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Abstract

Time series of realized covariance matrices can be modeled in the conditional autor-
egressive Wishart model family via dynamic correlations or via dynamic covarian-
ces. Extended parameterizations of these models are proposed, which imply a
specific and time-varying impact parameter of the lagged realized covariance (or
correlation) on the next conditional covariance (or correlation) of each asset pair.
The proposed extensions guarantee the positive definiteness of the conditional co-
variance or correlation matrix with simple parametric restrictions, while keeping the
number of parameters fixed or linear with respect to the number of assets. Two em-
pirical studies reveal that the extended models have superior forecasting perform-
ances than their simpler versions and benchmark models.

Key words: dynamic covariances and correlations, Hadamard exponential matrix, realized

covariances

JEL classification: C32, C58

The dynamic modeling of return covariance matrices is the topic of a large number of con-

tributions in financial econometrics. The literature started by extending the univariate gen-

eralized autoregressive conditional heteroskedasticity (GARCH) model of Bollerslev (1986)

to the multivariate case, developing progressively the family of multivariate generalized

conditional heteroskedasticity (MGARCH) models; for a review, see for example,

Bauwens, Laurent, and Rombouts (2006). Due to the availability of intraday prices and the

development of realized volatility measures, attention shifted to the dynamic modeling of

realized covariances and correlations. This has resulted in new models for positive definite

matrices, among which we focus our attention on the conditional autoregressive Wishart
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(CAW) models proposed by Golosnoy, Gribisch, and Liesenfeld (2012), and the multivari-

ate heterogeneous autoregressive (HAR)-type models1 extending the univariate HAR model

of Corsi (2009). Both MGARCH models and models for realized measures are popular

tools for risk management and portfolio allocation. MGARCH models have the advantage

of being applicable in much larger dimensions; models for realized measures are based on

more precise measures of covariation.

MGARCH and CAW models require to specify a dynamic process for a conditional co-

variance matrix (i.e., the conditional expectation of a covariance matrix). In that respect,

they use the same kind of Baba-Engle-Kent-Kroner (BEKK) (for covariances) and dynamic

conditional correlations (DCC) (for correlations) formulations of conditional processes:

BEKK in MGARCH was introduced by Engle and Kroner (1995) and adapted to CAW by

Golosnoy, Gribisch, and Liesenfeld (2012); DCC was introduced in MGARCH by Engle

(2002) and extended to CAW by Bauwens, Storti, and Violante (2012) and Bauwens,

Braione, and Storti (2016).

This research provides empirical evaluations of the merits of modeling realized covari-

ance matrices through correlations and variances or through covariances and variances.

These evaluations use new parameterizations of the CAW model family, which extend the

existing BEKK-type formulation of Golosnoy, Gribisch, and Liesenfeld (2012) and the

DCC-type formulation of Bauwens, Storti, and Violante (2012). The proposed new param-

eterizations imply a specific impact parameter of the lagged realized covariance (or correl-

ation) on the next conditional covariance (or correlation) of each asset pair; moreover,

these impact parameters are time-varying. They nevertheless guarantee the positive definite-

ness of the conditional covariance (or correlation) matrix with simple parametric restric-

tions, while keeping the number of parameters fixed or at most linear in the number of

assets. In brief, they are more flexible than existing scalar or rank-one BEKK and DCC ver-

sions, while adding a scalar parameter to these models, hence, they remain parsimonious.2

To illustrate the idea, in the simple scalar BEKK-type CAW process, each conditional

covariance Sij;t is specified as a linear function of its own lag and the corresponding lagged

realized covariance Cij;t�1, so that Sij;t ¼ cij þ bSij;t�1 þ aCij;t�1, where cij, a, and b are

parameters. One of the proposed models replaces the impact coefficient a of Cij;t�1 on Sij;t

by a exp /ARij;t�1

� �
= exp /Að Þ, where /A is a parameter and Rij;t�1 is the lagged realized cor-

relation for the asset pair (i, j). Hence, if /A differs from zero, the impact coefficient differs

between asset pairs and is time-varying. This type of extension adds flexibility in the dy-

namics, by adding a single parameter. It can be used in non-scalar specifications as well.

These extended parameterizations use the element-by-element (Hadamard) exponential

function of a matrix to define the impact parameter matrix of the lagged realized or

1 Notably, the vec-HAR model derived from Chiriac and Voev (2011) and the HAR-DRD model of Oh

and Patton (2016). These models are used, with some variations in their scope and specification, in

several papers, for example, Hautsch, Kyj, and Malec (2015); Callot, Kock, and Medeiros (2017);

deBrito, Medeiros, and Ribeiro (2018); Bollerslev et al. (2021); and Vassallo, Buccheri, and Corsi

(2021).

2 Alternatively, a conditional covariance or correlation process can be parsimoniously parameterized

by assuming that a small number of factors drive its dynamics. See (among others) Engle, Ng, and

Rothschild (1990) in the MGARCH case. Papers centered on or using factor models for realized

covariances are mentioned in Section 6.
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conditional covariances (or correlations) on the subsequent conditional covariances (or cor-

relations). The Hadamard exponential matrix benefits from several mathematical proper-

ties, exploited by Bauwens and Otranto (2020b) in the MGARCH framework to develop

DCC models where the conditional correlations also have asset pair-specific and time-

varying dynamics. These models are extended to the CAW model family. CAW models that

use a Hadamard exponential function in their parameterization, whether in the BEKK-type

or in the DCC-type of specifications, will be named “Hadamard Exponential CAW” (HE-

CAW). Every HE-CAW model can be simplified to a corresponding simpler CAW model

by imposing a parameter restriction that can be tested (/A ¼ 0 in the previous paragraph).

BEKK-type CAW models are estimated by maximizing the Wishart log-likelihood func-

tion in one step, whereas DCC-type CAW models can be estimated in one step and also in

two steps. One-step estimators are in principle efficient statistically, while two-step ones

incur an efficiency loss; see Engle and Sheppard (2001) for the MGARCH DCC models.

The efficiency issue is complicated by the targeting issue because it is difficult to define a

practical targeting estimator in non-scalar formulations. The approximate targeting solu-

tion proposed by Hafner and Franses (2009) is adopted, which makes use of an average of

the unknown parameters in the targeting estimator. Because the HE parameterization of

any CAW model adds a single parameter to its simpler version, the estimation of the HE

version is not more difficult than its simpler version. What can make the estimation difficult

in practice3 is the dimension of the model (the number of assets), in non-scalar versions.

For example, if the dimension is 100, and a rank-one parameterization is used, the number

of parameters to be estimated simultaneously is equal to 200. More parsimonious models

can be obtained by a statistical clustering procedure that eventually reduces the number of

parameters, resulting in a small number of asset groups that have identical parameters.

Alternatively, the groups of assets can be based on an a priori (sectoral or other)

classification.

Two empirical exercises, using a data set of 29 stocks and another of 100 stocks, serve

to compare the forecasting performance of the BEKK- and DCC-type HE-CAW models

with their simple versions, and with benchmark models, after including in the latter a HE

extension. The out-of-sample forecasts of the different models are compared using two stat-

istical loss functions (QLIK, a quasi-likelihood loss, and FN, a Frobenius norm) through

the model confidence set (MCS) procedure of Hansen, Lunde, and Nason (2003). The fore-

casts are also compared in term of the standard deviation of the time series of the estimated

global minimum variance portfolio (GMVP) returns.

In the estimation results for both data sets, the parameters of the HE-CAW models

which imply time-varying and pair-specific impact coefficients are statistically significant at

conventional levels and improve the model fit with respect to the simpler versions. In the

forecast evaluations, the models with the HE term tend to perform better than the simpler

models, and the CAW-type models than the benchmark models, but non-systematic excep-

tions and variations occur, depending on the data set and the forecast horizon.

The paper is organized as follows: the CAW modeling framework is defined in Section

1. Scalar HE-CAW models are introduced in Section 2. Using the data set of 29 stocks, the

scalar models are compared empirically in Section 3 with benchmark models in term of

3 The difficulty we encountered is the computation of robust standard errors, rather than the conver-

gence of the maximization procedure.
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covariance matrix out-of-sample forecasting performance. Extended parameterizations of

HE-CAW models, and ways to reduce their parameterization, are defined in Section 4.

Section 5 presents detailed estimation results and covariance matrix out-of-sample forecast

evaluations for 13 HE-CAW models. Section 6 presents empirical results for the data set of

100 stocks. Final remarks conclude the paper. An Online Supplementary Appendix (hence-

forth referred to as SA) presents additional empirical information and results.

1 Caw Modeling Framework

Let Ct denote the (n� n) realized covariance matrix of day t (t ¼ 1; . . . ;T), and I t the infor-

mation set at time t, consisting of the current and past values of Ct. Several ways of defining

Ct as a function of intraday returns are available in the literature. In the CAW framework,

the conditional distribution of Ct is a n-dimensional central Wishart with � > nð Þ degrees

of freedom; in symbols:

CtjI t�1 �Wnð�; St=�Þ; (1)

where St, of dimension n� n, is the (positive definite) expected value of the conditional dis-

tribution of Ct. Under this distributional hypothesis, the marginal conditional distributions

of the realized variances (on the diagonal of Ct) are univariate Gamma distributions.

The CAW approach consists in specifying St as a function of the information set, St

being indexed by unknown parameters h, estimated by maximizing the log-likelihood func-

tion (excluding terms that do not depend on h):

l hjC1; . . . ;CTð Þ ¼ � �
2

XT

t¼1

log jSt hð Þj þ trace St hð Þ�1
Ct

h in o
: (2)

In the case of BEKK-type models, the function (2) is maximized with respect to h in one

step, whereas in the case of DCC-type models, the function is maximized in two steps, as

explained in Section 1.2. In both cases, the parameter � does not affect the estimation of h,

so that it can be set equal to 1.

1.1 BEKK-Type Models

There is a large variety of ways to specify St, inspired by the MGARCH literature4; for ex-

ample, Golosnoy, Gribisch, and Liesenfeld (2012) adopt a BEKK model. The diagonal

BEKK-CAW model is the following process:

St ¼ Cþ A� Ct�1 þ B� St�1; (3)

where C, A, and B are unknown symmetric matrices of parameters, the first positive defin-

ite, the other positive semidefinite, and � represents the element-by-element (Hadamard)

product. The model is said to be diagonal because each conditional covariance St depends

only on the corresponding lagged conditional covariance and realized covariance, not on

other covariances. The number of parameters in Equation (3), equal to 3n nþ 1ð Þ=2, ren-

ders maximum-likelihood (ML) estimation unfeasible already for n � 5. The number of

4 A related but different Wishart-type model by Gorgi et al. (2019) specifies the dynamics of Ct as a

function of a vector of time-varying parameters that follow a GAS-type process.
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parameters is reduced by considering the covariance targeting version of Equation (3),

defined by setting C ¼ ðJn � A� BÞ�C, where Jn is an n�n matrix of ones and C is the

sample mean of the realized covariances Ct. In the above nonscalar framework, it is not

possible to guarantee that the matrix used for targeting is positive definite; a practical solu-

tion, proposed by Hafner and Franses (2009), replaces the possibly non-positive definite

matrix Jn � A� B by the scalar 1� a � b 2 0; 1ð Þ, where a and b are the averages of the

elements of the matrices A and B, respectively.

The scalar version of Equation (3), where A ¼ aJn and B ¼ bJn with a and b unknown,

reduces drastically the number of parameters in A and B, so that the dynamics is common

for all the variances and covariances. A less important reduction is obtained by adopting a

rank-one parameterization, with A ¼ aa0 and B ¼ bb0, where a ¼ ða1=2
1 ; a

1=2
2 . . . ; a

1=2
n Þ0 and

b ¼ ðb1=2
1 ;b

1=2
2 . . . ; b

1=2
n Þ0.5 The advantage of this parameterization is to have different dy-

namics for the elements of the conditional covariance matrix, even if the parameters for the

covariances are derived from the parameters of the variances.

The parameter vector h in Equation (2) consists of a and b in the scalar version and of

the elements of a and b in the rank-one parameterization.

1.2 DCC-Type Models

Bauwens, Storti, and Violante (2012) and Bauwens, Braione, and Storti (2016) specify St in

the CAW framework using a formulation similar to that of the dynamic conditional correl-

ation model of Engle (2002) for multivariate GARCH models. They name the model

“Re-cDCC” (realized consistent DCC). It consists of n univariate models for the condition-

al variances and a scalar DCC model for the realized correlation matrix. The conditional

variance models are specified as the GARCH-type model (for each asset i):

Sii;t ¼ 1� ai � bið ÞCii þ aiCii;t�1 þ biSii;t�1; (4)

where Cii; Sii;t, and Cii;t represent the i-th element of the diagonal of the matrices C; St, and

Ct, respectively, while ai and bi are positive scalar parameters.

The conditional correlation model is a DCC model with a correction similar to the

“consistent” correction proposed by Aielli (2013) for DCC-MGARCH. As shown by

Bauwens, Storti, and Violante (2012), the Wishart log-likelihood (2) can be split into two

parts (excluding a constant part):

l hjC1; . . . ;CTð Þ ¼ lv hvð Þ þ lc hcjhvð Þ

lv hvð Þ ¼ �
�

2
log jD2

t j þ trace D�1
t CtD

�1
t

� �h i
¼ � �

2

Xn

i¼1

log Sii;tð Þ þ
Xn

i¼1

S�1
ii;t Cii;t

" #
lc hcjhvð Þ ¼ � �

2
log jD�1

t StD
�1
t j þ trace DtS

�1
t Dt � In

� �
D�1

t CtD
�1
t

h in o
;

(5)

where In is the (n� n) identity matrix and Dt is a diagonal matrix with diagonal elements

S
1=2
ii;t . The estimation of h is split into two steps. The log-likelihood relative to the variance

part, lvðhvÞ, is the sum of the n univariate log-likelihood functions of the conditional varian-

ces, that can be maximized consistently in a first step. The parameters relative to the

5 Using the square root of ai (bi), the coefficient of the lagged (conditional) variance of the i-th

GARCH-type variance equation is ai (bi), like a (b) in the scalar version.
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correlation part, hc, can be estimated in a second step by maximizing lcðhcjhvÞ, conditional

on the estimator of hv obtained in the first step. Like for Equation (2), � does not affect the

estimation of h and can be set to 1. Because the term traceðD�1
t CtD

�1
t Þ appearing in the ex-

pression of lc hcjhvð Þ does not depend on hc, it can be dropped from it in the maximization,

so that the second step objective function is actually the log-likelihood of a Wishart density

function for D�1
t CtD

�1
t , with parameters � and D�1

t StD
�1
t .

The Re-cDCC model of Rt, in its diagonal version, is defined as the following set of

equations:

Rt ¼ ~Q
�1=2

t Qt
~Q
�1=2

t ; (6)

Qt ¼ Qþ A� ~Q
1=2

t�1D�1
t�1Ct�1D�1

t�1
~Q

1=2

t�1

� �
þ B�Qt�1; (7)

~Qt ¼ diag Qtð Þ; (8)

where for any square matrix X; diag Xð Þ is the diagonal matrix obtained by setting to zero

all the off-diagonal elements of X. Like for the BEKK formulation, a parsimonious version

of the constant matrix Q replaces it by 1� a � bð ÞR; R being the sample correlation ma-

trix, computed from C. The scalar version is obtained by setting A ¼ aJn and B ¼ bJn, and

the rank-one version by setting A ¼ aa0 and B ¼ bb0.

The conditional correlation matrix Rt, defined by Equation (6), should not be confused

with the realized correlation matrix that is obtained by transforming the realized covari-

ance matrix Ct into a correlation matrix; the latter is denoted Pt in the sequel. Both St and

Pt are observable, whereas Rt is not.

1.2.1 Model names

The following acronyms are used in the rest of the paper: CAW for all models falling in the

model class defined in this section. The CAW model class contains two families: the first one

uses BEKK-type processes for the dynamics of St, such as Equations (3) and (11): they are

named COV (covariance) models. The second family uses univariate processes for the condi-

tional variances (the diagonal elements of St) and DCC-type processes for the conditional cor-

relation matrix Rt, such as Equations (7) and (12); they are named COR (correlation) models.

2 Hadamard Exponential Scalar CAW Models

A clear disadvantage of the parameterizations of the matrices A and B in Equations (3) and

(7) is either that they are too heavy for large n, or that they lack flexibility when they are of

scalar or rank-one type: the scalar version imposes the same dynamics for all the variances

and covariances, whereas the rank-one version imposes that the covariances depend on the

product of the corresponding parameters of the variances. Bauwens and Otranto (2020b),

in the framework of MGARCH conditional correlation models, provide extensions of the

scalar DCC model of Engle (2002), where the elements of A depend in a nonlinear way on

the lagged conditional correlations. In particular, in their model, called NonLinear

AutoRegressive Correlation (NLARC) model, the effect of the lagged conditional correla-

tions enters through the element-by-element (Hadamard) exponential function.

The objective of adding flexibility in models (3) and (7), while maintaining a parsimoni-

ous parameterization, can be obtained by extending and generalizing the Bauwens and

6 Journal of Financial Econometrics
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Otranto (2020b) NLARC parameterization to the CAW model family. The matrices A and

B become time-varying and are denoted, respectively, by At and Bt in the sequel. Two

parameterizations of the time-varying matrices At and Bt for Equations (3) and (7) are

introduced below. In almost all estimations for our empirical experiments, we find that

specifying both matrices to be time-varying does not improve the fit, and a better fit is

achieved by a time-varying A than by a time-varying B.

2.1 Parameterizations of At and Bt

We define a scalar parameterization of At, which can be applied similarly to Bt (replace a

by b and /A by /b) as

Sc Scalarð Þ : At ¼ a exp � /AMtð Þ ¼ aJn � exp � /AMtð Þ; (9)

where a 2 0; 1½ Þ and Mt is a positive definite symmetric matrix known at date t.

If /A is equal to zero, exp � /AMtð Þ is equal to Jn, so that At is constant, being equal to

aJn (scalar model). When /A is not equal to zero, the elements of A differ because the ele-

ments of Mt differ; hence, the dynamics of the variances and covariances (in the BEKK ver-

sion) or of the correlations (in the DCC version) are different and the coefficients

representing the impact of the lagged conditional covariances (or correlations) on the next

conditional covariances (or correlations) are time-varying since Mt is time-varying. Two

time-varying versions of Mt are used in the Hadamard exponential function of At:

Pt : Mt ¼ Pt�1 � Jn;

Rt : Mt ¼ Rt�1 � Jn;
(10)

where Pt�1 is the realized correlation matrix obtained by transforming the realized covari-

ance matrix Ct�1 into a correlation matrix and Rt�1 is the conditional correlation matrix.

In the COV models, the latter is obtained by transforming St�1 into a correlation matrix

and in the COR models, it is the matrix defined in Equation (6).

If /A � 0, each matrix At obtained by combining Equations (9) and (10) is the

Hadamard product of the positive definite matrix aJn and a positive definite matrix

( exp � /AMtð Þ), so that it is a positive definite matrix (see Lemma 3 in Bauwens and

Otranto 2020b). It can be directly checked that exp � /AMtð Þ, for each Mt proposed above,

is a positive definite matrix. For example, exp � /A Rt�1 � Jnð Þ½ � ¼ exp � /ARt�1ð Þ=
exp /Að Þ, and since Rt�1 is positive definite and /A > 0, the HE matrix exp � /ARt�1ð Þ is

positive definite (see Lemma 1 in Bauwens and Otranto 2020b). Moreover, the diagonal

elements of exp � /A Rt�1 � Jnð Þ½ � are equal to 1, since the diagonal elements of Rt�1 � Jn

are equal to zero. Each off-diagonal element is of the type exp /Arð Þ= exp /Að Þ and therefore

in (0, 1) if /A > 0, where r 2 �1;þ1ð Þ is a correlation coefficient. If /A < 0,

exp /Arð Þ= exp /Að Þ is larger than 1, but this does not imply that the off-diagonal elements

of At are larger than 1, because each element of the exponential matrix is multiplied by

a 2 0;1½ Þ. Hence, it is possible that At is positive definite. In other words, the condition

/A � 0 is sufficient, but not necessary, for positive definiteness of At.

2.2 Interpretation of the HE Term

The question can be raised whether the proposed form of dependence of At on lagged

(conditional or realized) correlations makes sense for the dynamics of conditional

Bauwens & Otranto j Class of Hadamard Exponential Models 7
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covariances and correlations. In the COV models, an off-diagonal element of At, equal to

a exp /Arij;t�1

� �
= exp /Að Þ where rij;t�1 is the lagged conditional or realized correlation be-

tween assets i and j, represents the impact coefficient of the corresponding lagged realized

covariance (Cij;t�1) on the next conditional covariance (Sij;t�1). The use of a lagged correl-

ation in the impact coefficient can be justified in relation with the phenomenon of volatility

clustering. Clustering characterizes financial market volatility, which itself affects the correla-

tions: when a cluster of high volatility occurs, correlations increase with a certain persistence,

but the changes in correlations can differ between pairs of assets. Adding a dependence of the

impact coefficient on the past correlation of each asset pair through the exponential function

is a way to include the impact of the clustering effect on the next conditional covariance in a

way that is specific for each asset pair and is time-varying. This time-varying impact element

(expð/Arij;t�1Þ) is an increasing convex function of rij;t�1 2 ð�1;þ1Þ when /A is positive (as

we always find in estimations of HE-CAW models). Hence, when the lagged correlation

increases (due to volatility clustering or an idiosyncratic factor), the next conditional covari-

ance increases (for given values of aCij;t�1 and of the other terms); said differently, the higher

(lower) the lagged correlation, the higher (lower) the persistence of the lagged realized covari-

ance on the current conditional covariance.6 The effect on the next conditional correlation,

defined as Sij;t=ðSii;tSjj;tÞ1=2, is also positive for given values of the conditional variances; how-

ever, in case of increased market volatility in the past (resulting in the increased value of

rij;t�1), these variances also increase, so that the positive effect in the numerator can be coun-

tered. Typically, however, according to empirical evidence, the correlations increase when a

strong and persistent volatility clustering episode occurs.

In the COR models, the impact coefficient a expð/Arij;t�1Þ= expð/AÞ represents the im-

pact of the pseudo-correlation Cij;t�1=ðSii;t�1Sjj;t�1Þ1=2 multiplied by ðQii;t�1Qjj;t�1Þ1=2 (the

Aielli type of correction of the DCC model in this context), on the next quasi-correlation

Qij;t. The time-varying impact is thus similar to what it is for COV models, but it operates

through the quasi-correlation term.

Regarding the difference between the two choices of correlations (realized or conditional), a

conditional correlation is a moving average of the realized correlations of the past, including the

most recent one. Using the conditional correlations implies thus a smoother dynamic reaction to

the past than using the most recent realized correlation. It is an empirical question whether one

kind of correlation or the other is better adapted to fit the kind of impact embedded via the

Hadamard exponential matrix. In our empirical experiments, we find that the lagged condition-

al correlation often provides a better fit and out-of-sample forecast performance.

2.3 COR and COV Practical Equations

The COV version of CAW models in the empirical applications of this paper is specified as

St ¼ 1� at � b
� �

C þ At � Ct�1 þ B� St�1; (11)

6 This is quite different from the asymmetric effects, whereby the impact of the lagged variance on

the next conditional variance is stronger when the lagged return is negative, while the same holds

for a covariance when both lagged returns are negative (Cappiello, Engle, and Sheppard 2006); in

particular, the HE function does not change the impact of Cii ;t�1 on Sii ;t , which is equal to a and

larger than the covariance impact when /A > 0.
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with At as defined in the scalar parameterization (9), or with constant A when /A ¼ 0. In

the latter case, at is constant, being equal to a. When At is time-varying, at is the average of

its elements. The matrix B and the scalar b are constant, with B ¼ bJn and b ¼ b.

For COR models, Equation (7) is changed to

Qt ¼ 1� at � b
� �

R þ At � ~Q
1=2

t�1D�1
t�1Ct�1D�1

t�1
~Q

1=2

t�1

� �
þ B�Qt�1; (12)

with the same definitions as above. The conditional variance dynamic equation of the first

step of the COR model for each i is specified as Equation (4).

2.4 Stationarity Conditions

Golosnoy, Gribisch, and Liesenfeld (2012) provide the covariance stationarity conditions

(i.e., the conditions for the existence of the unconditional second-order moments) of the

BEKK-type (or COV) CAW stochastic process as a function of the model parameters, for a

more general BEKK(1,1) process than in Equation (3), that is, not necessarily a diagonal

process. They obtain the results by writing the vectorized process of Ct as a VARMA(1,1)

process and using the stationarity conditions for such a process. Translating these results to

the case of Equation (11) with the constant A parameterization in Equation (9), the statio-

narity condition is aþ b < 1. When the HE matrix depending on the lagged realized or

conditional correlations is included in the parameterization, the Ct process cannot be writ-

ten as a VARMA process with fixed parameters. The process is nonlinear due to the expo-

nential function; hence, the unconditional moments are not known. However, given that

the entries of the HE matrix are all positive, equal to 1 on the diagonal, and smaller than 1

elsewhere, it is obvious that if the stationarity condition holds for the constant A version, it

holds at each t for the corresponding time-varying version (since a exp /Arð Þ= exp /Að Þ þ
b < 1 holds if aþ b < 1). Intuitively, these extended conditions (for each t) seem sufficient

for covariance stationarity.

For the COR models, the stationarity condition for each variance process (4) is

ai þ bi < 1. For the correlation process (12), the stationarity condition is the same as for

the COV parameterizations, and if the stationarity condition holds for a constant A param-

eterization, it holds for the corresponding time-varying one.

3 Empirical Comparison of Scalar Models

3.1 Data Set of 29 Stocks

To investigate empirically the questions we are interested in, we use a time-series of daily

realized covariance matrices computed from a high-frequency data set for 29 stocks of the

DOW Jones Industrial Average (DJIA) index; the 30th stock was dropped since it was not

permanently in the index during the sample period. The data source is the TAQ database.

The sample period is January 3, 2001–April 16, 2018, resulting in 4319 observations. Each

daily realized covariance matrix is computed as the sum of the outer products of the 5-min

log-returns of the day. The 5-min returns are obtained from synchronized intra-day prices.

The synchronization was done globally for the 29 stocks, using 5-min intervals, the price

closest (from the left) to the respective sampling point was taken; the first and last 15 min

of the day (9:30–16:00) was excluded. The data are annualized in percentage (multiplied by
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25,200). The stock names and tickers are listed in Online SA I, where a table shows some

summary statistics of realized variances, covariances, and correlations.

3.2 Out-of-Sample Forecast Comparison

As first empirical implementation, we compare the proposed COV and COR scalar models

with three types of benchmark scalar models. The first one is the Exponential Weighted

Moving Average (EWMA) recursion, with smoothing coefficient 0.94, also used by Lunde,

Shephard, and Sheppard (2016)7:

EWMA : St ¼ 0:06Ct�1 þ 0:94St�1: (13)

The other models are the scalar vech-HAR (vHAR) model of Chiriac and Voev (2011)

and the scalar HAR–DRD model of Oh and Patton (2016). In the latter, the scalar aspect is

in the correlation model for the realized correlation matrix, whereas the variance models

are univariate HAR (Corsi 2009). Moreover, we also introduce the same HE term as in the

scalar COV and COR models in the vHAR and HAR–DRD models. The HE version of

vHAR is

HE–vHAR :

vech Ctð Þ ¼ 1� aD;t � aW � aMð ÞC þ aD exp /Avech Pt�1 � Jnð Þ
� �

� vech Ct�1ð Þþ

aWvech Ct�2:t�5

� �
þ aMvech Ct�6:t�22

� �
;

(14)

where vech :ð Þ is the operator that stacks the lower triangular part of its matrix argument as

a vector, Cr:s is the average of the realized covariance matrices from time r to time s, and

aD;t is the average of the entries of aD exp /Avech Pt�1 � Jnð Þ
� �

.

Similarly, the HE version of HAR–DRD is

HE–DRD :

vech Ptð Þ ¼ 1� aD;t � aW � aMð ÞR þ aD exp /Avech Pt�1 � Jnð Þ
� �

� vech Pt�1ð Þþ

aWvech P t�2:t�5

� �
þ aMvech P t�6:t�22

� �
;

(15)

with similar interpretation of the symbols. Both vHAR and HAR–DRD, which correspond

to /A ¼ 0, are estimated by ordinary least squares, whereas HE-vHAR and HE-DRD are

estimated by nonlinear least squares (see results in Online SA III).

To compare the model performances in out-of-sample forecasts of the covariance ma-

trix, the 11 models (three COR-S, three COV-S, EWMA, and the four HAR-type models)

have been estimated using an expanding window scheme, adding 25 observations at a time.

The initial estimation is on the period from January 2, 2001 to December 31, 2015 (T ¼
3744). Using these estimates, 25 forecasts (1-step, 5-step, and 22-step ahead) are computed

after the last date of the estimation window. The next estimation is on the initial period

plus 25 observations, from which 25 forecasts are computed after the end of this extended

estimation sample. This procedure is repeated until the end of the data set which contains

575 realized covariance matrices after December 31, 2015. These observed matrices are

7 deBrito, Medeiros, and Ribeiro (2018) and Gorgi et al. (2019) also use the EWMA equation for fore-

casting realized covariance matrices, but with coefficient 0.96.
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compared with the h-step ahead forecasted covariance matrices using loss functions that

allow us to compare the forecasted and realized covariance matrices, for h ¼ 1, 5, and 22

(so that T1 ¼ 575, T5 ¼ 571, and T22 ¼ 564 are the lengths of the forecast samples). The

statistical loss functions adopted are the forecast sample means of the Quasi-Likelihood

function (QLIK) and of the squared Frobenius norm (FN); both functions are consistent in

the sense of Patton (2011), Patton and Sheppard (2009), and Laurent, Rombouts, and

Violante (2013). They are defined as

QLIKh ¼
1

Th

XTþTh

t¼Tþh

lnjbSt;hj þ trace bS�1

t;h Ct

� �n o
; (16)

FNh ¼
1

Th

XTþTh

t¼Tþh

trace bSt;h � Ct

� �0 bSt;h � Ct

� �� �
¼ 1

Th

XTþTh

t¼Tþh

Xn

i¼1

Xn

j¼1

bsij;t;h � cij;t

� �2
; (17)

where bSt;h is the h-step ahead forecasted conditional covariance of day t.8

For each loss function, the MCS procedure of Hansen, Lunde, and Nason (2003) and

Hansen, Lunde, and Nason (2011) is used to identify the best models with a chosen level of

confidence. To compute it, we adopt the semi-quadratic test statistic
P

i6¼j2M½l
2

ij=
dVarðl ijÞ�,

where l ij is the mean of the loss differences between model i and model j belonging to the

set of models M; the variance of l ij is obtained by the bootstrap procedure of Hansen,

Lunde, and Nason (2003), with 10,000 replications. In brief, the first test is for the full set

of candidate models and checks the null hypothesis that l ij ¼ 0; the model presenting the

highest differences (on average) with respect to all other models is eliminated from the set

of candidate models and the test is re-applied to the set of remaining models until we obtain

just one. In Table 1 we show, for each forecast horizon and each loss function, which mod-

els belong to the MCS at the 95% level of confidence.

The MCS results for the statistical loss functions are mainly favoring the models using

the HE extension, and among them, especially COV and COR models. Which models of

these families are included in the 95% MCS set depends on the forecast horizon and the

loss function. Except for QLIK5 and QLIK22, each MCS includes COR or COV models

using the HE specifications. In the two cases where a vHAR or HAR-DRD model is in the

MCS, it is the version with the HE extension which is in the MCS.

In addition to the statistical loss functions, we consider an economic loss function,

which compares the forecasts in term of the GMVP risk. For a given model and forecast

horizon h, at each time period t of the forecast sample the weight vector (wt;h) of the

GMVP is computed by minimizing the forecasted portfolio variance (w0t;h
bSt;hwt;h) under the

constraint that the weights add-up to unity (j0nwt;h ¼ 1, where jn is a vector of ones). The so-

lution is bwt;h ¼ bSt;h
�1jn=ðj0nbSt;h

�1jnÞ. The weights are applied to the observed returns of the

forecast period, which results in 575 portfolio returns (for h¼1) and the standard deviation

of this time series of forecasted portfolio returns is computed. The best model corresponds

8 The QLIK1 loss function (16) is equal to the estimation objective function (2) (setting St hð Þ ¼ bS t ;1),

multiplied by �2=�, to make it a loss and remove the nuisance parameter �. Another possible esti-

mation criterion consists in minimizing the FN loss function (17) where bS t ;h is replaced by the

specified St hð Þ.
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to the smallest standard deviation. The MCS procedure is applied to compare the variances

of the different models.9 The results are shown in Table 2.

At horizon 1, the MCS consists of EWMA (the lowest loss), the three COV models

(with losses <1% higher), and the COR-S-Pt model (loss 2.2% higher). At horizon 5, it

consists of COV-S-Rt, and at horizon 22, the MCS includes COV-S-Pt and COV-S-Rt (low-

est losses), COV-S (þ0.4%), EWMA (þ3.6%), vHAR (þ3.7%), and HE-vHAR (þ4.3%).

The COV-S-Rt is in the three MCS and has the smallest loss for two horizons.

4 Extended Parameterizations

4.1 Rank-One Parameterizations

In Section 1, we reminded that the scalar specifications of the matrices A and B of COV

and COR models can be extended by parameterizing them as A ¼ aa0 and B ¼ bb0, where

a ¼ ða1=2
1 ; a

1=2
2 . . . ; a

1=2
n Þ0 and b ¼ ðb1=2

1 ; b
1=2
2 . . . ; b

1=2
n Þ0. The advantage of this parameteriza-

tion is to have different impact coefficients for the elements of the conditional covariance

or quasi-correlation matrix, instead of coefficients that do not vary with asset pairs (i, j) as

in the scalar models. Nevertheless, these impact coefficients remain constant through time

for each pair (i, j). By combining the rank-one parameterizations with the Hadamard expo-

nential matrix, we obtain time-varying coefficients. The rank-one parameterization of At in

Equations (11) and (12) is defined as

R1 Rank� 1ð Þ: At ¼ aa0 � exp � /AMtð Þ; (18)

Table 1 Out-of-sample forecast analysis of 11 scalar models for 29 stocks: 95% MCSs for two

loss functions and three forecast horizons h

Model QLIK FN

COR-S 1 1

COR-S-Pt 1 1

COR-S-Rt 1 1

COV-S 5 22 5 22

COV-S-Pt 5 22

COV-S-Rt 5 22

EWMA

vHAR

HE-vHAR 1

HAR-DRD

HE-HAR-DRD 22

Notes: The symbol 1 identifies the models belonging to the MCS for h¼ 1; the symbol 5 for h¼ 5; and the sym-

bol 22 for h¼ 22. The definitions of the COR-S- and COV-S- models are summarized in Table 3 and the other

models are defined in Equations (13)–(15).

9 This is done like for the statistical loss functions, with l ij in the semi-quadratic test statistic is the

sample average of yti � y ið Þ2 � ytj � y j

� �2, where yti is the GMVP return at time t for model i, and

y i the average of these returns over the forecast sample.
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with /A � 0; Mt as in Equation (10) and a ¼ ða1=2
1 ; . . . ; a

1=2
n Þ0 in which each element is in

(0, 1). Each matrix At obtained by combining Equations (18) and (10) is positive definite

by application of Lemma 3 in Bauwens and Otranto (2020b). The stationarity condition

for the rank-one model when /A ¼ 0 is maxðaa0 þ bb0Þ < 1, where max applied to a ma-

trix selects its largest entry. In the rank-one version of Equations (11) and (12), at is the

average of the elements of At; when /A ¼ 0; at is constant, being the average of the ele-

ments of aa0.

4.2 Parsimonious Parameterizations by Asset Grouping

To reduce the number of parameters in a rank-one model, we can form groups of assets

having similar parameters by applying Wald tests using the estimates of the model parame-

ters (and an estimated covariance matrix of the estimator). If more than one group is

formed, the model can subsequently be estimated under the restrictions that the parameters

of the assets belonging to a group are equal. This enables us to reduce the number of esti-

mated parameters; for example, for 29 assets, the initial COV-rank-one (COR-R1) model

has 58 (116) parameters, but if three groups are formed, this is reduced to 6 (64). The re-

duction can be useful for two reasons: firstly, for a large number of assets, the estimation al-

gorithm may fail due to the large number of parameters, or even if it converges, the

computation of the estimated asymptotic covariance matrix of the estimator may fail to

yield a positive definite matrix; and secondly, the reduction typically reduces the estimator

variance if the restrictions are valid.

In principle, we could use an algorithm similar to the one used in Bauwens and Otranto

(2020b), testing for each rank-one COR and COV models the joint hypothesis ai ¼ aj and

bi ¼ bj for each pair of assets (i, j) and then assigning to the same group all the assets for

which the hypothesis is not rejected consistently with the other assets belonging to the same

group, starting from the pair with the highest p-value. Alternatively, we can follow the

same procedure by testing jointly ai ¼ aj and bi ¼ bj, the parameters of the variance

Table 2 Annualized standard deviations and MCS of out-of-sample h-step ahead forecasts of

GMVP returns of 11 scalar models for 29 stocks

Model h¼ 1 h¼ 5 h¼ 22

COR-S 8.24 8.15 8.04

COR-S-Pt 8.21 8.14 8.01

COR-S-Rt 8.23 8.15 8.02

COV-S 8.10 7.53 7.63

COV-S-Pt 8.08 7.51 7.60

COV-S-Rt 8.07 7.49 7.60

EWMA 8.03 8.05 7.87

vHAR 8.33 8.01 7.88

HE-vHAR 8.36 8.04 7.93

HAR-DRD 8.53 7.94 8.18

HE-HAR-DRD 8.53 7.94 8.16

Note: Bold values identify the models forming the 95% MCS for the GMVP variance loss function defined in

Section 3.2, see footnote 9.
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processes (4) estimated in the first step estimation procedure of COR models, and adopting

this grouping for all the rank-one COR and COV models.10

This type of procedure becomes unfeasible when the number of assets is large. An alter-

native method is to use an a priori grouping, for example, based on an industrial classifica-

tion of firms, as in Fan, Furger, and Xiu (2016) and deBrito, Medeiros, and Ribeiro

(2018).11 We have applied our models using an industry-based classification of the 29

stocks in seven groups; notice that there is no unique way to specify the number of groups

and their composition, since several firms are multi-industry. We find that the fit is slightly

less good using this grouping than the grouping based on the algorithm described below.

Another statistical clustering algorithm, related to the grouping algorithm of Bauwens

and Otranto (2020b) described above, is based on a classical agglomerative clustering pro-

cedure (Anderberg 1973) using a dissimilarity measure given by 1 minus the p-value of the

test statistic of the equality of the parameters of pairs of univariate models in the first step

estimation of the COR models. Furthermore, the number of groups can be decided auto-

matically by imposing a stopping rule in the agglomerative steps; for example, when the dis-

similarity measure at which the clusters are glued together is greater than 0.95

(corresponding to a test at a 5% significance level in our algorithm). Using an average link-

age criterion, we obtain a classification of the 29 assets in three groups very similar to those

of the algorithm of Bauwens and Otranto (2020b) using the tests on the parameters of the

variance processes. The latter identifies four groups; with respect to the three groups, only

one series is classified differently, and three series of the first group form a fourth group;

Table 13 in Online SA II shows the group composition of the two algorithms, and of the a

priori grouping in seven industries. The agglomerative clustering procedure is feasible with

a large number of assets and is also used in detecting the number of groups in the applica-

tion to 100 assets reported in Section 6.1.

5 Empirical Comparisons of COV and COR Models

We estimate and evaluate the forecasting performance of 13 models on the dataset of

n¼ 29 stocks of the DJIA index described in Section 3.1. Table 3 provides the model list

with references to the equations that define them and their specific parameterizations.

5.1 Estimation Results for COR and COV Models

Like for the scalar models (see Section 3.2), the rank-one versions have been estimated on

the period from January 2, 2001 to December 31, 2015 (T ¼ 3744). The models have been

estimated with the parametric restrictions implied by the three groups obtained by the ag-

glomerative algorithm described in the previous section.

10 We adopted this procedure in a previous version of this paper (Bauwens and Otranto 2020a),

obtaining a grouping similar to the results when the procedure is performed specifically for each

model.

11 Another possible extension for COR models is to consider a block structure for Qt , based on the

canonical representation proposed in Archakov and Hansen (2020), in which the matrix can be

represented by a smaller K � K matrix, where K is the number of blocks, which could be modeled

in the same manner as Qt in Equation (7).
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5.1.1 COR models

The estimation results for the scalar models and the R1 models with three groups are

reported in Table 4. The upper part of the table, under the heading ‘S-1s’, shows the estimates

of the parameters of the variance equations of the three groups. These parameters have been

estimated jointly with those of the scalar correlation model, reported in the bottom part of

the table (heading ‘S-1s’). For the six models estimated in two steps (S, S-Pt, S-Rt, R1, R1-Pt,

R1-Rt), the first step consists in estimating the 29 variance Equation (4), but instead of

reporting the 29 estimates of ai and of bi, we report the average, minimum and maximum of

these estimates in each group (‘Variance Part’ of the table, under the heading ‘first step’);

group 1 has 20 stocks, group 2 has 4, and group 3 has 5 (see column 3 of Table 13 in SA II).

Concerning the variance parameter estimates, the lagged realized variance impact coeffi-

cients (ai) are smaller (on average) in joint estimation than in univariate estimation, whereas

the lagged conditional variance coefficients (bi) are larger, but the estimates of the persist-

ence effect (ai þ bi) are close in both estimations.

Considering the correlation parameters ai and bi (bottom part of the table), the differen-

ces are small within the scalar models and within the R1 models, and even between them.

Actually, each scalar model (estimated in two steps) is not rejected against the correspond-

ing R1 version: the largest likelihood ratio (LR) statistic is equal to 6.2 for 4 restrictions.

On the contrary, the HE parameter (/A) is positive and significant in each model.12 This

Table 3 List of models

Model name Number of parameters Specific parameterizations of A and B

COR models defined in Equations (4) and (12), (6) and (8)

COR-S-1s 2ng þ 2 A ¼ aJn; B ¼ bJn; estimated in one step

COR-S 2nþ 2 A ¼ aJn; B ¼ bJn

COR-S-Pt 2nþ 3 At ¼ a exp �½/AðPt�JnÞ�; B ¼ bJn

COR-S-Rt 2nþ 3 At ¼ a exp �½/AðRt�JnÞ�; B ¼ bJn

COR-R1 2nþ 2ng A ¼ aa0; B ¼ bb0

COR-R1-Pt 2nþ 2ng þ 1 At ¼ aa0 � exp �½/AðPt�JnÞ�; B ¼ bb0

COR-R1-Rt 2nþ 2ng þ 1 At ¼ aa0 � exp �½/AðRt�JnÞ�; B ¼ bb0

COV models defined in Equation (11)

COV-S 2 A ¼ aJn; B ¼ bJn

COV-S-Pt 3 At ¼ a exp �½/AðPt�JnÞ�; B ¼ bJn

COV-S-Rt 3 At ¼ a exp �½/AðRt�JnÞ�; B ¼ bJn

COV-R1 2ng A ¼ aa0; B ¼ bb0

COV-R1-Pt 2ng þ 1 At ¼ aa0 � exp �½/AðPt�JnÞ�; B ¼ bb0

COV-R1-Rt 2ng þ 1 At ¼ aa0 � exp �½/AðRt�JnÞ�; B ¼ bb0

Notes: n is the number of assets; ng is the number of groups with equal coefficients identified by the grouping

procedure defined in Section 4.2. COR models are estimated in two steps, except COR-S-1s.

12 The z-ratios are 2.31, 1.86, 2.47, and 2.36. However, the test is not standard, the null being at the

boundary of the parameter admissible values. Bauwens and Otranto (2020b) show by a Monte

Carlo study that in the DCC MGARCH model (with the HE extension), the distribution of the z-ratio

is close to N(0,1) if the sample size is “large enough” and the true value is not “too close” to zero.
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Table 4 Estimation results of scalar and R1 (with three groups) COR models, for 29 stocks (ro-

bust standard errors in parentheses)

Variance part

Parameters S-1s First step

Average Min Max

a1 0.284 0.361 0.276 0.411

(0.018)

a2 0.310 0.395 0.369 0.455

(0.022)

a3 0.251 0.325 0.270 0.436

(0.030)

b1 0.697 0.616 0.567 0.712

(0.024)

b2 0.679 0.591 0.530 0.618

(0.024)

b3 0.725 0.645 0.510 0.710

(0.033)

Correlation part

S-1s S S-Pt S-Rt R1 R1-Pt R1-Rt

a1 0.051 0.052 0.057 0.054 0.052 0.056 0.054

(0.003) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004)

a2 0.059 0.062 0.061

(0.004) (0.004) (0.004)

a3 0.048 0.053 0.050

(0.007) (0.007) (0.007)

b1 0.933 0.930 0.926 0.928 0.931 0.928 0.929

(0.005) (0.006) (0.007) (0.006) (0.006) (0.006) (0.005)

b2 0.921 0.919 0.929

(0.006) (0.006) (0.006)

b3 0.928 0.925 0.927

(0.015) (0.014) (0.015)

/A 0.071 0.030 0.067 0.026

(0.031) (0.016) (0.027) (0.011)

Variance and correlation parts

Log-lik �92657.3 �92698.6 �92690.5 �92695.8 �92695.5 �92688.2 �92694.0

AIC 49.51 49.56 49.56 49.56 49.56 49.56 49.56

BIC 49.53 49.66 49.66 49.66 49.67 49.67 49.67

Notes: The models are defined in Table 3. All models except COR-S-1s are estimated in two steps, the first step

results being the same and obtained from 29 univariate variance models. In the upper part, we show the aver-

age, the minimum, and the maximum in each group. In the lower part, we show the log-likelihood, AIC, and

BIC values for the full model.
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implies time–varying elements in the At matrices of (12); an illustration is shown in the

upper part of Figure 1, where the time-varying coefficients aij;t (for i ¼ AXP, j ¼ JPM) for

the COR-R1-Pt and COR-R1-Rt models are shown over the estimation period. Obviously,

the dynamics is smoother when the driving variable is the conditional correlation (Rt

model) than the realized correlation (Pt model), because Rt is by construction a smoothed

correlation matrix (being based on all past realized correlations), whereas Pt is based on the

last realized correlation.

5.1.2 COV models

The estimation results for the scalar models and the R1 models with three groups are shown

in Table 5. The positive and significant13 estimated /A imply time-varying elements in the

At matrix of Equation (11). An illustration is shown in the lower part of Figure 1.

In the R1 models, the (ai, bi) parameters vary between groups, for example, between

(0.116, 0.875) for group 3 and (0.168, 0.818) for group 2 in the R1 model. One can notice

that when ai > aj, then bj > bi, so that persistence (ai þ bi) is more stable across the groups

than each of the two parameters.

5.1.3 Comparison of estimated A matrices

The comparison of the estimated A matrices of the different COR and COV models is not

easy by inspection of Tables 4 and 5. For each model, the implied matrix (of size 29� 29) is

computed using the estimated parameters. Table 6 shows the squared Frobenius distances

for all pairs of A of the six COR models and the same for the five COV models. For the

models with time-varying A (S-Pt, S-Rt, R1-Pt, and R1-Rt), the value used in the distance

computations is the average of the time-varying matrices.

For the COR models, the distances are very small and practically null between S and

S-1s, S-Pt and S-Rt, S-Pt and R1, and between R1-Rt and R1-Pt. The distance between S-Pt

and S-Rt is much smaller than the distances between each of them and S. The same

Figure 1 Time series of aij ;t coefficients estimated with the COR-R1-Pt and the COR-R1-Rt models

(upper graphs) and with the COV-R1-Pt and the COV-R1-Rt models (lower graphs). The coefficients are

for the asset pair AXP–JPM.

13 The four z-ratios are larger than 3.94.
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Table 5 Estimation results of scalar and R1 (with three groups) COV models, for 29 stocks (ro-

bust standard errors in parentheses)

Parameters S S-Pt S-Rt R1 R1-Pt R1-Rt

a 1 0.135 0.153 0.160 0.138 0.153 0.162

(0.006) (0.010) (0.010) (0.006) (0.010) (0.010)

a2 0.168 0.175 0.180

(0.010) (0.011) (0.011)

a3 0.116 0.138 0.144

(0.008) (0.011) (0.012)

b1 0.855 0.845 0.840 0.853 0.845 0.838

(0.007) (0.009) (0.009) (0.007) (0.009) (0.009)

b2 0.818 0.819 0.815

(0.011) (0.010) (0.010)

b3 0.875 0.861 0.856

(0.008) (0.010) (0.011)

/A 0.061 0.072 0.055 0.070

(0.015) (0.012) (0.014) (0.013)

Log-lik �93522.1 �93464.4 �93428.6 �93485.7 �93442.2 �93409.4

AIC 49.97 49.94 49.92 49.96 49.93 49.92

BIC 49.98 49.95 49.93 49.97 49.94 49.93

Note: The models are defined in Table 3.

Table 6 Distances between the different A matrices of the COR models of Table 4 and the COV

models of Table 5

Distance between A matrices in COR models

S S-Pt S-Rt R1 R1-Pt R1-Rt

S-1s 0.055 0.706 0.396 1.060 1.032 0.781

S 0.372 0.156 0.639 0.684 0.529

S-Pt 0.048 0.058 0.261 0.369

S-Rt 0.175 0.330 0.343

R1 0.286 0.460

R1-Pt 0.053

Distance between A matrices in COV models

S-Pt S-Rt R1 R1-Pt R1-Rt

S 12.105 27.710 9.169 17.881 34.948

S-Pt 3.192 15.346 4.031 8.255

S-Rt 27.961 6.361 3.985

R1 9.139 23.276

R1-Pt 3.521

Note: Each value is 100 times the squared FN (¼ traceX 0X) of the difference (X) between the estimated matri-

ces of the models in the row and column headers.
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comment applies to R1-Pt, R1-Rt, and R1. The distances between S-1s and the other mod-

els are larger than the distances between S and the other models, reflecting that the other

models share a common estimation of the variance equations.

Higher differences are present between the A matrices of the COV models, where there

are no common estimations (whereas the first step is common in five COR models). The

distance between S-Pt and S-Rt is much smaller than the distances between each of them

and S. The same comment applies to R1-Pt, R1-Rt, and R1. The four distances between the

pairs formed by combining each element of fS-Pt, S-Rtg with each element of fR1-Pt, R1-

Rtg are small in comparison with the distances between S and each element of fR1-Pt, R1-

Rtg and between R1 and fS-Pt, S-Rtg. The distance between S and R1 is larger than be-

tween S-Pt and R1-Pt and between S-Rt and R1-Rt.

5.2 Covariance Matrix Out-of-Sample Forecast Evaluation

To compare the model performances in out-of-sample forecasts, we proceed exactly as

explained in Section 3.2, considering this time only the scalar and R1 COR and COV mod-

els, as reported in the previous subsection. Table 7 shows which models belong to the 95%

MCS for each statistical loss function and forecast horizon.

The composition of the MCS depends mainly on the forecast horizon. For horizon 22,

only COV models are in the MCS of the two loss functions; for horizon 5, the same result

holds for QLIK, while for FN, the rank-one COR models also belong to the MCS. For hori-

zon 1, only COR models belong to the MCS for QLIK; for FN, all models (except COV-

R1) are in the MCS.

Table 8 reports the results for the GMVP loss. At horizons 1 and 22, the COV models

are in the MCS, with standard deviations smaller than COR models; at horizon 5, the COV

models are also in the MCS, together with the R1 COR models. For each horizon, the COV

models provide smaller standard deviations than the COR models.

5.3 Decomposing FN Loss between Variance and Covariance

Contributions

The FN loss function (17) can be decomposed as the sum of the variance contribution and

the covariance one:

FNh ¼
1

Th

XTþTh

t¼Tþh

X
i

bsii;t;h � cii;t

� �2 þ 2
X
i< j

bsij;t;h � cij;t

� �2
� �

: (19)

The other loss functions function cannot be broken down into a part that depends only

on the covariances and a part that depends only on the variances.

Table 9 shows the variance and covariance contributions to FN for COV and COR mod-

els. The values are reported as averages with respect to each model class, because there is little

variation within each class. It is clear that the contributions are similar between COR and

COV models. The respective contributions are stable with respect to the forecast horizon.

6 Dealing with Large Datasets

Portfolio managers very often deal with a large number of assets to mitigate price impacts

when trading large sums of money. Several authors have contributed to adapt existing
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methods or develop new models to deal with a large number of assets. In the multivariate

GARCH framework, Engle, Ledoit, and Wolf (2019) and De Nard et al. (2021b) apply in

different ways the DCC model of Engle (2002), which uses daily return data, from which

the daily conditional covariance matrix of returns is modeled. An impressive aspect of these

papers is the ability to estimate the DCC model for a genuinely large dimension (up to 1500

in the first paper and to 1000 in the second one). De Nard et al. (2021a) improve the DCC

Table 7 Out-of-sample forecast analysis of 13 COR and COV models for 29 stocks: 95% MCSs

for two loss functions and three forecast horizons h

Model QLIK FN

COR-S-1s 1

COR-S 1 1

COR-S-Pt 1 1

COR-S-Rt 1

COR-R1 1 1 5

COR-R1-Pt 1 1 5

COR-R1-Rt 1 1 5

COV-S 22 1 5 22

COV-S-Pt 1 5 22

COV-S-Rt 5 1 5 22

COV-R1 5 22

COV-R1-Pt 1 5 22

COV-R1-Rt 1 5 22

Notes: The symbol 1 identifies the models belonging to the best set for h¼ 1; the symbol 5 for h¼ 5; and the

symbol 22 for h¼ 22. The models are defined in Table 3.

Table 8 Annualized standard deviations and MCS of out-of-sample h-step ahead forecasts of

GMVP returns of 13 COV and COR models for 29 stocks

Model h¼ 1 h¼ 5 h¼ 22

COR-S-1step 8.40 8.34 8.16

COR-S 8.24 8.15 8.04

COR-S-Pt 8.21 8.14 8.01

COR-S-Rt 8.23 8.15 8.02

COR-R1 8.25 7.65 8.03

COR-R1-Pt 8.22 7.66 8.01

COR-R1-Rt 8.23 7.65 8.02

COV-S 8.10 7.53 7.63

COV-S-Pt 8.08 7.51 7.60

COV-S-Rt 8.07 7.49 7.60

COV-R1 8.05 7.53 7.66

COV-R1-Pt 8.04 7.51 7.62

COV-R1-Rt 8.03 7.49 7.62

Note: Bold values identify the models forming the 95% MCS for the GMVP variance loss function defined in

Section 3.2, see footnote 9.
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model of Engle, Ledoit, and Wolf (2019), maintaining the possibility to work with very

large datasets, using an intraday counterpart of the simple daily return, based on open/

high/low/close price data, in conjunction with a smoothed sign of the return, called the

regularized return, used in the second-step estimation.

Dealing with realized covariance matrices, the most important contributions extend

existing models (e.g., HAR, GAS, and HEAVY) or adopt factor models. In the first group,

it is worth noting the work of Oh and Patton (2016), who propose the HAR-DRD model,

where the (log of) realized variances are specified as univariate HAR processes estimated by

OLS, whereas the vech of the realized correlation matrix is specified as a scalar HAR pro-

cess of the vech of the lagged correlation matrices; they apply the models to data for 104

stocks of the NYSE TAQ database. Vassallo, Buccheri, and Corsi (2021) propose a model

in the spirit of Gorgi et al. (2019) and in the spirit of DCC, but using the GAS idea for vari-

ance and correlation, so that estimation is in two steps; the dimension is 100 at most.

Examples of large datasets of realized covariances analyzed with factor models are14

Hautsch, Kyj, and Malec (2015) (dimension 400) and deBrito, Medeiros, and Ribeiro

(2018) (dimension 430). Other examples are given by Fan, Furger, and Xiu (2016), and

Aı̈t-Sahalia and Xiu (2017), forecasting covariances in dimension 500 and 491, respective-

ly, using the random walk recursion, which does not require an econometric estimation.

Ke, Lian, and Zhang (2022) propose a new dynamic structure for high-dimensional covari-

ance matrices, combining common risk factors embedded with a homogeneous structure,

showing the possibility of using it with ultra-high dimensions with a simulation study.

Also, interesting the work of Sheppard and Xu (2019), introducing factor HEAVY models,

but applying them to a reduced dimension (40 firms). The empirical implementation of a

factor model in the context of intra-day data requires a larger information set than just real-

ized covariance matrices; for example, deBrito, Medeiros, and Ribeiro (2018) use (in add-

ition to the realized matrices) the 5-min distant returns inside the trading period and

accounting and market information to construct the weights of the factors.

Considering the proposed class of HE models, a nice characteristic is that, depending on

a small number of parameters and providing positive definite covariance matrices, they can

be adopted, in principle, also for large dimensions. This is of course most easy with the sca-

lar versions of our models, where the number of coefficients is very small, but also possible

with the R1 parameterization coupled with the clustering algorithm. So, the advantage is

that HE models can work with small and large dimensions, without the necessity to

Table 9 Variance and covariance contributions (in %) to FN loss for the 3-group COR and COV

models for 29 stocks: average contribution in all models of each class

1 step 5 steps 22 steps

Models Var Cov Var Cov Var Cov

COR 11.6 88.4 11.5 88.5 13.8 86.2

COV 11.4 88.6 11.5 88.5 12.8 87.2

14 See (among others) Engle Ng, and Rothschild (1990) in the MGARCH case.
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introduce new parameterizations or factors to reduce the dimension. In this framework, a

problem that arises is the creation of vast realized correlations with the property of positive

definiteness. In general, for n stocks, we need substantially more than n intraday returns to

get a well-behaved positive-definite realized covariance matrix; for example, for 6.5 h of

trading, n must be sufficiently less than 78 if we use 5-min returns. As the number of intra-

day observations tends to n, the realized covariance matrix tends to be singular and it

should be modeled as a singular matrix (see Alfelt et al. 2021), or it must be regularized to

become positive definite (see e.g., Lunde, Shephard, and Sheppard [2016] and Hautsch,

Kyj, and Malec [2015] for different ways). Increasing considerably the intra-day sampling

frequency, so that the number of intra-day returns is sufficiently larger than the number of

assets, is not a recommended solution, because as n gets large it is difficult to have enough

synchronized observations to avoid the Epps effect (a bias toward zero in covariation statis-

tics). Moreover, if the sampling frequency is too high, the realized covariance matrices be-

come dominated by microstructure noise.

6.1 Empirical Results with 100 Assets

In this section, we apply the proposed models to the data set of 100 stocks traded on NYSE

created and analyzed by Vassallo, Buccheri, and Corsi (2021). The realized covariance

matrices are computed using the multivariate realized kernel estimator of Barndorff-

Nielsen et al. (2011), which is positive definite, robust to microstructure noise, and deals

with unsynchronized data by the “Refresh Time” approach. The time span ranges from

January 3, 2006 to December 31, 2014 (2265 observations). Table 15 in Online SA IV

reports some global summary statistics of realized variances, covariances, and correlations.

We use the first 2013 observations to estimate the models, leaving the last 252 observa-

tions (the last year of the data set) as out-of-sample set. In the estimation of COR models,

we obtain insignificant, very close to zero, /A coefficients, so that, within this family, we

do not consider the Pt and Rt specifications. Moreover, COR-R1 does not outperform

COR-S in terms of AIC and BIC, so only the COR-S model is kept for the COR models.

Hence, we compare the out-of-sample performance of the following 12 models: COR-S,

COV-S, COV-S-Pt, COV-S-Rt, COV-R1, COV-R1-Pt, COV-R1-Rt, EWMA, vHAR, HE-

vHAR, HAR-DRD, and HE-HAR-DRD. In all models with HE functions, we detect only

At as time-varying matrix, both for Pt and Rt specifications. For the R1 versions, we have

grouped the assets using the agglomerative clustering method described in Section 4.2. We

obtain six groups containing 21, 16, 2, 59, 1, and 1 assets. The estimation results are

reported in Tables 16 and 17 in Online SA IV. The estimated /A coefficients are positive

and significant in the COV models. The R1 versions improve the fit with respect to the cor-

responding scalar models. In the benchmark models, /A is estimated to be negative, being

insignificant in the HE-vHAR model but significant in the HE-HAR-DRD model.

In Table 10, we show the results of the forecast comparisons of the 12 models for the stat-

istical loss functions. Estimates are refreshed every 25-th observation (as explained in Section

3.2). At horizon 1, the MCS for the QLIK loss function consists of the R1 COV models that

use the HE extension, and for the FN loss, of all COR and COV models, plus the HE-vHAR

model. At horizon 5, the MCS for QLIK includes only COV-S, while for the FN loss, the sca-

lar COV models using the HE extension are also in the MCS, together with COV-R1-Rt and

EWMA. At horizon 22, vHAR defines the MCS for QLIK and EWMA for FN.
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Table 11 reveals that the MCS includes the EWMA and three scalar COV models for

the three forecast horizons. The three R1-COV models are also in the MCS at horizon 1

and the COR-S at horizon 22. The models that are not in the MCS provide higher portfolio

standard deviations than the included models.

7 Concluding Remarks

In the family of CAW models for realized covariance matrices, we have proposed a new

class of models, with the characteristics of a greater flexibility than previous models, pro-

viding the possibility to estimate different and changing dynamics for each element of the

realized covariance matrix. The new models just add one parameter with respect to their

classical versions. This is obtained thanks to parameterizations based on the Hadamard ex-

ponential matrix function, which possesses the useful property to guarantee the positive

definiteness of the matrix of parameters. The HE-CAW models show, in most cases, a bet-

ter in-sample fit and out-of-sample forecasting performance than the classical CAW mod-

els, both in the COV (BEKK-type) version and the COR (DCC-type) one. The COR models

have the advantage to be estimable in two steps, which is useful since they are heavily para-

meterized for a large number of assets. This heaviness occurs because the dynamic variance

processes have asset-specific parameters, which is clearly an advantage in terms of fitting

quality.

We have proposed a parameterization of the HE term of the new models based on lagged

realized or conditional correlations, but in principle any positive definite matrix Mt in

Equation (9) can be used provided it can be justified by an economic argument. The models

can be extended to include so-called asymmetric effects, whereby the impact of the lagged

variance on the next conditional variance is stronger when the lagged return is negative, while

Table 10 Out-of-sample forecast analysis of 12 models for 100 stocks: 95% MCSs for two loss

functions and three forecast horizons h

Model QLIK FN

COR-S 1

COV-S 5 1 5

COV-S-Pt 1 5

COV-S-Rt 1 5

COV-R1 1

COV-R1-Pt 1 1

COV-R1-Rt 1 1 5

EWMA 5 22

vHAR 22

HE-vHAR 1

HAR-DRD

HE-HAR-

DRD

Notes: The symbol 1 identifies the models belonging to the best set for h¼ 1; the symbol 5 for h¼ 5; and the

symbol 22 for h¼ 22. The models are defined in Table 3.
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the same holds for a covariance when both lagged returns are negative. For COV models, this

asymmetric effect is captured by adding the term G� dt�1d0t�1 � Ct�1 to Equation (11),

where di;t�1 ¼ 1 if the daily return ri;t�1 is negative and di;t�1 ¼ 0 if it is positive.

The HE-CAW models could be useful as alternatives to the vech-HAR models used by

Hautsch, Kyj, and Malec (2015) and deBrito, Medeiros, and Ribeiro (2018) as building

blocks of their factor models. One advantage of HE-CAW models is that they yield

positive-definite forecasts by construction. Likewise, the HE-CAW models could be used to

forecast the h-step ahead (for h> 1) realized covariance matrix needed in HEAVY models

(see Noureldin, Shephard, and Sheppard 2012).

The HE parameterization can also be used in other models than CAW. We have done

this for benchmark HAR-type models, and the same could perhaps be done in other models,

such as score-driven models developed by Gorgi et al. (2019) and Vassallo, Buccheri, and

Corsi (2021).

Supplemental Data

Supplemental data are available at https://www.datahostingsite.com.
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