of different sizes. This can not be used for the continuous change in 

the particle properties [399]. Hence, this is limited to a few classes of the particles, with 

different sizes (and/or density, roughness, etc.). Mathiesen et al. [400] implemented the 

extended KTGF model to use multiple solid phases in their simulations. They took into 

account three different solid phases with different diameters in the cold-flow simulations 

of a circulating FB reactor. Similarly, it is possible to define different droplet or bubble 

phases with different sizes, if their interaction is assumed to have a negligible effect on 

their size distribution [389]. Following this approach, Cubero et al. have extensively 

studied the effect of polydispersion on the flow regime, reaction dispersion, and local 

concentration of different species in a gasification process [306]. They considered seven 

solid phases from 147 to 1456 μm. An important aspect in this regard is that the extension 

of the KTGF model to multiple solid phases is not enough and the binary effect of solid 

phases on each other should be taken into account. To do so, Cubero et al. have accounted 

for the particle-particle drag force [306] using the correlation proposed by Syamlal [401]. 

This correlation expresses the drag force between different classes of solids as a function 

of their density, diameter, binary radial distribution, binary restitution coefficient, and 

slip velocity [401]. They also took into account the binary collisional pressure in the KTGF 

model as well as the interphase heat transfer between each solid class and the fluid. 

However, the heat transfer between different classes of solids, as well as their thermal 

interaction due to the collision was neglected. This is reported to be a common practice in 

E-E simulations [306], which can be justified by the intense mixing in their reactor and 

almost uniform temperature in the bed (maximum 6% temperature difference between 

different classes).  

The second approach to deal with polydispersity, which is more advanced, practical, 

and precise, is by means of population balance equation (PBE) that can be used to 

represent the continuous variation of the dispersed phase properties and is 

computationally faster [399]. Moreover, it can be implemented to simulate the change in 

size due to the reactions. In this method, the balance equations are solved for the number 

density function (distribution of particle sizes), which is affected by the rate of change for 

each particle size. More details on this method can be found in [402]. 

There is not a single approach to solve the population balance equations. MOM is 

one of the frequently used methods in the literature to solve the PBE [399] and it is also 

not done in a single way. One of the common approaches of the MOM method is the 

quadrature-based moments [403,404], which considers a polynomial for the distribution 

of the particle sizes. There is not any unique expression to define the size distribution 

function and consequently, different approaches have been proposed in the literature 

such as the extended quadratic method of moments (EQMOM) [405], finite-size domain 
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complete set of trial functions method of moments (FCMOM) [406], and direct quadrature 

method of moments (DQMOM) [407], among others. 

As mentioned before, PBE can be implemented in a CFD framework to account for 

the change in the particle size due to the consumption, which is very helpful in PWG 

simulation, whether it is assumed a gas-solid-only or molten plastic droplets system. 

Using the FCMOM, Ghadirian et al. have coupled a PBE with an E-E framework to 

simulate a gasification process [399], including the size and density distribution of the 

particles. To be implemented in the CFD simulations, the PBE should be coupled to the 

continuity, momentum, and energy balance equations [408], as well as the chemistry, to 

(1) get data from the flow, (2) update the size distribution, and (3) send the data back to 

the CFD equations [399]. As an example, they added a source term in their PBE equations 

for the reaction rate that changes the particle size. So, the PBE gets the chemistry from 

CFD, solves the population balance equations, and gives back the updated particle size, 

which affects the hydrodynamic in the system. If the reaction kinetic is also expressed as 

a function of particle size or surface, then the loop between PBE and CFD becomes closed. 

They demonstrated the important role of particle size on the hydrodynamic and reaction 

rate of the system. This is crucial for the systems in which the size of feedstock decreases 

due to consumption, such as PWG. According to Ghadirian et al. [399], the mixing effects 

became highlighted in the middle of the reaction—due to the bubble formations—where 

the particles’ size decreases. However, moving toward the end of the reaction and 

decreasing the size of the particles, due to the less bubble formation, the mixing effects 

decreased as well. The average size of particles in their simulation decreased from 450 μm 

to 150 μm in 30 s of the gasification reaction. 

In the E-L approach, particle size change due to the reaction can be captured directly, 

which is an opportunity that is available in this approach, if they can be tracked. The size 

change can be correlated to the change in mass, which is present in the continuity equation 

[409,410]. 

7.2.4. Aggregation, Coalescence, and Breakup 

In the gasification of PW, change in the particle/droplet size is not only due to the 

consumption but due to aggregation and breakage. This is supposed to be more 

highlighted in the situations where the presence of molten plastic increases the chance of 

agglomeration due to its stickiness. This challenging situation can be also solved by 

implementing the PBE. 

Fan et al. have implemented a DQMOM to account for the aggregation and breakage 

in a FB reactor by considering a source term in the continuity equation of the solid phases 

[408]. To do this, different kernels can be defined. These kernels are in fact the patterns 

and functions that determine the consequence of collisions on the size evolution of the 

dispersed phase. Fan et al. considered different kernels for aggregation and breakage, 

which are proportional to the collision and disruption of the particles, respectively. For 

the breakage, a function is also defined to describe the fragmentation due to the breakage. 

These kernels can be considered as constants (which means they are assumed to be 

independent of the particle or flow properties) or alternatively, can be derived from the 

KTGF [408]. They applied their developed model in the CFD simulation of a fluidized bed 

HDPE production and validated their model for the segregation in polydispersed FBs 

[407]. Moreover, the defluidization phenomena were captured in their model. Hence, for 

simulating PWG, which can face this problem [19,281,411], this can be a valuable tool by 

tuning the kernel parameters based on the sticking properties of molten plastic. It should 

be noticed that sticking intensity or the minimum stress that causes breakage can change 

with conditions, e.g., the temperature. However, this is not probable to be captured even 

by using the KTGF-based kernels, while it can be an important aspect in the PWG. 

The coalescence and break-up of bubbles and change in their size in bubbly flow can 

be similarly captured using population balance methods [358,360]. In this method, the 

coalescence and breakup of the bubbles can be modeled based on the collision frequency 
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and the coalescence tendency [358]. Similar to the solids, this method solves the transport 

equation of weighted abscissas and birth and death rate of the bubbles. Heylmun et al. 

[356] have developed a solver in OpenFOAM (under the project called OpenQBMM) to 

simulate the polydispersed bubbly flows based on the quadrature-based moment method, 

taking into account the evolving size distribution and coalescence and breakup. This 

solver showed good agreement with other simulation works and estimated well the 

pressure fluctuations as was reported in the experimental data. However, the solver is 

incapable of capturing well the flow behavior (e.g., gas hold-up) in cases with a high gas 

flow rate, which can be observed also in the standard two-fluid models. This can be a 

weak point for simulating the gasification process in which the gas flow rate is usually 

high. 

If these phenomena are going to be captured in the E-L framework in which the 

particles or bubbles are tracked, different approaches are used. Before expanding this 

topic, an important drawback of the unresolved E-L simulations—which can get 

highlighted in cases such as PWG—should be discussed. As was mentioned before, the 

common practice is to use cell sizes that are at least three to five times larger than the 

particle size [322]. This limit can be an important constraint in the intensified processes, 

in which high velocity and turbulent flows are indispensable. The weakness comes from 

the fact that to better capture the flow properties at high fluid velocities, the cell size 

should be small enough to maintain the low courant number in the simulations (��� =
���

��
≤ ������). On the other hand, and especially for the PW or similar feedstock, large 

particles may be present in the feedstock. Even if the particle size is not large at the 

beginning and the cell size criterion is met, the agglomeration of the 

particles/droplets/bubbles can increase their size. Hence, coarse grids (to be able to fit the 

discrete phase in a cell) should be used, which can cause instability problems or 

inaccuracy in the discretized solutions because of the high velocity of the fluid. A possible 

solution to this problem is using the multi-grid solver. In the simplest case of this method, 

one fine and one coarse grid are defined for the fluid. The fine one, on the one hand, is 

used for simulating the fluid phase flow to prevent the instabilities and inaccuracy that 

can happen using the coarse grid. The coarse grid, on the other hand, can be used for two 

goals: first, to obtain the initial reasonable solution (guess) of the fluid flow, based on 

which the solution on the fine grid can be achieved faster and at a lower computational 

cost; and second, to solve the particle flow. To couple the fine grid solution of the fluid 

flow and the coarse grid solution of the particles, the obtained fluid solution is mapped 

from the fine grid to the coarse grid by arithmetic averaging [412].  

Even if the presence of liquid in the system is not dominant, it can cause sticking the 

solid particles to each other (aggregation). To the best of the authors’ knowledge, no article 

has been published on the PWG in an E-L framework, which includes the effect of liquid 

presence, and hence, other studies with similar phenomena can be helpful in this regard. 

Breuninger et al. [363] studied the spouting behavior of a spouted bed reactor of 1.7 

million ZrO2 particles, which are cohesive powders. In their DEM framework, they 

considered adhesive forces in addition to drag, gravitational, and contact (normal and 

tangential) forces. 

For the particle-wall interactions, a similar method can be followed to study the 

sticking of the particles on the surfaces and their agglomeration (and ultimately fouling—

Section 2.2). The fouling has been shown to start with the attachment of single particles to 

the wall, which can be a random phenomenon. The main contributors to this phenomenon 

are the reactor wall morphology [413] and the flow behavior. The principles of this 

simulation are similar to the one that was explained above. As a starting point of the 

framework (initial conditions), it is assumed that a few particles have been already 

attached to the wall. The incoming particles to the system that collides with those particles, 

can attach to them based on their contact forces. This approach was followed by Trofa et 

al. [413] to simulate the particulate fouling in microchannels, which can be a great help for 

the cases in which the interaction of particles with the wall is important.  
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To decrease the complexity and computational costs of simulating such cohesive 

forces, one approach is to relate this force to the weight of the particle, i.e., they can be 

assumed to be a function of the gravitational force exerted on the particle [414]. Hence, an 

extra force, which is a multiplication of weight by a “cohesive force factor” is added to the 

Newtonian equations of the particle. On the contrary, to increase the precision of 

simulating the presence of sticky molten plastic in the PWG simulation, the studies of wet 

particles’ behavior in the fluidized bed reactors are of significant help. In the numerical 

study that is done by Song et al. [324], a four-stage contact model between the wet particles 

is considered, which is based on a hysteresis linear spring-dashpot contact model. In this 

approach, the restitution coefficients of both dry and wet particles play important roles. 

Hence, the liquid phase properties (viscosity and surface tension) become important since 

they are used to calculate the spring stiffness, the restitution coefficient of wet particles, 

and the liquid bridge forces. 

Besides the wetted particle approach that was described above, similar methods can 

be implemented to simulate the coalescence and break up of bubbles or droplets in the 

cases that liquid molten plastic presence is dominant in the system. For the droplets, 

simulating the coalescence and breakup is similar to what was explained for the wet 

particles. However, it is associated with more complexity, because the shape deformation 

is also added to the other phenomena. For the bubbles, the E-L approaches implemented 

in bubbly flows can provide guidelines for the PWG simulations. The principles of this 

approach are similar to the gas-solid framework that was explained above, but different 

models can be used for the coalescence and breakup phenomena. Xue et al. [388] have 

simulated the bubbly flow in an E-L framework using the spring-dashpot model to 

evaluate the collision and contact time of the bubbles. Subsequently, they have 

implemented the film drainage [415] and bubble breakage models to reflect the 

coalescence and breakup of the bubbles, respectively. For the former, it is assumed that 

the coalescence happens in three stages: (1) bubble collision, (2) draining the liquid, and 

(3) film rupture and coalescence [415]. Consequently, when two bubbles get in contact 

with each other, if the liquid film drainage time is shorter than the bubbles’ contact time, 

the coalescence happens [415]. Hence, important parameters are the contact and drainage 

time. The contact time is a function of coalescence frequency, which is determined by the 

flow behavior. The drainage time, however, is a function of bubble diameter, liquid 

properties, and initial and final film thickness. The last two parameters are determined 

based on the gas-liquid pair. Consequently, for the PWG, this can get very complicated 

for the same reasons that were described in determining the thermophysical properties in 

Section 3. Moreover, the coalescence happens due to different mechanisms, i.e., 

turbulence, buoyancy, and laminar shear, which are described in detail in [415]. The 

modeling of these mechanisms should be done separately based on their occurrence in 

different locations of the PW gasifier. Similarly, the breakup mechanisms can be different, 

which are turbulent fluctuation, shear stress, and interfacial instability [388]. However, 

the complexity here, compared to the coalescence, is determining the sizes of bubbles after 

breakage (daughter bubbles). This can be done by defining the probability density 

functions in the size of the daughter bubbles [388]. 

7.2.5. Regime Transition 

A situation that is common in the bubbly flow regimes, and can happen in other flows 

as well, is the regime transition [355] in which the continuous phase becomes the 

dispersed phase in some zones of the reactor. This is likely to happen in PWG because of 

the aggregation, coalescence, and breakup that were discussed earlier. In these kinds of 

cases, special care has to be taken in implementing the closure models since they are 

usually derived for a constant continuous/dispersed phase binary. For example, the drag 

coefficient correlations are usually reported for, e.g., a single bubble in a bulk of liquid 

while in some reactor zones, this could be changed into a single liquid droplet in a 

continuous gas phase. Other than the closure models, another related problem is that the 
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volume fraction that is occupied by each phase can change the dominant dispersed phase 

and this can cause singular problems [286]. This is more problematic in the E-E 

simulations in which the phases are considered continuum. In this situation, a numerical 

method to switch the definition of the dispersed phase is required, which is called the 

blending function. Li and Christian used a blending function to simulate a bubbly flow 

[286]. The logic of the blending function is to define a criterion based on the volume 

fraction of phases in cells to determine the dispersed phase. If the volume fraction of a 

phase becomes higher than the limit, it becomes known as the continuous phase and the 

heat, mass, and momentum exchange is calculated based on the other phase, which has 

changed into the dispersed one. More details on this approach are found in [286].  

7.2.6. Non-Newtonian Behavior 

The last important parameter in the simulation of PWG for the systems in which the 

effect of the presence of molten plastic on the hydrodynamic is highlighted is the high 

viscosity and non-Newtonian behavior of molten plastics [187,188]. Although this is less 

important at high temperatures of the gasifier, to simulate the transient situation in which 

the molten plastic temperature is still low, it can get crucial. Yin et al. [311] assessed a 

novel falling film reactor design to pyrolyze the PW. Although they declared the non-

Newtonian behavior of the molten plastics, they based their simulations on the Newtonian 

fluid flow [169,311]. Unfortunately, to the best of the authors’ knowledge, this has not 

been yet considered in the PWG simulation or similar processes. However, it can be 

inspired by similar research studies from a hydrodynamic point of view [352,354,416]. To 

include the non-Newtonian behavior of the molten plastic, the most important parameter 

is to define the viscosity dependence on the shear rate [352]. Also, Reynolds number and 

pressure drop can be modified accordingly [354]. Although its implementation is not 

complex, the computational cost and instability will increase due to the addition of this 

degree of freedom.  

7.3. Multi-Scale Frameworks and Computational Efficiency 

Although the state-of-the-art multi-scale platforms try to integrate the phenomena at 

different scales, due to computational and technological limits, they are still far from the 

ideal situation, which includes all the models from atomic to reactor scale in one modeling 

platform. This is especially challenging and cumbersome for the PWG. However, for 

simpler cases, efforts have been made to increase the number of different scales’ 

phenomena in a single platform. In most of the CFD simulations of multi-phase flows on 

the reactor scale, the intraparticle phenomena are usually neglected. Recently, however, 

some efforts have been made to create multi-scale platforms, from intra-particle 

phenomena to the reactor scale flow. In this regard, Oschmann et al. [417] extended a DEM 

framework to account for the 3D intra-particle heat transfer mechanisms of the spherical 

and non-spherical particles, which can increase the precision in simulating the interaction 

between particles and also between the particles and the wall or the fluid phase. In a more 

advanced approach, Hardy et al. developed a PR-DNS solver for the weakly compressible 

and reactive flows [230]. This solver is capable of including internal and interfacial heat 

and mass transfer together with the reactions. For the PWG, this can be a promising 

framework due to its capability for the complex reactive flow systems in which the density 

of the gas can change in different locations of the reactor. Another example of such a 

comprehensive multi-scale platform is a solver called catalyticFoam that has been 

developed at POLIMI [418,419]. This simulation platform is able to include the detailed 

chemistry of heterogeneous catalytic reactions and solve the transport equations for both 

the fluid and solid phases by implementing a multi-region operator-splitting approach. 

This results in calculating the concentration and temperature gradients in the solid 

particles as well as in the fluid phase. This means that the simulation mesh is resolved in 

the particle regions and the transport equation for intra-particle phenomena is solved in 

those regions, in addition to the fluid phase. Error! Reference source not found. illustrates 
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the algorithm of the mentioned solver. To couple the fluid and solid phases, they 

implemented a partitioned approach, in which the equations at the interface of both 

regions are solved and then iteratively adjusted to converge the solution variables at their 

interface. This solver is designed for a fixed bed catalytic reactor and the flow is 

considered laminar. Hence, it is still far from what is needed to simulate the real FB PWG. 

However, it can be a useful initiative based on which a precise multi-scale PWG modeling 

platform can be built. It should be noticed that including the Newtonian equations for the 

discrete phase movement would increase a lot the complexity and computational costs of 

this framework. But considering the advances in computational resources, this can be 

done soon.  

As can be inferred from the discussions made above, creating a single multi-scale 

modeling platform to include all the phenomena from sub-atomic to reactor scale is not 

possible with the current technological and computational resources. However, this can 

be obtained by coupling different frameworks, which have been developed by different 

research groups. In this regard, the open-source software packages—which are widely 

and freely available—are a promising option, especially because they are flexible to be 

modified for a special application and coupling different platforms. Besides, another 

important aspect that should be investigated is computational efficiency. For modeling 

these kinds of complicated multi-phase flows, a huge amount of computational resources 

are needed. Hence, smart utilization of those resources is a step forward in this field. This 

is done by dividing the problem domain into multiple sections and using parallelization 

techniques to use multiple computing cores on high-performance computing systems 

(HPCs). Depending on the complexity and the desired simulation method, different 

parallelization approaches are used. This was initially performed on CPUs (Central 

Processing Units). In this method, usually from a few cores up to the order of magnitude 

of hundreds of CPU cores are employed to solve the fine mesh problems. However, in the 

recent decade, developing tools and packages, such as CUDA (NVIDIA Corporation, 

Santa Clara, CA, USA) [420], has enabled many-cores parallelization, e.g., using GPUs. 

This way, it is possible to use a much larger number of cores—e.g., one order of 

magnitude—compared to CPU parallelization. This type of parallelization is usually used 

for cases in which a larger number of, but less complicated calculations, have to be solved 

compared to the cases which use CPU parallelization. Using GPUs, it can be possible to 

simulate the PWG, and in general all multi-phase applications, with a very large number 

of discrete phase elements (hundreds of millions), for engineering scale applications [421]. 

Also, another opportunity is to use hybrid approaches. Norouzi et al. [422] have 

developed a solver to implement CPU parallelization for solving the governing equations 

of the fluid phase (CFD) and GPU parallelization for DEM calculations via the CUDA 

platform. They used their framework to efficiently simulate a bubbling FB with a large 

number of particles using a normal computer in a reasonable amount of time. Hence, the 

complex and computational expensive simulations of multi-phase PWG systems can be 

hopefully done at high resolution and with precise models at logical costs via these recent 

efficient computational methods.  
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Figure 16. Multi-region catalyticFoam solver algorithm (redrawn from [418]). Reprinted from 

Chemical Engineering Journal, Vol. 283, Tiziano Maffei, Giancarlo Gentile, Stefano Rebughini, 

Mauro Bracconi, Filippo Manelli, Stefan Lipp, Alberto Cuoci, Matteo Maestri, A multi-region oper-

ator-splitting CFD approach for coupling microkinetic modeling with internal porous transport in 

heterogeneous catalytic reactors, Pages No. 1392–1404, Copyright (2015), with permission from Else-

vier. 

8. Conclusions 

PWG is a growing research area because of the drive to move to a more circular econ-

omy and its inherent advantages over landfilling, mechanical recycling, or mere energy 

recovery. The most important strengths of PWG are: 

 It does not require extensive sorting of PW. 

 It does not necessarily require a catalyst that could be easily deactivated by impuri-

ties present in PW. 

The most important challenges are: 

 The wide variety of plastic types and elements in PW that result in the necessity of 

substantial upgrading of the syngas, e.g., removal of HCl, or dealing with the fluctu-

ations in the feedstock composition. 

 PWG setups are studied and designed based on the existing knowledge when gasi-

fying coal or biomass, and hence are believed to be not optimal for PW. In particular, 

the presence of liquid is usually neglected. 

In this regard, both experimental and numerical methods are essential to improve 

our fundamental understanding. However, the analysis in this work showed that there 

are many aspects in the multi-scale modeling of PWG that have not been considered, or if 

so, not modeled precisely. With the current increase in computational power it becomes 

possible to develop more fundamental and precise multi-scale models in the coming dec-

ade. Accurate modeling approaches of the chemistry and transport phenomena at various 

scales and a combination of different scales through proper scale-bridging methods will 

allow a more robust and reliable in-silico optimization of the process, which may eventu-

ally lead to a more economic industrial application. Hence, in the following paragraphs, 

the most important conclusions of this work are explained in detail. 

Many of the current experimental data for the PWG are limited to a product distri-

bution, which can be useful only for validating the performance of the whole multi-scale 



Materials 2022, 15, 4215 65 of 83 
 

 

framework, and not the individual sub-models at each scale, e.g., heat or mass transfer 

models. Hence, besides the necessity of developing specific models for this process, accu-

rate and detailed experimental data, specifically for PWG, should be gathered to validate 

different models at different scales of the multi-scale framework. 

The current feedstock data and models are not appropriate enough to increase the 

accuracy of the micro-scale models. Liquid and gas-phase pyrolysis reactions have to be 

accounted for and the coupling to the gasification reactions should be done. Currently, 

reliable kinetic models to be used in the multi-scale framework are almost not existing, 

and if they exist, they are limited to a small number of polymer types and pyrolysis. With 

a more accurate characterization of feed—both the waste stream composition and the de-

tailed composition of its individual components—it is possible to create more reliable ki-

netic models for the pyrolysis and gasification reactions. 

On the particle scale, various phenomena can occur that depend on the reactor type. 

Even in the simplest case, the multi-component/non-Newtonian molten plastic is present, 

which complicates modeling the transport phenomena on this scale. This is while the re-

actions in the liquid and gas phases, as well as the phase transformation, occur concur-

rently. This is not usually assessed in the multi-scale modeling frameworks of PWG. 

Hence, it can be concluded that the understanding and modeling of the phenomena that 

are highlighted in the particle scale should be improved and coupling of both the molec-

ular and particle scale phenomena should be investigated more fundamentally. 

Apart from the phenomena at the molecular and particle scales, the interaction 

among discrete phase fragments (particles, droplets, bubbles) and with the reactor walls 

can be captured in the reactor models. This includes practical 0D/1D and 3D CFD models 

to incorporate the effect of multi-phase flow in the multi-scale framework. Hence, consid-

ering the improved computational power, the engineering models can be used to create a 

multi-scale model including the detailed kinetic models, the E-E approach can be applied 

in engineering studies, and E-L and DNS models can serve the lab-scale studies. Besides 

the aforementioned interactions, the mesoscale structures that may form during the multi-

phase PWG process can be modeled in the higher resolution reactor CFD frameworks to 

better satisfy the overlap between the micro-and macro-scale phenomena. 

As can be inferred from the conclusions above, the recent increases in computational 

resources can be efficiently applied to improve the scalability of the CFD simulations and 

create more precise models of PWG at different scales. This can be done by using algo-

rithms to heterogeneously perform different tasks on CPU and GPU clusters. This calls 

for an effective collaboration between different research areas, which can be better real-

ized in the open-source programming community. 
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Nomenclature 

Acronyms  

CFB Circulating Fluidized Bed 

CGM Coarse Grain Model 

CMC Continuous Multi-component 

DAEM Distributed Activation Energy Model 

DFB Dual Fluidized Bed reactor 

DPM Discrete Particle Method / Discrete Phase Method 

DQMOM Direct Quadrature Method of Moments 

E-E Eulerian-Eulerian approach 

E-L Eulerian-Lagrangian approach 

ERN Equivalent Reactor Network 

FB Fluidized Bed 

FCMOM 
Finite-size Domain Complete Set of Trial Functions Method of 

Moments 

FTS Fischer-Tropsch Synthesis 

GL Gas-Liquid 

GS Gas-Solid 

KTGF Kinetic Theory of Granular Flow 

LBM Lattice-Boltzmann Method 

LK Langmuir-Knudsen Model 

MD Molecular Dynamics 

MOM Method of Moments 

MP-PIC MultiPhase Particle-in-Cell 

MSW Municipal Solid Waste 

OM Order of Magnitude 

PBE Population Balance Equation 

PR Particle Resolved 

PW Plastic Waste 

PWG Plastic Waste Gasification 

RDF Refuse-Derived Fuel 

SB Spouted Bed 

SCW Super Critical Water 

SRT Solid Residence Time 

Roman and Greek Letters 

� Pre-exponential factor / Surface area 

�� Aspect ratio of spheroids 

�� Biot number 

�� Specific heat capacity 

��� Courant number 
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� Diffusivity coefficient 

�� Damköhler number 

� Activation energy 

�⃗ Force 

�⃗ Gravity acceleration 

ℎ Convective heat transfer coefficient 

� Enthalpy 

� Reaction kinetic constant 

� Latent heat / Characteristic length 

� Mass 

�� Dimensionless Marangoni number 

�� Number of droplets per mass of liquid 

�� Number of particles 

�� Nusselt number 

� Pressure 

�� 
The perimeter of the circle equivalent to  

the maximum projection area of a particle 

��� Maximum projection perimeter 

�� Prandtl number 

�� Pyrolysis number 

� Heat 

��  Generated or consumed heat due to reaction 

� Radius 

� Production rate/Universal gas constant 

�� Reynolds number  

� Solid-liquid interface position 

�� Heat transfer between phases 

�� Momentum transfer between phases 

�� Species transfer between phases 

�� Net mass transfer rate between phases 

�� Particle-based mass source term 

�� Schmidt number 

� Time 

� Temperature 

�, ��⃗  Velocity 

� Volume 

� Spatial coordinate / Interface position 

�� Monomer conversion 

� Mass fraction 

� Volume fraction 

ɛ Porosity, void fraction 

� Incident angle 

� Thermal conductivity 

� Dynamic viscosity 

� Kinematic viscosity 

� Density 

� Surface tension 

�̿ Stress-strain tensor 

� Sphericity parameter 

� Circularity 

� Shape factor / Particle-based species transfer rate between phases 
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Sub/Superscripts  

0 Initial 

� First 

�� Second 

� Bulk 

� Contact 

���� Conduction 

���� Convection 

� Drag 

��� Effective 

� Fluid 

� The ith species 

� Liquid 

� Particle / Particle surface 

�� Pressure gradient 

��� Radiation 

���� Reaction 

� Solid 

���� Turbulent 
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