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Abstract

A new algorithm is proposed for dynamic portfolio selection that takes

a sector-specific structure into account. Regularizations with respect to

within- and between-sector variations of portfolio weights, as well as

sparsity and transaction cost controls, are considered. The model in-

cludes two special cases as benchmarks: a dynamic conditional corre-

lation model with shrinkage estimation of the unconditional covariance

matrix, and the equally weighted portfolio. An algorithm is proposed for

the estimation of the model parameters and the calibration of the penalty

terms based on cross-validation. In an empirical study, it is shown that

the within-sector regularization contributes significantly to the reduction

of out-of-sample volatility of portfolio returns. The model improves the

out-of-sample performance of both the DCC with nonlinear shrinkage

and the equally-weighted portfolio.
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1 Introduction

Portfolio selection remains one of the central topics of empirical finance since its inception

by Markowitz (1952). It is especially challenging in the context of portfolio selection with a

large number of assets, where it is well known that naive implementation of the Markowitz

(1952) results using sample means and variance-covariance matrices leads to poor out-of-

sample performance due to unstable and ill-conditioned estimates. Remedies have been

proposed such as shrinkage methods as in Ledoit and Wolf (2004) and Ledoit and Wolf

(2017) and weight regularization as in DeMiguel et al. (2009a), Brodie et al. (2009) and

Fastrich et al. (2015), which stabilize the ill-conditioned optimization problem. Statistical

justifications for regularization techniques in a portfolio selection context are given by

e.g. Puelz et al. (2015) and Fisher et al. (2020). Candelon et al. (2012) reformulate

traditional shrinkage estimators in terms of a linear regression framework and impose a

“double” shrinkage by adding additional weight penalties such as lasso or ridge, which

further stabilizes portfolio weights and decreases portfolio turnover. Similarly, Ao et

al. (2019) show an equivalent representation of the mean-variance optimization problem

as an unconstrained regression, which they augment by lasso-type constraints to obtain

sparsity and obtain consistency of mean and risk as both the number of assets and sample

size increase. Furthermore, as shown by Jagannathan and Ma (2003), a no-short-sale

constraint also serves to stabilize weights and regularize the optimization problem, as it

is equivalent to shrinking large elements of the covariance matrix. They show empirically

that short-sale constrained portfolios perform as well as those constructed using covariance

matrices estimated from factor models and shrinkage estimators. DeMiguel et al. (2009a)

and Fan et al. (2012) generalize this idea by introducing a gross-exposure constraint that

bridges the gap between an unconstrained and no-short-sale constrained portfolio. Fan

et al. (2012) give a theoretical justification for the empirical results in Jagannathan and

Ma (2003).

Although the main objective of portfolio selection is typically formulated in terms

of maximization of the Sharpe ratio, which corresponds to the tangency portfolio of
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Markowitz (1952), the estimation and prediction of asset mean returns have proven to be

particularly difficult and noisy, see e.g. Best and Grauer (1991). Many studies, starting

at least with Chan et al. (1999), therefore neglect the mean and concentrate on the min-

imization of the portfolio variance to obtain estimates of the global minimum variance

portfolio (GMV). As shown by Jagannathan and Ma (2003), the GMV outperforms many

competing approaches involving estimation of the mean in terms of Sharpe ratio. This

has even been shown for the naive equally weighted portfolio by DeMiguel et al. (2009b).

We therefore refrain from estimating the mean in this paper and consider the problem of

estimating the GMV portfolio.

In a dynamic framework, it is important to take time-varying volatilities and cor-

relations into account. Many alternative modelling strategies exist, including Bayesian

dynamic linear models, see e.g. Puelz et al. (2020), but we follow a large part of the

financial econometrics literature by implementing a GARCH-type model combined with

dynamic conditional correlations (DCC) as in Engle (2002). These models can be used

to predict volatilities and correlations up to a certain investment horizon, see Baillie and

Bollerslev (1992) and Engle and Sheppard (2001). In large dimensions, issues arise for the

estimation of DCC-type models that can be addressed by the composite likelihood method

as in Pakel et al. (2020), combined with shrinkage of the sample covariance matrix that is

used for correlation targeting as in Hafner and Reznikova (2012). See also Morana (2019)

for an alternative approach to DCC estimation in high dimensions based on regularised

semiparametric methods. For portfolio selection with many assets, Engle et al. (2019)

implement a DCC-GARCH model with composite likelihood estimation and nonlinear

shrinkage and show its superior out-of-sample performance with respect to benchmark

portfolios, in particular the ones not taking the dynamics of volatilities and correlations

into account.

Despite the vast literature on portfolio selection, not many studies have taken informa-

tion about the industry sectors explicitly into account, although it is well known that this

information helps to improve predictability of mean returns, volatilities and correlations.

Companies within a given industry sector often compete in the same product market and
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co-move regarding product and technology innovations. They react similarly to perma-

nent shifts in supply and demand conditions, as well as the regulatory environment. As

the industry goes through expansions and contractions, companies’ growth opportunities

and investing and financing decisions are correlated. For example, Moskowitz and Grin-

blatt (1999) document the strong and persistent effects of industry components in stock

returns, where industry momentum strategies are significant and more profitable than

individual stock momentum strategies. Hou (2007) argue that the lead-lag effect is driven

by an intra-industry phenomenon, where returns on big firms lead returns on small firms

within the same industry, which is primarily caused by stock prices’ slow response to

negative information. Hence, there is information clustering at the industry level. Hong

et al. (2007) find that stock markets react with a delay to information contained in indus-

try returns about their fundamentals and that information diffuses only gradually across

markets. Brito et al. (2018) forecast very large realized covariance matrices of returns us-

ing standard firm-level factors (e.g., size, value and profitability) and imposing additional

sectoral restrictions in the residual covariance matrix. Kurose and Omori (2020) propose

a multi-block equicorrelation structure to estimate multivariate stochastic volatility mod-

els in large dimensions and apply their model to an asset allocation exercise with sector

as blocks. For portfolio selection, Chen et al. (2020) take a sector-specific structure info

account by allowing to incorporate investor preferences with respect to industry sectors.

They propose a sparse-group selection with the objective of being sparse across sectors

but diversified within favored sectors. Fan et al. (2016) include sector specific information

into a factor model where industry ETFs are included as additional factors to the CAPM

or the three-factor model of Fama and French (1993).

Sparsity and diversification, although conflicting in nature, both are desirable proper-

ties of portfolios, since diversification allows to reduce portfolio weight variability, while

sparsity keeps the number of invested assets and hence transaction costs under control.

Moreover, both have a stabilizing effect on portfolio weights, if diversification is under-

stood as shrinking towards a fixed weighting scheme. There are however many ways to

introduce these properties into the selection procedure. The choice of Chen et al. (2020)
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is to impose sparsity between industry sectors and diversification within sectors via the

sparse group lasso of Friedman et al. (2010) and Simon et al. (2013), an extension of

the group lasso of Yuan and Lin (2006). It is not a priori clear whether this is the best

strategy, as one might want to allow for sector-wide diversification as well, rather than

investing in only a few sectors. Furthermore, the study of Chen et al. (2020) is using a

rolling window updating mechanism. From an efficiency point of view, it would be prefer-

able to have a genuine dynamic model that can be estimated using all available historical

data, and that produces analytical forecasts of volatilities and correlations, as mentioned

above.

In this paper, we adopt the perspective of a portfolio manager who optimally allocates

funds across assets subject to a set of criteria motivated by investment preferences or

constraints. Relevant examples of such criteria include restrictions on sectoral exposures,

guided for instance by preliminary screening of relevant investable sectors (Chen et al.

(2020)), or constraints on the distribution of portfolio weights across assets, e.g. by

favouring sparse asset allocations (Puelz et al. (2020)), and over time by promoting stable

asset allocation minimizing transaction costs (Hautsch and Voigt (2019)).

To this end, we propose a new portfolio selection procedure in a dynamic framework

that explicitly accounts for these economically motivated criteria by regularising portfolio

weights accordingly. More specifically, building on the DCC-GARCH model of Engle et

al. (2019), which allows for the modelling of time-varying volatilities and correlations in

large dimensions, we add restrictions on portfolio weights to reflect economically motivated

criteria such as between- and within-sector diversification. We also consider penalty terms

promoting sparsity in the resulting asset allocation and controlling for transaction costs by

stabilizing variations in portfolio weights over time. Our proposed framework is modular

as it allows to combine different penalty terms to obtain allocations satisfying multiple

criteria simultaneously, e.g. combining between-/within-sector diversification with a cost

penalty to obtain diversified portfolios with weights that are more stable over time. In

addition, our framework can flexibly accommodate any dynamic input model to generate

the portfolio weights, and is easy to implement as the penalty parameter controls the
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degree to which the resulting allocation will promote the imposition of the economically

motivated criteria.

Our contribution is twofold: First, we introduce an algorithm for optimally choosing

the penalization parameters in a data-driven way based on cross-validation in a dynamic

context. The algorithm uses a partition of the training period into blocks, for which

the combination of DCC-GARCH and regularization delivers portfolio variances that can

be minimized with respect to the regularization parameters. These parameters are then

used to construct portfolio weights in the out-of-sample evaluation period. The proposed

algorithm generalizes classical cross-validation procedures, as e.g. in DeMiguel et al.

(2009a), to take the time series structure of the data into account.

Our second contribution is a large scale empirical study to investigate how a regular-

ization with respect to the sector structure helps to improve out-of-sample performance

of portfolio return variances. We select stocks of the S&P Total index up to dimen-

sion 500, with daily frequency for the returns and a monthly frequency for portfolio

re-balancing. We obtain several important findings. First, diversification is clearly more

important within sectors than between sectors. Second, promoting sparsity of portfolio

weights strongly contributes to reducing portfolio variances. This control for sparsity re-

duces negative weights and effectively moves the optimal portfolio towards a no short-sale

constrained portfolio. The best performing model in large cross-sections combines within-

sector diversification with a control for sparsity. The optimal portfolios significantly out-

perform benchmark portfolios such as the equally weighted or the DCC-GARCH portfolio

without sector-wise regularization. Third, when a no-short-sale restriction is added, we

observe that the best performing portfolios all feature the within-sector regularization.

However, the difference with respect to the DCC-GARCH benchmark is smaller and not

statistically significant for larger portfolios. Thus, in all considered scenarios, the penalty

term for within-sector variability turns out to be important. This is in line with the re-

sults of Chen et al. (2020), extends them to a dynamic framework, and can be explained

and motivated by the economic similarities of companies belonging to the same industry.

The remainder of this paper is organized as follows. The next section presents the
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model and the algorithm to estimate portfolio weights. Section 3 applies our methodology

to stock returns of the S&P Total index, and Section 4 concludes. Some complementary

results related to the empirical study are collected in an appendix.

2 The portfolio selection methodology

In this section we develop our portfolio selection methodology. First, some useful notation

is introduced. Then, the DCC-GARCH model used for modelling volatilities and correla-

tions is presented, including the way how monthly forecasts are generated from averaging

daily forecasts. We then expose competing weight regularizations for the construction

of global minimum variance portfolios, and finally present an algorithm for efficiently

calibrating the penalization parameters using dynamic cross-validation.

2.1 Notation

We adopt the following notation throughout the paper. The subscript i ∈ {1, . . . , N}

indexes the assets in the portfolio, where N denotes the total number of assets available;

the subscript k ∈ {1, . . . , K} indexes the Global Industry Classification Standard (GICS)

sectors, where K is the total number of sectors; and the subscript t ∈ {1, . . . , T} is the

time index, where T is the sample size. Furthermore, we use the following notation:

• yi,t : return for asset i at date t, stacked into yt :=
(
y1,t, . . . , yN,t

)′
.

• Ft−1 : information set generated by {yt−1, yt−2, . . .}.

• σ2
i,t := Var

(
yi,t|Ft−1

)
: conditional variance of the i-th asset at date t.

• εi,t := yi,t/σi,t : devolatized series at date t, stacked into εt :=
(
ε1,t, . . . , εN,t

)′
.

• Dt : N -dimensional diagonal matrix with the i-th diagonal element being σi,t.

• Rt := Corr
(
yt|.Ft−1

)
= Cov

(
εt|Ft−1

)
: conditional correlation matrix at date t.

• Ht := Cov
(
yt|Ft−1

)
: conditional covariance matrix at date t and Diag (Ht) = D2

t .
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• C := E (Rt) = Corr (yt) = Cov (εt) : unconditional correlation matrix.

2.2 Dynamic conditional covariance matrix estimation

In our empirical application, we use daily return data to forecast covariance matrices but

we adopt the common practice of monthly re-balancing for the portfolio construction.

This creates a mismatch between the frequency used for estimation and for forecasting,

which we address with the average-forecasting approach used in De Nard et al. (2021) for

DCC-GARCH model forecasting. Based on daily covariance estimates, daily forecasts are

generated, and then they are iterated to deliver predictions for the horizon of interest.

Specifically, at any portfolio construction date h, we retrieve the forecasts of the covariance

matrices for all days in the upcoming month, namely t = h, h + 1, · · · , h + L − 1, then

average those L daily forecasts and use this averaged forecast to construct the portfolio

composition at date h.

For the dynamics of the univariate volatilities, we choose a GARCH(1,1) process:

σ2
i,t = ωi + δ1,iy

2
i,t−1 + δ2,iσ

2
i,t−1, (1)

where
(
ωi, δ1,i, δ2,i

)
are the parameters for asset i. For the evolution of the conditional

correlation matrix over time, we assume that it is governed by a DCC(1,1) model:

Qt = (1− α− β)C + αεt−1ε
′
t−1 + βQt−1, (2)

where (α, β) are the DCC model parameters, and C is the unconditional correlation

matrix of εt which can be estimated in high dimensions using shrinkage techniques, see

our discussion below. The matrix Qt here can be interpreted as a conditional pseudo-

correlation matrix or a conditional covariance matrix of devolatized residuals. For the

reason that its diagonal elements, although close to one, are not exactly equal to one, we

obtain the conditional correlation matrix and the conditional covariance matrix as

Rt := Diag (Qt)
−1/2Qt Diag (Qt)

−1/2 , (3)

Ht := DtRtDt, (4)

7



and for estimation by quasi maximum likelihood, we assume a conditional normal distri-

bution, i.e. yt|Ft−1 ∼ N (0, Ht).

We use approximate correlation targeting by first estimating C using shrinkage of the

sample correlation matrix of εt, and then maximize the likelihood with respect to α and

β. Due to the inconsistency argument of Aielli (2013) this is not an exact correlation

targeting, which would require a modification of the DCC model. However, results are

typically very similar, so for simplicity we stick to the original version of the DCC model.

With respect to the shrinkage method for C, we adopt the nonlinear shrinkage estima-

tor of Ledoit and Wolf (2017) and Ledoit and Wolf (2020). This estimator is particularly

appropriate to handle the problem of ill-conditioned sample correlation matrices arising

in high dimensions, see also Zhao et al. (2020). Furthermore, the composite likelihood

method developed by Pakel et al. (2020) provides a way to overcome the computational

hurdle associated with the estimation of the DCC model in high dimensions. Engle et al.

(2019) provide empirical evidence that a DCC model combining nonlinear shrinkage tech-

nique with an estimation carried out via composite likelihood method - called DCC-NL -

has superior out-of-sample performance, compared to a DCC model with linear shrinkage,

in a Markowitz portfolio setting with a large number of assets (N ≥ 100). Note that the

DCC-NL model, by regularizing the sample covariance matrix, also implicitly stabilizes

portfolio weights. We will investigate in the empirical section whether additional explicit

sector-wise penalties are further stabilizing the weights and improving the performance

of the DCC-NL Markowitz portfolio.

To determine the average of the L forecasts of the conditional covariance matrixHh+l =

Dh+lRh+lDh+l, for l = 0, 1, . . . , L− 1, we propose a three-step approach where Dh+l and

Rh+l are predicted separately, as described in the following.

For the multi-step ahead forecast of conditional univariate volatilities, we follow the

approach of Baillie and Bollerslev (1992). The forecasts that minimize the mean square

prediction error, for given parameters, are determined by the conditional expectations of

conditional variances. Let us denote the l-step ahead forecast by σ̂2
i,h(l) := E

[
σ2
i,h+l|Fh−1

]
,
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which for the GARCH(1,1) case can be written as

σ̂2
i,h(l) =

l−1∑
j=0

ωi
(
δ1,i + δ2,i

)j
+
(
δ1,i + δ2,i

)l
σ2
i,h. (5)

The forecasts of the diagonal matrixDh+l can be constructed as D̂h(l) = Diag
(
σ̂1,h, . . . , σ̂N,h

)
.

Due to the nonlinearity of the DCC model, there is no exact analytical expression for

the conditional expectations E
[
Rh+l|Fh−1

]
. However, Monte Carlo simulation evidence

of Engle and Sheppard (2001) suggests that the approximation E
[
Rh+l|Fh−1

]
≈ R̂h(l)

has a negligible bias, where

R̂h(l) =
l−1∑
j=0

(1− α− β) Ĉ (α + β)j + (α + β)lRh, (6)

where Ĉ is a nonlinear shrinkage estimator of the unconditional correlation matrix of εt

proposed by Ledoit and Wolf (2020).

By using the forecasts D̂h(l) and R̂h(l), the forecasts of the conditional covariance

matrix using DCC-GARCH can be finally computed as Ĥh(l) := D̂h(l)R̂h(l)D̂h(l), for

l = 0, 1, . . . , L − 1. Thus, to obtain the estimated conditional covariance matrix on

portfolio construction day h, we average over the L forecasts:

Ĥh :=
1

L

L−1∑
l=0

Ĥh(l). (7)

This matrix Ĥh will then be used for portfolio selection.

2.3 Global minimum-variance portfolio

We follow a large part of the empirical literature and consider the problem of estimating

the global minimum variance (GMV) portfolio. Several reasons motivate our choice.

First, it is more difficult to estimate means accurately than the covariance matrix of asset

returns and the errors in estimating means have a larger impact on portfolio weights

than the errors in the estimates of covariance matrices. Furthermore, as demonstrated

by extensive empirical evidence, e.g. Jagannathan and Ma (2003), GMV portfolios have
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shown very good out-of-sample performance even in terms of criteria that take the mean

into account, such as the Sharpe ratio.

The standard GMV problem for a given covariance matrix Ht is formulated as

min
w

w′Htw

s.t. w′1 = 1, (8)

where 1 denotes a vector of ones with dimension N × 1. It has the analytical solution

wt =
H−1t 1

1′H−1t 1
. (9)

The natural strategy in practice is to replace the unknown Ht in Equation (9) by an

estimator Ĥt, yielding a feasible portfolio allocation strategy

ŵt =
Ĥ−1t 1

1′Ĥ−1t 1
. (10)

In order to take a sector structure into account, we modify the optimization problem

above to the following

min
w∈RN

w′Htw + Pλt(w)

s.t. w′1 = 1, (11)

where Pλt(w) is a penalty function, to be specified in the following. The penalty function

is parameterized by a parameter λ ≥ 0, possibly a vector, that determines the strength

of the imposed penalty. It will also depend on time, so that t is added as a subscript of

the penalty function. The optimization problem reduces to the standard GMV problem if

λ = 0, with analytical solution given in Equation (9). For λ > 0, Equation (11) does not

have an analytical solution in general, but can typically be written as a convex program-

ming problem for which efficient numerical algorithms are available. In our numerical

implementations, we use the R package CVXR for disciplined convex programming, see

Fu et al. (2020).

We denote the K industry sectors by G1, G2, . . . , GK , and by pk the number of stocks

in the k-th sector Gk, with average weight mkt =
∑

i∈Gk
wit/pk. In this paper, we conduct

a comparison of the following candidates for the penalty function P (w).
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1. WITHIN (W): penalize weight differences of assets within the same sector

Pλt(w) = λ

K∑
k=1

∑
i∈Gk

|wit −mkt|. (12)

2. BETWEEN (B): penalize weight differences of assets between sectors

Pλt(w) = λ
K∑
k=1

|mkt −
1

N
|. (13)

3. GROUP LASSO (Gl):

Pλt(w) = λ
K∑
k=1

|mkt|. (14)

4. SPARSE (S):

Pλt(w) = λ
N∑
i=1

|wit|. (15)

5. COST (C):

Pλh(w) = λ
N∑
i=1

|wih − w+
i,h−1|, h ≥ 2, (16)

where w+
i,h := wi,hyi,h/(1 + w′hyh) with yi,h being the return of asset i between two

consecutive re-balancing dates h− 1 and h.

The first two penalty functions encourage weight similarities of assets belonging to

the same sector (“within”), and across different sectors (“between”), respectively. If

one believes that the dynamic properties of stock returns are more homogeneous within a

sector than between different sectors, then it would intuitively make sense to obtain better

GMV portfolio results with the penalty Equation (12) than with the penalty Equation

(13). This is however an empirical question that we are going to address in the next

section. Note that an alternative specification of the within and between penalties could

use an L2 norm rather than L1, or a combination of both as in the elastic net of Zou and

Hastie (2005).

The third penalty function displayed in Equation (14) promotes sparsity of portfolio

weights between sectors via a lasso-type penalty as introduced by Yuan and Lin (2006).
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The fourth penalty function in Equation (15) promotes global sparsity of portfolio weights

via a lasso-type penalty as introduced by Tibshirani (1996) in a regression context. It is

well known that as the strength of this penalty increases, the solution converges to the

short-sale constrained portfolio, see DeMiguel et al. (2009a). This term thus controls the

overall degree of allowed short sales.

Finally, the penalty function in Equation (16) promotes a reduction of variability of

portfolio weights from one period to the next, and hence intends to reduce transaction

costs, similar to Chen et al. (2020) and Hautsch and Voigt (2019). The vector w+
h−1 is the

allocation of portfolio weights right before re-balancing at time h− 1. As the strength of

this penalty increases, the optimal portfolio allocation, i.e. the number of shares per asset,

would be decided at the beginning of the evaluation period. The portfolio weights would

vary during the evaluation period only because of changing asset prices. We note that

the transaction costs are not explicitly taken into account in the portfolio construction

and performance evaluation, we instead control for the weight variation over time and use

it as an indicator on the relative performance in terms of transaction costs for different

portfolios.

We can combine the above penalties in various forms. For example, if we want to

penalize both the weights differences between and within sectors, we construct

Pλt(w) = λ1

K∑
k=1

|mkt −
1

N
|+ λ2

K∑
k=1

∑
i∈Gk

|wit −mkt|. (17)

where now the penalty parameter is a vector of two components, λ = (λ1, λ2)
′. We will

call this penalty “BW” for between- and within-sector regularization. The BW portfolio

shrinks the asset allocation towards the equally weighted portfolio, which has often been

chosen as a benchmark for investment strategies and was shown in DeMiguel et al. (2009b)

to perform well out of sample. Analogously, we call SW and CW penalties that combine

the within term with sparsity and transaction cost control, respectively. Furthermore,

combining the sparse and group lasso penalties, we obtain the sparse group lasso regular-

ization of Friedman et al. (2010). See also Babii et al. (2020) and Babii et al. (2021) who

provide theoretical results for the sparse group lasso in a time series framework.
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We first investigate individually how the above regularization terms perform compared

to the DCC-GARCH estimation without penalty. We will then study whether all three

sector-wise penalization terms are equally important and whether combining sector-wise

penalties with global controls for sparsity and cost efficiency further improves the perfor-

mance.

2.4 The dynamic portfolio selection algorithm

The previous section presented the objective function for portfolio optimization including

various penalty terms depending on the sector structure. The problem is how to choose

the parameters λ that determine the strength of the corresponding penalties in a dynamic

framework. In the following we propose an algorithm that allows to combine estimation

of the dynamic conditional covariance matrix with a cross-validation method to select

the penalty parameter. We call θ the vector of all unknown parameters contained in the

DCC-GARCH model.

1. Divide the data into a training set T = [1, T ′] and a evaluation set, E = (T ′, T ].

2. Divide T into an initialization period I and J blocks Bj: T = I
⋃J
j=1Bj. The

length of each block is m.

3. Estimate a DCC-GARCH model on I to get θ̂1 and the conditional covariance

matrix forecasts of Ht(θ̂1), on I
⋃
B1 to get θ̂2 and Ht(θ̂2), etc. until I

⋃J−1
j=1 Bj to

get θ̂J and Ht(θ̂J).

Training Period Testing Period

θ̂1

θ̂2

θ̂J

I B1 B2
. . . BJ T

′ E T

4. Fix a λ > 0 and calculate the optimal portfolio allocation for each re-balancing date

t in B1 as

wt(λ) = arg min
w

(w′Ht(θ̂1)w + Pλt(w)), t ∈ B1, (18)
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with Pλ(w) defined for different cases from Equation (12) to Equation (17), and the

portfolio variance over B1 is

Q1(λ) =
1

m

∑
t∈B1

(wt(λ)′yt)
2. (19)

5. Repeat step 5 for j = 2, . . . , J to get Q2(λ), . . . , QJ(λ), and calculate Q(λ) =

1
J

∑J
j=1Qj(λ).

6. Repeat steps 5 and 6 for different values of λ on a grid, and calculate

λ∗ = arg min
λ
Q(λ). (20)

7. Estimate a DCC-GARCH model on the training set to get θ̂ and the conditional

covariance matrix forecasts of Ht(θ̂).

8. For t ∈ E , using the optimal penalty parameter λ∗ of step 6 and the forecasts Ht(θ̂)

of step 7, calculate the optimal portfolio allocation as

wt = arg min
w

(w′Ht(θ̂)w + Pλ∗t(w)), t ∈ E . (21)

9. Calculate the out-of-sample portfolio variance

V =
1

T − T ′
∑
t∈E

(w′tyt)
2. (22)

10. Compare V with benchmarks such as the classical GMV without sector regulariza-

tion (λ = 0), and one that imposes weight equality across assets (1/N).

The proposed algorithm nests a block-version of time series cross-validation (steps 4

to 6) into the portfolio selection problem. We use blocks rather than single observations

as test sets, because the forecasting targets are variances, not observations themselves.

The choice of the block-size m should balance the estimation uncertainty of out-of-sample

volatilities Qj(λ) in Equation (19) with that of their expectation, Q(λ). Note that in

this form, the proposed portfolio selection algorithm is novel. In the following empirical

analysis we investigate its performance when applied to a large asset data set.
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3 Empirical application

In our empirical analysis, we investigate the question of how adding a sector-specific

regularization structure will impact portfolio performance with respect to benchmark

portfolios. We will examine the out-of-sample performance of Markowitz portfolios based

on combining a dynamic conditional correlation model with intra- and inter-sector penal-

ization using historical stock data.

3.1 Data description

We use historical data on daily returns for the S&P Total Index component stocks with

data available since at least January 03, 2000. The selected stocks belong to 10 different

Global Industry Classification Standard (GICS) sectors which have at least 50 companies

in the S&P Total Index. Therefore, Communication Services is the only sector in the

S&P Total Index which is not covered in the investment universes considered in our

analysis. The sample period spans from January 03, 2000 to March 31, 2021, with a total

of 5304 observations per stock. For simplicity, we adopt the common convention that

21 consecutive trading days constitute one month. In this manner, the cross-validation

period for the penalization terms ranges from January 17, 2007 to July 13, 2016, resulting

in a total of 112 months. The out-of-sample period is composed of the remaining 56

months, starting on July 14, 2016 and ending on March 16, 2021.

To be consistent with common practice, all the portfolios are re-balanced monthly to

achieve a lower turnover and avoid an unreasonable amount of transaction costs. For

simplicity, we assume the portfolio weights are fixed from one day to the next within a

month. This will reduce the transaction cost but not eliminate it as the number of shares

over time does not remain constant. At any investment date, the conditional covariance

matrix is estimated using the 3-step approach for the DCC-GARCH model described in

Section 2.2. The availability of daily returns ensures a sufficient estimation precision of the

DCC-GARCH model at each step of the proposed algorithm. We consider the following

portfolio sizes: N ∈ {50, 100, 250, 500}, composed respectively of the first 5, 10, 25, and
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50 largest market capitalization stocks – evaluated on March 31, 2021 – from the S&P

Total Index component companies belonging to the 10 GICS sectors. In our application,

each investment universe is nested by the larger ones, e.g. our investment universe with

N = 50 is a subset of the one with N = 100.

3.2 Dynamic covariance matrix estimation

We follow the procedure described in Section 2.2, where a univariate GARCH(1,1) model

is adopted for the conditional variances of asset returns, and a DCC(1,1) model is fit-

ted to obtain time-varying conditional correlation matrices using historical daily returns.

To address the challenges arising in large dimensions, we use nonlinear shrinkage for the

unconditional correlation matrix targeting and the estimation is carried out via the com-

posite likelihood method. In order to gain insights on the robustness of the parameter

estimates over time and on the effect of sample size, we consider five samples of increasing

size. Each period starts on 2000-01-04, and ends respectively on 2007-01-12, 2009-07-09,

2011-11-04, 2014-03-12, and 2016-07-12. In this manner, the sample size for estimation

starts from roughly 1800 observations and then increases by around 600 observations

each period. These periods will also serve as blocks for our cross-validation algorithm

introduced in Section 2.4, so that after the initialization period (Period 1) with 1764

observations, there are J = 4 blocks, each consisting of m = 588 observations.

Figure 1 summarizes the GARCH estimates via box-plots for the different sub-periods

and dimensions. It can be observed that the estimates for all parameters (ω, α, β) are

quite stable over time, especially after Period 2 where the effect of adding more data

becomes marginal. Although there are some outliers, the estimates of ω and α are close

to zero for most of the assets, while the estimates for the persistence coefficient β are close

to one, which are typical findings for financial asset return data. Parameter estimates for

the DCC model are reported in Table 1, where again estimates of α are close to zero

and estimates of β are close to 1, indicating high persistence in the dynamic correlations.

Furthermore, similar to the volatility models, parameter estimates stabilize as the sample

16



0e+00

1e−05

2e−05

3e−05

4e−05

P1 P2 P3 P4 P5
Period

O
m

eg
a

0.05

0.10

0.15

P1 P2 P3 P4 P5
Period

A
lp

ha

0.6

0.7

0.8

0.9

1.0

P1 P2 P3 P4 P5
Period

B
et

a

(a) N=50

0e+00

1e−05

2e−05

3e−05

4e−05

P1 P2 P3 P4 P5
Period

O
m

eg
a

0.05

0.10

0.15

P1 P2 P3 P4 P5
Period

A
lp

ha

0.6

0.7

0.8

0.9

1.0

P1 P2 P3 P4 P5
Period

B
et

a

(b) N=100

0.0e+00

2.5e−05

5.0e−05

7.5e−05

1.0e−04

P1 P2 P3 P4 P5
Period

O
m

eg
a

0.05

0.10

0.15

P1 P2 P3 P4 P5
Period

A
lp

ha

0.6

0.7

0.8

0.9

1.0

P1 P2 P3 P4 P5
Period

B
et

a

(c) N=250

0e+00

1e−04

2e−04

3e−04

P1 P2 P3 P4 P5
Period

O
m

eg
a

0.0

0.1

0.2

0.3

P1 P2 P3 P4 P5
Period

A
lp

ha

0.4

0.6

0.8

1.0

P1 P2 P3 P4 P5
Period

B
et

a

(d) N=500

Figure 1: Boxplots of GARCH(1,1) parameter estimates for the five periods of augmenting sample sizes

(P1 to P5), and for four investment universes N ∈ {50, 100, 250, 500}. The sub-periods considered in the

estimation are: P1 from 2000-01-04 to 2007-01-12; P2 from 2000-01-04 to 2009-07-09; P3 from 2000-01-04

to 2011-11-04; P4 from 2000-01-04 to 2014-03-12; P5 from 2000-01-04 to 2016-07-12.
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Table 1: DCC parameter estimates for the five periods of augmenting sample sizes (Period

1 to Period 5), and for three investment universes N ∈ {50, 100, 250, 500}.

N = 50 N = 100 N = 250 N = 500

α β α β α β α β

Period 1 0.0126 0.9797 0.0116 0.9815 0.0109 0.9825 0.0095 0.9856

(0.0001) (0.0002) (0.0002) (0.0003) (0.0001) (0.0003) (0.0004) (0.0015)

Period 2 0.0145 0.9782 0.0137 0.9803 0.013 0.9821 0.0116 0.9844

(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)

Period 3 0.0196 0.9711 0.0192 0.9725 0.0178 0.9754 0.0156 0.9794

(0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001)

Period 4 0.018 0.9737 0.0171 0.9762 0.0167 0.9773 0.0149 0.9803

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Period 5 0.0183 0.9735 0.0168 0.9766 0.0167 0.9773 0.0146 0.9807

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Note: The numbers in parentheses are asymptotic standard errors of the corresponding parameter estimates.

The sub-periods considered in the estimation are: Period 1 from 2000-01-04 to 2007-01-12; Period 2 from 2000-

01-04 to 2009-07-09; Period 3 from 2000-01-04 to 2011-11-04; Period 4 from 2000-01-04 to 2014-03-12; Period 5

from 2000-01-04 to 2016-07-12.

size increases. In addition, all parameter estimates are significantly different from zero

using estimated asymptotic standard errors.

After estimation, we have used various diagnostics such as Portmanteau tests for

autocorrelation in standardized residuals, as well as their squares and cross-products,

which do not yield any evidence against the chosen model specifications. To save space,

we do not report these diagnostics here, but keep them available upon request. We

therefore continue with the construction of GMV portfolios under alternative types of

regularization.
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3.3 GMV Portfolio performance without short-sale constraints

We study the performance of investment strategies including sector-specific regularization

with respect to benchmark portfolios in the context of the GMV portfolio where the most

important performance measure is the out-of-sample volatility. Since the GMV portfolio is

designed to minimize the variance rather than to maximize the Sharpe Ratio, all portfolios

are primarily evaluated by the magnitude of the volatility reduction. We also report the

Sharpe ratio to demonstrate that GMV portfolios typically perform well even in terms of

criteria that include average out-of-sample returns (see e.g. Jagannathan and Ma (2003)).

We include the following eleven portfolios in our empirical analysis.

1. EQ: the equally-weighted portfolio with weights given by 1/N , which is a standard

benchmark advocated by DeMiguel et al. (2009b).

2. NP (no penalty): the DCC-GARCH with nonlinear shrinkage and maximum com-

posite likelihood.

3. W: as NP but with additional penalty for within-sector variation.

4. B: as NP but with additional penalty for between-sector variation.

5. S: as NP but with additional L1-norm penalty to promote sparsity.

6. Gl: as NP but with additional L1-norm penalty to promote sparsity in the selected

sectors.

7. C: as NP but with additional penalty to control transaction costs.

8. BW: as W but with additional penalty for between-sector variation.

9. SW: as W but with additional L1-norm penalty to promote sparsity.

10. SGl: as Gl but with additional L1-norm penalty to promote sparsity within the

selected sectors.

11. CW: as W but with additional penalty to control transaction costs.
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Table 2: Out-of-sample annualized portfolio standard deviation (in percentage points)

and Sharpe ratio

W B S Gl C BW SW SGl CW NP 1/N

N=50

SD 17.410∗∗ 18.013 16.936∗∗∗ 18.049 16.909∗∗∗ 16.662∗∗∗ 16.933∗∗∗ 16.449∗∗∗ 16.884∗∗∗ 18.191 19.868

SR 0.819 0.908 0.955 0.984 0.954 1.031 0.898 0.973 0.899 0.860 0.729

N=100

SD 17.231∗∗∗ 18.854 16.800∗∗∗ 18.871 16.833∗∗∗ 17.073∗∗∗ 16.886∗∗∗ 16.806∗∗∗ 16.860∗∗∗ 18.755 20.269

SR 0.703 0.917 1.044 0.884 1.035 0.722 0.795 1.048 0.784 0.872 0.648

N=250

SD 18.650∗∗∗ 19.579 17.568∗∗ 19.634 17.573∗∗ 19.060 17.592∗∗ 17.572∗∗ 17.581∗∗ 19.269 20.539

SR 0.644 0.644 0.919 0.680 0.919 0.599 0.898 0.920 0.894 0.675 0.573

N=500

SD 18.825∗∗ 19.657 17.636∗∗∗ 19.604 17.632∗∗∗ 19.464 17.577∗∗∗ 17.635∗∗∗ 17.588∗∗∗ 19.464 21.511

SR 0.777 0.682 0.942 0.682 0.914 0.723 0.900 0.942 0.865 0.699 0.518

Note: Significant outperformance of the portfolios over the NP portfolio in terms of SD is denoted by asterisks: ∗, ∗∗, and ∗ ∗ ∗ indicate

significance at the 10%, 5%, and 1% level respectively. All portfolios outperform the equally-weighted benchmark at a significance level of 5%

or lower.

In order to obtain the optimal value of the penalization parameter(s) λ, we solve the

optimization program specified in Equation (20) via grid search. The resulting optimal

values of log(λ) are reported in Table 6 of the appendix. We then construct the asset

allocation for the eleven portfolios considered on each monthly re-balancing date, and

the portfolio weights are assumed to remain constant within the month. The out-of-

sample portfolio performance measurements are computed with daily return data and

then annualized by following the convention of multiplying the average return by 252 and

the standard deviation by
√

252. The (annualized) Sharpe ratio is obtained as the ratio

of average return and standard deviation. The statistics, with volatility in percentage

points, are presented in Table 2. The best performing portfolio with respect to the

volatility criterion is marked in bold.
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Focusing first on the three portfolios with sector-wise regularizations, namely the W,

B, and Gl portfolios, we conclude that the W portfolio has the highest contribution to

reducing portfolio volatility. While the combination of within- and between-sector (BW)

regularization is further improving the performance of the W portfolio in terms of volatility

for the moderate investment universes (N ∈ {50, 100}), adding additional between-sector

penalization is deteriorating the volatility performance of the W portfolio in larger dimen-

sions (i.e. N ∈ {250, 500}). Additionally, the observation that shrinking different sector

weights towards equivalence lacks in efficacy is consistent with the intuition that assets

belonging to different sectors may have quite different characteristics and tend to be less

correlated. Promoting within-sector diversification is more important than between-sector

diversification or concentrating the allocation on a few sectors. Furthermore, promoting

sparsity concentrates the weight allocation on fewer assets, and adding a cost penalization

term stabilizes the weight evolution of each asset over time. We can observe from Table 2

that both approaches contribute to better portfolio performance in terms of volatility.

In addition, for each of the portfolios with regularizations, we conduct the test of

equality in standard deviations with respect to the two benchmark portfolios, with a

two-sided p-value obtained by the prewhitened HACPW method described in Ledoit and

Wolf (2011). It can be concluded that the nine regularized portfolios outperform the

equally-weighted benchmark and the outperformance is statistically significant at all con-

ventional levels. Furthermore, controlling for “within” ,“sparse” and “cost” significantly

improves the portfolio volatility (at the 5% level) when considering the NP portfolio as

benchmark. We also test whether the regularized portfolios are significantly outperform-

ing each other. The p-values are reported in Table 8 and Table 9 of the appendix. We

observe that the “within” portfolio is not significantly outperformed by other penalized

portfolios at the 5% level for N ∈ {100, 250} and at the 1% level for N = 500. However,

the “between” and “group sparse” portfolios are almost always significantly outperformed

for N ∈ {100, 250, 500} at the 1% level. This confirms that promoting within-sector di-

versification is more beneficial than between-sector diversification or concentrating the

allocation on a few sectors. In addition, portfolios controlling for sparsity and transaction
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cost are rarely significantly outperformed, especially in moderate and large investment

universes.

In terms of the Sharpe ratio, we conclude that adding a sparsity regularization and

a cost penalty term contributes to an improved portfolio performance. Additionally, the

“between” regularized portfolio (B) and the portfolio focusing on a few selected sectors

(Gl) display an improvement in performance relative to both benchmarks in the small

investment universes (N ∈ {50, 100}). The outperformance in terms of Sharpe ratio

tends to diminish for portfolios with a larger number of assets (N ∈ {250, 500}). We

note that if we changed our performance target from GMV portfolio to Sharpe ratio

maximization, including additional features such as a momentum signal for expected

returns could further improve the performance, see e.g. De Nard et al. (2021).

We also provide some descriptive statistics for the portfolio weights wt over time. In

each holding period, namely one month, we compute the following four characteristics:

• Min: Minimum weight of all assets in the portfolio.

• Max: Maximum weight of all assets in the portfolio.

• SD: Standard deviation of weights of all assets in the portfolio.

• MAD-EW: Mean absolute deviation from equal weights, 1/N .

• MDiv-Sec-W: Mean diversification within sectors, computed as

MDiv-Sec-W =
1

T − T ′
T−T ′∑
t=1

K∑
k=1

∑
i∈Gk

|wit −mkt|.

• MDiv-Sec-B: Mean diversification between sectors, computed as

MDiv-Sec-B =
1

T − T ′
T−T ′∑
t=1

K∑
k=1

|mkt −
1

N
|.

• No. Active: Number of stocks with absolute weight larger than 1% ∗ 1/N .
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For each characteristic, we then report the average statistics over the out-of-sample

period, as summarized in Table 3. We observe that the portfolios with the least dispersed

weights are those including within-sector regularization, either alone or in combination

with one of the other regularization terms. For each dimension, portfolios with “within”,

“sparse” and “cost” penalizations contribute the most to reducing the distance to the

equally weighted portfolio as measured by the MAD-EW criterion. Additionally, we ob-

serve that portfolios with significantly improved volatilities (i.e. W, S, C) have overall

smaller values for the MDiv-Sec-W statistic indicating higher within-sector diversification,

but larger values for the MDiv-Sec-B statistic suggesting lower between-sector diversifi-

cation. Conversely, portfolios with poor out-of-sample performance (i.e. B, Gl) exhibit

higher between-sector diversification and lower within-sector diversification. This observa-

tion is consistent with the conclusion that promoting within-sector diversification is more

important than between-sector diversification or concentrating the allocation on only a

few sectors. Furthermore, the number of active positions indicates that the portfolios

with sector-wise regularizations (i.e. W, B, Gl) are diversified across all available assets

while portfolios controlling for sparsity and cost are concentrating their weights on 40%

of the investment universe for the moderate portfolio sizes (N ∈ {50, 100}) and on 20%

of the investment universe for larger portfolio sizes (N ∈ {250, 500}).

We also present the weight evolution during the out-of-sample period as weight vari-

ations provide us with further indications on the relative performance of the different

portfolios in terms of transaction costs. Figure 2 illustrates the weight variation over time

for component stocks in the case where the investment universe is composed of 50 assets.

The asset with the highest sector-wise market capitalization is chosen as a representative

of each sector, and in such a way we obtain ten stocks representing the ten sectors in

the portfolio. From Figure 2, it can be concluded that the DCC-GARCH portfolio (NP)

is subject to large changes from one re-balancing date to another, which further deterio-

rates the portfolio return when transaction costs are taken into account. The black curve

indicates that adding the within-sector penalization structure is stabilizing the weights

across time, resulting in a further improved relative portfolio performance – compared
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to the benchmark NP portfolio – when accounting for transaction costs. Additionally, it

can be observed from the blue curve that including another regularization term based on

transaction costs is further stabilizing the weight evolution over time.
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Table 3: Statistics of portfolio weights

W B S Gl C BW SW SGl CW NP 1/N

N=50

Min -0.070 -0.084 0.000 -0.078 -0.001 -0.073 0.000 0.002 -0.001 -0.074 0.020

Max 0.212 0.212 0.332 0.232 0.329 0.191 0.318 0.277 0.310 0.235 0.020

SD 0.049 0.065 0.057 0.066 0.057 0.046 0.053 0.042 0.052 0.066 0.000

MAD-EW 0.034 0.050 0.032 0.050 0.032 0.031 0.028 0.020 0.027 0.050 0.000

MDiv-Sec-W 1.060 2.475 1.352 2.407 1.356 1.237 1.085 0.937 1.075 2.317 0.000

MDiv-Sec-B 0.265 0.124 0.193 0.158 0.193 0.203 0.200 0.122 0.201 0.191 0.000

No. Active 50 50 20 50 27 50 27 50 32 50 50

N=100

Min -0.046 -0.062 0.000 -0.062 -0.001 -0.045 0.000 0.000 -0.001 -0.061 0.010

Max 0.200 0.163 0.306 0.170 0.305 0.188 0.333 0.307 0.329 0.174 0.010

SD 0.033 0.041 0.038 0.041 0.039 0.033 0.039 0.038 0.039 0.041 0.000

MAD-EW 0.020 0.030 0.017 0.030 0.017 0.020 0.016 0.017 0.016 0.030 0.000

MDiv-Sec-W 1.752 2.943 1.566 2.915 1.610 1.808 1.347 1.584 1.356 2.887 0.000

MDiv-Sec-B 0.124 0.063 0.087 0.072 0.087 0.113 0.103 0.087 0.104 0.082 0.000

No. Active 100 100 40 100 25 99 55 29 46 100 100

N=250

Min -0.030 -0.028 0.000 -0.028 -0.001 -0.029 0.000 0.000 -0.001 -0.028 0.004

Max 0.126 0.127 0.305 0.132 0.302 0.103 0.291 0.305 0.290 0.140 0.004

SD 0.018 0.019 0.024 0.019 0.024 0.017 0.024 0.024 0.024 0.019 0.000

MAD-EW 0.011 0.013 0.007 0.013 0.007 0.012 0.007 0.007 0.007 0.013 0.000

MDiv-Sec-W 2.831 3.229 1.779 3.230 1.808 2.914 1.779 1.779 1.795 3.208 0.000

MDiv-Sec-B 0.023 0.015 0.038 0.015 0.038 0.013 0.038 0.038 0.038 0.019 0.000

No. Active 249 249 57 249 60 249 57 70 59 249 250

N=500

Min -0.014 -0.016 0.000 -0.016 -0.000 -0.014 0.000 0.000 -0.000 -0.016 0.002

Max 0.067 0.072 0.238 0.072 0.235 0.058 0.232 0.238 0.229 0.078 0.002

SD 0.009 0.009 0.015 0.009 0.015 0.009 0.015 0.015 0.015 0.010 0.000

MAD-EW 0.006 0.006 0.004 0.006 0.004 0.006 0.004 0.004 0.004 0.006 0.000

MDiv-Sec-W 2.866 3.137 1.845 3.157 1.870 2.936 1.847 1.851 1.862 3.129 0.000

MDiv-Sec-B 0.009 0.007 0.017 0.007 0.017 0.006 0.017 0.017 0.017 0.009 0.000

No. Active 499 499 111 498 111 498 73 99 104 498 500
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Figure 2: Out-of-sample period weight evolution
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3.4 GMV Portfolio performance with short-sale constraints

Given that some markets and fund managers are explicitly subject to short-sale restric-

tions in their activities, we also consider the added benefits of our approach when a

non-negativity constraint is applied to all portfolio weights. We report the values of the

optimal penalization parameters λ for all cases in Table 7 of the appendix.

Comparing the GMV portfolio results in Table 2 with the no-short-sale portfolio results

in Table 4, we observe that the optimal no-short-sale portfolios have smaller out-of-sample

volatility than the GMV portfolios for all considered investment universes. This finding

suggests that the imposed no-short-sale constraint helps decreasing the actual portfolio

risk, but further improvements can still be obtained. In addition, our previous conclusion

that including within-sector regularization is strongly beneficial still holds, especially in

small and moderate investment universes. Whereas adding between-sector shrinkage ef-

fectively improves performance for small to moderate dimensions, it tends to deteriorate

overall portfolio performance in large dimensions (N = 500), although the differences are

small.

Furthermore, although within-sector penalization reduces portfolio volatility, this im-

provement in performance is only statistically significant in the case of N = 50. The

outperformance in terms of volatility is not statistically significant for larger portfolios

(N ∈ {100, 250, 500}).

Finally, we take a closer look at the portfolio construction by reporting the weights

statistics in Table 5. Clearly, there is now a stronger effect of the penalization term, which

is shrinking the weights towards equality, especially in larger portfolios. Moreover, the W

portfolio has higher within-sector diversification while the between-sector diversification

increases for larger portfolios (N ∈ {250, 500}) and decreases for moderate portfolio sizes

(N ∈ {50, 100}). Additionally, the number of active positions decreases significantly

compared to the corresponding portfolios without short-sale constraint, and this effect

gets stronger for larger investment universes.
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Table 4: Out-of-sample annualized portfolio standard deviation (in percentage points)

and Sharpe ratio (with short-sale constraint)

W B C BW CW NP 1/N

N=50

SD 16.370∗∗ 16.401∗∗ 16.910∗∗ 16.472∗∗ 16.356∗∗ 16.931 19.868

SR 0.866 1.109 0.959 1.014 0.873 0.953 0.729

N=100

SD 16.589 16.681∗ 16.793 16.669 16.602 16.798 20.269

SR 0.781 1.093 1.050 0.809 0.781 1.046 0.648

N=250

SD 16.381 17.565 17.582 16.378 16.403 17.554 20.539

SR 0.598 0.915 0.905 0.596 0.601 0.914 0.573

N=500

SD 17.515 17.648 17.610∗ 17.605 17.501 17.625 21.511

SR 0.828 0.949 0.940 0.838 0.811 0.946 0.518

Note: Significant outperformance of the portfolios over the NP portfolio in terms of

SD is denoted by asterisks: ∗, ∗∗, and ∗ ∗ ∗ indicate significance at the 10%, 5%, and

1% level respectively. The outperformances of all portfolios against the equally-weighted

benchmark are significant at a level of 5% or lower.
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Table 5: Statistics of portfolio weights (with short-sale constraint)

W B C BW CW NP 1/N

N=50

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.020

Max 0.206 0.299 0.330 0.206 0.207 0.331 0.020

SD 0.040 0.054 0.057 0.038 0.040 0.057 0.000

MAD-EW 0.025 0.030 0.031 0.024 0.025 0.031 0.000

MDiv-Sec-W 0.496 1.343 1.340 0.586 0.494 1.345 0.000

MDiv-Sec-B 0.214 0.184 0.192 0.204 0.213 0.193 0.000

No. Active 33 28 25 39 36 23 50

N=100

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.010

Max 0.290 0.285 0.306 0.278 0.285 0.306 0.010

SD 0.035 0.037 0.038 0.034 0.034 0.038 0.000

MAD-EW 0.015 0.017 0.017 0.014 0.014 0.017 0.000

MDiv-Sec-W 1.136 1.572 1.569 1.162 1.110 1.565 0.000

MDiv-Sec-B 0.106 0.086 0.087 0.104 0.106 0.087 0.000

No. Active 68 51 43 75 72 51 100

N=250

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.004

Max 0.050 0.303 0.304 0.049 0.053 0.304 0.004

SD 0.009 0.024 0.024 0.009 0.010 0.024 0.000

MAD-EW 0.005 0.007 0.007 0.005 0.005 0.007 0.000

MDiv-Sec-W 0.799 1.762 1.759 0.767 0.872 1.762 0.000

MDiv-Sec-B 0.042 0.038 0.038 0.042 0.042 0.038 0.000

No. Active 141 111 113 147 144 117 250

N=500

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.002

Max 0.223 0.190 0.237 0.183 0.222 0.238 0.002

SD 0.015 0.013 0.015 0.013 0.015 0.015 0.000

MAD-EW 0.004 0.004 0.004 0.004 0.004 0.004 0.000

MDiv-Sec-W 1.829 1.858 1.829 1.852 1.819 1.834 0.000

MDiv-Sec-B 0.018 0.011 0.017 0.012 0.018 0.017 0.000

No. Active 125 168 188 117 153 187 500
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4 Conclusions and outlook

In a dynamic framework, considering various regularizations for portfolio weights, we have

shown that both sparsity and sector-wise regularizations are important for reducing out-

of-sample portfolio volatilities. Among the sector-wise regularizations, we observe that

controlling for within-sector weight variations has the largest contribution to reducing

out-of-sample portfolio volatility compared to promoting between-sector diversification or

concentrating the portfolio weights on a few sectors. In a scenario without short-sale con-

straints, the best-performing portfolio always includes a control for sparsity that implicitly

reduces negative weights and moves the portfolio closer to one with short sales constraints.

In large dimensions, the optimal portfolio combines the sparsity regularization with a

penalty for within-sector variation of weights. The optimal portfolios significantly out-

perform two benchmark portfolios. Adding short-sale constraints, the best-performing

portfolio always includes a “within” penalty, but the statistical significance disappears

when portfolio size is larger.

Our results can be extended in various directions. First, other portfolios than the

GMV can be considered such as the tangency portfolio, or factor-risk-parity portfolios

as in Lassance et al. (2021). Second, our methodology could be applied to international

diversification, where the structure is not only based on industry sectors but also coun-

tries. In a similar vein as our paper, it would be interesting to investigate whether, for

example, within-country diversification is more relevant than between-country diversifi-

cation. Moreover, additional classes of assets can be considered such as bonds, foreign

exchange, commodities and alternative assets, for which other types of regularizations

might be useful, depending on the objectives. We leave these topics for future research.
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Appendix

Table 6: Logarithm of penalty tuning parameters, log(λ), via cross validation (without

short-sale constraint)

W B S Gl C BW SW SGl CW

N=50 -15.8 -16.6 -9.3 4.9 -8.1 -16.6 -15.8 -9.4 -15.8 -9.3 4.9 -8.2 -15.8

N=100 -15.5 -18.1 -11.4 -11.5 -13.8 -18.2 -15.6 -11.6 -15.6 -11.4 -11.4 -14.0 -15.6

N=250 -17.6 -17.6 -10.9 -5.8 -10.8 -17.6 -17.5 -11.0 -17.5 -11.1 -5.7 -10.9 -17.6

N=500 -17.8 -18.4 -11.8 -4.6 -12.7 -18.5 -17.8 -11.8 -17.9 -11.8 -4.8 -2.0 -17.8

Table 7: Logarithm of penalty tuning parameters, log(λ), via cross validation (with short-

sale constraint)

W B C BW CW

N=50 -15.0 -16.6 -8.3 -16.7 -15.1 -8.4 -15.0

N=100 -14.9 -18.0 -12.4 -17.9 -15.0 -12.2 -14.9

N=250 -13.6 -20.9 -11.2 -21.0 -13.6 -11.0 -13.7

N=500 -17.0 -17.3 -11.6 -17.4 -17.0 -11.4 -16.9
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Table 8: P-values for statistical test of difference in volatility (without short-

sale constraint)

W B S Gl C BW SW SGl CW NP 1/N

N=50

W 0.212 0.261 0.038 0.001

B 0.842 0.314 0.010

S 0.130 0.062 0.088 0.005 0.000

Gl 0.556 0.029

C 0.100 0.049 0.462 0.076 0.788 0.003 0.000

BW 0.014 0.000 0.546 0.002 0.570 0.446 0.508 0.000 0.000

SW 0.082 0.052 0.970 0.078 0.002 0.000

SGl 0.013 0.009 0.056 0.021 0.044 0.638 0.072 0.095 0.001 0.000

CW 0.054 0.042 0.576 0.078 0.765 0.011 0.002 0.000

NP 0.016

N=100

W 0.000 0.000 0.000 0.000

B 0.806 0.002

S 0.306 0.000 0.000 0.205 0.492 0.466 0.226 0.642 0.000 0.000

Gl 0.005

C 0.334 0.000 0.000 0.539 0.658 0.834 0.000 0.000

BW 0.087 0.000 0.000 0.000 0.000

SW 0.387 0.000 0.000 0.619 0.000 0.000

SGl 0.312 0.000 0.000 0.205 0.501 0.496 0.672 0.000 0.000

CW 0.352 0.000 0.000 0.564 0.602 0.000 0.000

NP 0.333 0.059 0.004

Note: The p-values are from the tests of outperformance where the row portfolios are benchmarked against

the column portfolios, i.e. we test whether portfolio i significantly outperforms portfolio j in terms of

volatility for row i and column j of the table. An empty cell indicates portfolio i is not outperforming

portfolio j.
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Table 9: P-values for statistical test of difference in volatility (without short-

sale constraint)

W B S Gl C BW SW SGl CW NP 1/N

N=250

W 0.000 0.000 0.000 0.001 0.000

B 0.390 0.017

S 0.174 0.006 0.004 0.762 0.058 0.889 0.454 0.929 0.021 0.001

Gl 0.035

C 0.181 0.007 0.004 0.061 0.922 0.956 0.023 0.001

BW 0.002 0.004 0.158 0.000

SW 0.139 0.004 0.002 0.040 0.014 0.000

SGl 0.176 0.006 0.004 0.960 0.059 0.908 0.952 0.022 0.001

CW 0.143 0.004 0.002 0.042 0.911 0.014 0.000

NP 0.000 0.004 0.001

N=500

W 0.002 0.001 0.000 0.011 0.000

B 0.000

S 0.044 0.000 0.001 0.003 0.001 0.000

Gl 0.189 0.000

C 0.043 0.000 0.799 0.000 0.003 0.825 0.001 0.000

BW 0.502 0.560 0.999 0.000

SW 0.025 0.000 0.266 0.000 0.278 0.001 0.270 0.262 0.000 0.000

SGl 0.044 0.000 0.679 0.001 0.003 0.001 0.000

CW 0.026 0.000 0.416 0.000 0.434 0.001 0.422 0.000 0.000

NP 0.000 0.000 0.000

Note: The p-values are from the tests of outperformance where the row portfolios are benchmarked against

the column portfolios, i.e. we test whether portfolio i significantly outperforms portfolio j in terms of

volatility for row i and column j of the table. An empty cell indicates portfolio i is not outperforming

portfolio j.
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Table 10 reports the total running time for the out-of-sample period of 56 months using

the optimal penalization parameter found in the cross-validation step. The running time

increases moderately with respect to portfolio size. Note that the optimal weights of the

portfolios with W, B, S, Gl penalty terms at time t are independent of the optimal weights

of other re-balancing dates and thus the computation can be implemented with parallel

programming. However, the optimal allocation at time t of the portfolios controlling for

the cost penalty is dependent on the optimal weights of the previous re-balancing date

t− 1, and thus can only be computed sequentially.

Table 10: Running time for the out-of-sample period (in minutes)

W B S Gl C BW SW SGl CW

N=50 0.33 0.05 0.03 0.03 0.13 0.37 0.33 0.04 2.05

N=100 0.32 0.06 0.03 0.03 0.13 0.36 0.33 0.05 2.09

N=250 0.32 0.07 0.05 0.05 0.22 0.38 0.37 0.07 2.17

N=500 0.53 0.19 0.16 0.13 0.65 0.56 0.53 0.22 2.67

Note: Computations were carried out on a 2020 iMac with the following spec-

ifications: Intel Core i9 10-Core processor (3.6GHz) and 72 GB RAM (2133

MHz DDR4).
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