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Abstract

We are on the edge of a transition. Our fossil-fueled societies have to rapidly
evolve toward decarbonated energy systems. Soon, we will rely on a more
evanescent form of energy: the sun rays. As the morning comes and the
night falls, this source of energy is intermittent, which is of particular con-
cern to electric energy systems. Indeed, electrical power cannot be easily
stored without being converted into a more convenient form of energy. Yet,
the efficient storage of energy is a challenge that culminates in two extreme
situations: when a large amount of energy must be stored either for long
periods (seasonal storage) or in a brief amount of time (high power stor-
age). Therefore, any alternative able to reduce the needs for energy storage
infrastructures will soon both turn lucrative and vital to safe and efficient
power system operations.

One of those alternatives is known as Demand-Side Management, which
is a general term referring to all actions that can be undertaken to influence
the amount and/or timing of electrical energy consumption. In a decar-
bonated system, relying principally on solar-based resources (Wind, Solar),
Demand-Side management will aim at promoting energy consumption at
the time energy is available.

On the one hand, moving energy consumption in time for a period of a
month or more is hardly possible. Who would wash its clothes in August
to prepare for the winter time? On the other hand, small demand adjust-
ments performed during short time periods are technically feasible and much
more acceptable on the consumer side. Furthermore, such adjustments can
turn very valuable. Historical efforts in the area show that demand flexi-
bility has shown particularly useful in several cases. One of them consists
in preparing for major contingency situations which occur rarely but that
could potentially have devastating impacts on the system. For instance,
demand curtailments are often considered in case a sudden problem occurs
in the aim of restoring the balance between the generated and consumed
power. In certain cases, these actions are undertaken on a large number of
specifically selected appliances: storage water heaters, refrigerators or even
battery charging of electric vehicles. The law of large numbers makes such
curtailments a very reliable resource.

However, the potential of exploiting such small appliances (electric loads)
to support system operations on a more constant and frequent basis is still
unclear. In theory, many loads can adapt their scheduled consumption with
minimal impact on their end-user needs. But what if the ambition was to
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extract as much flexibility potential as the loads can offer? For how long
can you curtail the water heater before the user starts noticing ? As always,
the devil lies in the details: how far can we push the loads implication into
vital power systems operations such as real-time energy balancing?

In real-time, the power system operator takes very precise actions to
maintain the system at equilibrium. When such precision is required from
a large group of small electric loads, the control infrastructure responsible
for shaping the group-level consumption is relatively advanced and com-
plex. Unfortunately increased complexity leads in general to higher costs.
This means that one cannot afford to control smaller appliances with great
precision if those are not exploited at their full potential. Which brings us
back to our initial problem: at the end of the day the consumer needs some
minimal amount of energy to fulfill its needs.

In one way or another, electric appliances are faced with en-
ergy constraints as soon as their flexible capability is exploited at
its full potential.

This statement is one of the starting points of the present work. Our goal
is to maximize the flexible power capacity offered by a group of small electric
loads when those are participating in a real-time system balancing service
called Frequency Containment Reserves (FCR). This service is an essential
part of power system stability. It manages the system balance on a time
horizon than spans between one second up to several minutes. The efforts
deployed by the FCR providers consist in delivering large amount of power
for short duration and at rare occasions. In consequence, such service is
particularly well suited to energy constrained resources. Furthermore, FCR
are generally a service of high value. The flexibility of small electric loads
may also turn useful to other kind of services (e.g., peak shaving). Many of
the theoretical results proposed in this work could be easily applied to those
other context. However, our simulations will focus exclusively on FCR.

A second element is at the core of our work: system resilience. Resilience
is the ability of a system to cope with change. The system components
must have such intrinsic capability. The direct consequence is that the
interactions between the small loads and the system as a whole should not
get dependent on an additional infrastructure. The system must not rely on
a dedicated communication infrastructure to control each participating load.
This would indeed increase the risk of failures and decrease the system’s
resilience.

Loads can adapt autonomously (i.e., without external communication)
based on two elements of information. The first comes from the system
itself and is available at the plug, the connection point of the load with the
network. It is the system frequency, one of the system’s vital signs and an



indicator of the current state of the generation-demand balance. The second
is the knowledge that the load has about its own technical characteristics
and that it can acquire about its user’s habits.

What would be the overall system impact of large groups
of energy constrained loads reacting autonomously to frequency
changes for providing Frequency Containment Reserves ?

To answer this question, we start from the simplest model one could
think of: Energy Constrained Loads. This model represents a single elec-
tric load’s consumption whose power is controllable but subject to energy
constraints. Yet, such a model turns very enlightening for understanding
the fundamental dynamics of the power demand of a large group of small
electric appliances.

We then propose some autonomous controllers design able to act on the
load’s consumption and shape the group-level power demand in response to
the system frequency changes. As a consequence of the above-mentioned
energy limits, the provided response is not ideal. The load group is restricted
to shift energy consumption in time, whose induces a specific kind of control
errors called energy rebound. The rest of the electric system will have to
compensate for these errors by using more of the slower flexibility resources
it has at disposal. This has technical and economic consequences both in
the short-term (seconds to minutes) as well as in the long-term (year long).

The long-term consequences can be grasped by conducting realistic power-
system simulations spanning on months or years. Yet, it is impractical to
simulate a large group of autonomously controlled loads on such long pe-
riod of time. We therefore need to use aggregate models. These are simple
mathematical structures that accurately represent the behavior of the group
with reduced computational efforts.

Two families of aggregate models are proposed in this work that are rel-
ative to two general control frameworks. The first framework takes a simple
approach in which loads react based on present information. The second
is a more advanced case in which the past and its consequences (energy
shifting, and consecutive energy rebound) are taken into account. As will
be shown, the simple controllers lead to higher economic performances but
cannot guarantee service in most critical situations.

Altogether, load control is economically efficient. Yet, the expected ben-
efits in today’s context are limited. In consequence, massive implementation
programs and standardization seem to be the adapted processes to access
the flexibility of small flexible electric loads. As the impact on the end-
user is often imperceptible, including these controllers as a standard feature
of most interesting appliances would be very well accepted. As regards
to larger loads (commercial or transportation), benefits are such that even
voluntary programs are affordable.



In 2016’s context, it is counterproductive to target all types of energy
constrained loads. The flexibility needs of the electricity system are not
yet high enough to justify investing in control infrastructure for loads which
yearly energy consumption is below a certain threshold. Addressing only the
most interesting loads is key to ensure an overall positive societal impact.
To give an idea, covering all FCR needs in continental Europe would require
to control about 100 million loads or more. Certainly, this huge fish cannot
be caught in one day.

Another major conclusion of this work is that the system operator’s role
is crucial in the overall profitability of the proposed control schemes. Its
actions, and particularly the way it manages slower flexibility resources,
have an important impact on the load control performances. Indeed, the
technical and economic consequences of the energy rebound are reduced
if the system can anticipate for it. Anticipatory actions both reduce the
rebound itself, but also the costs associated with its management. As the
system can forecast the rebound impact from monitoring the frequency
deviations, it has time to prepare counteracting actions and call for low-
cost and slower resources. Anticipating the immediate future has therefore
a very high value in power system operations.

All questions were not answered in this work, but we could certainly
highlight the fact that affordability also lies in the hands of the policy makers
and system operators. As their interest into these issues is rising, small loads
will most likely be part of the future flexibility mix.
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Chapter 1

Introduction

New York, 1891. In a crowded amphitheater, a modern alchemist
performance fascinated the audience.

- Sir Tesla, if I may, what is electricity ?

Tesla paused and calmly looked at the journalist. He knew that he
couldn’t actually answer the question.

- Ether under strain and Ether in motion are what characterize
most probably electrostatic and -magnetic phenomena [1].

Just about a decade earlier, the most ambitious entrepreneurs of their
time started to build a structure of size and complexity that had never
been seen in any previous mankind invention: the power system.

The power system is an infrastructure that allows an energy source to
serve a distant load at the speed of light. It has a specific characteristic: as
soon as energy is generated it must be consumed somewhere and cannot be
stored on the network lines. The generated power must therefore adapt to
demand variations. In practice, reaching the equilibrium between generation
and demand constitutes one of the hardest tasks under the responsibility
of the system operator. It generally requires to schedule precisely power
generation to meet capricious demand levels. Along with the years and
practice, the system has been operated with growing complexity. But there
always was this persistent idea: why shouldn’t electrical demand adapt to
the available supply ?

1.1 Research question

This work explores the integration of small flexible electric appliances within
short-term power system operations and frequency control. The focus is
set on Energy Constrained Loads (ECLs), a general type of electric ap-
pliances characterized by a flexible power rate and predetermined energy
needs over a given time horizon. The timing and power profile at which the
load consumes energy are constrained by technical limits and user-related
constraints.

We explore the ways of controlling the power consumption of small ECLs
aggregated in large groups. In particular, the aim is to design autonomous
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controllers that are able to manage the group-level demand in a predeter-
mined way while relying on a minimal amount of information. Autonomous
control is a form of decentralized control setting in which no communication
layer is considered. Loads must react only based on information they can
obtain locally.

The purpose of this work is to explore the overall system impacts of au-
tonomous ECL control delivering Frequency Containment Reserves (FCR),
also known as primary frequency control. The FCR participants provide a
flexible power capacity to the network operator that must be controlled pre-
cisely in response to the system frequency deviations they locally measure.
Moreover, their response acts proportionally to the measured frequency de-
viations.

Loads must be controlled to react to frequency deviations while coping
with their inherent energy constraints. These induce unavoidable control
errors with negative consequences on the system frequency stability. Slower
flexibility resources are therefore called more often to counteract these er-
rors. This has technical and economic impacts that will be evaluated in
both a short and long-term perspective. Thereby, we will be able to as-
sess the profitability of investing in local controllers depending on the load
characteristics. We also need to assess the impact on the end-user, and
determine if these deserve additional payments for the service they offer.
We must finally assess the consequences on power system operations. The
system operator will most likely need to adapt its current operations to the
specific behavior of the proposed load control.

If the overall economic impact turns positive, the fact that such a control
scheme has not yet been implemented in the past must be explained by some
other reasons. We will therefore make sure to identify all the barriers that
may prevent the development of small load control.

1.2 Outline

Our research question is addressed in several chapters, whose content is
described below. In Chapter 2, we look at the role of demand in power
system operations. Our goal is to understand the historical developments
in the area and assess its future potential. In particular, we will look at
the situation in the Belgian system. In Chapter 3, the past and present use
of small loads within frequency control is explored. In particular, practical
and theoretical considerations on two types of load are scrutinized: Energy
constrained Loads and Thermostatically Controlled Loads. This review con-
cludes by identifying the research questions that have not yet been explored.

The consumption of large groups of ECL is studied in Chapter 4. The
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objective is to evaluate the intrinsic variability of the power demand of load
groups based on the probability distribution of the load parameters and
on the rate at which loads arrive in the group (starting time). The min-
imal group size that leads to sufficiently low demand variability is evaluated.

The main concern of Chapter 5 is to design autonomous controllers that
can exploit the information extracted from the locally measured frequency
deviation and make decisions on the load state while respecting local con-
straints. In order to analyze the impact of such simple control schemes in
a long term perspective, the chapter ends by proposing aggregate models
able to represent the group-level demand in a computationally efficient way.
These models are derived for loads groups that share different parameters
(heterogeneous groups).

An economic perspective is taken in Chapter 6. Are such controllers
affordable? Is the overall impact on the system positive? These are the
questions that will be answered in two types of power system operations:
event-based (critical situation) and long-term historical simulations (one
year).

In Chapter 7, we propose an advanced type of autonomous power con-
troller that is able to remotely manage and shape the rebound error of the
group. Based on the loads characteristics and constraints, we evaluate the
amount of flexibility that can be offered as FCR while imposing the rebound
error to follow a predetermined profile. The impact on loads and on the sys-
tem is assessed, both from the technical and economic point of view.

Finally, Chapter 8 concludes our analyses.

Figure 1.1: Another summarized view, generated from http://www.
wordle.net/.

http://www.wordle.net/
http://www.wordle.net/




Chapter 2

Demand Response in a nutshell

Chapter summary

From their early origins, many are those among the power systems
worldwide that have tried to exploit the flexibility of electricity de-
mand. In today’s rush for flexibility, every and even the tiniest en-
ergy storage capability appears as a gold nugget to the neophyte. It
seemed therefore necessary to investigate the successes and failures
of past and present developments in the area. Let’s hope that recall-
ing the shoulders on which we stand will give us a somewhat more
realistic flavor while daring to use the word "new".

This chapter is partly based on [89] from the author of this work, and
published in 2015 in Revue et Perspective de la vie économique. Our goal
is to give a very brief overview of the use of Demand Response among
several systems worldwide, mainly in Europe, America’s and Oceania. Our
question: what explains the DR successful developments in some systems
while others see almost no DR participation?

2.1 Power systems organization

According to the European Network of Transmission System Operators for
Electricity (ENTSO-E) the Power system comprises all generation, con-
sumption and network installations interconnected through the network1.
The main goal of this system is to feed all the appliances (loads) that are
connected to its network with a power of good quality. That is, the provided
power must have predetermined characteristics such that it can be exploited
and converted into usable energy (mechanical, thermal, etc.).

A process with a unique objective: safely meet the electric de-
mand

The power entering an electricity network cannot be stored within its lines
and cables. As soon as it is produced, the energy must flow through the
network and reach its consumption site. This feature forces the operator
generation assets to schedule their use according to the expected level of

1See Glossary at http://emr.entsoe.eu/glossary/bin/view/GlossaryCode/
GlossaryIndex.
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electricity demand.

The exact organizational process that defines how power generation is
managed has evolved together with the socio-economic context in which the
power system was anchored. Yet, three tasks must be performed invariably:
(A) investing in infrastructures; (B) planning the use of these infrastruc-
tures; and (C) reacting to unexpected events or failures. In more complex
terms, this leads to: (A) adequacy and security; (B) efficient planning; and
(C) real-time balance. These tasks or goals are illustrated on figure 2.1 and
separated into five operational phases (i.e., circled numbers one to five on
Fig.2.1). While the first of these phases organizes the investment process,
the four subsequent ones represent different time horizons for organizing
the energy transfer from its generation site to its delivery point. They are
detailed in the text below.

Real-timeDay aheadYears - months ahead

Planning / Energy schedule Balance

ReactiveActive

Adequacy

Operating
reserves

Intraday

G D

Sold Energy 
volumes

1

2 3 4 5

Task Invest

Timing

Plan Control

Goal

Phase

Figure 2.1: Power system operational phases (adapted from [106]).

Invest: Generation and Network Adequacy. An adequate system
(G=D) has driven sufficient investments in generation capacity (G)
to cover its highest power demand (D) level. The network is suffi-
ciently strong to deliver energy where and when it is needed while
coping with possible failures.

Plan: Energy generation and transmission schedule. Energy genera-
tion is scheduled in three successive stages. Large generators secure
their energy sales years/months in advance (phase 2) to avoid un-
economic set-point adjustments. From a week to a day ahead of
delivery (phase 3), smaller generators’ schedule is decided. It may
be refined intraday (phase 4) up to one hour before delivery. The
network transfer capacity is allocated in a similar temporal sequence.
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Balance: Energy balance and network security. On a near real-time
basis, fast and precise control is vital to system stability. The sys-
tem operator is responsible for coordinating the output of the many
generation assets connected to its network. Ensuring the balance
of generation and demand in real-time is the role of operating re-
serves. Reserves are composed by flexible power capacity excluded
from the previous energy scheduling phases. Fast reserves enter into
action right after an incident (e.g., loss of generation). Their burden
is transferred to slower resources (e.g., slow reserves, market partic-
ipants) in case failure is sustained for long periods. The balancing
process stabilizes the system’s vital sign: the system frequency.

In the first and tiny electrical networks, these three tasks were han-
dled by the few system owners. With the system growth, multiple types
of stakeholders with new roles and responsibilities. Their interactions, pre-
cisely defined in codes or laws, constitutes the core of the design of the
market in which these actors evolve. We introduce briefly below the current
design of the European electricity markets.

2.1.1 The core of EU system design: the balancing re-
sponsibility.

The first electricity networks had a very variable demand. The use of en-
ergy was very different from our today’s habits. Power was available during
rather short-periods of time (in the evening for lighting, etc.) [15]. Only
progressively did the energy practice evolve towards increased consumption
during off-peak periods. Together with this more constant use of energy,
larger systems, interconnections, and better practice lead to decreased risks
and higher power reliability. Yet, originally, there was a single captain: the
system operator. The system balance responsibility (or constraint), that is
the required equilibrium between the system generation and demand, was
centralized in his hands.

The interconnected EU systems nowadays are market-based systems.
The particular feature of the EU systems is that the power balance con-
straint is decentralized [56]. In short, every single network connection point
(generation-side, demand-side) must be part of a portfolio under the respon-
sibility of a specific actor called the Balancing responsible party (BRP). For
every market period of a quarter hour, the energy produced by the BRP’s
generators or purchased from other BRPs should equal the sum of its energy
sales (to other BRPs) and its clients consumption. BRPs are financially ac-
countable for the net energy surplus/deficit of their portfolio.
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The decentralized responsibility is grounded on the following principle:
the market design gives all the incentives to BRPs for having a balanced
system in real-time at the least possible cost. The individual efforts will
balance the whole system. As some imbalance (i.e., surplus/deficit of en-
ergy) will always exist, the transmission system operator (TSO) will take
care of the operations close to real-time.

A real-time market exists for settling the necessary transactions that
were enforced by the TSO for reaching the final equilibrium. Long portfo-
lios (BRPs that have too much energy) together with the activated reserves
sell2 their extra generated energy to BRPs with short positions. The real-
time price of energy is the consequence of these interactions. If a spread
exists between the real-time price and a BRPs portfolio marginal cost, he
will get an incentive to react (modify generation/demand) for profit max-
imization. As the price indicates in theory the state of the market (in
excess/deficit of energy), the system gets balanced from the decentralized
BRPs reactions. The TSO operates both the transmission network (i.e.,
the high-voltage network) and the real-time (balancing) market. The zone
under its responsibility is denoted as LFC area [52]. In principle, every LFC
area dispose of its own real-time market.

In practice, the mechanism works well for standard and well predictable
situations. As soon as price volatility increases, the message gets blurry:
BRPs cannot decide from observing prices which actions to take. In addi-
tion, the classical pricing approach does not necessarily contain the correct
information in real-time. Indeed, price levels are often influenced by both
past and future (forecast) situations [4].

In opposition to the EU system, some market-based systems work with
a centralized balance responsibility (i.e., pool-based systems). Independent
generators are pooled together: they bid part of their capacity to a central
entity that decides based on welfare maximization on their economic gener-
ation set-point. In real-time, the same principle applies to fast generation.
This other way of organizing the generation schedule is also known as central
dispatch.

2.1.2 The Supplier and the supply risk.

An other important role exists in the EU system: the Supplier. This actor
is responsible for contracting electricity consumers and purchase sufficient

2All of theses transactions are essentially settled in the following week/month.
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energy to cover their consumption. The supply contract essentially provides
energy at a predefined price to the client. Each client in the supplier’s port-
folio is associated to one or several BRPs. Most often, Suppliers and BRPs
form a unique entity. Yet, it is an additional layer separating the end-user
from the core of the system.

The supplier’s role introduces a distinction between two types of markets
that co-exist in the EU design: the wholesale and retail markets. On the
one hand, all energy trades occurring between large players form the whole-
sale markets. Multiple types of wholesale markets exists, organizing trade
in different time horizons (see Fig. 2.1). On the other hand, the retail mar-
ket consists in the contractual agreements between suppliers and customers.

Depending on the type of contract at stake, the end-user can be either
completely isolated from or directly exposed to the prices of the whole-
sale markets. Getting isolated from the wholesale price fluctuations has a
cost: the supplier adds a insurance premium to the average wholesale price.
Therefore, consumers that have the capability to adapt their energy use will
preferably choose contracts in which their contractual price is linked to the
wholesale price.

In the wholesale markets, suppliers can buy energy in different manners.
The two most common ways are either the self-scheduling (i.e. suppliers
that also own generation assets produce for their own clients) and bilat-
eral agreements (e.g., the supplier buys directly from a plant owner). The
remaining volumes are traded on central auction markets. Such markets
collect two types of bids: (1) the bids of generators which are the volumes
they can provide at the associated costs; and (2) the bids of the demand-
side representatives which define the maximum price they would pay for
the energy volume they are asking. These bids are respectively piled up in
ascending (generation) and descending (demand) order of price levels. The
price at which the intersection of generation and demand curves meet de-
cides on the price of energy, known as the clearing price. Such price applies
to all energy volumes that are cleared. That is, all generation volumes whose
bids is sufficiently low (i.e., below the clearing price) have been matched to
a demand counterpart (i.e., which asked price is above the clearing price).
All other demand and generation bids are rejected.

There exists therefore a risk for the supplier: it could have bought an
inadequate amount of energy. In real-time, though, the system must be
balanced. Some extra transactions must take place such that, at the end
of the day, each supplier has bought the exact amount of energy that was
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BRPb
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LFC Area (TSO’s responsibility)

Gen

Other
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Figure 2.2: Role model of the EU electricity systems within each syn-
chronous area (group of LFC areas).

consumed by its clients. This is where the BRP role enters into force.
In some ways, the notion of BRP serves a risk management purpose for
suppliers of small size.

2.1.3 Summary view of the EU role model

All the above described roles are summarized on figure 2.2. The precise
definition of the roles and responsibilities of the different actors along with
the way they can interact with each other constitutes the market design.

As highlighted on the figure, some energy exchange between neighboring
LFC area will emerge from international trade. In real-time, the TSO and
the balancing market will make sure that the exchanged power corresponds
to its scheduled level.

2.1.4 Ancillary services for frequency control and the
links with the balancing market.

Ancillary services is a general term that encompasses different safety and
reliability measures at disposal of the grid/system operator. These services
are dedicated to frequency control, voltage control and to system restora-
tion after a black-out (black start service).

The frequency control services are the operating reserves which are de-
scribed in the recently published ENTSO-e Network codes [52]. Their role
is to maintain the system frequency close to its nominal value (i.e. 50Hz
in EU systems). Fig. 2.3 shows the sequential approach of the frequency
control scheme.
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Figure 2.3: Entsoe load-frequency control scheduling process [52].

The Operating Reserves consist in an insurance product. The System
Operator wants to guarantee ahead of real-time that it will have sufficient
flexible capacity at disposal to balance the system. The deployment of the
reserve capacity follows a step-wise replacement scheme (see Fig 2.3) and a
spacial hierarchy.

Damping frequency changes: Frequency Containment Reserves

Frequency Containment Reserves (FCR), also known as pri-
mary reserve, are the Operating Reserves activated to contain
System Frequency after the occurrence of an imbalance. [52]

Following an incident (e.g., sudden loss of a generator) a first frequency
stabilization process automatically takes place: Frequency Containment Re-
serves (FCR). It is synchronously performed across the whole system (Syn-
chronous area). Each LFC area that is part of the synchronous area con-
tributes to this system-level control in proportions of its size. In practice, a
set of fast reacting assets must adapt their power generation (or consump-
tion) in proportion of the measured frequency deviation from nominal. The
FCR reaction is therefore zero when the frequency is at nominal. FCR pro-
vide some damping effect to frequency excursions and lead these to stabilize
at a steady-state value.

Equation (2.1) governs the evolution of the system frequency f(t) with
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time t, and more particularly its deviation ∆f = f − fn from its nominal
value fn (without FCR contribution).

M
d∆f(t)

dt
+ L∆f(t) = ∆Pg(t)−∆Pl(t) (2.1)

The frequency change ∆f(t) is influenced by the change in generation
∆Pg and/or load ∆Pl w.r.t. their value at f = fn (i.e., the imbalance) [111].
After an imbalance has occurred, the lack/surplus of power is compensated
by a change in the kinetic energy of the rotating generators (direct coupling)
which modifies their angular frequency or rotational speed. The consecu-
tive frequency changes are slowed down by the angular momentum (2πM)
of these rotating masses that depends on their total inertia I (M=Ifn).
This inertial behavior acts as a low-pass filter on the initial imbalance. In
addition, a proportional damping effect L opposes to further frequency de-
viation. This effect originates from the natural frequency dependence of
some electric loads and of the generators winding.

The introduction of FCR in equation (2.1) will further limit the fre-
quency deviations and contain the frequency within a small interval around
its nominal value. FCR are built to provide an additional damping effect of
gain KFCR and proportional to the observed deviation.

M
d∆f(t)

dt
+ L∆f(t) = ∆Pg(t)−∆Pl(t)−KFCR∆f(t) (2.2)

Steady-state conditions are reached for d∆f(t)/dt = 0. In the simple
case for which ∆Pg and ∆Pl are constant, we have the following steady-state
deviation (eq. (2.3)).

∆f = − ∆Pg −∆Pl
(L+KFCR)

(2.3)

The ENTSO-e Network Code on Load-Frequency Control [52] defines a
reference incident corresponding to a N-2 security criterion. In Continental
Europe (CE), the N-2 situation is the sudden loss of the two largest gener-
ators: two 1500 MW nuclear reactors. This reference defines the minimal
FCR proportional gain KFCR [MW/Hz], also known as Droop or K-factor,
that contains frequency deviations within desired limits. The frequency de-
viations should stay below the maximum steady-state frequency deviation
∆fS (= 200mHz in CE).

|∆f | = 3000MW

(L+KFCR)
≤ ∆fS = 200mHz (2.4)
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The K-factor should be sized such as to maintain the frequency below its
maximum steady-state value while neglecting the contribution of frequency-
dependent loads and generators winding (i.e. L = 0) [145].

KFCR ≥
3000MW

200mHz
= 15000MW/Hz (2.5)

Each LFC area participates to the synchronous area K-factor in propor-
tion of its size. Let’s finally note that the deployed FCR is defined positive
for generation increase. It is also divided into upward (generation increase)
and downward (generation decrease) volumes.

FCR(t) = −KFCR∆f(t) (2.6)

Recover nominal frequency: Automatic Frequency Restoration
Reserves

Frequency Restoration Reserves (FRR) means the Active Power
Reserves activated to restore System Frequency to the Nominal
Frequency and for Synchronous Area consisting of more than
one LFC Area power balance to the scheduled value.[52].

In a second step, each LFC area takes responsibility for its own internal
balance. Restoring every local balance eventually leads the whole system to
get balanced and simultaneously brings the frequency back to its nominal
value. The FCR participating resources return their initial set-point and
are ready to counteract another incident. The local balance can be restored
from calling two other types of reserved capacity: (1) automatic frequency
restoration reserve (aFRR); and (2) replacement reserves (RR).

The automatically activated FRR are controlled to oppose a composite
error known as the Area Control Error (ACE).

ACE(t) = ∆T (t) +KFRR∆f(t) (2.7)

∆T = T (t)− T0 Difference between measured T (t) and scheduled T0

power flows at the area border (> 0 increased ex-
port).

KFRR The frequency bias. It sums the area’s damping fac-
tor L with its contribution to the synchronous area’s
FCR K-factor.

Let’s imagine a synchronous area composed of two LFC areas (1 and 2).
A sudden imbalance occurs in area 1. The change in external flows ∆T (t)
corresponds to the FCR contributions of the other zone, with opposite sign
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due to the flow direction definition. The ACE computed in zone 1 is the sum,
with opposite sign, of its own contribution to FCR KFRR∆f(t) with the
one of the other area’s, and therefore corresponds to the initial imbalance.
On the other hand, the other area has an ACE equal to zero. Therefore,
the ACE definition (2.7) lead each area to counteract its own shares of the
overall synchronous area imbalance. In practical situations, this works well
provided that the KFRR factor represents the actual frequency reaction of
each LFC area.

Compensate for sustained imbalances: RR and the balancing mar-
ket.

In case of sustained disturbance, aFRR will get (partially) relieved by slower
resources originating either from (1) slower operating reserves (Replacement
reserve or RR), and/or (2) all other participants to the balancing market
(real-time market). RR are actually the less frequently called resources. In-
deed, their main purpose is to be available to cover the largest imbalances
that may occur.

Therefore, the goal of the balancing market in normal operating condi-
tions can be understood as a way to select the most efficient resource able to
free-up the automatically activated (aFRR) volumes. Several options exist.

• Non-reserved flexible resources may participate to local balancing. In
opposition to reserve capacity, these participants do not need to guar-
antee the provided volumes in advance. Instead, any resource having
unused capacity at disposal is forced to offer it at a freely decided
price. The participants can be demand-side (i.e. large customers) or
generation-side assets. In Belgium, these offers are called free-bids or
I/D bids (incremental/decremental). After aFRR, I/D bids are the
second most often activated resource in the Belgian system.

• A solidarity mechanism exists between neighboring LFC areas. This
mechanism introduces a link between their respective balancing mar-
kets and real-time price. It is called IGCC (International Grid Control
Cooperation) also known as ACE netting. It consists in the exchange
of opposite imbalances (ACE of opposite signs) in order to reduce the
imbalance that has to be compensated by each control area3. Part of
the interconnection capacity (tie-line) must be made available for this
specific purpose.

In Belgium, the pricing mechanism at stake is called single marginal
pricing. The real-time price is defined uniquely for each quarter hour. In

3http://www.elia.be/en/products-and-services/balance/balancing-mechanism

http://www.elia.be/en/products-and-services/balance/balancing-mechanism
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case of net lack (resp. surplus) of energy, the price corresponds to the cost
of the most (resp. less) expensive resource (i.e., aFRR, RR, IGCC, I/D
bids) activated by the TSO. The real-time price serves as an indicator of
the system state and triggers an indirect reaction from the different BRPs.

In the Belgian system, FCR are called primary reserve (R1). The aFRR
are secondary reserve (R2) and the RR are declined in three products: ter-
tiary reserve (R3), tertiary reserve dynamic profile (R3DP) addressing re-
sources that are not directly connected to the TSO’s network (i.e. lower
voltage levels) and ICH which corresponds to curtailing large industrial
consumers.

A typical day in Belgium

A typical daily activation profile of the different resources is shown on figure
2.4. Three important elements should be noted.

• FCR are rarely deployed up to their available capacity as sized to cope
with critical events.

• The manually activated resources are slow. Prior to their activation,
the TSO must assess the chances for aFRR to reach their limit ('
±140MW). In the Belgium, this task is extremely difficult due to the
relatively small size of the system. Therefore, saturation of the aFRR
capacity is not rare. The relative energy content (integral) of aFRR is
much higher than the one of FCR. Therefore, limited-energy resources
such as storage are not the best candidate for providing aFRR volumes
in Belgium.

• The volumes colored in red on figure 2.4 are the I/D bids (no RR
activation, as often the case).
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Figure 2.4: Activated reserve volumes (10-second average) in the Belgian
LFC area on the 5th of January 2014. Top chart: FCR volumes (limited
by ±83MW deployed at ∆f = ∓0.2Hz). Bottom chart: aFRR and manu-
ally activated volumes for area balancing and frequency restoration (aFRR
limit of ±140MW). The real-time prices is also shown (dotted), while IGCC
volumes are omitted for readability. Source: Elia System Operator.
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2.2 The Role of demand in system operations.

The traditional system operations enforce a few flexible generators to adjust
their power output and follow demand fluctuations while slower generation
adapts to cover long-term demand trends4. Many Demand-side assets, from
large industrial processes to tiny household appliances, adapt their behavior
to help the system accommodating changes. The set of actions undertaken
to influence electrical demand are referred to as Demand-Side Management
(DSM). This section explores the past and future role of demand in system
operations.

2.2.1 A renewed interest for demand-side management:
Future Flexibility needs of Belgian’s electricity
supply

Among the possible ways in which Belgium’s energy supply could evolve,
electricity is often perceived as taking an increased share in the fuel mix.
Solar-based power is considered able to limit fossil-fuel dependency. Fur-
thermore, converting appliances to electricity (for example, electric trans-
portation, heat pumps) could generally make the use of energy more effi-
cient. However, the solar-based generation requires storage infrastructure
that can efficiently limit the impact of their variability across hours, days,
and seasons.
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Figure 2.5: Evolution of the Belgian System load (average daily load in
GW). Left: traditional load (2014). Right: Distant future net load (2050).

4Belgian Load variations: http://www.elia.be/en/grid-data/
Load-and-Load-Forecasts/total-load

http://www.elia.be/en/grid-data/Load-and-Load-Forecasts/total-load
http://www.elia.be/en/grid-data/Load-and-Load-Forecasts/total-load
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Figure 2.5 illustrates the daily net consumption of electrical energy in
Belgium, that is the actual energy demand to which solar-based generation
is (Wind, PV) subtracted. The left-hand chart shows the situation in (2014)
while the right chart shows a possible future5 (2050). In 2014, the daily en-
ergy demand, expressed as an average load, varied between 7 and 11 GW. In
2015, the power system must absorbs a much larger variability in the range
-6 GW (energy oversupply) to 10 GW, which is close to today’s maximum.
In 2050, the non-variable part of generation (e.g., power stations, stored
energy, energy imports, etc.) will need to accommodate high consumption
days in a similar fashion to 2014’s but will experience days with energy
surplus, where all generation infrastructure should be shut down.

A massive amount of investment is needed to cover such variability range.
One solution consists in exploiting extremely flexible back-up generation to
cover the whole load range. Another resides in storing all of the oversupplied
energy. However, the way forward lies between these two extremes. In
particular, adapting the initial demand profile (demand-side management,
DSM) is one option for alleviating the burden placed on the power system.
DSM alone cannot fulfill 2050’s needs for flexibility. Yet, it is definitely
about to take on increased importance.

2.2.2 Definition of Demand-side Management

Demand-side management (DSM) encompasses two different concepts: en-
ergy efficiency and demand response. The first promotes long-term demand
change (e.g. a new fridge consuming less energy) while the second con-
sists in more dynamic and short-term demand change following external
solicitations. The definition of the NERC is illustrated on Fig.2.6.

Demand Response (DR) consists in the set of short-term actions applied
to electricity demand in reaction to critical system conditions (e.g., power
shortages, contingencies, structural lack of energy). The existing forms of
Demand Response can be distinguished by the degree of control they allow
and the needs they fulfill: (1) capacity needs such as lack of generation to
cover peak demand, (2) energy needs during high energy price periods or (3)
ancillary services. There exist two different approaches to capture the re-
sponse of electricity consumers: price-based and incentive-based programs.
Each of these implementation schemes is adapted to particular consumer
segments and to the specific service that is being delivered.

5Simplified CORE scenario from [33]: 2014 load, wind profile (×16), PV (×7.5) and
CCS.
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Figure 2.6: NERC classification of Demand-Side management [114].

Demand-side
management

All activities or programs undertaken to influence the
amount and timing of electricity use.

Energy
efficiency

Permanent changes to electricity (e.g., more efficient end-
use devices). Generally, it results reduced consumption
across all hours rather than event-driven targeted load
reductions.

Demand
Response

Changes in electric use by demand-side resources from
their normal consumption patterns in response to
changes in the price of electricity, or to incentive pay-
ments designed to induce lower electricity use at times of
high wholesale market prices or when system reliability
is jeopardized.

Price-based DR: Pricing schemes for indirect response.

Price-based DR are based on energy contracts in which the consumer is ex-
posed more or less directly to the wholesale energy price (day-ahead, real-
time). Price signals trigger indirect response from the consumer. Several
options exist that express different degrees of complexity and levels of risk-
sharing between electricity suppliers and their clients [58]: from invariable
peak/off-peak tariffs to full integration of consumers into wholesale markets
(Economic DR) or even real-time markets [82]. The most complex contracts
are suited to large consumers that have a precise control on their electric
appliances or industrial processes.

Theoretically, price-based DR are the most attractive programs. In the-
ory indeed, a consumer can limit its consumption during high price periods
if costs rise above its own willingness to pay for energy [27]. Furthermore,
it decreases the price risk of supply: the risk of seeing wholesale prices
rising above the retail prices (contract-based) is lower when retail prices
are adaptable. The interested reader can see the toy example presented
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in Appendix A. Finally, the price-based DR has a retroactive effect on the
electricity prices: high peak prices lead to decreased demand what eventu-
ally decreases the prices. This can be beneficial to society as a whole.

In the long-run, with appliance automation and measurements from ad-
vanced metering infrastructure (i.e., smart meter), price-responsive demand
could become a successful tool for demand forecasting. In the short-run
however, the introduction of price-based DR leads to increased risks and
volatility as the reaction to price cannot be precisely anticipated. A system
with significant participation of price-based DR can be hard to stabilize [4]
especially if smoothed feedback is not implemented within the price forma-
tion [28]. Indeed, incorrect estimation of the Demand responsiveness leads
to over/under-reaction and increased price volatility.

Tariff design is in itself a very complex process. As international expe-
rience has shown (see SEDC pilot review [134]), tariff design requires very
good market segmentation (customer based studies), education and feed-
back (information to and from consumers about real-time consumption and
energy consumption trend) and integration of appliances automation. Also,
participating appliances should be selected with care, as the overall envi-
ronmental impact of the installed controller is not always positive [137].

The most complex price-based DR never had a large success among
smaller consumers [21]. Indeed, smart-meter alone are not sufficient. Their
measurements must be reported for billing in a secure and verifiable way.
A complete data processing procedure is required, sometimes too complex
to be justifiable at the household level. Using smart-meters at their full
potential requires large efforts in marketing and information, and suppliers
may never have enough time and resources to achieve this [155].

Dispatchable DR: Triggering a direct response.

As an alternative to price-based DR, incentive-based DR programs pay the
consumer for the amount of delivered flexibility. This latter has to be care-
fully determined by comparing the actual user’s consumption to an hy-
pothetical baseline consumption. Baselines are supposed to represent the
user’s power demand as it would have been without DR participation. It is
in theory impossible to compute a correct baseline if the user did not precise
it beforehand (nomination, purchase level). Indeed, users should purchase
their baseline before being allowed to sell it back to the market as flexibil-
ity [124]. This is ideal, in a pure economic sense, as the consumer has no
incentive to retain information from the market (strategic demand bid). It
is however unpractical for small consumers subject to variable consumption.
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Choosing between price and incentive based DR and adapting market/-
contractual rules accordingly represents one of the most difficult tasks of
program designers [67]. Typically, incentive-based DR is used in extreme
case scenarios. Indeed, as the probability of DR action is low, the consumer
has no incentive to prepare for it. Therefore, baseline computations are not
biased and may be computed by regression on a large number of consump-
tion samples (past consumption). This is the case of most incentive-based
programs which goal is to solve adequacy issues or provide slow reserve.
Also, some programs simply do not verify activation. For example, DR pro-
grams for network security consist in instantaneous and rare load shedding
to support the system in case of large element failure (defense procedure).

2.2.3 Why and where is DSM developed? Find the
sweet spot !

Demand-side management and more specifically Demand Response (DR)
has been successfully deployed across the different operational phases men-
tioned above. A specific system always promotes DSM where it is the most
critically needed. Every system has peculiarities creating a value pocket for
flexibility, in other words, a sweet spot for DSM deployment.

The most fundamental motivations to deploy demand response is when
system’s survival is at stake. Structural system needs can be of different
nature: (1) security issues (2) energy/capacity shortage (3) transfer capacity
(4) asset aging.

• System Security. Systems with large elements (tie-line, nuclear power
plant) face large risks in case of failure or unforeseen events.

• Adequacy. System whose generation mix is subject to hourly (power
adequacy) or seasonal (energy adequacy) variations or systems with
peaky demand profiles (temperature sensitive).

• Network transfer capacity. Systems where limited transfer capability
induce local excess of generation (renewable energy, must-run gener-
ation) or load (cities, industry).

• Asset aging. Systems whose components are getting older may defer
investments or reduce maintenance costs using DR to decrease local
peak loads.

Load curtailments are commonly used in extreme situations. Their cur-
tailment occurs rapidly which is very beneficial in emergency situations.
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Furthermore, curtailment of a large number of loads is statistically more
reliable (not more precise) than shutting down a few generators [28].

In some respects providing [replacement] reserves with demand
response is similar to meeting peak loads with demand response.
In both cases load reductions of a few hours per year are likely
to meet the system need. [117]

This quote illustrates that there exists some value pocket for demand in
providing rarely occurring but high-value services, be it peak load decrease
or security related services. DR is most often restricted to provide high
value flexibility services (extreme cases) and/or services with relatively low
precision requirements (curtailment). More frequent or precise control on
loads requires to invest in adapted control/communication infrastructures
which can be costly.

DR programs for enhanced System Security

System of peculiar topology or disposing of large demand/generation/trans-
mission assets are more concerned with security issues.

New-Zealand is a typical example of system with peculiar topology. The
two main islands of New-Zealand are connected since 1965 by a strong high-
voltage direct current (HVDC) cable [143]. The northern island relies on the
southern hydraulic energy and imports massive amount of power through
the HVDC cable, particularly at winter time. In case of a sudden failure of
the interconnection, the system frequencies and local voltages in the north
and south parts may experience very large variations, possibly damaging
generation and transmission infrastructures or implying cascading outages
resulting in a blackout. To prevent this to happen, two layers of demand
control are exploited: interruptible loads and automatic under-frequency
load shedding. These gather loads of different sizes across all sectors, from
residential to industrial [142].

The Alberta electricity system operator (AESO) runs a pool based (cen-
tral dispatch) market and has developed a large number of products for price
and system stability. All of these product are load curtailment products.
Two products were developed for system security purpose [49] and aimed at
increasing the import capability from the British Columbia inter-tie: Inter-
ruptible Load-Remedial Action Scheme IL-RAS and 59.5Hz Load Tripping.
Both product serve the same purpose than in the New-Zealand example.

Norway is the country that has the largest shares of hydropower world-
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wide (96% in 20136). Hydro-power is usually the main provider of operating
reserves. During Norwegian winter, resource become scarce. Therefore, a
large part of the required reserve are provided by demand [69].

DR programs serving System Adequacy

Adequacy problems arise when generation experience seasonal variations
(e.g., solar-based, hydro power) or when weather sensitive demand (e.g.,
electric heating, Air-conditioning) takes large shares of the system peak de-
mand.

In California, 30% of the peak load comes from small air-conditioning
loads [26]. The residential demand contributes for 70% of the peak demand
in Texas. Direct load control of residential A/C has thereby been under-
taken by retail companies, in close collaboration with the grid operators. In
such systems, rather complex control programs are cost-effective.

In France, winter peak demand grew massively as a consequence of the
massive adoption of electric heating, following the development of nuclear
energy. The large french nuclear fleet providing 73% of the produced elec-
tricity (2013, IEA7) is not designed to follow the large seasonal variations
but rather to provide a firm base generation level. A price-based DR pro-
grams was launched as early as 1983: the EJP option (now Tempo Option).
The energy is charged differently according to the time of day (peak and
off-peak hours) as well as the day in the year (blue, white and red days).
Decentralized generation (behind the meter) was also allowed to partici-
pate as only the net consumption was measured and charged. In recent
years, the effective demand decrease originating from those programs has
felt dramatically. In 2000, the contribution of professional consumers was
4000MW and felt to 1000MW in 2007. As mentioned in [121], half of this
sudden decrease has to be attributed to the decommissioning of decentral-
ized generation (consequence of stricter environmental norms).

Most systems were a dominant part of the generation comes from hydro
power are faced with adequacy problems. Systems with increasing shares
of variable generation (solar, wind) are likely to face similar issues. The
seasonality of hydroelectric generation, especially run-of-river, implies that
there exists some days in the year were there is simply not enough water
to power all demand [53]. This energy limit implies capacity shortage as

6BP statistical review: http://www.bp.com/en/global/corporate/
energy-economics.html

7http://www.iea.org/statistics/statisticssearch/report/?year=2013&country=
FRANCE&product=ElectricityandHeat

http://www.bp.com/en/global/corporate/energy-economics.html
http://www.bp.com/en/global/corporate/energy-economics.html
http://www.iea.org/statistics/statisticssearch/report/?year=2013&country=FRANCE&product=ElectricityandHeat
http://www.iea.org/statistics/statisticssearch/report/?year=2013&country=FRANCE&product=ElectricityandHeat
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the available energy must be spread over the day. These capacity shortage
either occur on the energy market (i.e., the peak load cannot be served) or
on the reserve market (i.e., spare capacity to be used in case of contingency
becomes scarce). Demand Response is especially well developed in such
systems [42, 129, 116].

In Colombia, the hydro-power shares in the generated energy are about
71%6. The capacity shortages resulting from the recurrent storm El Niño
forces the country to deploy specific tools for insuring adequacy. The Colom-
bian market imposes firm capacity requirements, a capacity auction, in
which demand-side resources are allowed to participate [101].

Hydro-power does not always engender direct adequacy problems. In
the US, Washington State electrical generation comes at 77% from hydro
power. The large number of hydro reservoirs (dams) experience low vari-
ability, creating an excess (about 24% above peak load) of capacity in the
region. Energy prices are the lowest from all US states. In 2009, there was
no demand response program in the Washington State [139]. In years of
severe drought, dams may not gather enough water to serve all the energy
demand [42]. However, the state is a net exporter of energy and can re-
duce its exportation level during these years. The neighboring States are
the one that will be the most impacted. Yet, the growing peak demand,
increased shares of wind power but also internal network constraints are
changing the picture. Bonneville Power Administration has activities in
Idaho, Washington and Oregon. It started DR programs in the agricultural
(2010, irrigation), residential (2011, Thermal Storage), commercial/indus-
trial sector (2011,Water pumping).

2.2.4 DSM and market design: An historical perspec-
tive.

The role that DSM takes in system operations worldwide is mostly a conse-
quence of the specific physical characteristics of the system in which DSM
takes place. Yet, market design plays also an important role in the degree
of development of DSM programs.

The origins of Demand-side management.

At the end of the 19th century, an interesting idea was developed sepa-
rately by two great scientists and business men: Samuel Insull and John
Hopkinson [133, 124]. Their electricity network had originally been built in
order to power light bulbs, in great competition with the previously exist-
ing energy source for light: the gas networks. Similarly to today’s context,
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the specific nature of electricity required production to adapt to consump-
tion at all time. Technical requirements were largely under what is needed
in nowadays large scale grids (i.e. small size, radial architecture, simple
loads). Nevertheless, Insull and Hopkinson both had the profound intuition
that consumers were to be more actively integrated in their network opera-
tions. Their idea consisted in the primitive form of least-cost planning and
demand-side management. They wanted to optimize the production cost
of electricity by acting on its demand. They immediately thought that an
efficient way to involve consumers was to charge them for their consumption
pattern rather than for their total energy consumption. Wright tariffs (S.
Insull) or time-of-use pricing (J. Hopkinson) were two similar ways to foster
consumer’s response in the hope of improving the system’s cost-efficiency.

The Wright tariffs were originally conceived by Arthur Wright, who in-
vented the real-time meter [133]. Its basic principle was to charge con-
sumption proportionally to the duration of each of its observed level (load
duration curve) [31]. An end-user consuming 10 kW for 12h and 20kW for
another 12h would be billed as such: (10kW×24h)BR + (10kW×12h)PR,
where BR and PR correspond respectively to base and peak production
costs. This tariff model assumes that the consumption profile of each indi-
vidual user and the total system load profile are similar.

Nowadays, many dynamic tariff schemes can be found in the different
systems worldwide. Their structure varies as they are designed to address
system-specific issues (e.g., high peak load, variable generation). Indirect
control programs (timers) were implemented on residential loads as early as
1934 [68].

A push from the oil crisis.

In the early 1970s, the first oil crisis led to a concern that electricity demand
would not keep on its previously growth rates. Electric utilities reached a
turning point: new investments and infrastructure renewal could not be jus-
tified by future demand growth. In this context, Amory Lovins compared
two evolution scenarios for the electricity sector: demand conservation vs
infrastructure growth. In the following decade, his conclusions had a great
influence on decision makers. The first large-scale demand conservation
programs were launched in the US. Demand-side management experienced
a regain of interest. US congress firstly mentioned the term Demand-side
management in the National Energy Conservation Policy Act (1978) [55].
Many new dynamic tariffs and direct demand control programs (mainly de-
signed for Air Conditioning control) were implemented [124].
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However, electricity rates were rising. Indeed, the regulated price had to
be raised in order to compensate for the freshly endorsed investments. In the
1980s, following the oil price crash and gas market deregulation, electricity
became less competitive. This led to a further decrease in demand. In the
US, the regulation regimes and infrastructure differ largely from one state to
another. Some states were therefore much more impacted than others: they
faced both an overcapacity and high prices. Furthermore, DSM measures
were largely subsidized as they resulted from analysis from the previous
decade [157].

Liberalization and the (small) fall of DR programs.

This situation was unacceptable for the largest electricity consumers. Large
industrial players urged for lower prices. At the same time, many economists
had been interested into the electricity price formation mechanisms, consid-
ering electricity as a commodity rather than a public goods [14, 74, 20, 30].
The liberalization process was launched.

A the end of the 1990s, this had two main consequences. First of all,
wholesale prices indeed fell in many systems. If deregulation most probably
played a role, the effect of low gas prices seems to have been a dominant
driver of this trend [21]. But the effective decoupling between the supply
and generation function had large consequences on the demand-side pro-
grams initiated close to 20 years earlier. The newly created suppliers seen
no interest in the subsidized DSM programs. Having sufficient capacity and
flexibility was of no concern in systems with overcapacity. Consequently, a
large number of DSM programs were stopped [157].

This is illustrated by the case of Texas electricity system, nowadays ruled
by ERCOT.

Prior to the introduction of retail competition in January 2002,
ERCOT relied upon roughly 3500 MW of interruptible load and
other load management programs to maintain reliability [...] In-
novative pricing programs had also proven successful. [157]

The newly established market will suddenly lose these precious resources.
The direct effect was a rise in operational costs and a decrease of the security
of supply.

On January 1, 2002, the market lost a planning reserve resource
of nearly 3000MW. Also lost was the under-frequency response
from large industrial loads on instantaneous interruptible tariffs
which was used to offset spinning reserves requirements under
the previous utility structure.
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This happened because of the conflicting interests that emerged between the
newly established players, the increased competition and the redefinition of
the tariffs.

Restructuring required the termination of all tariffs in the ar-
eas of ERCOT opened to retail competition, including the tariffs
offering a discounted price to interruptible loads and the tariffs
used to provide consumers with real-time pricing options. [157]

A similar dynamic was observed in 1997 in Belgium, when deregulation
of electricity was implemented for industrial players. The Belgian system
witnessed a waiver of interruptibility/modulation tariffs that were previ-
ously charged to numbers of industrial players. Two elements can explain
this (small) decrease. First, the competitive context led the retailers to ag-
gressively capture (or keep) as much consumers as possible, by proposing
more favorable and/or more simple rates. These newly created players saw
no direct interest in keeping the old complex contractual terms. Secondly,
the smaller industrial sites got physically disconnected from the entity re-
sponsible for the system balance. After deregulation, some sites connected
to lower voltage levels were attributed entered the portfolio of distribution
grid operator (DSO). However, the Belgian technical rules were not adapted
to legally exploit for system balance purpose the flexibility of clients that
were not directly connected to the transmission grid operator (TSO).

Two years after the deregulation was launched, in 1999, the Belgian
state8 ordered a parliamentary commission to study all possible solutions
for the future of electric supply9. The goal was to prepare for the expected
decommissioning of the two nuclear power stations that are still running
today and fulfill about 50% of the Belgian electricity supply. In the report,
appeared the first official mention of the notion of demand-side management
at the state level. However, the results of the commission’s work has not
received, at the time, the attention it deserves [100].

We can see that one of the main barriers to the implementation of DR
programs is that the responsibility for implementation is not always clearly
identified [77]. The different conflicting interests are usually slowing down
the process of DR development. For instance, Suppliers perceive DR rather
as a marketing tool than as an economic opportunity. Indeed, customer
retention is the principal motivation for developing price-based DR pro-
grams[130] in the US. Such difference in perception is particularly damaging

825 NOVEMBRE 1999 - Arrêté royal portant modification de l’arrêté royal du 19 avril
1999 instituant une Commission pour l’Analyse des Modes de Production de l’électricité
et de Redéploiement des Energies (AMPERE).

9Very interesting report : http://arp83.free.fr/rapport_ampere.pdf

http://arp83.free.fr/rapport_ampere.pdf
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when roles and responsibilities have just been created, as was observed in
certain systems right after deregulation.

Counteracting Market Power and Investment risk: the new DR
golden age.

The deregulation process (liberalization) had to face two main problems in
the US: the missing money problem, and the market power problem.

1. Missing money : The newly created markets induced a riskier environ-
ment for investing into peak generation (i.e. generation assets that
are used only at peak time). Such trend was highlighted notably by
Cramton and Stoft and referred to as the missing money problem [36].

2. Market Power : The US regulation is divided into a state and a federal
level. In some cases, this lowered the reaction capability of state
regulators to the problem they were facing. State regulators could
not always prevent large players from exercising market power, that
is, influence the markets to their own benefit [60].

Both of these problems were at the source of the Californian Energy Cri-
sis. In 2000-2001, the Californian Electricity System experienced very high
prices that resulted in several large-scale blackouts[60]. The reaction to
these event was strong, and came from all involved stakeholders. It had an
impact on numbers of electricity markets and their regulation worldwide.
Indeed, a massive wave of deregulation had started in many countries. No
one expected that deregulation could lead to devastating consequences.

We shall not enter into further discussions about market design issues.
However, we shortly discuss the consequences of the two above problems on
the development of Demand Response.

In reaction to the missing money problem, some markets decided to es-
tablish a new kind of remuneration: the capacity payments. These consists
in an insurance product similar to reserves. Generation assets that can
guarantee their capability of providing power at peak time will get paid for
it. The required total capacity is auctioned by the system operator and
can take many different mechanisms. In all practical cases, the vast ma-
jority of the capacity is provided by generation assets. Yet, some systems
have allowed demand-side resources to participate. In the US, the system in
which these payments are opened to demand-side participation are CAISO,
NYISO, PJM, MISO, ISO-NE [119]. This induced an enormous push for
DR development. Particularly in PJM, Demand-Response faces nowadays a
new golden age. The main source of revenues for demand response resources
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Figure 2.7: Revenues of Demand-response resources in the PJM market in
2008-2015 (adapted from [5]).

in the PJM market have been Capacity Revenues, as can be observed on
figure 2.7.

Considering the market power problem, its origins are to be found in the
inelastic nature of electrical demand [133]. Indeed, as demand is practically
not influenced by prices, generators will get an incentive to rise the price
of energy above their marginal cost. Their sold volumes will stay constant
while their profits will grow. Such behavior was effectively observed in Cal-
ifornia in 2001. In response to these events, the different markets started
integrating actively demand into the price formation. Economic Demand-
Response programs were launched with the ambition of limiting the oc-
currence of price spikes and the generators market power. In response to
these initiatives, the federal regulator (FERC) issued Order 745 [34] about
a decade later (2011). The purpose of Order 745 was to allow demand-side
resource to compete with generation offers on wholesale markets.

In order to understand the FERC order, it is important to recall that
prices are the results of an optimization process. Markets solve a welfare
maximization problem. Let’s consider a flexible energy consumer, asking for
a total of 10MWh of power. This consumer has some flexibility. He is ready
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to curtail 20% of its consumption in case the price rises above a 100e/MWh
threshold. Let’s suppose that, after optimization was conducted, the price
of energy spikes at 400e/MWh. In such case, the customer will be forced
to curtail its consumption as a result of the market clearing. Indeed, only
80% of its demand was cleared in the market. The rest was automatically
curtailed in order to limit the price spike. The FERC order states that the
curtailed portion of demand (20%) should be paid to the flexible customer
at the clearing price. The customer will therefore earn 400e/MWh for not
all the energy he never consumed.

Many voices raised after this Order was released. Some economist rapidly
recalled that such integration of Demand would be detrimental to genera-
tors and that it was deliberately favoring Demand [124]. EPSA, the Electric
Power Supply association, rapidly called the U.S Court of Appeal that even-
tually ruled out Order 745 [10]. Among other elements, we may read the
following in [10].

FERC acknowledges that wholesale demand response ’selling’
flexibility is a bit of a fiction.

In Texas, the efforts to counter-strike the market momentum showed a
clear trend towards promoting Demand Response. One example, more than
7 millions of smart meters are operating in 201410. They were not even ac-
counted in 2001.

In the case of Belgium, Demand is nowadays increasingly perceived as
a reliable source of short-term flexibility as well as a capacity resource11.
Indeed, a recent law12 finally translates some of the elements proposed 14
years before. As example, in 2013, joined efforts of the TSO and DSOs led
to the creation of a dedicated reserve product: R3 dynamic profile (Replace-
ment Reserve). The goal was to capture the flexibility of all demand sites
connected at DSO level.

2.2.5 Demand Response potential : the 10-5-5 order of
magnitude.

Altogether, about 10% of a system load can be actively managed several
days per year for adequacy reasons (peak load reduction). According to [77],

10IEA Annual Report:http://www.eia.gov/electricity/data/eia861/index.html
11http://www.elia.be/en/grid-data/Strategic-Reserve
1226 mars 2014 - Loi modifiant la loi du 29 avril 1999 relative à l’organisation du marché

de l’électricité.

http://www.eia.gov/electricity/data/eia861/index.html
http://www.elia.be/en/grid-data/Strategic-Reserve
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about 3% and 6% of the peak load in the EU and the US13 respectively can
be shaved using DSM measures.

On a daily basis, demand flexibility is more difficult to harness. The
amount of energy (not power) that can be controllable stays below 5%. In-
deed, constant day-to-day response is possible only under strong economic
incentives (rare), automation (limited applications) and restricted to user’s
preferences. Furthermore, constant adaptation of end-use customers usually
lead to response fatigue: users get progressively annoyed by the amount of
efforts they have to provide.

Minute-to-minute response requires adapted technology. Short-term flex-
ibility (e.g. operating reserve) can be provided by demand to a relatively
large extent, in a range below 5% of the available demand [153]. This poten-
tial varies hourly and/our seasonally which decreases the economic oppor-
tunity. An exception to this last comment occurs in systems where seasonal
shortages of traditional flexibility match the flexible demand availability
profile. Yet, DR is strongly asymmetric. It is in general easier to decrease
load than to increase it, except in some particular cases (e.g., aluminum pro-
cesses delivering high value service in the US midwest [39] or Germany [92]).

Finally, when limited to absolutely critical situations (e.g., 1 in 10 years),
some systems are able to disconnect up to 60% of their load in a (more or
less) selective way [142], part of it at very high cost. This may only be used
as a last resort resource for preventing cascading outages and blackouts.

Therefore, traditional DSM programs contribute significantly to overall
system efficiency [71]. However, it is hardly comparable to the efforts that
would be required for creating a paradigm shift : demand completely ad-
justing to available supply [150]. This is clearly visible in Fig. 2.5. Yet,
involving energy consumers in power system operations has always been
considered as very important [124]. This importance will be emphasized in
the future.

2.3 Demand response in Belgium today and in
a possible future.

Nowadays, Belgium faces critical adequacy issues. To counteract this trend,
the Belgian state recently came up with a capacity mechanism called strate-

13The most recent assessment in the US [93] gives a potential of 12%, a figure that has
be shown to be an overestimate as shown in [29] and reference therein.
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gic reserve (SR). This takes the form of a capacity option. Generation assets
(SGR) and demand-side (SDR) assets must guarantee that they can pro-
vide a certain capacity in case of need. Next year, a total capacity of 3500
MW (> 20% peak load) is needed (×3 last year requirement). This mecha-
nism represents a tremendous opportunity for demand-side assets (including
back-up generation) to get a steady stream of revenues.

As may be seen on Figure
2.8, Belgium’s electricity con-
sumption is dominated by the
industrial sector (47%). Most
of it is consumed by the
chemical sector (pharmaceu-
tical, petroleum, plastic and
chemical products) closely fol-
lowed by the metallurgic sec-
tor (steel, non-ferrous metal).
The tertiary and residential
sectors consume 26% and 24%
of the total demand respec-
tively. Shops and adminis-
trations represents most part
of the tertiary sector. Break-
down shows that heating takes
the largest shares of residen-
tial consumption (half of it is
water heating).
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Figure 2.8: Electricity demand14by sector.
A recent study [63] has described the demand response potential across

EU countries. The results must be considered with care. They are most
of all useful to compare the different countries situation, and to highlight
flexibility’s typical behavior across different sectors. We will try to extract
the most relevant results applicable to Belgium in this section.

2.3.1 Situation in the industrial sector.

The share of the industrial sector in Belgian electricity demand is relatively
high (top 5 in Europe). Belgium has an electricity intensive industrial sec-
tor and low shares of electric heating in the other sectors. This industrial
demand is exploited at the system operator level for adequacy and balanc-
ing purpose. Additionally, energy suppliers propose flexibility programs to

142014, sources: SPF, Elia, ICEDD, VITO, IBGE, [59]
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benefit from price differences on the day-ahead market (planning phase) or
on the real-time market (reactive balancing). At the system level, industrial
loads provide a flexible capacity of close to 3.7% of the peak load (in total :
480 MW). Around 100 MW provide strategic reserves (peak load decrease),
310 MW provide tertiary control (slow reserve), and around 27 MW provide
fast reserve (rare activation).

Several optimization options are proposed by aggregators and balancing
responsible parties. Precise estimates of the delivered volumes are difficult
to establish (confidentiality). Consumption optimization may help a BRP
balancing its portfolio or be virtually sold to other BRPs in the real-time
market. Indeed, the settlement scheme implemented at the Belgian level
allows BRP to react to price difference and balance the system on a decen-
tralized basis.

A bottom-up study [48] that was conducted with industries that together
use up to 13.5% of the Belgian annual electricity consumption, argues that
around 164 MW could be added to present situation. The total potential
would reach 700 MW (of which decentralized generation is part of). A top
down approach, using general figures and country comparisons in [63], finds
a final potential (demand only) of 614 MW, in line with the previous result.
Moreover, this latter study also gives a potential of 132 MW load increase.
Load increase represents consumption anticipation. The future consump-
tion is decreased what should be taken into account in the planning.

Generally speaking, demand response in the industry is asymmetric.
Postponing/reducing consumption is easier to perform than consumption
increase. In fact, industrial processes are more often in use than stopped
for economic reasons. Industries for which the total costs are strongly de-
pendent on the electricity consumption have an incentive to modulate their
process for flexibility reason (metallurgy, some chemical processes, paper,
cement). As the industrial electrical consumption is somehow stable in time,
so is the industrial demand response.

2.3.2 The tertiary sector
The Demand Response potential in the tertiary sector mainly comes from
controlling cooling and ventilation devices. Chillers in shops and adminis-
tration could be controlled for delivering flexibility. Fresh-water distribution
and water treatment are a second source of flexibility. Some flexibility may
exist in back-up generation (e.g., hospital) or uninterruptible power supply
in the IT sector (e.g. servers). In extreme cases, lighting are a last source
of flexibility. The flexibility of cold storage warehouses and water pumps
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is already partly exploited today by few aggregation companies. There is
no official estimation on the activation profile of these resources today in
Belgium.

Excluding the potential of back-up generation, the theoretical total peak
load decrease potential of the commercial sector could reach -655 MW (±5%
of Belgian peak)[63], while the simultaneous load increase could reach +580
MW. Interestingly, the tertiary sector’s potential is almost symmetrical, at
least in case flexibility is called for short duration.

This potential is most probably unreachable in practice. Firstly, it rep-
resents a direct sum of potential from different sub-sectors (e.g. ventilation
in buildings, cooling in retail,etc.). Simultaneous call of the whole tertiary
sector’s flexibility would in practice deliver a lower level of power than sepa-
rate calls from its different sub-sectors. Secondly, it is evaluated at the most
favorable time. Finally, it is theoretical. All loads are therefore considered
externally controllable and economic considerations as well as control ac-
ceptance by users are neglected.

2.3.3 The residential sector

Traditionally, DR programs in the residential sector have been designed to
control single load types (AC, water heaters), delivering high-value services
(frequency support, peak load decrease) and used in rare events. Residen-
tial consumption is composed by a very large number of small appliances,
active for short duration. Therefore, it is extremely complex to apply tight
control on their consumption. The relative use of a specific appliance is
low which leads to a strong asymmetric flexibility potential ([63] indicates
a total potential of -782 MW/+4023 MW). Indeed, it is (technically) much
easier to anticipate future energy consumption than postponing current con-
sumption, certainly for very short time. In practice, when individual load
consumption is planned by the user with some flexibility, it becomes possi-
ble to shape the residential load profile.

The Linear project recently explored residential consumption flexibility
in Flanders. While this project is not the first pilot project of its kind, it
has still elegantly highlighted typical characteristics of residential demand-
response. In [97] (pp.85), it is shown to be technically possible to decrease
the residential consumption of 267 MW during 4 hours without impacting
the users’ comfort. This potential mainly comes from the so-called smart
water heaters.
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The main problem of residential demand control is its low per-appliance
profitability. Firstly, when grouped by appliance type, the consumption pro-
file very often varies across hours and seasons [79]. Only fridges and freezers
are used on a more or less constant basis. The value of the residential flexi-
bility is very often negligible compared to the initial energy purchase costs.
Thermal loads are typically able to save less than 5% of their initial costs.

In the long-run, electric vehicles could change the picture. Their energy
needs are extremely high, and their charging can be controlled to be less
damageable to the system. Also here, simple programs should be preferred
to prevent response fatigue (see below). Furthermore, it has been proven
that results of simple programs can be very close to complex ones [128].

2.4 The road to success for demand response
programs.

It is possible to fail in many ways, while to succeed is possible only in one
way.

Aristotle - Ethika Nikomacheia (350 BC)

DSM is a required and beneficial feature in restructured energy mar-
kets. Some very good example exists, showing that demand can contribute
to system reliability, price stability, risk mitigation, and market efficiency.
However, some other examples have shown the limit of DSM.

Essentially, the long term success of a DSM program can be guaranteed
under two ways. Either the program is cost-effective and it will bring more
benefits (or avoided costs) than what it costs, or the program is subsidized
by a specific entity (market player, government, etc.) [124]. In the first case,
the benefits that will be achieved will maintain a continuous attractiveness
for the DSM program, such that the long term success is insured. In the
second case (subsidized program), a strong market player (i.e. vertically
integrated utility) will have to tax consumers in order to insure profitability
of the DSM measure. The program will exist only if this market force is
maintained.

When promoting a DSM program, a crucial attention should be
taken by decision makers to, either, the cost effectiveness, or to
the long-run market/system structure in which the DSM measure
is implemented (i.e. there should be sufficient control on the
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market/system such that the subsidy is maintained). This will
ensure, in two different ways, a long term success to the program.

According to [130], effective DSM programs are expensive and labor
intensive. In today’s situation, part of the envisioned demand response po-
tential still does not pay off, particularly in the residential sector. Demand
response will stay deployed in systems where its use is vital for system
security and stability, with restricted participation to infrequent events,
and where the power system demand has significant shares of temperature-
sensitive loads or large industrial processes. Price differences are today not
sufficient to foster demand participation. This will definitely change in the
near future. However, a longer term outlook indicates that increased price
volatility will make it hard for consumers to follow price signals. There are
several answers to the problem.

The most commonly shared answer is technology. Smart-metering and
control infrastructure will help delivering their full potential while the end-
user will not be directly involved. However, several studies have shown that
the comfort-constrained potential of demand-flexibility is somehow limited
[88, 90, 103, 22]. In some years, together with the development of fossil-
fuel alternatives in the transportation sector, energy storage could become
affordable at small scale level (hydrogen/fuel cells or electric batteries are
promising, even though material/water availability can change the picture).
DSM-like programs could be adapted to take control of the decentralized
storage capacity. Furthermore, as we will show below, long term involve-
ment is crucial for the viability of demand response programs. It is therefore
worthwhile starting now.

But technology alone will not make it15. Improper smart-meter’s in-
formation has a negligible impact on users’ consumption, and may even
increase consumption. Success is associated to behavioral sciences, mar-
ket and policy design rather than to pure technical considerations. Trans-
parency and simplicity are key to favor massive participation.

Truthfully, it is hardly possible to generalize one system situation to an
other. Indeed, technical, economic and most importantly social and cultural
factors influence the success of a certain program. Knowing this, if some
key conditions are not present, the program will fail.

15Interesting article of the Washington Post about the US situation:
http://www.washingtonpost.com/news/energy-environment/wp/2015/01/29/
americans-are-this-close-to-finally-understanding-their-electricity-bills/

http://www.washingtonpost.com/news/energy-environment/wp/2015/01/29/americans-are-this-close-to-finally-understanding-their-electricity-bills/
http://www.washingtonpost.com/news/energy-environment/wp/2015/01/29/americans-are-this-close-to-finally-understanding-their-electricity-bills/
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2.4.1 The requirement of long-term commitment from
all stakeholders.

Demand response programs are very sensitive to change. A changing mar-
ket environment discourages demand to actively participate in power system
operations. The liberalization process that has recently taken place in nu-
merous systems worldwide is a good example. The responsibility shift lead
to decreasing DR interest in the eyes of the newly created players (e.g.,
Texas: [157]). In PJM, changing rules in the remuneration scheme and pre-
qualification tests resulted in a fade out of the demand participation rate in
wholesale markets (economic demand response). The low gas prices in the
US may also have played a role, due to lower price spreads 16.

In Belgium, the liberalization engendered the creation of a TSO and
several DSOs. Some DSOs became responsible for portion of the network to
which demand sites previously exploited for balancing purposes. Due to the
changing environment and no vital reliance of the system to these demand
resources, these small sites became unexploited. Only recently, the involved
stakeholders have agreed on rules to integrate DSO-connected demand into
TSO’s operations (balancing). Such lessons are very important if Belgium
had to rely on DR to guarantee safe operations. The DR program will need
to stay unchanged in the long term.

2.4.2 Following a precisely defined objective.

Successful DR programs always follow a very precise objective : peak load
decrease, economic opportunity, etc. As discussed above, the underlying
motivations to develop DR may come from all interested players : network
operator, energy supplier, market operator, energy consumers.

2.4.3 Well-balanced design

Well designed demand response programs fulfill several conditions for suc-
cess. A balanced DR Program should (1) address the suited part of flexible
demand taking into account demand-side costs (2) use the simplest imag-
inable program (3) ensure profitability without subsidies meaning that to-
tal system costs should decrease with the introduction of the program (4)
avoid conflicts of interest for resource access between the different players
(5) adapt rules and technical requirements to cope with demand intrinsic
limitations and (6) keep motivating the demand resources actively.

16Source: http://www.energymanagertoday.com/

http://www.energymanagertoday.com/
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Address the suited loads and the appropriate consumers.

Flexible loads are usually able to perform different kinds of services. How-
ever, some services are more suited to their technical or economic character-
istic. Flexibility costs are relative to consumer’s preferences (habits), to the
inherent technical nature of the electric load and to the added-value that
its use may bring.

Figure 2.9: Load’s three-
fold nature.

As pictured in Fig.2.9, electric appli-
ances/processes have a threefold nature (1)
a technology (2) a value and (3) a habit.
Any external intervention on demand im-
pacts one or more of these natural features
inducing direct or indirect costs as well as
opportunities. Technology is influenced by
capital cost (investment in new appliance),
habits may change with information and
value will depend on external incentives.
Consumers evaluate and compare all three
to decide on their level of participation to a
certain program.

Addressing the right technology is important. Demand flexibility has
four technical origins: (1) redundancy (e.g. back-up generation, process
security) (2) pure storage capability (e.g. water distribution, night storage
heating) (3) comfort/quality-constrained storage capability (e.g. fridges)
(4) forgoing consumption17. These technical origins lead to different kinds
of flexibility (energy, power and dynamics).

The economic value extracted from a load is sector dependent. Industries
have stable consumption and asymmetric flexibility (high use of installed ca-
pacity). Residential consumption is more variable and strongly asymmetric
(low use of installed capacity). Tertiary sector is somehow in between of
these extremes.

Load with similar technical characteristics and from which users extract
a comparable value can still be used differently according to a user’s habits.
These may be influenced by information. However, this information must
be carefully chosen and displayed in various forms, as explained below.

Addressing the right consumer is also important. Badly designed pro-
grams face an adverse selection problem : recruited consumers are those that

17Forgoing loads may be occasionally switched off for short duration without significant
impact on the user’s process but have no storage capacity (e.g. light)
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have the lowest capability to react. This phenomenon is often observed in
price-based program implemented to solve adequacy issues. Consumer with
low peak-time consumption have higher incentive to participate (i.e., they
face less risks and benefit more) while they are the less suited to react.
Therefore, the pricing vs control dilemma basically defines to which degree
price risks should be passed on to consumers [58].

Simple programs for long-term success.

The success of a DR program is measured at the level of sustained consumer
involvement in a long run perspective. It has been shown that complex pro-
grams are likely to discourage users from participating. There is evidence
that users progressively lose their involvement in programs that they do not
understand perfectly [77]. This effect is called response fatigue and is very
damaging in practice, as it can progressively wipe out the benefits of huge
efforts made to access demand flexibility.

In general, the provided information should allow for progressive learn-
ing. Indeed, consumers like to explore and learn from past experience. Infor-
mation should be available in various forms and allow for social comparisons.
Users and habits are strongly influence by social interactions. Price is not
the most important trigger to attract massive consumer response [96].

Profitability and costs allocation without subsidies.

Demand response relying on direct or indirect subsidies are not sustain-
able. As well explained by Paul Joskow in [75], it is not worth subsidizing
efforts that consumers would have done under proper pricing programs or
with adapted information. An effective program relies on users’ self-interest
which can be fostered by both information and incentive.

The problem of subsidies is not necessarily the immediate financial dis-
tortion it creates, but rather the influence it may have on the long-term
system equilibrium. In some sense, in today’s system, users who contribute
the most to peak demand are cross-subsidized by the ones having a flatter
demand. Dynamic pricing essential goal is to diminish cross-subsidies and
allocate costs more precisely. Yet, it should be used with care as it may
result in large payments if consumers are unable to react to price signals.
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Sharing DR between multiple players : avoid conflicts and protect
data.

Demand flexibility is a resource that may be accessed by very different
players. Furthermore, the multiple intermediaries’ involved in power sys-
tem operations may all be impacted by demand response actions. It is
important to organize the market design, payment schemes and compensa-
tions such that the foreseen demand actions do not enter in conflict with
the different intermediaries interest. On the other hand, an intermediary
should not profit from actions undertaken by an other. There is however a
complex dilemma. Indeed, data transparency is key for verification (cross-
checking) purpose while at the same time it can rise privacy issues on the
consumer side, and strategic concern on the flexibility provider’s side (w.r.t
its competitors).

Adapt technical requirements.

Demand resources do not have the same capability as generation assets.
Small loads can be imprecisely controlled while large processes often face
energy limits. A program should consider those constraints and adapt the
technical rules to alleviate their impact in the most efficient way. Rules
should neither prevent demand to participate in services it can extract value
from, nor should it be too favorable to demand assets.

Technical requirements also encompass standards, and forms of manda-
tory participation of demand. Some loads (e.g., see next chapter) could
be used to provide very fast and valuable flexibility. Some pilot programs
have shown very cost-effective. Mandatory participation and standardiza-
tion should also be considered with great attention.

2.5 Chapter Conclusion.

Nothing is so painful to the human mind as a great and sudden change.

Mary W. Shelley - Frankenstein or the modern Prometheus (1818)

In this chapter, we showed that Demand Response has been able to de-
liver a broad panel of services. The access to Demand Side resources is
complex by nature, as it requires the agreement of many different parties.
It is therefore mostly developed in systems where it provides a service of
high value.
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In Belgium, and today’s situation, deploying demand response in a cost-
effective way can provide half of the required short-term flexibility (reserve)
and diminish peak load consistently.

In the long run, the envisioned shift to solar-based energy will com-
pletely change the traditional organization/operations of power systems.
The change is so profound that it is hardly possible to imagine, based
on current practices. Large infrastructural changes are needed both on
the network-side and on increased decentralized storage capability (thermal
storage, batteries, more flexible industrial processes) before demand-side re-
sponse can effectively alleviate the variability of solar-based generation.

In Europe, the market will most probably evolve with the increasing
needs for storage capacity. If DR had to cover a large portion of those needs,
the long-term commitment from all involved stakeholders, the design of well-
balanced demand response programs and the definition of clear program
objectives will be crucial for realizing its full potential.





Chapter 3
Frequency Containment Reserve from Small

Electric Loads

Chapter summary

One day a terrible fire broke out in a forest. Frightened, all the
animals fled their homes until they reached the edge of a stream,
watching the fire, helplessly. Every one of them thought there was
nothing they could do about the fire, except for one small humming-
bird. It swooped into the stream, picked up a few drops of water and
went into the forest to throw them on the fire. Then it went back to
the stream and did it again, again and again. All the other animals
watched in disbelief. Then one of them challenged the hummingbird
in a mocking voice, "What do you think you are doing?". And the
hummingbird answered: "I am doing what I can".

Adapted from Wangari Maathai, NAFSA 58th annual conference,
May 2006a.

ahttp://www.wangfoundation.net/humming_bird.pdf

This chapter explores the historical efforts that have been spent world-
wide for exploiting the flexibility of small electric loads within system bal-
ancing and ancillary services. On the academic perspective, recent advances
in computational tools have made large scale simulations possible that ad-
equately represent their behavior and assess their potential.

Small & Flexible
Electric Loads Literature

Autonomous
FCR

TCL ECL

Overview

Definition

Historical
Use

Figure 3.1: Another view of this chapter
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3.1 Small electric loads: a definition

Small electric loads gather all electric appliances whose power rating is be-
low or equal to 25kW. As example, let’s imagine all pumps, compressors
and fans, motors, heating coils that are used in heating, cooling and com-
pression processes. Also, electric batteries used for energy storage purpose,
redundancy or power quality issues are part of this class. The energy con-
sumption of small loads represents important shares of the total EU-wide
electrical energy consumption. Furthermore, they are generally associated
with physical processes with intrinsic energy storage capability. Would it be
because of security reason or due to the end-user behavior, these loads are
often under-utilized. That is, the proportion of time in a year during which
they actually consume energy is rather small. Hence, their user or the as-
sociated process allows in theory to use those loads at a different time than
the one initially scheduled. Altogether, their consumption can be externally
controlled. The main challenge consists in finding ways to efficiently trans-
fer information between the end-user and anyone that would be interested
in influencing its consumption.

3.1.1 Small loads in the EU-wide electrical energy con-
sumption

In 2013, about 58% of the EU-wide electrical energy consumption consisted
in running simple motors, pumps or heating elements for generating cold or
warm air and water, transporting intermediary products within industrial
processes or storing compressed air. Certainly half of this consumption can
be attributed to loads with a nominal power below 25 kW. Indeed, most of
the loads installed in buildings and used for space/water heating or refriger-
ation enter this category. As illustration, different pie-charts are presented
below. The colored shares represent the portion of demand in which small
loads are likely to represent most of the energy consumption. Their exact
shares is hardly estimable, though, especially in the industrial sector.

In the EU-28 area, the final consumption of energy reached 12.8 PWh in
2013, of which 2.8 PWh (22%) were in the form of electricity. The electricity
consumption was distributed as follows among the different sectors : 36%
Industrial, 30% Service and 30% Residential, and 4% Other use. The EU
electricity consumption breakdown by end-use is represented below for each
sector: residential (Fig.3.2), service (Fig.3.3) and industrial (Fig.3.4). The
darker shares in the Residential sectors are populated exclusively by small
loads. So is it for the commercial sector, except part of pumps (e.g., large
pumps in drinking water production) and refrigeration shares (e.g., large
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coolers in warehouses). The cooking and lighting shares are excluded one
may hardly interfere with their use. In the industrial sector, more detailed
analysis should be conducted on each industrial branch to separate larger
loads from small loads.

Refrigeration&AC
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Wet

8%

Water heater

9%

Cooking

7%
Standby

6%

Lighting
12%

Misc

16%

Space Heating

22%
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Figure 3.2: EU Residential Electricity consumption breakdown (2010), [11].
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Figure 3.3: EU Tertiary Electricity consumption breakdown (2010), source:
[11].

Several studies have looked at potential of using small loads in system
operations. A lot them have been conducted on the German System [131,
80, 78, 118]. According to [41], controlling 60% of the cold and ventilation
appliances in the industrial and commercial sector of Germany would be
sufficient to cover all the replacement reserves at a cost between 100 to
400 e/MW (partially competitive). According to [69], the loads that are
the most suited to provide operating reserves are the following : Batch-
type (intermediary storage) industrial processes, Cold Warehouses, Electric
Water Heaters, Dual-fuel Boilers, Buildings with sufficiently large thermal
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Process
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Pumps
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Other motors
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Ventilation

11% Cold
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Compressed air10%

Lighting
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Figure 3.4: EU Industrial Electricity consumption breakdown (2013), based
on: http://www.odyssee-mure.eu (consumption by branch) and http:
//www.leonardo-energy.org (breakdown by use).

mass. We may have to add electric vehicle and battery storage, depending
on the future evolution of these markets.

3.1.2 Recent interest for integrating loads within sys-
tem operations

As from 2012, the ambition of integrating small electric loads within system
operations in Europe as been precisely expressed in the ENTSOe demand
connection code [51]. More specifically, the Temperature Controlled Devices,
known in the scientific literature as Thermostatically Controlled Loads,
should participate mandatorily to frequency control. Yet, a condition is
associated with this obligation: their contribution should be significant. In
other words, demand-side control should be efficient in a socio-economic
manner.

Demand Side Response System Frequency Control (DSR SFC)
shall mandatorily apply to new Temperature Controlled Devices
identified as significant [...].

Article 21, [51]

This is still very vague, and has most probably be formulated so on purpose.

Indeed, harvesting profitable response from small loads is a challenge.
Firstly, accessing load’s flexibility is expensive. Indeed, small loads are of-
ten connected at the far end of the network and their environment is highly
constrained by user preferences. Secondly, the per-load expected benefits

http://www.odyssee-mure.eu
http://www.leonardo-energy.org
http://www.leonardo-energy.org
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are limited. Programs exploiting small loads are restricted to use low-cost
control and communication infrastructure.

These renewed interests in demand-side response find their origin in
the operational challenges that are ahead: decarbonated power systems are
likely to face stability issues. In the years to come, numerous large gener-
ation assets will get decommissioned1. This lead to two negative impacts.
Firstly, the total rotational inertia of the system will decrease. Rotational
inertia is a central feature in maintaining frequency stability (see previ-
ous chapter for considerations on frequency). This inertia comes from the
electro-mechanical coupling between large generators’ kinetic energy and
the system frequency [147]. The higher this inertia, the more robust is the
system. Secondly, large generators are equipped with speed controllers that
are used to provide damping to frequency excursions around nominal value.

In a decarbonated system, the initial signal creation (nominal frequency)
will still be performed by rotating masses (e.g. wind turbines). Increased
reliance on load control would insure short-term system stability [132] and
limit the use of storage assets for this specific purpose (e.g., batteries [86],
flywheels [99]). Indeed, large rotating loads (e.g., motors) also participate
in to the overall system inertia. However, these loads are increasingly fed
by power-electronic devices for power quality or control purpose. Thereby,
the electro-mechanical coupling is lost. Their kinetic energy is not accessi-
ble to the system. On the other hand, inductive loads provide damping to
frequency changes [6].

Two main types of actions can be performed on demand. First, preven-
tive actions (ahead of delivery time) can impact demand for relatively long
periods (up to several hours). Then, reactive actions can instantaneously
modify the real-time electric demand in order to balance the system on a
second-to-second basis. These actions are potentially competing with each
other: displaced loads may not contribute to system stability at the time
they were supposed to run.

3.1.3 Historical efforts for accessing small loads.

Historically, only a few systems have been able to exploit efficiently small
loads in their operations. These are often systems in which the exploited
loads are the main source of the problem their flexibility helps solving.
As examples, that we further discuss below, let’s mention residential air-

1E.g., nuclear decommissioning https://ec.europa.eu/energy/en/topics/
nuclear-energy/decommissioning-nuclear-facilities

https://ec.europa.eu/energy/en/topics/nuclear-energy/decommissioning-nuclear-facilities
https://ec.europa.eu/energy/en/topics/nuclear-energy/decommissioning-nuclear-facilities
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Figure 3.5: Load Duration Curves (2014) of California (CAISO) and Bel-
gium (Elia). Hourly load values are displayed in proportion of their annual
average. In CAISO, 30% (=0.5 on the chart) of the peak is attributed to
air-conditionning. Source : CAISO, Elia.

conditioning (AC) in some US systems or electric heating in France. The
aggregated consumption of AC or electric heating rises up seriously in severe
climate condition. In those systems, the annual peak demand is therefore
relatively high compared to the average annual load. This induces an ex-
pensive adequacy problem which is best solving by targeting its root causes:
the loads themselves.

As illustration, the load duration curves of 2014 in both California2 and
Belgium3 are shown on Fig.3.5. The hourly load is expressed in both cases
relatively to its annual average. Compared to Belgium, the Californian sys-
tem has a much higher relative peak. About 30% of that relative peak
(=0.5 on the chart) can be attributed to small air-conditioning units. This
explains the historical development of AC-related programs in the Califor-
nian system [19]. Obviously, this cannot be translated to Belgium.

Other US systems are subject to high peak-to-average ratio, particularly
in recent years. As EIA explains4, this is due to an increased use of electric-
ity for heating/cooling purpose (climate control), a change in the pattern of
electricity use (e.g., energy efficiency), and the shift from industrially-based
economy to service-oriented economy.

2Data extracted from : http://www.energyonline.com/Data/GenericData.aspx?
DataId=18

3Data extracted from : http://www.elia.be/en/grid-data/data-download
4http://www.eia.gov/todayinenergy/detail.cfm?id=15051#tabs_

SpotPriceSlider-8

http://www.energyonline.com/Data/GenericData.aspx?DataId=18
http://www.energyonline.com/Data/GenericData.aspx?DataId=18
http://www.elia.be/en/grid-data/data-download
http://www.eia.gov/todayinenergy/detail.cfm?id=15051#tabs_SpotPriceSlider-8
http://www.eia.gov/todayinenergy/detail.cfm?id=15051#tabs_SpotPriceSlider-8
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For these and several other reasons (unusual system topology, climate-
sensitive generation mix) security and adequacy issues gave the incentive
to exploit the flexibility of small electric loads. The developed programs
have exploited tools ranging from price-based programs [46], to direct load
control [50]. In Europe, one of the most successful program has been the
Tempo Tariff launched by EDF in France [141] (and detailed previously).

In Detroit (DTE), the control of water heaters was started as early as
1934 [68]. Time clocks were used to trigger temporary disconnection of
the controlled loads. They however got problems with defining the trigger
time because of changing behavior at peak time. In 1968, the switching
was therefore being done via radio signal under the control of the system
operator [68]. This provided 200 MW in the winter time and still 50 MW
in summer. Interestingly, the study looks at the impact of external action
on the load behavior. Energy rebound was deeply analyzed and integrated
in the radio signal.

In the late 1970s, another source scrutinized technical improvements of
air-conditioning for increased storage capability. Authors in [15] discuss use
of phase change materials for cold storage in off-peak period. Their interest
originates from the previous decade in which massive investments where
directed to thermal storage in both US and Europe. In the case of Europe,
heating loads were inducing large demand peaks in the winter, but also gave
some opportunities.

Both Britain and West Germany have approximately 150,000
MWh of off-peak heating storage. In Germany, this storage rep-
resents a 40% reduction in system peak load. [..] Britain has
a program combining tariffs for cheaper off-peak electricity and
the development of special electric products tailored to customer
needs.[15].

The authors continue by specifying that a 95% customer satisfaction rate
has been achieved thanks to political willingness, government support and
advertising the role of these new appliances.

Following the energy crisis of the 1980s, Florida Power&Light Co. de-
veloped a program in which small electric loads (e.g., AC - Air conditioning
, water heater, pool pumps) were automatically shut down 3 to 4 times a
year [8]. Up to 816000 appliances and 712000 users got involved to deliver
1000 MW of flexibility. During the early development, about 1.5% of the
installed controllers generated calls from customer. Some were worried that
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the controlled appliances would experience a larger rate of failures. The
program paid each month 6$ for AC and 3.5$ for water heaters. These
relatively high payments had a single purpose : insure generation adequacy
at peak and shoulder hours (maintenance).

In [105], authors mention the use of demand limiters in 1985 applied on
thermal loads. Commercially available power limiters were modified to be
remotely controllable (different signals would limit demand to 33%, 55%,
and 1 for 15 minute interval).

The observed effects were highly weather-sensitive, largely be-
cause the controllable load is driven by the ambient temperature
and other weather-related variables. The demand limiters were
more effective as the outdoor temperature approached extremes.
However, they became less effective in the later part of the winter
seasons. Frequent direct control by the utility to reduce demand
was found to negate the effect of the local logic.

3.1.4 Revamping the concept of Energy efficiency ?

Flexible small loads may soon become an important contributor to the elec-
tricity system’s short-term stability. Appliances whose consumption is con-
trollable and whose energy needs can be deferred in time have two main char-
acteristics: on-board intelligence (for control) and storage capacity. Their
design is a crucial element that will condition the amount of flexibility that
can be delivered.

Our traditional way of thinking about energy efficiency may lead to
designing appliances consuming very little energy, but with low flexibility.
Policy makers will soon have to struggle with the following question. What
appliance is the most energy efficient: the one that consumes the less or the
most flexible one? Let’s note that these are not mutually exclusive features,
but this depends on the specific appliance type and usage.

For instance, increasing the insulation that surrounds a water boiler
will increase the flexibility potential as well as decrease the average heat
losses. However, increasing the water temperature within the boiler’s tank
for flexibility purpose, for instance in case the energy consumption has to
be anticipated, will induce slightly higher losses. In addition, boiler oversiz-
ing leads to higher material/energy use during the manufacturing process.
Grasping the exact consequences of these design choices is therefore very
complex.
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3.2 Small flexible loads and frequency contain-
ment reserve: literature.

The literature is, literally, overflowing with studies that consider small loads
as a valuable source of short term flexibility. Most of recent work focuses
on simple ways to interact with large loads groups. Individual load’s con-
sumption can be modeled with growing complexity from a simple energy
constraint to a detailed dynamical system. The scientific challenge consists
in understanding the behavior of the group when its elements are indi-
vidually controlled. Research areas cover modeling, control/optimization
algorithms, cost-based analyses and (rarely) pilot projects assessment.

The literature explored below addresses specifically the use of small flexi-
ble loads within frequency containment reserve (primary frequency control).
Some papers have been approaching the subject across all dimensions (see
e.g., [72], [28]). The following review is not designed to be exhaustive, but
rather very precise. We want to illustrate efficiently the state of today’s
knowledge on the integration of small electric loads within Frequency Con-
tainment Reserve.

The selected elements of the literature are firstly classified according to
(1) the type of flexible load studied, (2) the control setup and (3) whether
the group dynamics (short-term time evolution) are taken into account. We
give an overview of interesting elements of the literature on Table 3.1. The
most interesting ones are discussed in details in the next section, while the
classification used in this table is explained below.

Table 3.1: Literature - Small loads providing frequency control.

Control Setup Centralized Decentralized Autonomous
Group-level Dynamics With With With Without

TCL
Individual / [140, 126] [159] [127, 111, 44, 37]

[156, 9, 18, 146]
Mixed-type [62, 3] [158, 81]
Aggregate / / [24] /

ECL
Individual [17, 85, 16]

[86, 102, 152] [84, 112] / [98, 144, 45]

Mixed-type [13, 62, 45] [108]
Aggregate [68] / /a /a

a The object of this work.

As can be observed in the above table, the literature did not cover all
possible combinations of the sorting criteria. Firstly, let’s insist, this table is
relative to studies looking specifically at frequency control. Secondly, some
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of the combinations make little sense, and are darkened in Table 3.1. Indeed,
mixed-type models are used for computing control commands and become
unnecessary when loads are controlled autonomously. Thirdly, some gaps
are partially filled in the literature looking at price-based dispatching of
small loads. Finally, some other have not been explored and are the object
of this work.

Individual load types and models

When and how often does a load start ? And when started, how does its
power consumption evolves with time ? Does the load stop ? And when it
does, when and why does it start again for another run ? More importantly,
how can its power consumption be controlled and what are the consequences
? These are the typical questions addressed by individual load models.

The flexible loads that are studied in the literature may be classified into
general load types or specific load types. General load type models repre-
sent loads with some typical behavior (e.g., cyclic consumption profile),
while specific load type models explore some special kind of loads in more
details (e.g., heat-pumps with specific technical constraints). Two general
load models exist in the literature: thermostatically controlled loads (TCLs)
and energy constrained loads5 (ECLs).

The TCL model is a general representation of loads whose power con-
sumption aims at regulating the temperature of an inner mass. The model
of TCL encompasses cooling appliances such as refrigerators, freezers or
air-conditioning as well as heating appliances like some heat pumps. As
illustrated on Fig.3.6a, the power consumption of a TCL follows a cycling
on and off pattern that is governed by heat exchange equations and some
hysteresis behavior. Indeed, a thermostat is used to trigger a load start as
soon as the measured temperature goes beyond a first threshold (e.g., TH
higher temperature limit for cooling appliances). The load is later switched
off as the regulated temperature pass a second threshold (e.g., TL lower
temperature limit for cooling appliances).

The ECL model gathers all storage-like appliances: batch water heater
(e.g., sanitary needs, dishwashers, washing machines), electric vehicle charg-
ing, fluid pumps in batch processes (e.g., pool pumps, water sanitation,
beverage industry). An ECL starts consuming at constant rate until it has
consumed a predefined amount of energy E. The load then stops until
restarted by another user request. As shown on Fig.3.6b, successive starts

5The ECLs are also known as limited energy resources or energy constrained resources.
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(b) Two successive runs of an ECL.

Figure 3.6: Two general load models and correlation of successive starts.

of an ECL are, statistically speaking, mutually independent.

Figure 3.6 illustrates the concept of successive runs of both TCL and
ECL. A load run is defined as the period of time in which a load either
consumes power continuously or is externally idled (i.e. its power is delib-
erately switched off). For a TCL, a run corresponds to a period when it
consumes power. For an ECL, it is the period of time between the user
starting request and the time at which the load has consumed the requested
energy E.

Generally speaking, a small electric load consumes energy either as con-
sequence of a direct request of its user or following a command issued
from its internal state control. For instance, dishwashers (ECLs) have a
user-related starting behavior while refrigerators’ (TCLs) starting times are
linked to the evolution of the inner mass temperature they regulate. From a
static perspective, these two starting triggers are random variables. Indeed,
counting down in a large group the number of loads that are running at
some point in time boils down to evaluate some static probabilistic distri-
bution. A system operator can thereby estimate, for example, the power
consumption of a large group of similar loads.

However, this does not hold in case loads are externally controlled to de-
liver flexibility services. Indeed, the succession of several starts of a single
load can be strongly time correlated. More rarely, they can be the conse-
quence of repeated user behavior. Usually, such repeated pattern in user’s
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Figure 3.7: Impact of external intervention on successive cycles.

behavior span on long time periods (i.e., days), which is why they can be ne-
glected in case loads participate to short-term flexibility. Typically, a TCL’s
successive starts are strongly correlated (Fig.3.6a) as their temperature evo-
lution is driven by heat exchange equations. On the other hand, successive
ECL’s starting times are considered uncorrelated (Fig.3.6b). Correlations
naturally emerge when differential equations influence the load’s behavior.

Correlations introduce complex dynamical behavior at the group level.
External interventions on the load’s behavior will have immediate as well as
longer term impact. The longer term impact is the consequence of starting
time correlations as well as the loss of demand diversity. The first element
can be observed on Fig. 3.7. On Fig.3.7a, the first cooling cycle of a TCL is
externally interrupted. As a consequence, the regulated temperature starts
increasing while it had not reached its lower limit. It therefore reaches its
higher limit sooner than what would have been observed without the initial
intervention. The following cooling run starts earlier than expected. Con-
trastingly, cross-run interactions do not arise in the case of ECL (Fig.3.7b).

The loss of demand diversity is a group-level feature. It cannot be ap-
prehended from individual considerations.

Let’s note that some thermal loads have an intermediary behavior. Even
though their temperature is regulated, the time at which they start con-
suming is strongly related to external events. For instance, well-insulated
storage heaters (e.g., ceramic storage, water heaters) consume most of their
energy at night or low-price periods. The load generally starts heating up
its inner mass and then stops when the temperature has reached a certain
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threshold. Successive starts can be observed during high price period. Yet,
they are the consequence of a user action (e.g., water draws, etc). On a
system perspective, the user behavior is the dominant driver of their con-
sumption.

Aggregation level and aggregate model

Small flexible loads must be studied as part of large groups in order to assess
the system-level consequences of their control. Hence, the above individual
elements must be gathered together in some ways. This is the role of aggre-
gate models. At this stage, and for the sake of clarity, a distinction is worth
being made between the terms aggregate flexible capacity and aggregate
model.

Aggregate flexible capacity refers to the capacity (in MW) provided by
a group of loads when performing a specific service. All studies discussing
controllable loads will scrutinized how much aggregate flexible capacity can
be extracted from the group.

Aggregate models are mathematical structures that are built to represent
the dynamical behavior of a large group of controllable electric appliances,
with possibly different parameters. Aggregate models reduce computational
efforts required to simulate and/or optimally control the power demand of
large groups of loads [40].

Both terms are sometimes mixed-up in the literature. This is because
the most simple form of aggregate model consists in supposing that the
aggregate flexible capacity has similar dynamics than an ideal generator
(e.g., [73]), which is a rough approximate. In the literature, studies differ
from each other depending on the aggregation level they consider. That
is, whether the study considers each load separately or directly exploits
aggregated-level information.

There exist three aggregation level: individual, aggregate and aggregate
with feedback coupling (mixed model). At the individual level, each load
is separately modeled and simulated. The aggregate level rely solely on the
aggregate model to simulate the group’s response. Such models are partic-
ularly useful. They often allow to run computationally affordable simula-
tions on long periods of time which can be of importance to e.g, economical
analysis. At the interface between these two cases, some aggregate mod-
els proposed in the literature do not capture all features of the individual
models. These mixed-type models designed for short-term control purpose
(e.g., linearized model) and must be coupled though information feedback
to individual simulations.
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A few assumptions are needed to define four essential features of ag-
gregate models: (1) the model states, (2) the model parameters, (3) the
control inputs and (4) the external perturbation. The model states are
time-varying variables which evolution are driven by the models equations.
The parameters are exogenous quantities that appear as fixed elements in
the model. The control inputs define the influence of any external inter-
vention on the system states. External perturbations are all elements that
influence the system states in a undesired or uncontrolled manner. On Ta-
ble 3.2, the states, parameters, inputs and perturbations relative to both
TCL and ECL models are shown.

Table 3.2: Assumptions governing the aggregate models of ECL and TCL.

Load
Type States Fixed parameters External perturbations

TCL Inner Temperature
Electric Power

• Temperature limits
• Power profile
• Number of loads

• External temperature
• User action

ECL Energy level
Electric Power

• Energy need
• Power Limits
• Time deadline

• Number of load starts

Degree of decentralization of a control setup

The degree of decentralization of (1) the loads command and (2) the infor-
mation feedback [70, 25] defines the control setup.

In a centralized control setup, each load is accounted and controlled
individually by a central entity. The loads are equipped with a two-
way communication system that allows them to receive and send
information (Fig. 3.8a).

In this work, we denote as decentralized control a control setup in which
loads are equipped with one-way communication system. Loads
receive a communication signal from a central entity (e.g., price signal)
that they locally interpret and convert into control inputs (Fig. 3.8b).

Autonomous control defines a setup in which loads take control decisions
individually using a local controller that rely exclusively on locally
measured information (Fig. 3.8c). No extra communication layer is
considered.
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A system whose elements react based on local information to reach a
system-level objective is defined as a decentralized system. System stability
is guaranteed if the system-level state can be derived from local information
[151]. Strictly speaking, the autonomous setup define above is a decentral-
ized control setup. Our objective is to insist on the fact that no communi-
cation exists between the load and the central entity.

In the context of power systems, primary frequency control (frequency
containment reserve, or FCR) is designed in a decentralized fashion [52].
Participating units react solely based on the system’s frequency deviation
from nominal. Deviations are measured locally and induce a proportional
negative feedback response from the FCR providers.

We also denote autonomous control with group-level dynamics the con-
trol settings in which local information is sufficient to reconstruct an image
of the group-level state (e.g., group demand). This allows load to control
the dynamics of their group response (e.g., oscillatory, etc.).



Chapter 3 58

L1

...

Li

...

Ln

Load group

C System
∑Demand System

Output

Load state
Command
System state

(a) Centralized. (C) : central controller. (Li) Loads, ∀i = 1..n.

L1C1

...

LiCi

...

LnCn

Load group

S System
∑Demand System

Output

Load state
Command
System state

(b) Decentralized. (S) : broadcast center. (Li, Ci) Loads & Local controllers
∀i = 1..n.

L1C1

...

LiCi

...

LnCn

Load group

System
∑Demand System

Output

Load state
Command
System state

(c) Autonomous.(Li, Ci) Loads & Local controllers ∀i = 1..n.

Figure 3.8: Possible load control setups.
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3.3 TCLs in Frequency containment reserve

In this section, we focus on some interesting elements of the literature fo-
cusing on the autonomous control of TCL in primary frequency control.

It seems rational to exploit TCL within frequency control due to their
inherent storage capacity. Their temperature may easily be changed with
minimal impact on the end-user or related process. However, a large group
of TCL does not necessarily react as as expected to frequency changes.
Indeed, external control performed on a group of TCLs impacts demand di-
versity [32]. While loads respond to the unique frequency signal they locally
measure, their consumption gets coordinated. The synchronizing effect this
has on the group demand together with the load energy constraint induce a
counteracting demand change known as the (energy) rebound, or rebound
effect.

The rebound effect linked to load synchronization has been observed
since decades in other contexts. It is described in [61] as load pickup. When
applied to cold loads (refrigeration, the cold load pickup is the demand when
service has been restored after a prolonged outage [95]. During the outage,
cold loads got synchronized, as they are all stopped at the same time. Their
regulated temperature gets progressively out of its authorized band. As
soon as power is back on, they will all start consuming at the same time
until the desired temperature is reached as represented on Fig.3.9.

Demand (kW)

Time

Cold Pickup

Outage

Figure 3.9: Load pickup following a power outage (illustration) [95].

Such group-level dynamics show up when TCLs are exploited in fre-
quency response. In autonomous control setups, the local controller is the
unique element capable of managing these dynamics. The challenge is to de-
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sign a controller that will limit the impact of rebounds on the system, while
only relying on local information. Centralized and decentralized control se-
tups have a more direct way of counteracting complex dynamics thanks to
their communication channel.

3.3.1 Demand control by adjusting temperature limits
The power demand of a group of TCL can be controlled by adjusting the
limits of the interval in which the inner mass temperature of TCLs should
remain.

In the 1980s, F. Schweppe et al. [126] proposes the famous FAPER
control concept (i.e., Frequency Adaptive Power Energy re-Scheduler [125]),
a form of autonomous FCR controller for small TCLs. Actually, Schweppe’s
main intention was to discuss the interest of spot pricing of electricity able
to control power demand in a decentralized framework. In his view, it was
crucial to operate a paradigm shift from the generation-adapting-to-demand
to what’s denoted as homeostatic utility control. In this new paradigm
both generation and demand would adapt to each other through the use of
communication and price signals.

−0.4 −0.3 −0.2 −0.1 0.1 0.2 0.30

∆T (∆f) [◦C]

∆f [Hz]

Figure 3.10: Temperature set-point adjustments to frequency deviation
(FAPER).

The FAPER control is the load-side element of homeostatic control for
frequency response. It considers that load could locally measure frequency
deviations (from nominal) ∆f and adapt their power consumption accord-
ingly. The concept is applied to Thermostatically Controlled Loads (TCL)
adjusting their temperature set-points by an amount ∆T (∆f) in response
to frequency deviations (Table 3.3). The FAPER concept considered some
saturation effect of the provided response (Fig.3.10).

Similarly to what is proposed by FAPER, the temperature limits of a
cooling appliance are modified linearly with the frequency deviation (eq.
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Table 3.3: High and Low temperature set point adjustments (FAPER) [126]

∆f < 0 ∆f > 0
TH Tmax + ∆T (∆f) Tmax
TL Tmin Tmin + ∆T (∆f)

(3.1) and (3.2)) in [127]. For instance, in case frequency decreases, the
lower temperature limit increases and loads are switched-off.

TH(t) = TH,0 −KT∆f(t) (3.1)
TL(t) = TL,0 −KT∆f(t) (3.2)

As expected, the energy that is momentarily not consumed by the loads
is recovered later on. The demand of the group increases compared to its
initial level (rebound).

3.3.2 Stochastic temperature adjustments

Some other switching strategies aim at coordinating loads across the whole
temperature state space, instead of focusing on the limits of the tempera-
ture interval. Such strategy actually lowers the rebound magnitude.

In [9], the thermal loads switching behavior (i.e., changing from on to off
state and inversely) is randomly controlled. Instead of using temperature
sensors to govern the moment at which load should run or stop, the load
exploits switching probabilities λOFF and λON . When a load is running, it
has a probability λOFF to switch-off. The load then perform random trials
at every time-step in order to decide on its state on the following time step.
The two ON and OFF states as well as related switching probability define
two-state Markov chain represented on Fig. 3.11.

The number of time-steps during which the load is ON of OFF are a
random variables. The expected temperature level of the inner mass as well
as its variance are dependent on the values of these variables. Furthermore,
there exist two strict boundary temperature TON and TOFF . The inner
mass should not go out of the interval [TOFF , TON ] (cooling appliance).
Therefore, hard constraints are enforced to respect the extreme temperature
limits. If the transition probabilities are chosen adequately, the probability
for a load to reach the extreme limits is low, and the effect of hard con-
straints goes unnoticed.

The contribution of this study is to make the switching probabilities
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ON OFF

λON (∆f)

λOFF (∆f)

Ṫ (t) = −a(T (t)− TON ) Ṫ (t) = −a(T (t)− TOFF )

Figure 3.11: Markov chain representation of On and Off switching behavior
[9].

dependent on the measured frequency deviation. The paper analyses the
dynamical influence on the group demand.

3.3.3 Explicit integration of group-level dynamics in
local decisions

A similar objective is pursued in [159] and [24]. These papers rely on a
specific model previously used in [81], that we introduce below.

Centralized and decentralized approaches

In [81], the authors exploit a mixed-type modeling framework: an aggre-
gate model is used to easily define control inputs that should be send to
the individually modeled loads. The control setup is either centralized or
decentralized (several test cases).

The core idea of the aggregate model is to cluster loads into NBin bins
representing their run state (On or Off) and the (discretized) temperature
interval in which they lie. A bin i contains a number of loads ni(t) at
time t. The state-space (bins) is illustrated on Fig.3.12. Let’s denote by
n(t) = {n1(t), .., nNBin(t)} the number of load in each bin. The number of
loads in the ON state correspond to the total demand of the group.

In [81] (with more details in [104]), the authors estimate the short term
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Figure 3.12: Discrete State Space used for a cooling TCL aggregate model
[81].

evolution of the TCLs distribution n̂(t) by deriving a linear model.

n̂(t+ 1) = An̂(t) +Bu(t) (3.3)

n̂ON (t) =

Nbin∑
i=Nbin/2+1

n̂i(t) (3.4)

D̂(t) = P̄ n̂ON (t) (3.5)

The transition matrix A describes how loads ni(t) in bin i will transit
to adjacent bins as a consequence of their natural behavior, while matrix
B captures the impact of external commands u(t) = {u1(t), .., uNbin(t)},
which correspond to switching orders from the central controller. The total
power demand of the group D(t) is derived by counting down the number
of loads in the ON state nON (t) at time t and multiply it by the average
power of the loads P̄ . Let’s note that in practice, this power is not neces-
sarily constant with time (parameter distribution, etc.).

In the decentralized setting, the mass distribution across the different
bins is influenced by sending probabilities ui(t) that each load exploits to
randomly decide on its state at the next time step. Model Predictive Control
techniques are exploited to find the optimal commands ui(t). The demand
D(t) is controlled in order to follow a certain reference signal r(t).

Using this model, authors in [104, 81, 103] have observed important
elements.

• Loads synchronization leads to oscillatory behavior of the group’s de-
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mand that must be counteracted.

• The service in which load participate (e.g., FCR) defines the reference
signal r(t) that must be followed by the group demand. The control
must appropriately decide on the portion of the group’s demand that
can be offered as flexible capacity for external control. If this portion
is too large, the loads are likely to go out of their temperature limit. If
it is too small, an opportunity is lost. Some advanced energy manage-
ment system are required to balance control performances with local
temperature impact.

• The per load benefit of participating in frequency control is small
(also noted in [88]). This strongly limits the attractiveness of small
load control on the end-user side.

More complex TCL models taking into account second-order dynamics
are studied using a similar decentralized control framework in [158].

Autonomous control

Relying on these conclusions and modeling framework, [159] and [24] dis-
cuss possible ways to compute the control inputs in an autonomous fashion.
Autonomously, each load j ∈ {1, .., nTCL} in the group computes at each
time step a switching probability qj(t) ∈ [0, 1]. The load will switch state by
comparing the qj(t) to another number randomly that is randomly chosen
between 0 and 1.

The successive qj(t) are function of both load-side elements as well as
local estimate of the group-level states. Simply based on local frequency
measurement and knowledge about the individual behavior, each load is
able to estimate the group’s state autonomously. In [159], additional con-
straints are introduced: a variable consumption profile (Startup dynamics)
as well as lockout constraints. The lockout constraint is the minimum time
immediately following a state transition during which no other transition
can occur. In [159], each loads is able to keep track of the number of locked-
out loads and adapt its own switching decision accordingly.

3.3.4 Pilot Projects

In [146], a UK-based pilot project focuses on the use of small refrigera-
tor within primary frequency control. The above described references [127]
and [9] are two different theoretical descriptions of the system used in the
project. All running fridges (i.e., on state) autonomously switch off in case
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frequency decreases below a defined threshold. Inversely, loads will antici-
pate their start if they measure sufficiently large positive frequency devia-
tion.

The switching frequency thresholds are randomly set by the load around
a reference value. The random thresholds are chosen in order to avoid large
load synchronization .

A reference threshold is defined and common to all loads in the group.
It is illustrated on Fig.3.13. It evolves according to the load’s run state
and the temperature. The shape of the reference threshold minimizes the
chances of observing successive switching. For instance, a load that has
just switched to the ON state has a very low probability to switch OFF
immediately after.

(a) On State (switch to off state) (b) Off State (switch to on state)

Figure 3.13: Reference Switching Frequency threshold (illustrative) [146].

At each time they switch state, the different loads will select a random
threshold around this reference switching profile. By comparing their own
threshold to the frequency they measure, loads will react to extreme fre-
quency changes and support the system. The random feature allows to
spread the efforts smoothly.

The performance of the group and its ability to provide a proportional
response to frequency deviations is not clearly assessed in [146].

Experimental results of central control performed on 25 fridges are de-
scribed on [87]. Similarly, 26 refrigerators and space-heater, a waste-water
treatment plant and 10 general relay-controlled loads are exploited in [44].
Different local control law are applied and leading to good control perfor-
mances. The long term impact of the involved control schemes is however
unclear.
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3.4 ECLs in Frequency Containment Reserves

The literature focusing on the ECL type of loads (mainly: electric vehi-
cle, batch water heaters) has not been very extensively discussing how au-
tonomous control could take place. However, many studies look at central-
ized and decentralized control frameworks (Table 3.1). We discuss briefly
below interesting elements about the following points.

1. Aggregate models development.

2. Consumption scheduling: discussions on the optimal way to schedule
the consumption of ECL along a day in order to minimize energy
purchase costs and maximize the aggregate flexible capacity provided
as FCR in a decentralized fashion.

3. Centralized control: gave inspiration for autonomous control.

4. Elements on autonomous control.

5. Pilot Project outcomes.

In general, studies focus on relatively short-term simulations. The per-
formance of the proposed control framework are usually evaluated in real-
istic simulations but that are not spanning on more than few hours. The
economic performances of the proposed control scheme are therefore rarely
assessed. In [7], authors look at the profitability of plug-in electric vehicles
offering different types of frequency support services (FCR, aFRR and RR).
The results are very optimistic (up to 100eper month and per load!), but
rely on a different assumption than ours: the batteries of the electric ve-
hicles offer a certain portion of their storage capacity to the grid operator
that they make available for charging and discharging purpose at each time
where they are actually connected to the grid.

3.4.1 Developing Aggregate models
Several propositions exist in the literature about the construction of ag-
gregate models. In [3, 2], authors based their developments on clustering
techniques, Markov chains and queuing theory. The objective is to efficiently
compute the aggregate consumption of a group of loads based on reference
consumption profile, and on their probability of occurrence. Model Pre-
dictive Control techniques are then applied for controlling this aggregate
consumption. The computational burden is very well diminished. Yet, the
system perspective and load impact of the control is absent from the dis-
cussions.
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A similar approach is taken in [73], where the average static droop pro-
vided by a group of electric vehicles is evaluated. This droop depends on
the batteries state-of-charge, or SOC. For instance, batteries that are fully
charged cannot consume more energy. The distribution of the load SOC and
its evolution with time are used to estimate the aggregate capacity that the
group could instantaneously deploy.

However, only very short run simulations are undertaken. The con-
sequence of constant service provision on the SOC (feedback loop), and
therefore on the offered capacity are not considered.

3.4.2 Scheduling load consumption to insure FCR ca-
pacity

An important topic lies in deciding on optimal time a flexible appliance
should consume energy. Many papers discuss this problem, but some of
them specifically address ECL and a combined energy-flexibility objective.
Indeed, load schedule is decided to minimize the overall energy price as well
as guaranteeing a certain amount of aggregate flexible capacity. This ca-
pacity is later exploited within frequency control.

This combined scheduling problem is e.g., discussed in [64]. The authors
in [149] compare the centralized and decentralized scheduling of the amount
of capacity that should be delivered at each hour. Centralized scheduling
means that loads submit their preferences (wilingness to pay, bid) to a
central entity that later decides on the scheduling. Decentralized is based on
price. The detailed information about the different loads is not accessible to
the grid operator. However, it can send prices and collect aggregate demand
of the group of loads. The optimal price is thereby decided on an iterative
manner. Such type of scheduling is specifically useful to cope with data
privacy issues.

In [43], such scheduling approach is performed on a stochastic way and
take uncertainty into account.

3.4.3 Centralized control of batch water heaters
In [84], the authors discuss the use of batch water heaters for frequency
control in central control framework. The considered water heaters have a
fixed power rate p. They require some predefined amount of energy E to be
delivered before a certain time deadline te. At each time, the load knows its
own energy state 0 < e(t) < E, that should reach E for t > te. The model
is therefore very similar to electric battery charging.
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The loads are able to estimate at every time how far they are from
reaching their energy requirement. They translate their estimation into a
simple factor γ(t) = E−e(t)

p(te−t) that must stay below 1. Indeed, when γ=1, the
load is forced to run. The load can postpone its energy consumption as long
as γ is below 1. This factor is called the remaining power consumption ratio.

The system operators sends two thresholds values γon(t) (closer from 1)
and γoff (t) (closer from zero) to the water heaters. Each load i compares
them to its own γi(t). All loads which ratio is above the γon threshold
should be running. All loads which ratio is below the γoff threshold should
be stopped. If the system requires all loads to stop, it sends γoff = 1.

Though this strategy requires the use of centralized information, the
same kind of principle could be applied to autonomous controllers. The
threshold would simply need to be defined according to the measured fre-
quency deviations.

3.4.4 Autonomous control of ECLs for FCR provision

Autonomous Electric vehicle charging

A large number of studies have explored the use of electric vehicles (EV)
charging delivering flexibility. Yet, no many of them explore autonomous
control solutions. The autonomous charging of EVs combined with fre-
quency control participation is considered in [98].

The aim of the article is to determine a local control logic able to either
charge electric vehicles or maintain its state of charge adapting the power
consumption to provide frequency response. It is therefore what we refer to
as an autonomous control framework (it is characterized as decentralized in
[98]).

The main idea is simple: loads will provide a proportional response to
frequency deviations with a droop K(e(t)) (gain) that differs according to
the state-of-charge (energy state) of the load e(t). This droop must be as
large as possible in order to offer the largest achievable flexibility. However,
it is adapted respect the load’s own constraint (in charge mode or not, etc.).

The implemented control scheme is tested on several simulated vehicles
in a 10h simulations. This is sufficient to test the effectiveness of the control
scheme in the short-run. However, the study does not discuss the impact on
the overall system neither economic considerations. Similar developments
can be found in [45].



Chapter 3 69

Heating appliances

Dishwashers are controlled in an autonomous way to react to large frequency
excursions in [144]. The dishwasher profile is problematic. Indeed, it is
composed of two successive heating phases where water is heated up before
it can be used in the washing phase. The two heating phases require the
use of heating coils consuming a relatively large amount of power. They
are separated from each other by a low-power washing phase, illustrated on
figure 3.14.

Time

Heating Heating

' 2kW

Figure 3.14: Illustration of a Dishwasher profile (inspired from [91]).

The paper assumes that dishwashers can be rapidly switched on an
off during their consumption cycle. The FCR controller decides to sud-
denly stop the dishwashers if the frequency goes beyond a certain threshold
(under-frequency load shedding). The main contribution of the paper is
to analyze how dishwashers are progressively switched back on. Impos-
ing random delays before the load can resume consumption leads to good
performances. This is an example highlighting how the random nature of
autonomous controllers can be useful. Random numbers are able to smooth
out the negative consequences of imposing a sudden coordination to loads
leading to a loss in demand diversity and strong rebound effects. The ran-
dom delay also allows to average out the consumption profile of the involved
loads.

Pool pumps (and beyond)

The control philosophy developed in [84] is developed in [108] in an au-
tonomous fashion. A so-called universal command is developed, to which
loads adapt and randomly set their on/off state accordingly. Their decision
depend on how much they where started/stopped the same day, knowing
their needs to run for a certain amount of time.
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The paper observes the dynamics of a controlled group of pool pumps,
though the controller is usable for many other appliances (other ECLs).
The study mentions future research ambitions: taking a system operator
perspective and derive costs and characterize the flexible capacity provided
at group-level.

3.4.5 Pilot Projects with ECL

Probably the most famous pilot project about ECL, the GridWise pilot
project, is described in [66]. The objective of this project was to provide
frequency support in emergency situations by intelligently curtailing small
ECL, such as water heaters. Some interesting considerations about imple-
mentation issues and cost components are to be found in the project report,
and will be exploited in the following chapters of this work.

Several other projects have been conducted on the use of ECLs in sys-
tem balancing (e.g., vehicle-to-grid [76]). The Linear Project [97] studied
the use of batch water heaters, electric vehicles and wet appliances in dif-
ferent context. Among the explored business cases, the balancing business
case could be considered quite close to the use of ECL within FCR. Some
interesting elements about the cost effectiveness and potential benefits are
discussed. Loads would diminish at best 5-10% of their annual energy costs
by providing flexibility services.

Finally, let’s mention the Swiss2grid project [122]. In a local neighbor-
hood, load management (EV charging, water and space heating, washing
machine and dishwasher) is implemented for voltage control and peak load
decrease (transformer life time). The interesting contribution of the followed
approach lies in the communication infrastructure that is used. Indeed,
the project has looked at different ways to coordinate loads: full two-way
communication between the loads and a central entity, or local exchange
information with direct neighbors. It appears that local communication is
enough reach performances that are very close to the ideal case where all
information is transferred to a central entity.

3.5 State-of-the-art conclusions and contribu-
tions

Here are the principal elements of conclusions that can be extracted from
the existing literature covering the use of small loads for FCR provision,
and autonomous control frameworks.
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1. Controller design. The problem of controller design is to define ade-
quate control laws able to influence the group demand, make it fre-
quency responsive and manage rebound errors (group level dynamics).
These tasks must be performed only relying on local information (au-
tonomous control).

2. Aggregate models. In the literature about Energy Constrained Loads
(focus of the following chapter), we could not find any study focusing
on the design of autonomous controller and, at the same time, tracking
the evolution of the controlled demand by using aggregate models, in
the aim of delivering frequency containment reserves. This is therefore
one of the core elements of our next chapters.

3. Control performances in the short-run. When control performances
are assessed, the paper usually restricts their analyses to short-term
simulations. However, the dynamics of the demand of ECL groups
are such that long run simulations are essential to capture the effect
of energy rebound (energy constraints). Studies focusing on the short
run simulations do not capture the rebound problem adequately. This
is therefore a second important element that will be developed in this
work.

4. Costs and Benefits. The benefits of exploiting ECL within FCR are
discussed in a few studies. Their results are however either overly op-
timistic, or do not analyze the overall system consequences (frequency
quality in the long-run, etc.).

In short, the use of Energy Constrained Load as Frequency Containment
Provider is rarely discussed. Furthermore, the perspective of the system
operator is not sufficiently represented. Furthermore, the impact of energy
rebound is usually overlooked. As we will show in the rest of this work,
introducing autonomous control within FCR has, for some loads, an overall
positive economic impact. In addition, this economic impact is influenced
by long-term trends, that are usually not discussed in the literature. Our
work seems therefore very well justified.

What are the exact control performances of the group in a realistic
context ? In the short-run (frequency stability) ? And, in the long-run
(frequency quality) ? What is the overall system impact of ECL control
on the reserve provision process ? Will the system gain installing small
controllers on every load? What are the characteristic of the ideal ECL ?
These are the questions that will be discussed throughout the rest of this
work.
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Aggregate behavior of Energy Constrained

Loads

Chapter summary

In the beginning, there was nothing but Chaos, out of which emerged
spontaneously everything that exists.

Hesiod, Theogonia c.700 BCE (adapted).

Let’s imagine that a very large number of electric appliances are equipped
with on-board controllers. These controllers can change the power at which
the appliance consumes its energy. There are several typical examples: the
load can deffer its starting time, the load may suddenly be stopped and
started back later on, or the active power it consumes may be set freely
within a certain range thanks to power electronics equipment. But what
are the consequences on the group-level demand of using such local con-
trollers? What if such controllers take decisions autonomously ?

In the rest of this work, we will focus on a specific type of electrical ap-
pliance: Energy Constrained Loads. The first three sections of this chapter
study large groups of ECL which are left uncontrolled. Our objective is to
describe the dynamics of the group-level demand when ECLs of multiple
types (i.e., with different power rate, etc.) are aggregated, and when the in-
dividual starting times are random. Indeed, the instant at which an electric
appliance is plugged into the network by the end-user can be considered as
a random variable. Consequently, the group-level demand will experience
some volatility around its expected level. This volatility should be small
enough such that the control reactions imposed to the group can be distin-
guished from its natural variable behavior.

Our analyses end with clear-cut observations: only a massive imple-
mentation program, in which several hundreds of thousands of loads are
involved, can guarantee sufficiently good performances.

73
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= En =Power P (t)

Time t

Tn

Pn

ta tb

(a) Without control.
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Figure 4.1: Energy Constrained Load model.

An ECL has the following features, illustrated on Figure 4.1.

1. An arrival time ta from which the load starts consuming energy.

2. A controllable power rate P (t) ∈ [PL, PH ].

3. A natural power level Pn at which the load consumes energy when
uncontrolled.

4. A fixed energy need En (energy constraint) requested by the ECL’s
user.

5. A user-defined time deadline Tdl. The required energy En must be
consumed before this time deadline, that is in the interval [ta, ta+Tdl].

6. A natural run time Tn = En/Pn < Tdl: the necessary time for the
load to consume En when running at its natural power rate Pn (no
power control).

7. A variable run time T run(P (t)) that depends on the controlled power
P (t).

4.1 Load arrivals in large ECL groups

The instant at which a user requests an appliance to start defines the load’s
arrival. The number of loads arriving in a group at a certain time t needs to
be characterized. In practice, the user’s behavior follows a random pattern.

The function C(t) is a counting process, accounting for the number of
loads that have arrived in the time interval [0, t). It is a stair-shaped func-
tion of which each step represents a load arriving in the group. Each step
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i (a load arrival) is situated in time by a random sequence of epochs {Yi}.
Each Yi corresponds to a load arrival time ta. The time that separates two
successive arrivals is called the inter-arrival interval Xi.

The starting density S(t) is the time derivative of the counting process.
It is a condensed version of all information about the different load starts.
There are multiple possible representation of the starting density, both in
discrete Sk and continuous-time S(t) modeling framework.

Y1 Y2 Y3 Y4 Y5

Continuous Time
S(t)

Sk

k = 1 k = 2 k = 3

Discrete Time

Time Step

0

0 2 2
1

δ(t− Y1)

Figure 4.2: Two equivalent representations of the starting density. Top:
Continuous-time model. Bottom: Discrete-time model.

These are equivalent and represented on Figure 4.2. The unit of S(t)
corresponds to the inverse of the selected unit of time. It is a sequence of
Dirac delta’s separated by random time intervals. The discrete time version
is dimensionless and corresponds to the number of loads that have arrived
withing a certain time step of length ∆t. The number of arrived loads in
the different time steps are random variables with known distribution.

4.1.1 Counting down arrivals with Renewal processes.

The starting density S(t) (or Sk) and the counting process C(t) are random
functions called renewal processes [138]. The main assumption defining
renewal processes is that the rate at which arrivals occur stays independent
from previous arrivals (i.e., memoryless nature). A typical example: arrivals
of customers in a queue (queuing theory).

A renewal (counting) process {C(t), t ≤ 0} is a non-negative
integer-valued stochastic process that registers the successive
occurrences of an event during the time interval [0, t), where
the times between consecutive events are positive, independent,
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identically distributed random variables. (Slightly modified from
[138])

The number of appliances that request to start at some point in time
may depend on exogenous elements: time of day, external temperature, etc.
At the condition that these parameters are known at time t, the future
evolution of load arrivals are independent of their past. This conditional
independence is known as the Markov property. Load arrivals can therefore
be modeled by renewal processes.

4.1.2 An intuitive example: the Binomial Process

As a start, let’s consider the discrete representation of time with time-steps
k ∈ {0, 1, ..,K} (i.e., time starts at k = 0) of length ∆t and time t,the
continuous representation of time. Let’s consider a large group of nl loads.
Loads are initially all stopped (or idled). Each load is associated with a
certain probability pk to arrive at a certain time step k. This probability
is very small as loads run relatively rarely w.r.t. the time they spend being
idled. Let’s assume that the different load arrivals occur independently from
each other and Sk be the number of loads arriving at time step k.

In such case, the successive Sk are random variables that follow a bi-
nomial distribution. Below, aCb is the number of b-combinations chosen
among a elements (without repetition). Also, Pr{Z = z} stands for the
probability of the random variable Z to be equal to some value z.

Sk ∼ B(nl,pk) ⇔ Pr{Sk = z} = nlCz pzk (1− pk)nl−z (4.1)

Three binomial processes are illustrated on Figure 4.3. As can be ob-
served, similar behaviors emerge from different groups in case the product
nlp is the same. As this product gets higher, the distribution of arrivals
tends toward a normal distribution. Furthermore, as this product grows,
the distribution variance gets smaller relatively to its mean.

4.1.3 The law of rare events and the Poisson process

As both nl is large and pk us very small, the Binomial process may be
conveniently represented by a Poisson process. As shown on Fig.4.4, the
static probability distributions match almost perfectly. This approximation
is known as the law of rare events [138]. In a continuous-time framework,
the law of rare events boils down to impose that multiple events have zero
probability to occur exactly at the same time.
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Figure 4.3: Binomial processes for different parameter values. Left charts:
successive realizations on 100 time steps. Right charts: histograms of the
corresponding distributions (104 realizations).

Computationally speaking, Poisson processes are less demanding to sim-
ulate. As illustration, a hundred different sequences (Trials) of both Poisson
and Binomial processes are evaluated. Each generated sequence of Poisson
distributed variable is 105 time steps long while each binomial sequence is
only 103 time steps long. As shown on Fig. 4.5, the Poisson trials went
10 times faster at generating 100 times more data than the Binomial tri-
als. The Poisson distribution is approximately 103 faster than the Binomial
evaluation.

The Poisson process is very often exploited in the literature. A Poisson
process is a renewal process whose inter-arrival intervals are i.i.d. exponen-
tially distributed [123].
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Figure 4.4: Probability distribution of two Poisson and Binomial random
processes (Two sequences long of 104 time-steps).
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Figure 4.5: CPU times required to evaluate a sequence of Poisson and Bi-
nomial realizations. Theoretical mean and variance of each process are
approximately all equal to 1.

It is a continuous-time process with the following properties. Let Xi be
the time intervals between the ith arrival and its predecessor (X0 = 0).

1. Xi’s are i.i.d. exponentially distributed of parameter λ and density
fX(x) = λe−λx.

2. Orderliness: Inter-arrival intervals are strictly positive, Xi > 0,∀i.
Multiple events cannot occur at the same time.

3. Memorylessness: Pr{X > a+ b} = Pr{X > a}Pr{X > b}.

4. Merging and Splitting1 : the sum of two Poisson is Poisson and a
Poisson to which some realization have a certain feature with known
probability will split into two Poisson.

∑
λi

λ1

λ2

λk

(a) Merging Property

λP
λ

λ(P − 1)

P

P − 1

(b) Splitting Property

The starting epoch of arrival i is Yi =
∑i
k=0Xk and the Poisson count-

ing process is {C(t) = k|(
∑k
i=0Xi) < t}.

1see : http://web.mit.edu/modiano/www/6.263/lec5-6.pdf

http://web.mit.edu/modiano/www/6.263/lec5-6.pdf
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In case the parameter λ (rate) is constant, the Poisson process is said
to be homogeneous. In this case, the probability to count n arrivals in the
interval [0, t) is computed as follows.

Pr{C(t) = n} =
(λt)n exp(−λt)

n!
(4.2)

In realistic situations, users preferably consume at specific hours in the
day, seasons in a year. Therefore, the rate λ(t) at which loads arrive is time
varying. Poisson processes with variable rate are called non-homogeneous
and are easily found in reality. For example, the variable arrival rate of
customers to a fast food restaurant is represented on Fig.4.7.

2. 4. 6. 8. 10. 12. 14. 16. 18. 20. 22. 24.

20.

40.

60.

80.

0

Breakfast Lunch Dinner

Rate λ(t)

Time

Figure 4.7: Customer arrivals to a fast food restaurant [94].

We use the following notations adapted from [94] and [123].

Notation
t Time.
C(t) Number of events by time t.
λ(t) Instantaneous arrival rate at time t (intensity function).
m(t) Cumulative intensity function.

Let’s note that non-homogeneous Poisson process are renewal processes
(i.e., i.i.d. inter-arrival intervals). Indeed, inter-arrival intervals are identi-
cally distributed and conditionally independent. Their distribution is con-
ditional (i.e., depends on) to a time-varying parameter λ(t). In this case,
the inter-arrival intervals distribution loose their stationary nature.

In the fast-food restaurant example, the counting process C(t) simply
counts down the amount of customers that have arrived in the open interval
[0, t). In order to account for the time-varying nature of the intensity func-
tion λ(t) (rate), it mus be integrated in the cumulative intensity function
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m(t), which is used to characterize C(t).

m(t) =

∫ t

0

λ(s) ds (4.3)

Pr{C(t) = n} =
m(t)n exp(−m(t))

n!
(4.4)

In such case, the expected value of the counting process at time t is E[C(t)] =
m(t).

Equivalent discrete-time formulation.

In the context of this work, it is legitimate to assume that multiple events
cannot occur simultaneously. In a continuous-time modeling framework,
successive load arrivals will be modeled using a counting Poisson process
C(t). Alternatively, we may prefer to use its time derivative S(t). Let time t
be expressed in seconds [s]. The discrete-time equivalent Sk is dimensionless
and is obtained evaluating the continuous counting process at each time-step
k of length ∆t.

S(t) =
d

dt
C(t) =

+∞∑
i=0

δ(t− Yi) [s−1] (4.5)

Sk = C(k∆t)− C(∆t(k − 1)) [−] (4.6)

The number of arrivals within a time-step are Poisson distributed. Let’s
define m̃ as the cumulative intensity function up to current time step [123].

m̃(t, τ) =

∫ τ

0

λ(t+ s) ds (4.7)

Pr{Sk = n} =
m̃(k∆t,∆t)n exp(−m̃(k∆t,∆t))

n!
(4.8)

The integer valued sequence (S1, S2, .., Sn) is a sequence of Poisson dis-
tributed random variables of parameter λk = m̃(k∆t,∆t). For homogeneous
Poisson processes, m̃ = λ∆t. Poisson realizations are shown on Fig. 4.8 for
different λ.
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Figure 4.8: Homogeneous Poisson processes for different parameter values
(discrete-time equivalent). Left charts: successive realizations (100 time-
steps). Right charts: Histograms of the corresponding distributions (104

realizations).
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4.2 The homogeneous ECL group.

Let’s consider an homogeneous group of ECL whose arrivals are described
by Poisson process. In an homogeneous group, ECLs share the same param-
eters [104]. Loads are left uncontrolled and run at their constant natural
power rate Pn (kW). The power demand of the group D(t) (kW) at time
t is the product of the number of running loads N(t) (dimensionless) with
their power Pn (kW).

D(t) = N(t)Pn [kW ] uncontrolled case (4.9)

As a consequence of their fixed energy needs En, each load stops exactly
Tn = En/Pn instants after it has arrived. Therefore, the number of loads
N(t) running at time t can be computed by counting down the arrivals that
occurred in the Tn previous instants, as all loads that have arrived earlier
in time are stopped. According to (4.6), this gives

N(t) =

∫ Tn

0

S(t− s) ds [−] uncontrolled case (4.10)

= C(t)− C(t− Tn) (4.11)

The number of running loads is a random process with strong auto-
correlation. Indeed, its value at current time depends on its value in the Tn
previous time steps. In other words, the time delay Tn in (4.10) and (4.11)
engender an infinite dimensional problem [109].

As shown in [113], the number of running loads N(t) is a Poisson random
variable of parameter m̃(t, Tn). In the Poisson distribution, the mean and
variance are equal to the unique distribution parameter (dimensionless).

m̃(t, Tn) = E[N(t)] = Var(N(t)) =

∫ Tn

0

λ(t− s) ds [−] (4.12)

Thereby, we may compute the demand’s expected value and variance.

E[D(t)] = m̃(t, T )Pn & Var[D(t)] = Var[PnN(t)] = (Pn)2m̃(t, Tn)(4.13)

In case of constant rate λ, the formulation is simpler.

E[D(t)] = λTnPn = λEn [kW ] (4.14)
Var[D(t)] = Var[PnN(t)] = P 2

nλTn [kW 2] (4.15)

The demand D(t) is illustrated on figure 4.9. The zero-centered counting
process C0(t) = C(t)−E[C(t)] = C(t)− λt is shown. This process C0(t) is
the integral of the arrivals that occur is excess of the average arrival rate.
The difference between C0(t) and its delayed version C0(t−T ) indicates the
level of the actual D(t) w.r.t. its expected value.
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Figure 4.9: Power demand D(t) (top) and zero-centered counting process
C0(t) (bottom) of a large homogeneous group of ECL (t = [0, 300]). Param-
eters: Pn = 3kW , λ = 1[s−1], Tn = 100[s].

4.3 Heterogeneous Group

Groups whose loads do not share identical parameters are heterogeneous.
The time Tn and power Pn parameter are in general random variables. In
this section, we study the influence of parameter variability on the group
demand.

Let’s denote the joint probability distribution ΩP,T (t) as the parameter
distribution at arrival. It evaluates the probability for a load arrived at time
t to have parameters Pn = P and Tn = T . In general, the distribution is
time varying. It exists in the interval (T ∈ [Tm, TM ]; P ∈ [Pm, PM ]). That
is, a load will run for no less than Tm and no more than TM instants. A
uniformly distributed ΩP,T is shown on Fig. 4.10.∫ TM

Tm

∫ PM

Pm

ΩP,T (t) dt = 1 ∀t (4.16)

ΩP,T (t) = 0 ∀P, T s.t. P < Pm ∪ P > PM ∪ T < Tm ∪ T > TM(4.17)

In practical cases, the information about the running loads (i.e., their pa-
rameters) is not necessarily accessible in real-time. It is therefore important
to estimate the group demand based on the parameter distribution. The
estimated demand D̂(t) corresponds to the expected value of D(t). Let’s
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Figure 4.10: Parameter distribution at start ΩP,T . This illustrates a con-
stant and uniform distribution.

define the time delay τ ≥ 0 that expresses the time interval between current
time t and a previous instant t − τ . As perceived from time t, a running
load arrived at time t−τ has a probability ΩP,T≥τ (t) to run at power rate P.

The expected demand D̂(t) of the group is derived below, where S(t) is
supposed to be known.

D̂(t) =

∫ TM

0

∫ TM

τ

∫ PM

Pm

S(t− τ) P ΩP,T (t− τ) dP dT dτ (4.18)

The expected power demand D̂(t) is a convolution of the starting density
S(t) with the expected power rate of loads running longer than the time t−τ
at which the start occurred.

4.3.1 The average load: expected power rate

At time t, the expected power rate ω(t, τ) is the conditional expected value
of the parameter power P given that the related load has started at time
t − τ and must still be running on t. In other words, it is the conditional
expected value of P given T ≥ τ .

ω(t, τ) = E[P |T ≥ τ ](t) =



∫ TM

τ

∫ PM

Pm

P ΩP,T (t− τ) dPdT, τ ∈ [Tm, TM ](4.19)∫ TM

Tm

∫ PM

Pm

P ΩP,T (t− τ) dPdT, 0 ≤ τ < Tm(4.20)

0, elsewhere (4.21)

In the above expression, ω(t, τ) can be understood as a power consump-
tion profile. In case of constant distribution ΩP,T , this profile is constant
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with time t and varies along the time delay τ . On Figure 4.11, such profile
is represented. As can be observed, it is constant in the interval τ ∈ [0, Tm]
(eq. (4.20)). It then decreases progressively to zero, as the time delay ap-
proaches the maximum time duration TM (eq. (4.19)).

Equation (4.18) is rewritten using the expected power rate.

D̂(t) =

∫ TM

0

S(t− τ)ω(t, τ)dτ (4.22)

Assuming a constant distribution ΩP,T and that the starting density
can be represented by its mean value λ, let D̂0 be defined as the baseline
consumption level. It has two equivalent formulations in this case.

D̂0 = λ

∫ TM

0

ω(τ) dτ (4.23)

= λ

∫ TM

Tm

∫ PM

Pm

PTΩP,T dP dT (4.24)

= λEav (4.25)

In equation (4.25), Eav represents the energy content of the average
power cycle ω(τ). Let’s note the parallel between (4.25) and (4.14).

ω(τ)

ω(Tm)

Delay τ
Tm TM

Eav

Figure 4.11: Expected power rate of load having started τ instants earlier.
The illustrated case corresponds to uniformly distributed ΩP,T (Fig. 4.10).

4.4 Transition from homogeneous to heteroge-
neous nature

Time varying parameters introduce complex dynamical behavior into the
group’s demand evolution. In order to illustrate this, let’s consider an ex-
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treme example. A group of ECL is characterized by a constant starting
density S(t) = λ and the following elements.

• Before t = t1, the group is homogeneous with power Pn and run time
Tn.

• At time t = t1, the group turns progressively heterogeneous. New
loads arriving in the group have uniformly distributed run times T ∈
[Tm, TM ]. We select the limits symmetrically around Tn. This means
that the expected run time is the same than in the homogeneous case
: 0.5(Tm + TM ) = Tn.

• From t2 >> t1, the group recovers progressively its homogeneous na-
ture. New loads run for a fixed duration Tn.

As parameter P = Pn is constant, the distribution ΩT (t) is sufficient
to describe the variability of the group. For compactness, we exploit the
time-window function U(t, ta, tb) = [H(t − ta) −H(t − tb)], where H is the
Heaviside function.

ΩT (t, τ) = δ(τ − Tn) [U(t, 0, t1) +H(t− t2)] +
U(τ, Tm, TM )

TM − Tm
U(t, t1, t2)(4.26)

The resulting expected demand (eq. (4.18)) is illustrated on Figure 4.12.
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Figure 4.12: Evolution of the group’s power demand following a transition
from homogeneous to heterogeneous nature. Parameters: Pn = 1kW, λ =
5s−1, Tn = 200s, Tm = 20s, TM = 380s

On Figure 4.12, the plain blue line D(t) is the exact demand (individual
simulation of each load) and the dotted black line is its estimated counter-
part D̂(t). As can be observed, the demand suddenly drops from time t = t1
and then recovers its steady-state level of 1000kW = λPnTn. A symmetric
behavior is observed from time t = t2.
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The observed demand drop and rise are somehow counter-intuitive as
loads have the same expected parameters at all time. Two twin vertical
lines are shown. The left-hand lines indicate the start of each transition
period t1 and t2 while the right-hand ones show the time from which the
expected demand begins to diverge from steady-state, Tm instants later.
The following developments describe the evolution of the expected demand
during both transitions. More details can be found in appendix B.

4.4.1 From homogeneous to heterogeneous group

Basically, the phenomenon at stake is simple. Initially, the energy content
of the group is concentrated in the interval [t− Tn, t]. In the heterogeneous
case, a single load has, on average, the same energy content than in the
homogeneous case. However, at group-level, this energy needs to be spread
on a longer time interval [t− TM , t]. Therefore, the group-level power must
decrease temporarily to store the energy on a longer time horizon.

Let’s define time x1 = (t − t1). In the first transition period, 0 ≤ x1 <
TM , the dynamical behavior of the expected demand is derived below ([a]+
conserves only the positive part of a).
∀x1 ∈ [Tm, TM ]

D̂(t) = λP

(
[T − x1]+ + Tm +

(Tm − x1)(Tm + x1 − 2TM )

2(TM − Tm)

)
(4.27)

and D̂(t) = λPT if 0 ≤ x1 < Tm or TM < x1

The observed variations of D̂(t) are illustrated on Figure 4.13. Four
different charts are shown corresponding to different instants within the
transition. The vertical dotted line represents the time, the top chart is the
initial load consumption profile, and the bottom chart is the heterogeneous
profile. Both profiles have the same total area (energy content). However,
during the transition, the average energy content of a running load profile
will vary. It is represented by the the dark area which sums the right-hand
side (w.r.t. time t) of the homogeneous profile area (top) with the left-hand
side of the heterogeneous profile area (bottom). The dark area area starts
shrinking from time x1 = Tm and recovers from time x1 = Tn. The energy
content is constant in the interval x1 ∈ [0, Tm].

4.4.2 From Heterogeneous to homogeneous group

From time 0 ≤ x2 < TM , a similar dynamical behavior leads to a symmetric
increase of the expected power. It is described in the following equation,
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(a) x1 = 0 (b) x1 = Tm (c) x1 = Tn (d) x1 = TM

Figure 4.13: Average energy content of the running loads during the transi-
tion from homogeneous to heterogeneous groups. Top: constant power (ho-
mogeneous). Bottom: expected power profile ω(τ) (heterogeneous). The
dark grey area is the expected demand of the group D̂(t) (normalized by λ)
at each time.

where x2 = (t− t2) and
(
x2|TM

Tm

)
is min(max(x2, Tm), TM ).

D̂(t) = λP

(
T + [Tm − x2]+ +

T 2
M − 2TM

(
x2|TM

Tm

)
+
(
x2|TM

Tm

)2
2(TM − Tm)

)
(4.28)

4.5 Demand volatility

The objective of this section is to assess the influence of parameter and ar-
rival randomness on the group’s demand volatility. We want to specify the
set of parameter values that ensures a sufficiently limited volatility of the
demand around its expected value.

Indeed, our final goal is to control ECLs in order to provide a measurable
response to frequency deviations. We want ECLs to respond autonomously
to frequency changes providing accurate response. For instance, the group
as a whole should be able to consume at a lower, predetermined level, with
respect to its initial level in case frequency is below nominal (i.e., 50Hz).

The main limitation of autonomous control is that loads have no direct
access to the group-level information. Only indirect information is avail-
able. A load could get an image of the group-level state if it can be derived
from past local measurements or past control efforts of the load itself. How-
ever, the detectable information will likely be limited to the expected level
of the group demand and states. All variations around this expected value
would require much more direct information, in the form of measurement
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feedback, to be accessible to each load.

In control systems, the only way to counteract the effect of a random
perturbation is through the use of output and/or state feedback. An ade-
quate modeling of the noise influence on the system output/states is also
required. In fact, the past and present realizations of a random perturbation
form a deterministic process. Therefore, their effect on the system states
are similar to the effect of control inputs that require measurement feedback.

In conclusion, autonomous control will not behave adequately in groups
whose natural demand volatility is large compared to the amount of flexible
capacity the group aims at providing. In other words, the relative volatility
of the power demand D(t) around its expected value should be small.

Let’s define a volatility metric vD that will be used to define the interval
in which the group-level demand D(t) stays most of the time. The volatility
vD is the ratio between the standard deviation σD =

√
Var[D] and the

expected value (baseline) D0 = E[D] of the demand distribution.

vD =
σD
D0

(4.29)

We would like to assess the number of loads nl (the group size) and
parameters that could guarantee that the group volatility is acceptable. To
this end, we define the volatility interval D0(1±3vD). The group’s demand
lies in this interval most of the time (see below). In order to guarantee
good control performances, the group should be large enough such that
its demand in the uncontrolled case varies most of the time in an interval
3vD ≤ 1− 2%.

The number of ECLs nl encompasses both running and idled loads. As-
suming that users start their appliance on average once every two days
(Ud = 0.5) and that load arrivals occur at regular rate, we can derive the
link between the arrival rate λ and the total number of loads in the group
nl: λ = nl(Ud/86400).

The volatility interval 1± 3vD is chosen according to the following rea-
soning. In the next chapters, we will exploit the relative demand change
x(t), expressed in per unit w.r.t the expected level D0: x(t) = D(t)/D0−1.
Let’s choose a number n ∈ R that defines the probability pin(n) that x(t) ∈
[−nvD,nvD]. The frequency of outside range observations Nout(n) corre-
sponds to the inverse of the complementary probability pout(n) = 1−pin(n).

Nout(n) =
1

1− pout(n)
(4.30)
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Table 4.1: Number of outside range observations of a second-based event
on a yearly basis (normal distribution).

n Nout(n)[y−1] Description
1 100 mio Most of the time.
2 1.5 mio 2-3 times a minute.
3 85000 10 times an hour.
4 2000 5-6 times a day.
5 180 Once every two days.
6 0.6 Least than once per year.

When normally distributed, second-based event would be observed a
number of times Nout(n)[y−1] on a yearly basis. The chances of seeing the
relative demand outside the range [1 ± nvD] are computed with the error
function, and presented on table 4.1.

Nout(n) = 31536000(1− erf(
n√
2

) (4.31)

The choice of n and the performance metric nvD ≤ 1% or nvD ≤ 2%
are complementary. In what follows, we will consider n = 3, which leads
to observe out-of-range events on average once every 5-6 minutes. We will
explore the set of load/group parameters that guarantee 3vD ≤ 1%, which
is rather strict.

4.5.1 Queuing Theory for volatility estimate
Queuing theory is a branch of mathematics and statistics that study the
dynamics of queues. Queues Ar/Ts/Ns (see Fig. 4.14) may be any process
in which some elements arrive randomly with arrival rate Ar and wait until
they get served. The service time is random of distribution Ts. Clients get
served by a defined number of servers Ns.

The number of loads runningN(t) in the group at time t can be described
as a queuing process. A load is considered in service (i.e., has access to a
server) when it consumes energy. Therefore, the number of servers Ns is
infinite, as a load can start consuming energy right after it has arrived (i.e.,
no waiting time).

The group may be represented with specific kind of queues depending on
the randomness nature of its parameters and/or load arrivals. Indeed, the
inter-arrival intervals can be deterministic (D), exponentially distributed
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Figure 4.14: General Ar/Ts/Ns Queuing Model.

(M) of follow a general type of distribution (G), The same notation applies
for the service type. In particular, Markovian queues (M/ · /·) are charac-
terized by Poisson arrival processes. These are particularly important due
to their memoryless property, as mentioned above. Looking at the number
of loads running in a load groups, four types of queues are of interest.

1. D/D/∞ queue. This queue is characterized by deterministic arrival
process and service time. In such case, the number of running loads
is constant.

2. M/D/∞ queue. Variable starting process with deterministic service
time. This queue represents an homogeneous group.

3. D/G/∞ queue. Deterministic starting process with parameter distri-
bution of general type.

4. M/G/∞ queue. This queue represents realistic load groups with ran-
dom starting process and random parameters.

Distribution of a sum of a random number of random variables

Queuing theory is helpful in studying the characteristic of the number of
running loads N(t). Some additional assumption are needed to characterize
the randomness of the power rates. We want to characterize the expected
value and variance (first and second moments) of the sum of these random
variables.

The power demand of the group is the sum of a random number of
random variables. The random number of elements in the sum is the number
of running loads. The random variables represent the power rate at which
each of these loads consumes. The demand of the group consist in a sum of
random variables Zi (power rate) associated to each one of the i = 1..N(t)
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running loads.

D(t) =

N(t)∑
i=1

Zi (4.32)

Assuming the random variable Zi’s to be mutually independent and
identically distributed, a powerful tool denoted moment-generating function
(MGF) can be used to derive all moments of a sum of random variables.
The moment-generating functionMZ(t) of a variable Z is the expected value
of an exponent that take as argument the product of time t with variable
Z. It can be shown that it corresponds to an infinite sum of the moments
µk of Z [65]. The n-th time derivative of the MGF evaluated at t = 0
corresponds to n-th moment µn. The zeroth moment µ0 of Z is the integral
of the distribution function and is always equal to one. The first and second
moments are the mean and variance, respectively.

MZ(t) = E[exp(tZ)] =

∞∑
k=0

µkt
k

k!
(4.33)

µn =
dn

dtn
MZ(t)

∣∣
t=0

(4.34)

Here is where the MGF turns useful: the moment-generating function
MSN

(t) of a sum SN of N independent random variables Zi,∀i = 1..N is the
product of the N individual MGFs. As N is random with known probability
to be equal to any positive integer k ∈ Z+, the MGF of the sum is a weighted
sum of products of MGFs.

MSN
(t) =

∑
k∈Z+

Pr{N = k}
k∏
i=1

MZi
(t) (4.35)

The first moment (expected value) of SN is easily derived from the mo-
ments relative to Zi.

E[SN ] =
dMSN

dt
(0) (4.36)

=
∑
k∈Z+

Pr{N = k}
k∑
i=1

dMZi

dt
(0)

∏
j∈[1,k],j 6=i

MZj (0) (4.37)

=
∑
k∈Z+

Pr{N = k}
k∑
i=1

µ1,i (4.38)
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where, µ1,i is the first moment of the i-th variable. For i.i.d. Zi’s of mean
E[Z], the first moment of the sum is given below.

E[SN ] = E[Z]
∑
k∈Z+

kPr{N = k} = E[Z]E[N ] (4.39)

The second moment (variance) Var[SN ] is given below.

Var[SN ] =
d2MSN

dt2
(0) (4.40)

=
∑
k∈Z+

Pr{N = k}
[ k∑
i=1

d2MZi

dt2
(0) +

∑
i,j∈[1,k],j 6=i

dMZi

dt
(0)

dMZj

dt
(0)

]
(4.41)

=
∑
k∈Z+

Pr{N = k}
[ k∑
i=1

µ2,i +
∑

i,j∈[1,k],j 6=i
µ1,iµ1,j

]
(4.42)

=
∑
k∈Z+

Pr{N = k}
[ k∑
i=1

µ2,i + (
∑
i∈[1,k]

µ1,i)
2 −

∑
i∈[1,k]

µ21,i

]
(4.43)

where, µ2,i is the first moment of the i-th variable.

In case variables are identically distributed with variance σ2
Z , the second

moment of the sum is as follows.

Var[SN ] = Var[Z]E[N ] + E[Z]2
(
E[N2]− E[N ]

)
(4.44)

4.5.2 M/D/∞: homogeneous group with random ar-
rivals

Following equations (4.15) and (4.14), the relative volatility in a group with
random arrivals but deterministic parameters is found below.

vD =
1√
λTn

(4.45)

These results are illustrated on figure 4.15. The natural run time of the
group has a major influence on vD. On the other hand, the required number
of loads in the group nl depends largely on the average number use per day
Ud. On figure 4.15, we have considered that loads are used on average once
every two days Ud = 1/2.

In case loads run time is 2h, the group should count about a million
loads for its demand volatility to be acceptable (i.e., 3vD ≤ 1%).
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Figure 4.15: Half amplitude of the volatility interval 3vD as a function of
the group size and the load’s run time (homogeneous group, random starts,
Ud = 1

2 ).

4.5.3 D/D/∞ with Variable Power

We consider a group with deterministic arrivals for which λ loads arrive
every second and run during a fixed time Tn. The power rate of these loads
are randomly distributed. The group’s demand group consists in a sum of
N = λTn random power rate Pi with mean Pn and variance σ2

P . From
equation (4.39) and (4.44), we deduce the mean and variance of the total
demand.

D =

N∑
i=1

Zi ⇒ E[D] = D0 = λTnPn & Var[D] = σ2
D = σ2

PλTn (4.46)

The influence of different parameters on the group demand volatility is
illustrated on figure 4.16. In all of the four illustrated case, the rate λ = 1
is the same. The loads have a run time equal to 1/4h (top charts) or 2h
(bottom charts). The mean value of the power rate is normalized to 1.
For convenience, we denote by σrP = σP /Pn the relative standard error of
the random power rates. This latter is set respectively to 30% and 50%
on the right and left-hand side charts (i.e., ∆P = 50% and ∆P = 86%
respectively). The shaded areas represent 1 ± 3vD volatility interval. The
half amplitude of this interval is a function of both λTn and σrP .

3vD = 3
σD
D0

= 3
σrP√
λTn

= 3
σrP√
7800nl

2×86400

(4.47)
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Figure 4.16: Illustration of demand volatility with random power rate (uni-
form distribution). Demand is shown in per unit. Left charts: P ∈ 1±50%.
Right charts: P ∈ 1± 86%.

On figure 4.17, we represent the relative volatility evolution with the
number of involved nl loads. For basically any realistic value of the power
relative standard error, a group counting about one million loads would
experience a demand volatility interval below 1%.

4.5.4 D/G/∞: Variable Run Time

In a group where only run time are variables, the group’s dynamics can be
represented by a D/G/∞ queue. The number of loads running at time t
is random, not because loads arrive at random rate, but because they stop
after i.i.d. random run times T ∈ [Tm, TM ], with known distribution ΩT .
Let’s define an infinitesimal load arrival λdt to any infinitesimal interval
[t, t + dt]. Each of the infinitesimal load that has arrived τ ∈ [0, TM ] in-
stants before current time t has a probability ΩT≤τ to be sill running. Con-
sequently, the static distribution of the number of running loads N can be
obtained by associating a Bernoulli trial of success rate p(τ) = Pr{T ≥ τ}
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Figure 4.17: Half amplitude of the volatility interval 3vD as a function of
the relative standard error of random power P and the group size (Variable
power, constant arrivals, run time Tn = 2h, Ud = 1

2 ).

to each the infinitesimal load. The success rate is equal to 1 in the in-
terval τ ∈ [0, Tm] and zero if τ > TM . Considering uniformly distributed
run times, p(τ) = TM−τ

TM−Tm
for all τ ∈ [Tm, TM ]. This is illustrated on

figure 4.18. The expected value and variance of N are obtained by inte-
gration of the infinitesimal expected value dE(τ) = p(τ)λdτ and variance
dV (τ) = p(τ)(1− p(τ))λdτ , respectively.

E[N ] =

∫ TM

0

dE(τ) = λTn (4.48)

= λTm + λ

∫ TM

Tm

TM − τ
TM − Tm

dτ = λ
TM + Tm

2
(4.49)

Var[N ] =

∫ TM

0

dV (τ) = λ

∫ TM

Tm

TM − τ
TM − Tm

τ − Tm
TM − Tm

dτ (4.50)

= λ(TM − Tm)

∫ 1

0

z(1− z)dz =
λ(TM − Tm)

6
(4.51)

Which gives,

D0 = λPnTn & σ2
D = P 2

n

λ(TM − Tm)

6
(4.52)

The relative volatility vD of demand around its expected value evolves
as a function of the relative standard error of the run time σrT , and inversely
with the square root of the number of running loads. It is therefore strongly
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Figure 4.18: Number of running loads with random run times. The constant
mass distribution of arrivals (top) passes through a Bernoulli trial filter of
different success rates p(τ) (mid) and gives a random realization (bottom).

influenced by the average run time of the loads, as illustrated on figure 4.19.

vD =
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Figure 4.19: Half amplitude of the relative demand volatility as a function
the number of loads nl and the standard error and mean value of the random
load run time. Left:Tn = 1/4h. Right: Tn = 2h.
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4.5.5 M/G/∞: Variable Parameters and Starting Pro-
cess

In realistic ECL groups, both arrivals and parameters are random. As shown
in [110], the number of customers N(t) being served in a M/G/∞ queue
with Poisson arrivals of parameter λ is distributed as follows.

Pr{N(t) = m} =

(
λ
∫ t

0
[1−H(z)] dz

)m
exp
(
− λ

∫ t
0
[1−H(z)] dz

)
m!

(4.53)

where, H(z) = Pr{service time ≤ z}.

In steady-state, and considering an average service time (=run time) Tn,
N is Poisson distributed.

lim
t→∞

Pr{N(t) = m} =
(λTn)m exp

(
− λTn

)
m!

(4.54)

The moment-generating function (MGF) MSN
(t) of a sum SN = Z1 +

Z2 + ...+ZN of a sequence of N independent random variable is the product
of the N MGFs.

MSN
(t) =

∞∑
i=0

Pr{N = i}
i∏

k=1

MZi
(t) (4.55)

For such group of ECL, equation (4.35) gives the following.

MD(t) =

∞∑
i=0

(λTn)i exp
(
− λTn

)
i!

i∏
k=1

MZi
(t) (4.56)

The first and second moments are obtained from equation (4.39) and
(4.44), supposing that load parameters are iid and that the average power
is Pn (i.e., E[Z] = Pn). The demand corresponds to a compound Poisson
process [12].

E[D] = E[Z]E[N ] = λPnTn (4.57)
Var[D] = λTn(σ2

P + P 2
n) (4.58)

The relative volatility of demand vD is defined below.

vD =

√
(σrP )2 + 1
√
λTn

(4.59)
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4.5.6 Comparing Volatility
We consider an ECL group with Poisson arrival process of parameter λ
populated by loads of power P ∈ [Pm, PM ] and run time T ∈ [Tm, TM ] dis-
tributed with average values Pn and Tn and variance σP and σT respectively.
In order to compare the relative importance of parameter variability, let’s
define a unique parameter σ as the relative variance of all load parameters.

σ =
σT
Tn

=
σP
Pn

(4.60)

We would like to compare the impact of the parameter distribution on
the group’s demand. Comparison of group-level relative volatility in func-
tion of different parameter randomness is presented on Table 4.2.

Table 4.2: Group-level consequences of different parameter randomness.

Random Variable Power Run Time Arrivals Altogether

Relative volatility vD
σ√
λTn

√
σ

31/4
√
λTn

1√
λTn

√
σ2 + 1√
λTn

Some illustrative examples are shown on figure 4.20 and 4.21. Both
figures are relative to group where parameters are uniformly distributed
with standard deviation σ = 30%. Parameters may vary ±50% around
their average value. The figure 4.20 shows a group with high starting rate
λ = 4 and figure 4.21 with starting rate λ = 0.1. The smoothing effect
of longer average run time is clearly visible from comparing the top and
bottom charts within each figure.
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Figure 4.20: Illustration of relative demand volatility (λ = 4s−1, σ = 30%).
Plain lines represent the demand of groups in which power, run time and/or
arrivals are of random nature. Dotted lines are the expected level of demand.
The shaded area is the volatility interval 1±3vD. The top chart and bottom
chart represent respectively ECLs with 1/4h and 2h average run time.
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Figure 4.21: Illustration of relative demand volatility (λ = 0.1s−1, σ =
30%). Plain lines represent the demand of groups in which power, run time
and/or arrivals are of random nature. Dotted lines are the expected level of
demand. The shaded area is the volatility interval 1± 3vD. The top chart
an bottom chart represent respectively ECLs with 1/4h and 2h average run
time.
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4.6 Chapter conclusion

In this chapter, we discussed the behavior of a large group of Energy Con-
strained Loads at rest (uncontrolled loads). It consisted in an important
premise to the discussions of the following chapters, where we explore the
dynamics of ECL group when its loads consumption is remotely controlled.
In theory, the ECLs could be controlled in order to deliver flexibility to
the electrical network they are connected to. Yet, the power demand of an
ECL group is variable. From the system operator side, it is crucial that
the demand variability is small compared to the flexible capacity offered by
the group. Otherwise, the system operator would not be able to distinguish
random variations from the actual delivered flexibility volumes.

The demand variability is a consequence of the random load arrivals as
well as the random nature of their parameters (run time and power rate).
We have seen that the randomness of both arrivals and run time have a
much larger impact on the group demand variability than the power rate
randomness. Furthermore, the larger the group, the smaller the relative
variations of the group demand around its expected value (baseline). This
leads to conclude that a group of sufficient size will insure variability to be
small enough.

One could argue that flexible loads are capable of flattening their own
demand in order to limit this variability. However, this would induce two
negative impacts. Firstly, the power demand of the group has to be mea-
sured precisely. This requires the use of a dedicated infrastructure, measur-
ing in real-time the (non)consumption of all involved loads, even those that
are idled. Though technically possible, such measurements are costly in
both financial and environmental terms (e.g., extra consumption of energy,
infrastructure). Developing strategies that do not require such measure-
ments is an advantage. Secondly, loads would need to assign part of their
flexibility for this specific purpose. This would be detrimental to the poten-
tial service offered to the grid operator. It’s seems therefore beneficial to
address groups whose demand variability is small enough by nature.

In this chapter, we found that groups of ECL should be very large in
order for their volatility (defined above) to reach the 1% threshold (w.r.t.
the group’s baseline). A group that counts a million ECLs (both running
or idled) whose run times are at least a quarter hour and that are started on
average once every two days by their user have sufficiently low variability. In
conclusion, the rest of our discussions will consider massive implementation
programs.





Chapter 5
Autonomous ECL power control providing

FCR

Chapter summary

Resilience, the ability to cope with change. Across all domains, from
physics to biology, from economy to psychology, it constitutes one of
most desirable feature within the object of study. It allows systems
to reconfigure and stabilize after disturbances, it drove Humans up to
the top of the food chain, it limits the impact of economical chocs and
makes it possible to recover from trauma. Small electric appliances
developing an intrinsic ability to cope with change would contribute
to the system’s self-stabilizing nature. Resilience does not condone
failures. Autonomously, detached from all infrastructures but the
network itself, shall load control lead to resilience.

Our objective in this chapter is to develop aggregate models accurately
representing the power demand dynamics of an ECL group whose loads are
externally controlled. The idea is to exploit simple mathematical structures
instead of detailed simulation of each load in the group. Such models are
however unable to capture the volatility of the aggregate demand around its
baseline and are therefore restricted to groups of sufficient size. In this work,
ECLs are controlled for delivering frequency control, and more precisely
Frequency Containment Reserves.

5.1 Autonomous FCR: local and group-level
impacts.

In this chapter, we discuss the most simple control schemes that would allow
ECLs to provide FCR in an autonomous framework. The objective of FCR
is to provide a proportional and precise response to the system frequency
deviation from nominal. This is known as droop-based control, where a
certain proportional factor KFCR (i.e. the droop, expressed in MW/Hz)
drives the amount of flexible capacity that must be deployed to counteract
a system frequency deviation (f(t) − fn). The deployed FCR is positive if
it requires an increase of generation output, that is during under-frequency
event (see figure 5.1).

FCR(t) = −KFCR(f(t)− fn) (5.1)
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FCR set-point [MW]

f(t)− fn[Hz]

−φ
φ

Upward Reserve

Downward Reserve

Dead-band

Figure 5.1: The power-frequency curve defining the FCR set-point.

The total capacity provided by all FCR participants is limited. In or-
der to take this into account, a bounded and normalized version of the
frequency deviation is used as reference signal r(t) ∈ [−1, 1]. A normaliza-
tion frequency deviation φ is exploited and corresponds to the maximum
allowed steady-state frequency deviation in the system being modeled (i.e.
φ = 200mHz in Continental Europe [52]).

r(t) =
f(t)− fn

φ

∣∣∣∣1
−1

(5.2)

The upward (resp. downward) FCR capacity is KFCRφ (resp. -KFCRφ)
and is fully deployed if r(t) = −1 (resp. = 1). Upward reserves refer
to either increased generation output or, symmetrically, decreased power
demand. A group of loads providing FCR must adapt its demand D(t)
proportionally to this reference frequency signal. We introduce the droop
KD [Hz−1] that is directly dependent on the total capacity that the group
can deploy (= ±KDD0).

D(t)→ D0(1 +KD r(t)) (5.3)

Throughout this chapter, we suppose that the group provides only asym-
metric upward FCR. That is, the demand can only decrease in the short-run.
This is mainly done for pedagogical reasons, that we justify below. We have
0 ≤ D(t) ≤ D0 and 0 ≤ KD ≤ 1. A reference signal rup(t), restricted to
negative frequency deviations, is defined.

rup(t) =
f(t)− fn

φ

∣∣∣∣0
−1

(5.4)
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The group demand is influenced by local control decisions taken au-
tonomously by each one of the N(t) running loads. Loads have no access
to communication infrastructure. The information locally available to each
running load i ∈ [1, N(t)] is limited to the locally measured frequency f(t)
and to the load’s own parameters. Exploiting solely such local information,
each load must be able to take a decision that will influence the group-level
demand and make it frequency-responsive. As the number of running loads
is not known, the load cannot know the exact amount of flexibility that its
group provides. It can however estimate the relative flexibility x̂(t) offered
by its group. That is, the relative change of the group demand w.r.t. the
baseline level D0.

x̂(t) =
D̂(t)

D0
− 1→ KD r

up(t) (5.5)

The total capacity that is actually provided by the group (= −KDD0)
will be time varying. Indeed, in practical cases, the baseline demand D0 is
not constant and is dependent on the starting rate λ(t). We assume that
the system operator will take this variability into account in its operational
planning, and use loads only when they are naturally available. Further-
more, we assume that the variations of the baseline demand are slow enough
such that they can be neglected in the short-run.

After local controllers have been defined, the provided flexibility x̂(t)
must be evaluated. To this end, the development of aggregate models is
required. Indeed, there exist several practical cases where a detailed sim-
ulation of individual loads is both useless and computationally expensive.
An aggregation model should represent accurately the group-level power de-
mand dynamics as a weighted sum of local-level load parameters, behavior
and control laws. The accuracy of the proposed model is assessed at the
end of this chapter.

A special attention must be paid on the influence of energy and user-
related constraints on the amount of flexible capacity that can be provided
by the group (i.e. the droopKD). This will be exploited in the next chapters
for simulation purpose and economic analysis.

5.2 The Controller Design Problem

The main challenge of local controller design is to map local decisions to
global demand change. The load must guess which decision is the best in
order for its group to adapt its demand to the reference signal r(t).



Chapter 5 108

5.2.1 Autonomous Control Policies

In order to influence the relative flexibility x̂(t), each load is equipped with
a power controller. This local controller is designed to (1) condition local
information and (2) trigger the load’s reaction, if needed.

f(t)− fn
rt

r
π

uit

Strategy specific

πt

Coordination
Normalization
& Saturation Conversion

u = f(π)

Figure 5.2: Control setup for a load i.

Three local ECL control policies are considered. They are described here
below and illustrated on figure 5.3. These are based on the ECL definition
presented in the introduction of chapter 4.

1. Delay. The starting instant of a load may be postponed. The largest
applicable delay is Tdl − Tn as the required energy must be consumed
before the user deadline.

2. Stop. The load is either switched on (P (t) = Pn) or idled (P (t) = 0).
The total idled time is limited to Tdl − Tn.

3. Rate. Load’s power is set freely within a continuous interval P (t) =
Pn + b(t)Pn. To respect the user deadline, one can impose a (restric-
tive) lower limit P (t) ≥ En/Tdl ∀t.

For clarity, let’s firstly insist on the distinction between the load arrival
time and the load starting time. That is, a load arriving at time t and
delayed by d instants actually starts at time t+ d. A load that has arrived
but has not yet started is said to be idled.

In this work, the local control decisions are defined as incremental. This
means that loads will take a decision that will be applied during the follow-
ing time-step (and will apply only to this time-step). A new decision occurs
at each time-step.

As explained above we focus on loads providing upward FCR. Downward
FCR is possible, but the comparison among the different control policies
is less straightforward. For the sake of clarity, we found more useful to
focus on the most simple considerations in order for the reader to acquire a
fundamental understanding of the group behavior.
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Initial

Delay

Stop

Rate
Time t

Power

Power

Power

Power

Figure 5.3: Control policies with energy conservation: (1) Delaying start,
(2) Binary On/Off switching, (3) continuous power rate modulation.

A distinction between generic and selective policies

Depending on the policy at stake, the control can be either selective or
generic. A generic load control policy applies the same decision to all loads
that are in the same state (e.g., power rate, energy level, etc.). A selective
control policy act on a portion of the loads that are in the same state. The
Stop control policy is selective. Indeed, all running loads are, in principle,
running at the next time step except if they decide otherwise. In order to
select which of the running loads should be idled on the next time-step,
the loads must exploit a random decision process. Each load carries out a
Bernoulli trial that decides on it states on the next time-step (i.e., binary
result 1 or 0). The success rate of these trials varies according to the mea-
sured reference signal.

On the other hand, both Delay and Rate policies can be either selective
or generic. The Rate policy is selective if all loads can freely choose their
set-point independently. It will be generic in case the power rate is defined
in the same way for all running loads. The delay policy is selective if a
portion of the arrived loads (i.e., that did not start yet) can decide to delay
their start of one unit of time. It will be generic if all loads idled for the
same amount of time take the same decisions. In the rest of this chapter,
we define both rate and delay policies to be of generic type.

To define their control input (decision), loads will use the coordination
functions that detailed in Table 5.1. Each coordination function exploits a
specific trigger to generate an action: a discrete threshold, random number
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generation or a proportional controller. Decisions are performed at regular
pace (e.g., every second) and maintained during one unit of time.

Table 5.1: Incremental (1 unit of time) decision description.

Policy Delay Stop Rate

Decision impact Delay start Stop load Change power
Decision type Binary Binary Continuous
Decision variable ui,dt ui,st ui,rt
Decision trigger Discrete Threshold Random Number Proportional

5.2.2 Energy rebound, remaining energy, stored en-
ergy

Before entering into further controller design discussions, we would like to
introduce several important concepts. These emerge from the energy con-
servation nature of the proposed control framework.

When its loads are suddenly stopped/delayed/modulated, the group’s
demand will necessarily decrease temporarily as the load consumes less than
expected. However, due to the energy constraint, the load will run for longer
than initially scheduled. This results in additional amount of energy con-
sumed after the load naturally stopping time. This is effect is known as the
energy rebound.

Before this rebound occurs, the control allowed part of the scheduled
energy consumption be shifted in time. It has therefore virtually stored en-
ergy in time. In consequence, the energy state of the group must necessarily
have evolved in some ways. The energy state will recover its initial level
after the rebound has occurred. It must must therefore be defined. In this
work, we define two complementary energy states: The remaining energy
and the stored energy of the group.

The remaining energy of the group Er corresponds to the instantaneous
energy level of its loads. At arrival, a load expects to consume an energy En,
which is added to the group. After having started since ∆T ≤ Tn instants,
an energy En − Pn∆T remains to be spent before the load can stop. In a
non-controlled homogeneous group with constant arrivals λ, the sum of the
remaining energy of each running load defines Er,0, the remaining energy of
the group at rest.
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Er,0 = λ

∫ Tn

0

En − Pnτ dτ = λ(EnTn −
PnT

2
n

2
) =

λPnT
2
n

2

=
1

2
λEnTn =

1

2
D0Tn (5.6)

The remaining energy Er(t) of the group will vary when loads are con-
trolled. The remaining energy of a controlled load i arrived at time t = ta,i
is En −

∫ t
ta,i

Pi(τ)dτ . The difference between the group remaining energy
with its level at rest is the stored energy Es(t).

Er(t) =

(
N(t)En −

N(t)∑
i=1

∫ t

ta,i

Pi(τ)dτ

)
(5.7)

Es(t) = Er(t)− Er,0 (5.8)

The time derivative of the stored energy is the difference between the
baseline power D0 and the actual aggregate demand D(t).

dEr(t)

dt
=
dEs(t)

dt
= λEn −D(t) = D0 −D(t) (5.9)

This will be proven and exploited in the last chapter of this work, but simple
reasoning can explain this nice property. At every time t, an infinitesimal
load λdt arrives bringing an energy λEndt to the group. At the same time,
all running loads consume together an energy D(t)dt, that has eaten up
part of their remaining energy. We therefore have dEr(t) = λEndt−D(t)dt,
which leads to the above result, as by definition D0 = λEn.

5.2.3 Experimental framework for controller design.
For intuitive explanation of the controller design, we will conduct, for each
of the three control policies, two sets of virtual experiments. Firstly, we
observe the impact on the group demand when one single load is controlled
according to the policy at stake. The load is either (1) delayed by 1 unit of
time, (2) stopped during 1 unit of time or (3) modulated to minimal power
during 1 unit of time. In parallel, the same action is imposed to this same
load until the user time deadline becomes binding. In the second set of
experiments, we apply the control actions to all running loads.

In all of these experiments, we consider a group of ECL populated by
loads having the following parameters: Tn = 8s, Pn = 1kW , En = 8kJ ,
Tdl = 12s. Due to the user deadline, a load may be delayed at most by
Tdl − Tn = 4s. In the rate policy, the user deadline defines a minimal level
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for the instantaneous power P (t) ≥ Pn(Tdl − Tn)/Tn = 2/3Pn.

Before each experiment takes place, the group is in steady-state with
a demand equal to D0 = 8kW . Indeed, one load arrives at each discrete
time-step of length ∆t = 1, i.e., λ = 1[s−1]. The experiments are conducted
on the unique load arriving at t = 4.

5.3 Control Policy 1: Delaying load starts.

The control policy studied in this section acts on the instant at which loads
start. As will be shown below, the main limitation is that control actions
can be exercised on a very limited amount of loads. Indeed, one must wait
for a load to effectively request to start in order to delay this same start.
This implies that the provided flexibility cannot vary instantaneously, in
other words, that its ramp rate is bounded by the load arrival rate.

5.3.1 Observation 1: Delaying one load start.
The unique load arriving at t = 4 is delayed either for (1) one unit of time
(i.e. 1s) or (2) Tdl−Tn = 4s. It then runs as it was supposed to, at constant
power Pn = 1kW . The impact on the aggregate demand of the group is
shown on figure 5.4.
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Figure 5.4: Single load impact: a delay is imposed before start (Delay
Policy) during one unit of time (left-hand charts) and during the largest
acceptable delay Tdl − Tn = 4 (right-hand charts).

The delayed load suddenly disappears from the group leading the ag-
gregate demand to decrease to D0 − 1kW = 7kW . If the delay lasts for 1
unit of time, the load starts immediately after and the aggregate demand
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returns its steady-state level. However, the load will need to run for one
extra unit of time in order to consume the required energy En. As a con-
sequence the aggregate demand rises up to 9kW precisely Tn instants after
the delay decision was taken. In the second case, the same behavior is ob-
served but both the demand decrease and the associated rebound last for 4s.

In general, imposing a delay of length d to a load arrived at t = t1 has
the following impact on the arrival process, initially constant S(t) = λ.

S̃(t) = λ+ δ(t− t1 + d)− δ(t− t1) (5.10)

The impact on the aggregate demand can be expressed using the T−wide
time window function U(t1, T ) = H(t − t1) − H(t − t1 − T ), with H the
Heaviside function.

D(t) = λPn

∫ Tn

0
S̃(t− τ)dτ = D0 + Pn

[
U(t1 + d, Tn)− U(t1, Tn)] (5.11)

Some energy was stored in the process and released back afterwards
(rebound). During the transition phase t ∈ [4, 4 +Tn + 1], and compared to
a steady-state situation, the running loads have consumed temporarily less
than the energy they were supposed to consume. Indeed, from its actual
start t = 4 until its scheduled stopping time t = 4 + Tn, the delayed should
have run more than it has. Its energy level should be closer to the target
En. This phenomenon is shown on the bottom charts of figure 5.4. The
group virtually stores energy when a load is delayed.

5.3.2 Observation 2: Delaying all arriving loads
We know look at the consequences of delaying all arriving loads. All loads
arriving from time t = 4s are delayed by the highest acceptable amount of
time Tdl − Tn. This is illustrated on figure 5.5.

The demand of the group decreases proportionally with the number of
loads that are delayed at each time-step. However, the energy rebound leads
to an increase of the group demand precisely Tn instants after the initial
delay decision. To model this behavior, let’s denote by w(t) the number of
idled loads at time t (i.e., all loads that are waiting to start). At time t = 4,
λ∆t loads arrive and are delayed (i.e., w(t = 4) = λ∆t). At time t = 5, the
same loads are delayed for an extra unit of time while another λ∆t newly
arrived loads are also delayed. This goes on forever, as all arriving loads are
delayed until they reach their deadline. In such case, w(t) increases until it
reaches w(t ≥ (Tdl − Tn) + 4) = λ(Tdl − Tn).

w(t) = λ∆t

(Tdl−Tn)/∆t∑
k=1

H(t− 3 + k∆t) (5.12)
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Figure 5.5: Highest acceptable time delay applied to all arriving loads from
t = 4s. Parameters: Tn = 8s, Pn = 1kW , λ = 1s−1. Left chart: Tdl = 12s. Right
chart: Tdl = 16s.

The relative flexibility x(t) offered by the group evolves as follows.

x(t) =
w(t− Tn)− w(t)

λTn
(5.13)

Let’s note that x(t) is independent of the rate λ as all loads arriving at
the same time follow the same behavior (i.e., w(t) is proportional to λ).
The amount of energy that can be stored by the group corresponds to the
cumulative energy that was delayed by the idled loads. For readability, we
prefer to express its normalized version (i.e., λ = 1, Pn = 1), expressed in
[s2].

0 ≤ Es(t)

λPn
≤ Tn(Tdl − Tn) (5.14)

The above expression can be verified on the charts of figure 5.5 : the (nor-
malized) stored energy rises up to 32[s2] and 64[s2] on the left and right
charts respectively.

The number of loads w(t) can be considered as a waiting queue. The
maximum number of waiting loads is equal to λ(Tdl − Tn). Therefore, the
flexibility x(t), and consequently the acceptable droop KD are bounded.

x(t) > max
(
1− Tdl

Tn
,−1

)
⇒ KD < min

(Tdl
Tn
− 1, 1

)
(5.15)

Furthermore, the ramp rate of the offered flexibility is bounded by the
time derivative of w(t). That is, the additional number of delayed loads at
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time t compared to t− 1. As highlighted on figure 5.5, the relative demand
of the group needs a time Tn to go from 1 (D(t) = D0) to 0 when all arriving
loads are systematically delayed. Indeed, we have,

dw(t)

dt
< λ ⇒ dx(t)

dt
> − 1

Tn
(5.16)

According to ENTSO-E network code on frequency control and reserve
[52], FCR power must be fully deployed in the 30s following an incident.
This second element limits actually much more the FCR capacity (= KD)
that the group can offer.

KD < min
(30s

Tn
,
Tdl
Tn
− 1, 1

)
(5.17)

As soon as the natural run time Tn is above 30 seconds (i.e., basically
in all practical cases), the first limit is binding. This limit implies that only
a tiny fraction of the baseline demand D0 can be offered as FCR due to
the ramp rate constraint. For instance, a group where loads run during 1
hour will only be able to control 1% of its baseline according to ENTSO-E’s
requirements. Obviously, the Delay control policy is not suited for FCR
provision.

However, for slower services, the delay control policy could be useful.
Therefore, it is still interesting to look for adequate controller design that
would allow the group to autonomously adapt to a reference signal rup(t)
with bounded time derivative.

The modified reference signal r̃up(t, Tn) takes this ramp rate limitation
into account. It corresponds to a filtered version of the normalized frequency
deviation, and depends on the load natural run time Tn.

r̃up(t, Tn) = min
(
r̃up(t− 1, Tn)− 1

Tn
; rup(t, Tn)

)
(5.18)

5.3.3 Local Controller Design

As shown above, a load i that decides to delay its starting time enters a
waiting queue w = {0..wl} of maximal length wl = Tdl − Tn (i.e., user’s
constraint). Let’s suppose that, before start, each arrived load observes the
reference signal rup(t, Tn). The load can target a certain waiting time that
can be derived from equation (5.13). Loads take binary (delay v.s. run)
decisions on discrete time steps. These local decisions will be coordinated
by a function of πd(t), a converted version of the reference signal rup(t, Tn),
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r̃up(t, Tn)× wl1

wl

1 wl

πd(t, Tn) = br̃up(t, Tn)× wlc

Figure 5.6: Conversion of rup(t, Tn) into πd(t, Tn) in the Delay policy.

where the superscript d stands for Delay policy. Neglecting the rebound
(i.e., w(t− Tn) = 0), we have

πd(t) =
w(t|w(t− Tn) = 0)

λ
= −KDTnr̃up(t) = −(Tdl − Tn)r̃up(t) (5.19)

The coordination of each load is based on the integer-valued signal
πd(t, Tn) that maps the continuous reference signal to target waiting times
[0, 1]→ {0..wl}. This is illustrated on figure 5.6.

The principle of local decisions is simple: a load i will wait an (extra)
unit of time on the next time-step by comparing the target waiting time
πd(t, Tn) to the time it has already spent being idled. The load may initially
be in two states, either arriving at current time, or idled at previous time.
The load decision is a binary value udi (t) that takes value 1 when the load
is delayed at time t. Note that, as the group is homogeneous and frequency
is the same everywhere in the system, the coordination function πd(t, Tn) is
unique and shared by all loads (generic control policy).

ui,d(t+ 1) =


1, for arriving loads in case πd(t, Tn) is positive (5.20)
1 for idled loads that waited less than πd(t, Tn) (5.21)
0, elsewhere (5.22)

5.3.4 Frequency response simulation
We simulate the reaction of the group during 3 hours. The reference signal
r̃up(t) is the filtered version of the frequency deviations measured in Belgium
on the 5th of January 2013, from midnight to 2 am (source : Elia System
Operator). The signal is then set to zero for the remaining hour of the
simulation in order to highlight the rebound effect. For illustration purpose,
the initial frequency deviations are multiplied by a factor 3. Loads arrive
on a regular basis and their parameters are deterministic (homogeneous
group). The saturation limit φ is fixed to 200mHz. The results are shown
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on figure 5.7. The top chart shows the demand change target KD r̃
up(t),

where KD = Tdl

Tn
− 1 = 50%, and the actual demand change x(t) (called

aggregate response). On the bottom chart, the number of running loads
N(t) is compared to its steady-state level N0 = λTn. The running loads
increase is a consequence of past delay decisions combined with the energy
constraint (i.e., w(t− Tn)). A similar simulation is shown on figure 5.8 for
loads running twice as long. One should note the ramp rate change and the
rebound occurring later.
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Figure 5.7: Group response to (filtered) frequency deviations in the Delay
control policy. The arrow highlights the rebound impact of decisions taken
Tn instant earlier, consecutive to the increase of the number of running loads
(bottom chart). Parameters: Tn = 1h, wl = Tdl − Tn = 30min, λ = 1s−1,
Pn = 1kWh.
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Figure 5.8: Group response to (filtered) frequency deviation in the Delay
control policy. Parameters: Tn = 2h, wl = Tdl − Tn = 1h, λ = 1s−1,
Pn = 1kWh. Loads run longer, which limits the relative ramp rate of the
demand change.
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5.4 Control Policy 2: binary On/Off switch-
ing.

The Stop policy is a more general version of the Delay policy. Indeed, it
can act on any of the running loads.

5.4.1 Observation 1: Stopping one single load

We conduct an experiment in which the only load that has arrived at time
t = 4s is stopped during one unit of time (figure 5.9) and 4 units of time
(figure 5.10). This load can be stopped at anytime during its run. The
left-hand (resp. right-hand) charts of both figures show the consequences
of stopping the load 2 seconds after its arrival (resp. 6 seconds), that is at
time t = 6 (resp. t = 10).
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Figure 5.9: Single load impact (Stop Policy): one load is stopped in the
middle of its run. The load is stopped during one second. Left-hand charts:
stopped from 2 seconds after arrival. Right-hand charts: stopped from 6
seconds after arrival.

Stopping two loads of different energy state has a different impact on
the group. This is illustrated on figure 5.10.

The right-hand chart of figure 5.10 corresponds to a case where the
idled load, stopped during a delay d = 4s, has a remaining energy level
∆E = 2∆tPn (i.e., the load has spent an energy equal to 6∆tPn from its
arrival). The maximum amount of energy that can be stored in the group
gets thereby limited to this same value (=2). On the left-hand chart, the
stored energy rises up to dPn = 4, as the remaining energy of the idled load
is not limiting in this case (=6∆tPn).
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Figure 5.10: Single load impact (Stop Policy): one load is stopped in the
middle of its run. The load is stopped during 4 seconds. Left-hand charts:
stopped from 2 seconds after arrival. Right-hand charts: stopped from 6
seconds after arrival.

Consequently, we see that the maximum amount of energy that can be
shifted by a single load being stopped during d instants is the minimum of
three values (as d ≤ Tdl − Tn).

Es(t|d,∆T ) < Pn min(d,∆T, Tdl − Tn) valid for a single load (5.23)

In the above expression, ∆T = ∆E/Pn is the time that remains to a load
running at natural power before it has consumed the required energy En.

Let’s suppose a load is stopped at time t = t1 during a time d with a
remaining time ∆T ∈ [0, Tn]. Delaying a load of run time ∆T from t = t1
during a time d would have the same impact on the group. We can therefore
apply the same reasoning than in the Delay policy taking into account the
remaining time ∆T of the load.

S̃(t|∆T ) = λ− δ(t− t1) + δ(t− t1 + d) (5.24)

D(t|∆T ) =

∫ Tn

0

S(t− τ)dτ +

∫ ∆T

0

S̃(t− τ |∆T )dτ (5.25)

= D0 − PnU(t1,∆T ) + PnU(t1 + d+ ∆T,∆T ) (5.26)

Considering all possible ∆T , the average demand impact of stopping
one load at time t1 has an interesting profile, as can be seen on figure 5.11
(illustrated here for integer-valued ∆T = {1, 2.., Tn}).

The immediate impact of a load stop is independent of its remaining
time: the aggregate demand drops by 1kW . The energy rebound is on
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Figure 5.11: Average impact of a load stop on aggregate demand (Stop
Policy).

average lower than what was observed in the rate policy, as it may occur
on different time steps between t1 + 1 and t1 + Tn depending on the load’s
remaining time. The average rebound magnitude is Pn/Tn = 1/8kW . It is
much smaller than the initial demand impact of the load stop, and lasts on
average Tn instants as energy is conserved.

5.4.2 Observation 2: Stopping all running loads.

The second set of observations focuses on the consequences of stopping all
running loads until the user constraint becomes binding. Results are shown
on figure 5.12.

2 4 6 8 10 12 14
0

2

4

6

8

A
g
g
re
g
a
te

D
em

a
n
d

S
to
re
d
E
n
er
g
y

Time
2 4 6 8 10 12 14

0

10

20

30

Tdl = 3Tn/2

Tdl − Tn

32

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

A
g
g
re
g
a
te

D
em

a
n
d

S
to
re
d
E
n
er
g
y

Time
2 4 6 8 10 12 14 16 18 20

0

20

40

60

Tdl = 2Tn

Tdl − Tn

64

Figure 5.12: Stop of all running and arriving loads from t = 4s until they
individually reach their acceptable limit. Parameters: Tn = 8s, Pn = 1kW ,
λ = 1s−1. Left chart: Tdl = 12s. Right chart: Tdl = 16s.
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Each of the N0 = λTn running load can store an energy equal to Pn(Tdl−
Tn) before the loads reach their constraint. As loads are all stopped at the
same moment and for the same amount of time Tdl − Tn, they all need to
restart together at time t = 4 + Tdl − Tn. At this moment, all arriving
loads are still being idled of precisely Tdl − Tn. Therefore, at time t =
4 + Tdl − Tn + 1, the group and the different loads are exactly in the same
state than what was observed for the Delay policy. The energy stored by the
group experiences the same limits in both Stop and Delay policies. However,
the storage process in the Stop policy can be performed with a much higher
power flexibility (figure 5.12).

0 ≤ Es(t)

λPn
≤ Tn(Tdl − Tn) (5.27)

We denote by w(t) the amount of loads that get idled at time t. Each
of such load has a probability 1/Tn to have a remaining time ∆T what
spreads the recovering of the shifted energy over the next Tn time periods.
The relative demand change is expressed as follows.

x(t)

λPn
=

(
1

Tn

∫ Tn

0

w(t− τ)dτ

)
− w(t) (5.28)

In this policy, the action w(t) can be performed on any of the running
loads. Its time derivative is therefore not limited.

5.4.3 Local Controller Design
The Stop policy exploits synchronized random number generation (Bernoulli
trial). Each running load will decide whether it should be idled on the up-
coming time step conducting a Bernoulli trial which success rate is influ-
enced by the frequency deviation at current time. By setting its decision
ui,s(t) to 1, load i is idled on [t, t+ 1[.

Pr{ui,s(t) = 1} = πs(t) = −KDr
up(t) (5.29)

Successive load decisions form a stochastic process ui,st represented by a
random walk with time varying success rate. Principles of stochastic pro-
cesses should be applied for choosing an appropriate droopKD that respects
the user time deadline with some defined probability. This is what will limit
the total FCR capacity that can be provided by the group. The choice of
appropriate KD is very much dependent on the energy content of the refer-
ence signal rup(t).

Let’s define T run ∈ Z as the total load run time. It is the integer-valued
time required for a load to consume the required amount of energy En when
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subject to the Stop control policy. It is the sum of the time spent idled and
the time spent consuming energy. The time T run is a stopping time w.r.t.
the stochastic process (un)n≥0, where each uk is the result of a Bernoulli
trial with success rate 1 +KDr

up
k (i.e. probability to run) [154].

T run , inf
{
k ∈ Z|u1 + u2 + ..+ uk = Tn

}
(5.30)

Let’s define γ as the (sufficiently small) probability that, given KD and
the sequence rupk , the load does not accomplishes its task on time.

Pr{T dyn > Tdl|KD, r
up
k } = γ (5.31)

The above expression can be used to define KD. In addition, hard
constraints could be impose such that a load cannot spend too much time
being idled (as done in [9]). This will degrade control performances, but to
a negligible extend if γ is chosen as sufficiently small.

5.4.4 Frequency response simulation
We conduct the same two simulations than in the previous section. The
results are shown on figures 5.13 and 5.14. There are no ramp rate con-
straint in this case. The demand of the group varies much more rapidly
and expresses larger variations (e.g., at t=60min). The energy rebound has
a negative impact on the control performance. Yet, the rebound impact is
much lower than in the Delay policy, at is occurs with lower magnitude and
spans on a larger time period. The longer the initial load run time, the
smaller the rebound magnitude.

On both figures, the top charts represent the flexibility x(t) and dotted
lines are the corresponding target demand change (neglecting the rebound).
The bottom charts highlight the consequences of the Stop control policy on
the number of running loads.
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Figure 5.13: Group response to frequency deviations in the Stop control
policy. Parameters: Tn = 1h, wl = Tdl − Tn = 30min, λ = 1s−1, Pn =
1kWh.
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Figure 5.14: Group response to frequency deviations in the Stop control
policy. Parameters: Tn = 1h, wl = Tdl − Tn = 30min, λ = 1s−1, Pn =
1kWh.
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5.5 Control Policy 3: power rate modulation

The Rate policy is an even more general form of control. The power of any
running load can be continuously set within a certain interval [PL, PH ]. In
this chapter, we consider that the load power cannot be increased, P (t) ∈
[PL, Pn].

Throughout this work, we’ve decided to study the rate control policy in
its non-selective form. That is, when control decisions are taken, all running
loads adapt their power rate in exactly the same proportion. Loads cannot
freely choose their power set-point but rather use a fixed proportionality
rule w.r.t. the measured frequency deviation rup(t). Therefore the power of
each running load, in a homogeneous group, is the same. For convenience,
we define the power bias b(t) ∈ [−KD, 0] such that,

P (t) = Pn
(
1 + b(t)

)
(5.32)

Obviously, by neglecting the rebound effect, the relative demand change
will follow the reference signal if

x(t)→ KDr
up(t) ⇒ b(t) = KDr

up(t) (5.33)

The challenge of this section is to understand the effect of this time
varying power rate P (t) on the actual run time of the load. Indeed, the run
time of a controlled load is dependent on the power control input. Before
entering these discussion, let’s firstly conduct at some virtual experiments.

5.5.1 Observation 1: one load changes its power set-
point

The unique load arriving at time t = 4 is modulated to P (t) = 2/3kW .
This modulation is imposed (a) during two non-consecutive time steps and
(b) during the whole run time of the load. Results are represented on figure
5.15.In this case, the simulation time-step must be reduced in order to cap-
ture correctly the effect of the modulation. Indeed, the run time of the
modulated load takes non-integer values. On the left-hand charts of fig-
ure 5.15, the energy rebound appears at the end of the natural run time
(t = 4 + Tn). The magnitude of this rebound is equal to the power of the
loads at the moment it pops up: Pn = 1kW . The rebound lasts for 2/3rd
of a second as it must recover the shifted energy (=2∆t× Pn/3).

The rebound on the right-hand charts is of lower magnitude. Indeed,
the load is still being modulated at the time the rebound appears, at the
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Figure 5.15: Single load impact: power modulation (Rate Policy) during two
non-consecutive time-steps (left) and during the whole run time (right).

end of its natural run time.

Consequently, the power demand change x(t) gets influenced by both the
current action b(t) as well as by the rebound of past actions ∝ −b(t − τ).
In this policy, past action’s rebound materializes in a continuous way (more
details below). Indeed, as observable on the left-hand chart of figure 5.15,
the rebound of the second modulation (P (t) = 2/3 at t = 6) occurs right
after the rebound of the first one (P (t) = 2/3 at t = 4). The time and
magnitude of the first action rebound depend on the modulation level (i.e.
b(t)) at the time it appears. As for b(t), the total time needed to recover
the shifted energy is a variable defined on a continuous interval.

5.5.2 Observation 2: modulate all running loads

In a second set of experiments, all running loads are modulated to P (t) = PL
as from t = 4s. Results are shown for different group parameters on figure
5.16. In this simulation, we will consider that PL must be set in order to
respect the user deadline in the worst case, that is if rup(t) = −1,∀t. This
is overly restrictive, as shown below.

On 5.16, the group demand is step-wise constant as loads arrivals are
concentrated on discrete time steps in the performed simulation (and so is
it for their stopping time).

Due to our choice of PL, the stored energy is lower than in the two
previous policies. Indeed, as load cannot be completely stopped, the rate at
which they postpone their energy consumption is limited. Similarly to the
two other control policies, loads begin to recover the non-consumed energy
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Figure 5.16: Power rate change for all running and arriving loads to P (t) =
PL from t = 4s until they individually reach their energy level. Parameters:
Tn = 8s, Pn = 1kW , λ = 1s−1. Left chart: Tdl = 12s. Right chart:
Tdl = 16s.

exactly Tn instants after their arrival time ta. However the amount of energy
they were actually able to postpone in the interval [ta, ta + Tn] is bounded
by (Pn − PL). Altogether, loads with the same user deadline Tdl controlled
in the Rate policy can shift half of the energy that could have been shifted
with the Stop policy.

0 ≤ Es(t)

λPn
≤ 1

2
Tn(Tdl − Tn) (5.34)

5.5.3 Local control design
As was described above, the rate decision is deterministic. It corresponds
to define the bias b(t).

ui,r(t) = b(t) = KDr
up(t) (5.35)

Setting KD such that 1−KDPn = PL with the above defined PL leads
to the following.

PLTdl = (1−KD)PnTdl ≥ En ⇒ KD ≤
Tdl − Tn
Tn

(5.36)

Yet, this can be overly restrictive. Loads may technically vary their
power rate in a larger range. The ideal KD much compromises between
the technical capability and the user deadline. As was discussed for the
Stop Policy, KD must be selected such that the maximum run time of loads
respects the user time deadline. This is very much dependent on the energy
content of the reference signal, as discussed below.
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Energy-time constraint and its consequences

We would like to model the continuous nature of the energy rebound. As
mentioned above, loads are subject to an energy constraint and a time
deadline constraint. Furthermore, all loads are supposed to have exactly
the same power rate P (t). Therefore, the energy and time constraints can
be combined in a very general way (eq. (5.37)).∫ Tdl

0

P (t− τ) dτ ≥ En ∀t (5.37)

Stopping Time of a single load

The stopping time ts(P (t), ta) is the instant in time at which a load has
consumed En given its arrival time ta and the power input P (t).

ts(P (t), ta) , min{t > ta|
∫ t

ta

P (τ) dτ = En}∀t ∈ [ta, ts] (5.38)

This stopping time is directly dependent on the actual realization of
power P (t). It introduces a strong non-linearity in the model : the upper
bound of the integral is implicitly defined.

Run Time of a single load

Knowing the instant in time ts(P (t), ta) at which the load stops, it is
straightforward to compute its exact run time T run. The run time is the
period of time during which the load was consuming energy.

T run(P (t), ta) = ts(P (t), ta)− ta (5.39)

As (5.35) gives b(t) ∈ [−KD, 0], the run time is bounded to T run ∈ T =
[Tn, Tn/(1−KD)]. A formal definition is found below.

T run(P (t), ta) , min{θ ∈ T |
∫ θ

0

P (ta + τ) dτ = En} ∀t ∈ [ta, ts](5.40)

Dynamic Run Time as a group variable

The above run time T run was defined for a single load, starting at t = ta
and subject to power control P (t)∀t ∈ [ta, ts]. It is easily generalized to any
load of the group. Assuming that the arrival process can be represented in
by a continuous starting density, some loads are starting (with density λ)
and some other are stopping at every moment in time t. The dynamic run
time T dyn(P (t)) is the run time of loads stopping at time t and subject to
control inputs P (t).
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T dyn(P (t)) , min{θ ∈ T |
∫ θ

0

P (t− τ) dτ = En} ∀t (5.41)

Equation (5.41) is defined backward w.r.t time t. It is a causal definition:
we search the run time of the loads that are stopping at time t looking at
the past modulation they have just been subject to.

Time distortion and rebound

The above expression is equivalent to a time schedule distortion.

Tn =

∫ Tdyn(t)

0

P (t− τ)

Pn
dτ = T dyn(t) +

∫ Tdyn(t)

0

b(t− τ) dτ (5.42)

The power modulation acts as if a virtual time distorting effect was
continuously reshaping the initial consumption profile. An increase in the
consumption time (T dyn(t) > Tn) leads to a positive energy pay-back or
rebound (i.e., demand is higher than expected), and conversely.

Impact on the power demand

Using the above definition, the power of a group of loads subject to power
modulation is found below.

N(t) =

∫ Tdyn(t)

0

S(t− τ)dτ = λT dyn(t) (5.43)

D(t) = λPn(1 + b(t))T dyn(t) (5.44)

The relative demand change x(t) is as follows.

x(t) =
1

λPnTn

(
λPn(1 + b(t))T dyn(t)− λPnTn

)
(5.45)

= b(t)
T dyn(t)

Tn
− 1

Tn

∫ Tdyn(t)

0

b(t− τ) dτ (5.46)

= b(t)− 1 + b(t)

Tn

∫ Tdyn(t)

0

b(t− τ) dτ (5.47)

= xFCR(t)− eD(t) (5.48)

The target part of the demand change is xFCR(t) = b(t) to which an
error term eD(t) is added, as a consequence of the energy rebound.

eD(t) =
1 + b(t)

Tn

∫ Tdyn(t)

0

b(t− τ) dτ (5.49)
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Let’s analyze this error term. The error corresponds to the power de-
mand of all additional running loads (N(t)−N0). Their (relative) power rate
is equal to P (t)/Pn = (1+ b(t)), and their exact number is a consequence of
the average energy that was shifted in the T dyn(t) previous instants, shown
below.

1

T dyn(t)

∫ Tdyn(t)

0

b(t− τ) dτ (5.50)

As can be seen, this is not what appears in the error term. Indeed, the
recovered energy get’s concentrated at the end of the natural run time of
each load. Indeed, as observed on figure 5.15, the time at which the rebound
of a certain action occurs is dependent on the remaining time of the load
at the moment the action is taken. This remaining time can be anywhere
between 0 and Tn. This can intuitively explain why the energy content is
actually divided by the probability of seeing a certain remaining time 1/Tn.

1

Tn

∫ Tdyn(t)

0

b(t− τ) dτ (5.51)

The behavior of the group subject to such control policy are explored in
more details in the next chapter. In the rest of this chapter, we will show
that, if the energy content of b(t) is small enough, the demand change x(t)
is approximately equal to the one in developed in the Stop Strategy.

5.5.4 Frequency response simulation
The same frequency tracking simulations are conducted. Their results are
shown on figures 5.17 and 5.18. These figures are almost exactly similar
to the one presented in the Stop Strategy (figures 5.13 and 5.14). More
detailed comparison are done in the following sections.
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Figure 5.17: Group response to frequency deviations in the Rate control
policy. Parameters: Tn = 1h, wl = Tdl − Tn = 30min, λ = 1s−1, Pn =
1kWh.
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Figure 5.18: Group response to frequency deviations in the Rate control
policy. Parameters: Tn = 1h, wl = Tdl − Tn = 30min, λ = 1s−1, Pn =
1kWh.
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5.6 Aggregate models: from homogeneous to
heterogeneous groups

The models presented above are relative to an homogeneous group with
parameters S(t) = λ, L : {Pn, Tn, En, Tdl}. They are presented below in a
condensed form. Superscripts j = {d, r, s} refer to the three policies: (d)
Delay, (s) Stop, (r) Rate.

These aggregate models represent the controlled demand of an homo-
geneous ECL group providing FCR with droop KD in each considered
policy.

x̂d(t|Tn) = KD

(
r̃up(t, Tn)− r̃up(t− Tn, Tn)

)
(5.52)

x̂s(t|Tn) = KD

(
rup(t)− 1

Tn

∫ Tn

0

rup(t− s)ds
)

(5.53)

x̂r(t|Tn) = KD

(
rup(t)− 1 + rup(t)

Tn

∫ Tdyn(t)

0

rup(t− s)ds
)

(5.54)

Aggregate models in homogeneous groups

The objective of this section is to find an equivalent formulation for
heterogeneous groups of ECL, which parameters are distributed on P ∈
[Pm, PM ] and T ∈ [Tm, TM ] with probability ΩP,T . The heterogeneous
group can be seen as a weighted sum of homogeneous groups of parameter
T ∈ [Tm, TM ] (e.g.,[3]). The contribution of each homogeneous group should
be weighted by the ratio of the number of running loads N0|T /N0 = T/E[T ]
and the marginal distribution of parameter T , denoted ΩT . Indeed, homo-
geneous models x̂j(t|T ) relative to each strategy j are computed for groups
counting N0|T = λT running loads, while the heterogeneous groups hold on
average N0 = λE[T ] running loads. The resulting heterogeneous model is
independent of the random power rate P .

x̂j(t) =

∫ TM

Tm

x̂j(t|T )
N0|T

N0
ΩT dT =

1

E[T ]

∫ TM

Tm

x̂j(t|T )TΩT dT (5.55)

where E[T ] =
∫ TM

Tm

∫ PM

Pm
T ΩP,T dP dT , and ΩT =

∫ PM

Pm
ΩP,T dP .

The Delay and Rate aggregate models are more computationally de-
manding when applied to simulations. The algorithm will need to keep
track of additional run-time-specific elements than in the Stop case: (1)
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The following aggregate models are relative to heterogeneous ECL groups
providing FCR with droop KD in each considered policy, given distribu-
tion ΩT .

x̂d(t) =
KD

E[T ]

∫ TM

Tm

(
r̃up(t, T )− r̃up(t− T, T )

)
TΩT dT (5.56)

x̂s(t) = KD

(
rup(t)−

1

E[T ]

∫ TM

Tm

ΩT

∫ T

0
rup(t− s)ds dT

)
(5.57)

x̂r(t) = KD

(
rup(t)−

1 + rup(t)

E[T ]

∫ TM

Tm

ΩT

∫ Tdyn(t,T )

0
rup(t− s)ds dT

)
(5.58)

Aggregate models in heterogeneous groups

the limited ramp rate represented by the filtered signal r̃up(t, T ) in the
Delay case and (2) the non-explicit computation of the dynamic run time
T dyn(t, T ) in the Rate case.

Some illustrative examples are shown below, where the group’s param-
eters P and T are distributed differently.

1. Independent and Uniformly distributed (Fig. 5.19 and 5.20).

ΩP,T =
1

(PM − Pm)(TM − Tm)
∀P ∈ [Pm, PM ],∀T ∈ [Tm, TM ]

2. Linearly dependent on T and uniformly distributed. We define PM (T ) =

Pm+
T − Tm
TM − Tm

(PM −Pm) as the maximum observable power of loads

with run time T (Fig. 5.21 and 5.22).

ΩP,T =


1

(PM (T )− Pm)(TM − Tm)
, ∀P ∈ [Pm, PM (T )], ∀T ∈ [Tm, TM ]

0 elsewhere

The second case may seem a little tricky, but is designed to illustrate
that heterogeneous models are independent of P , if the marginal distribu-
tion ΩT is correctly computed. In this example, the distribution is made
such that loads running for short time tend to have lower power rate.

In all figures presented below (5.19,5.20, 5.21 and 5.21), the dashed lines
represent the heterogeneous aggregate model and the plain lines are indi-
vidual simulations where each load is separately modeled. Both match very
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well with each other, as long as the parameter distributions are known. The
reasons explaining the difference between the two curves is simple: the plain
lines are random. They necessarily variate around their expected value rep-
resented by the dotted lines (aggregate model). More details on the model
accuracy are given in the following section.

Figures 5.19 and 5.20 show the FCR response of the group, controlled
in the three considered policies, for loads with relatively small run time and
considering the two above described distributions (independent uniform and
linear dependent). Figures 5.19 and 5.20 are relative to loads with longer
run times. Here is what can already been observed, in terms of group dy-
namics.

In general, the longer the load’s run time, the smoother the rebound.
This is valid for all control policies.

In the Delay policy, the parameter randomness allows to smooth out the
rebound impact. As can be seen from comparison of (C.1) and (5.56), the
rebound impact in the heterogeneous case (rup(t − T, T )) is averaged out
by the run time distribution. This is clearly visible by comparing relative
rebound magnitude w.r.t. the initial demand change on e.g., of the top
charts of figures 5.19 and 5.21. Let’s also note the impact of the ramp rate
limit: the efforts deployed by group with longer run times (e.g., 5.21) are
largely below the ones that are observed for shorter run times (e.g., 5.19).
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Figure 5.19: Heterogeneous group of loads with short run time with au-
tonomous power frequency control (parameters are independent uniformly
distributed). Plain lines: individual model (a group where each load is
individually simulated). Dashed Lines: aggregate model. Parameters:
T ∈ [100, 900]s, P ∈ [1, 10]kW , Tdl/Tn = KD = 50%, λ = 10s−1.
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Figure 5.20: Heterogeneous group of loads with short run time with au-
tonomous power frequency control (parameters are linearly dependent uni-
formly distributed). Plain lines: individual model (a group where each load
is individually simulated). Dashed Lines: aggregate model. Parameters:
T ∈ [100, 900]s, P ∈ [1, 10]kW , Tdl/Tn = KD = 50%, λ = 10s−1.
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Figure 5.21: Heterogeneous group of loads with long run time with au-
tonomous power frequency control (parameters are independent uniformly
distributed). Plain lines: individual model (a group where each load is
individually simulated). Dashed Lines: aggregate model. Parameters:
T ∈ [1, 2]h, P ∈ [1, 10]kW , Tdl/Tn = KD = 50%, λ = 10s−1.
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Figure 5.22: Heterogeneous group of loads with long run time with au-
tonomous power frequency control (parameters are linearly dependent uni-
formly distributed). Plain lines: individual model (a group where each load
is individually simulated). Dashed Lines: aggregate model. Parameters:
T ∈ [1, 2]h, P ∈ [1, 10]kW , Tdl/Tn = KD = 50%, λ = 10s−1.
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5.7 Model Accuracy in different load scenarios

The aggregate models accuracy must be assessed by comparing their out-
come to detailed simulations where loads are separately modeled. Two
scenarios are explored (Table 5.2). Scenario I exploits common types of
residential ECLs with a power typically below 2kW and running for a quar-
ter to half an hour (e.g., Water heating in white appliances [90]). Scenario
II aggregates larger loads such as electric vehicles or night storage heaters
which power is between 2 and 7 kW and running duration from 15 minutes
to 3 hours [112].

Table 5.2: Load parameters in the two scenarios (KD = Tdl/Tn = 30%).

Name Value Name Value

Scenario I Duration T ∈ [1/4, 1/2] h Power P ∈ [1, 2] kW
Scenario II Duration T ∈ [1/4, 3] h Power P ∈ [2, 7] kW

In appendix C, the interested reader can find detailed evaluation of an
approximation of the aggregate model in the rate policy. For large run time
Tn and relatively small energy content of the reference signal rup(t) in any
interval [t−Tn, t] (which is the case in practice), we show that the following
approximation is valid.

x̂s(t) ' x̂r(t) for large Tn (5.59)

We will use this approximation in the rest this work. In order to empir-
ically validate the use of all aggregate models, we conduct a Monte Carlo
analysis to evaluate the following error terms in the three control policies.

eji (t) = x̂j(t)− xji (t) ∀j = {d, s, r} (5.60)

We compare the exact individual simulations xji (t)∀i = 1..Nsim in each
policy j to its aggregate estimate x̂j(t). In the rate policy, let’s note that we
use the above mentioned approximation and deliberately compare the indi-
vidual model xr(t) simulated with the Rate control policy to the aggregate
estimate relative to the Stop policy x̂s(t). Both estimation and approxima-
tion errors are estimated together in this case. If the error is small enough,
it will show that the Rate aggregate model is suited to represent both Rate
and Stop policies.

5.7.1 Accuracy metric
In practice, an FCR provider must guarantee its response to frequency de-
viations stays within a tolerance band of ±5% around the frequency-based
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set-point. This can be deduced from the ±10mHz tolerance, in article 44 of
the Network Code on Load-Frequency Control [52], and that is referred to
as the Maximum combined effect of inherent Frequency Response Insensitiv-
ity and possible intentional Frequency Response Dead band of the governor
of the FCR Providing Units or FCR Providing Groups. Let’s note that the
tolerance is larger in, e.g., the UK (±7.5%).

In the following chapter of our work, the aggregate models will be used in
long-term simulations to assess such response performance and to conduct
economic analyses. Therefore, those models must have a very good accuracy,
leading their estimation error to be negligible compared to the 5% ENTSO-E
tolerance. The normalized root-mean-square estimation error derived from
each ejt should stay below 0.5% and the maximum normalized estimation
error below 1%.

5.7.2 Independent uniform distributions

In a first set of simulations, load parameters joint distribution ΩP,T is as-
sumed to be the product of two independent uniform distributions. A 4-
hour simulation is run in the two scenarios for Nsim = 50 realizations of
the group’s demand and for 4 different group sizes (λTn). Normalized root-
mean-square error distribution and maximum error distributions are shown
respectively on Fig.5.23 and Fig.5.24 (with Table 5.3). For comparison pur-
pose, the dashed lines on Fig.5.23 represent the volatility vD (eq. (4.59),
Poisson arrivals).
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Figure 5.23: Distributions of the root mean square error of the estimate with
varying group size. Top: Scenario I. Bottom: Scenario II. Dashed: volatility
interval vD. Parameters are independent and uniformly distributed.
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Figure 5.24: Distributions of the maximum error of the estimate with vary-
ing group size. Top: Scenario I. Bottom: Scenario II. Dashed: volatility vD.
Parameters are independent and uniformly distributed.

In these simulations, the arrivals are constant. Interestingly though, the
maximum observed absolute error corresponds more or less to 3vD, which
was the choice made for the volatility interval. The results shown on table
5.3 indicates that the models are perfectly suited to represent groups whose
arrival rate is situated between 10 and 100 [s−1].

Let’s note that the maximum observed absolute estimate error tends to
be higher in the Stop policy than in the Rate policy. This comes from the
selective nature of the Stop policy that adds an extra layer of uncertainty:
loads are randomly selected to get switched on or off.

Table 5.3: Maximum observed error (in %).

Policy Delay Stop Rate

λ[s−1] 5 10 100 5 10 100 5 10 100

Scenario I 3.2 2.5 2 3.3 3 1 2 1.5 1
Scenario II 2.3 2 1.7 2 1.6 0.7 1.3 0.9 0.6

Monte Carlo Convergence analysis could have been performed for addi-
tional precision, but our goal is to highlight the order of magnitudes.
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5.7.3 Linearly dependent uniform distributions.
For the sake of generality, a second set of simulations is considered in which
a linear dependence exists between the maximum power rate PM (T ) and the
actual run time of the load T . Normalized root-mean-square error distri-
bution and maximum error distributions are shown respectively on Fig.5.25
and Fig. 5.26. In comparison to the previous case, the error is in the same
order of magnitude. The prior knowledge of the exact parameter distribu-
tion is absolutely crucial to get to such low error levels.
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Figure 5.25: Distributions of the root mean square error of the estimate with
varying group size. Top: Scenario I. Bottom: Scenario II. Dashed: volatility
interval vD. Parameters are uniformly distributed with linear dependence.
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Figure 5.26: Distributions of the maximum error of the estimate with vary-
ing group size. Top: Scenario I. Bottom: Scenario II. Dashed: volatility
interval vD. Parameters are uniformly distributed with linear dependence.
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5.8 Chapter conclusion

The local controller design approach that was undertaken in this chapter
can be summed up in the following process.

1. Define the incremental control action (i.e., delay, stop, rate).

2. Observe its impact on the relative group demand change, also known
as relative flexibility x(t) = D(t)/D0 − 1.

3. Ignore the rebound, and deduce the number of such actions necessary
to impose a predefined change to the group demand (i.e., FCR control
x(t)→ KDr

up(t)).

4. Find a way to compute this number of action in an autonomous fash-
ion, based on local information (e.g., ∆f(t), T ).

The third element is crucial: in this chapter loads do not counteract the
rebound impact in any way. This will be the focus of the last chapter of the
present work.

After this design process, the expected reaction of homogeneous and
heterogeneous group has been condensed into aggregate models. These are
empirically shown to accurately model the group’s response, as long as the
group size is sufficient. Most of all, they will prove very useful to run long-
term simulations and estimate the year-long and system-wide impact of
exploiting ECL within FCR.



Chapter 6
The economics of autonomous frequency

control

Chapter summary

Bud Fox: How much is enough?

Gordon Gekko: It’s not a question of enough, pal. It’s a zero
sum game, somebody wins, somebody loses. Money itself isn’t
lost or made, it’s simply transferred from one perception to an-
other. [...] It’s all about bucks, kid. The rest is conversation.

G. Gekko (Michael Douglas), B.Fox (Charlie Sheen), Wall Street (1987)
In this chapter, the costs and benefits of autonomous power control are as-
sessed. Our objective is to simulate the overall system impact of a massive
deployment program in which a very large number of small electric appli-
ances are equipped with one of the above discussed controllers. Large groups
of flexible loads replace part of the generation assets providing Frequency
Containment Reserve.

Figure 6.1: Adapting to the available demand-side response.

Practically, large groups of small electric appliances will have a time
varying power consumption (e.g., EVs [73]). The vision developed through-
out this study is that the system operator will adapt to such variation. The
process is illustrated on figure 6.1 where different level of FCR are sourced
from the generation-side at different moment in time. The system requires
a certain total capacity FCRcap in order to guarantee the system stability
as well as frequency quality. The operator will source a first part of these
capacity needs from the available demand-side reserve FCRD(t) and source
the remaining part from the generation-side FCRG(t). The same concept
applies to seasonal or daily variations.

145
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In the rest of this chapter, we will however consider an ideal case in
which the provided capacity is constant. This leads to an overestimate of
potential benefits, but has the advantage of being more simple and trans-
parent. In order to evaluate the overall system impact of exploiting ECL as
FCR providers, a simple one-bus power system model is presented below.
It will be used to represent the system frequency dynamics. The model is
adapted to integrate different shares of FCR provided by loads. Firstly, it
is used in a short-term, event-based simulation. This allows to evaluate the
frequency dynamics following a major incident (N-2 criterion: loss of two
large generation assets). The model is later exploited in long term histori-
cal simulations. An idealized view of the Continental Europe power system
reconstructs historical frequency deviations and FCR activation levels. Sev-
eral simplifying assumptions are used but the important trends are very well
highlighted by this approach.

6.1 One-bus Power System Model

The power system frequency excursion ∆f(t) = f(t)− fn at time t directly
depends on the system imbalance I(t), the difference between total system
generation and demand. Frequency dynamics are represented by the follow-
ing equation (adapted from [6, 111]).

M
df(t)

dt
= I(t)− (KFCR + L)∆f(t)− KaFRR

τaFRR

∫
∆f(t) dt−D0x(t) (6.1)

I(t) MW System power imbalance at time t.
M MWs/Hz Angular Momentum of the rotating masses.
−KFCR MW/Hz Negative proportional feedback (FCR).
−L MW/Hz Natural frequency-dependence of total system load.
KaFRR MW/Hz Gain of integral feedback (aFRR).
τaFRR s Time constant of integral feedback (aFRR).
D(t) MW Controlled power demand of the ECLs group.
D0 MW Initial (Baseline) demand of the group.
x(t) MW Relative flexibility D(t)/D0 − 1 (aggregate model).

1

τgs+ 1
∆P setg (t) ∆Pg(t)

Figure 6.2: Transfer function of generation (Laplace domain).

The model considers the response of FCR (proportional with gainKFCR),
aFRR or secondary control (integral with gain KaFRR and time constant
τaFRR), as well as the contribution of the controlled loads D0x(t). In addi-
tion, natural stabilization effect provided by total system load (L) is taken
into account. In addition to Eq.(6.1), the finite response-time of generators
is modeled by a first-order transfer function (Fig. 6.2). The time constant
τg is set to 5s. We introduce the integral action to highlight the impact of
the rebound on slower reserve use.
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6.2 Performance Requirements

The performance that must be guaranteed by an FCR provider vary from
one system to the other. In Europe, ENTSO-E is in process of harmonizing
these requirements. At this stage (end 2015), the different system operators
can still specify their own requirements and the verification procedure used
for ex-post performance assessment. Several elements are set in common
in the network code for load-frequency control and reserve [52]. The FCR
participants must always guarantee that the deployed flexible capacity stays
in a ±10mHz band around the set-point defined by the power-frequency
curve. This is illustrated on figure 6.3.

FCR set-point [MW]

f(t)− fn[Hz]

−φ
φ

Upward Reserve

Downward Reserve

Dead-band

Figure 6.3: Power-frequency curve defining FCR’s set-point and tolerance band.

In ENTSO-E systems, the frequency control is designed such that steady-
state frequency deviations are contained in an interval ∆f(t) ∈ [−φ, φ]. Fur-
thermore, the FCR response saturates for frequency values that goes out of
this band. In Continental Europe, φ = 200mHz. Therefore, at the extreme
points, the ±10mHz tolerance corresponds to a ±10mHz/200mHz= ±5%
tolerance. This means that the power that is actually deployed by the FCR
participant must stay in a ±5% tolerance band around its frequency-based
set-point. This requirement is a guidance principle. In fact, larger tolerance
is accepted by the system operators. The Inter-TSO platform regelleistung
mentions a tolerance of +20% above the set-point value is accepted [148] in
FCR prequalification1 documents.

In opposition to ENTSO-E requirements, a resource that can only guar-
antee a ±10% control accuracy could potentially participate in the German
system. This resource could indeed offer 90% of its available flexibility in
such market and then act as if 100% had been offered. Let’s note however

1https://www.regelleistung.net/ext/static/prequalification: used by the four
TSO’s in Germany and partly by other TSO in the Netherlands, Austria, etc.

https://www.regelleistung.net/ext/static/prequalification
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that the prequalification test themselves [115] are much stricter in Germany
than, e.g., in Belgium. Indeed, they require to track with very large preci-
sion an activation profiles that has a relatively high energy content.

For a group of ECL delivering upward FCR to have acceptable perfor-
mances, the flexibility x(t)D0 offered by the group, including all rebound
errors, will need to stay within a small interval around the frequency-
dependent set-point. This is illustrated on figure 6.4.

Demand set-point [MW]

f(t)− fn[Hz]
−φ

Upward Reserve

Figure 6.4: FCR set-point and tolerance band for delivering upward Reserve.

6.3 Event-based Simulation of FCR.

In this section, the simulated system is subject to a sudden and major
imbalance. The system is initially in steady-state (∆f(t = 0) = 0, D(t =
0) = D0). The situation is representative of losing two large generators in
Continental Europe (N-2 criterion) together representing 3000MW. System
parameters are extracted from NC-LFCR [52].

Base Case: no demand response (DR) participation.

The Base Case (no DR) simulation parameters are shown on Table 6.1.

Table 6.1: Parameters of the system in the Base Case simulation.

Name Value Name Value Name Value
I -3000 MW M 25 GWs/Hz τaFRR 100 s
KFCR = KaFRR 15 GW/Hz L 4 GW/Hz τg 5 s

Case Studies: FCR provision from ECLs of different kind.

A large homogeneous group of ECLs now provides the entire FCR capac-
ity required at system level. The group is represented by the Rate/Stop
aggregate model xr(t|Tn).

xr(t|Tn) =
KD

φ

(
∆f(t)− 1

Tn

∫ Tn

0

∆f(t− s) ds
)

(6.2)
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Four tests cases are considered in which the run time parameter Tn of
the participating loads is successively set to 1/4h, 1/2h, 1h and 2h. The
provided FCR capacity KDD0 = 3000MW is constant. We fix KD to 50%
and therefore D0 to 6000MW . The parameter product λPn is adapted
accordingly in all cases. The response time of demand-side resources is
neglected. The group is assumed able to deploy its full capacity within one
time-step (one second). Simulation parameters are shown on Table 6.2.

Table 6.2: Parameters for the simulated cases with active loads.

Name Value Name Value Name Value
I -3000 MW M 25 GWs/Hz KD 0.5
D0 6000 MW L 4 GW/Hz φ 0.2 Hz
KFCR 0 GW/Hz KaFRR 15 GW/Hz τaFRR 100 s

6.3.1 Simulation Results

Immediate contribution of loads: improved stability.
As shown on figure 6.5 (top chart), FCR volumes sourced from traditional
generation (= FCRG) have been completely replaced by the active loads in
the case studies.
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Figure 6.5: FCR from generation (Top) and frequency change ∆ft (Bottom)
evolutions during the five first minutes following the event (occuring at t=0).
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The frequency excursions are contained in a tighter interval (∆f >-
150mHz) when FCR are provided by loads. They reach down to -200mHz
in the base case scenario. This increased frequency quality comes from the
ability of loads to respond in a much faster way than generators to frequency
changes. The short-term stability of the system seems increased.

Furthermore, as highlighted on the left chart of Fig. 6.6, the contribution
of loads to primary control diminishes the total volumes of FCR that are re-
quired. In the base case (dotted black curve), generation reacts more slowly
to frequency changes. About 80% of the available capacity of FCRG are
activated. In the other four studied cases, the active loads groups respond
quickly by consuming less power (they provide positive reserve). Only 70%
of the available FCR capacity (i.e. KDD0) is deployed.
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Figure 6.6: FCR activation in % of the offered capacity (3GW). Dotted line
represents the generation based FCR (base case) and plain lines are relative to
demand-side activation (studied cases). Left: first minute. Right: first 2h.

On the other hand, frequency deviations converge to zero at a slower
rate in case FCR are provided solely by loads. This is a first negative
consequence of rebound errors and may be observed on the right chart of
Fig. 6.5. Table 6.3 shows the frequency convergence time: the minimal time
after which frequency deviations remain within the ±10mHz band.
Table 6.3: Convergence time of the frequency error to the ±10mHz dead-band.

Tn 1/4h 1/2h 1h 2h Base Case
Time (s) 440 411 398 393 387
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Longer term perspective: the rebound impacts aFRR use.
Longer term FCR activation profiles (right chart of Fig. 6.6) highlight the
impact of the energy rebound. In the base case, generation units return their
initial set-point smoothly and the activated FCR volumes FCRG converge
to zero. In the other cases, control errors appear. Indeed, the load group
exhibits a counteracting behavior just after having provided its flexibility.
The consumption of the group starts increasing (negative volumes w.r.t.
FCR definition) to recover the amount of energy that has just been shifted.
The error profiles vary strongly depending on the running duration Tn of the
involved loads. The longer the running time Tn, the smoother the rebound
and its system impact.
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Figure 6.7: aFRR in the 150 minutes following the incident. The rebound
impacts largely the use of this slower reserve capacity especially when loads
with short run time participate to FCR.

Fig. 6.7 shows the aFRR activation profile following the event. Sim-
ilarities between the aFRR and FCR profiles (Fig. 6.6) highlight the im-
portant influence of aFRR in the rebound error compensation. As shown,
an additional amount of aFRR capacity must be contracted for rebound
compensation. This negative impact may completely outweigh the initial
positive impact of the loads. Table 6.4 gives some details on the required
capacity increase whose costs are detailed below. Let’s note that, eventu-
ally, aFRR reach the equilibrium value of 3000 MW corresponding to the
initial imbalance (Fig. 6.7).

Table 6.4: Increase in aFRR capacity consecutively to the energy rebound.

Tn 1/4h 1/2h 1h 2h
FRREnR 12% 6% 3% 1.5%
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Error fade-out and frequency impact.

The rebound error has a small impact on the system frequency. The major
consequence appears when the error goes back to zero (error fade-out).
Secondary control (aFRR) is not responsive enough to counteract the error
fade-out. The resulting imbalance induces small positive frequency changes
that stay within the tolerance band ±10mHz (Fig. 6.8).
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6.4 Historical Simulation of FCR.

In order to assess the quality of a group’s response, historical frequency
errors ∆f(t) and associated primary control response of the Continental
Europe grid in 2013 are simulated using Eq.(6.1).

6.4.1 Simulation settings and parameters.
The system presented in equation (D.3) is simulated during one year. The
aggregate models relative to the Delay and Stop/Rate control policies are
used to represent the load’s reaction. We explore the similar load scenarios
than presented on section 5.7.

The power system is simulated with different FCR replacement levels.
Indeed, the assumptions are such that the group replaces partly or totally
(i.e., 10% to 100%) the 3 GW of generation assets used for upward FCR
(negative frequency errors) in the CE synchronous area. Downward vol-
umes (and remaining upward volumes) are provided by ideal generation
represented by a first order transfer function with time constant τg. The
droopKFCR is divided into its upward and downward parts that are adapted
accordingly. The related frequency deviations ∆f−1 (t) (resp. ∆f+

1 (t)) are
frequency deviations limited to negative (resp. positive) values.

Kup
FCR +

D0KD

φ
= 15GW/Hz & Kdn

FCR = 15GW/Hz

The FCR set-point is derived below.

FCRsetG (t) = −Kup
FCR∆f−(t)−Kdn

FCR∆f+(t)

The other important system-related parameters are shown on Table 6.5.

Table 6.5: One-bus System Parameters.

Name Value Name Value Name Value
M 25 GWs/Hz πM 30% D0πM [0.3-3] GW
KFCR 15 GW/Hz L 4 GW/Hz τg 5 s
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6.4.2 Recovering historical net imbalance.
The historical system-wide imbalance signal I(t) that is at the source of fre-
quency errors must be evaluated from historical frequency measurements.
It will be used as input to the idealized system of equation (6.1) to re-
construct frequency deviations and FCR activation volumes when system
parameters are modified. This allows to evaluate the overall impact of intro-
ducing e.g., demand response as reserve provider. The input reconstruction
process consists in selecting an unknown input observer. Such observer is
itself a system that relies on some modeling assumption. The final result
will be very much dependent on the quality of the output measurements at
disposal, the choice of the initial system model and the selected observer
system. Several options exists, that are shortly described in appendix D.

We have at our disposal the average system frequency as measured over
successive periods of 10 seconds. Very fast phenomenon and extreme fre-
quency deviations cannot be correctly assessed from such data source. How-
ever, it is useful to assess frequency quality statistics and related flexibil-
ity activation volumes. We denote by yf (t) these frequency measurements
(around fn = 50Hz).

The selected power system model is denoted immediate damping with
integral action for rebound management. Shortly, the imbalance I(t) is
recovered by applying a constant proportional factor to historical frequency
measurements. Then, a layer of aFRR is considered in the model that will
only be used for counteracting the rebound action. We cannot reconstruct
more realistic imbalance I(t) from the available data. In practical situation,
aFRR basically counteract the integral of the frequency deviations ∆f(t).
However, modeling aFRR in such way would require to include, in the input
recovery process, the reaction of RR and other balancing resources as well
as the non-ideal nature of both aFRR and FCR (saturation, dead-band,
decentralized aspect of aFRR in LFC area, etc.). Indeed, the integral of the
frequency measurements we have at disposal is quite high. If pure aFRR had
to counteract this integral, they would reach unrealistic levels of deployment.
In order to obtain realistic aFRR deployment levels in simulations, and
explain the relatively high frequency integral, the non-ideal elements should
be taken into account. This is discussed on appendix D in more details.
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6.4.3 Simulation model
The model being simulated is shown below for clarity. It is slightly different
from the one-bus system model. In practice, we use a discrete time version
of the model below.

M
d∆f(t)

dt
= I1(t)− L∆f(t) + FCRG(t) + aFRR(t)−D0x̂

j(t) (6.3)

τg
dFCRG(t)

dt
= (−Kdn

FCR∆f+(t)−Kup
FCR∆f−(t))− FCRG(t) (6.4)

τg,2
daFRR(t)

dt
= aFRRset(t)− aFRR(t) (6.5)

aFRRset(t) = −KaFRR

(
ACEG(t) +

1

τaFRR

∫
ACEG(t)dt

)
(6.6)

∆f(t) Hz Frequency deviation at time t.
I1(t) MW System power imbalance at time t (immediate damping).
M MWs/Hz Angular Momentum of the rotating masses.
L MW/Hz Natural frequency-dependence of total system load.
FCRG(t) MW FCR volumes provided by generation.
aFRR(t) MW aFRR volumes provided by generation.
x̂j(t) MW Group relative flexibility (heterogeneous aggregate model).
D0 MW Initial demand of the group.
τg s Time constant of FCR generation resources.
Kdn
FCR MW/Hz Downward FCR droop for generation assets.

Kup
FCR MW/Hz Upward FCR droop for generation assets.

aFRRset(t) MW set-point of aFRR resources.
⇒ PI control with gain KaFRR and time constant τaFRR.

ACEG(t) MW Area control error sent to aFRR resources.
τg,2 s Time constant of aFRR generation resources.

As can be seen, aFRR resources react with a certain time constant to
the set-point delivered by a proportional-integral controller (PI) which take
error ACEG(t) as input.

Defining the ACE (integral action)

The challenge is to find the most representative control error ACEG(t) that
will be sent to aFRR resources. Indeed, we would like to represent the sit-
uation presented in the event-based simulation case where aFRR resources
participates to counteracting the rebound error. This error is not measur-
able in practice but appears indirectly in the frequency deviation. Yet, as
discussed above, aFRR are cannot be directly linked to the frequency devi-
ation in the historical simulation context.

For illustration purpose, we compare two situations. The first is an
ideal situation where the rebound error is perfectly known and sent to aFRR
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resources. In such case, the frequency quality is degraded if the group cannot
provide the correct damping or if its rebound error is not fully compensated
(e.g., ramp rate limit of aFRR, etc.).

ACEidealG (t) = −D0(x̂j(t)−KDr
up(t)) (6.7)

The second option is to use aFRR resources to counteract all frequency
changes differing from the historical ones. This means that aFRR will both
counteract the rebound but also take the role of FCR (though consistently
slower) if the group does not provide sufficient damping (e.g., Delay policy).
The resulting frequency quality will be close to the historical one except for
its fast-varying part. Indeed, the slow ramp rate of the aFRR resources
prevents them to deliver the same damping than what is expected from
FCR. As loads are restricted to provide upward volumes, the ACE accounts
for the negative frequency errors obtained in the simulation ∆f−(t) that
are larger (i.e., more negative) than their historical counterpart yf (t)−.

ACEhistoricalG (t) = KFCR

∆f−(t)− y−f (t)

φ

∣∣∣∣
<0

(6.8)

The two ACE definitions lead to different results , that we highlight
in a one day simulation on figure 6.9. This figure highlights the frequency
quality before (initial) and after the introduction of ECL control. The ECLs
are supposed to cover the full upward FCR range following either the Delay
or the Stop/Rate control policy. Each chart is relative to one of the above
ACE definition.

Figure 6.9: General frequency behavior for the two ACE definitions. Left
chart: ideal rebound compensation. Right chart: historical quality target.

As can be observed in the first chart of figure 6.9, the results obtained
using the Stop/Rate policy are almost similar to the initial data. The Delay
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control policy is effective in counteracting small frequency changes. As soon
as frequency variations are larger, the limited ramp rate start being con-
straining. This explains why larger negative frequency changes are observed
when loads are controlled under the Delay policy. On the right-hand chart,
the second ACE definition leads aFRR to overreact. Indeed, frequency is
pushed upward by the aFRR reaction.
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Figure 6.10: aFRR activation under the two ACE definition. Stop/Rate policy.
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Figure 6.11: aFRR activation under the two ACE definition. Delay policy.

The most realistic case seems to be the ideal rebound compensation.
This is particularly visible from the two following figures (Fig. 6.10 and
6.11) that show the aFRR activation volumes in the two considered cases.
The aFRR activation profiles obtained through simulations look much alike
their realistic behavior in the ideal compensation case.



Chapter 6 158

A zoom into frequency dynamics.

For illustration purpose, we show on figure 6.12 the frequency changes as
simulated from the first quarter of hour of 2015, where loads overtake the
complete upward FCR volumes. The initial frequency data are shown on
the top chart of figure 6.12 (stair shape), and compared to the simulated
frequency change (dash-dot) obtained via the recovered input I1(t). The two
other charts represent respectively the delay and Stop/Rate control policy.
In both of these charts, the dashed lines are relative to scenario I and plain
lines to scenario II. As a recall, scenario I accounts for loads with small run
time (i.e, Tn ∈ [1/4h, 1/2h]) and scenario II for loads with larger energy
needs (i.e., Tn ∈ [1/4h, 3h]). In what follows, the term with DR (demand
response) refers to cases where loads are actively controlled.
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Figure 6.12: Frequency deviation from initial data, simulated from recovered
input first without and with DR under the two control policies (DR covers
the full upward FCR).

In the Stop/Rate control policy, the frequency evolves similarly with
and without DR. However, in the Delay policy, only loads with short run
times (scenario I) lead to acceptable performances. In this control policy,
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the ramp rate of the group demand change is inversely proportional to the
run time of the involved loads (see xd(t|Tn) in (C.1)). However, the gain
KD is set to 50% according to the the assumed load technical capability but
does not take into account the group ramp rate limit. As can be observed
on figure 6.12, loads with short run times react relatively well for small fre-
quency deviations. These good technical performances start degrading for
larger and fast varying frequency errors.

These performances are assessed rigorously below.

6.4.4 Response quality with ideal ACE definition
We show below the response of the group x̂(t) as a function of the normalized
frequency deviation r(t) in both simulated scenarios (1-year simulation). As
the number time steps in the simulation is very large, we represent the simu-
lation output in the form of convex hulls. Let’s define the simulation output
couple (x̂(t),∆f(t)/φ) for each time t in the simulation. The associated set
that gathers the result of the full simulation is (X ,F). Let’s distinguish two
subset (X−,F−) and (X+,F+) that are respectively relative to outputs
where ∆f(t) < 0 and ∆f(t) ≥ 0. We compute the union of the convex hulls
of each subset, which results in a set denoted (Xhull,Fhull).

(Xhull,Fhull) = Conv(X−,F−) ∪ Conv(X+,F+) (6.9)
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Figure 6.13: Delay performance for 10% and 100% FCR replacement level
(Scenario I).

In scenario I, the performances of the Delay control policy are poor
(Fig. 6.13), even though quite good for small frequency changes (∆f(t)/φ >
−30%). The red sets indeed jumps rapidly out of the tolerance band. The
performance of the Stop/Rate policy are unsatisfactory as well (Fig. 6.14).

In Scenario II, the performances of the Delay control policy are even
poorer than in scenario I (Fig. 6.15). In the Delay policy, the dominant
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Figure 6.14: Stop/Rate performance for 10% and 100% FCR replacement
level (Scenario I).
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Figure 6.15: Delay performance for 10% and 100% FCR replacement level
(Scenario II).
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Figure 6.16: Stop/Rate performance for 10% and 100% FCR replacement
level (Scenario II).

source of error is the limited ramp capability of the group. The provided
flexibility cannot ramp down faster than D0/Tn (homogeneous case). The
delay strategy behaves therefore better with loads of small duration (Scen
I). On the other hand, the performance of the Stop/Rate are very good
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(Fig. 6.16), and detailed below.

−100% 0% 100%
−100%

−80%

−60%

−40%

−20%

0%

20%
R
el
a
ti
v
e
R
es
p
o
n
se

x̂
t/
K

D
(%

)

Frequency error ∆ft/φ (%)

 

 

±5% Tolerance band

Stop/Rate

with Rebound Managt.

Tn ∈ [ 14 , 3]h

Figure 6.17: Convex Hull of the group’s Response w.r.t. frequency devia-
tions in the second Scenario. The net response (with rebound management
from aFRR) is also shown.

As can be observed, the rebound management is very effective. The
most important feature is that the answer gets more precise as the devia-
tion are larger. This is a desirable feature as the group responds perfectly
well in case the system is subject to large disturbance. The response of the
group together with the aFRR contribution is providing an almost perfect
response. If the aFRR contribution is omitted, the group could be perceived
as providing an inadequate service. Indeed, the operator would notice that
a certain number of points are out of the tolerance band.

The only way to overcome this issue requires a threefold action (1) slight
increase of the tolerance band to ±10%, (2) select loads with larger run time
and (3) virtually decrease the baseline to benefit from the negative tolerance
band. The effect of these actions are illustrated on figure 6.18.
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Figure 6.18: Adjusted Convex Hull of the group’s Response w.r.t. frequency
deviations for loads with long run time (here : Tn ∈ [3, 5]h).

6.4.5 Consequences of Rebound management

In the long-run, energy rebounds may have a strong impact on the system
frequency distribution. To counteract this trend, an additional layer of
automatic Frequency Restoration Reserve (aFRR) slowly compensates for
energy rebound. The total amount of extra FRR capacity FRREnR that
were required in the simulation for this specific purpose is shown on figure
6.19.
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Figure 6.19: Effect of Run Time and Droop KD on the additional aFRR
capacity aFRR+ required for rebound compensation.
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The required capacity FRREnR (MW) depends on run time of the in-
volved loads and on the selected Droop KD. It is shown on figure 6.19 in
relative proportion of FCRD = 3GW , the FCR volumes covered by the
flexible demand. Results are shown for each control policy and for different
run time distributions. Loads with longer run time induce lower extra aFRR
needs. Yet, the Delay policy is unable to maintain historical frequency qual-
ity level (see Figure 6.9). A higher droop KD tends to decrease the aFRR
needs in the Delay policy (see KD = 30% and KD = 50% on 6.19). The
ramp rate constraint is indeed more binding for larger KD, which in turn,
degrades performances. As this simulation exploits the ideal ACE defini-
tion, aFRR volumes do not perceive this degradation. They are simply less
solicited.

Performances of the Stop/Rate policy exploiting loads with larger run
time are good. A positive business case could emerge from this policy.
This is discussed in details below. The bar heights of the third (or fourth)
chart in figure 6.19 are compared to the event-based results in Table 6.6.
Historical simulations lead to higher FRR needs than what was obtained in
the event-based simulation.

Table 6.6: Increase in aFRR capacity due to energy rebound.

Event-Based - 100% DR - Stop/Rate Policy

Tn
1
4h

1
2h 1h 2h

FRRebEnR 12% 6% 3% 1.5%

Historical - 100% DR - Stop/Rate Policy

Tn
1
4h-

1
2h

1
4h-3h 2h-3h 3h-5h

FRRhistEnR 30% 21% 17% 14%

Practically speaking, the system operator will need to contract an addi-
tional amount of capacity FRREnR for rebound compensation. The sourc-
ing of such extra capacity can be costly. The overall economic impact de-
pends on the relative costs of FCR and FRR capacity. A detailed cost-
benefit analysis is conducted in the following section.
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6.4.6 Rebound management with the historical quality
ACE definition.

Stop/Rate policy results

The group’s response exhibit lower performance with the second ACE defi-
nition (figure 6.20).
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Figure 6.20: Convex Hull of the group response (Stop/Rate, 2nd ACE def.).

In the Stop/Rate policy, the rebound management is indeed less effective
but the frequency quality can actually be maintained very close to its initial
level.
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Figure 6.21: Distribution of the System Frequency deviation: initial vs simulated
case (Stop/Rate policy). Rebound compensation via the frequency error.

As can be seen on figure 6.21, the frequency tends to be a little lower in
this case. The information must now transit via the frequency signal. The
frequency will tend to go down due to the rebound error but will be pushed
back upward by the slower aFRR resources.
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Delay policy results
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Figure 6.22: Distribution of the System Frequency deviation : initial v.s. simu-
lated case in the Delay policy. Rebound compensation via the frequency error.

In the Delay Policy, the limited ramp rate of the demand-side response
cannot be fully compensated by the slower FRR volumes. The frequency
quality is much worse (Fig.6.22) while the extra capacity required is very
high (Fig.6.23).

Rebound management and FRR capacity increase

The aFRR needs a very high in the Delay policy (Fig. 6.23). In the
Rate/Stop case, the aFRR capacity is lower with this second ACE defi-
nition. This means that frequency quality can be maintained closely to
historical results, even though the rebound is not fully compensated.
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Figure 6.23: Additional aFRR capacity FRREnR required for rebound com-
pensation. The rebound is compensated via the frequency error.
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6.5 Costs and benefits at system level

We assess in this section the economics of the Stop/Rate control policy.
The cost-effectiveness of the proposed solution strongly depends on the local
system context.

6.5.1 System Benefits from introducing load control
The generated yearly profits πFCR come from avoided payments to tradi-
tional FCR resources, expressed below in millions of euro. A factor γ is 2
in the symmetric reserve case, and 1 in case loads are restricted to provide
an asymmetric service.

πFCR = γ FCRcap p̄
FCR 8760 (6.10)

The FCR capacity price pFCR(t) and its average value p̄FCR in the Bel-
gian system are shown on figure 6.24. Each bar represents the asymmetric2
price of each 2015 monthly tendering period and is relative to a specific
product of the Belgian system.
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Figure 6.24: FCR monthly prices by product type (Belgium, 2015) [47].

In the Belgian system, FCR are divided into four different products :
symmetric 200, symmetric 100, upward and downward. They are briefly
presented in the power frequency curve of Figure 6.25. There are two sym-
metric and two asymmetric products.

6.5.2 Additional System Costs
The ECL response also involve costs of which rebound management and
demand-side costs (controller) are the main source.

2Must be counted twice in the revenues of a symmetric resource.
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Figure 6.25: The FCR products, Belgian system 2015. Source: Elia [47].

Cost of capacity: FCR vs aFRR

A first part of yearly additional costs CaFRR originates from extra aFRR
capacity FRREnR(Tn) required to cover the rebound. It is dependent on
the load’s run time Tn (or scenario). The price for p̄aFRR is chosen as its
average in the Belgian market in 2015 (Figure 6.26).

CaFRR = γ FRREnR(Tn) p̄aFRR 8760 (6.11)

Due to the rather small energy content of FCR, costs related to extra
activation payment of aFRR are neglected. Consequences on capacity reser-
vation costs are indeed much higher. We will consider both event-based and
historical simulation cases to account for the required FRREnR.
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Figure 6.26: aFRR monthly prices in the Belgian area (2015). Source: Elia
[47].



Chapter 6 168

Demand-side Costs

Even when externally controlled, loads behave very much as scheduled in
their initial planning. Indeed, the energy content of the service they provide
is small enough such that consequences on run time are small. FCR capacity
is designed to cover extremely rare and very large events. Most of the time,
the percentage of available capacity that is actually deployed is quite small.
The consequences on loads run time can be estimated from the frequency
signal.

T run(t, Tn)

Tn
' 1 +

KD

φ

1

Tn

∫ Tn

0

∆f−(t− s) ds (6.12)

Results of the approximation (6.12) are illustrated for loads with differ-
ent natural run time in figure 6.27a and 6.27b respectively for KD = 30%
andKD = 50%. Several box-plot charts highlight the distribution of the rel-
ative run time increase that would have been experienced by loads exploited
for upward FCR in 20153.
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Figure 6.27: Run Time change distribution due to FCR participation.

As can be seen on both of the above figures, the largest run time change
occur rarely. Users should not get compensated for such small change in
consumption duration. Therefore, demand-side costs are limited to con-
trollers’ installation costs.

6.5.3 Cost-benefit analysis: maximum controller cost
A cost-benefit analysis of the above results is conducted. The main assump-
tions are presented below. Our goal is to find the maximum allowed cost

3Results from a 1 year simulation, from Nov.2014 to Oct.2015.
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for the power controller that would lead the net present value NPV to be
zero after a 5 year period. Considering an initial cost (installation costs)
of C0 and successive net revenues NR(k) (i.e., net cash flow) for each year
k ∈ [1, Ny], the net present value of the program after Ny years is defined
below. We apply a discount rate rd (cost of capital) on each year’s revenue.

NPV (Ny) = −C0 +

Ny∑
k=1

NR(k)

(1 + rd)k
(6.13)

The cost of capital rd is set to 10%, which corresponds to a medium
level of risk according to [54]. In case of mandatory participation programs
(e.g., standards), this is an overestimate. The goal is therefore to derive the
maximum total cost C0(5) such that the NPV is zero after 5 years.

C5y
M =

5∑
k=1

NR(k)

(1 + 0.1)k
(6.14)

The yearly revenues are constant NR = πFCR − CaFRR. The price
for FCR and aFRR are conservatively set to respectively 10/e/MW and
12/e/MW. These prices are relative to a one-directional service.

The maximum allowable cost per participating load is c5yM = C5y
M /nl. Re-

sults are shown on figure 6.28 for Pn = 2kW,KD = 50% loads with different
parameters and products (asymmetric upward or symmetric flexibility).
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Figure 6.28: Maximum acceptable cost of the power controller as a function
of the load’s run time and weekly use. Parameters: Pn = 2kW,KD = 50%.
Left chart: symmetric reserve. Right Chart: assymetric upward reserve.

We consider loads with different weekly utilization rate Un which is the
average number of time that a load is requested to start on a weekly basis.
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As can be seen on figure 6.28, a filled grey area indicates a range of possible
controller costs estimated to lie between 5e[57] and 20e[66]. Let’s note
that, with these simple controllers, the proportional gain KD/φ cannot be
remotely changed.

The control makes economic sense for loads providing a significant po-
tential flexibility Fwk per week. The potential flexibility per week Fwk =
KDUnEn is defined as the product of the appliance average energy con-
sumption per week (= UnEn) with the maximal relative change that the
appliance can impose to its power rate (= KD). Let’s note the large influ-
ence of Un, which increases per load revenues, as benefits must be divided
among a lower number of participants.

For simplicity, we have assumed an ideal case where loads start regularly
all along the day, week, month and year. The required number nl of partic-
ipating loads to replace the traditional FCR capacity (i.e., 3000 [MW]) is
inversely proportional to the potential flexibility Fwk offered by each load.
It is indeed proportional to the starting rate λ required for loads consum-
ing an energy En to have a sufficiently large baseline power D0 such that
KDD0 = 3000MW . When λ is expressed in number of start per hour (i.e.,
or En in kWh), the formula below can be used to assess the number nl of
participating loads.

nl = 24[h.d−1]λ[h−1]
7 [d.wk−1]
Un [wk

−1]
=

3.106

KDEn

7× 24

Un
=

504

Fwk
[mio](6.15)

On Table 6.7, detailed results are presented for 2kW loads delivering
symmetric capacity (i.e., γ = 2) reaching up to 50% of their initial power
and running on average twice a week (i.e., Un = 2). The largest influence
on overall profits comes from the required number of active loads nl (details
below). The extra aFRR reservation costs are of lower importance. Let’s
note that, the FCR/FRR price spread has been chosen conservatively.

Rebound error compensation within balancing markets

It is possible to improve the above results. In fact, the ECL group and
aFRR are the only resources capable of providing sufficient power/energy
for covering the N-2 criterion (event-based simulation). Therefore, the re-
quired capacity FRRebEnR resulting from the event-based is a lower bound
for the capacity increase.

However, in more normal situations, covered in the historical simulation,
the slowly evolving component of the frequency error could be partly com-
pensated by other resources than aFRR. The capacity increase FRRhistEnR
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Table 6.7: CBA results (γ = 2, Pn = 2, KD = 50%, Un = 2).

Load Duration Tn h 1/4 1/2 1 2
Load Flexibility Fwk kWh/wk 0.5 1 2 4
Starting rate λ s−1 3340 1670 835 413
Required number of loads nl (mio) 1000 500 250 125
Annual energy kWh/load 50 100 200 400
Slow reserve needs FRRhistEnR MW 1000 850 700 600
aFRR yearly costs CaFRR (mio e/y) 210 180 150 130
FCR yearly benefits πFCR (mio e/y) 525 525 525 525
DR yearly profits (mio e/y) 315 350 375 400
Per Load yearly profits (e/load /y) 0.31 0.7 1.5 3.2
Controller’s cost e 1.2 2.6 5.7 12

obtained in the historical simulation is therefore an upper bound. In prac-
tice, RR or even the balancing market (non-reserved) could cover the most
part of the difference between the upper and lower bound of FRREnR.

FRRebEnR ≤ FRREnR ≤ FRRhistEnR (6.16)

Indeed, as the energy component of the frequency deviations is slowly
evolving the system operator would have time to call for less expensive
capacity in order to relieve aFRR from covering the rebound error. The
consecutive costs that would be required to pay for the flexible energy vol-
umes in the balancing market are negligible with regards to the reservation
costs of aFRR capacity [88].

The results of the cost-benefit analysis when FRREnR are considered at
their lower bound (event-based simulation) is shown on figure 6.29.

In this case, loads with a run time around 30 minutes become possibly
interesting. Yet, the results to not change fundamentally. This suggests that
the main driver of the maximum controller cost is the number of involved
loads, and therefore the annual energy consumption of the load. This can
be e.g., visualized from comparing the bar (Un = 0.5, Tn = 2h) with bar
(Un = 1, Tn = 1h) that have almost the same height, as they are relative to
loads with the same annual energy consumption. We won’t enter into longer
discussions, but the interested reader can find some details about perfect
forecast energy rebound compensation within balancing markets in [88].
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Figure 6.29: Maximum acceptable cost of the power controller when extra
aFRR needs are set to their lower bounds (event-based simulation). Param-
eters: Pn = 2kW,KD = 50%. Left chart: symmetric reserve. Right Chart:
assymetric upward reserve.

Doubling the return period

The same results are shown on figure 6.30 when considering that the NPV
should be zero after 10 years, instead of 5, and that the aFRR needs are at
their upper bound.
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Figure 6.30: Maximum acceptable cost of the power controller for NPV = 0
after 10 years. Parameters: Pn = 2kW,KD = 50%. Left chart: symmetric
reserve. Right Chart: assymetric upward reserve.
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6.5.4 Conclusion
Installing simple controllers seems beneficial on the overall system perspec-
tive for loads consuming at least 100 − 200kWh annually, most probably
even 300kWh, and running for a minimum of 30 consecutive minutes. This
annual energy consumption can be reached by batch water boilers or small
industrial pumps and are way below electric vehicle’s consumption. In the
more conservative case, loads consuming about 100kWh4 annually require
ultra low cost controllers of about 1.4efor loads when restricted to deliver
asymmetric flexibility.

4E.g. small dishwashers or refrigerators, though this model does not capture the
dynamics of TCL.
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Power control with rebound management

Chapter summary

Rien ne sert de courir, il faut partir à point (La Fontaine, 1668).
As the tortoise’s hard work surpasses the hare’s idleness, can a load
group parade in a more convenient carapace ? What would it cost
for loads to counteract their nature and store energy a little longer
?
Energy rebounds are source of extra costs as they call for additional

slower reserve capacity (aFRR) which are expensive. This chapter discusses
an advanced control framework which essentially allows to store energy tem-
porarily within the load group instead of counting on the slower reserves for
rebound compensation. Consecutively, the additional efforts undertaken on
the group-side require part of the initial flexibility to be excluded from FCR
which in turn decreases the per load profitability of this control scheme.

7.1 Objectives

The objective of this chapter is to design an autonomous power controller
able to deliver FCR while compensating for the rebound error. This sup-
poses that some energy management elements are integrated. Indeed, as
was shown in the previous chapters, any attempt to control a group’s power
always leads to some energy to be stored within the group. The amount of
energy that can be stored is limited by the load’s characteristics and by the
end-user preferences. Therefore, some energy recovery mechanism must be
integrated into the local controller. Based solely on local frequency mea-
surements, on the parameters of the load being controlled and on this energy
recovery mechanism, this controller must be able to assess how much firm
flexible capacity it can deliver (capacity allocation) to the TSO. In addition,
it will need to compute the appropriate load power set-point autonomously.

In this chapter, we assume that the load’s power can be controlled con-
tinuously within certain limits P (t) ∈ [PL, PH ] (rate strategy). In a first
part, we study homogeneous groups. The power P (t) of each load is a
unique control input that applies to all running loads in the group. As-
suming a constant arrival rate, we compute the feasibility set gathering all
reference signals (power) that can be tracked by the group’s demand with
full rebound error compensation. Such signals have bounded power and

175
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energy content. The power and energy limits depend on the load and user-
related parameters. Due to these limits, an energy management process
must take place, limiting the energy content of the reference signal that
the group demand must track. The consequences are that the group stops
following perfectly the frequency of the network. It induces therefore an
other rebound error, but whose power profile can be decided in advance,
and that can be predicted by the power system operator. The operator can
therefore decide to compensate the forecast rebound error in an optimal way.

In a second part, we extend the analysis to heterogeneous groups. As
we do not consider any communication infrastructure, the loads continue
to behave as if they were part of an ideal homogeneous group (as was done
above). The single consequence of the heterogeneous nature of the group
happens on the system operator’s side: it must assess, given the parame-
ter distribution and the energy recovery mechanism at stake, the amount
of FCR that is being provided by the running loads, and the consecutive
rebound error that needs to be compensated.

7.2 Inverse modeling power control in Homo-
geneous group.

Let’s take a look at all constitutive elements of the advanced power con-
troller illustrated on figure 7.1 : (1) energy management (E.Mgt), (2) capac-
ity allocation and (3) inverse model. An indirect feedback exists between
the group’s demand and the frequency deviations.

f(t)− fn
φ

E. Mgt KD
Inverse
model

Capacity

Group

System

Allocation

re(t)
P (t) D(t)

Power

Figure 7.1: Overview of the constitutive elements of the closed-loop power
controller able to counteract rebound errors for a limited set of reference
signals.
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7.2.1 Energy management
The energy management block limits the energy content of the reference
signal that the group must track. Practically, it can take multiple forms.

1. High-pass filtering of the frequency measurements for offset removal.
Loads counteract the fast-varying component of the measured fre-
quency deviations while slower component (energy content) is com-
pensated by slower resources. This is already implemented today
for aFRR-like products (e.g., DReg-AReg signals in the PJM system
[120]) and has been extensively discussed in the literature (e.g., [107,
23]).

2. Autonomous coordination process. Loads autonomously return to a
predetermined state on a regular basis [159].

3. Ex-post correction through the use of limited communication (decen-
tralized control). The loads react autonomously in the short-run. At
the same time, the system operator computes an energy recovery tra-
jectory that is communicated to each load on a regular basis.

The purpose of energy management is actually to transform the shape of
the natural rebound error into a more desirable power profile and spread the
energy recovery on longer time periods. The recovered energy is provided
by slower reserve (i.e., aFRR and/or RR) and by the system as a whole
(e.g., frequency deviation, natural damping). Delaying the natural rate at
which energy is recovered (rebound error) requires some energy storage ca-
pability. A portion of the storage capacity of the group must be specifically
reserved and used for this purpose alone. The power that can be delivered
as FCR gets thereby limited. Let us also note that the energy management
process has another advantage when implemented locally: it prevents error
propagation [88].

7.2.2 Capacity allocation
Assuming that an energy management process is implemented, the group’s
demand must now respond to energy bounded frequency deviations ∆fe(t)
defining the reference signal re(t) = ∆fe(t)/φ. The capacity allocation is a
feasibility problem which aim is to answer the following question.

Given the energy bounds of the filtered frequency deviation and the load
parameters:

Bounds: |
∫

∆fe(t)dt| ≤ c
Parameters: [Pn, Tn, En, PL, PH , Tdl]
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What is the highest gain KD (droop), or part of the group’s demand
(= KDD0), that can be offered as flexible capacity and guarantees perfect
tracking performances ?

7.2.3 Inverse model

An inverse modeling control framework is exploited to define the power set-
point P (t) of all running loads. Given the droop KD and the input signal
∆fe(t), the group must track a bounded reference signal KDr

e(t) with per-
fect precision.

The equation system that must be inverted is the aggregate group de-
mand D(t). For convenience, we denote the dynamic run time T dyn(t, Tn)
by τ(t). We use the notation defined in [83] to express time delayed vari-
ables: xt(τ) = x(t− τ).

S =


dτ(t)

dt
= 1− P (t)

Pt(τ(t))
(7.1)

D(t) = λ τ(t)P (t) (7.2)

with : τ(0) = τ0; P (t) ∈ [PL, PH ]∀t; 0 < PL < Pn < PH <∞; P (t ≤ 0) =
Pnν(t) (known).

Let’s note that, with known limits 0 < PL < PH < ∞, a natural rate
Pn can always be defined to have 0 < PL < Pn < PH < ∞. This means
that the group may deliver upward and downward flexibility.

Equation 7.1 is the time derivative of the energy conservation constraint
(recalled below in eq.(7.3)). It defines implicitly the time-varying delay
(dynamic run time) τ(t). ∫ τ(t)

0

Pt(s) ds = En ∀t (7.3)

Supposing an energy bound c of the reference signal re(t), and the
consecutive symmetric droop KD(c, Tn, pL, pH), the inverse problem be-
low must be solved by each load to define its normalized power set-point
p(t) = P (t)/Pn (i.e., the above system is normalized).

dτ(t)

dt
= 1− p(t)

pt(τ(t))
(7.4)

p(t) = KD
re(t)

τ(t)
(7.5)
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This system must be solved autonomously by each load. Let’s imagine
a load arriving at t = 0. Solving the above system will require the knowl-
edge of both τ(t = 0) and all previous inputs p(t),∀t ∈ [−τ(0), 0) which
themselves dependent on all values in the interval [τ(−τ(0)),−τ(0)), etc.
Fortunately, this system has an interesting property: its evolution becomes
asymptotically independent on the exact power profile that was tracked
in the past. What counts is the energy of the past reference values. We
must therefore design an energy management process that would allow the
loads to compute this energy value. This will be performed by observing
the reference signal for a sufficiently long time, as discussed below in more
details.

7.3 Energy management through high-pass fil-
tering

Among the existing strategies to manage the energy content of the reference
signal we focus on a high-pass filtering method described in [23], that we
denote as the Borsche filter. The idea is to subtract the running average
the frequency deviation computed over a period a from the instantaneous
frequency deviation.

∆fe(t) = ∆f(t)− 1

a

∫ a

0

∆f(t− s) ds (7.6)

Let’s note that this Borsche filter takes a very similar form to the
Stop/Rate aggregate model. Therefore, the filtering process will impact
the network similarly as an homogeneous group of ECLs controlled with
the Stop or Rate policy and whose loads have a natural run time Tn = a.
Therefore, this advanced power control makes sense only for loads which
have a shorter run times than the selected parameter a.

There are several advantages at using such a filter. Firstly, the compu-
tation of ∆fe(t) may easily be decentralized. Secondly, the energy bounds
can be theoretically computed. Finally, it allows for error rejection. Indeed,
possible measurement bias and error will not propagate in the integral of
∆fe(t).

The energy content of the filtered frequency deviation ∆fe(t) is bounded
by the integral of the non-filtered part in the time window [t− a, t]. Let us
define ∆F (t) as the primitive of ∆f(t). Let us assume ∆F (t < 0) = ∆f(t <
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0) = 0.

Ef (t, a) =

∫ t

0

∆fe(s)ds = ∆F (t)− 1

a

∫ a

0

∆F (t− s)ds (7.7)

As ∆F (t− s) = ∆F (t)−
∫ s

0
∆f(t− z)dz, this gives

Ef (t, a) =

∫ t

t−a
∆fe(s)ds =

1

a

∫ a

0

(∫ t

t−s
∆f(z)dz

)
ds (7.8)

At time t, the integral of the filtered signal is completely defined by the
frequency deviations value in the time window [t−a, t]. The energy content
Ef (t, a) is normalized by deviation φ = 200mHz and the result is bounded
below by c−(a)(negative frequency deviations) and above by c+(a)(positive
frequency deviations).

c+(a) = max
t

Ef (t, a)

φ
(7.9)

c−(a) = max
t
−Ef (t, a)

φ
(7.10)

The energy bound of the filtered frequency signal c(a) = max
(
c−(a), c+(a)

)
can be computed from historical data. Figure 7.2 represents the bounds of
the energy content c−(a) and c+(a) of the filtered signal and compares it
to the maximum energy content of the original frequency signal computed
on the same period a. These are computed from 10s-based frequency mea-
surements covering a one year period between Nov. 2014 and Oct. 2015
(Source: RTE).

Bounds of the (non-filtered) frequency integral

The filtered frequency guarantees the energy bounds c(a). However, the
original frequency has an energy content whose bounds do not appear on
the chart. A physical limit exists thanks to the time control process (chapter
10 of [52]). The UCTE operation handbook [145] was more precise: the
integral of the frequency deviations should be at most of ±3000 cycles. The
objective of this bound is to insure that frequency-synchronized clocks would
experience a maximum shift of 1 minute. Indeed, 50 cycles are counted
by clocks as corresponding to a 1 second as the frequency is 50Hz. No
compensating action should be undertaken by the system operator while the
time shift stays below ±20 seconds (±1000 cycles). In normal situations,
the target is to keep a shift ±30 seconds (±1500 cycles). The normalized
deviations r(t) = ∆f(t)/φ are therefore subject to the following bounds.∣∣∣∣ ∫ ∆f(t)dt

∣∣∣∣ ≤ 3000 ⇔
∣∣∣∣ ∫ r(t)dt

∣∣∣∣ ≤ 15000s = 4h10. (7.11)
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Figure 7.2: Extreme energy content of the frequency deviations (dashed)
and bounds of the filtered counterpart (plain) as function of averaging period
a in the symmetric case, as observed from 1-year consecutive data. Top:
maximum. Bottom: minimum.

As can be seen, thanks to the filter, the theoretical bound c(a) stays
much lower than the extreme case (4h10), and even from the normal oper-
ation case (2h05). It will therefore limit the energy storage requirement on
the group-side.

Asymmetric service

For the sake of generality, it is also important to look at these energy con-
tents in case loads are restricted to deliver an asymmetric flexibility. The
consecutive limits are respectively cas− (a) and cas+ (a). Practically, they do
not differ from the symmetric case. Extreme frequency events at the source
of the largest energy deviations are by nature asymmetric. It is still interest-
ing to see that this general asymmetric trend can last for very long periods
(up to a day). Indeed, even for a reaching 24h, the asymmetric (dash-dot)
and symmetric frequency integral presented on figure 7.3 are close to each
other.
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Figure 7.3: Extreme energy content of the frequency deviations (dashed)
and bounds of the filtered counterpart (plain) as function of averaging period
a in the asymmetric case, as observed from 1-year consecutive data. Top:
maximum. Bottom: minimum.

Selection of the averaging period

Let us insist on the terminology. The response error or control error is
the error of the group demand w.r.t. its set-point. We denote by recovery
error the response error consecutive to the use of an energy management
process. On the other had, the rebound error is the natural response error
that occurs when the energy rebound are not managed at all (cfr. previous
chapters).

The optimal choice of a must integrate technical as well as economic con-
siderations. On the economic side, increasing a inevitably leads to larger
energy bounds c(a). This supposes that larger portion of the available ca-
pacity will be dedicated to rebound management (to avoid the rebound
error). This portion of the capacity cannot be sold to the system operator.
On the technical side, the averaging period a should be chosen as large as
possible to decrease the recovery error. This error should approach the 5%
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tolerance band, as requested by ENTSO-E.

As shown on figure 7.4, the best choice seems to be a = 3h. Indeed, the
relative energy bound c(a) starts being more or less constant from a = 3h
and larger. The derivative is indicated approximately by the red lines on
figure 7.4 to highlight this trend. This means that loads with a natural
run time Tn equal or higher than 3h controlled under the simple Stop/Rate
scheme (no filtering process, etc.) would exhibit a rebound error of the same
power magnitude. It would therefore be counterproductive to exploits loads
with Tn > 3h in an advanced control scheme whose filtering process is fixed
to a ≤ 3h.
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Figure 7.4: Relative energy bounds as a function of parameter a.

Stricter energy bound from pre-qualification tests

The above derived bounds c(a = 3h)=20min35 introduced by the filtering
process will be used below as basis for the capacity allocation process. This
is valid only if the system operator does not require loads to be able to shift
more energy without exhibiting rebound error than the energy content of
the filtered historical frequency deviation.

In many systems, FCR participants must go through pre-qualification
tests that are usually more strict, as is the case e.g., in German systems. The
energy content of the prequalification profiles in the German case is equal
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to 30min1. This profile is represented on figure 7.5 for illustration. In such
case, the energy bound c exploited in the capacity allocation process would
therefore have to be set artificially to the energy content of pre-qualification
profile, as it is above c(a = 3h), and that load needs to follow this profile
without exhibiting rebound error.

30s 30s 30s 30s

15 min 15 min 15 min

Deployed Power

100%

Time

Frequency

49.8Hz

50Hz

49.9Hz

Figure 7.5: Prequalification test in the German System.

1See the profile on the document Model protocol as evidence of the primary control
reserve activation. https://www.regelleistung.net/ext/static/prequalification

https://www.regelleistung.net/ext/static/prequalification


Chapter 7 185

7.4 Capacity allocation: Perfect Tracking Fea-
sibility set

This section is dedicated to the exact tracking of bounded reference signal.

−KD ≤ KDr
e(t) ≤ KD −KDc(a) ≤

∫
KDr

e(t)dt ≤ KDc(a)

For convenience, the above system is normalized and transformed into
a single input p(t) = P (t)/Pn, single output y(t) = D(t)/(λPn) and single
state τ(t) = T dyn(t) system. Note that the input is dimensionless, the
output and states have the same dimension (i.e. time). It takes the following
form.

S =


dτ(t)

dt
= 1− p(t)

pt(τ(t))
(7.12)

y(t) = τ(t)p(t) (7.13)

with : p(t ≤ 0) = ν(t) ∈ [pL, pH ]; τ(0) = {τ0|
∫ 0

−τ0 ν(s)ds = Tn}; 0 < pL <
1 < pH <∞. ∫ t

t−τ(t)

p(s) ds = Tn (7.14)

Without control intervention, the natural input is constant p = 1. The
energy constraint recalled on equation 7.14 shows that the natural state
value is τ = Tn and therefore, natural output is y = Tn.

7.4.1 Consequences of input bounds.

The objective of this section is to prove that there exists an input signal
p(t) ∈ [pL, pH ] ∀t > 0 that verifies the following, for some given value of
0 < KD < 1.

y(t) = KD(c(a), Tn, pL, pH)re(t, a)

We want to define the feasible KD given the run time Tn, power limits
pL and pH , the filter parameter a and related bounds c(a) of re(t). This
goes together with showing that the system is stable and is able to store
a limited amount of energy Es(t). The four propositions below show the
feasibility and limitations of the control problem.

• Proposition 1 shows that, given any past input ν(t) belonging to the
bounded interval [pL, pH ], imposing a constant input from time t = 0
leads the system to stabilize to an equilibrium point in finite time.
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• Proposition 2 defines the concept of remaining energy Er(t). It is an
equivalent state of the system that may only evolve when the output
y(t) differs from its natural value Tn. It is therefore directly linked
with the stored energy Es(t).

• Proposition 3 states that, given some past bounded inputs, it is always
possible to set the output at its natural value y(t) = Tn while ensuring
future inputs to stay withing their previous bounds. Furthermore,
the input p(t) converges asymptotically to a constant value which is
inversely proportional to the remaining energy of the group at the
moment of the switch (i.e., kept unchanged afterwards as y(t) = Tn,
proposition 2).

• Proposition 4 argues that input bounds imply bounds on the remain-
ing energy and therefore on the energy storage potential of the group
Es(t) = −

∫
(y(t)− Tn) dt.

Proposition 1. Let (pe, τe, ye) be an equilibrium point of the system (p(t),
τ(t), y(t)). For any (time) constant Tn ∈ R+ \ {0}, any previous bounded
inputs p(t) = ν(t), ∀t ∈ [−τ0, 0) s.t. ν(t) ∈ [pL, pH ] and the associated
initial time delay τ0 s.t.

{τ0|
∫ 0

−τ0
ν(s) ds = Tn}

the system always reaches the equilibrium (pe, τe = Tn/pe, ye = Tn) if the
input is set to the constant value p(t) = pe(∀t ≥ 0). The equilibrium is
reached in finite time te ≤ Tn/pe.

Proof. Firstly, let us see that the time derivative of the delay τ(t) is bounded.
From equation (7.12) and considering the bounds on the input p(t), we have,

(1− pH
pL

) ≤ τ̇(t) ≤ (1− pL
pH

) < 1 ∀t (7.15)

Secondly, the time constant Tn and the bounded input function p(t)
imply bounds on τ(t). Indeed, equation (7.14) has to be verified for all time
t and all values of p(t). Extreme values of the integral of p(t) define extreme
values of τ(t). ∫ t

t−τL
pLdτ = Tn &

∫ t

t−τH
pHdτ = Tn ∀t (7.16)

This gives therefore limits on τ(t) ∈ [τL, τH ]∀t s.t,

0 <
Tn
pH

= τL < Tn < τH =
Tn
pL

<∞ (7.17)
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Consequently, as y(t) = peτ(t), the output signal is bounded for all time
t ≥ 0.

0 <
TnpL
pH

≤ y(t) ≤ TnpH
pL

<∞ ∀t (7.18)

The system is therefore stable in the Bounded-input Bounded-output
sense for any input p(t) ∈ [pH , pL].

Starting from t = 0, we have τ(t) > t (∀t < te) before a threshold time
te. As τ̇(t) < 1 we can derive that ∃te such that τ(te) = te.

Equation (7.14) expressed at threshold time te gives the following.∫ te

te−τ(te)

p(s)ds =

∫ te

0

p(s)ds = pete = Tn (7.19)

Therefore, the threshold time is te = Tn/pe <∞ and defines the equilib-
rium delay/state τ(te) = te = τe. Indeed, the time derivative of τ(t) is zero
for all time after t = te (eq. (7.12)). Indeed, p(t) = p(t− te) = pe (∀t ≥ te).
The equilibrium output may also be computed by ye = τepe = Tn. This
result is crucial and shows that steady-state may only be reached when the
output is constant and equal to its natural value Tn.

Proposition 2. Considering system S, the remaining energy function Er(t)
is a positive definite function.

Er(t) =

∫ t

t−τ(t)

(
Tn −

∫ t

θ

p(s) ds

)
dθ > 0 (7.20)

= Tnτ(t)−
∫ t

t−τ(t)

(∫ t

θ

p(s)ds

)
dθ (7.21)

=

∫ t

t−τ(t)

(∫ θ

t−τ(t)

p(s)ds

)
dθ (7.22)

The remaining energy Er(t) is conserved if and only if y(t) = Tn. It
consists in the amount of energy that remains to be consumed by all running
loads before those will stop.

Proof. The energy function Er(t) is trivialy positive definite from equation
(7.22) as p(t) > 0, ∀t, and τ(t) > 0, ∀t. Let us denote by Ip(t) is the
primitive of p(t) at time t and define

b(t, θ) =

∫ t

θ

p(s) ds = Ip(t)− Ip(θ)
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∫ θ
t−τ(t)

p(s) ds

Tn

Time

tt− τ(t) θ

Tn −
∫ t
θ
p(s) ds

Figure 7.6: The remaining energy of the group Er(t) corresponds to the integral
under the curve shown in the graph and situated in the interval [t− τ(t), t]. This
curve at a certain time θ is the remaining time Tr(θ) of a load that has arrived at
that time and was subject to power control p(s), ∀s ∈ [θ, t]. If the load continues
running from time t at its natural rate (i.e., p = 1), it would stop at time t+Tr(θ).
The curve represents this time Tr(θ) = Tn −

∫ t
θ
p(s) ds. The reference axis can be

understood as sliding rightward together with time t. This is why the origin is t.
The curve is different at each time t but always encounters the y-axis at Tn and
slides down from this point backward in time.

We compute below the time derivative Ėr(t) of the remaining energy.

Ėr(t) = Tnτ̇(t)− d

dt

(∫ t

t−τ(t)

(

∫ t

θ

p(s) ds) dθ

)
(7.23)

= Tnτ̇(t)− d

dt
g(t) (7.24)

Let’s develop g(t).

g(t) =

∫ t

t−τ(t)

b(t, θ)dθ = Ip(t)

∫ t

t−τ(t)

dθ −
∫ t

t−τ(t)

Ip(θ) dθ (7.25)

= τ(t)Ip(t)−
∫ t

t−τ(t)

Ip(θ) dθ (7.26)

Therefore, recalling that Ip(t) − Ip(t − τ(t)) =
∫ t
t−τ(t)

p(s)ds = Tn and
İp(t) = p(t),

d

dt
g(t) = τ̇(t)Ip(t) + τ(t)İp(t)− Ip(t) + Ip(t− τ(t))(1− τ̇(t)) (7.27)

= Tn(τ̇(t)− 1) + τ(t)p(t) (7.28)
= Tn(τ̇(t)− 1) + y(t) (7.29)
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Therefore,

Ėr(t) = Tn − y(t) (7.30)

We have that Ėr(t) = 0 whenever y(t) = Tn. In the uncontrolled setting
(p(t) = 1, τ(t) = Tn,∀t), the remaining energy takes its natural value Ern =
T 2
n/2. The remaining energy is linked to the energy stored by the group
Es(t) = −

∫
(y(t)− Tn) dt,

Er(t) =
T 2
n

2
+ Es(t) = Ern + Es(t)

Proposition 3. Considering the system S: for any bounded past input
p(t < 0) = ν(t) ∈ [pH , pL] and related outputs, it is always possible to
maintain future output to its natural level y(t) = Tn ∀t ≥ 0 while ensuring
inputs to stay within their initial bounds (i.e. bounds of ν(t)). Further-
more, the system S converges asymptotically toward an equilibrium (pe, τe =
Tn/pe, ye = Tn).

Proof. Assuming y(t) = p(t)τ(t) = Tn ∀t > 0 and replacing Tn from equa-
tion (7.14) gives,

p(t) =
1

τ(t)

∫ t

t−τ(t)

p(s)ds ∀t > 0 (7.31)

The input p(t > 0) corresponds to the average of its (bounded) previous
values computed on the rolling time window [t− τ(t), t) of strictly positive
width τ(t). Therefore,

pH ≤ p(t) ≤ pL ∀t (7.32)

Future inputs are bounded if the output is set to its natural value. Fur-
thermore, the input p(t) and time delay τ(t) are asymptotically converg-
ing to constant values. Indeed, the system is asymptotically stable in the
sense of Lyapunov. Let us first define the positive semi-definite function
V (τ, p, t) ≥ 0.

V (τ, p, t) =

∫ 0

−τ(t)

(
p(t)− p(t+ s)

)2
ds (7.33)

= p2(t)τ(t) +

∫ 0

−τ(t)
p2(t+ s)ds− 2p(t)

∫ 0

−τ(t)
p(s)ds (7.34)

=

∫ 0

−τ(t)
p2(t+ s)ds− Tnp(t) (7.35)



Chapter 7 190

The function V is zero only if the input stays constant in the time
window [t − τ(t), t]. Furthermore, its time derivative V̇ (τ, p, t) is negative
semi-definite.

V̇ (τ, p, t) =

(
d

dt

∫ t

t−τ(t)

p2(s) ds

)
− Tnṗ(t) (7.36)

As y(t) = τ(t) p(t) is set to Tn, we have τ(t) = Tn/p(t) and τ̇(t) =
−Tnṗ(t)/p2(t) such that Tnṗ(t) = −p2(t)τ̇(t). Therefore,

V̇ (τ, p, t) =

(
p2(t)− p2(t− τ(t))(1− τ̇(t))

)
+ p2(t)τ̇(t) (7.37)

= p2(t)

[
(1− p2(t− τ(t))

p2(t)
) + τ̇(t)

(
1 +

p2(t− τ(t))

p2(t)

)]
(7.38)

Recalling that τ̇(t) = 1− p(t)

p(t− τ(t))
, we have that

p2(t)

p2(t− τ(t))
=
(
1− τ̇(t)

)2.
V̇ (τ, p, t) =

p2(t)

(1− τ̇(t))2

[
(1− τ̇(t))2 − 1 + τ̇(t)(1− τ̇(t))2 + τ̇(t)

]
(7.39)

=

(
p(t)τ̇(t)

(1− τ̇(t))

)2

(τ̇(t)− 1) ≤ 0 (7.40)

Indeed, (τ̇(t) − 1) is always negative, as equation (7.1) shows, and the
condition p(t) > 0 insures τ̇ < 1. Consequently, the function V (τ, p, t) must
decrease and tend asymptotically to zero as soon as y(t) = Tn. So is it for
the time derivative V̇ (τ, p, t). This implies that τ̇(t) will also tend to zero.
As τ̇(t) = 0 implies p(t) = p(t− τ(t)), steady-state is reached if and only if
p(t) = p(t − τ(t)) for all successive time t, meaning that the input will be
constant.

Proposition 4. The asymptotic equilibrium reached in proposition 3 can
be computed from the value of the remaining energy E0 at time t = 0.

(pe = T 2
n/2E0, τe = 2E0/Tn, ye = Tn)

The input bounds imply bounds on E0. Consequently, the energy that the
group is able to store is also bounded.

−T
2
n

2
<
T 2
n

2

1− pH
pH

≤ Es(t) ≤
T 2
n

2

1− pL
pL

The remaining energy is positive definite, which explain the lower bound
−T 2

n/2 = −Ern.
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Proof. From proposition 3, p(t) converges to a constant value pe for any
past bounded input ν(t) if y(t) is set to Tn while the system converges to
the equilibrium point (p(t) = pe, τ(t) = Tn/pe, y(t) = Tn). Proposition 2
showed that the stored and remaining energy are conserved for t > 0 as
y(t) = Tn. The remaining energy E0 at time t = 0 is used to compute the
asymptotic equilibrium, with

∫ 0

−τ0 ν(s)ds = Tn.

E0 = Tnτ0 −
∫ 0

−τ0
(

∫ 0

θ

ν(s)ds)dθ (7.41)

At the asymptotic equilibrium, the remaining energy is defined by equation
(7.22) in which we replace τ(t) = τe and p(t) = pe = Tn/τe. This remaining
energy is equal to E0 as y(t) was kept to Tn.

Tnτe − pe
τ2
e

2
= E0 (7.42)

Tnτe
2

= E0 ⇔ τe =
2E0

Tn
⇔ pe =

T 2
n

2E0
(7.43)

Bounds on inputs (i.e., applying to pe) imply bounds on E0, and there-
fore on Er(t) (or Es(t)) as the only constraint on the initial input ν(t) is
that it must be bounded.

T 2
n

2pH
≤ Er(t) ≤

T 2
n

2pL
⇔ T 2

n

2

1− pH
pH

≤ Es(t) ≤
T 2
n

2

1− pL
pL

(7.44)

Furthermore, physical limits on the upper bound pH < ∞ (or positive
definite nature of of Er(t)) imply −T 2

n/2 < Es(t). Intuitively, this means
that loads cannot anticipate more energy than what was available at the
origin, when the group was in its natural equilibrium.

Remark 1. The power limits give a first couple of constraint on the sym-
metric droop KD. These limits are relative to upward and downward regu-
lation. They are respectively denoted Kp,up

D and Kp,dn
D .

KD ≤ Kp,up
D = 1− pL & KD ≤ Kp,dn

D = pH − 1 (7.45)

Remark 2. The reference signal re(t) followed by the group’s demand
change x(t) = y(t)/Tn − 1 must have a bounded energy content which cor-
responds to the maximum amount of the energy that can be stored by the
group. We must impose the following:

max
t
|Es(t)| = KDc(a) (7.46)
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Accordingly, the remaining energy E0 is bounded and so is the power pe at
the asymptotic equilibrium.

Tn − 2KDc(a) ≤ 2E0

Tn
≤ Tn + 2KDc(a) (7.47)

⇒ Tn
Tn + 2KDc(a)

≤ pe ≤
Tn

Tn − 2KDc(a)
(7.48)

This gives a second couple of limits on the symmetric droop that can be
offered by the group.

KD ≤ Ke,up
D =

Tn
2c(a)

1− pL
pL

& KD ≤ Ke,dn
D =

Tn
2c(a)

pH − 1

pH
(7.49)

We now have a first energy related bound on KD that depends on the energy
management filter parameter a and the related energy c(a) of the filtered
frequency signal ∆fe(t).

Remark 3. Before reaching its equilibrium point, the input p(t) had to
fluctuate around it. This require to define stricter bounds than Ke

D. The
above bounds Ke

D do not take dynamical considerations into account. The
group could be asked to provide its flexibility 1±KD for an additional and
infinitesimal amount of time. This worst case scenario is illustrated on
figure 7.7 and results in the following relations.

pL ≤
Tn(1−KD)

Tn + 2KDc(a)
&

Tn(1 +KD)

Tn − 2KDc(a)
≤ pH (7.50)

1

Power Input
pH

pL

Initial condition

KD pe = pH
1+KD

Convergence

From t > 0, y(t) = Tn

Time

Figure 7.7: Worst Case scenario (downward regulation, demand increase) defining
the bound Kdp,dn

D on the gain KD. The initial condition has resulted in shifting
an energy KDc(a). From time t>0, the output is set to y(t) = Tn, and the group
had reaches the corresponding steady-state pe(E0 = KDc(a)) in the convergence
period. The worst case is simple: the group must still be able to impose an very
brief change y = Tn(1 +KD) to its output while respecting the input bound pH .

This gives the following limits.

KD ≤ Kdp,up
D =

(1− pL)Tn
2c(a)pL + Tn

& KD ≤ Kdp,dn
D =

(pH − 1)Tn
2c(a)pH + Tn

(7.51)
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Figure 7.8 shows the acceptable values for KD given by all limits derived
in (7.49) and (7.51). The individual load power limits are symmetric such
that 1 − pL = pH − 1 = ∆p. On the right chart, ∆p = 50%. On the left
chart ∆p = 80%. The bounds KDdp are the most constraining limit. The
chosen frequency filter is such that a = 3h and c(3h) =20min35.
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Figure 7.8: Acceptable Droop KD in function of the load run time and
according to all derived limits. Left chart: 1 − pL = pH − 1 = 50%. Right
chart: 1− pL = pH − 1 = 80%.

7.4.2 Empirical evidence: input bounds are respected

The power profile that needs to be followed by the group, namely KDr
e(t),

has potentially dynamical effects that are not captured in the above bounds.
We would like to assess if the above derived bounds are coping for the poten-
tial dynamical effects resulting in higher than expected inputs, consecutive
to output signals with identical energy content but of different shapes. We
conduct therefore a large number of tests with different profiles χ of the
same amplitude KD but different shapes and energy content. These are
illustrated on figure 7.9: sinusoidal, square and impulses, alternate square,
ramp and polynomials.

We impose each profile as reference in an inverse model. This process
allows to see the extreme input values that were required to perfectly follow
the tested reference χ.

Each profile χi is dimensionless. The output must therefore follow
y(t) = Tnχi. The integral of χi has the dimension of time and is bounded
by a known value KDTi. In the simulations, we consider all above profiles
and some other related ones. For instance we test all possible square cycles
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KD

KD

KD

KD

×Nsin

×Nsq

×Nasq

×Nrp

KDT2

KDT1

KDT3

KDT4

KDT5

Figure 7.9: Illustration of the tested profiles (dimensionless).

(i.e. we vary the time at ±KD as well as the time spent at zero). We also
consider profiles independently or repeated several times in a row (e.g., Ti
is adapted necessary).

For a certain profile χi we will therefore observe the experimental power
limits pexpL,i and pexpH,i that are reached in the simulations. They are supposed
to stay within the theoretical bounds pthL (Ti/Tn,KD) and pthH (Ti/Tn,KD),
that are both functions of the relative energy content Ti/Tn and the maxi-
mum amplitude KD of the reference profile.

pthL (Ti/Tn,KD) =
1−KD

1 + 2KD
Ti
Tn

& pthH (Ti/Tn,KD) =
1 +KD

1− 2KD
Ti
Tn
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We need to insure the following ∀i,KD, Tn

pthL (Ti/Tn,KD) ≤ pexpL,i < pexpH,i ≤ p
th
L (Ti/Tn,KD)

Let’s define the relative margin to bound eL and eH , respectively for
upward and downward regulation. These margins are the relative difference
between the most extreme observations and the theoretical bound of the
power input. They are both defined such that they should ideally be positive
(i.e., the observed extreme input never exceeded the theoretical bounds) and
be close to zero (i.e., the theoretical bound is tight).

eL =
pexpL,i

pthL,i
− 1 (7.52)

eH =
pthH,i
pexpH,i

− 1 (7.53)

In practice, the group is considered at rest (y(t) = Tn) from t = −∞ up
to t = 0, when the test starts. We test the profiles of fixed parameter Ti
(i.e. different KD are tested) on groups with different run time Tn. Such
procedure is fully symmetric to the one consisting in testing signals of dif-
ferent Ti on a unique group.

We can easily prove this symmetry. Let’s pose a(t) = τ(t)/Tn and con-
sider two groups of loads (index 1 and 2) of which demand is imposed to
follow two different reference signals Tn,1χ(t) and Tn,2χ(Zt); respectively.
Note that the second signal is the time distorted version (t → Zt) of the
first one with adapted magnitude. We have to solve the following.

S1 =


a1(t)p1(t) = χ(t)∫ 0

−Tn,1a1(t)
p1(t+ s) ds = Tn,1 ∀t

S2 =


a2(t)p2(t) = χ(Zt)∫ 0

−Tn,2a2(t)
p2(t+ s) ds = Tn,2 ∀t

Replacing the first equation in the second gives the following.∫ 0

−Tn,1χ(t)/p1(t)
p1(t+ s) ds = Tn,1 ∀t

∫ 0

−Tn,2χ(Zt)/p2(t)
p2(t+ s) ds = Tn,2 ∀t

We now want to compute the integral of p1(Zt+Zs) defined in the same
bounds than the left equation. As both equations are valid at all time t, we
can replace t by Zt in the integrand and the boundary value. Furthermore,
posing v = Zs gives ds = dv/Z and adapted bounds leading to the following.∫ 0

−ZTn,1χ(Zt)/p1(Zt)

p1(Zt+v) dv = ZTn,1

∫ 0

−Tn,2χ(Zt)/p2(t)

p2(t+ s) ds = Tn,2
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We can therefore conclude below.

ZTn,1 = Tn,2 ⇔ p1(Zt) = p2(t) (7.54)

Remark 4. Let’s consider a group of loads with run time Tn. The group’s
demand is required to follow a distorted version Tnχ(Zt) of a reference χ(t)
which leads the power input to reach some extreme values. We conclude from
the above developments that the exact same extreme values would have been
observed if loads with run time Tn/Z had to follow the demand reference
Tnχ(t)/Z.

Test Results

The figures 7.10 and 7.11 present the results of all conducted tests.

Run Time Tn (h)

R
el
a
ti
ve

m
a
rg
in

to
b
o
u
n
d
e
H

 

 

0h 0h30 1h 1h30 2h 2h30 3h 3h30

0%

2%

4%

6%

8%

10%

12%
Square

Sinus
Impulse

Altenate Square

Alternate Square (+Off )

Linear Ramp

Parabolic ramp

Figure 7.10: Relative bound to margin for downward regulation eH (demand
increase).

We can firstly observe that certain profiles are more likely than other to
push the inputs close to their bounds. This suggests that some dynamical
effects take place. This is particularly true for alternate squares and impulse
signals.

Also, we observe the following elements.
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1. Loads with small run time: KDTi >> Tn. The bounds are respected
for all signals. Indeed, the minimum value of both relative margins to
bound eH and eL are always well above zero.

2. Large run time: KDTi < Tn. The bounds seems asymptotically per-
fect as Tn → +∞.

3. Moderate run time: KDTi ' Tn. The inputs do not always respect
their theoretical bound. Yet, they stay in the worst case very close to
it (< 0.2% around it).
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Figure 7.11: Relative bound to margin for upward regulation eL (demand
decrease).

7.4.3 Intuitive explanation of the test results

To understand the test results charts, let’s recall that the theoretical bounds
are derived from the following concept (stated for demand increase).

Remark 5. The largest acceptable amplitude KD of all output signals with
bounded energy content KDTi is such that, at the moment that a group has
been storing an energy Es = −KDTi and had time to reach the correspond-
ing equilibrium pe(Es, Tn), loads are are still capable (while respecting their



Chapter 7 198

power limit) of imposing their power input to go to p(t) = pe(1 + KD) for
an infinitesimal amount of time.

Let’s also recall that the equilibrium pe is reached asymptotically when
the group’s output is maintained at equilibrium y(t) = Tn for a sufficiently
long time (proven below to be around 3τe). This process is denoted as the
convergence process. We have, during the convergence process,

p(t) =
1

τ(t)

∫ τ(t)

0

p(t+ s) ds

This means that, at the moment the convergence process starts, the ex-
treme values of p(t) are situated in its past. These extreme values can either
lie within the immediate past [t− τ(t), t]), or have been observed previously
in time. In the first case, it would mean that the output reference that
had to be followed has been impacting the group mostly in the recent past.
There are two possible situations in which this occurs.
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Figure 7.12: Power input p(t) required to follow an output reference signal
with large periodicity and modest energy content (demand increase).

The first case occurs for output reference signals whose periodicity is
large w.r.t. Tn but whose energy content stays small enough compared to
0.5T 2

n . This is the case if , e.g., a small and constant offset (1 + KD) is
imposed to the demand of the group for a long duration.
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As shown on figure 7.12, the moderate energy content of the output
change leads the dynamic run time τ(t) to stay relatively close to its initial
value Tn. During the convergence process, the input evolves as a running
average computed on the recent past [t − τ(t), t]. Let’s denote by Phist
the set of input values in the recent past [t0 − τ(t0), t0] at the start of the
convergence period. The values in Phist are by far the largest inputs that
have been observed. Additionally, their dispersion around their own average
is small. More importantly, the second derivative of p(t) is increasing within
Phist. Altogether, this means that the asymptotic equilibrium pe that will
eventually be reached is (1) very close to the largest input ever observed and
(2) situated closer from the highest values of Phist. Therefore, the bound
derived from applying an extra factor 1 + KD to pe is likely to be slightly
above than the actual extreme values of the inputs. The second case is
when the output reference has a very small energy content. At the limit, a
reference with infinitesimal energy content leads the asymptotic equilibrium
to be equal to the natural load’s power: pe → 1. This is illustrated on figure
7.13.
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Figure 7.13: Power inputs required to follow an output reference signal with
very small energy content (demand increase).
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A closer look to alternate square reference profiles

Figure 7.14 presents a detailed view of the results corresponding to alternate
square profiles for downward regulation (most constraining).
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Figure 7.14: Relative margin from observation to theoretical bound with
Ti = c(a = 3h) (downward regulation, demand increase).

Alternate square profiles consist in a first positive sequence χ(t) = KD

lasting for Ti followed by a negative sequence of the same duration. A
certain time interval separates both sequences (see on Fig.7.9 the profiles
pined with T4). On figure 7.14, a large number of tests are conducted with
varying off-time intervals. These profiles are applied successively with dif-
ferent magnitude KD to different homogeneous groups of loads of different
run time Tn. The maximum energy content KDTi of each tested profile
χi is equal to the energy bound c(a) of the filtered historical frequency of
parameter a = 3h, that is: Ti = c(a = 3h). This allows to observe which
loads could potentially go out of their bounds for this specific filter.

Three elements should be observed. First, the bound seems too strict for
loads with small run time. Secondly, the bound is tight for loads with larger
run time. Thirdly, the bound seems not strict enough for certain loads of
run time in the interval 1h30− 2h.
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Let’s highlight this phenomenon clearly. We impose the group output to
follow a reference χ(t): a succession of 10 alternate squares of height KD =
30%. The positive and negative sequences are both of known duration Ti
and the off-periods of duration Ti−1. On figure 7.15, this profile (top chart)
is applied to two different groups in which load run times are respectively
Tn = Ti (mid chart) and Tn = 10Ti (bottom chart). The theoretical limit
Kdp,dn
D (i.e. downward reserve, increase of demand) is shown in both cases.
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Figure 7.15: Inputs required to follow an alternate square shaped signal
of amplitude KD = 0.3 and period 4Ti+2. Top: reference profile. Middle:
power input for Tn = Ti = 20s. Bottom: power input for Tn = 10Ti = 200s.

Groups for which the maximum energy content of the signal is relatively
large compared to their natural remaining energy (mid chart) will never
experience inputs getting close to the (energy based) limit Kdp,dn

D . The
inverse is true in case the energy content is small. Indeed, the influence of
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dynamics and power based consideration are dominating.

7.4.4 Square shape profile and alternative bounds.

Let’s impose to a group in steady-state at time t = 0 with a zero stored
energy Es(t) to follow a square shaped profile of power magnitude ±TnKD

and energy content ±TnKDc(a) after which the group’s demand is set to
its natural value.
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energy shifting. Left : 1 ≤ p(t) ≤ pH , demand anticipation. Right: pL ≤
p(t) ≤ 1, demand deferral.
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The group must maintain y(t) = Tn(1±KD) in a time window t ∈ [0, θ]
with θ = c(a). The resulting stored energy is Es(t > θ) = ±TnKDc(a). The
remaining energy of the group is Er(t > θ) = T 2

n/2 ∓ TnKDc(a) (i.e., note
the sign inversion). We already know from equation (7.43) that the final
equilibrium point will be

pe =
Tn

Tn ∓ 2KDc(a)
& τe = Tn ∓ 2KDc(a)

The system S (i.e., eq. (7.12) and (7.13)) starts with initial conditions
ν(t < 0) = 1 and τ0 = Tn. In a first phase, the system demand is switched
to (1±KD)Tn. This is performed in a certain time window ∀t ∈ [0, c(a)). As
long as τ(t) < t, eq. (7.12) can be simplified to eq. (7.55) as p(t− τ(t)) = 1.

τ̇(t) = 1− p(t) (7.55)
y(t) = (1±KD)Tn = p(t)τ(t) (7.56)

The corresponding input p(t) is the solution of a partial differential equa-
tion. An analytic solution exists and is shown below. The main branch W0

of the Lambert function [35] appears in this solution. The Lambert function
w = W0(x) is the solution to the equation: wew = x.

∀t ∈ [0, c(a)) :

p(t) =
1

1 +W0

(
∓KD

1±KD
exp

( ∓KD

1±KD
+

t

(1±KD)Tn

)) (7.57)

After this first period, the power y(t) is switched back to its equilibrium
value. Part of the system can be solved analytically if c(a) is such that
c(a) < t < τ(t) (i.e., pt(τ(t)) = 1). It takes a similar form than (7.57),
shown below. Let’s denote by ps = p(t = c(a)+) = p(t = c(a)−)/(1 ±KD)
as the input required to switch the output back to Tn.

∀t > c(a), c(a) < τ(t) :

p(t) =
1

1 +W0

(
1− ps
ps

exp
(1− ps

ps
+
t− c(a)

Tn

)) (7.58)

We could not derive a closed form solution of the system for t > τ(t).
The rest of the solution is therefore solved numerically.
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Maximum square height KD respecting input limits

As shown on figure 7.16, the extreme values of p(t) are reached just before
y(t) is switched back to Tn. We could therefore derive a limit to the am-
plitude Ksq

D that lead the extreme values to be exactly equal to the input
bounds.

pL =
1

1 +W0

(
Ksq
D,pL

1−Ksq
D,pL

exp
( Ksq

D,pL

1−Ksq
D,pL

+
c(a)

(1−Ksq
D,pL

)Tn

)) (7.59)

pH =
1

1 +W0

( −Ksq
D,pH

1 +Ksq
D,pH

exp
( −Ksq

D,pH

1 +Ksq
D,pH

+
c(a)

(1 +Ksq
D,pH

)Tn

))(7.60)
Equations (7.59) and (7.60) are inverted obtain the bounds Ksq

D,pL
and

Ksq
D,pH

respective to lower and higher power limits pL and pH (the minus
sign is relative to pH).

Ksq
D,pL,H

= ±
W0

(
(1 +

c(a)

Tn
)
1− pL,H
pL,H

exp
(1− pL,H

pL,H
−
c(a)

Tn

))
W0

(
(1 +

c(a)

Tn
)
1− pL,H
pL,H

exp
(1− pL,H

pL,H
−
c(a)

Tn

))
+ (1 +

c(a)

Tn
)

(7.61)

7.4.5 A word on the bound strictness
The above derived bounds could be overly restrictive. Let’s suppose that
the behavior of the 3h run time loads responding with a simple propor-
tional controller (previous chapter) is acceptable on a system perspective.
This would mean that the energy rebound their response introduces is not
problematic, and that we should allow them to offer their full response ca-
pability to the grid (e.g., proportional factor of Kp

D = min(pH − 1, 1− pL))
instead of introducing limiting factor from the capacity allocation process
(i.e., restricting it to Kdp

D < Kp
D). Indeed, the artificial limitations have a

strong impact on profitability. A simple way to overcome this limit is to
scale the above derived bounds such that they become equal to the technical
capability (i.e., 1−pL or pH −1) for run times Tn ≥ 3h. It is however likely
to bring loads with shorter run time out of their power limits.

Kdp,scaled
D (Tn) =


Kdp
D (Tn)

Kdp
D (3h)

Kp
D if Tn < 3h

Kp
D if Tn ≥ 3h
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Figure 7.17: The different droop bounds KD for signal tracking with
bounded energy content c(a = 3h) and ∆p = 50%. The most constrainting
limit is Kdp

D .

7.5 Inverse model solving in autonomous con-
trol

In the autonomous control context, the information accessible to each load
is limited to the load’s parameters and the reference output re(t) = (f(t)−
fn)/φ. In order to determine at which power rate p(t) it should start run-
ning, a load must however rely on some information about the past input
p(t) that would have been necessary to follow this reference signal. Indeed,
it is required to define the value of τ(t) and inverse the equation system.

Let’s suppose a load desires to know the input p(t) that would allow its
group to follow respond to the frequency error without rebound error. It
starts observing the frequency from t = 0 and needs to initialize the inverse
model that must be solved. Fortunately, thanks to the filtering process, it
is possible to find an initial condition that will asymptotically lead to the
correct solution, after some learning period.

Proposition 5. The input value p(t, ν) at time t > 0 that is the solution
of the inverse model y(t ≥ 0) = TnKDr

e(t) with known initial values p(t) =
ν(t),∀t ∈ [−∞, 0) are asymptotically convergent for all ν(t) iff these lead
the group to have stored the same amount of energy Es(0) at time t = 0.

Proof. Let’s suppose that their exist two solutions p1(t) and p2(t) relative
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to different initial conditions ν1(t) and ν2(t).

The first side of the proof is trivial. If two functions must stay equal at
all time t > 0 p1(t) = p2(t) = p(t), and that they lead to the same output
y(t) = p(t)τ1(t) = p(t)τ2(t), then the run time is unique τ1(t) = τ2(t) = τ(t)
at all time t > 0. Recalling that the run time evolution is defined by its
time derivative τ̇(t) = 1 − p(t)

p1(t−τ(t)) = 1 − p(t)
p2(t−τ(t)) , this suggests that

p1(s) = p2(s)∀s ∈ [−τ(t), t]. Consequently, ν1(t) = ν2(t).

The second side is a little more complex. We would like to illustrate the
following developments by introducing the remaining time function Tr(t, s).

Tr(t, s) =


Tn ∀t, s ≥ 0 (7.62)

Tn −
∫ t

t+s

p(z)dz ∀t, s ∈ [−τ(t), 0] (7.63)

0 ∀t, s ≤ −τ(t) (7.64)

This function is a two variable function that represents the time remain-
ing to a load before it reaches the end of its run time. This time is evaluated
at time t for all loads which arrival occurred at time t + s. The function
is well defined for s ∈ [−τ(t), 0]. Therefore, we impose Tr(t, s) = Tn for
all s ≥ 0 (load has not been running yet) and Tr(t, s) = 0 for s ≤ τ(t) by
definition of the dynamic run time τ(t).

The partial derivatives of Tr(t, s) w.r.t. t and s are linked in the interval
s ∈ [−τ(t), 0].

∂Tr(t, s)

∂t
= − ∂

∂t

∫ t

t+s

p(z) dz (7.65)

= p(t+ s)− p(t) (7.66)
∂Tr(t, s)

∂s
= − ∂

∂s

∫ t

t+s

p(z) dz (7.67)

= p(t+ s) (7.68)

This leads to the following expression, for all positive time t (i.e., where
y(t) = p(t)τ(t)) and s ∈ [−τ(t), 0].

∂Tr(t, s)

∂s
− ∂Tr(t, s)

∂t
= p(t) =

y(t)

τ(t)
(7.69)

We denote by respectively Tr,1(t, s) and Tr,2(t, s) the remaining run time
of the two groups with power input p1(t) and p2(t). An illustrative view on
this is shown on figure 7.18. The area under both curves is the remaining
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energy of the two group Er(t) and is the same for both of these inputs as
from t = 0. Therefore, we have the following.∫ 0

−τ1(t)

Tr,1(t, s) ds = Er(t) =

∫ 0

−τ2(t)

Tr,2(t, s) ds ∀t ≥ 0 (7.70)

−τ2(t) −τ1(t)

Tr,1(t, s)

Tr,2(t, s)

s
0

Tn

Figure 7.18: Remaining run time functions of input p1(t) and p2(t). The
area under the curve is the remaining energy Er(t) of the group. It corre-
sponds to the sum of the stored energy Es(t) with the natural value of the
remaining energy Er,n = T 2

n/2.

The time derivative of the remaining energy is the difference Tn − y(t),
that we can equal to the time derivative of both integrals.

d

dt

∫ 0

−τ1(t)
Tr,1(t, s) ds = Tn − y(t) =

d

dt

∫ 0

−τ2(t)
Tr,2(t, s) ds ∀t ≥ 0 (7.71)

Let’s define the function V (t) that is the squared difference of the area
between these two curves. This function takes two different forms, depend-
ing on the relative value between τ1(t) and τ2(t).

V (t) =

∫ 0

max(−τ2(t),−τ1(t))

(
Tr,1(t, s)− Tr,2(t, s)

)2
ds t ≥ 0 (7.72)

Let’s suppose that τ2(t) > τ1(t). We then apply the Leibniz rule to
derive V (t) w.r.t. time t.

dV (t)

dt
=

∫ 0

−τ1(t)

∂

∂t
T 2
r,1(t, s) +

∂

∂t
T 2
r,2(t, s)− 2

∂

∂t

(
Tr,1(t, s)Tr,2(t, s)

)
ds (7.73)
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Following the Leibniz integration rule, we have considered the time
derivatives of the boundaries dτ1(t)

dt and dτ2(t)
dt , but their contribution is

zero, as they multiply respectively Tr,1(t, s ≤ −τ1(t)) = 0 and Tr,2(t, s =
−τ2(t)) = 0. We can know develop.

1

2

dV (t)

dt
=

∫ 0

−τ1(t)
Tr,1(t, s)

∂

∂t
Tr,1(t, s) + Tr,2(t, s)

∂

∂t
Tr,2(t, s)

−
(
Tr,2(t, s)

∂

∂t
Tr,1(t, s) + Tr,1(t, s)

∂

∂t
Tr,2(t, s)

)
ds (7.74)

=

∫ 0

−τ1(t)

(
Tr,1(t, s)− Tr,2(t, s)

)
∂

∂t

(
Tr,1(t, s)− Tr,2(t, s)

)
ds (7.75)

Then, let’s substitute the partial derivative of Tr(t, s) w.r.t. t by the one
w.r.t. s thanks to (7.69).

1

2

dV (t)

dt
=

∫ 0

−τ1(t)

(
Tr,1(t, s)− Tr,2(t, s)

)
∂

∂s

(
Tr,1(t, s)− Tr,2(t, s)

)
ds

−
∫ 0

−τ1(t)

(
Tr,1(t, s)− Tr,2(t, s)

)(
y(t)

τ1(t)
−

y(t)

τ2(t)

)
ds (7.76)

=
1

2

[(
Tr,1(t, s)− Tr,2(t, s)

)2]0
−τ1(t)

−
(
y(t)

τ1(t)
−

y(t)

τ2(t)

)∫ 0

−τ1(t)

(
Tr,1(t, s)− Tr,2(t, s)

)
ds (7.77)

=
1

2
(Tn − Tn)2 −

1

2

(
0− Tr,2(t,−τ1(t))

)2
−
(
y(t)

τ1(t)
−

y(t)

τ2(t)

)(
Er(t)− (Er(t)−

∫ −τ1(t)
−τ2(t)

Tr,2(t, s) ds)

)
(7.78)

This leads to the following.

dV (t)

dt
= −T 2

r,2(t,−τ1(t))− 2y(t)

(
1

τ1(t)
−

1

τ2(t)

)∫ −τ1(t)
−τ2(t)

Tr,2(t, s) ds (7.79)

Recalling that y(t) > 0 and Tr,2(t, s) > 0, the time derivative of V (t)
is negative in the case τ2(t) > τ1(t). As this is completely symmetric, it is
also the case for τ1(t) > τ2(t) (adapting all integral bounds). Furthermore,
it will be zero only when τ1(t) = τ2(t) permanently. We have found a
positive function V(t) whose time derivative is always negative except if
τ1(t) = τ2(t), and thereby p1(t) = p2(t). This mean that all functions p1(t)
and p2(t) are asymptotically convergent (as V(t) converges, and when it
does, it can only converge to zero).
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Autonomous computation of the Stored Energy Level

With the filtering process that the reference signals goes through, the stored
energy can be computed from a limited amount of information.

Es(t) = KDTn

∫ t

−∞
re(s) ds = KDTn

∫ t

t−a
re(s) ds (7.80)

The relevant information is indeed situated in the limited interval [t −
a, t]. This has a twofold advantage in terms of practical implementation.
Firstly, the necessary memory required to store the relevant information
can be drastically limited. Secondly, a load that gets connected to the grid
for the first time could determine remotely, after a filtering period of dura-
tion a, the actual stored energy of its group without any communication.
Then a learning period is necessary for the inverse model to converge to a
sufficiently accurate input. This is also valid for a load that was completely
disconnected from the grid for any reason (restoration after blackout, etc.).

As shown by proposition 5, the inverse model can be initiated with any
initial condition ν(t) that results in a stored energy equal to the one obtained
from filtering the frequency with adequate parameter. Altogether, there are
two conditions defining the suited initial conditions.∫ 0

−τ0

∫ θ

−τ(0)

ν(s) dsdθ =
T 2
n

2
+KDTn

∫ t

t−a
re(s) ds (7.81)∫ t

−τ0
ν(s) ds = Tn (7.82)

The most simple choice consists in supposing a constant initial input
νe as if the system had reached its steady-state corresponding to the same
stored energy (prop. 4).

Er(0) =
T 2
n

2
+KDTn

∫ t

t−a
re(s) ds (7.83)

νe =
T 2
n

Er(0)
τ(0) =

2Er(0)

Tn
(7.84)

The resulting inputs p̂(t, ν) are estimates of the exact p(t). We can test
the convergence rate of the estimation by simulation. A system with loads
of duration Tn starts from steady-state and follows the frequency signal.
New loads get connected and must both filter the frequency, compute the
resulting stored energy after the filtering period and then start estimating
p̂(t, νe(t1)), where t1 is the time at which the state estimation starts. We
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will be able to compare the real value of p(t) to their estimations.

Some results are shown on figure 7.19. The convergence time (= 1.5Tn)
is defined as the time after which the following estimation error eSE is below
0.1%.

eSE(t, t1) =
p̂(t, νe(t1))

p(t)
− 1 (7.85)

The information that a load needs prior to its start in order to perform
its frequency response with high accuracy is equal to the sum of the filtering
period a (i.e. to determine the energy storage level) and the learning period
1.5Tn required to reach sufficient tracking accuracy.
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Figure 7.19: Convergence of the inputs in state estimation (learning). The
tests where conducted with a filtering period a = 3h on loads with Tn = 1h.
Altogether, the required memory spans on a period 1.5Tn + a = 4.5h.

7.6 Individual Load Simulation: Setting

The objective of this section is to compare the advanced power control per-
formance to the proportional framework explored in the previous chapter.
To this end, we conduct a detailed simulation in which each load is sepa-
rately modeled. Our goal is to represent what would be the consequences
of completely replacing the full generation-based FCRG by demand-side
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control.

For simplicity, we focus on a single scenario which corresponds to par-
ticipating loads having random power rate P ∈ [2, 7]kW and run time
T ∈ [1/4h, 3h] that are uniformly distributed. We suppose that loads can
set their power freely in the interval [pL, pH ] = [50%, 150%]P (rate control
policy).

Individual Power Controller in heterogeneous groups

We compare the impact of three different local power controllers. We refer
to these three controllers by subscripts {1, 2, 3} below.

1. Advanced Power Control. All elements introduced in this chapter are
implemented.

2. Proportional frequency response. This is similar to what was presented
in details in previous chapters (Rate policy).

3. Proportional response with frequency filtering. An intermediate set-
point definition in which loads filter the system frequency for energy
management purpose, and then respond proportionally to the filtered
frequency.

The local controllers must all be designed in the same way. In our simu-
lations, the frequency filter is chosen with a unique parameter a = 3h. Yet,
the output (power set-point) will be relative to local load parameters. In
particular, the inverse model and capacity allocation processes have results
that are dependent on the load’s random run time T . There exist two main
ways to to manage this parameter dependency.

a. Top-down approach. Power set-points can be defined based on ag-
gregation models that fully capture the heterogeneous nature of the
group in which the load lies. This requires exploiting the parameter
distribution, which is however not easily accessible at local level.

b. Bottom-up approach. A load reacts as if it was in an homogeneous
group. It will consider that all other running loads share the same
run time than itself. If the group is sufficiently large, the different
contributions of the subgroups sharing identical run time will sum up
smoothly. Furthermore, all the necessary information can be guessed
from local measurements or knowledge.

As our goal is to design a control framework that would work as au-
tonomously as possible, we will consider the second approach (bottom-up).
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ACE definition and Aggregation model

It is expected that the integral action from aFRR will play an important
role for rebound compensation. The definition of the ACE, which serves
as basis for the centralized aFRR set-point definition, has very large con-
sequences on the effectiveness of the load’s contributions to overall system
stability. We will consider two ACE definitions (1) Ideal ACEid based on
perfect information and group’s demand measurement D(t) and (2) Theo-
retical ACEth based on aggregation models. Both are defined below, and
are basically a scaled version of the group’s rebound. The traditional ACE
definition (based on the actual frequency deviation) is explored in the event-
based simulation.

The ideal and theoretical ACE must be adapted according to the three
strategies (1,2 and 3) at stake. Indeed, the expected response of the group
depends on whether a capacity allocation process has intentionally reduced
the offered droopKD, which technical limit isKp

D = 1−pL = pH−1 = 50%.
In what follows, the size of the group is chosen such that the loads fully
replace the FCRG in the advanced power control framework, with a reduced
Kdp
D = 32% (more loads are required). Each case is simulated independently

(different dynamics). Even though it make the text more cumbersome, we
add for clarity a subscript (i.e., 1,2 and 3) relative to each case as well as a
superscript referring to the ACE definition type.

ACEid1 (t) = Did
1 (t)−D0(1 +Kdp

D

∆f id1 (t)

φ
) (7.86)

ACEid2,3(t) = Did
2,3(t)−D0(1 +Kp

D

∆f id2,3(t)

φ
) (7.87)

With regards to the theoretical ACE, the inverse model and capacity
allocation insure that the provided FCR capacityKdp

D in the advance control
framework behaves as if all loads had a run time equal to the frequency filter
parameter a = 3h. The rebound consists therefore in a scaled version the
frequency offset imposed to the system frequency.

ACEth1 (t) = −Kdp
D D0

1

a

∫ t

t−a

∆f th1 (s)

φ
ds = Kdp

D D0
∆fe,th1 (t)−∆f th1 (t)

φ
. (7.88)

In the two other cases (proportional response with and without filtering),
the rebound is the natural proportional response of the group to respectively
the filtered and non-filtered frequency deviations. Let’s also note that both
will be simulated independently. In the equations below, we denote by
Tn = 0.5(TM + Tm) the average run time at start.
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ACEth2 (t) = Kp
DD0

[
∆fe,th2 (t)−∆f th2 (t)

φ
−

1

Tn

∫ TM

Tm

∫ t

t−T

∆fe,th2 (s)

φ
dsΩT dT

]
(7.89)

ACEth3 (t) = −Kp
DD0

1

Tn

∫ TM

Tm

(
1

T

∫ t

t−T

∆f th3 (s)

φ
ds

)
TΩT dT (7.90)

Individual load simulation and frequency measurements errors

Our goal is to simulate each individual load arriving either at random or
fixed rate λ and equipped with advanced power controller and frequency
sensors. Individual simulations are complex, and require a lot of memory
and computation.

In the simulation, only the necessary information is carried out within
the different computation blocks (i.e. inverse model, frequency filtering).
The inverse model is solved with an efficient discrete time approach. Yet,
it was not possible to simulate all individual loads that would be necessary
in practice to cover the FCRG requirements. A scaling factor of about 100
was necessary, and the simulation length was limited to 3 days.

This is however sufficient to compare the different control frameworks,
and their potential impact on the system as a whole. One of the interesting
feature of the individual loads simulation is that all above discussed elements
can be tested together with local considerations.

• Frequency measurements errors. The frequency sensors must have
very limited cost. Therefore, they could be subject to measurement
errors. The frequency measurement error at load i has in general a
time varying component (noise) εi(t) that is zero mean and of variance
σ2
e as well as a constructive bias f bi of known distribution Ωfb . In what

follows, we will test the impact of individually errors on the control
performances.

• Disturbance rejection through frequency filtering. Thanks to the fil-
tering procedure, frequency errors cannot accumulate indefinitely. In-
deed, the noisy frequency integral is limited to period a (filter param-
eter). Any fixed bias in the measurement is fully rejected from the
instantaneous value of the filtered frequency after the filtering period
a. It disappears from the integral of the filtered signal after another
period a. The standard deviation of the noise εi(t) has also an impact
on the measured energy state. Indeed, the time integral of a zero mean
white noise is zero mean but its standard deviation increases with the
square-root of the time period on which the integral is performed.
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Altogether, the group’s energy error, when averaged out among all
running loads is approximately equal to σe

√
a/N0, where N0 is the

number of running loads at rest. For loads that are not equipped
with the filtering block (third simulated case), this noise impact will
reach σe

√
Tn/N0 while the bias will lead to a permanent control error

proportional to TnE[f b] = Tn
∫
f bΩfb df b.

• Inverse model with state estimation. After the filtering period, a learn-
ing period starts. Each load will need to estimate the run time τ(t, T )
of the hypothetical homogeneous group they are part of. The con-
vergence is guaranteed, while the convergence time is evaluated from
simulation to be about 1.5T . In our simulations, the load enters the
system without any knowledge about the past. For the group to reach
rapidly its initial equilibrium (i.e., D(t) = D0), we impose a parameter
independent learning period for each load equal to 1.5TM .

Let’s note that with the ideal ACE definition, part of the measurement
errors will be compensated by aFRR. It would also be the case in practice,
as the impact of such errors on the system frequency would eventually need
to be compensated by an integral action.

System scaling and impact on Demand’s volatility

As it soon becomes impractical to simulate all loads required for delivering
the 3GW of FCR, we will need to scale some quantities. In practice, we
consider loads to be between 10 and 20 times bigger P ∈ [20, 30] and the
system to be 10 times smaller (FCRD = 300MW ). Such approximation
lead’s the group’s demand to be much more variable than what would be
observed in practice.

The parameter λsim will be situated between 4 and 2 in the simulations
while it would be 100 to 200 times larger in real-life λ = 100λsim or λ =
200λsim. In real-life, the relative parameters variances would respectively
be (σrT )2 = 2(10.8−0.9)2

12(10.8+0.9)103 = 1.4 103 and (σrP )2 = 2((7−2)∗1e−3)2

12(2+7)∗1e−3 = 4.6 10−4.
In the simulation, the power rate variance is 10 to 20 times bigger. The
relative volatility of the group in the simulation vD,sim is derived below and
compared to its real-life value vD.

vD,sim10 =

√
(10σrP )2 + 1
√

0.01λTn
= 0.7% = 10vD

vD,sim20 =

√
(20σrP )2 + 1
√

0.005λTn
= 1% = 14.2vD
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We can therefore expect that the baseline in the simulation will varying
of ±3vD,sim20 = 3% around its expected value to parameter and starting
rate variability. It would have been 0.2% if we were able to simulate at cor-
rect scale. This is a problem, knowing that the percentage of the baseline
demand that can actually be offered as FCR is limited by the capacity allo-
cation process to values that get dangerously close to the volatility interval.

We recall for clarity that P is random, and that Pn here expresses the
expected value of P for the whole group. Let’s suppose that loads can
set their power freely in the interval p(t) =∈ [−∆p,∆p] relatively to their
nominal power P . The capacity allocation process with a filtered frequency
of parameter a = 3h is illustrated on figure 7.20 for ∆p = 50% and ∆p =
30%. On this figure, the natural volatility interval ±3vD,sim of the baseline
demand is also highlighted.
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Figure 7.20: Derating of the offered capacity (i.e. controller’s gain Kdp,dn
D

and Kdp,up
D ) as computed by the capacity allocation mechanism, in function

of the load’s run time. Left: Kp
D = ∆p = 50%. Right: Kp

D = ∆p = 30%.

The average symmetrical droop KD,av that is offered by the group is
dependent on the run time distribution ΩT = (TM − Tm)−1, of expected
value E[T ] = 0.5(Tm + TM ) = Tn.

KD,av =
1

E[T ]

∫ TM

Tm

Kdp,dn
D (T )TΩT dT (7.91)

Figure 7.21 shows the evolution of the ratio 3vD/KD,av for the consid-
ered group in function of the load’s technical limit ∆p.
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Technical Power Limit ∆P
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Figure 7.21: Maximal absolute control error at rest (i.e., re = 0) expected
from the group depending on its loads’ technical capability and on the nec-
essary scaling factor.

Its seems necessary for analyzing the simulation results to allow a larger
tolerance on the group’s performance. This larger tolerance would however
not be required in real-life implementation as the natural variability would
lead to a maximum control at rest of about 3vD = 0.6%.

7.7 Historical simulations

The group’s response is simulated in a typical context. We have selected
three days in the 2015 year. The first day is an average day, the two oth-
ers are those within which the frequency error had respectively the most
extreme positive and negative energy content.

7.7.1 Power system model

M
d∆f(t)

dt
= I(t)− L∆f(t) + aFRR(t)− (D1,2,3(t)−D0) (7.92)

τg
daFRR(t)

dt
= aFRRset(t)− aFRR(t) (7.93)

aFRRset(t) = −Kp

(
ACEid,th1,2,3 (t) +

1

τi

∫
ACEid,th1,2,3 (t) dt

)
(7.94)

The exact value of D(t), the aggregate group demand, is the result of the
individual simulation. Our objective at this stage is to simulate every load
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Figure 7.22: Frequency deviations along the three simulated days (source:
RTE).

to evaluate the impact of the different source of errors: non-ideal frequency
measurements, parameter distributions, random load arrivals. In long-run
simulations, D(t) is replaced by the aggregate model x̂(t)D0 to drastically
limit computational burden.

Let’s note that all above variables should be indexed by the control case
(i.e., 1,2 and 3) and the ACE definition. For readability, we only emphasize
by indexes and superscripts the elements which are defined specifically in
the different cases. In this model, there are no FCR volumes provided by
generation. All system quantities (e.g., imbalance I(t), inertiaM) are scaled
by a factor 1/10 compared to their actual value. Power rates are scaled by
a factor 20.
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Figure 7.23: Evolution of the cumulative frequency deviations and its fil-
tered couterpart along the three simulated days.
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7.7.2 Results 1: Ideal ACE, random arrivals, ideal fre-
quency measurements.

The main simulation results for all control cases and ideal ACE definition
(direct group’s demand measurement) are illustrated on figure 7.24.
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Figure 7.24: Simulation results for all control cases (1,2,3) and ideal ACE
definition, random arrivals and ideal frequency measurements. Top left:
Aggregate group response (in per unit). Top right: Convex hull of the group
response in function of the frequency deviation. Bottom Left: additional
aFRR volumes. Bottom Right: Frequency histogram and comparison with
initial data.

First, and before reading all comments below, let’s insist again on the
methodology.

In this simulation, the number of loads is fixed for all con-
trol cases. In addition, the group is scaled according to the
advanced case (case 1), in order for the controlled loads in the
advanced case to provide the total FCR requirement of in the
CE system. This means that the proportional controller cases (2
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and 3) have virtually more FCR at their disposal (no capacity
allocation process). This is the reason that explains the overall
better frequency quality observed in simulations relative to the
second and third control cases.

According to our assumptions (i.e., uniform distribution ΩT ), the num-
ber of loads required to cover the full FCR needs would be 36% lower (i.e.,
Fig. 7.20, = 1− 31.8/50) if the group was scaled according to case 2 and 3.
The per load profitability in such case is therefore much higher. Provided
that just the adequate number of loads would be equipped in practice with
power controllers, this represents an important economic advantage for case
2 and 3.

To the contrary, the additional aFRR needs in case 2 and 3 lead to
higher costs on the system side. As shown on the bottom right chart of
figure 7.24, the larger needs are observed in the second case (-830 MW)
where two sources of rebound accumulate. The filtering process induces
an artificial recovery error while the group response adds a second rebound
error on top of it, as it is not equipped to counteract its natural rebound.

Results of the aFRR rebound management

The summed contribution of the group’s response together with the asso-
ciated aFRR are shown on figure 7.25. As highlighted, the ideal rebound
compensation from aFRR leads these summed responses to respond to fre-
quency deviations with very high performances (i.e., maximum error of
±2.5% around the linear frequency set-point). This confirms the fact that
the response error introduced by the parameter randomness is rather slowly
evolving and can be almost perfectly be followed by slower reserves.

Improving the advanced control scheme

The advanced control case (case 1) may seem to have lower performances
than the two other simple proportional controllers (case 2 and 3). Indeed,
the frequency quality is lower (though still alike historical level). Due to
the capacity allocation process, the advanced framework is only allowed to
offer a reduced amount of flexibility to the grid than what is offered in the
simple case. The group must indeed keep part of its flexibility for rebound
management purpose. The group in case 1 exhibits a lower immediate re-
sponsiveness what decreases the frequency quality. This acts as a positive
feedback (i.e. snowball effect): a lower group’s responsiveness induce larger
frequency deviations that lead to higher relative use of the offered capacity.
Therefore, more energy must be shifted. The system dynamics accentuate
this trend. Indeed, the faster/larger the FCR damping, the faster will the
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Figure 7.25: Convex hull of the group’s response in function of the frequency
deviation in each (i.e., 1,2,3) control case without (grey area) and with aFRR
volumes (colored area).

system frequency reach steady-state, which limits the frequency deviation
integral. In fact, the rotating masses lost less of their kinetic energy in the
imbalance phase. The lower the frequency integral, the lower the required
aFRR, as the they counteract the rebound/recovery error which is propor-
tional to the frequency integral.

Yet, the advanced control scheme reduces the needs for aFRR. The ad-
ditional requirements for downward reserve are 15% larger in the simple
case (-770MW) than in the advanced case (-670MW) which raises the per
load profitability of the advanced control. Altogether, the gains obtained
on the aFRR side are smaller than the losses on offered capacity side. The
proposed advanced controllers are preferable to their simple counterpart in
systems with very high aFRR and FCR costs.

The low performances of the proposed advanced control scheme are the
consequence the capacity allocation process. The capacity allocation pro-
cess is overly restrictive because it takes a rather static view on the FCR
deployment.

1. Firstly, a portion of the initial capacity must be kept for rebound
management purpose, which limits is fixed by the energy bound c(a).

2. In addition, the worst-case approach leads loads to restrict the offered
capacity for risk management purpose. In fact, loads should always
be deployed the offered capacity at all time, even in the worst case
where they had just been being shifting the energy bound c(a).

This static approach should be joined to a dynamic deployment of the
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capacity. The advanced control could be modified to allow loads to deploy
briefly their full flexibility potential in order to rapidly contain frequency
deviations in order to limit the integral of these deviations and therefore
the rebound and their efforts to counteract it. Immediately after, the group
would reduce progressively the deployed capacity as aFRR take over the
burden. However, it is crucial that this is performed in direct coordination
with aFRR. The set-point change should indeed be included in the ACE
(e.g., computed externally by the TSO) rather than appear indirectly in
the frequency deviation (otherwise, the integral of the frequency deviations
would increase again!).

This process is rather complex and is unlikely to be widely accepted, as
simple solutions are often preferred in practice

The ideal control scheme is therefore to be found between the simple
and advanced scheme. In the simple scheme, the full flexibility potential
(= ±∆pD0) is initially accessible. Yet, as soon as control begins, the re-
bound error degrades both the overall performances as well as the flexibility
accessible in the future. Indeed, though inputs can still vary across the whole
technical range [pL, pH ], the number of running loads evolves in opposition
to past control actions. This lowers the amount of capacity that can be
deployed by the group. If aFRR work sufficiently well, the technical impact
on the grid is relatively small. In the advanced scheme, the initial flexibility
potential is restricted by the static approach undertaken in the capacity
allocation process.

A close look at the individual power inputs pi(t)∀i ∈ N(t) observed in
the simulations may corroborate this claim. They are presented on figure
7.26 together with the reference signal.

On the middle chart, the range of the simulated input relative to case 1 is
shown. The range is rather large as the individual loads behave according to
their parameters. The most extreme values of this range are relative to loads
with the shortest run times. The inputs get closer from their acceptable
limits pL and pH principally due to the efforts required to shift energy for
rebound management. The remaining gap that separates observations from
their limit is a consequence of the methodology and the selected worst-case
approach that was used to derive the bounds on Kdp

D .
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load run time distribution. Top chart: reference signal re(t). Middle chart:
Range in the advanced control scheme (case 1). Bottom chart: Unique
control input in the simpler schemes (cases 2 and 3).



Chapter 7 224

7.7.3 Results 2: Ideal ACE definition, fixed arrival
rate, measurement errors.

We now explore the impact of measurement errors on the simulation results,
highlighted on figure 7.27.
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Figure 7.27: Simulation results for all control cases (1,2,3) and ideal ACE
definition, constant arrivals and frequency measurement errors. Top left:
Aggregate group response (in per unit). Top right: Convex hull of the group
response in function of the frequency deviation. Bottom Left: additional
aFRR volumes. Bottom Right: Frequency histogram and comparison with
initial data.

A measurement bias of f b = 10mHz is common to all loads (worst case)
and measurements are subject to a random noise with standard deviation
σe = 1mHz. On the system-side, results are qualitatively similar with or
without considering these measurement errors. The aFRR requirements are
a however a little increased as a consequence of the instantaneous errors,
and the integration of the noise in the inverse model. In case 1, the mini-
mum requirements are shown to be -550MW. Without measurement errors,
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the simulation (not shown) gave a minimum of -540MW, and the above
results with random arrivals rate lead to -670MW. Measurement errors are
very well rejected by the filtering process, as perceived from the group per-
spective.

However, errors have large consequences among the different loads. The
constant measurement bias has no impact thanks to the filtering process.
However, the rebound management process (inverse model) leads the loads
to compensate for the integral of the noise term computed in the interval
[t−a, t]. Virtually, loads tend to believe they need to shift an extra amount
of energy which is normally distributed (integral of white noise) with zero
mean and standard deviation σe

√
a. As highlighted on the middle and bot-

tom charts of figure 7.28, the input ranges of the first and second cases are
consequently larger than in the simulation without measurement error (fig.
7.26).

In addition, an input range appears in the second and third case due
to the instantaneous error. It is relatively large as the main element of
influence is the constructive bias. Indeed, in the simple case, the bias is not
rejected as no filtering process is implemented. Furthermore, the bias was
chosen to be ten times larger than the standard deviation of the noise. This
means that the impact of the noise in case 1 should be approximately 30
times larger than the bias and noise in case 3 and 300 times the noise impact
in case 2. The bias is rejected in case 2 by the filtering process, as visible
from the bottom chart of figure 7.28: the range in case 2 is always below the
one of case 3. This has however no impact on the response performance, as
the baseline demand level is the same (D0 = λEn, and energy needs En are
conserved) with or without biased power.
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Figure 7.28: Range of the required local power inputs in the three control
cases along the the 72 simulated hours with constant starts, ideal ACE def-
inition and considering measurement errors. The input may differ from a
load to the other due to different parameter (run time) or due to measure-
ment error. Top chart: reference signal re(t). Middle chart: Range in the
advanced control scheme (case 1). Bottom chart: Ranges in the simpler
schemes (cases 2 and 3).
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7.7.4 Results 3: Theoretical ACE definition, random
arrivals, measurement errors.

The same results in which the theoretical ACE definition is implemented are
presented on figure 7.29: the ACE is defined only based on the frequency
error without precise information about the actual group demand (aggregate
model).
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Figure 7.29: Simulation results for all control cases (1,2,3) and theoretical
ACE definition, random arrivals and frequency measurement errors. Top
left: Aggregate group response (in per unit). Top right: Convex hull of the
group response in function of the frequency deviation. Bottom Left: addi-
tional aFRR volumes. Bottom Right: Frequency histogram and comparison
with initial data.

For this centrally defined set-point to be precise enough and for guaran-
teeing system stability, the parameters distribution (i.e., natural run time
and power rate, technical limits and starting rate) and therefore the group’s
baseline demand as well as the resulting offered FCRD capacity should be
known by the system operator. In the results below, loads start randomly
with known starting rate and are subject to frequency measurement errors
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(fixed bias of f b = 10mHz with random noise of std dev. σe = 1mHz).

The theoretical ACE is unable to capture all variable components of the
actual demand D(t). Yet, it performs relatively well, based on a limited
amount of knowledge, as can be observed on figure 7.30. The exact realiza-
tion of the random elements (exact number of arrivals, measurement errors)
cannot be integrated directly in the ACE computation. However, they have
a consequence on the frequency, which serves as basis in the theoretical
ACE computation. This is what explains the good rebound compensation
performance of aFRR in this case.

Yet, several elements should be observed.

• The maximum amount of deployed aFRR capacity is not observed at
the same time with the ideal and theoretical ACE definition.

• The performances of the second control case 2 seems biased as ob-
servable from the convex hull presented on figure 7.29. However, it
does not come from the measurement bias, which is rejected in the
filtering process. The origins comes from the combination of recovery
and rebound errors and that the integral of the simulated frequency is
more often positive than negative. Each time the group’s randomness
leads to lower than expected reaction from the group, the theoretical
ACE does not notice the change immediately. It has indeed to wait
that the changes has an impact on the frequency. When the same phe-
nomena occurs in the other direction (higher than expected reaction),
the convex hull does not get larger, and such phenomena is therefore
not observable in our results.
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Figure 7.30: Convex hull of the group response in function of the frequency
deviation with and without considering rebound management.
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Consequences on loads input range

The individual power set-point must vary in a wider range, which gets
dangerously close to the technical limits. This comes from the fact that the
theoretical ACE does not directly captures the variation in the number of
loads. The inputs must therefore compensates for it. In the ideal case, this
variation was directly measurable.
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Figure 7.31: Range of the required local power inputs in the three control
cases along the the 72 simulated hours theoretical ACE definition, with
random starts and measurement errors. The input may differ from a load
to the other due to different parameter (run time) or due to measurement
error. Top chart: reference signal re(t) and its time integral. Middle chart:
Range in the advanced control scheme (case 1). Bottom chart: Ranges in
the simpler schemes (cases 2 and 3).
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7.7.5 Result 4: The effect of frequency filtering

For verification purpose, we conduct the same experiment but we omit the
frequency filtering process. This will require virtually more energy to be
shifted by the loads which will induce the local inputs to rapidly saturate. In
addition, the biased and noisy measurement will get integrated in the inverse
modeling which worsen the situation. This is shown on figure 7.32 where
the effect of the measurement error is shown to induce input saturation.
The circled portion of the range occurs is selected at a specific time in the
simulation for which cumulative energy content of the non-filtered frequency
is very small. This energy should not induce saturation, as loads are able
to shift it thanks to the capacity allocation. This is, e.g., in opposition to
what occurs at the 48th hour of the simulation where saturation is mainly
due to the high energy content of the non-filtered frequency.
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Figure 7.32: Range of the required local power inputs in the three control
cases along the 72 simulated hours with ideal ACE definition, constant
arrivals and measurement errors. Top chart: reference signal re(t) and its
time integral. Middle chart: Range in the advanced control scheme (case
1). Bottom chart: Unique input in control cases 2 and 3 (identical, as filter
is omitted).
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Due to the saturation, the tracking performances of the group degrade
largely. On figure 7.33, the top left chart shows that the saturation impedes
some loads to counteract frequency changes (i.e., downward regulation, pos-
itive frequency error) which lead the frequency to reach higher values than
historically measured. In this case, aFRR were sufficiently fast to maintain
system stability (small frequency changes). It would not have been the case
if, e.g., a sudden contingency would had occurred.
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Figure 7.33: Simulation results for all control cases (1,2,3) without filtering
process and measurement errors. Top left: Aggregate group response (rel-
ative to available capacity). Top right: Convex hull of the groups response
in function of frequency deviation. Bottom Left: additional aFRR volumes
(ideal rebound compensation). Bottom Right: Frequency histogram and
comparison with initial data.



Chapter 7 232

7.7.6 Event-based simulation, with random arrivals

We simulate the same control cases in which loads provide the full FCR
volumes during a large contingency event: the sudden loss of 3000 MW
in the EU power system. In this case, the ACE can be defined as the
frequency error itself. Indeed, the system perturbation (imbalance I(t)) is
well defined. The generation loss occurs at time t = 30min and restored at
time t = 5h. We can therefore observe the impact of a worst case scenario
for both upward (event) and downward (restoration) regulation. Results
are shown on fig. 7.34. The system is scaled to 1/10th of its real size and
loads are 20 time larger (power rate). The load arrive at random rate, which
gives a more realistic flavor to the results.
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Figure 7.34: Results of the event-based simulations for all control cases
(1,2,3) with random arrivals and ideal measurements. Top left: Aggregate
group response. Top right: Convex hull of the groups response in function
of frequency deviation. Bottom Left: additional aFRR volumes. Bottom
Right: Frequency histogram and comparison with initial data.

The proportional response with frequency filtering (case 2) has again
the less desirable behavior in terms of aFRR requirements. The advanced
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and simple control schemes differ slightly from each other in the amount of
required aFRR but more strongly regarding the extreme frequency values.
A closer look at the first hour of the simulation highlights these trends (Fig.
7.35).
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Figure 7.35: Detailed results in the first hour of the event-based simulations for all
control cases (1,2,3) with random starts and ideal measurements. Top: Aggregate
group response (relative to available capacity). Bottom: aFRR volumes (ACE is
the frequency error).

The input range of all control cases is presented on figure 7.36. We can
see that the capacity allocation process is strongly limiting the immediate
response of small loads. This comes even clearer on the figure 7.37, where
we zoom into the first event.

7.8 Aggregate model for long-term simulations

The individual simulations require a lot of memory and computational ef-
forts. For instance, the EU scaled system, 200 times smaller than the actual
system, required more than 60Gb of RAM and 72-hour simulation requires
a computation time of 10h and 15 minutes, performed on 3.6MHz-12CPUs
(2 threads per core, 6 cores per socket) machine loaded at an average of
200%. A one year simulation would require almost the same amount of
RAM (only information influencing the time step at stake is transferred),
but would end after 52 days. Any trial to simulate the system at its real
scale would require 200 times the 60Gb of RAM.
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Figure 7.36: Evolution of the input computed autonomously by each load. Top
chart: reference signal ∆f(t)/φ. Middle chart: input range pi(t) in case 1. Bottom
chart: Unique input (no measurement error) in case 2 and 3. The input dispersion
is due to the different run time impact in the inverse model and get limited as a
consequence of the capacity allocation process.
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Figure 7.37: Evolution of the inputs computed autonomously by each load.
Input dispersion originates from random run times and capacity allocation.
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7.8.1 Aggregate models for all control cases

In order to make long term simulation accessible to any standard PC, the
use of aggregate model can be useful. Let’s define by x1(t), x2(t), x3(t)
the expected value of the group response in the three control cases. Let
∆p be the power deviation that any load can impose to its power rate
p(t) ∈ [1 −∆p, 1 + ∆p]. Then, the capacity allocation results in imposing
a limit to the proportional gain Kdp

D (∆p, T, a) that depends on this allowed
power deviation, on the run time of the involved load T as well as on the
filter parameter a. Let’s recall the probability distribution ΩT defined for
T ∈ [Tm, TM ] relative to the run time T at start, the average run time Tn
at start, the average power of loads Pn. The average response droop offered
by the group subject to the advanced control scheme is found below.

Kav
D =

1

Tn

∫ TM

Tm

Kdp
D (∆p, T )TΩT dT (7.95)

Then, the relative aggregate demand change of the load group can be
computed.

These aggregate models represent the controlled demand the group
providing FCR with droop KD in each considered case.

x1(t) =
Kav
D

φ

(
∆f(t)− 1

a

∫ t

t−a
∆f(s) ds

)
(7.96)

x2(t) =
∆p

φ

(
∆f(t)− 1

a

∫ t

t−a
∆f(s) ds

− 1

Tn

∫ TM

Tm

ΩT

∫ t

t−T

(
∆f(s)− 1

a

∫ s

s−a
∆f(z) dz

)
ds

)
(7.97)

x3(t) =
∆p

φ

(
∆f(t)− 1

Tn

∫ TM

Tm

ΩT

∫ t

t−T
∆f(s) ds

)
(7.98)

Aggregate models in the three control cases

The actual demand change xi(t)D0,i depends on the number of involved
loads. The provided FCR capacity FCRcapi in each control case is derived
below.

FCRcap1 = Kav
D D0,1 FCRcap2 = ∆pD0,2 FCRcap3 = ∆pD0,3 (7.99)
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Validation of the models

We firstly fix the number of loads, as was done in the above simulations.
This is presented on figure 7.38. This figure can be compared to the in-
dividual simulation 7.27. Results are qualitatively speaking, very close in
both cases.
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Figure 7.38: Simulation results with aggregate models. Groups have the
same size which is scaled for the advanced control to provide the full FCR
needs.

The impact parameter randomness and random start rates as well as the
one of measurement errors cannot easily be estimated from an aggregate
perspective. Indeed, the feedback effect that is inherent to FCR diminishes
the impact of such errors on the frequency quality. Mainly aFRR volumes
are impacted.

Scaling of the number of loads to have the same FCR

We may want to adapt D0,i for that in each case the full FCR requirements
of the modeled system are covered by demand-side flexibility. This leads to
the results on figure 7.39. As can be observed, the technical performances
becomes very similar in all control cases, except for the aFRR requirements.
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Figure 7.39: Simulation results with aggregate models. Groups have differ-
ent size that are scaled to provide the same FCR.

From these results, the advanced scheme seems to be the best performer,
but one must recall that the number of involved loads is increased by the
capacity allocation process. Cost-based analysis is conducted below to take
this element into consideration.
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7.8.2 One year simulation

We conduct a one year simulation in which the aggregate models are ex-
ploited. The simulation lasted for less than 3 hours and required less than
0.9Gb of RAM what shows the clear advantage of exploiting aggregate mod-
els. The results are displayed on figures 7.40 (group performance) and 7.41
(frequency quality).
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Figure 7.40: Perfomance of the group (aggregate models), 1y. simulation.

Frequency Error (mHz)

♯
O
b
se
rv
a
ti
o
n
s
(%

)

 

 

−200 −100 0 100 200
0%

10%

20%

30%

Case 1 Data

Frequency Error (mHz)

 

 

−200 −100 0 100 200
0%

10%

20%

30%

Case 2 Case 3

Figure 7.41: Frequency histograms, one year simulation (aggregate models).

Table 7.1, summarizes the upward (aFRRup) and downward (aFRRdn)
needs for additional FRR obtained in the one year simulation. It also shows
the amount of FCRD actually provided by the group (fixed size) in each
case. Comparing the last line of the table for case 1 (advanced) and 3
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(simple) shows that the 36% loss of FCR capacity in the advanced framework
leads to reduced needs for aFRR of about the same proportions.

Table 7.1: One year simulation : provided FCRD and additional aFRR
needs.

Case 1 Case 2 Case 3
FCRD 3000 MW 4080 MW 4080 MW

100% 136% 136%
aFRRup 460 MW 730 MW 590 MW

100% 160% 130%
aFRRdn -540 MW -990 MW -740 MW

100% 180% 137%

7.8.3 Cost-benefit analysis
We conduct a similar cost-benefit analysis than performed in the simple con-
trol scheme (Fig. 6.28). Advanced controller costs limits are approximately
2/3rd than the results obtained in the simple case.

Weekly use Un (Wk−1)

 

 

0.5 1 2 3

5

10

15

20

25

30

35

Tn=1/4h Tn=1/2h Tn=1h Tn=2h Tn=3h

A
cc

ep
ta

bl
e

C
on

tr
ol

le
r

co
st
e

Figure 7.42: Maximum acceptable cost of the advanced power controller in
case just the required amount of loads are equipped for replacing full FCR
needs, as a function of the load’s run time and weekly use. Parameters:
Pn = 2kW,KD = 50%.

The results start being positive for loads consuming on average 200-
300kWh per year and running during one consecutive hour. For comparison,
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the average annual energy consumption of common appliances in Belgian
households is presented on figure 7.43.
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Figure 7.43: Annual energy consumption of residential appliances (Bel-
gium).

Eligible residential appliances (advanced controller) are water heaters
(night storage) and electric vehicles. The Wet appliances (Dryer, Washing
Machine, Dishwashers) are of interest but their controller should be adapted
to take their cycle profile into account (see e.g., [144]).
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Conclusions

Energy Constrained Loads (ECLs) can contribute to Frequency Contain-
ment Reserves (FCR) in an efficient way from an overall system perspective
both from a technical and an economic point of view. The main driver
of the control profitability is to restrict implementation to the loads that
are the most interesting, and only to them. This is what limits the overall
cost expenditure and leads to the best impact on the overall system. In
today’s context, flexibility is not yet rare enough to justify the control of
the system’s tiniest loads.

On the end user’s side, the picture is probably less attractive. End users
cannot expect to earn enough to reduce their energy bill significantly. How-
ever, the control impact on their daily use of energy is also very limited.
There are therefore two ways ahead. For the largest loads (e.g., electric
vehicles), one could afford to let each consumer choose whether to accept
external control. In short, these appliances generate enough profits. Some
of it can be dedicated to the process of convincing the end-user (e.g., mar-
keting costs). For the smaller ones (e.g., batch water heating in different
appliances), only mandatory and massive implementation programs and
standardized controllers can be afforded.

As implementation will take time, the most interested parties, namely
system operators and policy makers, should probably think about it early
enough. A few elements could prevent the deployment of simple power con-
trollers for FCR participation. Firstly, long-term historical simulations have
shown that the power system operations would be impacted by a massive use
of ECL as unique provider of FCR. Mostly, the operator will need to keep
track of the frequency integral and take actions preemptively to efficiently
managing its impacts on the load control performances and profitability.
Secondly, technical requirements on FCR may be overly restrictive and will
need to be adapted.

8.1 Main findings

We summarize here below the key elements discussed in this work. We refer
to the exact chapter in which results are discussed in braces.

• Historically, small electric loads have been involved in some specific
system operations each time their use consisted in a solution more
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valuable than reachable alternatives. In general, loads are efficient
to provide strong response in case of emergency situations, or in rare
occasions. This occurs in systems whose demand takes large shares of
weather-sensitive loads (e.g., air-conditioning), systems with peculiar
topology leading to large instability issues, systems in which the gener-
ation mix experiences seasonal variability (e.g., hydro-power) leading
to adequacy problems, and systems that rely on a few large infras-
tructures whose failures threaten its security (e.g., connection tie-line
for import). [Chap. 2]

• Small loads do not participate, yet, in Frequency Containment Re-
serves, except in a few pilot projects. Mostly, this can be explained
by the fact that their contribution starts being effective when imple-
mented on a large scale. The long-term success of such programs
requires a strong political willingness. In addition, relatively com-
plex controllers (i.e., frequency measurement) must be available at
low-cost. [Chap. 3]

• In the literature, studies show a general trend of neglecting the overall
system perspective of introducing ECL within system operations. This
is especially true in the case of long-term consequences (frequency
quality, etc.). [Chap. 3]

• The consumption of a large group of small loads experiences some
variability which is a direct consequence of the uncoordinated behavior
of the involved loads (random starting time) and of the dispersion of
their technical parameters. For a group counting N running loads,
the relative variations of demand around its expected value stays in
general below 3/

√
N . For this variability to be negligible in regards to

the tolerance applied on control performances, the number of running
loads should be about 300 to 500. As the considered loads run for
short period of time, the total amount of involved loads must be much
higher. Considering average appliance use, about 100.000 individual
loads should get involved in the control scheme. This calls for massive
implementation programs. [Chap. 4]

• The demand of large groups of ECL cannot be controlled at will. The
consequence of the load’s energy constraint is that the group is only
able to shift energy across time. The energy that is not consumed at
some point in time will be recovered later on, a phenomenon known
as the energy rebound. This rebound can take many different shapes
according to the way loads are controlled. Yet, one main parameter of
influence is the load’s initial run time, that is the time period during
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which the load was supposed to consume energy in case no control
action had been undertaken. [Chap. 5]

• The ECL’s power consumption can be controlled in an autonomous
setting and respond with great precision to frequency changes. Loads
need some prior knowledge about their own behavior, in particular
their scheduled run time. In both short-run and long-run simulations,
the simplest controllers, which have no means of counteracting the
energy rebound, are exhibiting acceptable performances. [Chap. 6].
This is conditioned to the fact that slower flexibility resources can
compensate for the negative impact of the energy rebound. The ad-
ditional requirements in the amount of slower resources that must be
specifically dedicated to rebound management strongly depends on
the loads’ run time. The capacity increase is moderate as soon as
loads run for one consecutive hour. [Chap. 6]

• The simpler controllers performances are dependent on the fact that
slower flexibility resources can be compensated for their rebound er-
ror. Without correctly functioning of the slower resources, they would
not behave correctly. If the system operators consider their behavior
as acceptable, they should adapt the current prequalification processes
used to certify. But this may be overlooking important risk consider-
ations? [Chap. 6]

• We proposed aggregate models which represent accurately the be-
havior of the group of controlled loads under two conditions: the load
should be large and the energy content of the service it delivers should
be limited. These models take into account the rebound error, and
boil down to apply a form of high-pass filtering on the reference signal
they are supposed to track. They have a simple mathematical form
(linear) and are particularly useful to conduct long-term simulations.
[Chap. 5]

• Economic analyses have shown that the generated profits would be in
the 0.1-20e range for most household appliances. In fact, the gener-
ated profits are, under our assumptions, about 0.8¢e/kWh, of which
controller costs must be subtracted. In Belgium, this corresponds to
4% of the total electricity price for residential consumers. Such profit
level seems acceptable as soon as loads consume 200-300kWh/y and
run for at least 30 consecutive minutes. Indeed, the main driver of
profitability is to limit the number of loads, and therefore to target
only those able to contribute more annually, that is the ones with
sufficient energy consumption. [Chap. 6]
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• ECLs can also be controlled in a more advanced setting in which
the group compensates for its own energy rebound. They become
therefore able to guarantee a certain level of service. The consequence
is that part of the initially available power flexibility must be kept for
this rebound management and cannot be sold to the system operator.
At the same time, they decrease the reliance on slower resources which
is beneficial to the system as a whole. Yet, the conservative approach
proposed in this work leads to a decreased profitability. [Chap. 7]

• The system operator’s role in increasing the control profitability is
significant. Indeed, the type of slower resources exploited for rebound
management can vary. In the most restrictive case, the participat-
ing resources are the automatically activated frequency restoration
reserves (aFRR) which are the most expensive resources at the dis-
posal of the system operator. The aFRR are activated in a reactive
way, meaning that they have to wait for something to occur before
they start compensating for it. The system operator (SO) however
has much cheaper resources at hand for helping aFRR performing
their task within the balancing market. The involved resources are
in general much slower which means that the system operator must
forecast the short-term evolution of its system in order to make an
efficient use of those resources. As the rebound error can partially be
predicted from the frequency integral, preventive actions will become
an important element of daily system operations. [Chap. 6 and 7]

8.2 Next research paths

Here are some suggestions for further exploration and improved integration
of ECLs within system operations.

• Explore the exact EU potential. What are the exact ECL parameters
that would lead to year-long and day-long availability (cross-sector)
? The proposed aggregate models are suited to exploit time-varying
parameter distributions.

• Detailed analysis on the end-user consequences of the ECL control.
In particular, the controlled policy consisting in rapid On and Off
switching deserves attention. The controller should try to avoid rapid
switching or oscillatory behavior. Furthermore, as the control is se-
lective, all loads do not react in the same way. This induces a certain
dispersion of the end-user consequences, that should be explored in
more details. Several studies have looked at similar issues in the case
of TCL, and their results could probably be adapted to the ECL case.
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• The advanced controllers should be adapted to lead to less conser-
vative approaches. The technical and economic aspects can be inte-
grated into the controller design process. In particular, loads should
maximize the immediate responsiveness, as it has a great influence in
limiting extreme frequency excursions. Consequently, the integral of
the frequency excursions is limited, and so is the rebound error. In
the process, the coordination with other system operations is crucial.
As loads will still need to recover their initial state, they must pro-
gressively, as fast as possible, reduce their response magnitude. If this
is done in coordination with cheap preventive actions undertaken by
the system operator, the frequency integral will stay unchanged, and
the overall profitability will be increased.

• Optimize the energy recovery process. Instead of relying on expensive
aFRR, the preemptive actions of the SO should be optimized to exploit
the flexibility of the balancing market. Stochastic economic dispatch
is probably a very important tool to conduct such an optimization.

• One of the most important: some practical demonstration is needed.
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Appendix A

Price-based DR and decreased price risk.

We may illustrate the decreased price-risk consecutive to the introduction
of price-based DR with a toy example. The own-price elasticity εh,h of
demand at hour h is defined as the relative change in consumption (q → q′)
following a relative change in price (p→ p′).

εh,h =
q′h
qh

ph
p′h

(A.1)

This elasticity has been evaluated in many experiments worldwide, which
results have been complied by De Jonghe in [38]. It can be roughly approx-
imated to be equal to −10%. Let’s suppose a high price period in which
the wholesale price reaches 200e/MWh. The demand at that time is qh =
10MWh. In a first situation, consumers are isolated from the price spike.
Their contract offers them a flat tariff for electricity of ph = 100e/MWh.
In a second setting, the clients have decided on a pass-through contract
with their supplier and are directly exposed to the wholesale price p′h =
200e/MWh. With an own-price elasticity of −10%, the consumer will con-
sume less than the initial 10MWh: q′h = 8 MWh.

As a results of this process, the consumer’s bill will increase of 600e
while its supplier’s profit will pass from -2000e in the initial situation to
0e. Exposing consumers to the wholesale prices allows suppliers to avoid
losses. The rise in the energy bill should be compensated by lower off-peak
prices.
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Deriving the expected demand

The expected demand in equation (4.18) is derived below, using S(t) = λ
and P = 1kW .

• For time t < T , given that no load was started on t < 0,

D̂(t) = λP

∫ t

0

∫ TM

τ

δ(τ − T ) dT dτ = λP

∫ t

0

dτ = λPt

• For time T ≤ t < t1, as the profile is constant

D̂(t) = λPT (B.1)

• For time 0 ≤ t− t1 < Tm, all loads having started at a delayed instant
τ > t−t1 have constant parameter (D̂c(t)). All new loads have varying
parameter (D̂v(t)). And since t− t1 < Tm, the distribution ΩT (t) still
plays no role in determining D̂(t).

D̂(t) = D̂c(t) + D̂v(t) (B.2)

D̂c(t) = λP

∫ T

t−t1
dτ = λP (T − (t− t1)) (B.3)

D̂v(t) = λP

∫ t−t1

0

∫ TM

Tm

1

TM − Tm
dT dτ (B.4)

= λP (t− t1) (B.5)
D̂(t) = λPT (B.6)

• For time Tm ≤ t− t1 < T , a similar development is found, that takes
into account the distribution ΩT (t).

D̂c(t) = λP

∫ T

t−t1
dτ = λP (T − (t− t1)) (B.7)

D̂v(t) = λP

(
Tm +

∫ t−t1

Tm

∫ TM

τ

1

TM − Tm
dT dτ

)
(B.8)

= λP (Tm +
2TM (t− t1 − Tm)− (t− t1)2 + T 2

m

2(TM − Tm)
) (B.9)

D̂(t) = λP (T − (t− t1) + Tm +
2TM (t− t1 − Tm)− (t− t1)2 + T 2

m

2(TM − Tm)
)(B.10)
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• For time T ≤ t − t1 < TM , there are no more loads with constant
parameter, while the probability for having loads with duration in the
non-empty interval [t− t1, TM ] is zero.

D̂(t) = λP (Tm +
2TM (t− t1 − Tm)− (t− t1)2 + T 2

m

2(TM − Tm)
) (B.11)

• When TM ≤ t− t1 < t2 − t1, the demand recovers its equilibrium ex-
pected demand, which in this case corresponds to the initial situation.

D̂(t) = λP
TM + Tm

2
= λPT (B.12)



Appendix C
Approximation of the Aggregate model in

the Rate policy

Let’s recall the three aggregate models relative to each of the presented
control policies,

xd(t|Tn) = α̃Tn
(t)− α̃Tn

(t− Tn) (C.1)
xs(t|Tn) = α(t) − ᾱ(t, Tn) (C.2)
xr(t|Tn) = α(t) −

(
1 + α(t)

)
nr(t)ᾱ(t, nr(t)Tn) (C.3)

We would like to find a linear approximation of the non-linear rebound
of the Rate policy. We will show that, as the frequency-based reference
signal has a small energy content (i.e.,

∫ Tn

0
rup(t − τ)dτ), the following

approximation is valid (equations (C.3) and (C.2)) for large Tn.

xr(t) ' xs(t) ⇒ ᾱ(t, Tn) '
(
1 + α(t)

)
nr(t)ᾱ(t, nr(t)Tn)(C.4)

We want to evaluate the approximation error ea(t).

ea(t) = xr(t)− xs(t) (C.5)

We pose for readability and feasibility u(t) = (1+KDr
up(t))/Tn > 0 (i.e.,

0 ≤ KD < 1 without loss of generality) and recall that α(t) = KDr
up(t).

We use equation (5.41) as the definition of the dynamic run time.

1 =

∫ t

t−Tdyn(t)

u(s) ds (C.6)

ea(t) =
1

Tn

[ ∫ t

t−Tn

α(s) ds− (1 + α(t))

∫ t

t−Tdyn(t)

α(s) ds

]
(C.7)

where T dyn(0) = T0 depends on u0 = {u(t)|t ≤ 0} is known (e.g., T0 = Tn
if u0 = 1).

Dynamic Run Time

Let’s denote τ(t) = T dyn(t) and let’s take the time derivative of the first
equation.

dτ(t)

dt
= 1− u(t)

u(t− τ(t))
(C.8)
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Equation (C.8) is a non-linear delay differential equation with time vary-
ing delay. It is dependent on the initial delay value τ(t ≤ 0) = τ0. As
illustrated on figure C.1, it is an infinite dimension problem as the future
evolution of τ(t) are dependent on all values of u(t) in the interval [t−τ(t), t]
[109]. These values form a function ut.

Figure C.1: The evolution of the time delay τ(t) is function of all previous
values ut.

As the initial reference signal rup(t) is bounded, the time delay is bounded
also bounded to Tn ≤ τ(t) ≤ τM = Tdl = Tn/(1 − KD). The relation be-
tween the previous and current values of the delay are described in a func-
tional which domain is a space of functions. Those functions are defined on
the domain [−τM , 0] and codomain [−KD, 0] (i.e., possible values of u(t)).
The codomain of the functional is the set of all possible values of the delay
[−τM , 0]. The domain of the functional is the Banach space of continuous
functions over [−τM , 0] : C([−τM , 0],R) [109]. The functional is therefore
described by C([−τM , 0], [−KD, 0])→ [−τM , 0]. As u(t) is greater than zero
at all time, the time derivative of τ(t) exists at all point in time. Further-
more, u(t) is most often close to 1/Tn, which leads τ(t) to be close to Tn,
and ea(t) to be close to zero.

Figure C.2: A sliding window view on evolution of the time delay τ(t).

As can be observed on figure C.2, the required information can be con-
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densed in a sliding window of length τM . The new information comes ex-
clusively from the right (i.e., u(t)). Indeed, the required information lies at
t in the interval [t − τ(t), t]. After an infinitesimal time dt, the new infor-
mation lies in [t + dt − τ(t + dt), t + dt]. We would like to show that the
new rightmost limit t+ dt− τ(t+ dt) is always greater than the initial limit
t− τ(t) such that no new information was needed from the past.

lim
dt→0

t+ dt− τ(t+ dt) > t− τ(t) (C.9)

This is always true as it gives

lim
dt→0

τ(t+ dt)− τ(t)

dt
< 1 (C.10)

dτ(t)

dt
< 1 (C.11)

which from equation (C.8) with u(t) > 0 is indeed true.

Approximation Error

When the delay τ(t) is known, the error can be computed independently.
Let’s use Iα(t) as the integrated α(t) signal.

ea(t) =
1

Tn

[
Iα(t)− Iα(t− Tn)−

(
1 + α(t)

)(
Iα(t)− Iα(t− τ(t))

)]
(C.12)

This error is illustrated for KD = 60% and both Tn = 1/4h or Tn = 1h
on figure C.3. The error decreases largely as Tn increases.

The maximum observed error as simulated from January 2015 data is
represented below on figure C.4.

Upper bound error

We can also derive an upper bound for the error term.

|ea(t)| ≤ 1

Tn

∣∣∣∣Iα(t− τ(t))− Iα(t− Tn)
)∣∣∣∣ (C.13)

By noting z(t) = τ(t)− Tn, the upper bound of ea(t) is

|ea(t)| ≤ max
t

1

Tn

∫ z(t)

0

|α(t− Tn − s)| ds (C.14)

The solution can be found by using specific DDEs solvers to compute, at
any time t, the delay τ(t) and thereby being able to compute the error ea(t).
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Figure C.3: Illustration of the approximation error magnitude ea(t) in % of
the baseline demand. The error is a function of the reference signal rup(t),
shown on the bottom chart (1st January 2015, source : RTE). Parameters
: KD = 60% and Tn = 1/4h or Tn = 1h.

Run Time Tn

m
a
x
t
|e

a
(t
)|

1/4h 1/2h 1h 2h
0%

1%

2%

3%

4%

 

 

KD = 10%
KD = 30%
KD = 50%

Figure C.4: Maximum observed approximation error magnitude ea(t) in %
of the baseline demand (January 2015, source : RTE) for different parame-
ters Tn and KD.
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Discrete-time model

DDEs solver can be quite slow to converge. Therefore, an equivalent discrete-
time approach can be used. At every time step k of length Ts, a large matrix
is used to keep track of the amount of energy that remains to be consumed
by each running loads. The discrete approach considers that S(k) = λTs
loads start at each time step k. At every time step, an amount of energy
∆E(k) = P (k)Ts is consumed by the loads at a rate P (k) = Pn(1 + b(k)).
The bias bk = KDr

up
k is given by the average value rup(k) of rup(t) in the

interval t ∈ [Tsk, Ts(k + 1)[. Also, each running load is associated to two
energy states Eb(k) and Ee(k). They both account for the amount of energy
that still need to be consumed before the load can stop, evaluated respec-
tively at the beginning (b) and at the end (e) of period k. They must always
stay positive, which requires a non-convex operation (binary-like). All loads
starting within a certain time step are associated to the same energy states.
This reduces largely the computational burden as the number of variable
shrinks to the largest relevant time window : Tn/Ts/(1−KD) (or the next
integer time step).

For instance, we define Eb,i(k) as the remaining energy of loads being
started since i time steps at time k, ∀i = 0..I, with I = dTn/Ts/(1−KD)e .
Such states are successively computed to track past efforts P (k). Demand
at time k is computed as follows.

D(k) = λTs(

I∑
i=0

Eb,i(k)− Ee,i(k))/Ts (C.15)

Ee,i(k) = max(Eb,i(k)− P (k), 0) (C.16)
Eb,0(k + 1) = En (C.17)
Eb,i(k + 1) = Ee,i−1(k) ∀i > 0 (C.18)

The error is simply extracted from its definition (Eq. C.5).

xr(k) =
D(k)

D0
− 1 (C.19)

xs(k) = b(k)− Ts
Tn

Tn/Ts∑
j=1

b(j) (C.20)

ea(k) = xs(k)− xr(k) (C.21)
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Imbalance recovery for simulation purpose

D.1 Immediate damping

The power system is assumed to have a constant damping factor KFCR+L
that is immediately deployed as soon as a frequency deviation is observed.
The assumed power system model is reduced to its minimum. The resulting
imbalance I1(t) aggregates together the actual system imbalance but also
all operator’s effort to counteract this imbalance (e.g., aFFR and mFRR
volumes).

I1(t) = (yf (t)− fn)(KFCR + L) (D.1)

The system described by equation (6.1) must be reduced to its minimum
where KaFRR and D0 are set to zero. Indeed, the contribution of the
integral term is already included into I1(t). Note that in this case, the
finite ramp rate of generators is not considered to build the input I1(t).
Furthermore, the historical integral action cannot be recovered. The model
used in simulations will be as follows (Eq. (D.2)). In order to recovering
I1(t), the system below is considered without load participation (i.e., D0 =
0, Kdn

FCR = Kup
FCR = 15GW/Hz).

M
df1(t)

dt
= I1(t)− L∆f1(t)−Kdn

FCR∆f+1 (t)−Kup
FCR∆f−1 (t)−D0x1(t) (D.2)

The resulting f1(t) are a little different, but very close, to the initial
frequency measurements. The main limitation of this approach is that the
quality of the frequency f1(t), when demand response is introduced (D0 > 0
and KD > 0), will be very poor. Indeed, the rebound will not be compen-
sated by aFRR as shown in figure 6.7. Indeed, there is no integral action
considered in this case. We anticipate on the results presented below to
show such effect (Fig. D.1). The two presented histograms represent respec-
tively the historical frequency quality, and the simulated frequency quality
with load participation. In case flexible load participation is considered,
the groups covers the whole upward FCR volumes. Ideal generation still
covers the downward volumes. The histograms are presented for the differ-
ent group scenarios/aggregate models and compared to the input data. As
highlighted, the frequency quality is decreased when no integral action is
considered to counteract the rebound error.
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Figure D.1: Frequency deviation histogram as image of general frequency
quality. Input Data are from January 2015 (source : RTE). Grey area :
input data. Blue area : Stop/Rate aggregate model. Red line : Delay
aggregate model.

D.2 Immediate damping with integral compen-
sation

In order to compensate for the rebound, and uniquely for the rebound, we
construct an additional aFRR layer supposed to keep the frequency quality
as simulated without demand response. We use the input data as reference
for this additional layer. These slow reserves will attempt to bring back
frequency back to its historical value. Let’s note that the imbalance is such
that I2(t) = I1(t).

M
df2(t)

dt
= I2(t)−L∆f2(t)−Kdn

FCR∆f+
2 (t)−Kup

FCR∆f−2 (t)

−KaFRR

τFRR

∫
(f2(t)− yf (t))dt−D0x2(t) (D.3)

D.3 l-delay unknown input observer : finite
ramp rate of generators

An observer can be built to recover the unknown input [135]. The basic
idea is to reconstruct all observable states and input at a certain time t
from the l previous output measurement. This approach allows to consider
more complex initial systems. Let’s suppose the linear discrete time ABCD
system with states x = (x1, x2) and input u ∈ R.
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Figure D.2: Frequency deviation histogram (with integral compensation).

x(t+ 1) = Ax(t) +Bu(t) (D.4)
y(t) = Cx(t) +Du(t) (D.5)

As explained in [136], the system may be iterated from an initial value
x(0).


y(0)
y(1)
y(2)
...

y(l)


︸ ︷︷ ︸
y(0 : l)

=


C
CA
CA2

...
CAl


︸ ︷︷ ︸
Ol

x(0) +


D 0 · · · 0
CB D · · · 0
CAB CB · · · 0

...
...

. . .
...

CAl−1B CAl−2B · · · D


︸ ︷︷ ︸

Jl


u(0)
u(1)
u(2)
...

u(l)


︸ ︷︷ ︸
u(0 : l)

(D.6)

This may be rewritten in a compact form.

y(0 : l)−Olx(0) = Jlu(0 : l) (D.7)

Our objective is to invert the above relation in order to obtain the un-
known inputs u(0),u(1),etc. Under several conditions, the above system is
said to be invertible. As mentioned in [136] :

The system is said to have an l-delay inverse if it is possible
to uniquely recover the input u(t) from the outputs of the sys-
tem up to time-step y(t + l) (for some nonnegative integer l),
assuming that the initial state x(0) is known.

The required conditions are that, for a system with m inputs, the first m
columns of Jl are both linearly independent of each other and independent
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of all other columns of Jl. The idea is to find a delay l ≤ n−nullity(D) + 1
(i.e. n is the system’s dimension) such that,

rank[Jl+1] = m+ rank[Jl] ∀1 ≤ l ≤ n− nullity(D) + 1 (D.8)

In the case of equation 6.1, we have one unknown input (u(t) = I(t)),
and two states x1(t) = ∆f(t), x2(t) =

∫
∆f(t). The condition boils down

to insuring that we can find a delay l that respects eq. (D.8). In such case,
it is possible to find a matrix P such that PJl degenerates into a vector
PJl = [1 0 ... 0]. This gives,

P
[
y(0 : l)−Olx(0)

]
= u(0) = I2(0) (D.9)

Knowing u(0) allows to compute x(1) from equation (D.4) and re-iterate
the procedure to obtain u(1), u(2),etc. In fact, what appears to be necessary
is to find estimates x̂(1), x̂(2),etc. of the states x(1),x(2),etc. from the
initial value x(0) in order to successively recover the unknown input. We
must build the following system.

x̂(t+ 1) = Ex̂(t) + Fy(t : t+ l) (D.10)

Again from [136], the system (D.10) is said to be an unknown input
observer with delay l if the estimation error (x̂(t) − x(t)) asymptotically
converges to zero as t goes to infinity regardless of the value of u(t). More
details are to be found in appendix E.

The difference with the first approach is that the considered power sys-
tem model can be more complex, and its parameters may in principle be
time varying. This would allow to capture a much more realistic behavior.
This approach however requires a good understanding of the initial system
at stake. Indeed, a pole placement procedure is required in some cases or-
der to select the gain of the observer. Furthermore, the procedure is not
possible for all system parameters. The ABCD matrices must be have some
desired features without which the approach is not converging.

The l-delay process is applied to system of equation (D.11) where gener-
ators that participates in FCRG have finite ramp rate (first order model).
Again, for recovering I3(t), D0 is set to zero.

M
df3(t)

dt
= I3(t)− L∆f3(t) + FCRG(t)−D0x3(t) (D.11)

τg
FCRG(t)

dt
= −Kdn

FCR∆f+
3 (t)−Kup

FCR∆f−3 (t)− FCRG(t) (D.12)

The figure D.3 below illustrates the obtained values of I1(t) (immediate
damping) and I3(t). The difference are very small and consists in small
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transition periods that have a first order response shape. The added value
of the above approach in such case is very small, partly due to the low
refreshment rate of the initial data (10s-based measurements).
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Figure D.3: Comparison between immediate damping and l-delay input
reconstruction procedures. The power system model is considered without
integral action but with limited ramp rate of generation assets.

D.4 l-delay unknown input observer for model
with integral action.

The same procedure is applied to a complex model where the integral action
is considered at early stage. In principle, such model allows to distinguish
the initial system power imbalance from the consecutive action undertaken
by the power system operators to push back frequency to its initial value
are extracted from the imbalance signal.

M
df4(t)

dt
= I4(t)− L∆f4(t) + FCRG(t) + aFRRG(t)−D0x4(t) (D.13)

τg
FCRG(t)

dt
= −Kdn

FCR∆f+4 (t)−Kup
FCR∆f−4 (t)− FCRG(t) (D.14)

τaFRR
aFRRG(t)

dt
= −Kp

aFRR∆f4(t)−Ki
aFRR

∫
∆f4(t)dt− aFRRG(t) (D.15)

As can be seen from the above equation, aFRR can, in general, provide
a proportional (Kp) and an integral (Ki) action. Results of the imbalance
I4(t) extracted for 1 day (1st January 2015) and 1 month (Jan. 2015) with a
1-delay observer are show respectively on Fig. D.4 and D.5 (τg = 3,τaFRR =
5,KFCR = 15GW/Hz,Kp

aFRR = 0,Ki
aFRR = 0.1KFCR,L = 4GW/Hz).

As can be observed the reconstructed input values rise to high values.
Such imbalance value seems around 25 times higher than what could be
expected at CE-level. Indeed, a simple parallel with the Belgian situation
may help to assess this order of magnitude. We had access to the power
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Figure D.4: Comparison of EU-wide imbalance recovered by two different
methods (1) Immediate damping and (2) l-delay approach for model with
integral action. Data from 1st of January 2015 (Source : RTE).
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Figure D.5: Comparison of EU-wide imbalance recovered by two different
methods (1) Immediate damping and (2) l-delay approach for model with
integral action. Data from the month of January 2015 (Source : RTE).

imbalance signal as measured at the border of the Belgian System in January
and September 2012. As highlighted on figure D.6, the instantaneous power
system imbalance reaches at most 1.5 GW in the Belgian system, that has
a peak load of approximately 12GW. Knowing that the peak load of the CE
system is 400GW, and supposing that the imbalance increases as the square
root of the peak load, we can estimate the CE-level imbalance to be around
1.5
√

400/12 = 15/
√

3 = 8.66. This is indeed around 25 times less than
the obtained imbalance signal I4(t). Let’s note than even a proportional
increase of the imbalance with the peak load would lead to 50GW, which is
three times less than maximum of I4.

D.5 Model selection conclusion

The complex model used to recover the imbalance signal without the integral
action is inappropriate. Indeed, the non-zero frequency integral has other
origins than the actual power imbalance. It is also linked to non-linear be-



Chapter D 279

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

P
ow

er
Im

b
a
la
n
ce

[G
W

]

 

 

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

Time (days)

 

 September 2012

January 2012

Figure D.6: Historical Power Imbalance measured at the border of the Bel-
gian System during two different months in 2012 (10s-based measurements).

havior of the power-frequency control in general : saturation effects, limited
ramp rates, dead-band, ACE netting, measurement errors, ACE resetting
at local level, etc. Recovering the integral action seems out of reach as
all of such elements should be taken into account. We therefore decide to
use the second model (immediate damping with integral action for rebound
management).





Appendix E

Design of unknown input observer

From [136], we learn that the following observer is said to be a L-delay
unknown input observer if the estimation error of the states x̂(t) − x(t) is
asymptotically null as t goes to infinity. We disposed of historically mea-
sured inputs y(t).

x̂(t+ 1) = Ex̂(t) + Fy(t : t+ L) (E.1)

The design process required to find E and F is summarized in the fol-
lowing code.

Listing E.1: L-delay observer

1 function [E,F,l]=Ldelay(A,B,C,D,lmax)
2 % Construct the l−delay observer from system A,B,C,D.
3
4 [nx,nu] = size(B);
5 [ny,nu2] = size(D);
6
7 % Invertibility and Observability matrices
8 Jl = D; Ol = C; Mat = D;
9 % recursion
10 k=1;
11 while k<=lmax
12
13 % Save for later
14 Jlm1 = Jl;
15 bm=size([Ol*B Jl],2);
16
17 Jl = [D zeros(ny,bm−nu2);Ol*B Jl];
18 Ol = [C; Ol*A];
19
20 Mat = [Mat; C*A^(k−1)*B];
21
22 % Stop if the delay is sufficient
23 bm1=size([Ol*B Jl],2);
24 JLp1 = [D zeros(ny,bm1−nu2);Ol*B Jl];
25 if rank(JLp1)− rank(Jl) == nu
26 l = k;
27 k=lmax+1;

281



Chapter E 282

28 elseif k == lmax
29 error('Full State cannot be recovered')
30 else
31 k=k+1;
32 end
33 end
34
35 % Nbar matrix
36 Nbar = null(Jlm1')';
37
38 % W matrix
39 [an,bn] = size(Nbar);
40 Mat2 = [eye(ny) zeros(ny,bn) ; zeros(an,ny) Nbar];
41 Mat3 = Mat2*Mat;
42 Wup = null(Mat3')';
43 Wdn = ((Mat3')*Mat3)\(Mat3');
44 W=[Wup;Wdn];
45
46 % N matrix
47 N = W*Mat2;
48
49 % S1 and S2
50 Mat4 = N*Ol;
51 S1 = Mat4(1:end−nu,:);
52 S2 = Mat4(end−nu+1:end,:);
53
54 % F1 (place poles if needed)
55 if max(abs(eig(A−B*S2))) >= 1
56 lambda = linspace(−0.5,0.5,nx);
57 F1 = (place((A−B*S2)',S1',lambda)');
58 else
59 as1=size(S1,1);
60 F1=zeros(nx,as1);
61 end
62
63 % Generate outputs
64 E = A−B*S2−F1*S1;
65 F = [F1 B]*N;
66
67 end
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