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Abstract— We consider a two-dimensional multi-agent eche-
lon formation, where each agent receives a benefit that depends
on its position relative to others, and adjusts its position to
increase this benefit. We analyze the selfish case where each
agent maximizes its own benefit, leading to a Nash-equilibrium
problem, and the collaborative case in which agents maximize
the global benefit of the group. We provide conditions on the
benefit function under which the echelon formations cannot be
Nash equilbriums or group optimums.

We then show that these conditions are satisfied by the
conventionally used fixed-wing wake benefit model. This im-
plies that energy saving alone is not sufficient to explain the
emergence of the observed migratory formations, based on the
fixed-wing model. Hence, either non-aerodynamic aspects or a
more accurate model of bird dynamics should be considered to
construct such formations.

I. INTRODUCTION

Formation control where multiple agents collaborate to
move in certain shapes received extensive interest in the
literature, see e.g., the survey [1]. Different methods based on
available sensor measurements, e.g., position [2], distance [3]
and bearing [4], have been proposed to achieve formations
for various agent dynamics. There is also a research line
focusing on imitating the collective behavior of animals,
e.g., birds flock or fish school, by designing simple local
interaction rules [5]-[7]. Despite these fruitful results, the
existing research mostly focus on the actions agents take
in order to form and maintain specific shapes, or on how
phenomenological behavior models may result in formation-
like behaviors. But, the benefits of these formations and their
influence on formations emergence are rarely addressed.

In nature, it is accepted that migrating birds adopt the eye-
catching line formation to save energy: each follower bird
reduces energy expenditure by exploiting the extra supportive
lift from the wake of the front neighboring bird [9]-[11].
By regarding birds as fixed wings, early researches [11]-
[13] have tested the energy saving mechanism. Though the
predicted relative position of neighboring birds is consistent
with the observations of migrating birds, the position of
each bird was always pre-fixed, neglecting birds’ incentive to
pick the preferred position. Some papers in the last decade
[14], [15] also seek to construct line formations based on
modified fixed wing models. However, their modification
violates the wake evolution in aircraft experiments [16],
and non-aerodynamic factors are also considered. Hence the
conclusion could be questioned and the actual emergence
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of the specific formation shapes (echelon or V) remains
unexplained on multiple aspects, such as birds interests
in energy saving, sensing ability, and action strategies. A
first fundamental question is whether migrating formations
emerge purely based on energy saving? To answer this, we
have tried employing the fixed-wing model to numerically
constructing the echelon formation for birds by assuming all
of them are either selfish or cooperative in energy optimiza-
tion (see Section II-B for detailed explanation about these
behaviors). Surprisingly, no observation-similar formation
has been found in any situation.

Our contribution in this paper is to theoretically confirm
this result. We study the two-dimensional (2D) multi-agent
echelon formations based on benefit optimization. In our
setting, each agent can receive from any other agent a
benefit that depends on its relative position to that agent.
A leader is fixed at the front of the group, while other
followers can adjust their positions and their behaviors are
purely guided by benefit optimization. Same as in our trial
in constructing migratory formations, we consider that all
agents are either selfish or cooperative, resulting in a self-
benefit maximization non-cooperative game or a cooperative
total benefit optimization problem, respectively. Related to
the emergence of echelon formations, our focus is to derive
conditions on the inter-agent benefit, under which there
cannot exist a Nash equilibrium of the self-benefit game
and/or the (local) optimum of the total benefit optimization,
at which the relative position of each neighboring-agents lies
within some proper set.

This question is close to constrained non-cooperative
games and maximization, where the existence of equilibri-
ums or optimums could be guaranteed by requiring objective
functions to be continuous or concave [18], [19]. But, unlike
these problems, we focus on whether the unconstrained
game or maximization happen to have some equilibriums or
optimums that are within the desired set. We derive several
results by analyzing the necessary condition for the existence
of the Nash equilibrium/the maximum. Based on these
results, we confirm the numerical observations, that, in the
context of fixed-wing models, bird purely trying to maximize
their energy savings would not create V-formations.

The rest of the paper is organized as follows: In the next
section, we formulated the problem of interest. Section III
and IV present conditions on the inter-agent benefit such that
the considered Nash equilibrium and optimum, respectively,
cannot exist. In Section V, we apply the proposed theoretical
conditions to analyzing the fixed-wing wake model and
justify our numerical results. At last, Section VI concludes
the paper and discuss the implication of the results. Due to
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space reason, the proof of all the formal results are omitted
and will be made available in a journal publication.

II. PRELIMINARIES

A. Notations
Let Id(·) be the identity map. For an interval P ⊂ R−, we

denote by −P and 2P the image of P by a multiplication
by −1 and 2, respectively (i.e. −P = −a : a ∈ P). For
a differentiable function f(x) : Rm → R, we denote by
∂f(x∗)
∂xi

= ∂f(x)
∂xi
|x=x∗ the partial derivative of f(x) with

respect to xi at x∗ ∈ Rm. Moreover, if m = 2, we denote
fx(a, b) = df(x,b)

dx |x=a, with a, b ∈ R.

B. Echelon formation, agents benefits and interests
We consider n+ 1 agents with one leader labeled 0, and

n ≥ 2 followers labeled from 1 to n. Let V = {1, ..., n}. For
each agent i ∈ V ∪{0}, we call agent j, with j = i∓ k ≥ 0
with 1 ≤ k ≤ n, the k-hop front (back) neighbor of i. Each
agent i ∈ V ∪ {0} has a position pi = [xi yi]

> ∈ R2 and
specifically p0 = 02 in this paper. Let X = [x1 ... xn]>,
Y = [y1 ... yn]> and p = [X> Y >]>. In the paper, the x
and y directions are also called the longitudinal and lateral
directions, respectively. Backward motion means moving at
the negative x direction. We denote by pij = pi − pj and
xij = xi − xj for i, j ∈ V ∪ {0}.

Each agent i ∈ V ∪ {0} gains a benefit f i that depends
on birds position p. In bird formations [9], the net energy
saving of the bird can be approximated by the sum of the
saved energy induced from the two front and back birds,
and each additive is homogeneous and only depends on the
relative position of birds. Thus, we assume that f i can be
decomposed as the sum of the inter-agent benefits agent i
gets from each j ∈ Ni, which is characterized by the same
function f(·) : R2 → R. Namely,

f i(p) =
∑
j∈Ni

f(pij) =

|i−j|≤2, i6=j∑
j∈V ∪{0}

f(pij) (1)

where Ni is the set of 1- and 2-hop neighbors of i.
The total benefit J(p) of the group is the sum of all agents’

benefits:

J(p) =
∑

i∈V ∪{0}

f i(p) =
∑

i∈V ∪{0}

∑
j∈Ni

f(pij) (2)

We focus on echelon formations as shown in Fig. 1(a),
where agents are aligned diagonally behind the leader in
one side with equal neighboring-agents distance. Motivated
by the line formation of migrating birds where neighboring
birds’ lateral distances are almost the same but longitudinal
distances are varied within proper range [9], [11], we allow
the formation to be deviated from the strict echelon shape.
Specifically, we focus on the left echelon formation where
the position pi of each follower i ∈ V satisfies

yi = −iβ, xi(i−1) ∈ P (3)

where β > 0 and P = [−αl,−αs] with αs, αl > 0 and αs ≤
αl. Let Y (β) = [−β ... − nβ]>. Then f i(p) and J(p) are
also denoted as f i(X,Y (β)) and J(X,Y (β)), respectively.

(a) (b)
Fig. 1. 2D echelon formation and formations that are weird. The flight is
along the x direction. (a) n + 1 agents create an echelon formation in a
plane. (b) Weird formation that should be excluded. Agent 3 in red color
is either too close or too far from the front neighbor longitudinally.

Motivated by the almost same lateral distance of neigh-
boring birds in migrating formation [9], [11], we fix β and
consider to construct the echelon formation by assuming that
followers can adjust their longitudinal position xi based on
benefit maximization. The behavior of agents are assumed
to affected by two different attitudes: selfishness and coop-
erativeness. Accordingly, we considered two scenarios.

In the first, all followers are selfish and would like to
maximize their own benefits f i(p). This leads to a non-
cooperative game and we are interested in the Nash equilib-
rium (NE) of the longitudinal positions, which is defined as
the vector X∗ = [x∗1 · · · x∗n]> ∈ Rn satisfying the condition
below for each i ∈ V :

f i(x∗i , x
∗
−i, Y (β)) ≥ f i(xi, x∗−i, Y (β)), ∀xi ∈ R (4)

where x∗−i = [x∗1 · · · x∗i−1 x∗i+1 · · · x∗n]>. The NE, if
exists, corresponds to agents longitudinal positions with the
property that no agent can increases its own benefit by
choosing a different position unilaterally.

In the second, all agents cooperate to maximize the group
total benefit J and we are interested in the cooperative
equilibrium (CE), agents’ longitudinal positions X̄∗ =
[x̄∗1 · · · x̄∗n]> ∈ Rn that reaches a local maximum of J .

X̄∗ := arg max
X∈BX

J(p) = arg max
X∈BX

J(X,Y (β)) (5)

where BX is a neighborhood of X . It is proper to consider
the local maximum since without prior knowledge of the
global maximum, the cooperative followers have no incentive
to shift away from a local maximum. Moreover, the global
maximum is also a local maximum, thereby satisfies (5).

We denote by p∗i = [x∗i − iβ]>, p̄∗i = [x̄∗i − iβ]>, p∗ =
[(X∗)> Y (β)>]>, and p̄∗ = [(X̄∗)> Y (β)>]>. In birds
echelon formations, the relative longitudinal positions of
neighboring birds are within a range. Thus, a stable echelon
formation should correspond to an NE X∗ and/or a CE X̄∗,
with x∗i(i−1) ∈ P and x̄∗i(i−1) ∈ P, i ∈ V , respectively,
for a proper negative interval P that is consistent with
observations. Hence, we only focus on such equilibriums.
Whether a considered echelon formation can be constructed
based on benefit maximization should relate to if there exist
the equilibriums of interest.

C. Problem formulation
In view of f i(p) and J(p), the existence of X∗ and X̄∗

should depend on the properties of the inter-agent benefit
f . In our efforts to reconstruct the migratory formation of
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birds based purely on benefit maximization, no equilibrium
that corresponds to observation-similar echelon formations
has been found. To explain this, we focus on the following
problem in the paper.

Problem 1. Given n ≥ 2 agents, an interval P =
[−αl,−αs] with 0 < αs ≤ αl and a β > 0, under what
conditions on f , the NE X∗ ∈ Rn with x∗i(i−1) ∈ P, i ∈ V
and/or the CE X̄∗ ∈ Rn with x̄∗i(i−1) ∈ P, i ∈ V are
impossible.

At this stage, we make the following assumption on the
inter-agent benefit f , allowing to consider its derivative.

Assumption 1: (a) f(x, y) with x, y ∈ R is continuous
in R2 and is continuously differentiable when x 6= 0 (b)
f(x, y) = f(x,−y) for x, y ∈ R.

The derivative of f is not assumed to be continuous at
x = 0 to allow for the potential sharp change of the inter-
agent benefit when an agent shifts longitudinally from the
back of another agent to the front.

Note that f(pij) takes pij = [xij yij ]
>, then by the chain

rule, if a NE X∗ with x∗i(i−1) ∈ P, i ∈ V exists, it should
satisfy the equation below for each i ∈ V

0 =
∂f i(p∗)

∂xi
=
∑
j∈Ni

∂f(pij)

∂xij

∂xij
∂xi

∣∣∣∣
p∗

=
∑
j∈Ni

∂f(p∗ij)

∂xij
(6)

By contrast, if there exists a CE X̄∗ with x̄∗i(i−1) ∈ P, i ∈ V ,
it should satisfy the following equation for each i ∈ V

0 =
∂J(p̄∗)

∂xi
=

∑
k∈V ∪{0}

∑
j∈Nk

∂f(pkj)

∂xkj

∂xkj
∂xi

∣∣∣∣
p̄∗

=
∑
j∈Ni

∂f(p̄∗ij)

∂xij
−
∂f(p̄∗ji)

∂xji
(7)

where the last equality comes from (1) and (2).
Hence, checking if the equilibriums of interest exist is

equivalent to testing if there exist a solution X∗ with
x∗i(i−1) ∈ P, i ∈ V to equation (6) and/or a solution X̄∗

with x̄∗i(i−1) ∈ P, i ∈ V to (7), respectively.

III. NONEXISTENCE OF THE NE OF INTEREST

In this section, we focus on the selfish situation and discuss
the conditions on f such that there exists no NE of interest.

A. Three agents formation
We first consider the simple case of three agents: 1 leader

followed by the 1st follower and the 2nd follower. Intuitively,
if the increment of agent 1’s benefit from its back neighbor
(agent 2) is more than its benefit loss from the front neighbor
(agent 0) when agent 1 moves backward, then agent 1 would
like to move backward to get more benefit. If this always
holds when x21, x10 ∈ P , then agent 1 cannot be static. In
other words, the NE of interest cannot exist. The theorem
below formulates this intuition.

Theorem 1: For n = 2, β > 0, a closed interval P ⊂ R−,
if f(·) satisfies Assumption 1 and

max
x∈−P

fx(x,−β) < −max
x∈P

fx(x,−β) (8)

then there exists no NE X∗ ∈ R2 with x∗10, x
∗
21 ∈ P .

Fig. 2. Illustration of f , ε2P and Q(2P), where f(x,−2β) is flat in 2P .

Theorem 1 is based on the analysis of agent 1. If we
consider the benefit change of both agents 1 and 2, a different
result can be obtained. Consider just agent 1 and 2, namely,
f2(p) = f(p21). If f(x,−β) peaks at x = −α, then agent
2 should be α behind agent 1. Now take the leader 0 into
account, f2(p) = f(p21) + f(p20). If f(p20) changes very
little when agent 2 moves along the longitudinal direction,
then the best x21 that maximizes f2(p) would deviate very
little from −α. Hence when agent 1 moves longitudinally, if
agent 2 wants to maximize the benefit, it should also move
such that x21 is within a very narrow interval Q 3 −α.
Suppose this is true and x12 ∈ −Q always holds. Now
assume that the increment of agent 1’s benefit from agent 2 is
more than its benefit loss from agent 0 when agent 1 moves
backward but x10 ∈ P still holds, then agent 1 will want
to move backward, until eventually x10 /∈ −P . This implies
that there exists no NE X∗ with xi(i−1) ∈ P, i ∈ V . This
analysis can be formulated as another result, whose rigorous
presentation relies on an assumption and several notations in
the following.

Assumption 2: (a) f(x,−β) has a global maximum −α,
and is strictly increasing when x < −α and strictly decreas-
ing when x > −α. (b) −α ∈ P .

Assumption 2(a) can be regarded as the attribute of the
benefit f . It is very mild and satisfied by at least the benefit
considered in Section V. Assumption 2(b) relates to the
choice of the interval P . It is reasonable since otherwise
a trivial conclusion could be obtained for the case of two
agents that the follower 1 would never stay statically behind
the leader 0, with x10 ∈ P .

We then characterize the narrow interval around −α
mentioned in the intuitive analysis before Assumption 2. For
any non-empty closed interval I, we denote

εI := max
x∈I
|fx(x,−2β)| (9)

Q(I) = {x ∈ P| |fx(x,−β)| ≤ εI} (10)

Then, if I = 2P , Q(I) relates to the narrow interval around
−α, though it may cover that. See Fig. 2 to get some vision
of Q(2P). Formalizing the intuition, we have,

Theorem 2: For n = 2, β > 0 and P = [−αl,−αs] with
0 < αs ≤ αl, assume f satisfies Assumption 1 and 2. If

max
x∈−Q(I)

fx(x,−β) < −max
x∈P

fx(x,−β) (11)

with I = 2P , then there exists no NE X∗ ∈ R2 with
x∗10, x

∗
21 ∈ P .

In Theorem 2, condition (11) should be satisfied for
I = 2P . Based on the analysis before Assumption 2, it
may implicitly require the variation of f(x,−2β) for x in
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entire 2P to be small. For those inter-agent benefits f that
do not satisfy this condition, we can have another result if
f additionally satisfies Assumption 3 as follows.

Assumption 3: f(x,−2β) is strictly decreasing for x ≥
−2α.

Theorem 3: For n = 2, β > 0 and P = [−αl,−αs] with
0 < αs ≤ αl, assume that f(·) satisfies Assumption 1, 2 and
3, If (11) holds with I = [−2αl,−2α], then there exists no
NE X∗ ∈ R2 with x∗10, x

∗
21 ∈ P .

Remark 1: Assumptions 1, 2 and 3 could be weakened.
First, since P is finite, the conditions on f in these as-
sumptions could be imposed just for sets that cover all
the intervals concerned. For instance, in Assumption 2 (a),
requiring fx(x,−β) to monotonically increase in [−αl,−α)
and decrease in (−α,−αs] ∪ −P is sufficient to draw
the conclusion of Theorem 2 and Theorem 3. Second, the
conclusion of Theorem 2 would still hold if Assumption 2(b)
is discarded. In that situation, Q(2P) may be empty. But this
is not a problem since it implies a trivial case.

There is no strict advantage of using one theorem over
others. On the one hand, by (9) and (10), Q(I) ⊆ Q(2P) ⊆
P with I = [−2αl,−2α]. Hence, condition (11) in Theorem
3 is easier to satisfy than that in Theorem 2, and than
condition (8) in Theorem 1. On the other hand, Theo-
rems 2 and 3 require more knowledge and assumptions on
fx than Theorem 1, which may not be satisfied by the
benefit f . In addition, unless εI with I = 2P or I =
[−2αl,−2α] is much small, Q(I) may not be a small sub-
set of P such that maxx∈−Q(I) fx(x,−β) is much less than
maxx∈−P fx(x,−β). In that case, Theorems 2 and Theorem
3 may not be more useful than Theorem 1.

B. General case
The following results extend Theorems 1, 2 and 3 to the

multiple agents case.
Proposition 1: For n ≥ 3, a closed interval P ⊂

R− and a β > 0, assume f satisfies Assumption 1. If
maxx∈−P fx(x,−β) < −maxx∈P fx(x,−β) − ε2P , then
there exists no NE X∗ ∈ Rn with x∗i(i−1) ∈ P for each
i ∈ V .

Proposition 2: For n ≥ 3, P = [−αl,−αs] with 0 <
αs ≤ αl and β > 0, assume that f satisfies Assumption 1 and
2. If maxx∈−Q(2P) fx(x,−β) < −maxx∈P fx(x,−β) −
ε2P , then there exists no NE X∗ ∈ Rn with x∗i(i−1) ∈ P
for each i ∈ V .

Proposition 3: For n ≥ 3, P = [−αl,−αs] with 0 <
αs ≤ αl and β > 0, assume that f satisfies Assumption 1,
2 and 3. If maxx∈−Q(I) fx(x,−β) < −maxx∈P fx(x,−β)
with I = [−2αl,−2α], then there exists no NE X∗ ∈ Rn
with x∗i(i−1) ∈ P for each i ∈ V .

IV. NONEXISTENCE OF THE CE OF INTEREST

This section shows a simple condition on the benefit
function f under which the CE of interest cannot exist. It is
based on the intuition that if the sum of the benefit of any
two agents f(pij) + f(pji), decreases as the longitudinal
distance |xij | between them increases, then agents being

Fig. 3. The movement of airflow around a bird.

cohesive longitudinally will increase the total benefit J(p).
In particular, if x0 = · · · = xn, then the total benefit J
attains the maximum. However, in this situation xi(i−1) /∈ P
for any negative interval P . Hence, even all agents stop
with the same xi, it is not a CE of interest. Analogously,
if f(pij) + f(pji) always increases as |xij | increases, then
there would not exist the CE of interest. Based on these
intuitions, the following result can be obtained.

Theorem 4: For n ≥ 2, P = [−αl,−αs] with 0 < αs ≤
αl and β > 0, assume that f satisfies Assumption 1(a). If
there exists a positive β ≤ β such that

|fx(x, y) + fx(−x,−y))| > 0 (12)
∀x ∈ (0, αl], ∀|y| ∈ [β,+∞)

then there exists no CE X̄∗ ∈ Rn with x̄∗i(i−1) ∈ P for each
i ∈ V .

Remark 2: Since condition (12) is proposed for every y
with |y| ∈ [β,+∞), it could also be used to show the
non-existence of the cooperative equilibrium of interest for
the situation where agents adjust relative position in both
directions within proper intervals.

Remark 3: A simple class of benefit functions that satisfy
condition (12) is f(p) = g(x)h(y), where h(y) is positive
and differentiable with continuous derivative for all y ∈ R,
and g(x) with x ∈ R is differentiable with continuous
derivative, symmetric about the origin and strictly increasing
or decreasing as |x| increases, e.g., |x|, x2, 1

x2 and the
standard Gaussian function.

V. AN APPLICATION TO LINE MIGRATORY FORMATION

In this section, we apply the results presented above
to analyzing the emergence of the line formation of mi-
grating birds. In most of existing researches, each bird is
approximated by a fixed wing, whose forward motion stirs
the air around upward and downward. If a bird positions
properly relative to another bird, it can get extra lift from
the upward airflow generated by that bird (see Fig. 3) and
reduce the drag. This can be regarded as the wake benefit
from one bird to another. The movement of the stirred air
is usually depicted by the horseshoe vortex model [11]. We
only present the derivation of the wake benefit here. Readers
can refer to [11] for more details on the model.

Assume that two birds i = 0, 1, with the same weight
W and wingspan 2b fly together along the x direction with
constant speed U in the plane. If bird 0 is at the origin [0 0]>,
the upward airflow velocity v(x, y) at [x y]> ∈ R2 generated
by bird 0 can be given as

v(x, y) = vb(x, y) + vt(x, y) (13)

vb =
Γ

4π

x

x2 + r20

 y + a√
(y + a)2 + x2 + r20

−
y − a√

(y − a)2 + x2 + r20
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vt =
Γ

4π

y − a
(y − a)2 +R(x)

[
1−

x√
(y − a)2 + x2 +R(x)

]

−
Γ

4π

y + a

(y + a)2 +R(x)

[
1−

x√
(y + a)2 + x2 +R(x)

]
where a = π

4 b, ρ is the air density, Γ = W/(2ρaU), R(x) =
r2
0 + Df |x|/U with r0 = 0.04b and Df is a diffusion term

to model wake dissipation when |x| → ∞ [16], [14]. We
select Df = 1.05×10−4Ub such that

√
R(x) increases from

0.04b to 0.1b when |x| grows from 0 to 80b. This is fairly
realistic for fixed-wing wake [20]. The model is valid for a
sufficiently long longitudinal distance that covers the range
of distances of neighboring birds in migratory formation.
Beyond that range, it is not accurate due to wake instability.

Consider bird 1 locating at [x y]>. After neglecting the
momentum induced by the vertical airflow as in [11], the
wake benefit of bird 1 received from bird 0 can be given as

f(x, y) =
1

2b

∫ y+b

y−b
v(x, η)dη (14)

This function satisfies Assumption 1 except at the y axis.
Computation shows that f(x, y) has a maximum (−α,−β)
in the negative orthant, with α ≈ 3.468b and β ≈ (1 +
π
4 )b = a + b, Moreover, it peaks around the line y = −β
in the negative orthant, which is argued to be the best
relative lateral position of a follower to its front neighbor
[9]. Hence, we fix β as this value. Fig. 4(a) shows f(x, y)
for y = −β,−2β when 2b = 1.5. Normally, neighboring
birds’ longitudinal distance in migratory formation ranges
within [0.5, 4] wingspans, implying xi(i−1) ∈ [−8b,−1b].

As mentioned before, we have been working on recon-
structing the line formation of migrating birds based on the
assumption that birds behavior are purely guided by wake
benefit maximization, taking into account birds attitudes. We
have not numerically found the NE and CE with x∗i(i−1) ∈ P
and x̄∗i(i−1) ∈ P , respectively, for a much wide interval
P , e.g., [−20b,−b] [17]. In the following, we confirm this
numerical result.

A. Absence of the NE of interest

We first look at the selfish agents case. An example is
presented for Canadian geese, for which averagely W =
36.75 N, 2b = 1.5m, U = 18 m/s, and ρ ≈ 1.112 kg/m3.
Recall condition (8) and (11), in the following, we always
denote δ1 = maxx∈P fx(x,−β), δ2 = maxx∈−P fx(x,−β)
and δ3 = maxx∈−Q(I) fx(x,−β) for the corresponding
interval P and Q(I) accordingly.

By Fig. 4(b), we can find that if we select P =
[−αl,−αs] = [−3.5,−0.5], δ2 ≤ −δ1. Hence condition (8)
in Theorem 1 holds, and there should exist no NE X∗ with
x∗i(i−1) ∈ P, i ∈ V . Note that αl cannot be increased more
as the condition δ2 < −δ1 would not be satisfied.

On the other hand, f(x,−β) peaks at −α = −3.468b =
−2.601 and we can see from Fig. 5(a) and 6(a) that Assump-
tion 2 is satisfied. Let P = [−αl,−αs] = [−7,−2.5] 3 −α,
then I = 2P = [−14,−5]. The value of εI can be found in
Fig. 6(a). Moreover, the set Q(I) = [−α′l,−α′s] satisfying
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Fig. 4. (a) f(p) for y = −β,−2β when 2b = 1.5 m. (b) The derivative of
f(x,−β). The point mark and x-axis with the same color corresponds to the
derivative curve in that color. δ2 = −0.002741 and −δ1 = −0.002738.
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Fig. 5. fx(x, y) for positive x.
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Fig. 7. fx(x, y) for y = −β and −2β.

(10) is a neighborhood of −α and given as [−2.78,−2.5]1.
Then by Fig. 6(b), δ3 ≤ −δ1 or condition (11) holds. Hence,
by Theorem 2, there exists no NE X∗ with x∗i(i−1) ∈ P, i ∈
V for P = [−7,−2.5]. The value of αs cannot be much
smaller than 2.5, since from Fig. 6(a), it would imply a wider
I, larger εI , wider interval Q(I), and δ3 that would be larger
than −δ1, making the condition in Theorem 2 unsatisfied.

Note as mentioned before this subsection, no NE X∗ of

1Though the lower magenta line in Fig. 6(a) intersects fx(x,−β) at
-2.47, Q = [−α′

l,−α
′
s] should be the sub-set of P .
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interest has been found for a wide P , e.g., [−20b,−b] =
[−15,−0.75]. Hence, this cannot be explained by Theorem
1 and 2. We then turn to Theorem 3. By Fig. 5(b) and 7(a),
Assumption 3 is indeed satisfied for x ≥ −2α (The curve of
fx(x,−2β) < 0 for x ≤ −14 is not shown for a clear vision
of εI). Let P = [−14,−0.5] 3 −α, then I = [−28,−1].
In Fig. 7(a), we can find Q(I) = [−α′l,−α′s] that satisfies
(10). Then by Fig. 7(b), δ3 < −δ1. Hence conditions (11)
in Theorem 3 holds for P = [−14,−0.5], from which, we
should have that there exists no NE X∗ of interest for this
interval. This indeed explains our numerical search of the
NE of interest.

B. Absence the CE of interest
We then show that there exists no CE X̄∗ of interest for

a negative closed interval P with the wake benefit function
(14). We can show that this function satisfies condition (12)
with αl ≤ U

Df
(2ab − r2

0), β ∈ (
√
a2 + b2, β). Accordingly,

we have,
Proposition 4: Consider f in (14) and n ≥ 2, then there

exists no CE X̄∗ ∈ Rn such that x̄∗i(i−1) ∈ P for any P =

[−αl,−αs] with 0 < αs ≤ αl ≤ U
Df

(2ab− r2
0).

Putting Df = 1.05×10−4Ub, a = π
4 b and r0 = 0.04b into

U
Df

(2ab−r2
0), we have that αl is larger than seven thousands

wingspans. Based on the wake model (14), the proposition
predicts that no X̄∗ of interest for a interval P ⊂ [−7000, 0)
wingspans exists. Hence the echelon formation where neigh-
boring birds have lateral distances of ( 1

2 + π
8 ) wingspan

and longitudinal distances less than 7000 wingspans cannot
emerge, when birds cooperate to maximize the total wake
benefit. It should be noticed that echelon formation with the
longitudinal distance of neighboring birds larger than seven
thousands wingspans is impractical, as birds never fly so far
from each other. Furthermore, the fixed wing wake model
might be invalid for such large longitudinal distance.

VI. CONCLUSION

In this paper, we focus the 2D echelon formation of multi-
agents that behave to maximize relative-position dependent
benefits. All agents can be either selfish to maximize its own
benefit from others or cooperative to optimize the total bene-
fit of the group. We discuss the conditions on the inter-agent
benefit such that echelon formation cannot appear, regardless
of agents attitudes. The theoretical conditions are employed
to analyze the fixed-wing model that is usually used to study
line formations of migrating birds, and justify our failure in
numerically reconstructing migratory formations. This shows
that this kind formation may not emerge if birds behavior is
purely guided by energy savings.

Our results imply multiple possibilities for the emergence
reason of the migratory formations. First, remember that
we employ the fixed-wings to model birds and ignore the
slow undulatory motion of birds wings, conventionally as
in [9], [10], a natural hypothesis is that the wing-flapping
of birds plays more important roles than expected. Nev-
ertheless, fixed-wings are proper to represent the glide of
birds in formation flight. Hence, a second hypothesis from

our result is that non-aerodynamic factors, such as collision
avoidance and vision enhancement [9] could also take parts
in developing the migratory formation. Moreover, from the
perspective of multi-agent control systems, more complex
dynamics, the actual sensing and information processing
ability of the bird, and the communication capacity among
birds (for cooperative birds) may need to be considered to
see if the current result would still hold. Finally, it is also
interesting to theoretically characterize the condition on the
benefit function f such that equilibriums corresponding to
echelon formation exist.
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