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Abstract

We reconsider de Marti and Zenou (2017) model of friendship network forma-

tion where individuals belong to two different communities and costs of forming

links depend on community memberships. Many inefficient friendship networks

such as segregation can arise when all individuals are myopic. Once there are my-

opic and farsighted individuals in both communities, we show that if there are

enough farsighted individuals in the dominant community relatively to the num-

ber of individuals in the small community, then the friendship network where the

smaller community ends up being assimilated into the dominant community is likely

to emerge and is strongly and Pareto efficient. Moreover, this friendship network

Pareto dominates the complete segregation network.
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1 Introduction

Social networks or friendship networks are important in obtaining information on goods

and services, like product information or information about job opportunities. Individuals

are often regrouped into communities based on their ethnicity, religion, income, education,

etc. (see e.g. de Marti and Zenou, 2017; Patacchini and Zenou, 2016). Beside belonging to

different communities, individuals often differ in their degree of farsightedness, i.e., their

ability to forecast how others will react to the decisions they take. Indeed, recent experi-

ments on network formation provide evidence in favour of a mixed population consisting

of both myopic and (limited) farsighted individuals (see Kirchsteiger, Mantovani, Mauleon

and Vannetelbosch, 2016; Teteryatnikova and Tremewan, 2020). The degree of farsight-

edness and the depth of reasoning are often correlated with other relevant attributes such

as education, income, age, etc. (see Mauersberger and Nagel, 2018).

The aim of this paper is to provide a theoretical study of how different degrees of

farsightedness affect the formation of friendship relationships when individuals can belong

to various communities.1 It is important to understand what happens when myopic

individuals interact with farsighted individuals since, in general, some networks that are

stable when all players are myopic could now be destabilized once individuals are mixed.

In particular, we are interested in addressing the following set of questions. What are the

friendship network structures that may endogenously arise once individuals belonging to

two different communities can be either myopic or farsighted in forming links? When

do we observe integration, segregation or (partial) assimilation? Does farsightedness

help to bridge communities and to more integrated societies? Are farsighted individuals

more likely to be linked to others who have different characteristics? How might the

network structure change if the dominant community is relatively more farsighted than

the other one? Do myopic individuals end up assimilated to the dominant community?

Are individual incentives to link adequate from a social welfare point of view? Does it

improve efficiency if some individuals become farsighted? And if yes, whom?

To answer these questions we reconsider de Marti and Zenou (2017) model of network

formation where individuals belong to two different communities. Communities may be

defined along social categories such as ethnicity, religion, education, income, etc. In

contrast to de Marti and Zenou (2017) where all individuals were myopic, we now allow

the possibility of having a mixed population composed of both myopic and farsighted

individuals. Myopic or farsighted individuals decide with whom they want to form a link,

according to a utility function that weights the costs and benefits of each connection.

Farsighted individuals are able to anticipate that once they add or delete some links,

other individuals could add or delete links afterwards. Benefits of a friendship connection

1Jackson (2008) and Goyal (2007) provide a comprehensive introduction to the theory of social and

economic networks. Mauleon and Vannetelbosch (2016) give an overview of the solution concepts for

solving network formation games. In Bramoullé, Galeotti and Rogers (2016), one can find the recent

developments on the economics of networks.
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decrease with distance in the network, while the cost of a link depends on the type of

individuals involved. Two individuals from the same community face a low linking cost,

while the cost of forming a friendship relationship between two individuals from different

communities decreases with the rate of exposure of each of them to the other community.

We adopt the notion of myopic-farsighted stable set to determine the friendship net-

works that emerge when some individuals are myopic while others are farsighted.2 A

myopic-farsighted stable set is the set of networks satisfying internal and external sta-

bility with respect to the notion of myopic-farsighted improving path. That is, a set of

networks is a myopic- farsighted stable set if there is no myopic-farsighted improving path

between networks within the set and there is a myopic-farsighted improving path from

any network outside the set to some network within the set. A myopic-farsighted improv-

ing path is simply a sequence of networks that can emerge when farsighted individuals

form or delete links based on the improvement the end network offers relative to the cur-

rent network while myopic individuals form or delete links based on the improvement the

resulting network offers relative to the current network.

When all individuals are myopic, de Marti and Zenou (2017) show that many friend-

ship networks can be stable. In the case of low intra-community costs, the complete

integration is stable when inter-community costs are sufficiently low. For higher inter-

community costs, the complete segregation becomes stable. They also point out that

some asymmetric network configurations can be stable. For instance, the network in

which both communities are fully intra-connected and where there is only one bridge link

can be stabilized. However, a tension between efficiency and stability may occur since

Pareto-dominated networks, like segregation, are stable.

What happens when the population is composed of both myopic and farsighted indi-

viduals and intra-community costs are low? We first show that, if farsighted individuals in

the large community are relatively numerous and inter-community costs are large enough,

then a friendship network where individuals of the small community are fully assimilated

into the large community is likely to emerge in the long run and is efficient. The com-

plete segregation is destabilized because farsighted individuals while they do not have

immediate incentives to add or delete links, they anticipate that once they do so, other

individuals will continue adding or deleting links leading to a friendship network where

the small community is assimilated into the larger one. Precisely, farsighted individuals

in the dominant community first push farsighted individuals in the small community in

a situation where they are worst off compared to what they obtain when they are fully

assimilated into the dominant community. Next farsighted individuals in the dominant

community lure the myopic individuals in the small community with the prospect of

forming a friendship network where the dominant community is fully assimilated into the

2Herings, Mauleon and Vannetelbosch (2020) were first to define the myopic-farsighted stable set

for two-sided matching problems. This notion is extended to R&D network formation with pairwise

deviations in Mauleon, Sempere-Monerris and Vannetelbosch (2020) and to general network formation

problems in Luo, Mauleon and Vannetelbosch (2021).
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smaller community. From such friendship network, farsighted individuals in the dominant

community are able to induce a switch towards the opposite fully assimilated network,

the friendship network where the small community is fully assimilated into the dominant

community, where they achieve their best outcome. The less farsighted individuals in the

small community are, the more likely this friendship network will arise. In the limit, when

all individuals in the small community tend to be myopic, a singleton set consisting of the

network where the smaller community is assimilated into the dominant one is the unique

myopic-farsighted stable set.

In addition, we are able to provide the lower bound on the relative number of farsighted

individuals in the dominant community relative to the number of individuals in the small

community so that the friendship network where the smaller community ends up being

assimilated into the dominant community is stable. Thus, turning myopic individuals into

farsighted ones, especially in the dominant community, could be very helpful in avoiding

(Pareto-) inefficient situations like segregation.

We also show that if all individuals in the small community are farsighted while there

are both myopic and farsighted individuals in the dominant community, inter-community

costs are large enough and the smaller community is not too small relatively to the

other one, then a friendship network where individuals of the dominant community are

fully assimilated into the small community could emerge in the long run and it Pareto

dominates the complete segregation network.3

In the case of intermediate intra-community costs, we show that a mixed population of

farsighted and myopic individuals again solve the tension between stability and efficiency.

Many friendship networks are stable when all individuals are myopic, but once there are

enough farsighted individuals, independently to which community they belong, then a

star network with a myopic individual in the center is going to arise and is efficient.

We now turn to the related literature. There is an extensive literature using network

models to explain the fact that individuals are more likely to be linked to individuals

who have similar characteristics. Currarini, Jackson and Pin (2009) develop a dynamic

random matching model with a population formed by groups of different sizes and show

that segregation in social networks results from the decisions of the individuals involved

and/or from the ways in which individuals meet and interact. In equilibrium, individu-

als’ behavior is totally homogeneous within the same group of individuals. Bramoullé,

Currarini, Jackson, Pin and Rogers (2012) develop a model of dynamic matching with

both random meetings and network-based search. They show that majority and minority

groups have different patterns of interactions and that relative homophily in the network

is strongest when groups have equal size, and vanishes as groups have increasingly unequal

sizes.4

3When inter-community costs are small, the complete integration network becomes again stable what-

ever the number of farsighted and myopic individuals within the population and it is efficient.
4Golub and Jackson (2012) study how the speed of learning and best-response processes depends on

homophily. Pin and Rogers (2016) provide a survey on stochastic network formation and homophily. Mele
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Despite strong empirical evidence, few models of network formation with differentiated

communities have studied the impact of social networks on the long-run integration out-

come of minorities. Jackson and Rogers (2005) extend the Jackson and Wolinsky (1996)’s

connection model by including two communities and assuming that the cost of linking

two individuals from different communities is exogenous and independent of the behavior

of the two individuals involved in the link. Johnson and Gilles (2000) add a geographical

dimension to Jackson and Wolinsky (1996)’s connection model assuming that the cost of

a link is proportional to the geographical distance between two individuals. As already

mentioned, de Marti and Zenou (2017) model is a variation of the connection model where

the cost of a link is endogenous and depends on the neighbourhood structure of the two

individuals involved in the link.

We go further the related literature by considering the impact of a mixed population

along two dimensions (community membership and degree of farsightedness) on the stabil-

ity of friendship networks. That is, we analyze how the presence of farsighted individuals

can affect the long-run integration outcome and under which circumstances this can lead

to either a segregated society or an integrated society or a society where one community

is assimilated into the other one. By doing so, we are the first to stabilize in the long-run

the efficient network structure where the smaller community ends up being assimilated

into the larger community.5

Another strand of the literature studies the role of social networks in the assimilation

of immigrants, a hot debate in the United States and in Europe. There is strong evidence

showing that family, peers and communities affect assimilation decisions (see e.g. Bisin,

Patacchini, Verdier and Zenou, 2016). In particular, there may be a conflict between

an individual’s assimilation choice and that of her peers and between an individual’s

assimilation choice and that of her family and community. Verdier and Zenou (2017) study

the role of the immigrant network in the assimilation process of ethnic minorities. They

show that, in an exogenous network, the more central minority individuals are located

in the social network, the more they assimilate to the majority culture. By endogenizing

the network structure, they show when the ethnic minority will integrate or not into the

majority group.6

The paper is organized as follows. In Section 2 we present de Marti and Zenou (2017)

(2017) proposes a dynamic model of network formation that combines strategic and random networks

features.
5Using data from the German Socio-Economic panel for the period 1996 to 2011, Facchini, Patacchini

and Steinhardt (2015) find that first generation migrants who have a German friend are more similar

to German natives than migrants who do not. In addition, the educational achievement is positively

related to the likelihood of forming friendships with majority group members. Similarly, from data of the

European Community Household Panel (1994-2001), de Palo, Faini and Venturini (2007) find that more

educated migrants tend to socialize more intensively with the majority community.
6Verdier and Zenou (2018) study the population dynamics of cultural traits emphasizing different

facets of the impact of forward looking cultural leaders in the process of cultural assimilation of minority

communities.
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model of friendship networks with two communities. In Section 3 we introduce the concept

of myopic-farsighted stable sets. In Section 4 we provide a characterization of the myopic-

farsighted stable sets when intra-community costs are low. In Section 5 we consider the

case where intra-community costs are intermediate. In Section 6 we look at the tension

between stability and efficiency, we discuss what could happen for intermediate inter-

community costs and we conclude.

2 Friendship networks with two communities

We consider de Marti and Zenou (2017) model of friendship networks where individu-

als belong to two different communities.7 Individuals benefit from direct and indirect

connections to others, which can be interpreted as positive externalities. These benefits

decay with distance between individuals and the cost of forming links may depend on

community memberships. The novelty is that individuals can now be either farsighted

or myopic when deciding about the friendship links they want to form. In de Marti and

Zenou (2017) all individuals were supposed to be myopic.

The set of individuals is denoted by N = NM ∪ NF , where NM is the set of myopic

individuals and NF is the set of farsighted individuals. Let n be the total number of

individuals and nM ≥ 0 (nF = n − nM ≥ 0) be the number of myopic (farsighted)

individuals. Moreover, the population is divided into two communities N = NB ∪ NG,

where NB is the blue community and NG is the green community. Each individual

belongs to one of the two communities and the type of individual i is denoted as τ(i) ∈{
NB, NG

}
. We have n = nB + nG, where nB and nG denote, respectively, the number of

NB individuals and the number of NG individuals in the population. Let nM,B and nF,B

be, respectively, the number of myopic and farsighted individuals in the blue community,

with nB = nM,B + nF,B. Let nM,G and nF,G be, respectively, the number of myopic

and farsighted individuals in the green community, with nG = nM,G + nF,G. Notice that

nM = nM,B + nM,G, nF = nF,B + nF,G and n = nM + nF . Without loss of generality,

the green community is the largest one and there are at least two individuals in each

community: 1 < nB ≤ nG.

A friendship network g is a list of which pairs of individuals are linked to each other

and ij ∈ g indicates that i and j are linked under g. The complete network on the set of

individuals S ⊆ N is denoted by gS and is equal to the set of all subsets of S of size 2.

It follows in particular that the empty network is denoted by g∅. The set of all possible

networks on N is denoted by G and consists of all subsets of gN . The network obtained

by adding link ij to an existing network g is denoted g + ij and the network that results

from deleting link ij from an existing network g is denoted g − ij. Let N(g) = {i |there

is j such that ij ∈ g} be the set of individuals who have at least one link in the network

g. Let Ni(g) = {j ∈ N | ij ∈ g} be the set of neighbours (or friends) of individual i in

7See also Bjerre-Nielsen (2020) for a related model of network formation with multiple types.

5



g.8 Let ni(g) = #(Ni(g)) be the number of neighbours (or friends) of individual i in g.

A path in a network g between i and j is a sequence of individuals i1, . . . , iK such that

ikik+1 ∈ g for each k ∈ {1, . . . , K − 1} with i1 = i and iK = j. A network g is connected

if for all i ∈ N and j ∈ N \ {i}, there exists a path in g connecting i and j. A non-empty

sub-network h ⊆ g is a component of g, if for all i ∈ N(h) and j ∈ N(h)\{i}, there exists

a path in h connecting i and j, and for any i ∈ N(h) and j ∈ N(g), ij ∈ g implies ij ∈ h.

A star network is a network such that there exists some individual i (the center) who is

linked to every other individual j 6= i (the peripherals) and that contains no other links

(i.e. g is such that Ni(g) = N \ {i} and Nj(g) = {i} for all j ∈ N \ {i}).
A network utility function (or payoff function) is a mapping Ui : G → R that assigns

to each network g a utility Ui(g) for each individual i ∈ N . A network g ∈ G is strongly

efficient if
∑

i∈N Ui(g) ≥
∑

i∈N Ui(g
′) for all g′ ∈ G. A network g ∈ G Pareto dominates

a network g′ ∈ G relative to U if Ui(g) ≥ Ui(g
′) for all i ∈ N , with strict inequality for

at least one i ∈ N . A network g ∈ G is Pareto efficient relative to U if it is not Pareto

dominated, and a network g ∈ G is Pareto dominant if it Pareto dominates any other

network.

Preferences are given by

Ui(g) =
∑
j 6=i

δt(i,j) −
∑

j∈Ni(g)

cij(g),

where t(ij) is the number of links in the shortest path between i and j (setting t(ij) =∞
if there is no path between i and j), 0 < δ < 1 is the benefit from a connection that

decreases with the distance of the relationship, and cij(g) > 0 is the cost for individual i

of maintaining a direct link with j. The cost of forming one link may vary as a function

of the type of individuals connected by such link.

Definition 1 (de Marti and Zenou, 2017). Given a network g, the rate of exposure of

individual i to their own community τ(i) is

e
τ(i)
i (g) =

{
n
τ(i)
i (g)/(ni(g)− 1) if 0 < n

τ(i)
i (g) < ni(g)

0 if n
τ(i)
i (g) = 0

(1)

where n
τ(i)
i (g) is the number of i’s same-type friends in network g while ni(g) is the total

number of i’s friends in network g.

Let c and C be strictly positive parameters, c > 0 and C > 0.9 The cost for individual

i of maintaining a link with j, cij(g), depends on whether i and j belong or not to the

same community:

cij(g) =

{
c if τ(i) = τ(j)

c+ e
τ(i)
i (g) · eτ(j)j (g) · C if τ(i) 6= τ(j)

.

8Throughout the paper we use the notation ⊆ for weak inclusion and  for strict inclusion. Finally,

# will refer to the notion of cardinality.
9For C = 0 the model of de Marti and Zenou (2017) reverts to the connections model introduced by

Jackson and Wolinsky (1996).
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Such cost function assumes that it is less costly to interact with someone of the same

type (intra-community cost) than with someone of a different type (inter-community

cost). Notice that C is not present in the cost of a link between individuals of the

same community. But, C becomes an additional cost when two individuals from different

communities, having links with individuals of their own community, form a link between

them. For instance, if a green individual has only green friends, then it will be more costly

for her to interact with a blue individual that has mostly blue friends. However, the more

similar the friendship composition of two individuals of different types, the easier it is

for them to interact. If at least i or j has no friends of the same type (i.e., e
τ(i)
i = 0 or

e
τ(j)
j = 0), then it is equally costly for them to interact with someone of the opposite type

as with someone of the same type (i.e., the cost is c in both cases).10 In Figure 1 we depict

a friendship network among seven individuals and two communities (NG = {1, 2, 3, 4},
NB = {5, 6, 7}) with a bridge link between both communities. Green individuals are

represented by solid circles while blue individuals are represented by circles. For instance,

green individual 4’s payoff is equal to 4δ + 2δ2 − 4c − C since e
τ(4)
4 = 3/(4 − 1) = 1 and

e
τ(7)
7 = 2/(3− 1) = 1.
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Figure 1: A bridge link between both communities. Greens are represented by solid circles

while blues are represented by circles.

We now describe some prominent network configurations in the case of friendship

networks with communities. Let gassi,green denote the network where all members of the

blue community are fully assimilated to the dominant (or larger) green community. That

is, each green individual is linked to all other (green and blue) individuals while each

blue individual is only linked to all green individuals. Formally, gassi,green = gN
G ∪ {ij |

i ∈ NG, j ∈ NB}. In gassi,green, a green individual obtains (n − 1)(δ − c) as utility, while

a blue obtains (nG)(δ − c) + (nB − 1)δ2 as utility. In Figure 2 we depict gassi,green for

10In the definition of the rate of exposure (see the expression (1)), we subtract 1 in the denominator

because, when computing the cost of a given bridge link between communities, this bridge link is not

included in the computation of the cost. What is relevant for the cost is the rate of exposure according

to the rest of the connections of each of the two individuals involved in the bridge link.
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NG = {1, 2, 3, 4} and NB = {5, 6}. Similarly, let gassi,blue denote the network where all

members of the green community are fully assimilated to the smaller blue community.

That is, each blue individual is linked to all other (green and blue) individuals while each

green individual is only linked to all blue individuals. Formally, gassi,blue = gN
B ∪ {ij |

i ∈ NB, j ∈ NG}. In gassi,blue, a blue individual obtains (n − 1)(δ − c) as utility, while

a green obtains (nB)(δ − c) + (nG − 1)δ2 as utility. In Figure 3 we depict gassi,blue for

NG = {1, 2, 3, 4} and NB = {5, 6}. Let gint denote the complete integration network

where both communities are fully intra-connected and fully inter-connected: gint = gN

and is depicted in Figure 4. In gint, a green individual and a blue individual obtain,

respectively,

(n− 1)(δ − c)− nBn
G − 1

n− 2

nB − 1

n− 2
C and (n− 1)(δ − c)− nGn

B − 1

n− 2

nG − 1

n− 2
C

as utility. Let gseg denote the complete segregation network where both communities are

fully intra-connected but isolated of each other: gseg = gN
G ∪ gNB

and is depicted in

Figure 5. In gseg, a green individual obtains (nG−1)(δ− c) as utility, while a blue obtains

(nB − 1)(δ − c) as utility.
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Figure 2: The blue community is fully assimilated within the green community.

de Marti and Zenou (2017) adopt the notion of pairwise stability, introduced by Jack-

son and Wolinsky (1996), to study the networks that will be formed at equilibrium. A

network is pairwise stable if no individual benefits from deleting a link and no two indi-

viduals benefit from adding a link between them. Formally, a network g ∈ G is pairwise

stable if (i) for all ij ∈ g, Ui(g) ≥ Ui(g − ij) and Uj(g) ≥ Uj(g − ij), (ii) for all ij /∈ g, if

Ui(g) < Ui(g + ij) then Uj(g) > Uj(g + ij). Pairwise stability presumes that individuals

are myopic: they do not anticipate that other individuals may react to their changes.

Denote ∆ ≡ δ − δ2 − c. Many different network configurations can be pairwise stable

depending on the exact intra- and inter-community costs. Beside the networks gint, gseg,

gassi,green and gassi,blue that can be pairwise stable, some asymmetric network configura-

tions can also be pairwise stable: (i) the network in which both communities are fully

intra-connected and where there is only one bridge link (see Figure 1), (ii) the network
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Figure 3: The green community is fully assimilated within the blue community.
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in which both communities are fully intra-connected, where each blue individual has one

and only one bridge link, and where each green individual has at most one bridge link,

(iii) the network in which both communities are fully intra-connected and with a unique

blue individual connected with all green individuals, and (iv) the network in which both

communities are fully intra-connected and in which one green individual is linked to all

blue individuals.

We next allow the population to include not only myopic individuals but also farsighted

ones. Farsighted individuals are able to anticipate that once they add or delete some links,

other individuals could add or delete links afterwards.

3 Myopic-farsighted stable sets

We adopt the notion of myopic-farsighted stable set introduced by Herings, Mauleon

and Vannetelbosch (2020) for two-sided matching problems and by Luo, Mauleon and

Vannetelbosch (2021) for network formation games to determine the networks that are

stable when some individuals are myopic while others are farsighted.11 A set of networks

G is said to be a myopic-farsighted stable set if it satisfies the following two types of

stability. Internal stability: No network in G is dominated by any other network in G.

External stability: Every network not in G is dominated by some network in G. A network

g′ is said to be dominated by a network g if there is a myopic-farsighted improving path

from g′ to g.

A myopic-farsighted improving path is a sequence of distinct networks that can emerge

when farsighted individuals form or delete links based on the improvement the end network

offers relative to the current network while myopic individuals form or delete links based

on the improvement the resulting network offers relative to the current network. Since we

only allow for pairwise deviations, each network in the sequence differs from the previous

one in that either a new link is formed between two individuals or an existing link is

deleted. If a link is deleted, then it must be that either a myopic individual prefers the

resulting network to the current network or a farsighted individual prefers the end network

to the current network. If a link is added between some myopic individual i and some

farsighted individual j, then the myopic individual i must prefer the resulting network to

the current network and the farsighted individual j must prefer the end network to the

current network.12

11See Chwe (1994), Herings, Mauleon and Vannetelbosch (2009), Mauleon, Vannetelbosch and Vergote

(2011), Ray and Vohra (2015, 2019), Roketskiy (2018) for definitions of the farsighted stable set when

individuals are farsighted. Alternative notions of farsightedness for network formation are suggested by

Dutta, Ghosal and Ray (2005), Dutta and Vohra (2017), Herings, Mauleon and Vannetelbosch (2004,

2019), Page, Wooders and Kamat (2005), Page and Wooders (2009) among others.
12Along a myopic-farsighted improving path, myopic players do not care whether other players are

myopic or farsighted. They behave as if all players are myopic and they compare their resulting network’s

payoff to their current network’s payoff for taking a decision. However, farsighted players know exactly

who is farsighted and who is myopic and they compare their end network’s payoff to their current network’s

10



Definition 2. A myopic-farsighted improving path from a network g to a network g′ is a

finite sequence of distinct networks g1, . . . , gK with g1 = g and gK = g′ such that for any

k ∈ {1, . . . , K − 1} either

(i) gk+1 = gk−ij for some ij such that Ui(gk+1) > Ui(gk) and i ∈ NM or Uj(gK) > Uj(gk)

and j ∈ NF ; or

(ii) gk+1 = gk + ij for some ij such that Ui(gk+1) > Ui(gk) and Uj(gk+1) ≥ Uj(gk) if i, j ∈
NM , or Ui(gK) > Ui(gk) and Uj(gK) ≥ Uj(gk) if i, j ∈ NF , or Ui(gk+1) ≥ Ui(gk) and

Uj(gK) ≥ Uj(gk) (with one inequality holding strictly) if i ∈ NM , j ∈ NF .

If there exists a myopic-farsighted improving path from a network g to a network g′,

then we write g → g′. The set of all networks that can be reached from a network g ∈ G by

a myopic-farsighted improving path is denoted by φ(g), φ(g) = {g′ ∈ G | g → g′}. When

all individuals are myopic, our notion of myopic-farsighted improving path reverts to

Jackson and Watts (2002) notion of improving path. When all individuals are farsighted,

our notion of myopic-farsighted improving path reverts to Jackson (2008) and Herings,

Mauleon and Vannetelbosch (2009) notion of farsighted improving path. A set of net-

works G is a myopic-farsighted stable set if the following two conditions hold. Internal

stability: for any two networks g and g′ in the myopic-farsighted stable set G there is no

myopic-farsighted improving path from g to g′ (and vice versa). External stability: for

every network g outside the myopic-farsighted stable set G there is a myopic-farsighted

improving path leading to some network g′ in the myopic-farsighted stable set G (i.e.

there is g′ ∈ G such that g → g′).

Definition 3. A set of networks G ⊆ G is a myopic-farsighted stable set if: (IS) for every

g, g′ ∈ G, it holds that g′ /∈ φ(g); and (ES) for every g ∈ G\G, it holds that φ(g)∩G 6= ∅.

When all individuals are farsighted, the myopic-farsighted stable set is simply the far-

sighted stable set as defined in Herings, Mauleon and Vannetelbosch (2009) or Ray and

Vohra (2015). When all individuals are myopic, the myopic-farsighted stable set boils

down to the pairwise CP vNM set as defined in Herings, Mauleon, and Vannetelbosch

(2017) for two-sided matching problems.13 Luo, Mauleon and Vannetelbosch (2021) char-

acterize the myopic-farsighted stable set when all individuals are myopic (i.e. N = NM):

a set of networks is a myopic-farsighted stable set if and only if it consists of all pairwise

stable networks and one network from each closed cycle.

4 Low intra-community costs

When all individuals are myopic each myopic-farsighted stable set contains all pairwise

networks. Hence, many inefficient friendship networks can emerge in the long run when

payoff for taking a decision.
13The pairwise CP vNM set follows the approach by Page and Wooders (2009) who define the stable

set with respect to path dominance, i.e. the transitive closure of φ.
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both communities are composed of only myopic individuals. We now investigate what

happens when the population is mixed in terms of their degree of farsightedness.

We next consider the following three cases: (1) all individuals in both communities are

mixed; (2) all individuals in the large green community are farsighted; (3) all individuals

in the small blue community are farsighted.

4.1 Farsighted and myopic agents in both communities

Suppose first that some individuals are farsighted while others are myopic in both com-

munities. We show that if there are enough farsighted individuals in the dominant green

community relatively to the size of the small blue community, then a friendship network

where individuals of the small blue community are fully assimilated into the large green

community is likely to emerge in the long run.

Let Ĉ be the lower bound on the inter-community cost parameter C such that, if

there are enough farsighted individuals in the green community, {gassi,green} is a myopic-

farsighted stable set whatever the number of farsighted or myopic individuals within the

blue community. Formally,

Ĉ = ∆
(nF,G + nM,B − 2)2(nF,G + nM,B − 3)

nF,G(nF,G − 1)2
·min{1, nM,B}.

Precisely, it is the lower bound on C such that a myopic blue individual has incentives

to cut a link with another myopic blue individual in the complete component between

farsighted green individuals and myopic blue individuals, i.e. g(N
F∩NG)∪(NM∩NB).

Let nG be given by

nG = (nB − 1)
(δ − δ2 − c)

(δ − c)
.

It is the lower bound on the number of farsighted green individuals such that a farsighted

blue individual prefers being fully assimilated into the green community than being un-

connected from farsighted green individuals. That is, for i ∈ NF,B, Ui(gseg) < Ui(gassi,green)

if and only if nF,G > nG. Notice that nG < nB ≤ nG.

Lemma 1 shows that if the number of farsighted agents in the green community is

large enough (nF,G > nG) and inter-community costs are large enough (C > Ĉ), then

there always exists a myopic-farsighted improving path emanating from any network g 6=
gassi,green leading to gassi,green where blue individuals are fully assimilated into the large

green community.

Lemma 1. Assume low intra-community costs, c < δ − δ2, and inter-community costs,

C > Ĉ. If nF,G > nG, then φ(g) ∩ {gassi,green} 6= ∅ for all g 6= gassi,green where gassi,green =

gN
G ∪ {ij | i ∈ NG, j ∈ NB}.

12



Proof. Take any network g 6= gassi,green. We build in steps a myopic-farsighted improving

path from g to gassi,green.

Step 0: If g is such that blue individuals have links among themselves, i.e., g ∩ gNB 6= ∅
then go to Step 1. Otherwise, starting from g, green individuals first build all the missing

links between green individuals to reach g′ = g ∪ gNG
. Since c < δ− δ2 and g′ ∩ gNB

= ∅,
green individuals are not affected by C and so myopic or farsighted green individuals have

incentives to add the links with the other green individuals. Farsighted green individuals

look forward to gassi,green, where they obtain their highest possible payoff given c < δ− δ2,
Ui(gassi,green) = (n − 1)(δ − c). From g′ green individuals build all the missing links with

blue individuals to finally reach g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB} = gassi,green. Since

c < δ − δ2 and g′′ ∩ gNB
= ∅, blue and green individuals are not affected by C and so

myopic or farsighted blue individuals have incentives to add the links with myopic or

farsighted green individuals (and vice versa).

Step 1: Starting in g, farsighted green individuals delete successively all the links (if

any) they have with green and blue individuals looking forward to gassi,green, where they

obtain their highest possible payoff given c < δ − δ2 and C > Ĉ. We reach the network

g′ = g ∩ gNB∪(NG∩NM ) where all the links involving farsighted green individuals in g have

been deleted. Thus, g′ ⊆ gN
B∪(NG∩NM ) and go to Step 2.

Step 2: From g′ = g ∩ gNB∪(NG∩NM ), since nG ≥ nB and nF,G > nG, blue individuals

who are farsighted (if any) prefer gassi,green to g′. Indeed, if nF,G > nG or

nF,G > (nB − 1)
(δ − δ2 − c)

(δ − c)
,

then farsighted blue individuals prefer the end network gassi,green where they get (nG)(δ−
c) + δ2(nB − 1) to the current network where they obtain at most (nB − 1 +nM,G)(δ− c).
So, the nF,B farsighted blue individuals are ready to delete all their links looking forward

to gassi,green. We reach the network g′′ ⊆ gN
M

. If g′′ = g∅ is the empty network then go to

Step 3. Otherwise, go to Step 4.

Step 3: From the empty network g∅ green individuals and blue individuals build all the

links in gN
G ∪ {ij | i ∈ NG, j ∈ NB} to finally reach the network gassi,green. Since along

the myopic-farsighted improving blue individuals have no links to other blue individuals,

the payoffs of both green and blue individuals are not affected by C. So, each time a

farsighted green or blue individual adds a link she prefers the end network gassi,green to

the current network and each time a myopic green or blue individual adds a link she

prefers the resulting network to the current network. Hence, φ(g)∩{gassi,green} 6= ∅ for all

g 6= gassi,green.

Step 4: From g′′ ⊆ gN
M

, since c < δ − δ2, myopic blue individuals have incentives to

build all the links with the farsighted green individuals.14 Farsighted green individuals

14Since farsighted green individuals are not linked to other green individuals, the cost for a myopic

blue individual to link to such farsighted green individual is equal to c. In addition, the inter-community

costs she may incur for her links to myopic green individuals decrease because she is becoming relatively

less exposed to her own blue community.

13



are looking forward gassi,green and prefer the end network to the current one. We reach the

network g′′ ∪ {ij | i ∈ NF ∩NG, j ∈ NM ∩NB} where all possible links between myopic

blue individuals and farsighted green individuals are formed. Thus, we reach the network

where all farsighted green individuals are assimilated to the community of myopic blue

individuals (but the community of myopic blue individuals is not necessarily fully intra-

connected). Notice that farsighted blue individuals remain without links and farsighted

green individuals prefer gassi,green to g′′ ∪ {ij | i ∈ NF ∩ NG, j ∈ NM ∩ NB}. Next go to

Step 5.

Step 5: From g′′ ∪ {ij | i ∈ NF ∩NG, j ∈ NM ∩NB}, farsighted green individuals who

look forward towards gassi,green build all the links between them to reach gN
F∩NG∪g′′∪{ij |

i ∈ NF ∩NG, j ∈ NM ∩NB}. Next go to Step 6.

Step 6: From gN
F∩NG∪g′′∪{ij | i ∈ NF ∩NG, j ∈ NM ∩NB}, since C > Ĉ, myopic blue

individuals have incentives to delete successively all the links they have with other myopic

blue individuals to finally reach the network gN
F∩NG ∪ g′′ ∪ {ij | i ∈ NF ∩NG, j ∈ NM ∩

NB} \ {ij | i, j ∈ NM ∩ NB}. The condition C > Ĉ guarantees that, along the myopic-

farsighted improving path starting at g1 = gN
F∩NG∪g′′∪{ij | i ∈ NF∩NG, j ∈ NM∩NB},

followed by gk+1 = gk − ij with ij ∈ gk and i, j ∈ NM ∩ NB for k ≥ 1, and ending at

gK = gN
F∩NG ∪ g′′∪{ij | i ∈ NF ∩NG, j ∈ NM ∩NB}\{ij | i, j ∈ NM ∩NB}, all myopic

blue individuals have incentives to delete their links with other myopic blue individuals.

Indeed, consider a sequence starting at g1 = gN
F∩NG ∪ g′′ ∪ {ij | i ∈ NF ∩ NG, j ∈

NM ∩ NB}, followed by gk+1 = gk − ij with i ∈ NM ∩ NB, j ∈ Ni(gk) ∩ NM ∩ NB, for

k = 1, ...nM,B − 1. Along this sequence, a myopic blue individual i successively deletes

all her links with the other myopic blue individuals and she has incentives to cut her kth

link to some myopic blue individual if and only if

C > ∆
(nF,G + nM,B − 2)(nF,G + nM,B − 1− k)(nF,G + nM,B − 2− k)

nF,G(nF,G − 1)2
.

This condition is satisfied since C > Ĉ and

Ĉ = ∆
(nF,G + nM,B − 2)2(nF,G + nM,B − 3)

nF,G(nF,G − 1)2
·min{1, nM,B}

≥ ∆
(nF,G + nM,B − 2)(nF,G + nM,B − 1− k)(nF,G + nM,B − 2− k)

nF,G(nF,G − 1)2
.

when nM,B 6= 0. Next, from gN
F∩NG ∪ g′′ ∪{ij | i ∈ NF ∩NG, j ∈ NM ∩NB} \ {ij | i, j ∈

NM ∩ NB}, farsighted and myopic green individuals build all the missing links between

them. Since myopic blue individuals are not linked to each other and farsighted blue

individuals have no link, farsighted and myopic green individuals are not affected by C

and so myopic or farsighted green individuals have incentives to add the links between

them. Next, farsighted and myopic blue individuals build the missing links with all green

individuals to reach the network gassi,green where all blue individuals are fully assimilated

into the green community. Thus, φ(g) ∩ {gassi,green} 6= ∅ for all g 6= gassi,green.
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In the proof of Lemma 1, we construct a myopic-farsighted improving path leading

to gassi,green along which farsighted green individuals first delete all their links to push

farsighted blue individuals in a situation where they are worst off compared to what they

obtain when they are fully assimilated into the green community. Next, myopic blue

individuals link to each other and to all farsighted green individuals. In fact, farsighted

green individuals are luring myopic blue individuals with the prospect of a friendship

network where green individuals are assimilated into the community of blue myopic in-

dividuals. Next, farsighted green individuals who are looking forward towards gassi,green

build all the links between them to reach a network where farsighted green individuals

and myopic blue individuals are integrated to each other. Since inter-community costs are

large enough, C > Ĉ, myopic blue individuals have now incentives to delete all the links

between them. Finally, farsighted blue individuals build the missing links with farsighted

green individuals to form gassi,green.

Proposition 1 shows that if the number of farsighted agents in the green community

is large enough (nF,G > nG) and inter-community costs are large enough (C > Ĉ), then

the set G = {gassi,green} is a myopic-farsighted stable set.

Proposition 1. Assume low intra-community costs, c < δ − δ2, and inter-community

costs, C > Ĉ. If nF,G > nG, then the set G = {gassi,green }, where gassi,green = gN
G ∪ {ij |

i ∈ NG, j ∈ NB}, is a myopic-farsighted stable set.

Proof. The set G = {gassi,green} satisfies (IS) in Definition 3 since it is a singleton set. From

Lemma 1 we have that φ(g)∩{gassi,green} 6= ∅ for all g 6= gassi,green. Hence, G = {gassi,green}
satisfies (ES).

Remark that if there are more farsighted green individuals than myopic and farsighted

blue individuals, then the condition nF,G > nG holds, and it becomes likely that the friend-

ship network where blue individuals are assimilated into the dominant green community

will emerge in the long run.

Suppose now that all blue individuals are myopic (NB∩NF = ∅ and nM,B = nB). The

next corollary shows that if there are enough farsighted individuals in the dominant group

(green community) while all individuals in the other group (blue community) are myopic

and C > Ĉ, then the friendship network where the blue individuals end up assimilated

into the dominant green community will emerge for sure in the long run since {gassi,green}
is the unique myopic-farsighted stable set.15

Corollary 1. Assume low intra-community costs, c < δ− δ2, and inter-community costs,

C > Ĉ. If nF,G > nG and NM = NB, then the set G = {gassi,green }, where gassi,green =

gN
G ∪ {ij | i ∈ NG, j ∈ NB}, is the unique myopic-farsighted stable set.

15When NG = NF and NB = NM , Ĉ is equal to C1, where C1 is the lower bound on C such that a

myopic blue individual has incentives to cut a link with another blue individual in the complete integrated

network, and it is given by C1 = (n−2)2(n−3)
nG(nG−1)2

∆.
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Proof. From Proposition 1 we have that G = {gassi,green} both satisfies (IS) and (ES).

Farsighted and myopic green individuals obtain their highest possible payoff in gassi,green

and myopic blue individuals have no incentive to delete any link nor to add a new link

since C > Ĉ and c < δ − δ2. Since NM = NB it follows that φ(gassi,green) = ∅. So, since

φ(g) ∩ {gassi,green} 6= ∅ for all g 6= gassi,green and φ(gassi,green) = ∅, the set G = {gassi,green} is

the unique myopic-farsighted stable set (any other set would violate (IS) and/or (ES)).

4.2 The larger community is farsighted

Suppose now that all individuals in the large green community are farsighted, NF,G = NG.

First, notice that the condition in Lemma 1 and Proposition 1 on the number of farsighted

individuals in the green community is trivially satisfied. Second, when all individuals in

the small blue community are also farsighted (i.e. NF,G = NG and NF,B = NB), the set

{gassi,green } becomes a myopic-farsighted stable set for any inter-community costs C > 0.

Remark 1. Assume low intra-community costs, c < δ − δ2, and all individuals are far-

sighted, NF = N . Then, nM,B = 0, Ĉ = 0 and from Lemma 1 and Proposition 1 we

have that the set G = {gassi,green }, where gassi,green = gN
G ∪ {ij | i ∈ NG, j ∈ NB}, is a

myopic-farsighted stable set for any C > 0.

4.3 The smaller community is farsighted

Suppose now that all individuals in the small blue community are farsighted. We first

show that if inter-community costs are large enough and the blue community is not too

small relatively to the green community, then a friendship network where individuals of

the large green community are fully assimilated into the small blue community could

emerge in the long run.

Let C̃ be the lower bound on the inter-community cost parameter C such that, in the

case of low intra-community costs, gassi,blue is a myopic-farsighted stable set whatever the

number of farsighted or myopic individuals within the green community. Formally,

C̃ = ∆
(nF,B + nM,G − 2)2(nF,B + nM,G − 3)

nF,B(nF,B − 1)2
·min{1, nM,G}.

It is the lower bound on C such that a myopic green individual has incentives to cut a

link with another myopic green individual in the complete component between farsighted

blue individuals and myopic green individuals, i.e. g(N
F∩NB)∪(NM∩NG).

Let nB be given by

nB = (nG − 1)
(δ − δ2 − c)

(δ − c)
·min {1, nF,G}.
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It is the lower bound on the size of the blue community such that a farsighted green

individual prefers being fully assimilated into the blue community than being segregated

from it. That is, for i ∈ NF,G, Ui(gseg) < Ui(gassi,blue) if and only if nB > nB.

Lemma 2 shows that if there are enough individuals in the blue community relatively

to the green one (nB > nB) and inter-community costs are large enough (C > C̃),

then there always exists a myopic-farsighted improving path emanating from any network

g 6= gassi,blue leading to gassi,blue where green individuals are fully assimilated into the small

blue community.

Lemma 2. Assume low intra-community costs, c < δ − δ2, and inter-community costs,

C > C̃. Assume all individuals in the blue community are farsighted, NB ⊆ NF . If

nB > nB, then φ(g) ∩ {gassi,blue} 6= ∅ for all g 6= gassi,blue where gassi,blue = gN
B ∪ {ij | i ∈

NG, j ∈ NB}.

Proof. Take any network g 6= gassi,blue. We build in steps a myopic-farsighted improving

path from g to gassi,blue. Notice that NB ⊆ NF and so nB = nF,B.

Step 0: If g is such that green individuals have links among themselves, i.e., g∩ gNG 6= ∅
then go to Step 1. Otherwise, starting from g, blue individuals first build all the missing

links between blue individuals to reach g′ = g ∪ gNB
looking forward to gassi,blue, where

they obtain their highest possible payoff given c < δ − δ2, Ui(gassi,blue) = (n − 1)(δ − c).
From g′ blue individuals build all the missing links with green individuals to finally reach

g′′ = g′ ∪ {ij | i ∈ NG, j ∈ NB} = gassi,blue. Since c < δ − δ2 and g′′ ∩ gNG
= ∅, green

individuals are assimilated to the blue community in g′′ and they are not affected by C

and so myopic or farsighted green individuals have incentives to add the links with the

blue individuals.

Step 1: Starting in g, blue individuals who are all farsighted (NB ⊆ NF ) delete suc-

cessively all the links (if any) they have with green and blue individuals looking forward

to gassi,blue, where they obtain their highest possible payoff given c < δ − δ2 and C > C̃,

Ui(gassi,blue) = (n − 1)(δ − c). We reach the network g′ = g ∩ gNG
where all the links

involving blue individuals in g have been deleted. Thus, g′ ⊆ gN
G

and go to Step 2.

Step 2: From g′ = g ∩ gNG
, since nB > nB, all green individuals who are farsighted (if

any) prefer gassi,blue to g′ and so farsighted green individuals (if any) are ready to delete

all their links looking forward to gassi,blue. We reach the network g′′ ⊆ gN
M∩NG

. If g′′ = g∅

is the empty network then go to Step 3. Otherwise, go to Step 4.

Step 3: From the empty network g∅ green individuals and blue individuals build all the

links in gN
B ∪{ij | i ∈ NG, j ∈ NB} to finally reach the network gassi,blue. Since along the

myopic-farsighted improving green individuals have no links to other green individuals,

the payoffs of both green and blue individuals are not affected by C. So, each time a

farsighted green or blue individual adds a link she prefers the end network gassi,blue to

the current network and each time a myopic green individual adds a link she prefers the

resulting network to the current network. Hence, φ(g)∩{gassi,blue} 6= ∅ for all g 6= gassi,blue

and G = {gassi,blue} satisfies (ES).
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Step 4: From g′′ ⊆ gN
M∩NG

, since c < δ − δ2, myopic green individuals have incentives

to build all the missing links with other myopic green individuals. We reach the network

gN
M∩NG

. From gN
M∩NG

, since c < δ − δ2, myopic green individuals have incentives to

build all the links with the blue individuals. Blue individuals who are all farsighted and

are looking forward gassi,blue prefer the end network to the current one. We reach the

network gN
M∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩NG} where all possible links between myopic

green individuals and all blue individuals are formed. Thus, we reach the network where

all the blue individuals are assimilated to the community of myopic green individuals

and the community of myopic green individuals is fully intra-connected. Notice that all

farsighted green individuals (if any) remain without links and all blue individuals prefer

gassi,blue to gN
M∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩NG}. Next go to Step 5.

Step 5: From gN
M∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩ NG}, blue individuals who are all far-

sighted and look forward towards gassi,blue build all the links between the blue individuals

to reach gN
B ∪ gNM∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩ NG}. Notice that if NG = NM then

gN
B ∪ gNM∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩ NG} is simply the complete network gN . Next

go to Step 6.

Step 6: From gN
B ∪ gNM∩NG ∪ {ij | i ∈ NB, j ∈ NM ∩NG} since C > C̃, myopic green

individuals have incentives to delete successively all the links they have with other myopic

green individuals to finally reach the network gN
B ∪ {ij | i ∈ NB, j ∈ NM ∩ NG}. The

condition C > C̃ guarantees that, along the myopic-farsighted improving path starting at

g1 = gN
B ∪gNM∩NG ∪{ij | i ∈ NB, j ∈ NM ∩NG}, followed by gk+1 = gk− ij with ij ∈ gk

and i, j ∈ NM ∩ NG for k ≥ 1, and ending at gK = gN
B ∪ {ij | i ∈ NB, j ∈ NM ∩ NG},

all the myopic green individuals have incentives to delete their links with other myopic

green individuals. Indeed, consider a sequence starting at g1 = gN
B ∪ gNM∩NG ∪ {ij | i ∈

NB, j ∈ NM ∩NG}, followed by gk+1 = gk− ij with i ∈ NM ∩NG, j ∈ Ni(gk)∩NM ∩NG,

for k = 1, ...nM,G−1. Along this sequence, a myopic green individual i successively deletes

all her links with the other myopic green individuals and she has incentives to cut her kth

link to some myopic green individual if and only if

C > ∆
(nF,B + nM,G − 2)(nF,B + nM,G − 1− k)(nF,B + nM,G − 2− k)

nF,B(nF,B − 1)2
.

This condition is satisfied since C > C̃ and

C̃ = ∆
(nF,B + nM,G − 2)2(nF,B + nM,G − 3)

nF,B(nF,B − 1)2
·min{1, nM,G}

≥ ∆
(nF,B + nM,G − 2)(nF,B + nM,G − 1− k)(nF,B + nM,G − 2− k)

nF,B(nF,B − 1)2
,

when nM,G 6= 0. Next, from gN
B ∪ {ij | i ∈ NB, j ∈ NM ∩ NG}, farsighted green

individuals build the missing links {ij | i ∈ NB, j ∈ NF ∩NG} with all blue individuals

to reach the network gassi,blue where all green individuals are fully assimilated into the blue

community. Thus, φ(g) ∩ {gassi,blue} 6= ∅ for all g 6= gassi,blue.
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Proposition 2. Assume low intra-community costs, c < δ − δ2, and inter-community

costs, C > C̃. Assume all individuals in the blue community are farsighted, NB ⊆ NF .

If nB > nB, then the set G = {gassi,blue }, where gassi,blue = gN
B ∪ {ij | i ∈ NG, j ∈ NB},

is a myopic-farsighted stable set.

Proof. The set G = {gassi,blue} satisfies (IS) in Definition 3 since it is a singleton set. From

Lemma 2 we have that φ(g) ∩ {gassi,blue} 6= ∅ for all g 6= gassi,blue. Hence, G = {gassi,blue}
satisfies (ES).

Proposition 2 shows that the set {gassi,blue} is a myopic-farsighted stable set since from

any other network there is a myopic-farsighted improving path leading to gassi,blue. In the

proof of Lemma 2 we construct such myopic-farsighted improving path. This myopic-

farsighted improving path is similar to the one for Lemma 1 by switching blue individuals

for green ones and vice versa. The major difference is that now the blue community has

to be large enough relatively to the green community (nB > nB) to ensure that farsighted

green individuals are worst off once all blue individuals delete their links compared to

what they obtain when they are fully assimilated into the blue community.

Suppose now that all green individuals are myopic (NG ∩ NF = ∅ and nM,G = nG).

Then, C̃ is equal to C2, where C2 is the lower bound on C such that a myopic green

individual has incentives to cut a link with another green individual in the complete

integrated network, and it is given by

C2 =
(n− 2)2(n− 3)

nB(nB − 1)2
∆.

Thus, if C > C2, each myopic green individual has an incentive to delete some link to

another green individual in the complete integrated network gint, i.e. gN .

The next corollary shows that if the dominant group (green community) is myopic

while the other group (blue community) is farsighted and C > C2, then the friendship

network where the green individuals end up assimilated into the small blue community

will emerge for sure in the long run since {gassi,blue} is the unique myopic-farsighted stable

set.

Corollary 2. Assume low intra-community costs, c < δ− δ2, and inter-community costs,

C > C2. Assume all individuals in the green community are myopic, NM = NG, and all

individuals in the blue community are farsighted, NF = NB. Then, the set G = {gassi,blue},
where gassi,blue = gN

B ∪ {ij | i ∈ NG, j ∈ NB}, is the unique myopic-farsighted stable set.

Proof. From Proposition 2 we have that G = {gassi,blue} both satisfies (IS) and (ES).

Farsighted blue individuals obtain their highest possible payoff in gassi,blue and myopic

green individuals have no incentive to delete any link nor to add a new link since C > C2

and c < δ−δ2. SinceNM = NG it follows that φ(gassi,blue) = ∅. So, since φ(g)∩{gassi,blue} 6=
∅ for all g 6= gassi,blue and φ(gassi,blue) = ∅, the set G = {gassi,blue} is the unique myopic-

farsighted stable set (any other set would violate (IS) and/or (ES)).
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Suppose now that both communities are farsighted (N = NF ) and the blue community

is not too small relatively to the green one (i.e. nB > nB). Then, the set {gassi,blue }
becomes a myopic-farsighted stable set for any inter-community costs C > 0.

Remark 2. Assume low intra-community costs, c < δ− δ2, all individuals are farsighted,

NF = N , and nB > nB. Then, nM,B = 0, C̃ = 0 and from Lemma 2 and Proposition 2

we have that the set G = {gassi,blue }, where gassi,blue = gN
B ∪ {ij | i ∈ NG, j ∈ NB}, is a

myopic-farsighted stable set for any C > 0.

However, if both communities are fully farsighted and the blue community is relatively

small (i.e. nB ≤ nB), then the set {gassi,blue} is never a myopic-farsighted stable set because

φ(gseg) ∩ {gassi,blue} = ∅. Moreover, the set {gseg} is never a myopic-farsighted stable set

because φ(gassi,green) ∩ {gseg} = ∅. Thus, the complete segregation network gseg and the

network gassi,blue in which all green individuals are fully assimilated into the smaller blue

community are unlikely to emerge in the long run when the whole population is farsighted.

Remark 3. Assume low intra-community costs, c < δ − δ2, and inter-community costs,

C > 0. Assume all individuals are farsighted, NF = N .

(i) The set G = {gassi,blue} is never a myopic-farsighted stable set if nB ≤ nB.

(ii) The set G = {gseg} is never a myopic-farsighted stable set.

5 Intermediate intra-community costs

We now consider situations where intra-community costs are intermediate, i.e. δ−δ2 < c <

δ. So, it becomes more expensive to build links with individuals from the same community.

We denote by g∗i the star network where individual i is the center of the star. We next

show that, if the whole population is mixed, independently of the distribution of myopic

and farsighted individuals in the two communities, then a star network encompassing all

individuals from both communities with some myopic individual in the center is going to

emerge in the long run.

Let γ ∈ [0, 1] be given by

γ = min

[
nB − 1

nF,G + nB − 2
,

nG − 1

nF,B + nG − 2

]
if nF,G 6= 0 and nF,B 6= 0

and γ = 1 otherwise. Notice that (nB − 1) · (nF,G + nB − 2)−1 is the greatest rate of

exposure of a farsighted blue individual in the center of a star component encompassing

all farsighted green individuals and all myopic or farsighted blue individuals when adding

a link to some myopic green individual. Similarly, (nG − 1) · (nF,B + nG − 2)−1 is the

greatest rate of exposure of a farsighted green individual in the center of a star component

encompassing all farsighted blue individuals and all myopic or farsighted green individuals
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when adding a link to some myopic blue individual.16 When nF,G 6= 0 and nF,B 6= 0, γ is

simply the minimum of these two greatest rates of exposure.

Proposition 3. Assume intermediate intra-community costs, δ − δ2 < c < δ, NF 6= ∅
and NM 6= ∅. If c + γC < (δ − δ2)(1 + δ(nF − 1)), then the set G∗ =

{
g∗i | i ∈ NM

}
is

the unique myopic-farsighted stable set.

Proof. We first show that G∗ =
{
g∗i | i ∈ NM

}
satisfies both internal stability (i.e. con-

dition (IS) in Definition 3) and external stability (i.e. condition (ES) in Definition 3).

IS. Farsighted green and blue individuals are peripherals in all networks in G∗ so that

they always obtain the same payoff: Ui(g) = δ + (n − 2)δ2 − c for all i ∈ NF , g ∈ G∗.
Myopic green and blue individuals who are peripherals have no incentive to delete their

single link (δ + (n − 2)δ2 − c > 0) nor to add a new link to any other individual since

δ − δ2 < c. The center who is myopic has no incentive to delete one link since c < δ.

Hence, for every g, g′ ∈ G∗, it holds that g′ /∈ φ(g).

ES. Take any network g /∈ G∗. We build in steps a myopic-farsighted improving path

from g to some g∗i ∈ G∗.
Step 1: Starting in g, farsighted green and blue individuals delete all their links succes-

sively looking forward to some g∗i ∈ G∗, where they obtain their highest possible payoff

given δ − δ2 < c. Notice that if g is a star network where the center is a farsighted green

or blue individual, then the center starts by deleting all her links since only the center is

better off in g∗i compared to g (and we go directly to Step 8). We reach a network g1

where all farsighted green and blue individuals have no link and myopic individuals only

keep the links to myopic individuals they had in g.

Step 2: From g1, looking forward to g∗i ∈ G∗, farsighted green and blue individuals build

a star network g∗j
F

restricted to farsighted individuals with individual jF being the center

is such that either

jF ∈ NF,B if min

[
nB − 1

nF,G + nB − 2
,

nG − 1

nF,B + nG − 2

]
=

nB − 1

nF,G + nB − 2
and nF,G 6= 0, nF,B 6= 0,

or

jF ∈ NF,G if min

[
nB − 1

nF,G + nB − 2
,

nG − 1

nF,B + nG − 2

]
=

nG − 1

nF,B + nG − 2
and nF,G 6= 0, nF,B 6= 0,

or jF ∈ NF if either nF,G = 0 or nF,B = 0. Notice that g∗j
F

is such that j ∈ NF ,

Nj(g
∗jF ) = NF \

{
jF
}

and Nk(g
∗jF ) =

{
jF
}

for all k ∈ NF \
{
jF
}

), and we obtain

g2 = g1 ∪ g∗jF where all farsighted green and blue individuals are still disconnected from

the myopic green and blue individuals.

Step 3: From g2, looking forward to g∗i ∈ G∗, the farsighted individual jF who is the

center of g∗j
F

adds a link to some myopic individual, say individual 1. Individual jF is

better off in g∗i compared to g2, δ+(n−2)δ2−c > (nF−1)(δ−c), while individual 1 is better

16The greatest rate of exposure of a myopic green (blue) individual who is adding a link to a farsighted

blue (green) individual in the center of the star component is equal to 1.
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in g2+jF1 if c+
(
e
τ(jF )

jF
(g2 + jF1) · eτ(1)1 (g2 + jF1)

)
·C < δ+δ2(nF−1) when τ(jF ) 6= τ(1).

Since e
τ(jF )

jF
(g2 + jF1) ≤ γ and e

τ(1)
1 (g2 + jF1) ≤ 1, the sufficient condition becomes

c + (γ · 1)C < δ + δ2(nF − 1). This last inequality holds since c + γC < (δ − δ2)(1 +

δ(nF − 1)) < δ + δ2(nF − 1). Notice that the condition c+ γC < (δ − δ2)(1 + δ(nF − 1))

also guarantees that individual 1 is better off when τ(jF ) = τ(1).

Step 4: From g2 + jF1, looking forward to g∗i ∈ G∗, the farsighted individual jF adds a

link successively to the myopic individuals who are neighbours of individual 1 (if any), say

individual 2. Individual 2 who is myopic and linked to individual 1 has an incentive to add

the link jF2 if δ2+(nF−1)δ3 < δ−c−
(
e
τ(jF )

jF
(g2 + jF1 + jF2) · eτ(2)2 (g2 + jF1 + jF2)

)
C+

(nF−1)δ2 when τ(jF ) 6= τ(2). Since e
τ(jF )

jF
(g2+jF1+jF2) ≤ γ and e

τ(2)
2 (g2+jF1+jF2) ≤ 1,

the sufficient condition becomes

c+ γC < δ − δ2 + (nF − 1)(δ2 − δ3), (2)

or

c+ γC < (δ − δ2)(1 + δ(nF − 1)) (3)

where nF is the number of farsighted individuals in the whole population. We reach the

network g2+jF1+
{
jF l | l ∈ N1(g

2 + jF1) ∩NM
}

, where individual jF is (directly) linked

to individual 1 and all her neighbours, and all other farsighted green and blue individu-

als.

Step 5: From g2 + j1 +
{
jF l | l ∈ N1(g

2 + jF1) ∩NM
}

, the myopic individuals who

are neighbours of individual 1 and have just added a link to the farsighted individ-

ual jF delete their link successively with individual 1. They have incentives to do so

since δ − δ2 < c and we reach the network g2 + jF1 +
{
jF l | l ∈ N1(g

2 + jF1) ∩NM
}
−{

1l | l ∈ N1(g
2 + jF1) ∩NM

}
.

Step 6: Next, looking forward to g∗i ∈ G∗, the farsighted individual jF adds a link suc-

cessively to the myopic individuals who are neighbours of some l ∈ N1(g
2+jF1)∩NM and

we proceed as in Step 4 and Step 5. We repeat this process until we reach a network g3

where there is no myopic individual linked directly to the myopic neighbours of individual

jF (i.e. Nk(g
3) ∩NM = ∅ for all k ∈ NjF (g3) ∩NM).

Step 7: From g3, individual jF adds a link to some myopic individual belonging to an-

other component (if any) as in Step 3 and we proceed as in Step 4 to Step 6. We repeat

this process until we end up with a star network g∗j with individual jF (who is farsighted)

in the center (i.e. NjF (g∗j
F

) = N \
{
jF
}

and Nk(g
∗jF ) =

{
jF
}

for all k ∈ N \
{
jF
}

).

Step 8: From g∗j
F

, looking forward to g∗i ∈ G∗, the farsighted individual jF deletes all

her links successively to reach the empty network g∅. From g∅, myopic and farsighted

individuals have both incentives (since δ > c) to add links successively to build the star

network g∗i ∈ G∗ where some myopic individual i ∈ NM is the center.

Uniqueness. We now show that G∗ is the unique myopic-farsighted stable set. Far-

sighted green and blue individuals who are peripherals in all networks in G∗ obtain their
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highest possible payoff. Myopic green and blue individuals who are peripherals have no

incentive to delete their single link nor to add a new link. The center who is myopic

has no incentive to delete one link. Hence, φ(g) = ∅ for every g ∈ G∗. Suppose that

G 6= G∗ is another myopic-farsighted stable set. (1) G does not include G∗: G + G∗.

External stability would be violated since φ(g) = ∅ for every g ∈ G∗. (2) G includes G∗:

G ! G∗. Internal stability would be violated since for every g ∈ G \ G∗, it holds that

φ(g) ∩G∗ 6= ∅.

Once all individuals become farsighted (i.e. N = NF ), for δ−δ2 < c < δ and for C > 0,

every set consisting of a star network encompassing all individuals is a myopic-farsighted

stable set

Proposition 4. Assume intermediate intra-community costs, δ − δ2 < c < δ, and all

individuals farsighted, N = NF . If g is a star network then {g} is a myopic-farsighted

stable set.

Proof. Since each set is a singleton set, internal stability (IS) is satisfied. (ES) Take any

network g 6= g∗i, we need to show that φ(g) 3 g∗i. (i) Suppose g 6= g∗j (j 6= i). From

g, looking forward to g∗i (where they obtain their highest possible payoff), farsighted

individuals (6= i) delete all their links successively to reach the empty network. From

g∅, farsighted individuals have incentives (since δ > c) to add links successively to build

the star network g∗i with individual i in the center. (ii) Suppose g = g∗j (j 6= i). From

g, looking forward to g∗i, the farsighted individual j deletes all her links successively to

reach the empty network. From g∅, farsighted individuals have incentives (since δ > c) to

add links successively to build the star network g∗i with individual i in the center.

While every set consisting of a star network is a myopic-farsighted stable set, there

may be other myopic-farsighted stable sets.

6 Discussion

6.1 Low inter-community costs

Suppose now that both intra- and inter-community costs are low, i.e. c+ nGC < δ − δ2.
Then the complete integrated network is going to emerge whatever the composition of

the population in terms of farsightedness.

Proposition 5. Assume low intra-community costs and low inter-community costs, c +

nGC < δ − δ2. The set G = {gint}, where gint = gN , is a myopic-farsighted stable set.

Proof. The set G = {gint}, where gint = gN , satisfies (IS) in Definition 3 since it is a

singleton set. We now show that it also satisfies (ES).

ES. Take any network g 6= gint. Since c + nGC < δ − δ2, it follows that Ui(g + ij) >

Ui(g) and Uj(g + ij) > Uj(g) as well as Ui(g
N) ≥ Ui(g + ij) > Ui(g) and Uj(g

N) ≥
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Uj(g + ij) > Uj(g). Hence, the sequence starting at g1 = g, followed by gk+1 = gk + ij

with ij ∈ gN \ gk, for k = 1, 2..., and ending at gK = gN , is a sequence along which

Ui(gk + ij) > Ui(gk), Uj(gk + ij) > Uj(gk), Ui(g
N) > Ui(gk) and Uj(g

N) > Uj(gk).

Thus, this sequence is a myopic-farsighted improving path from g to gN whatever the

composition of the population in terms of myopia and farsightedness (i.e. NM and NF ),

and G = {gint} satisfies (ES).

6.2 Intermediate inter-community costs

Suppose now that inter-community costs are intermediate while intra-community costs

are low. Then, it becomes unlikely that a singleton myopic-farsighted stable set ex-

ists. In fact, a myopic-farsighted stable set (if it exists) may include many different

network architectures. For instance, any network where nG green individuals are fully

intra-connected, nB blue individuals are fully intra-connected, and one green individual

is linked to all blue individuals may belong to the myopic-farsighted stable sets for inter-

mediate inter-community costs. Take NG = {1, 2, 3, 4}, NB = {5, 6, 7}, NF = {4} and

NM = N \ NF . If 3∆/2 < C < min{25∆/9, 5∆/3 + 15(δ2(1 − δ))/3} then the network

g̃ = gN
G ∪ gNB ∪ {4j | j ∈ NB} belongs to any myopic-farsighted stable set (if any) since

φ(g̃) = ∅. The network g̃ is depicted in Figure 6. Moreover, we have that φ(gint) = ∅
and so the complete integration network gint = gN also belongs to any myopic-farsighted

stable set (if any).17
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Figure 6: Both communities are fully intra-connected and one green individual is linked

to all blue individuals.

Notice that green individual 4 who is farsighted obtains her highest possible payoff

in the network g̃. So, she will never engage a move towards some alternative network

configuration. Since C > 3∆/2, any myopic green individual i 6= 4 has no incentive to

17Patacchini and Zenou (2016) look at friendship networks among US high-school students (Add Health

data). They find that, for mixed schools, most of the white students have white friends while one part of

the black students has mostly white friends and the other part has mostly black friends.
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add a link with a blue individual. But, myopic green individuals prefer the complete

integration network to the network g̃. Hence, if they were farsighted, they would engage

a move towards the complete integration network and destabilize the network g̃.

6.3 Stability versus efficiency

6.3.1 Low intra-community costs

Suppose that intra-community costs are low, i.e. c < δ− δ2. Since, nG ≥ nB, the network

gassi,green is always better than the network gassi,blue in terms of strong efficiency (i.e. sum of

utilities of all individuals). Comparing the network gassi,green with the complete integrated

network gint, we have that the network gassi,green is better than the complete integrated

network gint in terms of strong efficiency if and only if

C >
(n− 2)2

2nG(nG − 1)
∆ = C∗.

In addition, the network gassi,green is always better than the complete segregated network

gseg in terms of strong efficiency. In terms of Pareto efficiency, the network gassi,green always

Pareto dominates the complete segregated network gseg, while it only Pareto dominates

the complete integrated network gint if

C ≥ (n− 2)2

nG(nG − 1)
∆ = C∗∗,

where C∗∗ > C∗. Finally, the network gassi,blue Pareto dominates the complete integrated

network gint if

C ≥ (n− 2)2

nB(nB − 1)
∆ = C∗∗∗,

where C∗∗∗ ≥ C∗∗ > C∗.

Remark 4. Assume low intra-community costs, c < δ − δ2. The complete segregated

network gseg is never strongly efficient and is Pareto dominated for any value of C. In

terms of strong efficiency,

(i) if C < C∗, the complete integrated network gint is better than the complete segregated

network gseg and the networks with assimilation gassi,green or gassi,blue;

(ii) if C > C∗, the network gassi,green in which all blue individuals are fully assimilated

into the dominant green community is better than the complete integrated network

gint, the complete segregated network gseg and the network gassi,blue in which all green

individuals are fully assimilated into the smaller blue community.

In terms of Pareto efficiency, if C ≥ C∗∗, the network gassi,green Pareto dominates the

complete integrated network gint, and if C ≥ C∗∗∗ ≥ C∗∗, the network gassi,blue Pareto
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dominates the complete integrated network gint. The network gassi,green always Pareto dom-

inates the complete segregated network gseg, and if nB > nB, the network gassi,blue Pareto

dominates the complete segregated network gseg.

Whether a network is strongly efficient or not depends on C. The formation of a

link between two individuals from two different communities (the same community) has

a positive (negative) exposure effect for both individuals involved in the link because

the decrease (increase) in the rate of exposure of each of these individuals to their own

community reduces (increases) their inter-community costs that are proportional to C.

When C is very small, the difference between inter- and intra-community costs is negligible

and it is as if the entire population belong to a single community. Then, the complete

integrated network is strongly efficient. When C is large enough, inter-community costs

overcome benefits derived from connecting to the other community, and the network in

which all blue individuals are fully assimilated into the dominant green community is

strongly efficient.

Is there a tension between stability and efficiency when C is larger than Ĉ?18 When the

whole population is myopic, a conflict between stability and efficiency may occur since

the complete segregated network is stable. However, once there are enough farsighted

individuals in the dominant green community relatively to the size of the smaller com-

munity, nF,G > nG, the tension vanishes. Indeed, the network gassi,green in which all blue

individuals are fully assimilated into the dominant green community is likely to emerge

in the long run since {gassi,green} is a myopic-farsighted stable set and gassi,green is not only

better than gassi,blue, gseg, gint in terms of strong efficiency but it also Pareto dominates

gseg and gint. Thus, turning myopic players into farsighted players within the dominant

community may improve efficiency by destabilizing inefficient and/or Pareto dominated

networks.

Remark that when C is larger than C̃ and all blue individuals are farsighted and

sufficiently numerous (nB > nB), then the network gassi,blue may emerge in the long run.

Although the network gassi,green is better than the network gassi,blue in terms of strong

efficiency, the network gassi,blue Pareto dominates the complete segregated network gseg.

6.3.2 Intermediate intra-community costs

Remember that, for C = 0, de Marti and Zenou (2017) friendship model reverts to

Jackson and Wolinsky (1996) connections model where a star network is strongly efficient

for δ − δ2 < c < δ (and C = 0). Hence, such star network is also strongly efficient for

δ − δ2 < c < δ and C > 0.

Remark 5. Assume intermediate intra-community costs, δ− δ2 < c < δ. A star network

is strongly efficient.

18Notice that C∗ < C∗∗ ≤ C1 ≤ C2, C∗∗ ≤ C∗∗∗ ≤ C2, C∗∗ ≤ Ĉ and C∗∗∗ ≤ C̃.
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When intra-community costs are intermediate and the population is formed by myopic

and farsighted individuals, the set of star networks with a myopic individual at the center

of the star is the unique myopic-farsighted stable set and each star network is strongly

efficient. Thus, provided that the population is mixed, there is no tension between stability

and efficiency.

6.4 Conclusion

We have reconsidered de Marti and Zenou (2017) model of friendship network formation

where individuals are myopic and belong to two different communities (greens and blues).

When all individuals are myopic many friendship networks, like fully integrated communi-

ties or segregated communities, can be pairwise stable and a tension between efficiency and

stability may occur. We have added a second heterogeneity dimension: individuals can be

either myopic or farsighted. We summarize our main results for low intra-community costs

in Figure 7. When the population becomes mixed in terms of farsightedness and myopia,

most inefficient friendship networks tend to be destabilized. Once there are enough far-

sighted individuals in the larger community and inter-community costs are large enough,

the friendship network where the smaller community ends up being assimilated into the

dominant community is likely to arise and is efficient. For instance, segregation is desta-

bilized because farsighted individuals while they do not have immediate incentives to

add or delete links, they anticipate that once they do so, other individuals will continue

adding or deleting links leading to a friendship network where the small community is

assimilated into the dominant one. When inter-community costs are small enough, the

complete integration is stable whatever the number of farsighted and myopic individuals

in both communities.19

For intermediate intra-community costs, a star network (encompassing both commu-

nities) with a myopic individual at the center of the star is going to arise and is strongly

efficient provided that the population is mixed.

The degree of farsightedness of an individual is likely to be correlated with her level of

education or grades at school. Hence, for future research it would be interesting to con-

front our theoretical predictions with empirical or experimental data. Segregation should

mostly occur when both communities are low educated. When one community is high

educated (i.e. a community with a large number of high educated individuals) while the

other community is low educated (i.e. a community with a low number of high educated

individuals), the individuals belonging to the less educated community are likely to end

up assimilated into the high educated community, and even more likely if they are high

19When adding or deleting links, individuals know perfectly the links other individuals do have. Re-

cently, Foerster, Mauleon and Vannetelbosch (2021) propose a solution concept for network formation

games where individuals can form two types of links: public links observed by everyone and shadow

links generally not observed by others. Then, it could happen that, some agents overestimate others’

connections and hence under-connect (relative to stable networks under correct beliefs), while others

underestimate connections and hence over-connect.
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Figure 7: A summary of stable friendship networks with low intra-community costs.

educated individuals. Put it differently, it is more likely that the community with rela-

tively less educated individuals will end up being (at least partially) assimilated into the

other community, and this is even more true if there are more high educated in the dom-

inant community and the dominant group is relatively larger than the other community.

In addition, our results suggest that policies promoting mixing individuals and turning

myopic individuals into farsighted ones (especially in the dominant community) could be

helpful in avoiding (Pareto-) inefficient situations.
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