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Abstract

Objectives: We estimated the effect of pneumococcal vaccination (PV) on acute lower respiratory tract infections (LRTIs) in various
age and risk groups using different methods within a causal inference methodological framework.

Study design and setting: We used data from a general practitioners’ morbidity registry for the year 2019. Both traditional statistical
methods (regression-based and propensity score methods) and machine learning techniques were deployed. Multiple imputation was used
to account for missing data. Relative risks (RRs) with 95% confidence intervals were estimated. Sensitivity analyses were performed to
account for the severity of LRTIs and differences in vaccination registration.

Results: All methods showed a standardized mean difference below 0.1 for each covariate. No method was found to be superior to
another. PV (combination of conjugate and polysaccharide vaccine) had an overall protective effect for severe LRTIs. PV was protective
in different age and risk groups, especially in people aged 50–84 years with an intermediate risk group.

Conclusion: Using several techniques, PV was found to prevent severe LRTIs and confirmed the recommendations of the Belgian
Superior Health Council. © 2021 Elsevier Inc. All rights reserved.
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What is new?

• Registry data was used to estimate the effect of
pneumococcal vaccination to prevent lower respira-
tory tract infections.
• Relative risks were calculated using different meth-

ods (regression-based methods, propensity score
methods and machine learning techniques) to build
confidence in the robustness of the conclusions.
• A combination of a conjugate and polysaccharide

vaccine was found to prevent severe lower respira-
tory tract infections in the global adult population
and in different age and risk groups.
• These results confirmed the recent recommenda-

tions of the Belgian Superior Health Council.

1. Introduction

Acute lower respiratory tract infections (LRTIs) are a
major cause of morbidity and mortality [1]. Almost 2.38
million deaths worldwide resulted from LRTIs in 2016
[2], and LRTIs are the fourth leading cause of global
disability-adjusted life-years [3]. Streptococcus pneumo-
niae was found to be responsible for at least 5% of the
severe LRTIs in the adult population in primary care [4].
To prevent pneumococcal diseases in adults, two types of
vaccines are available: the 13-valent pneumococcal con-
jugate vaccine (PCV13) and the 23-valent pneumococcal
polysaccharide vaccine (PPV23).

In Belgium, the Superior Health Council recommends
vaccinating adults aged from 16 to 85 years old with a
high risk of pneumococcal infection, adults aged from 50
to 85 years old who have certain comorbidities and healthy
people aged 65–85 years with PCV13 followed by PPV23
[5]. However, the efficacy of these vaccines in the pre-
vention of LRTIs in adults remains the subject of debate
[6–8].

Randomized controlled trials are the gold standard ap-
proach for assessing the effect of treatments or interven-
tions. Randomization ensures that the treatment effect can
be directly estimated [9]. However, occasionally, a trial
might be unethical, time-consuming and infeasible [10].
In addition, when the outcome is a rare disease or the aim
is to investigate effects on patients with polymedication
and multimorbidity, observational data are the only alter-
native [11]. In observational studies, treatment selection is
often influenced by subject characteristics, which often dif-
fer systematically between treated and untreated subjects
[12]. Therefore, methodologies and strategies that consider
those systematic differences should be deployed. These
methods vary and include general statistical methods, such
as regression-based methods (RBMs) and propensity score
(PS) methods. Recently, machine learning (ML) tech-
niques, namely, Bayesian additive regression trees and gen-
eralized boosted modelling, have been increasingly used;
they automatically detect the best model for balancing
the covariates and for capturing nonlinearities, polynomial
terms and interactions [13].

Therefore, there were two objectives of this study. First,
a causal inference methodological framework is developed
for data from registries. Both traditional statistical methods
and ML techniques are used, and the differences in terms
of which method achieves the best balance is examined.
Second, the association between pneumococcal vaccina-
tion (PV) and LRTIs in different age and risk groups was
investigated.

2. Materials and methods

2.1. Data source

We used the Intego registry, a Flemish general prac-
tice morbidity registry, which was described in more detail
elsewhere [14]. Briefly, in 2019, Intego comprised approx-
imately 285,000 people from 104 general practice centres,
accounting for 4.3% of the Flemish population. Medica-
tion and vaccines were classified according to the WHO’s
Anatomical Therapeutic Chemical classification system,
and diagnoses were linked to the International Classifica-
tion of Primary Care (ICPC-2) and International Statisti-
cal Classification of Diseases and Related Health Problems
10th Revision.

2.2. Study design and study population

2.2.1. Study population
For the current study, we included only practices that

coded more than 80% of their registered diagnoses in 2019
(n = 86). The study was performed on the population aged
16 and older in 2019.

2.2.2. Intervention
PV consists of PPV23 (ATC code = J07AL01) and

PCV13 (ATC code = J07AL02). We considered two strate-
gies: (i) a patient was administered either vaccine, and (ii)
a patient was administered both vaccines. We further cate-
gorized the treatment according to the years since the last
vaccination of each type (0–5 years, 6–10 years, and ≥10
years), starting from the LRTIs date in 2019 or December
31, 2019. Last, to identify the PV in Intego, we used two
sources: PV registrations and PV prescriptions. Neverthe-
less, when a vaccine was only prescribed, we cannot be
certain that the vaccination occurred. Therefore, to make
our conclusions robust, we investigated the effect of the in-
tervention on (i) vaccination registration only and (ii) vac-
cination registration and vaccination prescription together.

2.2.3. Outcome definition
The outcome of interest was LRTIs in 2019. We made a

distinction between LRTIs with or without antibiotics since
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the prescription of antibiotics might indicate a more severe
LRTIs. Specifically, we considered (i) LRTIs without a pre-
scription of antibiotics and (ii) LRTIs with a prescription
of antibiotics 1 month before or after the LRTIs.

2.2.4. Main analysis and sensitivity analyses
In total, we performed eight analyses (one main and

seven sensitivity analyses) on the effect of PV to prevent
LRTIs. In addition, we estimated the effect of PV in dif-
ferent age groups (16–49, 16–84, 50–64, 50–84, 65–74,
74–84, 65–84, 85-plus, 50-plus, 65-plus, and 75-plus) and
risk groups (low, intermediate and high risk).

2.3. Covariate selection

We selected appropriate confounding factors using pre-
vious research evidence from the literature, expert advice
and the recommendations of the Superior Health Coun-
cil in Belgium [15,16]. The covariates used for adjustment
were the baseline characteristics, the risk group for LRTIs
infection, lab tests and comorbidities as detailed in Sup-
plementary Tables S1 and S2.

2.4. Treatment effect estimators

The estimands of interest differ according to the re-
search question at hand and the target population to be
compared. The two most common estimands are the fol-
lowing: the average treatment effect, which is the effect on
the entire population; and the average effect of the treat-
ment on the treated, which is the effect for those in the
treatment group [17]. The average treatment effect is of
more interest if every treatment potentially might be of-
fered to every subject, namely, if the entire population was
moved from the control to the treated group [18]. The av-
erage effect of the treatment on the treated is preferable
when patients’ characteristics are more likely to determine
the treatment received [19]. In our study, PV was more
likely to be administered to patients belonging to specific
age groups and with specific comorbidities. Therefore, for
our research question, the average effect of the treatment
on the treated estimand is of interest.

2.5. Modelling framework

2.5.1. Regression-based methods
Multivariable logistic regression is used to compute

odds ratios. However, in our study we aim to compute
relative risks (RRs), thus a log-binomial model will be de-
ployed. The difference between the multivariable logistic
regression and log-binomial models is the link function: in
the multivariable logistic regression, the logit function is
used; and in the log-binomial model, the log function is
used [20].
2.5.2. Propensity score methods
The PS of a subject is defined as the probability of

treatment assignment T conditional on a vector of observed
baseline covariates X [12], e(X) = Pr (T = 1 | X)

In this way, all the baseline covariates X are summa-
rized into one single variable. In Randomized controlled
trials, when the outcome is binary, the PS is approximately
0.5 since we expect a balance of covariates between the in-
tervention and control groups. In observational studies, due
to the imbalance of the covariates, the PS differs between
subjects and therefore needs to be estimated. The most
popular method to estimate the PS is the logistic regres-
sion, where the outcome is the intervention conditional on
all covariates. Once the PS is calculated, we can use PS-
based methods including matching, stratification, inverse
probability of treatment weighting and overlap weighting
to balance our covariates [21,22]. We performed nearest
neighbor matching with a caliper of 0.2 combined with
exact matching for sex, age group, risk, socioeconomic
status and smoking status.

2.5.3. Machine learning methods
ML techniques offer an alternative approach when cal-

culating PSs [23,24]. It differs from the logistic regression
in terms of automatically incorporating quadratic, polyno-
mial, or interaction terms and does not require any para-
metric assumptions [25,26]. In this work, we deployed the
Bayesian additive regression trees and generalized boosted
modelling for binary outcomes [27,28].

2.6. PSs after multiple imputation

An additional difficulty arises when data are incomplete.
Multiple imputation is a methodology to “fill in” the miss-
ing data multiple times with plausible values that reflect
the uncertainty in predicting the true unobserved values
[29]. The values are typically drawn from the conditional
distribution of a subject’s missing measurements given the
observed ones. We performed longitudinal imputation for
the missing covariates since the previous and earlier ob-
servations of the same patient can be considered. The par-
tially missing variables were smoking status, body mass
index, estimated glomerular filtration rate, systolic blood
pressure and diastolic blood pressure. We drew 20 impu-
tations, which is prudent since the percentage of missing
values was substantial. In the context of PSs, there are
two strategies for estimating the effects after multiple im-
putation. The first strategy is the within approach [30],
where the effects are calculated within each dataset and
then the results are pooled together. The second strategy
is the across approach [31], where the PSs are averaged
across imputed datasets, and the effects are calculated us-
ing this average PS. We used the within approach since it
was demonstrated to have superior statistical performance
[32].
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Fig. 1. Flowchart of the study population in 2019. “(For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)”
2.7. Balance diagnostics

The standardized difference, which is a comparison of
the means of continuous covariates and the distribution of
their categorical counterparts divided by the pooled stan-
dard deviation between treated and untreated subjects, was
used to investigate the covariate balance between the in-
tervention groups [33]. This metric lies between 0 and 1,
and the typical threshold is 0.1 [34,35]. In addition, the
bias reduction is given as:

bias reduction =
(

1 − |dafter|
|dbefore|

∗100
)
,

where dbeforeand dafter denote the standardized difference
before and after PS matching, respectively. The bias reduc-
tion provides an alternative and intuitive way to investigate
how the bias is reduced by using this method.

2.8. Statistical analysis

We deployed eight different methods to calculate the
RRs and the 95% Confidence Intervals. Further details for
these methods can be found in Supplementary Methods.
We used robust standard errors to account for potential
sources of uncertainty when using weighting techniques.
For our analysis, we used the R software [36] and different
packages as described in Supplementary R packages.

3. Results

3.1. Baseline covariate balance

Fig. 1 displays the flowchart of the study population as
described in the materials section.
Table 1 reports the absolute standardized difference be-
fore and after PS matching when the treatment was PPV23
& PCV13 located in the vaccine and prescription data
source, and the outcome was LRTIs with antibiotics. We
observe that bias was present in our data since the stan-
dardized difference of the distance measure in the origi-
nal sample was 1.38, and most of the variables had stan-
dardized differences largely above the 0.10 threshold. This
was further supported by the bias reduction metric, which
reached 99% for several variables.

Before matching, we observed that the vaccinated
group was older with higher percentages belonging to the
intermediate- and high-risk groups and a large difference
in influenza vaccination in 2018 (82.5% vs. 17.5%). Af-
ter matching, 6,022 patients remained in each intervention
group. The standardized differences dropped substantially
and were less than the threshold of 0.1. In addition to 1:1
PS matching, we investigated the covariate balance on all
methods, and the results are shown in Supplementary Ta-
bles S3, S4, and S5.

Fig. 2 presents an intuitive and straightforward compar-
ison of all statistical methods in terms of covariate balance
utilizing the absolute standardized difference. We observe
that the overlap method, followed by the ML techniques,
produced the best balance. Nevertheless, for all methods
except the unmatched (crude regression), each covariate
was well below 0.1, demonstrating that all methods ade-
quately balanced the data.

3.2. Effect of pneumococcal vaccination on LRTIs

Fig. 3 indicates a protective effect of PPV23 & PCV13
vaccination for the prevention of LRTIs with antibiotics
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Table 1. Baseline covariates before and after 1:1 PS matching for PCV13 & PPV23 (0–5 yr)

Variables Original sample PS matching 1:1

Not vaccinated Vaccinated SMD/SPD∗ Not vaccinated Vaccinated SMD/SPD Bias re-
duction

(N = 188815) (N = 6310) (N = 6022) (N = 6022)

Propensity score (distance measure) 1.3755 0.0007 99.95

Sex, male (%) 86893 (46.0) 3029 (48.0) 0.040 2875 (47.7) 2875 (47.7) <0.001 99.75

Age, mean (SD) 46.66 (18.99) 69.41 (12.26) 1.424 69.47 (12.61) 69.34 (12.26) 0.011 99.23

Socioeconomic status, no
compensation (%)

160856 (85.2) 5125 (81.2) 0.106 4922 (81.7) 4922 (81.7) <0.001 99.91

Risk status 1.071 <0.001 99.99

High risk (%) 4336 (2.3) 920 (14.6) 735 (12.2) 735 (12.2)

Low risk (%) 139375 (73.8) 1725 (27.3) 1723 (28.6) 1723 (28.6)

Intermediate risk, yes (%) 45104 (23.9) 3665 (58.1) 3564 (59.2) 3564 (59.2)

Smoking status 0.317 <0.001 99.97

Ex-smoker (%) 50625 (26.8) 2585 (41.0) 2455 (40.8) 2455 (40.8)

Smoker (%) 48780 (25.8) 1111 (17.6) 1023 (17.0) 1023 (17.0)

Never-smoker (%) 89410 (47.4) 2614 (41.4) 2544 (42.2) 2544 (42.2)

Body mass index, obese (%) 32792 (17.4) 1317 (20.9) 0.089 1323 (22.0) 1259 (20.9) 0.026 70.79

Systolic blood pressure, mean (SD) 124.65
(14.88)

128.84
(14.54)

0.285 129.55
(14.88)

129.02
(14.43)

0.037 87.02

Diastolic blood pressure, mean (SD) 76.69 (9.19) 75.49 (8.49) 0.135 76.10 (8.66) 75.58 (8.47) 0.060 55.56

Liver disease, yes (%) 4049 (2.1) 386 (6.1) 0.201 348 (5.8) 370 (6.1) 0.015 92.54

Heart failure, yes (%) 1771 (0.9) 298 (4.7) 0.230 244 (4.1) 276 (4.6) 0.026 88.7

Atrial fibrillation, yes (%) 4349 (2.3) 711 (11.3) 0.362 606 (10.1) 678 (11.3) 0.039 89.23

Heart valve, yes (%) 2206 (1.2) 360 (5.7) 0.251 298 (4.9) 334 (5.5) 0.027 89.24

Atherosclerosis, yes (%) 2502 (1.3) 327 (5.2) 0.219 296 (4.9) 304 (5.0) 0.006 97.26

Chronic obstructive pulmonary disease,
yes (%)

3976 (2.1) 1012 (16.0) 0.500 830 (13.8) 820 (13.6) 0.005 99

Asthma, yes (%) 16310 (8.6) 1226 (19.4) 0.315 1035 (17.2) 1093 (18.2) 0.025 92.06

Diabetes, yes (%) 10674 (5.7) 1155 (18.3) 0.397 1148 (19.1) 1100 (18.3) 0.020 94.96

Hypertension, yes (%) 29216 (15.5) 2746 (43.5) 0.646 2612 (43.4) 2596 (43.1) 0.005 99.23

Ischemic disease, yes (%) 5347 (2.8) 746 (11.8) 0.350 672 (11.2) 708 (11.8) 0.019 94.57

Stroke, yes (%) 4152 (2.2) 500 (7.9) 0.263 415 (6.9) 469 (7.8) 0.034 87.07

Cancer, yes (%) 30740 (16.3) 2402 (38.1) 0.505 2216 (36.8) 2223 (36.9) 0.002 99.6

Estimated glomerular filtration rate
category

0.370 0.021 94.32

Stage 1 (%) 46271 (24.5) 845 (13.4) 829 (13.8) 812 (13.5)

Stage 2 (%) 98308 (52.1) 3118 (49.4) 3039 (50.5) 3005 (49.9)

Stage 3 (%) 40743 (21.6) 2094 (33.2) 1929 (32.0) 1963 (32.6)

Stage 4 (%) 2948 (1.6) 201 (3.2) 176 (2.9) 191 (3.2)

Stage 5 (%) 545 (0.3) 52 (0.8) 49 (0.8) 51 (0.8)

Flu vaccine in 2018, yes (%) 33034 (17.5) 5203 (82.5) 1.709 4923 (81.8) 4932 (81.9) 0.004 99.77

∗ For continuous variables standardised mean differences (SMD) are used, whereas for categorical covariates standardised proportion differ-
ences (SPD)
using all methods. However, the effect of PPV23 or PCV13
was not significant using the large majority of models.

Furthermore, we investigated the effect of PPV23 &
PCV13 vaccination in different age groups for high-,
intermediate-, and low-risk statuses. Fig. 4 displays the RR
for all patients aged from 65 to 84 and further stratified by
risk status. We observed that the treatment was protective
for the entire age group and different risk categories. How-
ever, there were few patients in the high-risk group; thus,
uncertainty remained, as expressed by the large CI. A pro-
tective trend was observed in high-risk people aged 16–84
years as depicted in Supplementary Fig. S1, although the
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Fig. 2. Comparison of the different methods for subjects who received PCV13 and PPV23 based on the standardized mean difference. “(For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)”
CI was not significant. Supplementary Fig. S2 shows that
in the intermediate-risk people aged 50–4 years, a signifi-
cant protective effect was found. Furthermore, a protective
effect was seen in the 50-plus, 65-plus and 65–74 age cat-
egories as described in Supplementary Table S6.

3.3. Sensitivity analyses

Starting from PPV23 or PCV13 (registered or pre-
scribed), we observed a harmful trend for LRTIs with-
out antibiotics and a nonsignificant effect for LRTIs with
antibiotics. The same effect was observed when we only
used the registered vaccinations as depicted in Supplemen-
tary Fig. S3. For PPV23 & PCV13 (registered or pre-
scribed), we observed a nonsignificant effect for LRTIs
without antibiotics. However, the effect was protective for
LRTIs with antibiotics (primary analysis). Supplementary
Fig. S4 demonstrates that the same trend was observed
when we only used registered vaccinations. Furthermore,
a protective effect of vaccination was observed in the 16–
84, 50–84, 65-plus, 65–74 and 65–84 age groups for all
analyses (primary and sensitivity), as described in Supple-
mentary Table S7. Only for sensitivity analyses 6 and 8,
i.e., PPV23 or PCV13 when the outcome was LRTIs with-
out antibiotics, did we observe a nonsignificant effect.

4. Discussion

In this large registry-based study, a causal inference
methodological framework was used to estimate the ef-
fect of PV to prevent LRTIs in adults. Several methods,
including RBMs, PS and ML were utilized to balance
the intervention and control groups and estimate an un-
biased effect. The overlap method produced the best bal-
ance; however, all methods were below the threshold of
0.1. Therefore, no method was found to be superior to
the others, which underscores the robustness of the re-
sults. Vaccinating adults with PPV23 or PCV13 did not
have a protective effect against LRTIs. However, a combi-
nation of PPV23 and PCV13 was found to prevent severe
LRTIs in the global adult population and in different age
and risk groups, confirming the recommendations of the
Belgian Superior Health Council.

In earlier literature, controversy arose over the preferred
or most suitable methodology to balance the intervention
and control groups. When differences are large between in-
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Fig. 3. Forest plot of the RR of PPV23 or PCV13 and PPV23 & PCV13 on LRTIs treated with antibiotics (vaccine and prescription registration)
according to each statistical method used. “(For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)”
tervention and control subjects and the true relationship be-
tween the covariate and outcome is even moderately non-
linear, RBMs can increase the bias in the treatment effect
[37–39]. However, RBMs and PS were compared; and in
43 observational studies, both methods yielded similar re-
sults [40]. Additionally, in several cardiovascular studies,
PS methods were not superior to RBMs and were worse
in some scenarios [41]. Nevertheless, PS methods are su-
perior to RBMs when modelling rare events [42]. Further-
more, ML techniques are of increasing interest since they
automatically detect the best model for balancing the co-
variates and capture nonlinearities, polynomial terms and
interactions. Our conclusion is that no method is superior
to another. As Stuart stated, matching techniques should
not conflict with RBMs but should be considered to be
complementary [25]. However, we would further extend
this statement by suggesting that ML techniques should
be an extra tool in the methodological framework, because
deploying several methods serves as a thorough and infor-
mative sensitivity analysis that highlights the robustness
of the results. In future research, we suggest (i) carefully
choosing the estimand of interest, (ii) utilizing an array
of methodologies to build confidence in the robustness of
the conclusions, (iii) incorporating missing data to include
all covariates, (iv) balancing diagnostics to help determine
which method might be preferable, and (v) performing sen-
sitivity analyses with EHR data when registrations might
be incomplete.
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Fig. 4. Forest plot of the RR of PPV23 & PCV13 on LRTIs treated with antibiotics (vaccine and prescription registration) in the 65–84 age group
stratified by risk status. “(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)”
PPV23 & PCV13 showed a protective effect against se-
vere LRTIs in the overall adult population and in specific
age and risk groups, which confirms the recommendations
of the Belgian Superior Health Council [5]. No benefit was
found for people aged 85-plus. In addition, our conclu-
sions are similar to those of a literature review when both
vaccinations were administered [43]. However, we did not
investigate the sequentiality of the different vaccines. This
will be a topic for further research.

Importantly, the proportion of pneumococcal infection
and circulating types of S. pneumoniae among people with
LRTIs can differ from year to year, although the change
in capsular types is a slow process [44]. This means that
the results of our study might change depending on the
year used in the analyses. However, using registry data
has the advantage that the analyses can easily be repeated
each year in order to continuously monitor the effect of
vaccination.

The current study has several strengths. First, having
a large sample size allowed more controls to be avail-
able; and especially in 1:1 PS matching, we lost very few
treated patients. Notably, PS matching differs from weight-
ing since it discards many units, thus in settings where
few controls are available, weighting techniques might be
preferable. Second, MI was performed for missing covari-
ates, which allowed many covariates to be incorporated in
the models. Third, by using several models and perform-
ing multiple sensitivity analyses, we were able to show the
robustness of our results. Finally, our study is the first to
calculate the effect of PV vaccination not only in differ-
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ent age groups but also stratified by risk categories, which
targets patients more in need of PV vaccination.

Some limitations of working with registry data should
be noted. First, since data on hospitalization and sever-
ity of the LRTIs are missing in Intego, we used antibiotic
treatment as a ‘proxy’ for more severe LRTIs. In total,
67% of LRTIs episodes in 2019 were treated with an-
tibiotics. However, in Belgium, the proportion of LRTIs
treated with antibiotics is high compared to that in other
countries [45,46]. In this respect, our results should be in-
terpreted with caution. Second, not all vaccinations might
be registered. Therefore, we used registered and prescribed
vaccinations as the intervention. Our reasoning for includ-
ing the vaccination prescriptions was that 82% of people
with a prescription also had a vaccination registered, in-
dicating that this population is more prone to get vacci-
nated. Furthermore, sensitivity analyses were able to show
the robustness of our results. Third, misclassification of
the outcome might be present. Finally, the run-time when
deploying ML techniques was significantly high. With big
data, many covariates and 20 imputations, the run-time was
approximately 20 hours (30 minutes for Bayesian additive
regression trees and 30 minutes for generalized boosted
modelling using 20 imputed datasets) for a single analy-
sis. Since we conducted 7 additional sensitivity analyses,
the run time increased to 160 hours.

5. Conclusion

In this large registry-based study, several methods were
utilized to balance the intervention and control groups and
estimate an unbiased effect of PV for LRTIs. The over-
lap method followed by ML techniques produced the best
balance. However, all methods sufficiently balanced the co-
variates, which enhanced the robustness of the results. A
combination of PPV23 and PCV13 was found to prevent
severe LRTIs in the global adult population and in differ-
ent age and risk groups, confirming the recommendations
of the Belgian Superior Health Council. These findings
may assist clinicians in making more informed decisions
in vaccinating patients with PV to prevent severe LRTIs.
Epidemiologists, statisticians, and biomedical researchers
can utilize the unified methodological framework for esti-
mating unbiased effects and derive robust conclusions.

Supplementary materials

Supplementary material associated with this article can
be found, in the online version, at doi:10.1016/j.jclinepi.
2021.12.008.
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