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“If you torture the data long enough, it will confess.”

— Ronald Coase (1991 Nobel Prize in Economics)



Abstract

This doctoral thesis consists of three research articles on the general
topic of high dimensional mixed frequency data models. The papers are
preceded by an introductory chapter. Each chapter is devoted to analyze
and propose specific methods tailored for the specific data structures which
are motivated by the empirical application(s) consider in the chapter.

Chapter 2 introduces structured machine learning regressions for high-
dimensional time series data potentially sampled at different frequencies.
The sparse-group LASSO estimator can take advantage of such time series
data structures and outperforms the unstructured LASSO. We establish
oracle inequalities for the sparse-group LASSO estimator within a framework
that allows for the mixing processes and recognizes that the financial and
the macroeconomic data may have heavier than exponential tails. An
empirical application to nowcasting US GDP growth indicates that the
estimator performs favorably compared to other alternatives and that text
data can be a useful addition to more traditional numerical data. Our
methodology is implemented in the R package midasml, available from
CRAN.

In Chapter 3, we study Granger causality testing for high-dimensional
time series using regularized regressions. To perform proper inference, we
rely on heteroskedasticity and autocorrelation consistent (HAC) estimation
of the asymptotic variance and develop the inferential theory in the high-
dimensional setting. To recognize the time series data structures we focus
on the sparse-group LASSO estimator, which includes the LASSO and the
group LASSO as special cases. We establish the debiased central limit
theorem for low dimensional groups of regression coefficients and study
the HAC estimator of the long-run variance based on the sparse-group
LASSO residuals. This leads to valid time series inference for individual
regression coefficients as well as groups, including Granger causality tests.
The treatment relies on a new Fuk-Nagaev inequality for a class of 𝜏 -mixing
processes with heavier than Gaussian tails, which is of independent interest.
In an empirical application, we study the Granger causal relationship
between the VIX and financial news.

Chapter 4 extends the structured machine learning regressions for
prediction and inference to panel data consisting of series sampled at
different frequencies. Motivated by the empirical problem of predicting
corporate earnings for a large cross-section of firms with macroeconomic,
financial, and news time series sampled at different frequencies, we focus



on the sparse-group LASSO regularization. This type of regularization can
take advantage of the mixed frequency time series panel data structures
and we find that it empirically outperforms the unstructured machine
learning methods. We obtain oracle inequalities for the pooled and fixed
effects sparse-group LASSO panel data estimators recognizing that financial
and economic data exhibit heavier than Gaussian tails. To that end, we
leverage on a novel Fuk-Nagaev concentration inequality for panel data
consisting of heavy-tailed 𝜏 -mixing processes which may be of independent
interest in other high-dimensional panel data settings. Lastly, we provide a
valid inference method based on HAC estimator and the debiased LASSO
framework for long panels. In two empirical applications, we consider
nowcasting large pool of firm-level P/E ratios and studying which factors
Granger cause the earnings prediction errors made by the analysts. In the
former, we show the usefulness of structured machine learning techniques
compared to the unstructured LASSO, and show that ML-based methods are
indeed affected by the tail behavior of the data. In the latter application, we
show that macro information is largely missed by the analysts when forming
predictions; a result that was previously documented in the literature based
on individual regression methods.

5



Acknowledgments

Firstly, I would like to sincerely thank my thesis advisor Eric Ghysels.
During these four years of the thesis, I always had great support and
research advice, resulting in three thesis chapters we co-authored. I have
always been very interested in each of your ideas and am very honored to
have been able to work with you. Thank you for inviting me to Chapel Hill
twice for short visits during my thesis and many other great opportunities.
I am also very grateful to Andrii Babii for his excellent advice and rigor
to guide me through my research. Our team has done excellent research; I
hope to collaborate with both of you in the years to come.

Besides, I would like to warmly thank the rest of my thesis committee,
Geert Dhaene and Rudy De Winne, for their insightful comments and
professional advice, which helped widen my research and enrich this thesis.
I particularly thank Rudy for his great all-around support during my thesis
years.

During various conferences, seminars, summer schools and visits, I had
the chance to meet remarkable researchers who were kind enough to chat
with me and whose work inspired me. I would like to quote, among others:
Matias Cattaneo, Domenico Giannone, Christian Hafner, Christian Hansen,
Juan-Pablo Ortega, Eugen Pircalabelu, Rainer von Sachs, Martin Spindler.

I warmly thank my collaborators on different projects and other people
that helped me throughout the thesis period and before: Ryan Ball, Daniel
Buncic, Leonardo Iania, and Matthias Weber. I especially thank Daniel, my
master thesis advisor, for his valuable comments on my early PhD thesis
work and his guidance during my master studies. I also thank Matthias,
who kick-started my interest in high-dimensional statistics.

During my studies or seminars, I had the pleasure of meeting many
PhD students with whom I had many fruitful discussions: Angelo, Cheikh,
Cyrille, Francesco, Foti, Jean-Charles, Paolo, Pavel, Sofonias, Taiki, ... .

I also owe a big thanks to the whole kiaulytės-crew: Gabrielius, Gytis,
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Chapter 1

Introduction and summary

1.1 Introduction

Over the past decade or so, machine learning – or statistical learning –
techniques have been increasingly used in econometrics literature covering
both theory and empirical research. Thus far, most of the methods have
dealt with independent and identically distributed (i.i.d.) and sub-Gaussian
data-generating processes, with little attention paid to the time series data
typically encountered in economics and finance. This thesis develops new
methods for high-dimensional time series and panel data in several contexts
and applies those techniques in various novel applications, showing the
utility of such methods.

In this introductory chapter, I review the state-of-art methods for
regularized regressions. Next, I provide a brief simulation study to show
that once the data generating process (DGP) deviates from i.i.d. and
Gaussian-like data assumptions, standard results on performance guarantees
may no longer hold. I then introduce the remaining chapters of the thesis,
provide a glimpse of ideas put forward, and offer an overview of the results
obtained in the subsequent chapters.

1.2 High-dimensional regression

To introduce the regularized regressions, I consider a linear model

y = X𝛽 + u,

where y ∈ R𝑇 is the response variable, X ∈ R𝑇×𝑝 is the covariate matrix,
𝛽 ∈ R𝑝 is the slope coefficient vector and u are the residuals. In the
low-dimensional case, 𝑝 < 𝑇 , the model can be estimated by applying an
ordinary least squares (OLS) estimator. However, the case of 𝑝 ≫ 𝑇 is



Chapter 1 Introduction and summary

more relevant for modern data sets with a much larger number of potential
predictors relative to the sample size. In such cases, we typically apply
regularization by adding a penalty function in the minimization problem.
More concretely, we consider estimators of the form that solve the following
minimization problem:

min
𝛽∈R𝑝

‖y −X𝛽‖2𝑇 + ℎ(𝛽, 𝜆),

where ‖.‖2𝑇 is the empirical norm, i.e. ‖𝑢‖2𝑇 = ⟨𝑢, 𝑢⟩/𝑇 , and ℎ(𝛽, 𝜆) is a
penalty function. A natural choice for the penalty function is a function
which counts the number of non-zero coordinates in the coefficient vector,
i.e. ℓ0 zero “norm”:

ℎ(𝛽, 𝜆) = 𝜆|𝛽|0 = 𝜆
∑︁
𝑖∈[𝑝]

1{𝛽𝑖 ̸= 0}.

The minimization problem with this penalty function is called the best
subset selection. However, the minimization problem is non-convex and
NP-hard, which precludes the possibility that any algorithm will successfully
find the optimal solution in a linear time.1

A convex alternative is the so-called LASSO regression, first studied by
Tibshirani (1996). In LASSO regression, the ℓ1 norm is considered instead
of ℓ0, i.e.:

ℎ(𝛽, 𝜆) = 𝜆|𝛽|1 = 𝜆
∑︁
𝑖∈[𝑝]

|𝛽𝑖|.

For large enough 𝜆 values, the penalty function induces sparsity in the
high-dimensional 𝛽 coefficient vector, which leads to the variable selection
property of the LASSO estimator. For any 𝜆 > 0, the estimator also
shrinks the whole coefficient vector towards zero. It is worth noting that
even though recent advances in optimization provide techniques to find
approximate solutions for the best subset selection problem, it seems that
there is no gain in performance compared to the computationally attractive
LASSO; see e.g., Hastie, Tibshirani, and Tibshirani (2019).

There are additional alternatives for the penalty functions to achieve
regularization, including, for example, the ℓ2-norm, referred to as Tikhonov
regularization or ridge regression; the elastic net of Zou and Hastie (2005),
which is a convex combination of LASSO and ridge; and the group LASSO of

1Recent advances in integer programming allow us to find an approximate solution to such a
minimization problem.
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Yuan and Lin (2006), which contains a penalty for selection and estimation
in regressions with grouped variables. In this thesis, we study the structured
regularization called sparse-group LASSO; see Simon, Friedman, Hastie,
and Tibshirani (2013), which turns out to be useful for time series; see
Chapter 2 and 3; or panel data applications, for which, see Chapter 4. In
these cases, we show that sparse-group LASSO is particularly relevant in
mixed-frequency data applications as one can easily trace the structure
between covariates due to the temporal dependence of the lags of the specific
variable and use this information to more accurately estimate regression
coefficients.

1.3 Time series data and LASSO

To date, the literature on LASSO-type econometric methods has typically
assumed i.i.d. and sub-Gaussian data with exponential tails. In this section,
I provide some preliminary Monte-Carlo simulation-based evidence that
LASSO estimator performance depends on the time series properties of the
data.

1.3.1 Monte Carlo evidence

The purpose of the following Monte Carlo study is to show that the
performance of the LASSO-type regression also depends on the time series
properties of the data – dependence and heaviness of the tails. Thus, I
conduct the following Monte Carlo experiment. The data generating process
is the following linear regression model:

y = X𝛽0 + u,

where 𝛽0 = (5, 4, 3, 2, 1, 0, . . . , 0⏟  ⏞  
𝑝−5

) is the true target parameter vector.

I consider two scenarios for X and u and simulate the model for a grid
of 𝑝 ∈ {10, 20, 40, . . . , 400} values and

1. (dependence) for each column of X denoted as 𝑋𝑗, 𝑗 ∈ [𝑝] is simulated
as a Gaussian AR(1) process: 𝑋𝑗

𝑡+1 = 𝜌𝑋𝑗
𝑡 + 𝜖, where 𝑡 ∈ [𝑇 ] and

𝜖 ∼𝑖.𝑖.𝑑. 𝑁(0, 1). The error term u is simulated as an i.i.d. Gaussian
process. The persistence parameter 𝜌 is set to one of the values in
the grid 𝜌 ∈ {0.0, 0.05, . . . , 0.95};
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2. (heavy tails) the design matrix X and the error term u are drawn
from ∼𝑖.𝑖.𝑑. student-𝑡(𝜈). The degrees of freedom parameter 𝜈 is set
to one of the values in the grid 𝜈 ∈ {∞, 10, 9, . . . , 2}.

I simulate two separate data sets, u𝑘,X𝑘,y𝑘, 𝑘 ∈ {1, 2}, fixing the sample
size to 𝑇 = 100. The first sample, 𝑘 = 1, is used to train the model on a
grid of 𝜆 parameter values.2 The second sample, 𝑘 = 2, is used to optimize
the 𝜆 value choice. The results are reported in a heatmap form; see 1.1,
where I plot the estimation error |𝛽−𝛽0|1, the prediction error ‖X(𝛽−𝛽0)‖2,
and the optimal tuning parameter �̂� on a two-dimensional grid that reflects
changes in the dimensionality of the regression problem 𝑝 and the strength
of the DGP properties. Estimation and prediction error is computed using
the training sample 𝑘 = 1 data using the best �̂�, which is based on the
𝑘 = 2 sample. Each entry in the heatmap reflects the magnitude of the
value computed for the specific metric averaged over 5000 simulations. In
each heatmap, 𝑥-axis reflects the growing number of covariates used in the
model, while 𝑦-axis reflects the change of either the persistence parameter
𝜌 (first row - dependence scenario) or the degrees of freedom 𝜈 (second row
- heavy-tailed data scenario).
Discussion: The results are reported in Figure 1.1. First, it is clear that
the dependence or the heaviness of tails in X affect the performance of the
LASSO estimator. When looking at the first row (dependent data scenario),
the results indicate that the worst case for the estimation error appears to
be when 𝑝 and 𝜌 are large (Subfigure a). It is also clear that for a fixed 𝑝,
the results deteriorate once 𝜌 increases. For prediction,the results appear
to be more homogeneous across the 𝑝 choice – the worst case is 𝜌 = 0.95
(Subfigure b). The 𝜆 parameter seems to increase with the 𝜌 parameter
(Subfigure c).

The results for the heavy-tailed data scenario seem to be slightly different,
albeit with a similar pattern. As in the dependent data scenario, the
estimation (Subfigure d) and prediction (Subfigure e) performance of LASSO
deteriorates in the extreme cases when 𝜈 → 2, LASSO tuning parameter 𝜆
increases as 𝜈 → 2 (Subfigure f). The performance of LASSO deteriorates
once the dimensionality increases.

2In this simulation study, I use glmnet implementation of the LASSO estimation procedure,
which relies on a cyclical coordinate descent algorithm. The 𝜆 parameter sequence is constructed
in a data-driven way, i.e. the maximum value of 𝜆, 𝜆max, is taken as |X⊤y|∞, which ensures that
all 𝛽 coefficients are zero for the 𝜆max tuning parameter. The remaining tuning parameters are
set on an equidistant decreasing grid in log space, where 𝜆min = 0.0001𝜆max.
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Figure 1.1: Simulation results – Each column represents different quantity: estimation
error (Subfigure a and d), prediction error (Subfigure b and e) and 𝜆 tuning parameter estimate
(Subfigure c and f). Each row represents different simulation scenarios: row pertaining to
Subfigure (a), (b), and (c) shows the results for the dependence scenarios, while the remaining
plots show the results for the heavy-tailed data scenarios.

1.4 Structured high-dimensional time series
regressions

The main idea exploited in this thesis to estimate high-dimensional time
series and panel data regressions is to apply structured regularization over
the lags of each covariate, thereby introducing additional structure and
regularization of the regression function.

To put the idea into context, suppose we are interested in modeling a low-
frequency variable y = (𝑦𝑡)𝑡∈[𝑇 ] as a function of some high-frequency variable
lags. Suppose only one low-frequency time period lag of a high-frequency
variable is included in such a model and suppose the sampling frequency
ratio is 𝑚, i.e. the high-frequency lags are {𝑥𝑡−(𝑗−1)/𝑚, 𝑗 ∈ [𝑚], 𝑡 ∈ [𝑇 ]}.
Such a regression model (excluding the intercept) is:

𝑦𝑡 =
𝑚∑︁
𝑗=1

𝑏𝑗𝑥𝑡−(𝑗−1)/𝑚 + 𝑢𝑡, 𝑡 ∈ [𝑇 ], (1.1)

where 𝑏𝑗 are the regression coefficients associated with each high-frequency
lag. In the literature, this type of model is called a Mixed Data Sampling
(MIDAS) regression. If the model parameters are left unconstrained as in

Page 15



Chapter 1 Introduction and summary

(1.1), the model can be estimated with OLS and is typically referred to as an
unconstrained MIDAS model (UMIDAS). In most cases, however, UMIDAS
is not practical, or even feasible, as one needs to estimate a large number
of parameters, which grows with the sampling ratio 𝑚. For instance, if we
were to regress a quarterly variable on daily (𝑚 = 66), we need 𝑇 > 66
to be able to estimate the single-variate model. In practice, quarterly
time series data are not long; hence, such an approach is not particularly
appealing. To make the regression model (1.1) more suitable for practical
purposes, the MIDAS literature suggests various ways of parameterizing
the lag polynomial {𝑏𝑗, 𝑗 ∈ [𝑚]} using certain weight functions to alleviate
the dimensionality problem; see e.g., Ghysels, Sinko, and Valkanov (2007).3

Such parametrizations typically lead to more accurate prediction, estimation
and inference in various settings.

Note that in case𝑚 is large, we may apply the LASSO estimator without
restricting the lag polynomial, i.e. estimate the LASSO-UMIDAS model.
However, as argued in Ghysels, Kvedaras, and Zemlys-Balevičius (2020),
sparsity imposed on the lag polynomial may not be appealing since typically
many individually small and comparable in size coefficients are non-zero,
which LASSO would screen out. This would lead to a biased prediction.
At the same time, it is well known that the LASSO estimator cannot
handle highly correlated predictors well, a feature that the UMIDAS model
possesses due to the temporal dependence of the high-frequency variable.
The structure of the ridge regression is not appealing either in MIDAS
regression settings due to its inability to recover smooth decay functional
shapes of the lag polynomial, a pattern which is typically encountered in
MIDAS settings (Ghysels, Kvedaras, and Zemlys-Balevičius, 2020).

In a high-dimensional setting, an additional dimensionality problem
occurs when we include a large set of high-frequency covariates in the
regression model. Denoting the total number of covariates 𝐾, our covariate
set becomes {𝑥𝑡−(𝑗−1)/𝑚,𝑘, 𝑗 ∈ [𝑚], 𝑡 ∈ [𝑇 ], 𝑘 ∈ [𝐾]}. In such a case, the
model becomes:

𝑦𝑡 =
𝐾∑︁
𝑘=1

𝑚∑︁
𝑗=1

𝑏𝑘,𝑗𝑥𝑡−(𝑗−1)/𝑚,𝑘 + 𝑢𝑡, 𝑡 ∈ [𝑇 ]. (1.2)

As noted previously, applying LASSO together with UMIDAS scheme
is not appealing even if 𝐾 = 1, and this approach becomes even more

3Examples of weight functions applied in MIDAS literature are Almon polynomials,
exponential polynomails, Beta density; see Ghysels, Sinko, and Valkanov (2007) for more
detail.
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stringent for large 𝐾 cases. The key idea exploited in this thesis applies
structured regularization and MIDAS polynomials instead of (blindly)
applying regularization together with the UMIDAS scheme. In particular,
we apply Legendre polynomials to model MIDAS weight functions; see
Chapter 2 for more detail on Legendre polynomials, and exploit the structure
of the regression model (1.2) by applying group structure over the lags of
each covariate. For example, for 𝐾 = 2 the model is:

𝑦𝑡 =
𝑚∑︁
𝑗=1

𝑏1,𝑗𝑥𝑡−(𝑗−1)/𝑚,1⏟  ⏞  
group 1

+
𝑚∑︁
𝑗=1

𝑏2,𝑗𝑥𝑡−(𝑗−1)/𝑚,2⏟  ⏞  
group 2

+𝑢𝑡, 𝑡 ∈ [𝑇 ]. (1.3)

Hence, we may apply group structure on the first and second covariate
lags and encode this information into the penalty function through a group
LASSO. The general approach to modeling high-dimensional MIDAS models
is to apply a sparse-group LASSO (sg-LASSO) estimator, which strikes a
good balance in learning the shape of MIDAS weights and the important
covariates in the regression model; Chapter 2 provides more detail on the
sg-LASSO estimator.

Overview of thesis chapters: Chapter 2 introduces structured machine
learning regressions for high-dimensional time series data potentially sampled
at different frequencies. Oracle inequalities are established for the sg-LASSO
estimator within a framework that allows for the mixing processes and
recognizes that the financial data and the macroeconomic data may have
heavier than exponential tails. An empirical application to nowcasting US
GDP growth indicates that the estimator performs favorably compared
to other alternatives and that text data can be a useful addition to more
traditional numerical data.

In Chapter 3, Granger causality testing is studied for high-dimensional
time series using regularized regressions. To perform proper inference, the
method relies on heteroskedasticity and autocorrelation consistent (HAC)
estimation of the asymptotic variance. The inferential theory in the high-
dimensional setting is developed. The debiased central limit theorem is
established for low-dimensional groups of regression coefficients and the
HAC estimator of the long-run variance based on the sg-LASSO residuals
is studied. This leads to valid time series inference for individual regression
coefficients as well as groups, including Granger causality tests. The
treatment relies on a new Fuk-Nagaev inequality for a class of 𝜏 -mixing
processes with heavier than Gaussian tails, which is of independent interest.
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In an empirical application, a study of the Granger causal relationship
between the VIX and financial news is provided.

Chapter 4 extends the structured machine learning regressions for
prediction and inference to panel data consisting of series sampled at
different frequencies. We obtain oracle inequalities for the pooled and fixed
effects sg-LASSO panel data estimators, recognizing that financial and
economic data exhibit heavier than Gaussian tails. A new Fuk-Nagaev
concentration inequality for panel data consisting of heavy-tailed 𝜏 -mixing
processes is proven, which may be of independent interest in other high-
dimensional panel data settings. Lastly, we provide a valid inference method
based on the HAC estimator and the debiased sg-LASSO framework for
long panels. In two empirical applications, we consider nowcasting a large
pool of firm-level P/E ratios and studying which factors in the Granger
analyses cause prediction errors of earnings made by analysts. In the former,
we show the usefulness of structured machine learning techniques compared
to the unstructured LASSO, and show that ML-based methods are indeed
affected by the tail behavior of the data. In the latter application, we
show that macro information is largely missed by analysts when forming
predictions, a result that has been documented in the literature based on
individual regression methods.

1.5 Conclusion

In this introductory chapter, I discussed high-dimensional regularized
regression models applied for time series data regression models. In
particular, I discuss the LASSO estimator, which is arguably the most
widely applied estimator for such models. I provide a brief Monte-Carlo
study and show evidence of the performance of LASSO-type methods under
different DGP scenarios. The results demonstrate that LASSO performance,
both in terms of estimation and prediction, depends on the properties of
the time series data.

This thesis is devoted to studying high-dimensional time series and
panel data regression models, and provides both theoretical and practical
tools to analyze such data. A key distinctive feature of this thesis is the
recognition that time series data typically encountered in applications are
sampled at a mixed frequency; hence, the proposed methods are general
enough to handle both single-frequency and more generally mixed-frequency
data models.
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Chapter 2

Machine Learning Time Series Regressions with an

Application to Nowcasting

with Andrii Babii and Eric Ghysels

2.1 Introduction

The statistical imprecision of quarterly gross domestic product (GDP)
estimates, along with the fact that the first estimate is available with a
delay of nearly a month, pose a significant challenge to policy makers, market
participants, and other observers with an interest in monitoring the state of
the economy in real time; see, e.g., Ghysels, Horan, and Moench (2018) for
a recent discussion of macroeconomic data revisions and publication delays.
A term originated in meteorology, nowcasting pertains to the prediction
of the present and very near future. Nowcasting is intrinsically a mixed
frequency data problem as the object of interest is a low-frequency data
series (e.g., quarterly GDP), whereas the real-time information (e.g., daily,
weekly, or monthly) can be used to update the state, or to put it differently,
to nowcast the low-frequency series of interest. Traditional methods used
for nowcasting rely on dynamic factor models that treat the underlying low
frequency series of interest as a latent process with high frequency data
noisy observations. These models are naturally cast in a state-space form
and inference can be performed using likelihood-based methods and Kalman
filtering techniques; see Bańbura, Giannone, Modugno, and Reichlin (2013)
for a survey.

So far, nowcasting has mostly relied on the so-called standard macro-
economic data releases, one of the most prominent examples being the
Employment Situation report released on the first Friday of every month
by the US Bureau of Labor Statistics. This report includes the data on the
nonfarm payroll employment, average hourly earnings, and other summary
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statistics of the labor market activity. Since most sectors of the economy
move together over the business cycle, good news for the labor market is
usually good news for the aggregate economy. In addition to the labor
market data, the nowcasting models typically also rely on construction
spending, (non-)manufacturing report, retail trade, price indices, etc., which
we will call the traditional macroeconomic data. One prominent example of
nowcast is produced by the Federal Reserve Bank of New York relying on
a dynamic factor model with thirty-six predictors of different frequencies;
see Bok, Caratelli, Giannone, Sbordone, and Tambalotti (2018) for more
details.

Thirty-six predictors of traditional macroeconomic series may be viewed
as a small number compared to hundreds of other potentially available and
useful nontraditional series. For instance, macroeconomists increasingly
rely on nonstandard data such as textual analysis via machine learning,
which means potentially hundreds of series. A textual analysis data set
based on Wall Street Journal articles that has been recently made available
features a taxonomy of 180 topics; see Bybee, Kelly, Manela, and Xiu (2020).
Which topics are relevant? How should they be selected? Thorsrud (2020)
constructs a daily business cycle index based on quarterly GDP growth and
textual information contained in the daily business newspapers relying on
a dynamic factor model where time-varying sparsity is enforced upon the
factor loadings using a latent threshold mechanism. His work shows the
feasibility of traditional state space setting, yet the challenges grow when
we also start thinking about adding other potentially high-dimensional
data sets, such as payment systems information or GPS tracking data.
Studies for Canada (Galbraith and Tkacz (2018)), Denmark (Carlsen and
Storgaard (2010)), India (Raju and Balakrishnan (2019)), Italy (Aprigliano,
Ardizzi, and Monteforte (2019)), Norway (Aastveit, Fastbø, Granziera,
Paulsen, and Torstensen (2020)), Portugal (Duarte, Rodrigues, and Rua
(2017)), and the United States (Barnett, Chauvet, Leiva-Leon, and Su
(2016)) find that payment transactions can help to nowcast and to forecast
GDP and private consumption in the short term; see also Moriwaki (2019)
for nowcasting unemployment rates with smartphone GPS data, among
others. We could quickly reach numerical complexities involved with
estimating high-dimensional state space models, making the dynamic factor
model approach potentially computationally prohibitively complex and
slow, although some alternatives to the Kalman filter exist for the large
data environments; see e.g., Chan and Jeliazkov (2009) and Delle Monache
and Petrella (2019). In this paper, we study nowcasting a low-frequency
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series – focusing on the key example of US GDP growth – in a data-rich
environment, where our data not only includes conventional high-frequency
series but also nonstandard data generated by textual analysis of financial
press articles. Several novel contributions are required to achieve our goal.
The contributions of our paper are both theoretical and practical. Regarding
the former: (a) we propose a new structured approach to high-dimensional
regularized time regression problems, (b) we establish a complete estimation
and prediction theory for high-dimensional time series regressions under
assumptions comparable to the classical GMM and QML estimators, and
(c) we establish nonasymptotic and asymptotic estimation and prediction
properties of our regularized time series regression approach. Regarding the
practical contributions we document superior nowcasting performance with
respect to the state-of-the-art state space model approach to nowcasting
implemented by the Federal Reserve Bank of New York. In the remainder
of this Introduction we devote a paragraph to each of these contributions,
starting with the theoretical ones.

First, we argue that the high-dimensional mixed frequency time series
regressions involve certain data structures that once taken into account
should improve the performance of unrestricted estimators in small samples.
These structures are represented by groups covering lagged dependent
variables and groups of lags for a single (high-frequency) covariate. To that
end, we leverage on the sparse-group LASSO (sg-LASSO) regularization that
accommodates conveniently such structures; see Simon, Friedman, Hastie,
and Tibshirani (2013). The attractive feature of the sg-LASSO estimator is
that it allows us to combine effectively the approximately sparse and dense
signals; see e.g., Carrasco and Rossi (2016) for a comprehensive treatment
of high-dimensional dense time series regressions as well as Mogliani and
Simoni (2021) for a complementary to ours Bayesian view of penalized
MIDAS regressions.

Second, we recognize that the economic and financial time series data
are persistent and often heavy-tailed, while the bulk of the machine learning
methods assumes i.i.d. data and/or exponential tails for covariates and
regression errors; see Belloni, Chernozhukov, Chetverikov, Hansen, and
Kato (2020) for a comprehensive review of high-dimensional econometrics
with i.i.d. data. There have been several recent attempts to expand the
asymptotic theory to settings involving time series dependent data, mostly
for the LASSO estimator. For instance, Kock and Callot (2015) and
Uematsu and Tanaka (2019) establish oracle inequalities for regressions
with i.i.d. errors with sub-Gaussian tails; Wong, Li, and Tewari (2020)
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consider 𝛽-mixing series with exponential tails; Wu and Wu (2016), Han
and Tsay (2017), and Chernozhukov, Härdle, Huang, and Wang (2021)
establish oracle inequalities for causal Bernoulli shifts with independent
innovations and polynomial tails under the functional dependence measure
of Wu (2005); see also Medeiros and Mendes (2016) and Medeiros and
Mendes (2017) for results on the adaptive LASSO based on the triplex tail
inequality for mixingales of Jiang (2009). Despite these efforts, there is
no complete estimation and prediction theory for high-dimensional time
series regressions under the assumptions comparable to the classical GMM
and QML estimators. For instance, the best currently available results
are too restrictive for the MIDAS projection model, which is typically an
example of a causal Bernoulli shift with dependent innovations. Moreover,
the mixing processes with polynomial tails that are especially relevant for
the financial and macroeconomic time series have not been properly treated
due to the fact that the sharp Fuk-Nagaev inequality was not available in
the relevant literature until recently. The Fuk-Nagaev inequality, see Fuk
and Nagaev (1971), describes the concentration of sums of random variables
with a mixture of the sub-Gaussian and the polynomial tails. It provides
sharp estimates of tail probabilities unlike Markov’s bound in conjunction
with the Marcinkiewicz-Zygmund or Rosenthal’s moment inequalities.

Third, our paper fills these gaps in the literature relying on the Fuk-
Nagaev inequality for 𝜏 -mixing processes of Babii, Ghysels, and Striaukas
(2020a) and establishes the nonasymptotic and asymptotic estimation and
prediction properties of the sg-LASSO projections under weak tail conditions
and potential misspecification. The class of 𝜏 -mixing processes is fairly
rich covering he 𝛼-mixing processes, causal linear processes with infinitely
many lags of 𝛽-mixing processes, and nonlinear Markov processes; see
Dedecker and Prieur (2004, 2005) for more details, as well as Carrasco
and Chen (2002) and Francq and Zakoian (2019) for mixing properties of
various processes encountered in time series econometrics. We show that
the sparse-group LASSO estimator works when the data have fat tails. In
particular our weak tail conditions require at least 4 + 𝜖 finite moments for
covariates, while the number of finite moments for the error process can be
as low as 2 + 𝜈, provided that covariates have sufficiently light tails. From
the theoretical point of view, we impose approximate sparsity, relaxing the
assumption of exact sparsity of the projection coefficients and allowing for
other forms of misspecification (see Giannone, Lenza, and Primiceri (2018)
for further discussion on the topic of sparsity). Lastly, we cover the LASSO
and the group LASSO as special cases.
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We find that our nowcasts are either superior to or at par with those
posted by the Federal Reserve Bank of New York (henceforth NY Fed).
This is the case when (a) we compare our approach with the NY Fed using
the same data, or (b) when we compare our approach using an expanded
high-dimensional data set. The former is a comparison of methods, whereas
the latter pertains to the value of the additional (nonstandard) big data.
To deal with such massive nontraditional data sets, instead of using the
likelihood-based dynamic factor models, we rely on a different approach that
involves machine learning methods based on the regularized empirical risk
minimization principle and data sampled at different frequencies. We adopt
the MIDAS (Mixed Data Sampling) projection approach which is more
amenable to high-dimensional data environments. Our general framework
also includes the standard same frequency time series regressions.

The rest of the paper is organized as follows. Section 2.2 presents
the setting of (potentially mixed frequency) high-dimensional time series
regressions. Section 2.3 characterizes nonasymptotic estimation and predic-
tion accuracy of the sg-LASSO estimator for 𝜏 -mixing processes with
polynomial tails. We report on a Monte Carlo study in Section 2.4 which
provides further insights regarding the validity of our theoretical analysis
in small sample settings typically encountered in empirical applications.
Section 2.5 covers the empirical application. Conclusions appear in Section
2.6.

Notation: For a random variable 𝑋 ∈ R, let ‖𝑋‖𝑞 = (E|𝑋|𝑞)1/𝑞 be its 𝐿𝑞

norm with 𝑞 ≥ 1. For 𝑝 ∈ N, put [𝑝] = {1, 2, . . . , 𝑝}. For a vector Δ ∈ R𝑝

and a subset 𝐽 ⊂ [𝑝], let Δ𝐽 be a vector in R𝑝 with the same coordinates
as Δ on 𝐽 and zero coordinates on 𝐽 𝑐. Let 𝒢 be a partition of [𝑝] defining
the group structure, which is assumed to be known to the econometrician.
For a vector 𝛽 ∈ R𝑝, the sparse-group structure is described by a pair
(𝑆0,𝒢0), where 𝑆0 = {𝑗 ∈ [𝑝] : 𝛽𝑗 ̸= 0} and 𝒢0 = {𝐺 ∈ 𝒢 : 𝛽𝐺 ̸= 0} are the
support and respectively the group support of 𝛽. We also use |𝑆| to denote
the cardinality of arbitrary set 𝑆. For 𝑏 ∈ R𝑝, its ℓ𝑞 norm is denoted as

|𝑏|𝑞 =
(︁∑︀

𝑗∈[𝑝] |𝑏𝑗|𝑞
)︁1/𝑞

for 𝑞 ∈ [1,∞) and |𝑏|∞ = max𝑗∈[𝑝] |𝑏𝑗| for 𝑞 = ∞. For

u,v ∈ R𝑇 , the empirical inner product is defined as ⟨u,v⟩𝑇 = 𝑇−1
∑︀𝑇

𝑡=1 𝑢𝑡𝑣𝑡
with the induced empirical norm ‖.‖2𝑇 = ⟨., .⟩𝑇 = |.|22/𝑇 . For a symmetric
𝑝 × 𝑝 matrix 𝐴, let vech(𝐴) ∈ R𝑝(𝑝+1)/2 be its vectorization consisting of
the lower triangular and the diagonal elements. For 𝑎, 𝑏 ∈ R, we put
𝑎 ∨ 𝑏 = max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Lastly, we write 𝑎𝑛 . 𝑏𝑛 if there
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exists a (sufficiently large) absolute constant 𝐶 such that 𝑎𝑛 ≤ 𝐶𝑏𝑛 for all
𝑛 ≥ 1 and 𝑎𝑛 ∼ 𝑏𝑛 if 𝑎𝑛 . 𝑏𝑛 and 𝑏𝑛 . 𝑎𝑛.

2.2 High-dimensional mixed frequency
regressions

Let {𝑦𝑡 : 𝑡 ∈ [𝑇 ]} be the target low frequency series observed at integer
time points 𝑡 ∈ [𝑇 ]. Predictions of 𝑦𝑡 can involve its lags as well as a large
set of covariates and lags thereof. In the interest of generality, but more
importantly because of the empirical relevance we allow the covariates to
be sampled at higher frequencies - with same frequency being a special
case. More specifically, let there be 𝐾 covariates {𝑥𝑡−(𝑗−1)/𝑚,𝑘, 𝑗 ∈ [𝑚], 𝑡 ∈
[𝑇 ], 𝑘 ∈ [𝐾]} possibly measured at some higher frequency with 𝑚 ≥ 1
observations for every 𝑡 and consider the following regression model

𝜑(𝐿)𝑦𝑡 = 𝜌0 +
𝐾∑︁
𝑘=1

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 + 𝑢𝑡, 𝑡 ∈ [𝑇 ],

where 𝜑(𝐿) = 𝐼−𝜌1𝐿−𝜌2𝐿2−· · ·−𝜌𝐽𝐿𝐽 is a low-frequency lag polynomial
and 𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 = 1/𝑚

∑︀𝑚
𝑗=1 𝛽𝑗,𝑘𝑥𝑡−(𝑗−1)/𝑚,𝑘 is a high-frequency lag

polynomial. For 𝑚 = 1, we have a standard autoregressive distributed lag
(ARDL) model, which is the workhorse regression model of the time series
econometrics literature. Note that the polynomial 𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 involves
the same 𝑚 number of high-frequency lags for each covariate 𝑘 ∈ [𝐾], which
is done for the sake of simplicity and can easily be relaxed; see Section 2.5.

The ARDL-MIDAS model (using the terminology of Andreou, Ghysels,
and Kourtellos (2013)) features 𝐽 + 1 + 𝑚 × 𝐾 parameters. In the big
data setting with a large number of covariates sampled at high-frequency,
the total number of parameters may be large compared to the effective
sample size or even exceed it. This leads to poor estimation and out-of-
sample prediction accuracy in finite samples. For instance, with 𝑚 = 3
(quarterly/monthly setting) and 35 covariates at 4 lagged quarters, we need
to estimate 𝑚×𝐾 = 420 parameters. At the same time, say the post-WWII
quarterly GDP growth series has less than 300 observations.

The LASSO estimator, see Tibshirani (1996), offers an appealing convex
relaxation of a difficult nonconvex best subset selection problem. It allows
increasing the precision of predictions via the selection of sparse and
parsimonious models. In this paper, we focus on the structured sparsity
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with additional dimensionality reductions that aim to improve upon the
unstructured LASSO estimator in the time series setting.

First, we parameterize the high-frequency lag polynomial following the
MIDAS regression or the distributed lag econometric literature (see Ghysels,
Santa-Clara, and Valkanov (2006)) as

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 =
1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑡−(𝑗−1)/𝑚,𝑘,

where 𝛽𝑘 is 𝐿-dimensional vector of coefficients with 𝐿 ≤ 𝑚 and 𝜔 :
[0, 1] × R𝐿 → R is some weight function. Second, we approximate the
weight function as

𝜔(𝑢; 𝛽𝑘) ≈
𝐿∑︁
𝑙=1

𝛽𝑘,𝑙𝑤𝑙(𝑢), 𝑢 ∈ [0, 1], (2.1)

where {𝑤𝑙 : 𝑙 = 1, . . . , 𝐿} is a collection of functions, called the dictionary.
The simplest example of the dictionary consists of algebraic power polyno-
mials, also known as Almon (1965) polynomials in the time series regression
analysis literature. More generally, the dictionary may consist of arbitrary
approximating functions, including the classical orthogonal bases of 𝐿2[0, 1];
see Appendix Section A.2.1 for more examples. Using orthogonal polynomials
typically reduces the multicollinearity and leads to better finite sample
performance. It is worth mentioning that the specification with dictionaries
deviates from the standard MIDAS regressions and leads to a computationally
attractive convex optimization problem, cf. Marsilli (2014a).

The size of the dictionary 𝐿 and the number of covariates 𝐾 can still be
large and the approximate sparsity is a key assumption imposed throughout
the paper. With the approximate sparsity, we recognize that assuming that
most of the estimated coefficients are zero is overly restrictive and that
the approximation error should be taken into account. For instance, the
weight function may have an infinite series expansion, nonetheless, most
can be captured by a relatively small number of orthogonal basis functions.
Similarly, there can be a large number of economically relevant predictors,
nonetheless, it might be sufficient to select only a smaller number of the most
relevant ones to achieve good out-of-sample forecasting performance. Both
model selection goals can be achieved with the LASSO estimator. However,
the LASSO does not recognize that covariates at different (high-frequency)
lags are temporally related.
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In the baseline model, all high-frequency lags (or approximating functions
once we parameterize the lag polynomial) of a single covariate constitute
a group. We can also assemble all lag dependent variables into a group.
Other group structures could be considered, for instance combining various
covariates into a single group, but we will work with the simplest group
setting of the aforementioned baseline model. The sparse-group LASSO
(sg-LASSO) allows us to incorporate such structure into the estimation
procedure. In contrast to the group LASSO, see Yuan and Lin (2006), the
sg-LASSO promotes sparsity between and within groups, and allows us to
capture the predictive information from each group, such as approximating
functions from the dictionary or specific covariates from each group.

(a) LASSO, 𝛼 = 1
(b) group LASSO with 1 group,
𝛼 = 0

(c) sg-LASSO with 1 group,
𝛼 = 0.5

(d) sg-LASSO with 2 groups,
𝛼 = 0.5

Figure 2.1: The figure shows the geometry of the constrained set, {𝑏 ∈
R2 : Ω(𝑏) ≤ 1}, corresponding to the sparse-group LASSO penalty function
for several groupings and values of 𝛼.

To describe the estimation procedure, let y = (𝑦1, . . . , 𝑦𝑇 )
⊤, be a vector

of dependent variable and let X = (y1, . . . ,y𝐽 , 𝑍1𝑊, . . . , 𝑍𝐾𝑊 ), be a design
matrix, y𝑗 = (𝑦1−𝑗, . . . , 𝑦𝑇−𝑗)

⊤, 𝑍𝑘 = (𝑥𝑘,𝑡−(𝑗−1)/𝑚)𝑡∈[𝑇 ],𝑗∈[𝑚] is a 𝑇 × 𝑚
matrix of the covariate 𝑘 ∈ [𝐾], and 𝑊 = (𝑤𝑙 ((𝑗 − 1)/𝑚) /𝑚)𝑗∈[𝑚],𝑙∈[𝐿]
is an 𝑚 × 𝐿 matrix of weights. In addition, put 𝛽 = (𝛽⊤

0 , 𝛽
⊤
1 , . . . , 𝛽

⊤
𝐾)

⊤,
where 𝛽0 = (𝜌1, . . . , 𝜌𝐽)

⊤ is a vector of parameters pertaining to the group
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consisting of the intercept and the autoregressive coefficients, and 𝛽𝑘 ∈ R𝐿

denotes parameters of the high-frequency lag polynomial pertaining to the
covariate 𝑘 ≥ 1. Then, the sparse-group LASSO estimator, denoted 𝛽,
solves the penalized least-squares problem

min
𝑏∈R𝑝

‖y − 𝜌0 −X𝑏‖2𝑇 + 2𝜆Ω(𝑏) (2.2)

with a penalty function that interpolates between the ℓ1 LASSO penalty
and the group LASSO penalty

Ω(𝑏) = 𝛼|𝑏|1 + (1− 𝛼)‖𝑏‖2,1,

where 𝜌0 is the intercept which is not penalized, ‖𝑏‖2,1 =
∑︀

𝐺∈𝒢 |𝑏𝐺|2 is the
group LASSO norm and 𝒢 is a group structure (partition of [𝑝]) specified
by the econometrician. Note that estimator in equation ((2.2)) is defined
as a solution to the convex optimization problem and can be computed
efficiently, e.g., using an appropriate coordinate descent algorithm; see
Simon, Friedman, Hastie, and Tibshirani (2013).

The amount of penalization in equation ((2.2)) is controlled by the
regularization parameter 𝜆 > 0 while 𝛼 ∈ [0, 1] is a weight parameter that
determines the relative importance of the sparsity and the group structure.
Setting 𝛼 = 1, we obtain the LASSO estimator while setting 𝛼 = 0, leads
to the group LASSO estimator, which is reminiscent of the elastic net. In
figure 2.1 we illustrate the geometry of the penalty function for different
groupings and different values of 𝛼 covering (a) LASSO with 𝛼 = 1, (b)
group LASSO with one group, 𝛼 = 0, and two sg-LASSO cases (c) one
group and (d) two groups both with 𝛼 = 0.5. In practice, groups are defined
by a particular problem and are specified by the econometrician, while 𝛼
can be fixed or selected jointly with 𝜆 in a data-driven way such as using
the cross-validation.

2.3 High-dimensional time series
regressions

2.3.1 High-dimensional regressions and 𝜏-mixing

We focus on a generic high-dimensional linear projection model with a
countable number of regressors

𝑦𝑡 =
∞∑︁
𝑗=0

𝑥𝑡,𝑗𝛽𝑗 + 𝑢𝑡, E[𝑢𝑡𝑥𝑡,𝑗] = 0, ∀𝑗 ≥ 1, 𝑡 ∈ Z, (2.3)
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where 𝑥𝑡,0 = 1 and 𝑚𝑡 ,
∑︀∞

𝑗=0 𝑥𝑡,𝑗𝛽𝑗 is a well-defined random variable.
In particular, to ensure that 𝑦𝑡 is a well-defined economic quantity, we
need 𝛽𝑗 ↓ 0 sufficiently fast, which is a form of the approximate sparsity
condition, see Belloni, Chernozhukov, Chetverikov, Hansen, and Kato
(2020). This setting nests the high-dimensional ARDL-MIDAS projections
described in the previous section and more generally may allow for other
high-dimensional time series models. In practice, given a (large) number of
covariates, lags thereof, as well as lags of the dependent variable, denoted
𝑥𝑡 ∈ R𝑝, we would approximate 𝑚𝑡 with 𝑥

⊤
𝑡 𝛽 ,

∑︀𝑝
𝑗=0 𝑥𝑡,𝑗𝛽𝑗, where 𝑝 <∞

and the regression coefficient 𝛽 ∈ R𝑝 could be sparse. Importantly, our
settings allows for the approximate sparsity as well as other forms of
misspecification and the main result of the following section allows for
𝑚𝑡 ̸= 𝑥⊤𝑡 𝛽.

Using the setting of equation (2.2), for a sample (𝑦𝑡, 𝑥𝑡)
𝑇
𝑡=1, write

y = m+ u,

where y = (𝑦1, . . . , 𝑦𝑇 )
⊤, m = (𝑚1, . . . ,𝑚𝑇 )

⊤, and u = (𝑢1, . . . , 𝑢𝑇 )
⊤. The

approximation to m is denoted X𝛽, where X = (𝑥1, . . . , 𝑥𝑇 )
⊤ is a 𝑇 × 𝑝

matrix of covariates and 𝛽 = (𝛽1, . . . , 𝛽𝑝)
⊤ is a vector of unknown regression

coefficients.
We measure the time series dependence with 𝜏 -mixing coefficients. For

a 𝜎-algebra ℳ and a random vector 𝜉 ∈ R𝑙, put

𝜏(ℳ, 𝜉) =

⃦⃦⃦⃦
sup

𝑓∈Lip1
|E(𝑓(𝜉)|ℳ)− E(𝑓(𝜉))|

⃦⃦⃦⃦
1

,

where Lip1 =
{︀
𝑓 : R𝑙 → R : |𝑓(𝑥)− 𝑓(𝑦)| ≤ |𝑥− 𝑦|1

}︀
is a set of 1-Lipschitz

functions. Let (𝜉𝑡)𝑡∈Z be a stochastic process and let ℳ𝑡 = 𝜎(𝜉𝑡, 𝜉𝑡−1, . . . )
be its canonical filtration. The 𝜏 -mixing coefficient of (𝜉𝑡)𝑡∈Z is defined as

𝜏𝑘 = sup
𝑗≥1

1

𝑗
sup

𝑡+𝑘≤𝑡1<···<𝑡𝑗

𝜏(ℳ𝑡, (𝜉𝑡1, . . . , 𝜉𝑡𝑗)), 𝑘 ≥ 0.

If 𝜏𝑘 ↓ 0 as 𝑘 → ∞, then the process (𝜉𝑡)𝑡∈Z is called 𝜏 -mixing. The
𝜏 -mixing coefficients were introduced in Dedecker and Prieur (2004) as
dependence measures weaker than mixing. Note that the commonly used
𝛼- and 𝛽-mixing conditions are too restrictive for the linear projection
model with an ARDL-MIDAS process. Indeed, a causal linear process
with dependent innovations is not necessary 𝛼-mixing; see also Andrews
(1984) for an example of AR(1) process which is not 𝛼-mixing. Roughly
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speaking, 𝜏 -mixing processes are somewhere between mixingales and 𝛼-
mixing processes and can accommodate such counterexamples. At the same
time, sharp Fuk-Nagaev inequalities are available for 𝜏 -mixing processes
which to the best of our knowledge is not the case for the mixingales or
near-epoch dependent processes; see Babii, Ghysels, and Striaukas (2020a).

Dedecker and Prieur (2004, 2005) discuss how to verify the 𝜏 -mixing
property for causal Bernoulli shifts with dependent innovations and nonlinear
Markov processes. It is also worth comparing the 𝜏 -mixing coefficient to
other weak dependence coefficients. Suppose that (𝜉𝑡)𝑡∈Z is a real-valued
stationary process and let 𝛾𝑘 = ‖E(𝜉𝑘|ℳ0)− E(𝜉𝑘)‖1 be its 𝐿1 mixingale
coefficient. Then we clearly have 𝛾𝑘 ≤ 𝜏𝑘 and it is known that

|Cov(𝜉0, 𝜉𝑘)| ≤
∫︁ 𝛾𝑘

0

𝑄 ∘𝐺(𝑢)d𝑢 ≤
∫︁ 𝜏𝑘

0

𝑄 ∘𝐺(𝑢)d𝑢 ≤ 𝜏
𝑞−2
𝑞−1

𝑘 ‖𝜉0‖𝑞/(𝑞−1)
𝑞 ,

where 𝑄 is the generalized inverse of 𝑥 ↦→ Pr(|𝜉0| > 𝑥) and 𝐺 is the
generalized inverse of 𝑥 ↦→

∫︀ 𝑥

0 𝑄(𝑢)d𝑢; see Babii, Ghysels, and Striaukas
(2020a), Lemma A.1.1. Therefore, the 𝜏 -mixing coefficient provides a sharp
control of autocovariances similarly to the 𝐿1 mixingale coefficients, which in
turn can be used to ensure that the long-run variance of (𝜉𝑡)𝑡∈Z exists. The
𝜏 -mixing coefficient is also bounded by the 𝛼-mixing coefficient, denoted
𝛼𝑘, as follows

𝜏𝑘 ≤ 2

∫︁ 2𝛼𝑘

0

𝑄(𝑢)d𝑢 ≤ 2‖𝜉0‖𝑞(2𝛼𝑘)
1/𝑟,

where the first inequality follows by Dedecker and Prieur (2004), Lemma 7
and the second by Hölder’s inequality with 𝑞, 𝑟 ≥ 1 such that 𝑞−1 + 𝑟−1 =
1. It is worth mentioning that the mixing properties for various time
series models in econometrics, including GARCH, stochastic volatility, or
autoregressive conditional duration are well-known; see, e.g., Carrasco and
Chen (2002), Francq and Zakoian (2019), Babii, Chen, and Ghysels (2019);
see also Dedecker, Doukhan, Lang, Rafael, Louhichi, and Prieur (2007) for
more examples and a comprehensive comparison of various weak dependence
coefficients.

2.3.2 Estimation and prediction properties

In this section, we introduce the main assumptions for the high-dimensional
time series regressions and study the estimation and prediction properties
of the sg-LASSO estimator covering the LASSO and the group LASSO
estimators as special cases. The following assumption imposes some mild
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restrictions on the stochastic processes in the high-dimensional regression
equation (2.3).

Assumption 2.3.1 (Data). For every 𝑗, 𝑘 ∈ [𝑝], the processes (𝑢𝑡𝑥𝑡,𝑗,)𝑡∈Z
and (𝑥𝑡,𝑗𝑥𝑡,𝑘)𝑡∈Z are stationary such that (i) ‖𝑢0‖𝑞 <∞ and max𝑗∈[𝑝] ‖𝑥0,𝑗‖𝑟 =
𝑂(1) for some constants 𝑞 > 2𝑟/(𝑟 − 2) and 𝑟 > 4; (ii) the 𝜏 -mixing
coefficients are 𝜏𝑘 ≤ 𝑐𝑘−𝑎 and respectively 𝜏𝑘 ≤ 𝑐𝑘−𝑏 for all 𝑘 ≥ 0 and some
𝑐 > 0, 𝑎 > (𝜍 − 1)/(𝜍 − 2), 𝑏 > (𝑟 − 2)/(𝑟 − 4), and 𝜍 = 𝑞𝑟/(𝑞 + 𝑟).

It is worth mentioning that the stationarity condition is not essential and
can be relaxed to the existence of the limiting variance of partial sums at
costs of heavier notations and proofs. Condition (i) requires that covariates
have at least 4 finite moments, while the number of moments required for
the error process can be as low as 2 + 𝜖, depending on the integrability of
covariates. Therefore, (i) may allow for heavy-tailed distributions commonly
encountered in financial and economic time series, e.g., asset returns and
volatilities. Given the integrability in (i), (ii) requires that the 𝜏 -mixing
coefficients decrease to zero sufficiently fast; see Appendix, Section A.2.3
for moments and 𝜏 -mixing coefficients of ARDL-MIDAS. It is known that
the 𝛽-mixing coefficients decrease geometrically fast, e.g., for geometrically
ergodic Markov chains, in which case (ii) holds for every 𝑎, 𝑏 > 0. Therefore,
(ii) allows for relatively persistent processes.

For the support 𝑆0 and the group support 𝒢0 of 𝛽, put

Ω0(𝑏) , 𝛼|𝑏𝑆0
|1 + (1− 𝛼)

∑︁
𝐺∈𝒢0

|𝑏𝐺|2 and

Ω1(𝑏) , 𝛼|𝑏𝑆𝑐
0
|1 + (1− 𝛼)

∑︁
𝐺∈𝒢𝑐

0

|𝑏𝐺|2.

For some 𝑐0 > 0, define 𝒞(𝑐0) , {Δ ∈ R𝑝 : Ω1(Δ) ≤ 𝑐0Ω0(Δ)}. The
following assumption generalizes the restricted eigenvalue condition of
Bickel, Ritov, and Tsybakov (2009) to the sg-LASSO estimator and is
imposed on the population covariance matrix Σ = E[X⊤X/𝑇 ].

Assumption 2.3.2 (Restricted eigenvalue). There exists a universal constant
𝛾 > 0 such that Δ⊤ΣΔ ≥ 𝛾

∑︀
𝐺∈𝒢0

|Δ𝐺|22 for all Δ ∈ 𝒞(𝑐0), where 𝑐0 =
(𝑐+ 1)/(𝑐− 1) for some 𝑐 > 1.

Recall that if Σ is a positive definite matrix, then for all Δ ∈ R𝑝, we have
Δ⊤ΣΔ ≥ 𝛾|Δ|22, where 𝛾 is the smallest eigenvalue of Σ. Therefore, in this
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case Assumption 2.3.2 is trivially satisfied because |Δ|22 ≥
∑︀

𝐺∈𝒢0
|Δ𝐺|22.

The positive definiteness of Σ is also known as a completeness condition
and Assumption 2.3.2 can be understood as its weak version; see Babii
and Florens (2020) and references therein. It is worth emphasizing that
𝛾 > 0 in Assumption 2.3.2 is a universal constant independent of 𝑝, which
is the case, e.g., when Σ is a Toeplitz matrix or a spiked identity matrix.
Alternatively, we could allow for 𝛾 ↓ 0 as 𝑝→ ∞, in which case the term
𝛾−1 would appear in our nonasymptotic bounds slowing down the speed of
convergence, and we may interpret 𝛾 as a measure of ill-posedness in the
spirit of econometrics literature on ill-posed inverse problems; see Carrasco,
Florens, and Renault (2007).

The value of the regularization parameter is determined by the Fuk-
Nagaev concentration inequality, appearing in the Appendix, see Theorem
A.2.1.

Assumption 2.3.3 (Regularization). For some 𝛿 ∈ (0, 1)

𝜆 ∼
(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇
,

where 𝜅 = ((𝑎+ 1)𝜍 − 1)/(𝑎+ 𝜍 − 1) and 𝑎, 𝜍 are as in Assumption 2.3.1.

The regularization parameter in Assumption 2.3.3 is determined by the
persistence of the data, quantified by 𝑎, and the tails, quantified by 𝜍 =
𝑞𝑟/(𝑞 + 𝑟). This dependence is reflected in the dependence-tails exponent 𝜅.
The following result describes the nonasymptotic prediction and estimation
bounds for the sg-LASSO estimator, see Appendix, Section A.2.2 for the
proof.

Theorem 2.1. Suppose that Assumptions 2.3.1, 2.3.2, and 2.3.3 are
satisfied. Then with probability at least 1−𝛿−𝑂(𝑝2(𝑇 1−𝜇𝑠𝜇𝛼+exp(−𝑐𝑇/𝑠2𝛼)))

‖X(𝛽 − 𝛽)‖2𝑇 . 𝑠𝛼𝜆
2 + ‖m−X𝛽‖2𝑇

and
Ω(𝛽 − 𝛽) . 𝑠𝛼𝜆+ 𝜆−1‖m−X𝛽‖2𝑇 +

√
𝑠𝛼‖m−X𝛽‖𝑇

for some 𝑐 > 0, where
√
𝑠𝛼 = 𝛼

√︀
|𝑆0|+ (1− 𝛼)

√︀
|𝒢0| and 𝜇 = ((𝑏+ 1)𝑟 −

2)/(𝑟 + 2(𝑏− 1)).

Theorem 2.1 provides nonasymptotic guarantees for the estimation and
prediction with the sg-LASSO estimator reflecting potential misspecification.
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In the special case of the LASSO estimator (𝛼 = 1), we obtain the
counterpart to the result of Belloni, Chen, Chernozhukov, and Hansen
(2012) for the LASSO estimator with i.i.d. data taking into account that
we may have 𝑚𝑡 ̸= 𝑥⊤𝑡 𝛽. At another extreme, when 𝛼 = 0, we obtain the
nonasymptotic bounds for the group LASSO allowing for misspecification
which to the best of our knowledge are new, cf. Negahban, Ravikumar,
Wainwright, and Yu (2012) and van de Geer (2016). We call 𝑠𝛼 the effective
sparsity constant. This constant reflects the benefits of the sparse-group
structure for the sg-LASSO estimator that can not be deduced from the
results currently available for the LASSO or the group LASSO.

Remark 2.3.1. Since the ℓ1-norm is equivalent to the Ω-norm whenever
groups have fixed size, we deduce from Theorem 2.1 that

|𝛽 − 𝛽|1 . 𝑠𝛼𝜆+ 𝜆−1‖m−X𝛽‖2𝑇 +
√
𝑠𝛼‖m−X𝛽‖𝑇 .

Next, we consider the asymptotic regime, in which the misspecification
error vanishes when the sample size increases as described in the following
assumption.

Assumption 2.3.4. (i) ‖m−X𝛽‖2𝑇 = 𝑂𝑃

(︀
𝑠𝛼𝜆

2
)︀
; and (ii) 𝑝2𝑇 1−𝜇𝑠𝜇𝛼 → 0

and 𝑝2 exp(−𝑐𝑇/𝑠2𝛼) → 0.

The following corollary is an immediate consequence of Theorem 2.1.

Corollary 2.3.1. Suppose that Assumptions 2.3.1, 2.3.2, 2.3.3, and 2.3.4
hold. Then

‖X(𝛽 − 𝛽)‖2𝑇 = 𝑂𝑃

(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−2/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇

)︂
and

|𝛽 − 𝛽|1 = 𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃
.

If the effective sparsity constant 𝑠𝛼 is fixed, then 𝑝 = 𝑜(𝑇 𝜅−1) is a sufficient
condition for the prediction and estimation errors to vanish, whenever
𝜇 ≥ 2𝜅− 1. In this case Assumption 2.3.4 (ii) is vacuous. More generally,
𝑠𝛼 is allowed to increase slowly with the sample size. Convergence rates
in Corollary 2.3.1 quantify the effect of tails and persistence of the data
on the prediction and estimation accuracies of the sg-LASSO estimator.
In particular, lighter tails and less persistence allow us to handle a larger
number of covariates 𝑝 compared to the sample size 𝑇 . In particular 𝑝 can
increase faster than 𝑇 , provided that 𝜅 > 2.
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Remark 2.3.2. In the special case of the LASSO estimator with i.i.d.
data, Corollary 4 of Fuk and Nagaev (1971) leads to the convergence

rate of order 𝑂𝑃

(︂
𝑝1/𝜍

𝑇 1−1/𝜍 ∨
√︁

log 𝑝
𝑇

)︂
. If the 𝜏 -mixing coefficients decrease

geometrically fast (e.g., stationary AR(p)), then 𝜅 ≈ 𝜍 for a sufficiently
large value of the dependence exponent 𝑎, in which case the convergence
rates in Corollary 2.3.1 are close to the i.i.d. case. In this sense these
rates depend sharply on the tails exponent 𝜍, and we can conclude that for
geometrically decreasing 𝜏 -mixing coefficients, the persistence of the data
should not affect the convergence rates of the LASSO.

Remark 2.3.3. In the special case of the LASSO estimator, if (𝑢𝑡)𝑡∈Z and
(𝑥𝑡)𝑡∈Z are causal Bernoulli shifts with independent innovations and at least
𝑞 = 𝑟 ≥ 8 finite moments, one can deduce from Chernozhukov, Härdle,
Huang, and Wang (2021), Lemma 5.1 and Corollary 5.1, the convergence

rate of order 𝑂𝑃

(︂
(𝑝𝜔𝑇 )

1/𝜍

𝑇 1−1/𝜍 ∨
√︁

log 𝑝
𝑇

)︂
, where 𝜔𝑇 = 1 (weakly dependent case)

or 𝜔𝑇 = 𝑇 𝜍/2−1−𝑎𝜍 ↑ ∞ (strongly dependent case), provided that the physical
dependence coefficients are of size 𝑂(𝑘−𝑎). Note that for causal Bernoulli
shifts with independent innovations, the physical dependence coefficients
are not directly comparable to 𝜏 -mixing coefficients; see Dedecker, Doukhan,
Lang, Rafael, Louhichi, and Prieur (2007), Remark 3.1 on p.32.

2.4 Monte Carlo experiments

We assess via simulations the out-of-sample predictive performance (forecas-
ting and nowcasting), and the MIDAS weights recovery of the sg-LASSO
with dictionaries. We benchmark the performance of our novel sg-LASSO
setup against two alternatives: (a) unstructured, meaning standard, LASSO
with MIDAS, and (b) unstructured LASSO with the unrestricted lag
polynomial. The former allows us to assess the benefits of exploiting
group structures, whereas the latter focuses on the advantages of using
dictionaries in a high-dimensional setting.
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2.4.1 Simulation Design

To assess the predictive performance and the MIDAS weight recovery, we
simulate the data from the following DGP:

𝑦𝑡 = 𝜌1𝑦𝑡−1 + 𝜌2𝑦𝑡−2 +
𝐾∑︁
𝑘=1

1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑡−(𝑗−1)/𝑚,𝑘 + 𝑢𝑡,

where 𝑢𝑡 ∼𝑖.𝑖.𝑑. 𝑁(0, 𝜎2𝑢) and the DGP for covariates {𝑥𝑘,𝑡−(𝑗−1)/𝑚 : 𝑗 ∈
[𝑚], 𝑘 ∈ [𝐾]} is specified below. This corresponds to a target of interest
𝑦𝑡 driven by two autoregressive lags augmented with high frequency series,
hence, the DGP is an ARDL-MIDAS model. We set 𝜎2𝑢 = 1, 𝜌1 = 0.3,
𝜌2 = 0.01, and take the number of relevant high frequency regressors 𝐾 =
3. In some scenarios we also decrease the signal-to-noise ratio by setting 𝜎2𝑢
= 5. We are interested in quarterly/monthly data, and use four quarters
of data for the high frequency regressors so that 𝑚 = 12. We rely on a
commonly used weighting scheme in the MIDAS literature, namely 𝜔(𝑠; 𝛽𝑘)
for 𝑘 = 1, 2 and 3 are determined by beta densities respectively equal
to Beta(1, 3),Beta(2, 3), and Beta(2, 2); see Ghysels, Sinko, and Valkanov
(2007) or Ghysels and Qian (2019), for further details.

The high frequency regressors are generated as either one of the following:
1. 𝐾 i.i.d. realizations of the univariate autoregressive (AR) process
𝑥ℎ = 𝜌𝑥ℎ−1+𝜀ℎ, where 𝜌 = 0.2 or 𝜌 = 0.7 and either 𝜀ℎ ∼𝑖.𝑖.𝑑. 𝑁(0, 𝜎2𝜀),
𝜎2𝜀 = 1, or 𝜀ℎ ∼𝑖.𝑖.𝑑. student-𝑡(5), where ℎ denotes the high-frequency
sampling.

2. Multivariate vector autoregressive (VAR) process 𝑋ℎ = Φ𝑋ℎ−1 + 𝜀ℎ,
where 𝜀ℎ ∼𝑖.𝑖.𝑑. 𝑁(0, 𝐼𝐾) and Φ is a block diagonal matrix described
below.

For the AR simulation design, we initiate the processes as

𝑥0 ∼ 𝑁
(︀
0, 𝜎2/(1− 𝜌2)

)︀
and

𝑦0 ∼ 𝑁
(︀
0, 𝜎2(1− 𝜌2)/((1 + 𝜌2)((1− 𝜌2)

2 − 𝜌21))
)︀
.

For the VAR, the initial value of (𝑦𝑡) is the same, while 𝑋0 ∼ 𝑁(0, 𝐼𝐾). In
all cases, the first 200 observations are treated as burn-in. In the estimation
procedure, we add 7 noisy covariates which are generated in the same way as
the relevant covariates and use 5 low-frequency lags. The empirical models
use a dictionary which consists of Legendre polynomials up to degree 𝐿 = 10
shifted to the [0, 1] interval with the MIDAS weight function approximated
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as in equation (2.1). The sample size is 𝑇 ∈ {50, 100, 200}, and for all the
experiments we use 5000 simulation replications.

We assess the performance of different methods by modifying the
assumptions on the error terms of the high-frequency process 𝜀ℎ, considering
multivariate high-frequency processes, changing the degree of Legendre
polynomials 𝐿, increasing the noise level of the low-frequency process 𝜎2𝑢,
using only half of the high-frequency lags in predictive regressions, and
adding a larger number of noisy covariates. In the case of VAR high-
frequency process, we set Φ to be block-diagonal with the first 5× 5 block
having entries 0.15 and the remaining 5× 5 block(s) having entries 0.075.

We estimate three different LASSO-type regression models. In the first
model, we keep the weighting function unconstrained, and therefore we
estimate 12 coefficients per high-frequency covariate using the unstructured
LASSO estimator. We denote this model LASSO-U-MIDAS (inspired by the
U-MIDAS of Foroni, Marcellino, and Schumacher (2015a)). In the second
model we use MIDAS weights together with the unstructured LASSO
estimator; we call this model LASSO-MIDAS. In this case, we estimate
𝐿+ 1 number of coefficients per high-frequency covariate. The third model
applies the sg-LASSO estimator together with MIDAS weights. Groups
are defined as in Section 2.2; each low-frequency lag and high-frequency
covariate is a group, therefore, we have 𝐾 + 5 groups. We select the value
of tuning parameters 𝜆 and 𝛼 using the 5-fold cross-validation, defining
folds as adjacent blocks over the time dimension to take into account the
time series dependence. This model is denoted sg-LASSO-MIDAS.

For regressions with aggregated data, we consider: (a) Flow aggregation
(FLOW): 𝑥𝐴𝑘,𝑡 = 1/𝑚

∑︀𝑚
𝑗=1 𝑥𝑘,𝑡−(𝑗−1)/𝑚, (b) Stock aggregation (STOCK):

𝑥𝐴𝑘,𝑡 = 𝑥𝑘,𝑡, and (c) Middle high-frequency lag (MIDDLE): single middle
value of the high-frequency lag with ties solved in favor of the most recent
observation (i.e., we take a single 6tℎ lag if 𝑚 = 12). In these cases, the
models are estimated using the OLS estimator, which is unfeasible when
the number of covariates becomes equal to the sample size and we leave
results blank in this case.

2.4.2 Simulation results

Detailed results are reported in the Appendix. Tables A.2.1–A.2.2, cover
the average mean squared forecast errors for one-step-ahead forecasts and
nowcasts. The sg-LASSO with MIDAS weighting (sg-LASSO-MIDAS)
outperforms all other methods in all simulation scenarios. Importantly,
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both sg-LASSO-MIDAS and unstructured LASSO-MIDAS with nonlinear
weight function approximations perform much better than all other methods
when the sample size is small (𝑇 = 50). In this case, sg-LASSO-MIDAS
yields the largest improvements over alternatives, in particular, with a large
number of noisy covariates (bottom-right block). These findings are robust
to increases in the persistence parameter of covariates 𝜌 from 0.2 to 0.7.
The LASSO without MIDAS weighting has typically large forecast errors.
Comparing across simulation scenarios, all methods seem to perform worse
with heavy-tailed or persistent covariates. In these cases, however, the
impact on the sg-LASSO-MIDAS method is lesser compared to the other
methods. This simulation evidence supports our theoretical results and
findings in the empirical application. Lastly, forecasts using flow-aggregated
covariates seem to perform better than other simple aggregation methods in
all simulation scenarios, but significantly worse than the sg-LASSO-MIDAS.

In Table A.2.3–A.2.4 we report additional results for the estimation
accuracy of the weight functions. In figure A.2.1–A.2.3, we plot the
estimated weight functions from several methods. The results indicate
that the LASSO without MIDAS weighting can not accurately recover
the weights in small samples and/or low signal-to-noise ratio scenarios.
Using Legendre polynomials improves the performance substantially and
the sg-LASSO seems to improve even more over the unstructured LASSO.

2.5 Nowcasting US GDP with macro,
financial and textual news data

We nowcast US GDP with macroeconomic, financial, and textual news
data. Details regarding the data sources appear in the Appendix Section
A.2.5. Regarding the macro data, we rely on 34 series used in the Federal
Reserve Bank of New York nowcast model, discarding two series (”PPI:
Final demand” and ”Merchant wholesalers: Inventories”) due to very short
samples; see Bok, Caratelli, Giannone, Sbordone, and Tambalotti (2018)
for more details regarding this data.

For all macro data, we use real-time vintages, which effectively means
that we take all macro series with a delay as well real-time data releases.
For example, if we nowcast the first quarter of GDP one month before the
quarter ends, we use data up to the end of February, and therefore all macro
series with a delay of one month that enter the model are available up to
the end of January. As we use data real-time data releases, the January
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observation in this case is also the first release of a particular series. We use
Legendre polynomials of degree three for all macro covariates to aggregate
twelve lags of monthly macro data. In particular, let 𝑥𝑡+(ℎ+1−𝑗)/𝑚,𝑘 be 𝑘th

covariate at quarter 𝑡 with 𝑚 = 3 months per quarter and ℎ = 2− 1 = 1
months into the quarter (2 months into the quarter minus 1 month due
to publication delay), where 𝑗 = 1, 2, . . . , 12 is the monthly lag. We then
collect all lags in a vector

𝑋𝑡,𝑘 = (𝑥𝑡+1/3,𝑘, 𝑥𝑡+0/3,𝑘, . . . , 𝑥𝑡−10/3,𝑘)
⊤

and aggregate 𝑋𝑡,𝑘 using a dictionary𝑊 consisting of Legendre polynomials,
so that 𝑋𝑡,𝑘𝑊 defines as a single group for the sg-LASSO estimator.

In addition to macro and financial data, we also use the textual analysis
data. We take 76 news attention series from Bybee, Kelly, Manela, and
Xiu (2020) and use Legendre polynomials of degree two to aggregate three
monthly lags of each news attention series. Note that the news attention
series are used without a publication delay, that is, for the one-month
horizon, we take the series up to the end of the second month. Moreover,
the Bybee, Kelly, Manela, and Xiu (2020) news topic models involve rolling
samples, avoiding look ahead biases when used in our nowcasts.

We compute the predictions using a rolling window scheme. The first
nowcast is for 2002 Q1, for which we use fifteen years (sixty quarters) of
data, and the prediction is computed using 2002 January (2-month horizon)
February (1-month), and March (end of the quarter) data. We calculate
predictions until the sample is exhausted, which is 2017 Q2, the last date
for which news attention data is available. As indicated above, we report
results for the 2-month, 1-month, and the end-of-quarter horizons. Our
target variable is the first release, i.e., the advance estimate of real GDP
growth. For each quarter and nowcast horizon, we tune sg-LASSO-MIDAS
regularization parameters 𝜆 and 𝛼 using 5-fold cross-validation, defining
folds as adjacent blocks over the time dimension to take into account the
time series nature of the data. Finally, we follow the literature on nowcasting
real GDP and define our target variable to be the annualized growth rate.

Let 𝑥𝑡,𝑘 be the 𝑘-th high-frequency covariate at time 𝑡. The general
ARDL-MIDAS predictive regression is

𝜑(𝐿)𝑦𝑡+1 = 𝜇+
𝐾∑︁
𝑘=1

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 + 𝑢𝑡+1, 𝑡 = 1, . . . , 𝑇,

where 𝜑(𝐿) is the low-frequency lag polynomial, 𝜇 is the regression intercept,
and 𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡𝑘, 𝑘 = 1, . . . , 𝐾 are lags of high-frequency covariates.

Page 37



Chapter 2 Machine Learning Time Series Regressions with an Application to Nowcasting

Following Section 2.2, the high-frequency lag polynomial is defined as

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 =
1

𝑚𝑞𝑘

𝑚𝑞𝑘∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚𝑞𝑘; 𝛽𝑘)𝑥𝑡+(ℎ𝑘+1−𝑗)/𝑚,𝑘,

where for 𝑘tℎ covariate, ℎ𝑘 indicates the number of leading months of
available data in the quarter 𝑡, 𝑞𝑘 is the number of quarters of covariate lags,
and we approximate the weight function 𝜔 with the Legendre polynomial.
For example, if ℎ𝑘 = 1 and 𝑞𝑘 = 4, then we have 1 month of data into a
quarter and use 𝑞𝑘𝑚 = 12 monthly lags for a covariate 𝑘.

We benchmark our predictions against the simple AR(1) model, which
is considered to be a reasonable starting point for short-term GDP growth
predictions. We focus on predictions of our method, sg-LASSO-MIDAS,
with and without financial data combined with series based on the textual
analysis. One natural comparison is with the publicly available Federal
Reserve Bank of New York, denoted NY Fed, model implied nowcasts. We

Table 2.1: Nowcast comparisons for models with macro data only – Nowcast horizons are 2-
and 1-month ahead, as well as the end of the quarter. Column Rel-RMSE reports root mean
squared forecasts error relative to the AR(1) model. Column DM-stat-1 reports Diebold and
Mariano (1995) test statistic of all models relative to NY Fed nowcasts, while column DM-stat-2
reports the Diebold Mariano test statistic relative to sg-LASSO-MIDAS model. The last row
reports the p-value of the average Superior Predictive Ability (aSPA) test, see Quaedvlieg
(2019), over the three horizons of sg-LASSO-MIDAS model compared to the NY Fed nowcasts.
Out-of-sample period: 2002 Q1 to 2017 Q2.

Rel-RMSE DM-stat-1 DM-stat-2
2-month horizon

AR(1) 2.056 0.612 2.985
sg-LASSO-MIDAS 0.739 -2.481

NY Fed 0.946 2.481
1-month horizon

AR(1) 2.056 2.025 2.556
sg-LASSO-MIDAS 0.725 -0.818

NY Fed 0.805 0.818
End-of-quarter

AR(1) 2.056 2.992 3.000
sg-LASSO-MIDAS 0.701 -0.077

NY Fed 0.708 0.077
p-value of aSPA test

0.046

adopt the following strategy. First, we focus on the same series that are
used to calculate the NY Fed nowcasts. The purpose here is to compare
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models since the data inputs are the same. This means that we compare
the performance of dynamic factor models (NY Fed) with that of machine
learning regularized regression methods (sg-LASSO-MIDAS). Next, we
expand the data set to see whether additional financial and textual news
series can improve the nowcast performance.

In Table 2.1, we report results based on real-time macro data used for
the NY Fed model, see Bok, Caratelli, Giannone, Sbordone, and Tambalotti
(2018). The results show that the sg-LASSO-MIDAS performs much better
than the NY Fed nowcasts at the longer, i.e. 2-month, horizon. Our method
significantly beats the benchmark AR(1) model for all the horizons, and
the accuracy of the nowcasts improve with the horizon. Our end-of-quarter
and 1-month horizon nowcasts are similar to the NY Fed ones, with the
sg-LASSO-MIDAS being slightly better numerically but not statistically.
We also report the average Superior Predictive Ability test of Quaedvlieg
(2019) over all three horizons and the result reveals that the improvement
of the sg-LASSO-MIDAS model versus the NY Fed nowcasts is significant
at the 5% significance level. Lastly, we report results that do not discard
two series (“PPI: Final demand” and “Merchant wholesalers: Inventories”)
due to short samples in the Appendix Section A.2.5.1. The results are very
similar and do not change our conclusions.

The comparison in Table 2.1 does not fully exploit the potential of our
methods, as it is easy to expand the data series beyond the small number
used by the NY Fed nowcasting model. In Table 2.2 we report results
with additional sets of covariates which are financial series, advocated by
Andreou, Ghysels, and Kourtellos (2013), and textual analysis of news. In
total, the models select from 118 series – 34 macro, 8 financial, and 76 news
attention series. For the moment we focus only on the first three columns
of the table. At the longer horizon of 2 months, the method seems to
produce slightly worse nowcasts compared to the results reported in Table
2.1 using only macro data. However, we find significant improvements in
prediction quality for the shorter 1-month and end-of-quarter horizons. In
particular, a significant increase in accuracy relative to NY Fed nowcasts
appears at the 1-month horizon. We report again the average Superior
Predictive Ability test of Quaedvlieg (2019) over all three horizons with
the same result that the improvement of sg-LASSO-MIDAS versus the
NY Fed nowcasts is significant at the 5% significance level. Lastly, we
report results for several alternatives, namely, PCA-OLS, ridge, LASSO,
and Elastic Net, using the unrestricted MIDAS scheme. Our approach
produces more accurate nowcasts compared to these alternatives.
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Table 2.2: Nowcast comparison table – Nowcast horizons are 2- and 1-month ahead, as well
as the end of the quarter. Column Rel-RMSE reports root mean squared forecasts error relative
to the AR(1) model. Column DM-stat-1 reports Diebold and Mariano (1995) test statistic of all
models relative to the NY FED nowcast, while column DM-stat-2 reports the Diebold Mariano
test statistic relative to the sg-LASSO model. Columns DM-stat-3 and DM-stat-4 report the
Diebold Mariano test statistic for the same models, but excludes the recession period. For
the 1-month horizon, the last row SPF (median) reports test statistics for the same models
comparing with the SPF median nowcasts. The last row reports the p-value of the average
Superior Predictive Ability (aSPA) test, see Quaedvlieg (2019), over the three horizons of sg-
LASSO-MIDAS model compared to the NY Fed nowcasts, including (left) and excluding (right)
financial crisis period. Out-of-sample period: 2002 Q1 to 2017 Q2.

Rel-RMSE DM-stat-1 DM-stat-2 DM-stat-3 DM-stat-4
2-month horizon

PCA-OLS 0.982 0.416 2.772 0.350 2.978
Ridge-U-MIDAS 0.918 -0.188 1.073 -1.593 0.281

LASSO-U-MIDAS 0.996 0.275 1.280 -1.983 -0.294
Elastic Net-U-MIDAS 0.907 -0.266 0.976 -1.725 0.042

sg-LASSO-MIDAS 0.779 -2.038 -2.349
NY Fed 0.946 2.038 2.349

1-month horizon
PCA-OLS 1.028 2.296 3.668 2.010 3.399

Ridge-U-MIDAS 0.940 0.927 2.063 -0.184 1.979
LASSO-U-MIDAS 1.044 1.286 1.996 -0.397 1.498

Elastic Net-U-MIDAS 0.990 1.341 2.508 0.444 2.859
sg-LASSO-MIDAS 0.672 -1.426 -1.341

NY Fed 0.805 1.426 1.341
SPF (median) 0.639 -2.317 -0.490 -1.743 0.282

End-of-quarter
PCA-OLS 0.988 3.414 3.400 3.113 3.155

Ridge-U-MIDAS 0.939 1.918 1.952 0.867 1.200
LASSO-U-MIDAS 1.014 1.790 1.773 0.276 0.517

Elastic Net-U-MIDAS 0.947 2.045 2.034 1.198 1.400
sg-LASSO-MIDAS 0.696 -0.156 -0.159

NY Fed 0.707 0.156 0.159
p-value of aSPA test

0.042 0.056
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The inclusion of financial series is not common in traditional nowcasting
models, see e.g. Bok, Caratelli, Giannone, Sbordone, and Tambalotti (2018),
on the grounds that though timely, financial data is noisy hence do not
contribute to the accuracy of the nowcasts. One may wonder how our
model performs excluding these series. Therefore, we run our nowcasting
regressions using only macro and news attention series, excluding financial
data; results are reported in the Appendix Section A.2.5.1. Notably, results
are slightly worse compared with the results that include financial data,
supporting our initial choice. Similarly, Andreou, Ghysels, and Kourtellos
(2013) find that financial data is helpful in GDP nowcasting applications.

Table 2.2 also features an entry called SPF (median), where we report
results for the median survey of professional nowcasts for the 1-month
horizon, and analyze how the model-based nowcasts compare with the
predictions using the publicly available Survey of Professional Forecasters
maintained by the Federal Reserve Bank of Philadelphia. We find that the
sg-LASSO-MIDAS model-based nowcasts are similar to the SPF-implied
nowcasts. We also find that the NY Fed nowcasts are significantly worse
than the SPF.
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Figure 2.2: Cumulative sum of loss differentials of sg-LASSO-MIDAS model nowcasts
including financial and textual data compared with the New York Fed model for three nowcasting
horizons: solid black line cumsfe for the 2-months horizon, dash-dotted black line - cumsfe for
the 1-month horizon, and dotted line for the end-of-quarter nowcasts. The gray shaded area
corresponds to the NBER recession period.

In figure 2.2 we plot the cumulative sum of squared forecast error
(CUMSFE) loss differential of sg-LASSO-MIDAS versus NY Fed nowcasts
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for the three horizons. The CUMSFE is computed as

CUMSFE𝑡,𝑡+𝑘 =
𝑡+𝑘∑︁
𝑞=𝑡

𝑒2𝑞,𝑀1 − 𝑒2𝑞,𝑀2

for model 𝑀1 versus 𝑀2. A positive value of CUMSFE𝑡,𝑡+𝑘 means that the
model 𝑀1 has larger squared forecast errors compared to model 𝑀2 up to
𝑡+ 𝑘, and negative values imply the opposite. In our case, 𝑀1 is the New
York Fed prediction error, while 𝑀2 is the sg-LASSO-MIDAS model. We
observe persistent gains for the 2- and 1-month horizons throughout the
out-of-sample period. When comparing the sg-LASSO-MIDAS results with
additional financial and textual news series versus those based on macro
data only, we see a notable improvement at the 1-month horizon and a
more modest one at the end-of-quarter horizons. In figuree 2.3, we plot
the average CUMSFE for the 1-month and end-of-quarter horizons and
observe that the largest gains of additional financial and textual news data
are achieved during the financial crisis.

The result in figure 2.3 prompts the question whether our results are
mostly driven by this unusual period in our out-of-sample data. To assess
this, we turn our attention again to the last two columns of Table 2.2
reporting Diebold and Mariano (1995) test statistics which exclude the
financial crisis period. Compared to the tests previously discussed, we
find that the results largely remain the same, but some alternatives seem
to slightly improve (e.g. LASSO or Elastic Net). Note that this also
implies that our method performs better during periods with heavy-tailed
observations, such as the financial crisis. It should also be noted that overall
there is a slight deterioration of the average Superior Predictive Ability test
over all three horizons when we remove the financial crisis.

In figure 2.4, we plot the fraction of selected covariates by the sg-LASSO-
MIDAS model when we use the macro, financial, and textual analysis data.
For each reference quarter, we compute the ratio of each group of variables
relative to the total number of covariates. In each subfigure, we plot the
three different horizons. For all horizons, the macro series are selected
more often than financial and/or textual data. The number of selected
series increases with the horizon, however, the pattern of denser macro
series and sparser financial and textual series is visible for all three horizons.
The results are in line with the literature – macro series tend to co-move,
hence we see a denser pattern in the selection of such series, see e.g. Bok,
Caratelli, Giannone, Sbordone, and Tambalotti (2018). On the other hand,
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Figure 2.3: Cumulative sum of loss differentials (CUMSFE) of sg-LASSO-MIDAS nowcasts
when we include vs. when we exclude the additional financial and textual news data, averaged
over 1-month and the end-of-quarter horizons. The gray shaded area corresponds to the NBER
recession period.

the alternative textual analysis data appear to be very sparse, yet still
important for nowcasting accuracy, see also Thorsrud (2020).

2.6 Conclusion

This paper offers a new perspective on the high-dimensional time series
regressions with data sampled at the same or mixed frequencies and
contributes more broadly to the rapidly growing literature on the estimation,
inference, forecasting, and nowcasting with regularized machine learning
methods. The first contribution of the paper is to introduce the sparse-
group LASSO estimator for high-dimensional time series regressions. An
attractive feature of the estimator is that it recognizes time series data
structures and allows us to perform the hierarchical model selection within
and between groups. The classical LASSO and the group LASSO are
covered as special cases.

To recognize that the economic and financial time series have typically
heavier than Gaussian tails, we use a new Fuk-Nagaev concentration
inequality, from Babii, Ghysels, and Striaukas (2020a), valid for a large
class of 𝜏 -mixing processes, including 𝛼-mixing processes commonly used in
econometrics. Building on this inequality, we establish the nonasymptotic
and asymptotic properties of the sparse-group LASSO estimator.

Our empirical application provides new perspectives on applying machine
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Figure 2.4: The fraction of selected covariates attributed to macro (light gray), financial
(dark gray), and textual (black) data for three monthly horizons.

learning methods to real-time forecasting, nowcasting, and monitoring
with time series data, including unconventional data, sampled at different
frequencies. To that end, we introduce a new class of MIDAS regressions
with dictionaries linear in the parameters and based on orthogonal polynomials
with lag selection performed by the sg-LASSO estimator. We find that
the sg-LASSO outperforms the unstructured LASSO in small samples and
conclude that incorporating specific data structures should be helpful in
various applications.

Our empirical results also show that the sg-LASSO-MIDAS using only
macro data performs statistically better than NY Fed nowcasts at 2-month
horizons and overall for the 1- and 2-month and end-of-quarter horizons.
This is a comparison involving the same data and, therefore, pertains to
models. This implies that machine learning models are, for this particular
case, better than the state space dynamic factor models. When we add
the financial data and the textual news data, a total of 118 series, we find
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significant improvements in prediction quality for the shorter 1-month and
end-of-quarter horizons.
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APPENDIX

A2.1 Dictionaries

In this section, we review the choice of dictionaries for the MIDAS weight
function. It is possible to construct dictionaries using arbitrary sets
of functions, including a mix of algebraic polynomials, trigonometric
polynomials, B-splines, Haar basis, or wavelets. In this paper, we mostly
focus on dictionaries generated by orthogonalized algebraic polynomials,
though it might be interesting to tailor the dictionary for each particular
application. The attractiveness of algebraic polynomials comes from their
ability to generate a variety of shapes with a relatively low number of
parameters, which is especially desirable in low signal-to-noise environments.
The general family of appropriate orthogonal algebraic polynomials is given
by Jacobi polynomials that nest Legendre, Gegenbauer, and Chebychev’s
polynomials as a special case.

Example A2.1.1 (Jacobi polynomials). Applying the Gram-Schmidt ortho-
gonalization to the power polynomials {1, 𝑥, 𝑥2, 𝑥3, . . . } with respect to the
measure

d𝜇(𝑥) = (1− 𝑥)𝛼(1 + 𝑥)𝛽d𝑥, 𝛼, 𝛽 > −1,

on [−1, 1], we obtain Jacobi polynomials. In practice Jacobi polynomials
can be computed through the well-known tree-term recurrence relation for
𝑛 = 1, 2, . . .

𝑃
(𝛼,𝛽)
𝑛+1 (𝑥) = 𝑎𝑥𝑃 (𝛼,𝛽)

𝑛 (𝑥) + 𝑏𝑃 (𝛼,𝛽)
𝑛 (𝑥)− 𝑐𝑃

(𝛼,𝛽)
𝑛−1 (𝑥)

with 𝑎 = (2𝑛 + 𝛼 + 𝛽 + 1)(2𝑛 + 𝛼 + 𝛽 + 2)/2(𝑛 + 1)(𝑛 + 𝛼 + 𝛽 + 1),
𝑏 = (2𝑛+ 𝛼+ 𝛽 + 1)(𝛼2 − 𝛽2)/2(𝑛+ 1)(𝑛+ 𝛼+ 𝛽 + 1)(2𝑛+ 𝛼+ 𝛽), and
𝑐 = (𝛼 + 𝑛)(𝛽 + 𝑛)(2𝑛+ 𝛼 + 𝛽 + 2)/(𝑛+ 1)(𝑛+ 𝛼 + 𝛽 + 1)(2𝑛+ 𝛼 + 𝛽).
To obtain the orthogonal basis on [0, 1], we shift Jacobi polynomials with
affine bijection 𝑥 ↦→ 2𝑥− 1.

For 𝛼 = 𝛽, we obtain Gegenbauer polynomials, for 𝛼 = 𝛽 = 0, we obtain
Legendre polynomials, while for 𝛼 = 𝛽 = −1/2 or 𝛼 = 𝛽 = 1/2, we obtain
Chebychev’s polynomials of two kinds.

In the mixed frequency setting, non-orthogonalized polynomials, {1, 𝑥, 𝑥2,
𝑥3, . . . }, are also called Almon polynomials. It is preferable to use orthogonal
polynomials in practice due to reduced multicollinearity and better numerical
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properties. At the same time, orthogonal polynomials are available in
Matlab, R, Python, and Julia packages. Legendre polynomials is our
default recommendation, while other choices of 𝛼 and 𝛽 are preferable
if we want to accommodate MIDAS weights with other integrability/tail
properties.

We noted in the main body of the paper that the specification in
equation (2) deviates from the standard MIDAS polynomial specification
as it results in a linear regression model - a subtle but key innovation as it
maps MIDAS regressions in the standard regression framework. Moreover,
casting the MIDAS regressions in a linear regression framework renders
the optimization problem convex, something only achieved by Siliverstovs
(2017) using the U-MIDAS of Foroni, Marcellino, and Schumacher (2015b)
which does not recognize the mixed frequency data structure, unlike our
sg-LASSO.

A2.2 Proofs of main results

Lemma A2.2.1. Consider ‖.‖ = 𝛼|.|1 + (1− 𝛼)|.|2, where |.|𝑞 is ℓ𝑞 norm
on R𝑝. Then the dual norm of ‖.‖, denoted ‖.‖*, satisfies

‖𝑧‖* ≤ 𝛼|𝑧|*1 + (1− 𝛼)|𝑧|*2, ∀𝑧 ∈ R𝑝,

where |.|*1 is the dual norm of |.|1 and |.|*2 is the dual norm of |.|2.

Proof. Clearly, ‖.‖ is a norm. By the convexity of 𝑥 ↦→ 𝑥−1 on (0,∞)

‖𝑧‖* = sup
𝑏 ̸=0

|⟨𝑧, 𝑏⟩|
‖𝑏‖

≤ sup
�̸�=0

{︂
𝛼
|⟨𝑧, 𝑏⟩|
|𝑏|1

+ (1− 𝛼)
|⟨𝑧, 𝑏⟩|
|𝑏|2

}︂
≤ 𝛼 sup

�̸�=0

|⟨𝑧, 𝑏⟩|
|𝑏|1

+ (1− 𝛼) sup
𝑏 ̸=0

|⟨𝑧, 𝑏⟩|
|𝑏|2

= 𝛼|𝑧|*1 + (1− 𝛼)|𝑧|*2.

Proof of Theorem 3.1. By Hölder’s inequality for every 𝜍 > 0

max
𝑗∈[𝑝]

‖𝑢0𝑥0,𝑗‖𝜍 ≤ ‖𝑢0‖𝜍𝑞1 max
𝑗∈[𝑝]

‖𝑥0,𝑗‖𝜍𝑞2

with 𝑞−1
1 + 𝑞−1

2 = 1 and 𝑞1, 𝑞2 ≥ 1. Therefore, under Assumption 3.1 (i),
max𝑗∈[𝑝] ‖𝑢0𝑥0,𝑗‖𝜍 = 𝑂(1) with 𝜍 = 𝑞𝑟/(𝑞 + 𝑟). Recall also that E[𝑢𝑡𝑥𝑡,𝑗] =
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0,∀𝑗 ∈ [𝑝], see equation (3), which in conjunction with Assumption 3.1 (ii)
verifies conditions of Theorem A2.1 and shows that there exists 𝐶 > 0 such
that for every 𝛿 ∈ (0, 1)

Pr

(︃⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑡=1

𝑢𝑡𝑋𝑡

⃒⃒⃒⃒
⃒
∞

≤ 𝐶
(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇

)︃
≥ 1− 𝛿. (A2.1)

Let 𝐺* = max𝐺∈𝒢 |𝐺| be the size of the largest group in 𝒢. Note that the
sg-LASSO penalty Ω is a norm. By Lemma A2.2.1, its dual norm satisfies

Ω*(X⊤u/𝑇 ) ≤ 𝛼|X⊤u/𝑇 |∞ + (1− 𝛼)max
𝐺∈𝒢

|(X⊤u)𝐺/𝑇 |2

≤ (𝛼 + (1− 𝛼)
√
𝐺*)|X⊤u/𝑇 |∞

≤ (𝛼 + (1− 𝛼)
√
𝐺*)𝐶

(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇
≤ 𝜆/𝑐,

(A2.2)

where the first inequality follows since |𝑧|*1 = |𝑧|∞ and
(︀∑︀

𝐺∈𝒢 |𝑧𝐺|2
)︀*

=
max𝐺∈𝒢 |𝑧𝐺|2, the second by elementary computations, the third by equation
((A2.1)) with probability at least 1−𝛿 for every 𝛿 ∈ (0, 1), and the last from
the definition of 𝜆 in Assumption 3.3, where 𝑐 > 1 is as in Assumption 3.2.
By Fermat’s rule, the sg-LASSO satisfies

X⊤(X𝛽 − y)/𝑇 + 𝜆𝑧* = 0

for some 𝑧* ∈ 𝜕Ω(𝛽), where 𝜕Ω(𝛽) is the subdifferential of 𝑏 ↦→ Ω(𝑏) at 𝛽.
Taking the inner product with 𝛽 − 𝛽

⟨X⊤(y −X𝛽), 𝛽 − 𝛽⟩𝑇 = 𝜆⟨𝑧*, 𝛽 − 𝛽⟩ ≤ 𝜆
{︁
Ω(𝛽)− Ω(𝛽)

}︁
,

where the inequality follows from the definition of the subdifferential. Using
y = m+ u and rearranging this inequality

‖X(𝛽 − 𝛽)‖2𝑇−𝜆
{︁
Ω(𝛽)− Ω(𝛽)

}︁
≤ ⟨X⊤u, 𝛽 − 𝛽⟩𝑇 + ⟨X⊤(m−X𝛽), 𝛽 − 𝛽⟩𝑇

≤ Ω* (︀X⊤u/𝑇
)︀
Ω(𝛽 − 𝛽) + ‖X(𝛽 − 𝛽)‖𝑇‖m−X𝛽‖𝑇

≤ 𝑐−1𝜆Ω(𝛽 − 𝛽) + ‖X(𝛽 − 𝛽)‖𝑇‖m−X𝛽‖𝑇 .

where the second line follows by the dual norm inequality and the last by
Ω*(X⊤u/𝑇 ) ≤ 𝜆/𝑐 as shown in equation ((A2.2)). Therefore,

‖XΔ‖2𝑇 ≤ 𝑐−1𝜆Ω(Δ) + ‖XΔ‖𝑇‖m−X𝛽‖𝑇 + 𝜆
{︁
Ω(𝛽)− Ω(𝛽)

}︁
≤ (𝑐−1 + 1)𝜆Ω(Δ) + ‖XΔ‖𝑇‖m−X𝛽‖𝑇

(A2.3)
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with Δ = 𝛽 − 𝛽. Note that the sg-LASSO penalty can be decomposed as a
sum of two seminorms Ω(𝑏) = Ω0(𝑏) + Ω1(𝑏), ∀𝑏 ∈ R𝑝 with

Ω0(𝑏) = 𝛼|𝑏𝑆0
|1+(1−𝛼)

∑︁
𝐺∈𝒢0

|𝑏𝐺|2 and Ω1(𝑏) = 𝛼|𝑏𝑆𝑐
0
|1+(1−𝛼)

∑︁
𝐺∈𝒢𝑐

0

|𝑏𝐺|2.

Note also that Ω1(𝛽) = 0 and Ω1(𝛽) = Ω1(Δ). Then by the triangle
inequality

Ω(𝛽)− Ω(𝛽) ≤ Ω0(Δ)− Ω1(Δ). (A2.4)

If ‖m − X𝛽‖𝑇 ≤ 2−1‖XΔ‖𝑇 , then it follows from the first inequality in
equation ((A2.3)) and equation ((A2.4)) that

‖XΔ‖2𝑇 ≤ 2𝑐−1𝜆Ω(Δ) + 2𝜆 {Ω0(Δ)− Ω1(Δ)} .

Since the left side of this equation is positive, this shows that Ω1(Δ) ≤
𝑐0Ω0(Δ) with 𝑐0 = (𝑐+1)/(𝑐−1), and whence Δ ∈ 𝒞(𝑐0), cf., Assumption 3.2.
Then

Ω(Δ) ≤ (1 + 𝑐0)Ω0(Δ)

≤ (1 + 𝑐0)

⎛⎝𝛼√︀|𝑆0||Δ𝑆0
|2 + (1− 𝛼)

√︀
|𝒢0|
√︃∑︁

𝐺∈𝒢0

|Δ𝐺|22

⎞⎠
≤ (1 + 𝑐0)

√
𝑠𝛼

√︃∑︁
𝐺∈𝒢0

|Δ𝐺|22

≤ (1 + 𝑐0)
√︁
𝑠𝛼/𝛾Δ⊤ΣΔ,

(A2.5)

where we use the Jensen’s inequality, Assumption 3.2, and the definition of√
𝑠𝛼. Next, note that

Δ⊤ΣΔ = ‖XΔ‖2𝑇 +Δ⊤(Σ− Σ̂)Δ

≤ 2(𝑐−1 + 1)𝜆Ω(Δ) + Ω(Δ)Ω*
(︁
(Σ̂− Σ)Δ

)︁
≤ 2(𝑐−1 + 1)𝜆Ω(Δ) + Ω2(Δ)𝐺*|vech(Σ̂− Σ)|∞,

(A2.6)

where the first inequality follows from equation ((A2.3)) and the dual norm
inequality and the second by Lemma A2.2.1 and elementary computations

Ω*
(︁
(Σ̂− Σ)Δ

)︁
≤ 𝛼|(Σ̂− Σ)Δ|∞ + (1− 𝛼)max

𝐺∈𝒢

⃒⃒⃒
[(Σ̂− Σ)Δ]𝐺

⃒⃒⃒
2

≤ 𝛼|Δ|1|vech(Σ̂− Σ)|∞ + (1− 𝛼)
√
𝐺*|vech(Σ̂− Σ)|∞|Δ|1

≤ 𝐺*|vech(Σ̂− Σ)|∞Ω(Δ).
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Combining the inequalities obtained in equations (A2.5) and (A2.6)

Ω(Δ) ≤ (1 + 𝑐0)
2𝛾−1𝑠𝛼

{︁
2(𝑐−1 + 1)𝜆+𝐺*|vech(Σ̂− Σ)|∞Ω(Δ)

}︁
≤ 2(1 + 𝑐0)

2𝛾−1𝑠𝛼(𝑐
−1 + 1)𝜆+ (1− 𝐴−1)Ω(Δ),

(A2.7)

where the second line holds on the event 𝐸 , {|vech(Σ̂−Σ)|∞ ≤ 𝛾/2𝐺*𝑠𝛼(1+
2𝑐0)

2} with 1− 𝐴−1 = (1 + 𝑐0)
2/2(1 + 2𝑐0)

2 < 1. Therefore, inequalities in
equation ((A2.3) and (A2.7)) yield

Ω(Δ) ≤ 2𝐴

𝛾
(1 + 𝑐0)

2(𝑐−1 + 1)𝑠𝛼𝜆

‖XΔ‖2𝑇 ≤ 4𝐴

𝛾
(1 + 𝑐0)

2(𝑐−1 + 1)2𝑠𝛼𝜆
2.

On the other hand, if ‖m−X𝛽‖𝑇 > 2−1‖XΔ‖𝑇 , then

‖XΔ‖2𝑇 ≤ 4‖m−X𝛽‖2𝑇 .

Therefore, on the event 𝐸 we always have

‖XΔ‖2𝑇 ≤ 𝐶1𝑠𝛼𝜆
2 + 4‖m−X𝛽‖2𝑇 (A2.8)

with 𝐶1 = 4𝐴𝛾−1(1+𝑐0)
2(𝑐−1+1)2. This proves the first claim of Theorem 3.1

if we show that Pr(𝐸𝑐) ≤ 2𝑝(𝑝+1)(𝑐1𝑇
1−𝜇𝑠𝜇𝛼+exp(−𝑐2𝑇/𝑠2𝛼). To that end,

by the Cauchy-Schwartz inequality under Assumptions 3.1 (i)

max
1≤𝑗≤𝑘≤𝑝

‖𝑥0,𝑗𝑥0,𝑘‖𝑟/2 ≤ max
𝑗∈[𝑝]

‖𝑥0,𝑗‖2𝑟 = 𝑂(1).

This in conjunction with Assumption 3.1 (ii) verifies assumptions of Babii,
Ghysels, and Striaukas (2020a), Theorem 3.1 and shows that

Pr(𝐸𝑐) = Pr

(︃⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑡=1

𝑥𝑡𝑥
⊤
𝑡 − E[𝑥𝑡𝑥⊤𝑡 ]

⃒⃒⃒⃒
⃒
∞

>
𝛾

2𝐺*𝑠𝛼(1 + 2𝑐0)2

)︃

≤ 𝑐1𝑇
1−𝜇𝑠𝜇𝛼𝑝(𝑝+ 1) + 2𝑝(𝑝+ 1) exp

(︂
− 𝑐2𝑇

2

𝑠2𝛼𝐵
2
𝑇

)︂
for some 𝑐1, 𝑐2 > 0 and 𝐵2

𝑇 = max𝑗,𝑘∈[𝑝]
∑︀𝑇

𝑡=1

∑︀𝑇
𝑙=1 |Cov(𝑥𝑡,𝑗𝑥𝑡,𝑘, 𝑥𝑙,𝑗𝑥𝑙,𝑘)|.

Lastly, under Assumption 3.1, by Babii, Ghysels, and Striaukas (2020a),
Lemma A.1.2 𝐵2

𝑇 = 𝑂(𝑇 ).
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To prove the second claim of Theorem 3.1, suppose first that Δ ∈ 𝒞(2𝑐0).
Then on the event 𝐸

Ω2(Δ) = (Ω0(Δ) + Ω1(Δ))2

≤ (1 + 2𝑐0)
2Ω2

0(Δ)

≤ (1 + 2𝑐0)
2Δ⊤ΣΔ𝑠𝛼/𝛾

= (1 + 2𝑐0)
2
{︁
‖XΔ‖2𝑇 +Δ⊤(Σ− Σ̂)Δ

}︁
𝑠𝛼/𝛾

≤ (1 + 2𝑐0)
2
{︁
𝐶1𝑠𝛼𝜆

2 + 4‖m−X𝛽‖2𝑇 + Ω2(Δ)𝐺*|vech(Σ̂− Σ)|∞
}︁
𝑠𝛼/𝛾

≤ (1 + 2𝑐0)
2
{︀
𝐶1𝑠𝛼𝜆

2 + 4‖m−X𝛽‖2𝑇
}︀
𝑠𝛼/𝛾 +

1

2
Ω2(Δ),

where we use the inequality in equations ((A2.5), (A2.6), and (A2.8)).
Therefore,

Ω2(Δ) ≤ 2(1 + 2𝑐0)
2
{︀
𝐶1𝑠𝛼𝜆

2 + 4‖m−X𝛽‖2𝑇
}︀
𝑠𝛼/𝛾. (A2.9)

On the other hand, if Δ ̸∈ 𝒞(2𝑐0), then Δ ̸∈ 𝒞(𝑐0), which as we have already
shown implies ‖m −X𝛽‖𝑇 > 2−1‖XΔ‖𝑇 . In conjunction with equations
((A2.3) and (A2.4)), this shows that

0 ≤ 𝜆𝑐−1Ω(Δ) + 2‖m−X𝛽‖2𝑇 + 𝜆 {Ω0(Δ)− Ω1(Δ)} ,

and whence

Ω1(Δ) ≤ 𝑐0Ω0(Δ) +
2𝑐

𝜆(𝑐− 1)
‖m−X𝛽‖2𝑇

≤ 1

2
Ω1(Δ) +

2𝑐

𝜆(𝑐− 1)
‖m−X𝛽‖2𝑇 .

This shows that

Ω(Δ) ≤ (1 + (2𝑐0)
−1)Ω1(Δ)

≤ (1 + (2𝑐0)
−1)

4𝑐

𝜆(𝑐− 1)
‖m−X𝛽‖2𝑇 .

Combining this with the inequality in equation ((A2.9)), we obtain the
second claim of Theorem 3.1.

The following result is proven in Babii, Ghysels, and Striaukas (2020a),
see their Theorem 3.1.

Theorem A2.1. Let (𝜉𝑡)𝑡∈Z be a centered stationary stochastic process in
R𝑝 such that (i) for some 𝜍 > 2, max𝑗∈[𝑝] ‖𝜉0,𝑗‖𝜍 = 𝑂(1); (ii) for every
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𝑗 ∈ [𝑝], 𝜏 -mixing coefficients of 𝜉𝑡,𝑗 satisfy 𝜏
(𝑗)
𝑘 ≤ 𝑐𝑘−𝑎 for some constants

𝑐 > 0 and 𝑎 > (𝜍 − 1)/(𝜍 − 2). Then there exists 𝐶 > 0 such that for every
𝛿 ∈ (0, 1)

Pr

(︃⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒
∞

≤ 𝐶
(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇

)︃
≥ 1− 𝛿

with 𝜅 = ((𝑎+ 1)𝜍 − 1)/(𝑎+ 𝜍 − 1).

A2.3 ARDL-MIDAS: moments and
𝜏-mixing coefficients

The ARDL-MIDAS process (𝑦𝑡)𝑡∈Z is defined as

𝜑(𝐿)𝑦𝑡 = 𝜉𝑡,

where 𝜑(𝐿) = 𝐼 − 𝜌1𝐿 − 𝜌2𝐿
2 − · · · − 𝜌𝐽𝐿

𝐽 is a lag polynomial and 𝜉𝑡 =∑︀𝑝
𝑗=0 𝑥𝑡,𝑗𝛾𝑗 + 𝑢𝑡. The process (𝑦𝑡)𝑡∈Z is 𝜏 -mixing and has finite moments of

order 𝑞 > 1 as illustrated below.

Assumption A2.3.1. Suppose that (𝜉𝑡)𝑡∈Z is a stationary process such
that (i) ‖𝜉𝑡‖𝑞 < ∞ for some 𝑞 > 1; (ii) the 𝛽-mixing coefficients satisfy
𝛽𝑘 ≤ 𝐶𝑎𝑘 for some 𝑎 ∈ (0, 1) and 𝐶 > 0; and (iii) 𝜑(𝑧) ̸= 0 for all 𝑧 ∈ C
such that |𝑧| ≤ 1.

Note that by Davydov (1973), (ii) holds if (𝜉𝑡)𝑡∈Z is a geometrically
ergodic Markov process and that (iii) rules out the unit root process.

Proposition A2.3.1. Under Assumption A2.3.1, the ARDL-MIDAS process
has moments of order 𝑞 > 1 and 𝜏 -mixing coefficients 𝜏𝑘 ≤ 𝐶(𝑎𝑏𝑘 + 𝑐𝑘) for
some 𝑐 ∈ (0, 1), 𝐶 > 0, and 𝑏 = 1− 1/𝑞.

Proof. Under (iii) we can invert the autoregressive lag polynomial and
obtain

𝑦𝑡 =
∞∑︁
𝑗=0

𝜓𝑗𝜉𝑡−𝑗

for some (𝜓𝑗)
∞
𝑗=0 ∈ ℓ1. Note that (𝑦𝑡)𝑡∈Z has dependent innovations. Clearly,

(𝑦𝑡)𝑡∈Z is stationary provided that (𝜉𝑡)𝑡∈Z is stationary, which is the case by
the virtue of Assumption A2.3.1. Next, since

‖𝑦𝑡‖𝑞 ≤
∞∑︁
𝑗=0

|𝜓𝑗|‖𝜉0‖𝑞
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and ‖𝜉0‖𝑞 < ∞ under (i), we verify that ‖𝑦𝑡‖𝑞 < ∞. Let (𝜉′𝑡)𝑡∈Z be a
stationary process distributed as (𝜉𝑡)𝑡∈Z and independent of (𝜉𝑡)𝑡≤0. Then
by Dedecker and Prieur (2005), Example 1, the 𝜏 -mixing coefficients of
(𝑦𝑡)𝑡∈Z satisfy

𝜏𝑘 ≤ ‖𝜉0 − 𝜉′0‖𝑞
∑︁
𝑗≥𝑘

|𝜓𝑗|+ 2
𝑘−1∑︁
𝑗=0

|𝜓𝑗|
∫︁ 𝛽𝑘−𝑗

0

𝑄𝜉0(𝑢)d𝑢

≤ 2‖𝜉0‖𝑞
∑︁
𝑗≥𝑘

|𝜓𝑗|+ 2‖𝜉0‖𝑞
𝑘−1∑︁
𝑗=0

|𝜓𝑗|𝛽1−1/𝑞
𝑘−𝑗 ,

where (𝛽𝑘)𝑘≥1 are 𝛽-mixing coefficients of (𝜉𝑡)𝑡∈Z and the second line follows
by Hölder’s inequality. Brockwell and Davis (1991), p.85 shows that there
exist 𝑐 ∈ (0, 1) and 𝐾 > 0 such that |𝜓𝑗| ≤ 𝐾𝑐𝑗. Therefore,∑︁

𝑗≥𝑘

|𝜓𝑗| = 𝑂(𝑐𝑘)

and under (ii)

𝑘−1∑︁
𝑗=0

|𝜓𝑗|𝛽1−1/𝑞
𝑘−𝑗 ≤ 𝐶𝐾

𝑘−1∑︁
𝑗=0

𝑐𝑗𝑎(𝑘−𝑗)(𝑞−1)/𝑞 ≤

{︃
𝐶𝐾 𝑎𝑘(𝑞−1)/𝑞−𝑐𝑘

1−𝑐𝑎(1−𝑞)/𝑞 if 𝑐 ̸= 𝑎(𝑞−1)/𝑞,

𝐶𝐾𝑘𝑎𝑘(𝑞−1)/𝑞 otherwise.

This proves the second statement.
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A2.4 Monte Carlo Simulations

Table A2.1: Forecasting accuracy results. – See Table A2.2

FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M

T Baseline scenario 𝜀ℎ ∼𝑖.𝑖.𝑑. student-𝑡(5)

50 1.920 2.086 2.145 1.848 1.731 1.537 2.081 2.427 2.702 2.399 2.038 1.702
0.039 0.042 0.043 0.038 0.036 0.031 0.042 0.053 0.062 0.056 0.050 0.041

100 1.423 1.670 1.791 1.670 1.517 1.320 1.532 1.933 2.152 1.831 1.523 1.315
0.029 0.033 0.036 0.034 0.031 0.027 0.030 0.039 0.044 0.037 0.031 0.027

200 1.292 1.502 1.645 1.407 1.268 1.170 1.410 1.741 2.017 1.493 1.278 1.194
0.026 0.030 0.033 0.028 0.026 0.024 0.029 0.035 0.043 0.031 0.026 0.024

High-frequency process: VAR(1) Legendre degree 𝐿 = 5

50 1.869 2.645 2.863 2.192 1.712 1.431 1.920 2.086 2.145 1.848 1.741 1.598
0.039 0.053 0.057 0.047 0.036 0.030 0.039 0.042 0.043 0.038 0.035 0.032

100 1.474 2.071 2.312 1.622 1.373 1.247 1.423 1.670 1.791 1.670 1.553 1.368
0.030 0.042 0.048 0.033 0.028 0.026 0.029 0.033 0.036 0.034 0.032 0.028

200 1.335 1.919 2.080 1.369 1.239 1.216 1.292 1.502 1.645 1.407 1.298 1.187
0.026 0.039 0.042 0.029 0.025 0.025 0.026 0.030 0.033 0.028 0.026 0.024

Legendre degree 𝐿 = 10 Low frequency noise level 𝜎2
𝑢=5

50 1.920 2.086 2.145 1.848 1.778 1.661 8.927 9.048 9.020 7.714 7.308 6.929
0.039 0.042 0.043 0.038 0.037 0.034 0.182 0.184 0.181 0.155 0.149 0.140

100 1.423 1.670 1.791 1.670 1.617 1.446 6.643 7.300 7.536 7.510 6.953 6.305
0.029 0.033 0.036 0.034 0.033 0.029 0.135 0.144 0.153 0.154 0.144 0.128

200 1.292 1.502 1.645 1.407 1.344 1.225 6.008 6.580 6.902 6.809 6.270 5.703
0.026 0.030 0.033 0.028 0.027 0.025 0.123 0.131 0.137 0.137 0.127 0.115

Half high-frequency lags Number of covariates 𝑝 = 50

50 2.256 2.117 2.505 1.885 1.816 1.623 1.902 1.766 1.621
0.047 0.044 0.050 0.038 0.037 0.033 0.038 0.035 0.032

100 1.655 1.685 2.079 1.679 1.595 1.370 3.593 3.277 3.318 1.754 1.599 1.403
0.033 0.033 0.041 0.034 0.032 0.027 0.075 0.068 0.068 0.035 0.032 0.028

200 1.528 1.539 2.005 1.365 1.355 1.202 1.863 1.933 2.019 1.524 1.364 1.189
0.031 0.030 0.040 0.027 0.027 0.024 0.038 0.039 0.039 0.030 0.027 0.024

Baseline scenario, 𝜌 = 0.7 Number of covariates 𝑝 = 50, 𝜌 = 0.7

50 2.411 3.019 3.471 2.786 2.298 1.720 4.588 3.604 2.145
0.051 0.059 0.069 0.061 0.051 0.036 0.093 0.077 0.044

100 1.717 2.423 2.943 1.710 1.501 1.331 5.351 5.030 4.854 2.275 1.910 1.424
0.034 0.048 0.058 0.035 0.031 0.027 0.111 0.102 0.099 0.048 0.040 0.029

200 1.564 2.135 2.657 1.340 1.269 1.222 2.384 2.826 3.290 1.499 1.385 1.217
0.032 0.043 0.052 0.027 0.026 0.025 0.048 0.056 0.065 0.030 0.028 0.024
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Table A2.2: Nowcasting accuracy results. The table reports simulation results for nowcasting

accuracy. The baseline DGP (upper-left block) is with the low-frequency noise level 𝜎2
𝑢 = 1,

the degree of Legendre polynomial 𝐿 = 3, and Gaussian high-frequency noise. All remaining

blocks report results for deviations from the baseline DGP. In the upper-right block, the noise

term of high-frequency covariates is student-𝑡(5). Each block reports results for LASSO-U-

MIDAS (LASSO-U), LASSO-MIDAS (LASSO-M), and sg-LASSO-MIDAS (SGL-M) (the last

three columns). We also report results for aggregated predictive regressions with flow aggregation

(FLOW), stock aggregation (STOCK), and taking the middle value (MIDDLE). We vary the

sample size 𝑇 from 50 to 200. Each entry in the odd row is the average mean squared forecast

error, while each even row is the simulation standard error.

FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M

T Baseline scenario 𝜀ℎ ∼𝑖.𝑖.𝑑. student-𝑡(5)

50 1.987 2.113 2.184 1.870 1.753 1.606 2.257 2.391 2.649 2.422 2.113 1.801
0.043 0.042 0.043 0.038 0.036 0.032 0.046 0.054 0.057 0.052 0.046 0.038

100 1.446 1.632 1.769 1.667 1.541 1.345 1.659 1.889 2.139 1.903 1.678 1.462
0.029 0.032 0.034 0.033 0.031 0.026 0.033 0.038 0.043 0.038 0.033 0.029

200 1.318 1.482 1.609 1.448 1.328 1.220 1.505 1.728 1.971 1.608 1.411 1.297
0.026 0.029 0.032 0.029 0.026 0.024 0.030 0.035 0.041 0.033 0.028 0.026

High-frequency process: VAR(1) Legendre degree 𝐿 = 5

50 2.086 2.418 2.856 2.254 1.817 1.503 1.987 2.113 2.184 1.870 1.767 1.635
0.044 0.050 0.057 0.049 0.039 0.031 0.043 0.042 0.043 0.038 0.036 0.033

100 1.642 1.935 2.365 1.690 1.459 1.328 1.446 1.632 1.769 1.667 1.564 1.389
0.033 0.039 0.048 0.035 0.030 0.028 0.029 0.032 0.034 0.033 0.031 0.027

200 1.475 1.771 2.247 1.442 1.312 1.268 1.318 1.482 1.609 1.448 1.351 1.230
0.029 0.036 0.046 0.029 0.027 0.026 0.026 0.029 0.032 0.029 0.027 0.024

Legendre degree 𝐿 = 10 Low frequency noise level 𝜎2
𝑢=5

50 1.987 2.113 2.184 1.870 1.799 1.698 9.121 9.208 9.167 7.700 7.397 7.087
0.043 0.042 0.043 0.038 0.037 0.034 0.193 0.184 0.181 0.155 0.150 0.143

100 1.446 1.632 1.769 1.667 1.606 1.454 6.646 7.149 7.433 7.454 6.911 6.222
0.029 0.032 0.034 0.033 0.032 0.029 0.135 0.141 0.144 0.149 0.138 0.123

200 1.318 1.482 1.609 1.448 1.400 1.267 6.052 6.482 6.777 6.835 6.345 5.780
0.026 0.029 0.032 0.029 0.028 0.025 0.122 0.127 0.134 0.137 0.127 0.114

Half high-frequency lags Number of covariates 𝑝 = 50

50 2.378 2.164 2.540 1.875 1.827 1.723 1.912 1.767 1.611
0.049 0.044 0.049 0.038 0.037 0.035 0.039 0.035 0.033

100 1.765 1.692 2.184 1.810 1.703 1.479 3.703 3.162 3.179 1.762 1.622 1.441
0.035 0.033 0.042 0.036 0.033 0.029 0.076 0.064 0.068 0.035 0.032 0.028

200 1.605 1.520 1.976 1.544 1.495 1.324 1.912 1.871 2.017 1.546 1.428 1.260
0.031 0.029 0.039 0.031 0.029 0.026 0.038 0.037 0.040 0.032 0.029 0.026

Baseline scenario, 𝜌 = 0.7 Number of covariates 𝑝 = 50, 𝜌 = 0.7

50 2.606 2.872 3.618 2.927 2.599 1.884 4.606 3.816 2.242
0.055 0.058 0.073 0.063 0.054 0.039 0.096 0.083 0.046

100 1.837 2.154 3.020 1.783 1.596 1.412 5.154 4.373 4.764 2.373 2.161 1.520
0.037 0.043 0.059 0.037 0.032 0.028 0.102 0.089 0.100 0.051 0.046 0.030

200 1.661 1.919 2.753 1.389 1.341 1.287 2.622 2.555 3.364 1.563 1.500 1.315
0.033 0.038 0.056 0.027 0.027 0.026 0.052 0.051 0.067 0.032 0.031 0.027
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Table A2.3: Shape of weights estimation accuracy I. The table reports results for shape

of weights estimation accuracy for the first four DGPs of Tables A2.1-A2.2 using LASSO-U,

LASSO-M and SGL-M estimators for the weight functions Beta(1, 3), Beta(2, 3), and Beta(2, 2)

with sample size 𝑇 = 50, 100 and 200. Entries in odd rows are the average mean integrated

squared error and in even rows the simulation standard error.

LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M

T=50 T=100 T=200
Baseline scenario

Beta(1, 3) 2.028 1.867 1.312 2.005 1.518 0.733 1.947 0.809 0.388
0.001 0.009 0.015 0.001 0.011 0.010 0.002 0.009 0.005

Beta(2, 3) 1.248 1.192 0.988 1.241 1.042 0.662 1.219 0.710 0.418
0.001 0.006 0.011 0.001 0.006 0.008 0.001 0.006 0.005

Beta(2, 2) 1.093 1.035 0.870 1.088 0.890 0.573 1.073 0.559 0.330
0.001 0.005 0.009 0.001 0.006 0.007 0.001 0.005 0.004

𝜀ℎ ∼𝑖.𝑖.𝑑. student-𝑡(5)

Beta(1, 3) 2.015 1.671 1.023 1.964 1.027 0.465 1.892 0.434 0.248
0.001 0.011 0.014 0.002 0.011 0.007 0.001 0.005 0.004

Beta(2, 3) 1.242 1.107 0.816 1.223 0.807 0.462 1.191 0.479 0.297
0.001 0.007 0.010 0.001 0.007 0.006 0.001 0.005 0.004

Beta(2, 2) 1.088 0.959 0.740 1.075 0.664 0.403 1.051 0.348 0.221
0.001 0.006 0.009 0.001 0.006 0.006 0.001 0.004 0.003

high-frequency process: VAR(1)

Beta(1, 3) 1.944 1.353 0.960 1.909 0.905 0.657 1.871 0.562 0.485
0.003 0.014 0.014 0.002 0.010 0.009 0.002 0.006 0.006

Beta(2, 3) 1.186 0.917 0.821 1.166 0.662 0.594 1.147 0.508 0.490
0.002 0.012 0.013 0.002 0.009 0.008 0.001 0.006 0.005

Beta(2, 2) 1.045 0.778 0.754 1.032 0.550 0.540 1.019 0.412 0.422
0.002 0.011 0.012 0.001 0.008 0.008 0.001 0.005 0.005

Legendre degree 𝐿 = 5

Beta(1, 3) 2.028 1.907 1.487 2.005 1.619 0.909 1.947 0.915 0.436
0.001 0.009 0.016 0.001 0.010 0.012 0.002 0.009 0.006

Beta(2, 3) 1.248 1.211 1.090 1.241 1.091 0.783 1.219 0.772 0.462
0.001 0.005 0.012 0.001 0.006 0.009 0.001 0.006 0.005

Beta(2, 2) 1.093 1.055 0.962 1.088 0.938 0.672 1.073 0.619 0.356
0.001 0.005 0.010 0.001 0.005 0.008 0.001 0.005 0.005

Baseline scenario, 𝜌 = 0.7

Beta(1, 3) 1.901 1.035 0.526 1.839 0.388 0.243 1.805 0.196 0.166
0.003 0.012 0.009 0.003 0.005 0.004 0.002 0.002 0.002

Beta(2, 3) 1.174 0.742 0.492 1.139 0.428 0.301 1.117 0.310 0.252
0.002 0.009 0.008 0.002 0.005 0.004 0.002 0.003 0.003

Beta(2, 2) 1.031 0.594 0.396 1.002 0.291 0.212 0.983 0.190 0.153
0.002 0.007 0.006 0.002 0.003 0.003 0.002 0.002 0.002
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Table A2.4: Shape of weights estimation accuracy II. – See Table A2.3

LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M

T=50 T=100 T=200
Legendre degree 𝐿 = 10

Beta(1, 3) 2.028 1.962 1.685 2.005 1.769 1.150 1.947 1.078 0.528
0.001 0.008 0.016 0.001 0.010 0.013 0.002 0.011 0.007

Beta(2, 3) 1.248 1.247 1.247 1.241 1.168 0.960 1.219 0.869 0.522
0.001 0.004 0.012 0.001 0.005 0.010 0.001 0.006 0.006

Beta(2, 2) 1.093 1.086 1.091 1.088 1.011 0.823 1.073 0.710 0.398
0.001 0.004 0.011 0.001 0.005 0.009 0.001 0.006 0.005

low frequency noise level 𝜎2
𝑢=5

Beta(1, 3) 2.038 1.941 1.588 2.025 1.816 1.109 1.983 1.436 0.563
0.001 0.009 0.019 0.001 0.009 0.014 0.002 0.010 0.009

Beta(2, 3) 1.252 1.215 1.144 1.246 1.160 0.878 1.230 0.996 0.529
0.001 0.006 0.015 0.001 0.005 0.010 0.001 0.006 0.007

Beta(2, 2) 1.096 1.065 1.022 1.092 1.007 0.773 1.080 0.845 0.460
0.001 0.006 0.013 0.001 0.005 0.009 0.001 0.005 0.007

Half high-frequency lags

Beta(1, 3) 2.028 1.826 1.219 1.990 1.504 0.825 1.924 0.964 0.611
0.001 0.009 0.012 0.001 0.010 0.008 0.001 0.007 0.004

Beta(2, 3) 1.252 1.206 1.072 1.243 1.133 0.925 1.224 0.968 0.779
0.000 0.004 0.008 0.001 0.004 0.006 0.001 0.005 0.005

Beta(2, 2) 1.096 1.060 0.991 1.090 1.007 0.878 1.076 0.890 0.783
0.000 0.004 0.008 0.000 0.004 0.006 0.000 0.004 0.004

Number of covariates 𝑝 = 50

Beta(1, 3) 2.044 1.998 1.586 2.032 1.867 1.061 1.999 1.285 0.512
0.000 0.004 0.012 0.001 0.007 0.011 0.001 0.009 0.006

Beta(2, 3) 1.255 1.238 1.099 1.252 1.191 0.875 1.243 0.963 0.533
0.000 0.002 0.007 0.000 0.004 0.007 0.001 0.005 0.005

Beta(2, 2) 1.099 1.083 0.979 1.097 1.036 0.782 1.091 0.804 0.467
0.000 0.002 0.007 0.000 0.003 0.006 0.000 0.005 0.005

Number of covariates 𝑝 = 50, 𝜌 = 0.7

Beta(1, 3) 1.996 1.726 0.878 1.902 0.839 0.334 1.835 0.314 0.188
0.002 0.010 0.011 0.002 0.009 0.005 0.002 0.003 0.002

Beta(2, 3) 1.229 1.071 0.692 1.180 0.648 0.344 1.138 0.411 0.248
0.001 0.006 0.008 0.002 0.006 0.004 0.002 0.003 0.003

Beta(2, 2) 1.078 0.925 0.610 1.040 0.495 0.276 1.003 0.272 0.167
0.001 0.005 0.007 0.001 0.005 0.004 0.001 0.002 0.002
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(a) LASSO-U-MIDAS
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(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS
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(e) LASSO-MIDAS
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Figure A2.1: The figure shows the fitted Beta(1,3) weights. We plot the estimated weights

for the LASSO-U-MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline

DGP scenario. The first row plots weights for the sample size 𝑇 = 50, the second row plots

weights for the sample size 𝑇 = 200. The black solid line is the median estimate of the weights

function, the black dashed line is the population weight function, and the gray area is the 90%

confidence interval.

(a) LASSO-U-MIDAS

2 4 6 8 10 12
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

W
ei
gh
t

(b) LASSO-MIDAS

2 4 6 8 10 12

0

0.5

1

1.5

W
ei
gh
t

(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS
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Figure A2.2: The figure shows the fitted Beta(2,3) weights. We plot the estimated weights
for the LASSO-U-MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline
DGP scenario. The first row plots weights for the sample size 𝑇 = 50, the second row plots
weights for the sample size 𝑇 = 200. The black solid line is the median estimate of the weights
function, the black dashed line is the population weight function, and the gray area is the 90%
confidence interval.
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(a) LASSO-U-MIDAS
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(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS
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(e) LASSO-MIDAS
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Figure A2.3: The figure shows the fitted Beta(2,2) weights. We plot the estimated weights
for the LASSO-U-MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline
DGP scenario. The first row plots weights for the sample size 𝑇 = 50, the second row plots
weights for the sample size 𝑇 = 200. The black solid line is the median estimate of the weights
function, the black dashed line is the population weight function, and the gray area is the 90%
confidence interval.
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A2.5 Detailed description of data and
models

The standard macro variables are collected from Haver Analytics and
ALFRED databases. ALFRED is a public data source for real-time data
made available by the Federal Serve Bank of St. Louis; see the full list of
the series with further details in Table A2.5. For series that are collected
from the Haver Analytics database, we use as reported data, that is the
first release is used for each data point. For the data that we collect from
ALFRED, full data vintages are used. All the data is real-time, hence
publication delays for each series are taken into consideration and we align
each series accordingly. We use twelve monthly and four quarterly lags
for each monthly and quarterly series respectively and apply Legendre
aggregation with polynomial degree set to three. The groups are defined as
lags of each series.

On top of macro data, we add eight financial series which are collected
from FRED database; the full list of the series appears in Table A2.6. These
series are available in real time, hence no publication delays are needed in
this case. We use three monthly lags and apply Legendre aggregation with
polynomial degree set to two. As for macro, we group all lags of each series.

Lastly, we add textual analysis covariates from www.structureofnews.com.
The data is real time, i.e., topic models are estimated for each day and the
monthly series are obtained by aggregating daily data; see Bybee, Kelly,
Manela, and Xiu (2020) for further details on the data construction. We use
categories of series are potentially closely tied with economic activity, which
are Banks, Economic Growth, Financial Markets, Government, Industry,
International Affairs, Labor/income, and Oil & Mining. In total, we add
76 news attention series; the full list is available in Table A2.7. Three lags
are used and Legendre aggregation of degree two is applied to each series.
In this case, we group variables based on categories.

To make the comparison with the NY Fed nowcasts as close as possible,
we use 15 years (60 quarters) of the data and use rolling window estimation.
The first nowcast is for the 2002 Q1 (first quarter that NY Fed publishes its
historic nowcasts) and the effective sample size starts at 1988 Q1 (taking 15
years of data accounting for lags). We calculate predictions until the sample
is exhausted, which is 2017 Q2, the last date for which news attention data
is available. Real GDP growth rate data vintages are taken from ALFRED
database. Some macro series start later than 1988 Q1, in which case we
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impute zero values. Lastly, we use four lags of real GDP growth rate in all
models.

Alternative estimators We implemented the following alternative machine
learning nowcasting methods. The first method is the PCA factor-augmented
autoregression, where we estimate the first principal component of the data
panel and use it together with four autoregressive lags. We denote this
model PCA-OLS. We then consider three alternative penalty functions for
the same linear model: ridge, LASSO, and Elastic Net. For these methods,
we leave high-frequency lags unrestricted, and thus we call these methods
the unrestricted MIDAS (U-MIDAS). As for the sg-LASSO-MIDAS model,
we tune one- and two-dimensional regularization parameters via 5-fold
cross-validation.

Table A2.5: Data description table (macro data)– The Series column gives a time-
series name, which is given in the second column Source. The column Units denotes the data
transformation applied to a time-series.

Series Source Units

1 ADP nonfarm private payroll employment Haver Level change (thousands)
2 Building permits ALFRED Level change (thousands)
3 Capacity utilization ALFRED Ppt. change
4 Civilian unemployment rate ALFRED Ppt. change
5 CPI-U: all items ALFRED MoM % change
6 CPI-U: all items less food and energy ALFRED MoM % change
7 Empire State Mfg. survey: general business conditions Haver Index
8 Exports: goods and services Haver MoM % change
9 Export price index Haver MoM % change

10 Housing starts ALFRED MoM % change
11 Imports: goods and services Haver MoM % change
12 Import price index Haver MoM % change
13 Industrial production index ALFRED MoM % change
14 Inventories: Total business ALFRED MoM % change
15 ISM mfg.: PMI composite index Haver Index
16 ISM mfg.: Prices index Haver Index
17 ISM mfg.: Employment index Haver Index
18 ISM nonmanufacturing: NMI composite index Haver Index
19 JOLTS: Job openings: total Haver Level change (thousands)
20 Manufacturers new orders: durable goods ALFRED MoM % change
21 Manufacturing payrolls Haver Level change (thousands)
22 Manufacturers shipments: durable goods Haver MoM % change
23 Manufacturers inventories: durable goods Haver MoM % change
24 Manufacturers’ unfilled orders: total manufacturing Haver MoM % change
25 New single family houses sold ALFRED MoM % change
26 Nonfarm business sector: unit labor cost ALFRED QoQ % change (annual rate)
27 PCE less food and energy: chain price index ALFRED MoM % change
28 PCE: chain price index ALFRED MoM % change
29 Philly Fed Mfg. business outlook: current activity Haver Index
30 Retail sales and food services ALFRED MoM % change
31 Real personal consumption expenditures ALFRED MoM % change
32 Real gross domestic income Haver QoQ % change (annual rate)
33 Real disposable personal income ALFRED MoM % change
34 Value of construction put in place Haver MoM % change
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Table A2.6: Data description table (financial and uncertainty series) – The Series column
gives a time-series name, which is given in the second column Source. The column Units denotes
the data transformation applied to a time-series.

Series Source Units

1 BAA less AAA corporate bond spread FRED Level
2 BAA less 10-year bond spread FRED Level
3 S&500 FRED Log-returns %
4 TED spread FRED Level
5 10-year less 3-month bond spread FRED Level
6 VIX FRED Level
7 Economic policy uncertainty index (EPUI) FRED Index
8 Equity market-related economic uncertainty index (EMEUI) FRED Index
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Group Series
1 Banks Bank loans
2 Banks Credit ratings
3 Banks Financial crisis
4 Banks Mortgages
5 Banks Nonperforming loans
6 Banks Savings & loans
7 Economic Growth Economic growth
8 Economic Growth European sovereign debt
9 Economic Growth Federal Reserve

10 Economic Growth Macroeconomic data
11 Economic Growth Optimism
12 Economic Growth Product prices
13 Economic Growth Recession
14 Economic Growth Record high
15 Financial Markets Bear/bull market
16 Financial Markets Bond yields
17 Financial Markets Commodities
18 Financial Markets Currencies/metals
19 Financial Markets Exchanges/composites
20 Financial Markets International exchanges
21 Financial Markets IPOs
22 Financial Markets Options/VIX
23 Financial Markets Share payouts
24 Financial Markets Short sales
25 Financial Markets Small caps
26 Financial Markets Trading activity
27 Financial Markets Treasury bonds
28 Government Environment
29 Government National security
30 Government Political contributions
31 Government Private/public sector
32 Government Regulation
33 Government Safety administrations
34 Government State politics
35 Government Utilities
36 Government Watchdogs
37 Industry Cable
38 Industry Casinos
39 Industry Chemicals/paper
40 Industry Competition
41 Industry Couriers
42 Industry Credit cards
43 Industry Fast food
44 Industry Foods/consumer goods
45 Industry Insurance
46 Industry Luxury/beverages
47 Industry Revenue growth
48 Industry Small business
49 Industry Soft drinks
50 Industry Subsidiaries
51 Industry Tobacco
52 Industry Venture capital
53 International Affairs Canada/South Africa
54 International Affairs China
55 International Affairs France/Italy
56 International Affairs Germany
57 International Affairs Japan
58 International Affairs Latin America
59 International Affairs Russia
60 International Affairs Southeast Asia
61 International Affairs Trade agreements
62 International Affairs UK
63 Labor/income Executive pay
64 Labor/income Fees
65 Labor/income Government budgets
66 Labor/income Health insurance
67 Labor/income Job cuts

Page Appx. - 63



Chapter 2 Machine Learning Time Series Regressions with an Application to Nowcasting

68 Labor/income Pensions
69 Labor/income Taxes
70 Labor/income Unions
71 Oil & Mining Agriculture
72 Oil & Mining Machinery
73 Oil & Mining Mining
74 Oil & Mining Oil drilling
75 Oil & Mining Oil market
76 Oil & Mining Steel

Table A2.7: Data description table (textual data) – The Group column is a group name of
individual textual analysis series which appear in the column Series. Data is taken in levels.

A2.5.1 Additional results

Table A2.8: Nowcast comparisons for models with macro data including series with short
samples – Nowcast horizons are 2- and 1-month ahead, as well as the end of the quarter. Column
Rel-RMSE reports root mean squared forecasts error relative to the AR(1) model. Column DM-
stat-1 reports Diebold and Mariano (1995) test statistic of all models relative to NY Fed nowcasts,
while column DM-stat-2 reports the Diebold Mariano test statistic relative to sg-LASSO-MIDAS
model. Out-of-sample period: 2002 Q1 to 2017 Q2.

Rel-RMSE DM-stat-1 DM-stat-2
2-month horizon

sg-LASSO-MIDAS 0.737 -2.500
NY Fed 0.946 2.500

1-month horizon
sg-LASSO-MIDAS 0.726 -0.804

NY Fed 0.805 0.804
End-of-quarter

sg-LASSO-MIDAS 0.704 -0.048
NY Fed 0.708 0.048

Table A2.9: Nowcast comparison table (excluding financial data in Table A2.6) – Nowcast
horizons are 2- and 1-month ahead, as well as the end of the quarter. Column Rel-RMSE
reports root mean squared forecasts error relative to the AR(1) model. Column DM-stat-1
reports Diebold and Mariano (1995) test statistic of all models relative to the NY FED nowcast.
Out-of-sample period: 2002 Q1 to 2017 Q2.

Rel-RMSE DM-stat-1 DM-stat-2
2-month horizon

sg-LASSO-MIDAS 0.794 -1.780
NY Fed 0.946 1.780

1-month horizon
sg-LASSO-MIDAS 0.693 -1.161

NY Fed 0.805 1.161
End-of-quarter

sg-LASSO-MIDAS 0.691 -0.221
NY Fed 0.707 0.221
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Chapter 3

High-Dimensional Granger Causality Tests with an

Application to VIX and News

with Andrii Babii and Eric Ghysels

3.1 Introduction

Modern time series analysis is increasingly using high-dimensional datasets,
typically available at different frequencies. Conventional time series are
often supplemented with non-traditional data, such as the high-dimensional
data coming from the natural language processing. For instance, Bybee,
Kelly, Manela, and Xiu (2020) extract 180 topic attention series from
the over 800,000 daily Wall Street Journal news articles during 1984-2017
that have shown by Babii, Ghysels, and Striaukas (2020b) to be a useful
supplement to more traditional macroeconomic and financial datasets for
nowcasting US GDP growth.

In his seminal paper, Clive Granger defined causality in terms of high-
dimensional time series data. His formal definition, see (Granger, 1969,
Definition 1), considered all the information accumulated in the universe up
to time 𝑡− 1 (a process he called 𝑈𝑡) and examined predictability using 𝑈𝑡

with and without a specific series of interest 𝑌𝑡. It is still an open question
how to implement Granger’s test in a high-dimensional time series setting.
It is the purpose of this paper to do this via regularized regressions using
HAC-based inference. In a sense, we are trying to implement Granger’s
original idea of causality.1

It is worth relating our to the existing literature on Granger causality
with high-dimensional data. Various dimensionality reduction schemes

1There exists an extensive literature on causal inference with machine learning methods
within the static Neyman-Rubin’s potential outcomes framework; see Athey and Imbens (2019)
for the excellent review and further references.
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have been considered. For example, Box and Tiao (1977) used canonical
correlation analysis, Peña and Box (1987) and Stock and Watson (2002)
proposed factor models and principle component analysis. Koop (2013)
analyzed large dimensional Bayesian VAR models. More closely related to
our paper are Yuan and Lin (2006), Simon, Friedman, Hastie, and Tibshirani
(2013), Skripnikov and Michailidis (2019), Nicholson, Wilms, Bien, and
Matteson (2020), and Babii, Ghysels, and Striaukas (2020b) who look at
structured sparsity approaches without doing inference. Granger causality
with sparsity and inference also appeared in a number of papers. Wilms,
Gelper, and Croux (2016) use bootstrap but ignore post-selection issues,
while Hecq, Margaritella, and Smeekes (2019) extend post-double selection
approach of Belloni, Chernozhukov, and Hansen (2014) to Granger causality
testing in linear sparse high-dimensional VAR. Finally, Ghysels, Hill, and
Motegi (2020) propose a Granger causality test based on a seemingly
overlooked, but simple, dimension reduction technique. The procedure
involves multiple parsimonious regression models where key regressors are
split across simple regressions. Each parsimonious regression model has one
key regressor and other regressors not associated with the null hypothesis.
The test is based on the maximum of the squared parameters of the key
regressors.

Following Babii, Ghysels, and Striaukas (2020b), we focus on the
structured sparsity approach based on the sparse-group LASSO (sg-LASSO)
regularization for the high-dimensional time series analysis. The sg-LASSO
allows capturing the group structures present in high-dimensional time
series regressions where a single covariate with its lags constitutes a group.
Alternatively, we can also combine covariates of similar nature in groups.
An attractive feature of this estimator is that it encompasses the LASSO
and the group LASSO as special cases, hence, it allows improving upon
the unstructured LASSO in the high-dimensional time-series setting. At
the same time, the sg-LASSO can learn the distribution of time series lags
in a data-driven way solving elegantly the model selection problem that
dates back to Fisher (1937).2 In particular, the group structure can also
accommodate data sampled at different frequencies as discussed in detail
by Babii, Ghysels, and Striaukas (2020b).

The proper inference for time-series data relies on the heteroskedasticity
2The distributed lag literature can be traced back to Fisher (1925); see also Almon (1965),

Sims (1971), and Shiller (1973), as well as more recent mixed frequency data sampling (MIDAS)
approach in Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Sinko, and Valkanov (2007),
and Andreou, Ghysels, and Kourtellos (2013).
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and autocorrelation consistent (HAC) estimation of the long-run variance;
see Eicker (1963), Huber (1967), White (1980), Gallant (1987), Newey
and West (1987), Andrews (1991), among others.3 Despite the increasing
popularity of the LASSO in finance and more generally in time series
empirical research, to the best of our knowledge, the validity of HAC-based
inference for LASSO has not been established in the relevant literature.4

The HAC-based inference is robust to the model misspecification and leads
to the valid Granger causality tests even when the fitted regression function
has only projection interpretation which is the case for the projection-based
definition of the Granger causality. Developing the asymptotic theory for
the linear projection model with autoregressive lags and covariates, however,
is challenging because the underlying processes are typically not 𝛽-mixing.5

In this paper, we obtain the debiased central limit theorem with explicit
bias correction for the sg-LASSO estimator and time series data, which
extends van de Geer, Bühlmann, Ritov, and Dezeure (2014) and to the
best of our knowledge is new. Next, we establish the formal statistical
properties of the HAC estimator based on the sg-LASSO residuals in the
high-dimensional environment when the number of covariates can increase
faster than the sample size. The convergence rate of the HAC estimator
can be affected by the tails and the persistence of the data, which is a new
phenomenon compared to low-dimensional regressions. For the practical
implementation, this implies that the optimal choice of the bandwidth
parameter for the HAC estimator should scale appropriately with the
number of covariates, the tails, and the persistence of the data. These
results allow us to perform inference for groups of coefficients, including
the (mixed-frequency) Granger causality tests.

Our asymptotic theory applies to the heavy-tailed time series data,
which is often observed in financial and economic applications. To that end,
we establish a new Fuk-Nagaev inequality, see Fuk and Nagaev (1971), for
𝜏 -mixing processes with polynomial tails. The class of 𝜏 -mixing processes is
flexible enough for developing the asymptotic theory for the linear projection

3For stationary time series, the HAC estimation of the long-run variance is the same problem
as the estimation of the value of the spectral density at zero which itself has even longer history
dating back to the smoothed periodogram estimators; see Daniell (1946), Bartlett (1948), and
Parzen (1957).

4See Chernozhukov, Härdle, Huang, and Wang (2021) for LASSO inference and causal
Bernoulli shifts with independent innovations and Feng, Giglio, and Xiu (2020) for an asset pricing
application; see also Belloni, Chernozhukov, and Hansen (2014) and van de Geer, Bühlmann,
Ritov, and Dezeure (2014) for i.i.d. data; and Chiang and Sasaki (2019) for exchangeable arrays.

5More generally, it is known that the linear transformations based on infinitely many lags
do not preserve the 𝛼- or 𝛽-mixing property.
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model and, at the same time, it contains the class of 𝛼-mixing processes as
a special case.

The paper is organized as follows. We start with the large sample
approximation to the distribution of the sg-LASSO estimator (and as a
consequence of the LASSO and the group LASSO) with 𝜏 -mixing data
in section 3.2. Next, we consider the HAC estimator of the asymptotic
long-run variance based on the sg-LASSO residuals and study the inference
for groups of regression coefficients. In section 3.3, we establish a suitable
version of the Fuk-Nagaev inequality for 𝜏 -mixing processes. We report on
a Monte Carlo study in section 3.4 which provides further insights about
the validity of our theoretical analysis in finite sample settings typically
encountered in empirical applications. Section 3.5 covers an empirical
application examining the Granger causal relations between the VIX and
financial news. Conclusions appear in section 3.6. Proofs and supplementary
results appear in the appendix and the supplementary material.

Notation: For a random variable 𝑋 ∈ R and 𝑞 ≥ 1, let ‖𝑋‖𝑞 =
(E|𝑋|𝑞)1/𝑞 be its 𝐿𝑞 norm. For 𝑝 ∈ N, put [𝑝] = {1, 2, . . . , 𝑝}. For a
vector Δ ∈ R𝑝 and a subset 𝐽 ⊂ [𝑝], let Δ𝐽 be a vector in R𝑝 with the same
coordinates as Δ on 𝐽 and zero coordinates on 𝐽 𝑐. Let 𝒢 = {𝐺𝑔 : 𝑔 ≥ 1}
be a partition of [𝑝] defining groups. For a vector of regression coefficients
𝛽 ∈ R𝑝, the sparse-group structure is described by a pair (𝑆0,𝒢0), where
𝑆0 = {𝑗 ∈ [𝑝] : 𝛽𝑗 ̸= 0} is the support of 𝛽 and 𝒢0 = {𝐺 ∈ 𝒢 : 𝛽𝐺 ̸= 0}
is its group support. For 𝑏 ∈ R𝑝 and 𝑞 ≥ 1, its ℓ𝑞 norm is denoted

|𝑏|𝑞 =
(︁∑︀

𝑗∈[𝑝] |𝑏𝑗|𝑞
)︁1/𝑞

if 𝑞 < ∞ and |𝑏|∞ = max𝑗∈[𝑝] |𝑏𝑗| if 𝑞 = ∞. For

u,v ∈ R𝑇 , the empirical inner product is defined as ⟨u,v⟩𝑇 = 1
𝑇

∑︀𝑇
𝑡=1 𝑢𝑡𝑣𝑡

with the induced empirical norm ‖.‖2𝑇 = ⟨., .⟩𝑇 = |.|22/𝑇 . For a symmetric
𝑝 × 𝑝 matrix 𝐴, let vech(𝐴) ∈ R𝑝(𝑝+1)/2 be its vectorization consisting
of the lower triangular and the diagonal part. Let 𝐴𝐺 be a sub-matrix
consisting of rows of 𝐴 corresponding to indices in 𝐺 ⊂ [𝑝]. If 𝐺 = {𝑗}
for some 𝑗 ∈ [𝑝], then we simply put 𝐴𝐺 = 𝐴𝑗. For a 𝑝 × 𝑝 matrix
𝐴, let ‖𝐴‖∞ = max𝑗∈[𝑝] |𝐴𝑗|1 be its matrix norm. For 𝑎, 𝑏 ∈ R, we put
𝑎 ∨ 𝑏 = max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Lastly, we write 𝑎𝑛 . 𝑏𝑛 if there
exists a (sufficiently large) absolute constant 𝐶 such that 𝑎𝑛 ≤ 𝐶𝑏𝑛 for all
𝑛 ≥ 1 and 𝑎𝑛 ∼ 𝑏𝑛 if 𝑎𝑛 . 𝑏𝑛 and 𝑏𝑛 . 𝑎𝑛.
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3.2 HAC-based inference for sg-LASSO

In this section, we cover the large sample approximation to the distribution
of the sg-LASSO (LASSO and group LASSO) estimator for 𝜏 -mixing
processes. Next, we consider the HAC estimator of the asymptotic long-
run variance based on the sg-LASSO residuals and consider the Granger
causality tests. In the first subsection, we cover the debiased central limit
theorem. The next subsection covers the HAC estimator and the final
subsection pertains to the Granger causality tests.

3.2.1 Debiased central limit theorem

Consider a generic linear projection model

𝑦𝑡 =
∞∑︁
𝑗=1

𝛽𝑗𝑥𝑡,𝑗 + 𝑢𝑡, E[𝑢𝑡𝑥𝑡,𝑗] = 0, ∀𝑗 ≥ 1, 𝑡 ∈ Z,

where (𝑦𝑡)𝑡∈Z is a real-valued stochastic process and predictors may include
the intercept, some covariates, (mixed-frequency) lags of covariates up to a
certain order, as well as lags of the dependent variable. For a sample of
size 𝑇 , in the vector notation, we write

y = m+ u,

where y = (𝑦1, . . . , 𝑦𝑇 )
⊤, m = (𝑚1, . . . ,𝑚𝑇 )

⊤ with 𝑚𝑡 =
∑︀∞

𝑗=1 𝛽𝑗𝑥𝑡,𝑗, and

u = (𝑢1, . . . , 𝑢𝑇 )
⊤. We approximate 𝑚𝑡 with 𝑥

⊤
𝑡 𝛽 =

∑︀𝑝
𝑗=1 𝛽𝑗𝑥𝑡,𝑗 and put

X𝛽, where X is 𝑇 × 𝑝 design matrix and 𝛽 ∈ R𝑝 is the unknown projection
parameter. This approximation can be constructed from lagged values of
𝑦𝑡, some covariates, as well as lagged values of covariates measured at a
higher frequency, in which case, we obtain the autoregressive distributed
lag mixed frequency data sampling model (ARDL-MIDAS) described as

𝜑(𝐿)𝑦𝑡 =
𝐾∑︁
𝑘=1

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 + 𝑢𝑡,

where 𝜑(𝐿) = 𝐼−𝜌1𝐿−𝜌2𝐿2−· · ·−𝜌𝐽𝐿𝐽 is a low frequency lag polynomial
and the MIDAS part 𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑡,𝑘 = 1

𝑚

∑︀𝑚
𝑗=1 𝛽𝑘,𝑗𝑥𝑡−(𝑗−1)/𝑚,𝑘 is a high-

frequency lag polynomial; see Andreou, Ghysels, and Kourtellos (2013) and
Babii, Ghysels, and Striaukas (2020b). Note that when 𝑚 = 1 we have all
data sampled at the same frequency and recover the standard autoregressive
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distributed lag (ARDL) model. The ARDL-MIDAS regression has a group
structure where a single group is defined as all lags of 𝑥𝑡,𝑘 or all lags
of 𝑦𝑡 and following Babii, Ghysels, and Striaukas (2020b), we focus on
the sparse-group LASSO (sg-LASSO) regularized estimator.6 The leading
example here is the MIDAS regression involving the projection of future low
frequency series onto its own lags and lags of high frequency data aggregated
via some dictionary, e.g., the set of Legendre polynomials. The setup also
covers what is sometimes called the reverse MIDAS, see Foroni, Guérin, and
Marcellino (2018) and mixed frequency VAR, see Ghysels (2016), involving
the projection of high frequency data onto its own (high frequency) lags
and low frequency data. Such regressions, which appear in the empirical
application of the paper, simply amount to a different group structure.

The sg-LASSO, denoted 𝛽, solves the regularized least-squares problem

min
𝑏∈R𝑝

‖y −X𝑏‖2𝑇 + 2𝜆Ω(𝑏) (3.1)

with the regularization functional

Ω(𝑏) = 𝛼|𝑏|1 + (1− 𝛼)‖𝑏‖2,1,

where |𝑏|1 =
∑︀𝑝

𝑗=1 |𝑏𝑗| is the ℓ1 norm corresponding to the LASSO penalty,
‖𝑏‖2,1 =

∑︀
𝐺∈𝒢 |𝑏𝐺|2 is the group LASSO penalty, and the group structure

𝒢 is a partition of [𝑝] = {1, 2, . . . , 𝑝} specified by the econometrician.
We measure the persistence of the series with 𝜏 -mixing coefficients. For

a 𝜎-algebra ℳ and a random vector 𝜉 ∈ R𝑙, put

𝜏(ℳ, 𝜉) =

⃦⃦⃦⃦
⃦ sup
𝑓∈Lip1

|E(𝑓(𝜉)|ℳ)− E(𝑓(𝜉))|

⃦⃦⃦⃦
⃦
1

,

where Lip1 = {𝑓 : R𝑙 → R : |𝑓(𝑥)−𝑓(𝑦)| ≤ |𝑥−𝑦|1} is a set of 1-Lipschitz
functions. Let (𝜉𝑡)𝑡∈Z be a stochastic process and let ℳ𝑡 = 𝜎(𝜉𝑡, 𝜉𝑡−1, . . . )
be its natural filtration. The 𝜏 -mixing coefficient is defined as

𝜏𝑘 = sup
𝑗≥1

1

𝑗
sup

𝑡+𝑘≤𝑡1<···<𝑡𝑗

𝜏(ℳ𝑡, (𝜉𝑡1, . . . , 𝜉𝑡𝑗)), 𝑘 ≥ 0,

where the supremum is taken over 𝑡 and (𝑡1, . . . , 𝑡𝑗). The process is called
𝜏 -mixing if 𝜏𝑘 ↓ 0 as 𝑘 ↑ ∞; see Lemma A3.1.1 for the comparison of this
coefficient to the mixingale and the 𝛼-mixing coefficients. The following
assumptions impose tail and moment conditions on the series of interest.

6The sg-LASSO estimator allows selecting groups and important group members at the same
time.
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Assumption 3.2.1 (Data). The processes (𝑢𝑡, 𝑥𝑡)𝑡∈Z is stationary for every
𝑝 ≥ 1 and such that (i) ‖𝑢𝑡‖𝑞 < ∞ and max𝑗∈[𝑝] ‖𝑥𝑡,𝑗‖𝑟 = 𝑂(1) for some
𝑞 > 2𝑟/(𝑟 − 2) and 𝑟 > 4; (ii) for every 𝑗, 𝑙 ∈ [𝑝], the 𝜏 -mixing coefficients
of (𝑢𝑡𝑥𝑡,𝑗)𝑡∈Z and (𝑥𝑡,𝑗𝑥𝑡,𝑙) are 𝜏𝑘 ≤ 𝑐𝑘−𝑎 and 𝜏𝑘 ≤ 𝑐𝑘−𝑏 for all 𝑘 ≥ 0 and
some universal constants 𝑐 > 0, 𝑎 > (𝜍 − 1)/(𝜍 − 2), 𝑏 > (𝑟 − 2)/(𝑟 − 4),
and 𝜍 = 𝑞𝑟/(𝑞 + 𝑟).

Assumption 3.2.1 can be relaxed to non-stationary data with stable variances
of partial sums at the cost of heavier notation. It allows for heavy-tailed and
persistent data. For instance, it requires that either both covariates and the
error process have at least 4+𝜖 finite moments, or that the error process has
at least 2+ 𝜖 finite moments, whenever covariates are sufficiently integrable.
It is also known that the 𝜏 -mixing coefficients decline exponentially fast
for geometrically ergodic Markov chains, including the stationary AR(1)
process, so condition (ii) allows for relatively persistent data; see also Babii,
Ghysels, and Striaukas (2020b) for verification of these conditions in a toy
heavy-tailed autoregressive model with covariates. Next, we require that
the covariance matrix of covariates is invertible.

Assumption 3.2.2 (Covariance). There exists a universal constant 𝛾 > 0
such that the smallest eigenvalue of Σ = E[𝑥𝑡𝑥

⊤
𝑡 ] is bounded away from zero

by 𝛾.

Assumption 3.2.2 ensures that the precision matrix Θ = Σ−1 exists and rules
out perfect multicollinearity. It also requires that the smallest eigenvalue of
Σ is bounded away from zero by 𝛾 independently of the dimension 𝑝 which is
the case, e.g., for the spiked identity and the Toeplitz covariance structures.
Strictly, speaking this condition can be relaxed to 𝛾 ↓ 0 as 𝑝 ↑ ∞ at the
cost of slower convergence rates and more involved conditions on rates, in
which case 𝛾 can be interpreted as a measure of ill-posedness; see Carrasco,
Florens, and Renault (2007). The next assumption describes the rate of the
regularization parameter, which is governed by the Fuk-Nagaev inequality;
see Theorem 3.1 and Eq. (3.4).

Assumption 3.2.3 (Regularization). For some 𝛿 ∈ (0, 1)

𝜆 ∼
(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇
,

where 𝜅 = ((𝑎+ 1)𝜍 − 1)/(𝑎+ 𝜍 − 1), where 𝑎, 𝜍 are as in Assumption 3.2.1.
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In practice we recommend to select the tuning parameter in a data-driven
way. It is beyond the scope of the present paper to study properties of
estimators with data-driven tuning parameters; see Chetverikov, Liao, and
Chernozhukov (2021) for this type of analysis with i.i.d. data. Lastly, we
impose the following condition on the misspecification error, the number of
covariates 𝑝, the sparsity constant 𝑠𝛼, and the sample size 𝑇 .

Assumption 3.2.4. (i) ‖m−X𝛽‖2𝑇 = 𝑂𝑃

(︀
𝑠𝛼𝜆

2
)︀
; (ii) 𝑠𝜇𝛼𝑝

2𝑇 1−𝜇 → 0 and
𝑝2 exp(−𝑐𝑇/𝑠2𝛼) → 0 as 𝑇 → ∞, where 𝑠𝛼 is the effective sparsity of 𝛽
(defined below) and 𝜇 = ((𝑏+ 1)𝑟 − 2)/(𝑟 + 2(𝑏− 1)).

The effective sparsity constant
√
𝑠𝛼 = 𝛼

√︀
|𝑆0| + (1 − 𝛼)

√︀
|𝒢0| is a linear

combination of the sparsity |𝑆0| (number of non-zero coefficients) and
the group sparsity |𝒢0| (number of active groups). It reflects the finite
sample advantages of imposing the sparse-group structure as |𝒢0| can be
significantly smaller than |𝑆0| that appears in the theory of the standard
LASSO estimator. Throughout the paper we assume that the groups have
fixed size, which is well-justified in time-series applications of interest.

The four assumptions listed above are needed for the prediction and
estimation consistency of the sg-LASSO estimator; see Theorem A3.1 in
the supplementary material. Next, let 𝑣𝑡,𝑗 be the regression error in 𝑗𝑡ℎ

nodewise LASSO regression; see the following subsection for more details.
Put also 𝑠 = 𝑠𝛼 ∨ 𝑆, 𝑆 = max𝑗∈𝐺 𝑆𝑗, where 𝑆𝑗 is the number of non-zero
coefficients in the 𝑗𝑡ℎ row of Θ. The following assumption describes an
additional set of sufficient conditions for the debiased central limit theorem.

Assumption 3.2.5. (i) sup𝑥E[𝑢
2
𝑡 |𝑥𝑡 = 𝑥] = 𝑂(1); (ii) ‖Θ𝐺‖∞ = 𝑂(1) for

some 𝐺 ⊂ [𝑝] of fixed size; (iii) the long run variance of (𝑢2𝑡 )𝑡∈Z and (𝑣2𝑡,𝑗)𝑡∈Z

exists for every 𝑗 ∈ 𝐺; (iv) 𝑠2 log2 𝑝/𝑇 → 0 and 𝑝/
√︀
𝑇 𝜅−2 log𝜅 𝑝 → 0; (v)

‖m−X𝛽‖𝑇 = 𝑜𝑃 (𝑇
−1/2); (vi) for every 𝑗, 𝑙 ∈ [𝑝] and 𝑘 ≥ 0, the 𝜏 -mixing

coefficients of (𝑢𝑡𝑢𝑡+𝑘𝑥𝑡,𝑗𝑥𝑡+𝑘,𝑙)𝑡∈Z are 𝜏𝑡 ≤ 𝑐𝑡−𝑑 for some universal constants
𝑐 > 0 and 𝑑 > 1.

Assumption (i) requires that the conditional variance of the regression
error is bounded. Condition (ii) requires that the rows of the precision
matrix have bounded ℓ1 norm and is a plausible assumption in the high-
dimensional setting, where the inverse covariance matrix is often sparse, e.g.,
in the Gaussian graphical model. Condition (iii) is a mild restriction needed
for the consistency of the sample variance of regression errors. The rate
imposed on the sparsity constant, 𝑠2 log2 𝑝/𝑇 → 0, is also used in van de
Geer, Bühlmann, Ritov, and Dezeure (2014) who assume that the regression
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errors are Gaussian, see their Corollary 2.1. On the other hand, the rate
condition on the dimension 𝑝/

√︀
𝑇 𝜅−2 log𝜅 𝑝 → 0, is additional condition

needed in our setting when regression errors are not Gaussian and may only
have a certain number of finite moments. Lastly, condition (v) is trivially
satisfied when the projection coefficients are sparse and, more generally, it
requires that the misspecification error vanishes asymptotically sufficiently
fast. Conditions of this type are standard in nonparametric literature.

Let 𝐵 = Θ̂X⊤(y−X𝛽)/𝑇 denote the bias-correction for the sg-LASSO
estimator, where Θ̂ is the nodewise LASSO estimator of the precision
matrix Θ; see the following subsection for more details. The following result
describes a large-sample approximation to the distribution of the debiased
sg-LASSO estimator with serially correlated non-Gaussian regression errors.

Theorem 3.1. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, and
3.2.5 are satisfied for the sg-LASSO regression and for each nodewise LASSO
regression 𝑗 ∈ 𝐺. Then

√
𝑇 (𝛽𝐺 +𝐵𝐺 − 𝛽𝐺)

𝑑−→ 𝑁(0,Ξ𝐺)

with the long-run variance7 Ξ𝐺 = lim𝑇→∞Var
(︁

1√
𝑇

∑︀𝑇
𝑡=1 𝑢𝑡Θ𝐺𝑋𝑡

)︁
.

It is worth mentioning that since the group 𝐺 has fixed size and the
rows of Θ have finite ℓ1 norm, the long-run variance Ξ𝐺 exists under the
maintained assumptions; see Proposition A3.1.1 in the Appendix for a
precise statement of this result.

Theorem 3.1 extends van de Geer, Bühlmann, Ritov, and Dezeure (2014)
to non-Gaussian, heavy-tailed and persistent time series data and describes
the long run asymptotic variance for the low-dimensional group of regression
coefficients estimated with the sg-LASSO. One could also consider Gaussian
approximations for groups of increasing size, which requires an appropriate
high-dimensional Gaussian approximation result for 𝜏 -mixing processes
and is left for future research; see Chernozhukov, Chetverikov, Kato, et al.
(2013) for a comprehensive review of related coupling results in the i.i.d.
case.

Remark 3.2.1. It is worth mentioning that the debiasing with explicit bias
correction addresses the post-model selection issues, see Leeb and Pötscher
(2005), and it is fairly straightforward to show that the convergence in

7With slight abuse of notation we use 𝛽𝐺 ∈ R|𝐺| to denote the subvector of elements of
𝛽 ∈ R𝑝 indexed by 𝐺.
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Theorem 3.1 holds uniformly over the set of sparse vectors; see also van de
Geer, Bühlmann, Ritov, and Dezeure (2014), Corollary 2.1 and the remark
following that corollary.

3.2.2 Nodewise LASSO

The bias-correction term 𝐵 and the expression of the long-run variance in
Theorem 3.1 depend on the appropriate estimator of the precision matrix
Θ = Σ−1. Following Meinshausen and Bühlmann (2006) and van de
Geer, Bühlmann, Ritov, and Dezeure (2014), we focus on the nodewise
LASSO estimator of Θ. The estimator is based on the observation that the
covariance matrix of the partitioned vector 𝑋 = (𝑋𝑗, 𝑋

⊤
−𝑗)

⊤ ∈ R ×R𝑝−1

can be written as

Σ = E[𝑋𝑋⊤] =

(︂
Σ𝑗,𝑗 Σ𝑗,−𝑗

Σ−𝑗,𝑗 Σ−𝑗,−𝑗

)︂
,

where Σ𝑗,𝑗 = E[𝑋2
𝑗 ] and all other elements similarly defined. By the

partitioned inverse formula, the 1𝑠𝑡 row of the precision matrix Θ = Σ−1 is

Θ𝑗 = 𝜎−2
𝑗

(︀
1 −𝛾⊤𝑗

)︀
,

where 𝛾𝑗 = Σ−1
−𝑗,−𝑗Σ−𝑗,𝑗 is the projection coefficient in the regression of 𝑋𝑗

on 𝑋−𝑗

𝑋𝑗 = 𝑋⊤
−𝑗𝛾𝑗 + 𝑣𝑗, E[𝑋−𝑗𝑣𝑗] = 0, (3.2)

and 𝜎2𝑗 = Σ𝑗,𝑗−Σ𝑗,−𝑗𝛾𝑗 = E[𝑣
2
𝑗 ] is the variance of the projection error.8 This

suggests estimating the 1𝑠𝑡 row of the precision matrix as Θ̂𝑗 = �̂�−2
𝑗

(︀
1 −𝛾⊤𝑗

)︀
with 𝛾𝑗 solving

min
𝛾∈R𝑝−1

‖X𝑗 −X−𝑗𝛾‖2𝑇 + 2𝜆𝑗|𝛾|1

and
�̂�2𝑗 = ‖X𝑗 −X−𝑗𝛾𝑗‖2𝑇 + 𝜆𝑗|𝛾𝑗|,

where X𝑗 ∈ R𝑇 is the column vector of observations of 𝑥𝑗 ∈ R and X−𝑗 is
the 𝑇×(𝑝−1) matrix of observations of 𝑥−𝑗 ∈ R𝑝−1. In the matrix notation,

the nodewise LASSO estimator of Θ can be written then as Θ̂ = �̂�−1𝐶
8To ensure that the projection coefficient is well defined and does not change with the

dimension of the model 𝑝, we can consider the limiting linear projection model and take into
account the approximation error.
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with

𝐶 =

⎛⎜⎜⎝
1 −𝛾1,1 . . . −𝛾1,𝑝−1

−𝛾2,1 1 . . . −𝛾2,𝑝−1
...

... . . . ...
−𝛾𝑝−1,1 . . . −𝛾𝑝−1,𝑝−1 1

⎞⎟⎟⎠ and �̂� = diag(�̂�21, . . . , �̂�
2
𝑝).

3.2.3 HAC estimator

Next, we focus on the HAC estimator based on sg-LASSO residuals, covering
the LASSO and the group LASSO as special cases. For a group 𝐺 ⊂ [𝑝] of
a fixed size, the HAC estimator of the long-run variance is

Ξ̂𝐺 =
∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
Γ̂𝑘, (3.3)

where Γ̂𝑘 = Θ̂𝐺

(︁
1
𝑇

∑︀𝑇−𝑘
𝑡=1 �̂�𝑡�̂�𝑡+𝑘𝑥𝑡𝑥

⊤
𝑡+𝑘

)︁
Θ̂⊤

𝐺, �̂�𝑡 is the sg-LASSO residual,

and Γ̂−𝑘 = Γ̂⊤
𝑘 . The kernel function 𝐾 : R → [−1, 1] with 𝐾(0) = 1 is puts

less weight on more distant noisy covariances, while𝑀𝑇 ↑ ∞ is a bandwidth
(or lag truncation) parameter, see Parzen (1957), Newey and West (1987),
and Andrews (1991). Several choices of the kernel function are possible, for
example, the Parzen kernel is

𝐾𝑃𝑅(𝑥) =

⎧⎪⎨⎪⎩
1− 6𝑥2 + 6|𝑥|3 for 0 ≤ |𝑥| ≤ 1/2,

2(1− |𝑥|)3 for 1/2 ≤ |𝑥| ≤ 1,

0 otherwise.

It is worth recalling that the Parzen and the Quadratic spectral kernels are
high-order kernels that superior to the Bartlett kernel, cf. Newey and West
(1987); see appendix for more details on the choice of the kernel.

Note that under stationarity, the long-run variance in Theorem 3.1
simplifies to

Ξ𝐺 =
∑︁
𝑘∈Z

Γ𝑘,

where Γ𝑘 = Θ𝐺E[𝑢𝑡𝑥𝑡𝑢𝑡+𝑘𝑥
⊤
𝑡+𝑘]Θ

⊤
𝐺 and Γ−𝑘 = Γ⊤

𝑘 . The following result
characterizes the convergence rate of the HAC estimator pertaining to a
group of regression coefficients 𝐺 ⊂ [𝑝] based on the sg-LASSO residuals.

Theorem 3.2. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5
are satisfied for the sg-LASSO regression and for each nodewise LASSO
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regression 𝑗 ∈ 𝐺. Suppose also that Assumptions A3.1.1, and A3.1.2
in the Appendix are satisfied for 𝑉𝑡 = (𝑢𝑡𝑣𝑡,𝑗/𝜎

2
𝑗 )𝑗∈𝐺, 𝜅 ≥ 𝑞 and that

𝑠𝜅𝑝𝑇 1−4𝜅/5 → 0 as 𝑀𝑇 → ∞ and 𝑇 → ∞. Then

‖Ξ̂𝐺 − Ξ𝐺‖ = 𝑂𝑃

(︃
𝑀𝑇

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨ 𝑠
√︂

log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅

)︃
+𝑀−𝜍

𝑇 + 𝑇−(𝜍∧1)

)︃
.

The first term in the inner parentheses is of the same order as the estimation
error of the maximum between the estimation errors of the sg-LASSO and
the nodewise LASSO. Theorem 3.2 suggests that the optimal choice of
the bandwidth parameter should scale appropriately with the number of
covariates 𝑝, the sparsity constant 𝑠, and the dependence-tails exponent
𝜅.9 This contrasts sharply with the HAC theory for regressions without
regularization developed in Andrews (1991), see also Li and Liao (2020),
and allows for faster convergence rates of the HAC estimator.

3.2.4 High-dimensional Granger causality tests

Consider a linear projection model

𝑦𝑡+ℎ =
∑︁
𝑗∈𝐺

𝛽𝑗𝑥𝑡,𝑗 +
∑︁
𝑗∈𝐺𝑐

𝛽𝑗𝑥𝑡,𝑗 + 𝑢𝑡, E[𝑢𝑡𝑥𝑡,𝑗] = 0, ∀𝑗 ≥ 1,

where ℎ ≥ 0 is the horizon, 𝐺 ⊂ [𝑝] is a group of regression coefficients
of interest, 𝑥𝑡 = {𝑥𝑡,𝑗 : 𝑗 ∈ 𝐺} represents the series for which we wish to
test the Granger causality, and {𝑥𝑡,𝑗 : 𝑗 ∈ 𝐺𝑐} represents all the remaining
information available at time 𝑡. For instance, 𝑥𝑡 may contain 𝐿 low-frequency
lags of some series (𝑧𝑡)𝑡∈Z, in which case 𝑥𝑡 = (𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2, . . . , 𝑧𝑡−𝐿)

⊤.
Alternatively, it may contain low and/or high-frequency lags of (𝑧𝑡)𝑡∈Z
aggregated with dictionaries, e.g., Legendre polynomials as in Babii, Ghysels,
and Striaukas (2020b). In both cases the dimensionality of 𝑥𝑡 small. On
the other hand, the set of controls representing all the information available
at time 𝑡 is high-dimensional. The Granger causality test corresponds to
the following hypotheses

𝐻0 : 𝑅𝛽𝐺 = 0 against 𝐻1 : 𝑅𝛽𝐺 ̸= 0,

where 𝛽𝐺 = {𝛽𝑗 : 𝑗 ∈ 𝐺} and 𝑅 is 𝑟 × |𝐺| matrix of linear restrictions
imposed on 𝛽𝐺.

9A comprehensive study of the optimal bandwidth choice based on higher-order asymptotic
expansions is beyond the scope of this paper and is left for future research, see, e.g., Lazarus,
Lewis, Stock, and Watson (2018) for the recent literature review and practical recommendations
in the low-dimensional case.
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It is worth mentioning our framework is based on the weakest notion
of the Granger causality corresponding to the marginal improvement in
time series projections due to the information contained in 𝑥𝑡. A stronger
notion of Granger non-causality appears when projections are replaced by
conditional means, so that the conditional mean 𝑦𝑡 given 𝑥𝑡 and all other
available information does not depend on 𝑥𝑡. Yet, even stronger version of
Granger non-causality pertains to the full conditional independence; see
Florens and Mouchart (1982).

For the Granger causality test, we set 𝑅 = 𝐼|𝐺|, but more generally,
we might be interested in testing other linear restrictions implied by the
economic theory. Assuming that 𝑅 is a full row rank matrix, consider the
debiased Wald statistics

𝑊𝑇 = 𝑇
[︁
𝑅(𝛽𝐺 +𝐵𝐺 − 𝛽𝐺)

]︁⊤ (︁
𝑅Ξ̂𝐺𝑅

⊤
)︁+ [︁

𝑅(𝛽𝐺 +𝐵𝐺 − 𝛽𝐺)
]︁
,

where 𝐴+ is the generalized inverse of 𝐴. It follows from Theorems 3.1

and 3.2 that under 𝐻0, 𝑊𝑇
𝑑−→ 𝜒2

𝑟. The Wald test rejects when 𝑊𝑇 > 𝑞1−𝛼,
where 𝑞1−𝛼 is the quantile of order 1− 𝛼 of 𝜒2

𝑟. More generally, the linear
restrictions can be extended to the nonlinear restrictions by the usual Delta
method argument.

For testing hypotheses on the increasing set of regression coefficients, it
might be preferable to use the non-pivotal sup-norm based statistics, see
Ghysels, Hill, and Motegi (2020), due to the remarkable performance in
the high-dimensional setting; see Chernozhukov, Chetverikov, Kato, et al.
(2013) for high-dimensional Gaussian approximations with i.i.d. data.

3.3 Fuk-Nagaev inequality

In this section, we describe a suitable for us version of the Fuk-Nagaev
concentration inequality for the maximum of high-dimensional sums. The
inequality allows for the data with polynomial tails and 𝜏 -mixing coefficients
decreasing at a polynomial rate. The following result does not require that
the series is stationary.

Theorem 3.1. Let (𝜉𝑡)𝑡∈Z be a centered stochastic process in R𝑝 such that
(i) for some 𝑞 > 2, max𝑗∈[𝑝],𝑡∈[𝑇 ] ‖𝜉𝑡,𝑗‖𝑞 = 𝑂(1); (ii) for every 𝑗 ∈ [𝑝], 𝜏 -

mixing coefficients of 𝜉𝑡,𝑗 satisfy 𝜏
(𝑗)
𝑘 ≤ 𝑐𝑘−𝑎 for some universal constants
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𝑎, 𝑐 > 0. Then there exist 𝑐1, 𝑐2 > 0 such that for every 𝑢 > 0

Pr

(︃⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒
∞

> 𝑢

)︃
≤ 𝑐1𝑝𝑇𝑢

−𝜅 + 4𝑝 exp

(︂
−𝑐2𝑢

2

𝐵2
𝑇

)︂
,

where10 𝜅 = ((𝑎+1)𝑞−1)/(𝑎+𝑞−1), 𝐵2
𝑇 = max𝑗∈[𝑝]

∑︀𝑇
𝑡=1

∑︀𝑇
𝑘=1 |Cov(𝜉𝑡,𝑗, 𝜉𝑘,𝑗)|.

The inequality describes the mixture of the polynomial and Gaussian
tails for the maximum of high-dimensional sums. In the limiting case of the
i.i.d. data, as 𝑎→ ∞, the dependence-tails exponent 𝜅 approaches 𝑞 and we
recover the inequality for the independent data stated in Fuk and Nagaev
(1971), Corollary 4 for 𝑝 = 1. In this sense, the inequality in Theorem 3.1
is sharp. It is well-known that the Fuk-Nagaev inequality delivers sharper
estimates of tail probabilities in contrast to Markov’s bound in conjunction
with Rosenthal’s moment inequality, cf. Nagaev (1998). The proof relies
on the blocking technique, see Bosq (1993), and the coupling inequality
for 𝜏 -mixing sequences, see Dedecker and Prieur (2004), Lemma 5. In
contrast to previous results, e.g., Dedecker and Prieur (2004), Theorem 2,
the inequality reflects the mixture of the polynomial and the exponential
tails.

For stationary processes, by Lemma A3.1.2 in the appendix, 𝐵2
𝑇 = 𝑂(𝑇 )

as long as 𝑎 > (𝑞 − 1)/(𝑞 − 2), whence we obtain from Theorem 3.1 that
for every 𝛿 ∈ (0, 1)

Pr

(︃⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒
∞

≤ 𝐶
(︁ 𝑝

𝛿𝑇 𝜅−1

)︁1/𝜅
∨
√︂

log(8𝑝/𝛿)

𝑇

)︃
≥ 1− 𝛿, (3.4)

where 𝐶 > 0 is some finite universal constant.

3.4 Monte Carlo experiments

In this section, we aim to assess the debiased HAC-based inferences for the
low-dimensional parameter in a high dimensional data setting. To that end,
we draw covariates {𝑥𝑡,𝑗, 𝑗 ∈ [𝑝]} independently from the AR(1) process

𝑥𝑡,𝑗 = 𝜌𝑥𝑡−1,𝑗 + 𝜖𝑡,𝑗.
10It is worth mentioning that the notation in this section is specific to generic stochastic

processes and is independent from the rest of the paper. Thus 𝐵𝑇 here denotes the variance of
partial sums and not the bias correction term of the LASSO estimator.
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The regression error follows the AR(1) process

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜈𝑡,

where errors are 𝜖, 𝜈 ∼𝑖.𝑖.𝑑. 𝑁(0, 1). The vector of population regression
coefficients 𝛽 has the first five non-zero entries which are drawn from
Uniform(0, 4) and all remaining entries are zero. The sample size is 𝑇 ∈
{100, 1000} and the number of covariates is 𝑝 ∈ {10, 200}. We set the
persistence parameter 𝜌 = 0.6 and focus on the LASSO estimator to
estimate coefficients 𝛽. Throughout the experiment, we choose the LASSO
tuning parameters using the 10-fold cross-validation, defining folds as
adjacent over time blocks.

We report the average coverage (av. cov) and the average length of
confidence intervals for the nominal coverage of 0.95 and on a grid of values
of the bandwidth parameter 𝑀𝑇 ∈ {5, 10, . . . , 40}, using the Parzen kernel.
We estimate the long run covariance matrix Ξ̂ using the LASSO residuals,
denoted �̂�𝑡. We also use the nodewise LASSO regressions to estimate the
precision matrix Θ. The first step is to compute scores 𝑉𝑡 = �̂�𝑡𝑥𝑡, where
�̂�𝑡 = 𝑦𝑡 − 𝑥⊤𝑡 𝛽, and 𝛽 is the LASSO estimator. Then we compute the
high-dimensional HAC estimator using the formuala in equation ((3.3)).
We compute the pivotal statistics for each MC experiment 𝑖 ∈ [𝑁 ] and

each coefficient 𝑗 ∈ [𝑝] as pivot
(𝑖)
𝑗 , (𝛽

(𝑖)
𝑗 + 𝐵

(𝑖)
𝑗 − 𝛽)/

√︁
Ξ̂
(𝑖)
𝑗,𝑗/𝑇 , where

𝐵
(𝑖)
𝑗 = Θ̂

(𝑖)
𝑗 X⊤(𝑖)û(𝑖)/𝑇 , and û(𝑖) = y(𝑖) − X(𝑖)𝛽(𝑖). Then we compute the

empirical coverage as

av.cov𝑗 =
1

𝑁

𝑁∑︁
𝑖=1

1{pivot𝑖𝑗 ∈ [−1.96, 1.96]}

and the average confidence interval length as length𝑗 =
1
𝑁

∑︀𝑁
𝑖=1 2× 1.96×√︁

Ξ̂
(𝑖)
𝑗,𝑗/𝑇 . The number of Monte Carlo experiments is set to 𝑁= 5000.

We report average results over the active and inactive sets of the vector
of coefficients. Table 4.2 shows results for the small sample size (𝑇 = 100)
and the large sample size (𝑇 = 1000). We find that the value of the
bandwidth parameter 𝑀𝑇 should be smaller when the number of regressors
𝑝 is larger. For 𝑇 = 100 (small sample size), for the active set of coefficients,
the best coverage is achieved when the bandwidth parameter is set at 10
when 𝑝 = 10 and at 5 when 𝑝 = 200. Results for the inactive set and
𝑇 = 1000 are similar. We also see that the increase in 𝑝 relative to 𝑇
leads to worse performance. Furthermore, the coverage improves when
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Table 3.1: HAC-based inference simulation results – The table reports average coverage
(first four columns) and average length of confidence intervals (last four columns) for active and
inactive sets of 𝛽 and for 𝑇 = 100 and 𝑇 = 1000. We report results for a set of bandwidth
parameter 𝑀𝑇 values. The data is generated from Gaussian distribution.

Average coverage (av. cov) Confidence interval length

Active set of 𝛽 Inactive set of 𝛽 Active set of 𝛽 Inactive set of 𝛽

𝑀𝑇 ∖𝑝 10 200 10 200 10 200 10 200
T=100

5 0.830 0.755 0.827 0.747 0.286 0.382 0.277 0.368
10 0.834 0.750 0.835 0.746 0.305 0.401 0.291 0.376
15 0.824 0.753 0.832 0.745 0.314 0.411 0.294 0.376
20 0.821 0.735 0.826 0.743 0.320 0.420 0.296 0.374
25 0.816 0.739 0.820 0.741 0.325 0.427 0.297 0.372
30 0.807 0.738 0.814 0.740 0.329 0.434 0.297 0.370
35 0.806 0.733 0.807 0.738 0.333 0.441 0.297 0.368
40 0.801 0.737 0.802 0.735 0.337 0.447 0.297 0.366

T=1000
5 0.913 0.848 0.913 0.879 0.081 0.067 0.081 0.067

10 0.932 0.865 0.932 0.894 0.087 0.070 0.087 0.070
15 0.935 0.866 0.936 0.894 0.088 0.070 0.088 0.070
20 0.936 0.868 0.936 0.897 0.089 0.071 0.088 0.071
25 0.936 0.867 0.936 0.895 0.089 0.071 0.089 0.071
30 0.937 0.866 0.937 0.895 0.089 0.071 0.089 0.070
35 0.936 0.866 0.936 0.895 0.089 0.071 0.089 0.070
40 0.934 0.865 0.934 0.894 0.089 0.071 0.088 0.070

the bandwidth increases with the sample size. Lastly, as the sample size
increases, the average coverage approaches the nominal level of 0.95 and the
confidence interval shrinks in size. Overall, the simulation results confirm
our theoretical findings.
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3.5 Testing Granger causality for VIX and
financial news

The CBOE Volatility Index, known as the VIX, is a popular measure of
market-based expectation of future volatility and is often referred to as the
“fear index”. The VIX index quotes the expected annualized change in the
S&P 500 index over the following 30 days, as computed from options-based
theory and current options-market data.

There is a large literature studying the theoretical and empirical properties
of the VIX and it is impossible to cite only a few papers to do justice to
all the outstanding research output on the topic. Focusing on Granger
causal patterns, there are several studies pertaining to causality between
the VIX and VIX futures. For example, Bollen, O’Neill, and Whaley (2017)
suggest that the VIX futures lagged the VIX in the first few years after its
introduction, and show an increasing dominance of VIX futures over time.
Along similar lines, Shu and Zhang (2012) study price-discovery between
VIX futures the spot VIX index and find evidence of a bi-directional causal
pattern.

We study the causal relationship between financial news and the VIX.
There is also substantial literature on the impact of news releases on
financial markets (e.g., Andersen, Bollerslev, Diebold, and Vega (2003)).
Traditionally, such analysis looks at news releases and studies the behavior of
asset prices pre- and post-release. News is usually quantified numerically via
the surprise component measured as the difference between an expectation
prior to the release and the announcement. In the age of machine learning,
the characterization of news has been expanded into the textual analysis
of news coverage. To paraphrase the title of Gentzkow, Kelly, and Taddy
(2019), the text is treated as data. It is in this spirit that we conduct our
high-dimensional Granger causality analysis between the VIX and news.

We use a data set from Bybee, Kelly, Manela, and Xiu (2020) which
contains 180 news attention monthly series, all of which potentially Granger
cause future US equity market volatility.11 We estimate the following time
series regression model

11We downloaded daily VIX data from St. Louis Fed FRED database and took the end-of-
month values. The FRED mnemonic for the VIX is VIXCLS. Table with the full list of series
appears in Appendix A3.1.
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𝑦𝑡+1 = 𝜓(𝐿1/𝑚; 𝛽)𝑦𝑡 +
𝐾∑︁
𝑘=1

𝜌𝑘𝑥𝑡,𝑘 + 𝑢𝑡, 𝑡 ∈ [𝑇 ],

where 𝑦𝑡+1 is the value of the VIX at the end of month 𝑡+ 1, 𝜓(𝐿1/𝑚; 𝛽)𝑦𝑡
is a MIDAS polynomial of 22 daily VIX lags where the first lag is the last
day of the month 𝑡, and 𝑥𝑡,𝑘 is the 𝑘-th news attention series. Note that
we only take one lag for the news attention series to simplify the model
(and also an empirically justified simplification). The MIDAS polynomial of
daily lags of the VIX involves Legendre polynomials of degree 3. Note that
the specification is what is sometimes called a reverse MIDAS regression as
mentioned earlier in the paper. Prior to estimating the regression model,
we time demean the response and covariates such that the intercept is zero.
We further standardize all covariates to have a unit standard deviation.
The daily VIX lags are standardized before the aggregation.

We apply the sg-LASSO estimator to estimate the slope coefficients
and nodewise LASSO regressions to estimate the precision matrix. To fully
exploit the group sparsity of sg-LASSO, we group all high-frequency lags of
daily VIX, see Babii, Ghysels, and Striaukas (2020b) for further details on
such grouping. The news attention series are monthly and we are interested
in whether the most recent news Granger causes the VIX, hence we don’t
apply the group structure along the time dimension. Instead, we group
news attention series based on a broader theme that is available for each
series, see Bybee, Kelly, Manela, and Xiu (2020) for further details. Namely,
the data set contains 24 broader topics which group each of the 180 news
attention series.

3.5.1 Main results

We report the p-values for a range of 𝑀𝑇 values for series that appear to
be significant at the 1% or 5% significance level for all 𝑀𝑇 ∈ {20, 40, 60}
values and for two kernel functions, namely Parzen and Quadratic Spectral.
The sample starts January 1990 January and ends June 2017, determined
by the availability of the textual analysis data. Both sg-LASSO and LASSO
tuning parameters are selected via 10-fold cross-validation, defining folds
as adjacent blocks over the time dimension to take into account the time
series nature of the data. Similarly, we tune nodewise LASSO regressions
for the precision matrix estimation.
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Table 3.2: VIX Granger causality results. We report p-values of series that are significant
at 1% and 5% significance level for a range of 𝑀𝑇 values and both kernel functions.

Variable ∖𝑀𝑇 20 40 60 20 40 60
sg-LASSO

Parzen Quadratic Spectral
1% significance

Daily VIX lags 0.000 0.000 0.001 0.000 0.001 0.002
Financial crisis 0.005 0.002 0.001 0.002 0.001 0.000

5% significance
Aerospace/defense 0.014 0.014 0.017 0.012 0.018 0.027

Recession 0.011 0.008 0.009 0.008 0.008 0.013
LASSO

Parzen Quadratic Spectral
1% significance

Daily VIX lags 0.000 0.000 0.000 0.000 0.000 0.000
Financial crisis 0.001 0.000 0.000 0.000 0.000 0.000

Recession 0.003 0.002 0.002 0.002 0.002 0.004
Marketing 0.001 0.001 0.000 0.001 0.000 0.000

5% significance
Aerospace/defense 0.007 0.006 0.004 0.006 0.004 0.002

NY politics 0.012 0.015 0.013 0.016 0.012 0.008
Acquired investment banks 0.018 0.006 0.002 0.007 0.001 0.000

3.5.1.1 Granger causality of news topics

The results appear in Table 3.2 which contains two main row blocks
reporting results for the structured sg-LASSO and unstructured LASSO
estimators, and two-column blocks, reporting results for two kernel functions.
Irrespective of the initial estimator and kernel function, the lagged daily VIX
and the Financial crisis news series are highly significant at 1% significance
level. Comparing results for the initial estimator, in the case of LASSO
we see more significant predictors than for the sg-LASSO case, while the
subset of significant covariates using sg-LASSO is a subset of the LASSO
significant predictors. Many more series are selected by the initial LASSO
estimator compared to the sg-LASSO, see Table A3.1. This suggests that
relevant group structures are important, and may help in recovering salient
relationships in the data.

Page 83



Chapter 3 High-Dimensional Granger Causality Tests with an Application to VIX and News

Table 3.3: Bi-directional Granger causality results. We report p-values for a range of 𝑀𝑇

values and both kernel functions.

Variable ∖𝑀𝑇 20 40 60 20 40 60
sg-LASSO

Parzen Quadratic Spectral
Daily VIX lags 0.050 0.071 0.091 0.060 0.086 0.129

Table 3.4: Group Granger causality results. We report p-values for a range of 𝑀𝑇 values
and both kernel functions.

Variable ∖𝑀𝑇 20 40 60 20 40 60
sg-LASSO

Parzen Quadratic Spectral
Banks 0.032 0.024 0.008 0.023 0.001 0.000

3.5.1.2 Bi-directional Granger causality

We also test whether the daily VIX Granger causes Financial crisis news
series. For this we run the following MIDAS regression model

𝑥𝑡+1,𝑗 = 𝜓(𝐿1/𝑚; 𝛽)𝑦𝑡 +
𝐾∑︁
𝑘=1

𝜌𝑘𝑥𝑡,𝑘 + 𝑢𝑡, 𝑡 ∈ [𝑇 ],

where 𝑥𝑡+1,𝑗 is the Financial crisis news series. We test whether daily VIX
Granger causes future values of Financial crisis news series. Note that we
only need to estimate the initial initial coefficient vector, since the precision
matrix remains the same. The results appear in Table 3.3. They show a
rather weak predictability of future news series by daily VIX suggesting a
unidirectional Granger causality pattern.

3.5.1.3 Granger causal clusters of news topics

The news attention series are classified into 24 broader meta topics that
group the individual news series according to a common theme. We
test which group of individual news series Granger causes future VIX
values. The results are reported in Table 3.4. They show that the group
Banks is significant at 5% significance level. This group consists of news
series pertaining to news about Mortgages, Bank loans, Credit ratings,
Nonperforming loans, Savings & loans, and the Financial crisis.

Page 84



Chapter 3 High-Dimensional Granger Causality Tests with an Application to VIX and News

3.6 Conclusion

This paper develops valid inferential methods for high-dimensional time
series regressions estimated with the sparse-group LASSO (sg-LASSO)
estimator that encompasses the LASSO and the group LASSO as special
cases. We derive the debiased central limit theorem with the explicit
bias correction for the sg-LASSO with serially correlated regression errors.
Furthermore, we also study HAC estimators of the long-run variance for
low dimensional groups of regression coefficients and characterize how
the optimal bandwidth parameter should scale with the sample size, the
temporal dependence, as well as tails of the data. These results lead to
the valid t- and Wald tests for the low-dimensional subset of parameters,
such as Granger causality tests. Our treatment relies on a new suitable
variation of the Fuk-Nagaev inequality for 𝜏 -mixing processes which allows
us to handle the time series data with polynomial tails. An interesting
avenue for future research is to study more carefully the problem of the
optimal data-driven bandwidth choice based on higher-order asymptotic
expansions, see, e.g., Sun, Phillips, and Jin (2008) for steps in this direction
in low dimensional settings.

In an empirical application we use a high-dimensional news attention
series to study causal patterns between the VIX, sometimes called the fear
index, and financial news. We find that almost exclusively the topic of
financial crisis exhibits unidirectional Granger causality for the VIX.
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APPENDIX

A3.1 Proofs

Proof of Theorem 3.1. By Fermat’s rule, the sg-LASSO satisfies

X⊤(X𝛽 − y)/𝑇 + 𝜆𝑧* = 0

for some 𝑧* ∈ 𝜕Ω(𝛽), where 𝜕Ω(𝛽) is the sub-differential of 𝑏 ↦→ Ω(𝑏) at 𝛽.
Rearranging this expression and multiplying by Θ̂

𝛽 − 𝛽 + Θ̂𝜆𝑧* = Θ̂X⊤u/𝑇 + (𝐼 − Θ̂Σ̂)(𝛽 − 𝛽) + Θ̂X⊤(m−X𝛽)/𝑇,

where we use y = m+ u. Plugging in 𝜆𝑧* and multiplying by
√
𝑇

√
𝑇 (𝛽 − 𝛽 +𝐵) = Θ̂X⊤u/

√
𝑇 +

√
𝑇 (𝐼 − Θ̂Σ̂)(𝛽 − 𝛽)

+ Θ̂X⊤(m−X𝛽)/
√
𝑇

=
1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡Θ𝑥𝑡

+
1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡(Θ̂−Θ)𝑋𝑡 +
√
𝑇 (𝐼 − Θ̂Σ̂)(𝛽 − 𝛽)

+ Θ̂X⊤(m−X𝛽)/
√
𝑇 .

Next, we look at coefficients corresponding to 𝐺 ⊂ [𝑝]

√
𝑇 (𝛽𝐺 − 𝛽𝐺 +𝐵𝐺) =

1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡Θ𝐺𝑥𝑡 +
1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡(Θ̂𝐺 −Θ𝐺)𝑥𝑡

+
√
𝑇 (𝐼 − Θ̂Σ̂)𝐺(𝛽 − 𝛽) + Θ̂𝐺X

⊤(m−X𝛽)/
√
𝑇

, 𝐼𝑇 + 𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 + 𝐼𝑉𝑇 .

We will show that 𝐼𝑇
𝑑−→ 𝑁(0,Ξ𝐺) by the triangular array CLT, see Neumann

(2013), Theorem 2.1. To that end, by the Crámer-Wold theorem, it is

sufficient to show that 𝑧⊤𝐼𝑇
𝑑−→ 𝑧⊤𝑁(0,Ξ𝐺) for every 𝑧 ∈ R|𝐺|. Note that

under Assumptions 3.2.1 and 3.2.5 (i)-(ii)

𝑇∑︁
𝑡=1

E

⃒⃒⃒⃒
𝑧⊤𝜉𝑡√
𝑇

⃒⃒⃒⃒2
= E|𝑢𝑡𝑧⊤Θ𝐺𝑥𝑡|2

≤ 𝐶𝑧⊤Θ𝐺ΣΘ
⊤
𝐺𝑧

= 𝑂(1).
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Therefore, since 𝑞 > 2𝑟/(𝑟 − 2), we have 𝜍 > 2, and for every 𝜖 > 0

𝑇∑︁
𝑡=1

E

[︃⃒⃒⃒⃒
𝑧⊤𝜉𝑡√
𝑇

⃒⃒⃒⃒2
1
{︁⃒⃒
𝑧⊤𝜉𝑡

⃒⃒
> 𝜖

√
𝑇
}︁]︃

≤
E
⃒⃒
𝑧⊤𝜉𝑡

⃒⃒𝜍
(𝜖
√
𝑇 )𝜍−2

= 𝑜(1).

Next, under Assumptions 3.2.1 and 3.2.5 (i)-(ii), the long run variance

lim
𝑇→∞

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑡

)︃
= 𝑧⊤Ξ𝐺𝑧

exists by Proposition A3.1.1.
Next, putℳ = 𝜎(𝜉0, 𝜉−1, 𝜉−2, . . . ), 𝑌 = 𝑔(𝑧⊤𝜉𝑡1−𝑡ℎ/

√
𝑇 , . . . , 𝑧⊤𝜉0/

√
𝑇 )𝑧⊤𝜉0,

and 𝑋 = 𝑧⊤𝜉𝑟 for some 𝑡ℎ ≥ 0. Note that 𝑋 and |𝑋𝑌 | are integrable and
that 𝑌 isℳ-measurable. Therefore, for every measurable function 𝑔 : Rℎ →
R with sup𝑥 |𝑔(𝑥)| ≤ 1, by Dedecker and Doukhan (2003), Proposition 1,
for all ℎ ∈ N and all indices 1 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡ℎ < 𝑡ℎ + 𝑟 ≤ 𝑡ℎ + 𝑠 ≤ 𝑇⃒⃒⃒

Cov
(︁
𝑔(𝑧⊤𝜉𝑡1/

√
𝑇 , . . . , 𝑧⊤𝜉𝑡ℎ/

√
𝑇 )𝑧⊤𝜉𝑡ℎ/

√
𝑇 , 𝑧⊤𝜉𝑡ℎ+𝑟/

√
𝑇
)︁⃒⃒⃒

=
1

𝑇
|Cov (𝑌,𝑋)|

≤ 1

𝑇

∫︁ 𝛾(ℳ,𝑧⊤𝜉𝑟)

0

𝑄𝑌 ∘𝐺𝑧⊤𝜉𝑟(𝑢)d𝑢

≤ 1

𝑇

∫︁ 𝛾(ℳ,𝑧⊤𝜉𝑟)

0

𝑄𝑧⊤𝜉0 ∘𝐺𝑧⊤𝜉𝑟(𝑢)d𝑢

≤ 1

𝑇
‖E(𝑧⊤𝜉𝑟|ℳ)− E(𝑧⊤𝜉𝑟)‖

𝜍−2
𝜍−1

1 ‖𝑧⊤𝜉0‖𝜍/(𝜍−1)
𝜍

≤ 1

𝑇
|Θ⊤

𝐺𝑧|
𝜍−2
𝜍−1

1 𝜏
𝜍−2
𝜍−1
𝑟 ‖𝑧⊤𝜉0‖𝜍/(𝜍−1)

𝜍 . 𝑟−𝑎 𝜍−2
𝜍−1

where the second line follows by stationarity and sup𝑥 |𝑔(𝑥)| ≤ 1, the fourth
by Hölder’s inequality and the change of variables∫︁

𝑄𝜍−1
𝑧⊤𝜉0

∘𝐺𝑧⊤𝜉𝑟(𝑢)d𝑢 =

∫︁ 1

0

𝑄𝜍
𝑧⊤𝜉0

(𝑢)d𝑢 = ‖𝑧⊤𝜉0‖𝜍𝜍 ,

and the last by Lemma A3.1.1 and Assumptions 3.2.1 (ii) and 3.2.5 (ii).
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Similarly,⃒⃒⃒
Cov

(︁
𝑔(𝑧⊤𝜉𝑡1/

√
𝑇 , . . . , 𝑧⊤𝜉𝑡ℎ/

√
𝑇 ), 𝑧⊤𝜉𝑡ℎ+𝑟/

√
𝑇𝑧⊤𝜉𝑡ℎ+𝑠/

√
𝑇
)︁⃒⃒⃒

=
1

𝑇

⃒⃒⃒
Cov

(︁
𝑔(𝑧⊤𝜉𝑡1−𝑡ℎ/

√
𝑇 , . . . , 𝑧⊤𝜉0/

√
𝑇 ), 𝑧⊤𝜉𝑟𝑧

⊤𝜉𝑠

)︁⃒⃒⃒
≤ 1

𝑇

∫︁ 𝛾(ℳ,𝑧⊤𝜉𝑟𝑧
⊤𝜉𝑠)

0

𝑄𝑔 ∘𝐺𝑧⊤𝜉𝑟𝑧⊤𝜉𝑠(𝑢)d𝑢

≤ 1

𝑇

⃦⃦
E(𝑧⊤𝜉𝑟𝑧

⊤𝜉𝑠|ℳ)− E(𝑧⊤𝜉𝑟𝑧⊤𝜉𝑠)
⃦⃦
1

≤ 1

𝑇
|Θ⊤

𝐺𝑧|21𝜏𝑟 . 𝑟−𝑑.

Since the sequence (𝑟−𝑎(𝜍−2)/(𝜍−1)∧𝑑)𝑟∈N is summable under Assumption 3.2.1
(ii), all conditions of Neumann (2013), Theorem 2.1, are verified, whence

𝑧⊤𝐼𝑇
𝑑−→ 𝑧⊤𝑁(0,Ξ𝐺) for every 𝑧 ∈ R|𝐺|.

Next,

|𝐼𝐼𝑇 |∞ =

⃒⃒⃒⃒
⃒(Θ̂−Θ)𝐺

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡𝑥𝑡

)︃⃒⃒⃒⃒
⃒
∞

≤ ‖Θ̂𝐺 −Θ𝐺‖∞

⃒⃒⃒⃒
⃒ 1√
𝑇

𝑇∑︁
𝑡=1

𝑢𝑡𝑥𝑡

⃒⃒⃒⃒
⃒
∞

= 𝑂𝑃

(︃
𝑆𝑝1/𝜅

𝑇 1−1/𝜅
∨ 𝑆
√︂

log 𝑝

𝑇

)︃
𝑂𝑃

(︂
𝑝1/𝜅

𝑇 1/2−1/𝜅
+
√︀

log 𝑝

)︂
= 𝑜𝑃 (1),

where the second line follows by |𝐴𝑥|∞ ≤ ‖𝐴‖∞|𝑥|∞, the third line by
Proposition A3.1.3 and the inequality in Eq. (3.4) under Assumption 3.2.1,
and the last under Assumption 3.2.5 (iv). Likewise, using |𝐴𝑥|∞ ≤
max𝑗,𝑘 |𝐴𝑗,𝑘|∞|𝑥|1, by Proposition A3.1.3 and Theorem A3.1

|𝐼𝐼𝐼𝑇 |∞ =
√
𝑇 |(𝐼 − Θ̂Σ̂)𝐺(𝛽 − 𝛽)|∞

≤
√
𝑇 max

𝑗∈𝐺
|(𝐼 − Θ̂Σ̂)𝑗|∞|𝛽 − 𝛽|1

= 𝑂𝑃

(︂
𝑝1/𝜅

𝑇 1/2−1/𝜅
∨
√︀

log 𝑝

)︂
𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃
= 𝑜𝑃 (1)
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under Assumption 3.2.5 (iv). Lastly, by the Cauchy-Schwartz inequality,
under Assumption 3.2.5 (v)

|𝐼𝑉𝑇 |∞ ≤ max
𝑗∈𝐺

|XΘ̂⊤
𝑗 |2‖m−X𝛽‖𝑇

= max
𝑗∈𝐺

√︁
Θ̂𝑗Σ̂Θ̂⊤

𝑗 𝑜𝑃 (1)

= 𝑜𝑃 (1),

where the last line follows since Θ̂𝑗 are consistent for Θ𝑗 in the ℓ1 norm

while Σ̂ is consistent for Σ in the entrywise maximum norm under the
maintained assumptions.

Next, we focus on the HAC estimator based on LASSO residuals. Note
that by construction of the precision matrix Θ̂, its 𝑗𝑡ℎ row is Θ̂𝑗𝑥𝑡 = 𝑣𝑡,𝑗/�̂�

2
𝑗 ,

where 𝑣𝑡,𝑗 is the regression residual from the 𝑗𝑡ℎ nodewise LASSO regression
and �̂�2𝑗 is the corresponding estimator of the variance of the regression error.
Therefore, the HAC estimator based on the LASSO residuals in Eq. (3.3)
can be written as

Ξ̂𝐺 =
∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
Γ̂𝑘,

where Γ̂𝑘 has generic (𝑗, ℎ)-entry 1
𝑇

∑︀𝑇−𝑘
𝑡=1 �̂�𝑡�̂�𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ�̂�

−2
𝑗 �̂�−2

ℎ .
Similarly, we define

Ξ̃𝐺 =
∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
Γ̃𝑘,

where Γ̃𝑘 has generic (𝑗, ℎ)-entry 1
𝑇

∑︀𝑇−𝑘
𝑡=1 𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ𝜎

−2
𝑗 𝜎−2

ℎ and note

that the long-run variance Ξ𝐺 has generic (𝑗, ℎ)-entry E[𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ]𝜎
−2
𝑗 𝜎−2

ℎ .

Assumption A3.1.1. Suppose that uniformly over 𝑘 ∈ Z and 𝑗, ℎ ∈
𝐺 (i) E|𝑢0𝑢𝑘𝑣0,𝑗𝑣𝑘,ℎ| < ∞; (ii) E|𝑣0,𝑗𝑢𝑘𝑣𝑘,ℎ|2 < ∞, E|𝑢0𝑢𝑘𝑣𝑘,ℎ|2 < ∞,
E|𝑢0𝑣0,𝑗𝑢𝑘|2 <∞, and E|𝑢0𝑣0,𝑗𝑣𝑘,ℎ|2 <∞; (iii) E|𝑢0|2𝑞 <∞ and E|𝑣0,𝑗|2𝑞 <
∞ for some 𝑞 ≥ 1.

Proof of Theorem 3.2. By Proposition A3.1.4 with 𝑉𝑡 = (𝑢𝑡𝑣𝑡,𝑗/𝜎
2
𝑗 )𝑗∈𝐺

‖Ξ̂𝐺 − Ξ𝐺‖ ≤ ‖Ξ̂𝐺 − Ξ̃𝐺‖+𝑂𝑃

(︃√︂
𝑀𝑇

𝑇
+𝑀−𝜍

𝑇 + 𝑇−(𝜍∧1)

)︃
. (A3.1)
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Next,

‖Ξ̂𝐺 − Ξ̃𝐺‖ ≤
∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
‖Γ̂𝑘 − Γ̃𝑘‖

≤ |𝐺|
∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
max
𝑗,ℎ∈𝐺

⃒⃒⃒⃒
⃒ 1

�̂�2
𝑗 �̂�

2
ℎ𝑇

𝑇−𝑘∑︁
𝑡=1

�̂�𝑡�̂�𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ −
1

𝜎2
𝑗𝜎

2
ℎ𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

≤ |𝐺|
∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
max
𝑗,ℎ∈𝐺

1

�̂�2
𝑗 �̂�

2
ℎ

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

�̂�𝑡�̂�𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ −
1

𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

+ |𝐺| max
𝑗,ℎ∈𝐺

⃒⃒⃒⃒
⃒ 1

�̂�2
𝑗 �̂�

2
ℎ

− 1

𝜎2
𝑗𝜎

2
ℎ

⃒⃒⃒⃒
⃒ ∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒ ⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

, 𝑆𝑎
𝑇 + 𝑆𝑏

𝑇 .

By Proposition A3.1.2, since 𝑠2𝛼 log 𝑝/𝑇 → 0 and 𝑠𝜅𝛼𝑝/𝑇
4𝜅/5−1 → 0, under

stated assumptions, we obtain max𝑗∈𝐺 |�̂�2𝑗 − 𝜎2𝑗 | = 𝑜𝑃 (1), and whence

max𝑗∈𝐺 �̂�
−2
𝑗 = 𝑂𝑃 (1). Using �̂��̂�− 𝑎𝑏 = (�̂�− 𝑎)𝑏+ 𝑎(�̂�− 𝑏) + (�̂�− 𝑎)(�̂�− 𝑏),

by Proposition A3.1.2

𝑆𝑏
𝑇 = 𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃ ∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
max
𝑗,ℎ∈𝐺

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

Under Assumptions A3.1.1 and (i) A3.1.2 (i)

E

⎡⎣∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
max
𝑗,ℎ∈𝐺

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒
⎤⎦ ≤ 𝑂(𝑀𝑇 ) sup

𝑘∈Z

∑︁
𝑗,ℎ∈𝐺

E

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

≤ 𝑂(𝑀𝑇 )|𝐺|2 sup
𝑘∈Z

max
𝑗,ℎ∈𝐺

E|𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ|

= 𝑂(𝑀𝑇 ),

and whence 𝑆𝑏
𝑇 = 𝑂𝑃

(︂
𝑀𝑇

(︂
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅 ∨ 𝑠𝛼
√︁

log 𝑝
𝑇

)︂)︂
.

Next, we evaluate uniformly over |𝑘| < 𝑇⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

�̂�𝑡�̂�𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ −
1

𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑢𝑡+𝑘𝑣𝑡,𝑗𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

≤

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡𝑣𝑡,𝑗(�̂�𝑡+𝑘𝑣𝑡+𝑘,ℎ − 𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)(�̂�𝑡+𝑘𝑣𝑡+𝑘,ℎ − 𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ)

⃒⃒⃒⃒
⃒ , 𝐼𝑇 + 𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 .

Page Appx. - 90



Chapter 3 High-Dimensional Granger Causality Tests with an Application to VIX and News

We bound the first term as

𝐼𝑇 ≤

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡 − 𝑢𝑡)𝑣𝑡,𝑗𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢𝑡(𝑣𝑡,𝑗 − 𝑣𝑡,𝑗)𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡 − 𝑢𝑡)(𝑣𝑡,𝑗 − 𝑣𝑡,𝑗)𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒ , 𝐼𝑎𝑇 + 𝐼𝑏𝑇 + 𝐼𝑐𝑇 .

By the Cauchy-Schwartz inequality, under Assumptions of Theorem A3.1
for the sg-LASSO and Assumption A3.1.1 (ii)

𝐼𝑎𝑇 =

⃒⃒⃒⃒
⃒ 1𝑇

𝑇−𝑘∑︁
𝑡=1

(︁
𝑥⊤𝑡 (𝛽 − 𝛽) +𝑚𝑡 − 𝑥⊤𝑡 𝛽

)︁
𝑣𝑡,𝑗𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ

⃒⃒⃒⃒
⃒

≤ (‖X(𝛽 − 𝛽)‖𝑇 + ‖m−X𝛽‖𝑇 )

⎯⎸⎸⎷ 1

𝑇

𝑇−𝑘∑︁
𝑡=1

𝑣2𝑡,𝑗𝑢
2
𝑡+𝑘𝑣

2
𝑡+𝑘,ℎ

= 𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠𝛼 log 𝑝

𝑇

)︃
.

Similarly, under Assumptions of Theorem A3.1 for the nodewise LASSO
and Assumption A3.1.1 (ii)

𝐼𝑏𝑇 ≤
(︁
‖X−𝑗(𝛾𝑗 − 𝛾𝑗)‖𝑇 + 𝑜𝑃 (𝑇

−1/2)
)︁⎯⎸⎸⎷ 1

𝑇

𝑇−𝑘∑︁
𝑡=1

𝑢2𝑡𝑢
2
𝑡+𝑘𝑣

2
𝑡+𝑘,ℎ

= 𝑂𝑃

(︃
𝑆𝑗𝑝

1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑆𝑗 log 𝑝

𝑇

)︃
.

Note that for arbitrary (𝜉𝑡)𝑡∈Z and 𝑞 ≥ 1, by Jensen’s inequality

E

[︂
max
𝑡∈[𝑇 ]

|𝜉𝑡|
]︂
≤
(︂
E

[︂
max
𝑡∈[𝑇 ]

|𝜉𝑡|𝑞
]︂)︂1/𝑞

≤

(︃
E

[︃
𝑇∑︁
𝑡=1

|𝜉𝑡|𝑞
]︃)︃1/𝑞

= 𝑇 1/𝑞 (E|𝜉𝑡|𝑞)1/𝑞 .

Then by the Cauchy-Schwartz inequality under Assumption A3.1.1 (iii) and
Theorem A3.1

𝐼𝑐𝑇 ≤ (‖X(𝛽 − 𝛽)‖𝑇 + 𝑜𝑃 (𝑇
−1/2))(‖X−𝑗(𝛾𝑗 − 𝛾𝑗)‖𝑇 + 𝑜𝑃 (𝑇

−1/2))max
𝑡∈[𝑇 ]

|𝑢𝑡𝑣𝑡,ℎ|

= 𝑂𝑃

(︂
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅

)︂
,
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where we use the fact that 𝜅 ≤ 𝑞. Therefore, under maintained assumptions

𝐼𝑇 = 𝑂𝑃

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠 log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅

)︃

and by symmetry

𝐼𝐼𝑇 = 𝑂𝑃

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠 log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅

)︃
.

Lastly, by the Cauchy-Schwartz inequality

𝐼𝐼𝐼𝑇 ≤

⎯⎸⎸⎷ 1

𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)2
1

𝑇

𝑇−𝑘∑︁
𝑡=1

(�̂�𝑡+𝑘𝑣𝑡+𝑘,ℎ − 𝑢𝑡+𝑘𝑣𝑡+𝑘,ℎ)2

≤

⎯⎸⎸⎷ 1

𝑇

𝑇∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)2
1

𝑇

𝑇∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,ℎ − 𝑢𝑡𝑣𝑡,ℎ)2.

For each 𝑗 ∈ 𝐺

1

𝑇

𝑇∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)
2 ≤ 3

𝑇

𝑇∑︁
𝑡=1

|�̂�𝑡 − 𝑢𝑡|2𝑣2𝑡,𝑗 +
3

𝑇

𝑇∑︁
𝑡=1

|𝑣𝑡,𝑗 − 𝑣𝑡,𝑗|2𝑢2𝑡

+
3

𝑇

𝑇∑︁
𝑡=1

|�̂�𝑡 − 𝑢𝑡|2|𝑣𝑡,𝑗 − 𝑣𝑡,𝑗|2

, 𝐼𝐼𝐼𝑎𝑇 + 𝐼𝐼𝐼𝑏𝑇 + 𝐼𝐼𝐼𝑐𝑇 .

Since under Assumption A3.1.1 (iii), E|𝑣𝑡,𝑗|2𝑞 <∞ and E|𝑢𝑡|2𝑞 <∞,

𝐼𝐼𝐼𝑎𝑇 ≤ 3max
𝑡∈[𝑇 ]

|𝑣𝑡,𝑗|2(‖X(𝛽 − 𝛽)‖2𝑇 + 𝑜𝑃 (𝑇
−1/2)) = 𝑂𝑃

(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−3/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇 1−1/𝜅

)︂
and

𝐼𝐼𝐼𝑏𝑇 ≤ 3max
𝑡∈[𝑇 ]

|𝑢𝑡|2(‖X−𝑗(𝛾𝑗 − 𝛾𝑗)‖2𝑇 + 𝑜𝑃 (𝑇
−1/2)) = 𝑂𝑃

(︂
𝑆𝑗𝑝

2/𝜅

𝑇 2−3/𝜅
∨ 𝑆𝑗 log 𝑝

𝑇 1−1/𝜅

)︂
.
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For the last term, since under Assumption 3.2.1 (ii), sup𝑘 E|𝑋𝑡,𝑘|2𝑞 < ∞
and 𝜅 ≥ 𝑞, by Theorem A3.1

𝐼𝐼𝐼𝑐𝑇 ≤ 3(‖X(𝛽 − 𝛽)‖2𝑇 + 𝑜𝑃 (𝑇
−1/2))max

𝑡∈[𝑇 ]
|𝑋⊤

𝑡,−𝑗(𝛾𝑗 − 𝛾𝑗) +𝑚𝑡 −𝑋⊤
𝑡 𝛽|2

≤ 𝑂𝑃

(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−2/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇

)︂(︂
2max

𝑡∈[𝑇 ]
|𝑋𝑡|2∞|𝛾𝑗 − 𝛾𝑗|21 + 2𝑇‖m−X⊤𝛽‖2𝑇

)︂
= 𝑂𝑃

(︂(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−2/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇

)︂(︂
𝑆2𝑝2/𝜅

𝑇 2−2/𝜅
∨ 𝑆2 log 𝑝

𝑇

)︂
(𝑝𝑇 )1/𝜅

)︂
= 𝑂𝑃

(︂
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅
+
𝑠3𝑝3/𝜅 log 𝑝

𝑇 3−3/𝜅
+
𝑠3𝑝1/𝜅 log2 𝑝

𝑇 2−1/𝜅

)︂
= 𝑂𝑃

(︂
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅
+
𝑠3𝑝3/𝜅 log 𝑝

𝑇 3−3/𝜅

)︂
,

where we use the fact that 𝜅 > 2, 𝑠 = 𝑠𝛼 ∨ 𝑆, 𝑠𝜅𝑝 = 𝑜(𝑇 4𝜅/5−1), and
𝑠2 log 𝑝/𝑇 → 0 as 𝑇 → ∞. Then for every 𝑗 ∈ 𝐺

1

𝑇

𝑇∑︁
𝑡=1

(�̂�𝑡𝑣𝑡,𝑗 − 𝑢𝑡𝑣𝑡,𝑗)
2 = 𝑂𝑃

(︂
𝑠𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅
+
𝑠3𝑝3/𝜅 log 𝑝

𝑇 3−3/𝜅

)︂
,

and whence

𝐼𝐼𝐼𝑇 = 𝑂𝑃

(︂
𝑠𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅
+
𝑠3𝑝3/𝜅 log 𝑝

𝑇 3−3/𝜅

)︂
.

Therefore, since �̂�2𝑗
𝑃−→ 𝜎2𝑗 , we obtain

𝑆𝑎
𝑇 = 𝑂𝑃

(︃
𝑀𝑇

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠 log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
∨ 𝑠 log 𝑝

𝑇 1−1/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅
+
𝑠3𝑝3/𝜅 log 𝑝

𝑇 3−3/𝜅

)︃)︃

= 𝑂𝑃

(︃
𝑀𝑇

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠 log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅

)︃)︃
,

where the last line follows since 𝑠𝜅𝑝/𝑇 4𝜅/5−1 = 𝑜(1). Combining this
estimate with previously obtained estimate for 𝑆𝑏

𝑇

‖Ξ̂𝐺 − Ξ̃𝐺‖ = 𝑂𝑃

(︃
𝑀𝑇

(︃
𝑠𝑝1/𝜅

𝑇 1−1/𝜅
∨ 𝑠
√︂

log 𝑝

𝑇
+
𝑠2𝑝2/𝜅

𝑇 2−3/𝜅
+
𝑠3𝑝5/𝜅

𝑇 4−5/𝜅

)︃)︃
.

The result follows from combining this estimate with the estimate in
equation ((A3.1)).
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Proof of Theorem 3.1. Suppose first that 𝑝 = 1. For 𝑎 ∈ R, with some
abuse of notation, let [𝑎] denote its integer part. We split partial sums
into blocks 𝑉𝑘 = 𝜉(𝑘−1)𝐽+1 + · · · + 𝜉𝑘𝐽 , 𝑘 = 1, 2, . . . , [𝑇/𝐽 ] and 𝑉[𝑇/𝐽 ]+1 =
𝜉[𝑇/𝐽 ]𝐽+1 + · · · + 𝜉𝑇 , where we set 𝑉[𝑇/𝐽 ]+1 = 0 if 𝑇/𝐽 is an integer. Let
{𝑈𝑡 : 𝑡 = 1, 2, . . . , [𝑇/𝐽 ] + 1} be i.i.d. random variables drawn from the
uniform distribution on (0, 1) independently of {𝑉𝑡 : 𝑡 = 1, 2, . . . , [𝑇/𝐽 ]+1}.
Put ℳ𝑡 = 𝜎(𝑉1, . . . , 𝑉𝑡−2) for every 𝑡 = 3, . . . , [𝑇/𝐽 ] + 1. Next, for 𝑡 = 1, 2,
set 𝑉 *

𝑡 = 𝑉𝑡, while for 𝑡 ≥ 3, by Dedecker and Prieur (2004), Lemma 5,
there exist random variables 𝑉 *

𝑡 =𝑑 𝑉𝑡 such that:
1. 𝑉 *

𝑡 is 𝜎(𝑉1, . . . , 𝑉𝑡−2) ∨ 𝜎(𝑉𝑡) ∨ 𝜎(𝑈𝑡)-measurable;
2. 𝑉 *

𝑡 ⊥⊥ (𝑉1, . . . , 𝑉𝑡−2);
3. ‖𝑉𝑡 − 𝑉 *

𝑡 ‖1 = 𝜏(ℳ𝑡, 𝑉𝑡).
It follows from properties 1. and 2. that (𝑉 *

2𝑡)𝑡≥1 and (𝑉 *
2𝑡−1)𝑡≥1 are sequences

of independent random variables. Then⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒∑︁
𝑡≥1

𝑉 *
2𝑡

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒∑︁
𝑡≥1

𝑉 *
2𝑡−1

⃒⃒⃒⃒
⃒+

[𝑇/𝐽 ]+1∑︁
𝑡=3

|𝑉𝑡 − 𝑉 *
𝑡 |

, 𝐼𝑇 + 𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 .

By Fuk and Nagaev (1971), Corollary 4, there exist constants 𝑐
(𝑗)
𝑞 , 𝑗 = 1, 2

such that

Pr(𝐼𝑇 ≥ 𝑥) ≤ 𝑐
(1)
𝑞

𝑥𝑞

∑︁
𝑡≥1

E|𝑉 *
2𝑡|𝑞 + 2 exp

(︃
− 𝑐

(2)
𝑞 𝑥2∑︀

𝑡≥1Var(𝑉
*
2𝑡)

)︃

≤ 𝑐
(1)
𝑞

𝑥𝑞

∑︁
𝑡≥1

E|𝑉2𝑡|𝑞 + 2 exp

(︃
−𝑐

(2)
𝑞 𝑥2

𝐵2
𝑇

)︃
,

where the second inequality follows since
∑︀

𝑡≥1Var(𝑉
*
2𝑡) =

∑︀
𝑡≥1Var(𝑉2𝑡) ≤

𝐵2
𝑇 . Similarly

Pr(𝐼𝐼𝑇 ≥ 𝑥) ≤ 𝑐
(1)
𝑞

𝑥𝑞

∑︁
𝑡≥1

E|𝑉2𝑡−1|𝑞 + 2 exp

(︃
−𝑐

(2)
𝑞 𝑥2

𝐵2
𝑇

)︃
.
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Lastly, by Markov’s inequality and property 3.

Pr (𝐼𝐼𝐼𝑇 ≥ 𝑥) ≤ 1

𝑥

[𝑇/𝐽 ]+1∑︁
𝑡=3

𝜏(ℳ𝑡, 𝑉𝑡)

≤ 1

𝑥

[𝑇/𝐽 ]+1∑︁
𝑡=3

𝜏(ℳ𝑡, (𝜉(𝑡−1)𝐽+1, . . . , 𝜉𝑡𝐽))

≤ 1

𝑥
[𝑇/𝐽 ] sup

𝑡+𝐽+1≤𝑡1<···<𝑡𝐽

𝜏(ℳ𝑡, (𝜉𝑡1, . . . , 𝜉𝑡𝐽 ))

≤ 𝑇

𝑥
𝜏𝐽+1,

where the second inequality follows since the sum is a 1-Lipschitz function
with respect to |.|1-norm and the third since ℳ𝑡 and (𝜉(𝑡−1)𝐽+1, . . . , 𝜉𝑡𝐽) are
separated by 𝐽 + 1 lags of (𝜉𝑡)𝑡∈Z.

Combining all the estimates together

Pr

(︃⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒ ≥ 3𝑥

)︃
≤ Pr(𝐼𝑇 ≥ 𝑥) + Pr(𝐼𝐼𝑇 ≥ 𝑥) + Pr(𝐼𝐼𝐼𝑇 ≥ 𝑥)

≤ 𝑐
(1)
𝑞

𝑥𝑞

[𝑇/𝐽 ]+1∑︁
𝑡=1

E|𝑉𝑡|𝑞 + 4 exp

(︃
−𝑐

(2)
𝑞 𝑥2

𝐵2
𝑇

)︃
+
𝑇

𝑥
𝜏𝐽+1

≤ 𝑐
(1)
𝑞

𝑥𝑞
𝐽𝑞−1

𝑇∑︁
𝑡=1

‖𝜉𝑡‖𝑞𝑞 +
𝑇

𝑥
𝑐(𝐽 + 1)−𝑎 + 4 exp

(︃
−𝑐

(2)
𝑞 𝑥2

𝐵2
𝑇

)︃
.

To balance the first two terms, we shall set 𝐽 ∼ 𝑥
𝑞−1

𝑞+𝑎−1 , in which case we
obtain the result under maintained assumptions. The result for 𝑝 > 1
follows by the union bound.

For a stationary process (𝜉𝑡)𝑡∈Z, let

𝛾𝑘 = ‖E(𝜉𝑘|ℳ0)− E(𝜉𝑘)‖1

be its 𝐿1 mixingale coefficient with respect to the canonical filtration
ℳ0 = 𝜎(𝜉0, 𝜉−1, 𝜉−2, . . . ). Let 𝛼𝑘 be the 𝛼-mixing coefficient and let 𝑄 be
the quantile function of |𝜉0|. The following covariance inequality allows us
controlling the autocovariances in terms of the 𝜏 -mixing coefficient as well
as comparing the latter to the mixingale and the 𝛼-mixing coefficients.
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Lemma A3.1.1. Let (𝜉𝑡)𝑡∈Z be a centered stationary stochastic process with
‖𝜉0‖𝑞 <∞ for some 𝑞 > 2. Then

|Cov(𝜉0, 𝜉𝑡)| ≤ 𝛾
𝑞−2
𝑞−1

𝑡 ‖𝜉0‖𝑞/(𝑞−1)
𝑞

and

𝛾𝑡 ≤ 𝜏𝑡 ≤ 2

∫︁ 2𝛼𝑡

0

𝑄(𝑢)d𝑢.

Proof. Let 𝐺 be the generalized inverse of 𝑥 ↦→
∫︀ 𝑥

0 𝑄(𝑢)d𝑢. By Dedecker
and Doukhan (2003), Proposition 1

|Cov(𝜉0, 𝜉𝑡)| ≤
∫︁ 𝛾𝑡

0

(𝑄 ∘𝐺)(𝑢)d𝑢

≤ 𝛾
𝑞−2
𝑞−1

𝑡

(︃∫︁ ‖𝜉0‖1

0

(𝑄 ∘𝐺)𝑞−1(𝑢)d𝑢

)︃1/(𝑞−1)

= 𝛾
𝑞−2
𝑞−1

𝑡 ‖𝜉0‖𝑞/(𝑞−1)
𝑞 ,

where the second line follows by Hölder’s inequality and the last equality

by the change of variables
∫︀ ‖𝜉0‖1
0 (𝑄 ∘ 𝐺)𝑞−1(𝑢)d𝑢 =

∫︀ 1

0 𝑄
𝑞(𝑢)d𝑢 = E|𝜉0|𝑞.

The second statement follows from Dedecker and Doukhan (2003), Lemma
1 and Dedecker and Prieur (2004), Lemma 6.

The following result shows that the variance of partial sums can be
controlled provided that the 𝜏 -mixing coefficients decline sufficiently fast.

Lemma A3.1.2. Let (𝜉𝑡)𝑡∈Z be a centered stationary stochastic process such
that ‖𝜉𝑡‖𝑞 <∞ for some 𝑞 > 2 and 𝜏𝑘 = 𝑂(𝑘−𝑎) for some 𝑎 > 𝑞−1

𝑞−2. Then

𝑇∑︁
𝑡=1

𝑇∑︁
𝑘=1

|Cov(𝜉𝑡,𝑗, 𝜉𝑘,𝑗)| = 𝑂(𝑇 ).

Proof. Under stationarity

𝑇∑︁
𝑡=1

𝑇∑︁
𝑘=1

|Cov(𝜉𝑡,𝑗, 𝜉𝑘,𝑗)| = 𝑇Var(𝜉0) + 2
𝑇−1∑︁
𝑘=1

(𝑇 − 𝑘) Cov(𝜉0, 𝜉𝑘)

≤ 𝑇Var(𝜉0) + 2𝑇‖𝜉𝑡‖𝑞/(𝑞−1)
𝑞

𝑇−1∑︁
𝑘=1

𝜏
𝑞−2
𝑞−1

𝑘

= 𝑂(𝑇 ),
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where the second line follows by Proposition A3.1.1 and the last since the

series
∑︀∞

𝑘=1 𝑘
−𝑎 𝑞−2

𝑞−1 converges under the maintained assumptions.

Lastly, we show that in the linear regression setting, the long-run
variance for a group of projection coefficients 𝐺 ⊂ [𝑝] of fixed size exists
under mild conditions. Let 𝜉𝑡 = 𝑢𝑡Θ𝐺𝑥𝑡, where Θ𝐺 are rows of the precision
matrix Θ = Σ−1 corresponding to indices in 𝐺.

Proposition A3.1.1. Suppose that (i) (𝑢𝑡𝑥𝑡)𝑡∈Z is stationary for every
𝑝 ≥ 1; (ii) ‖𝑢𝑡‖𝑞 <∞ and max𝑗∈[𝑝] ‖𝑥𝑡,𝑗‖𝑟 = 𝑂(1) for some 𝑞 > 2𝑟/(𝑟 − 2)
and 𝑟 > 4; (iii) for every 𝑗 ∈ [𝑝], the 𝜏 -mixing coefficients of (𝑢𝑡𝑥𝑡,𝑗)𝑡∈Z
are 𝜏𝑘 ≤ 𝑐𝑘−𝑎 for all 𝑘 ≥ 0, where 𝑐 > 0 and 𝑎 > (𝜍 − 1)/(𝜍 − 2), and
𝜍 = 𝑞𝑟/(𝑞 + 𝑟) are some universal constants; (iv) ‖Θ𝐺‖∞ = 𝑂(1) and
sup𝑥E[|𝑢𝑡|2|𝑥𝑡 = 𝑥] = 𝑂(1). Then for every 𝑧 ∈ R|𝐺|, the limit

lim
𝑇→∞

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑡

)︃
exists.

Proof. Under assumption (i), by Hölder’s inequality, max𝑗∈[𝑝] ‖𝑢𝑡𝑥𝑡,𝑗‖𝜍 =
𝑂(1) with 𝜍 = 𝑞𝑟/(𝑞 + 𝑟), whence by the Minkowski inequality and
assumption (iv)

‖𝑧⊤𝜉𝑡‖𝜍 ≤
∑︁
𝑘∈𝐺

∑︁
𝑗∈[𝑝]

|Θ𝑘,𝑗|‖𝑢𝑡𝑥𝑡,𝑗‖𝜍 ≤ |𝐺|‖Θ𝐺‖∞ = 𝑂(1). (A3.2)

Since 𝜍 > 2, this shows that Var(𝑧⊤𝜉0) exists. Moreover,

Var(𝑧⊤𝜉0) = 𝑧⊤Θ𝐺Var(𝑢0𝑥0)Θ
⊤
𝐺𝑧

=
∑︁
𝑗,𝑘∈[𝑝]

(𝑧⊤Θ𝐺)𝑗(𝑧
⊤Θ𝐺)𝑘E[𝑢

2
0𝑥0,𝑗𝑥0,𝑘],

where the sum converges as 𝑝→ ∞ by the comparison test under assumption
(iv) implying that lim𝑇→∞Var(𝑧⊤𝜉0) exists. Next, under assumption (i),
for every 𝑧 ∈ R|𝐺|

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑡

)︃
= Var(𝑧⊤𝜉0) + 2

𝑇−1∑︁
𝑘=1

(︂
1− 𝑘

𝑇

)︂
Cov(𝑧⊤𝜉0, 𝑧

⊤𝜉𝑘).
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By Lemma A3.1.1, we bound covariances by the mixingale coefficient for
every 𝑘 ≥ 1

|Cov(𝑧⊤𝜉0, 𝑧⊤𝜉𝑘)| . ‖𝑧⊤𝜉0‖𝜍/(𝜍−1)
𝜍 ‖E(𝑧⊤𝜉𝑘|ℳ0)− E(𝑧⊤𝜉𝑘)‖

𝜍−2
𝜍−1

1

. |𝑧⊤Θ𝐺|
𝜍−2
𝜍−1

1 max
𝑗∈[𝑝]

‖E(𝑢𝑘𝑥𝑘,𝑗|ℳ0)− E(𝑢𝑘𝑥𝑘,𝑗)‖
𝜍−2
𝜍−1

1

. 𝜏
𝜍−2
𝜍−1

𝑘

where the first inequality follows by Lemma A3.1.1, the second by equation (A3.2),

and the third by Lemma A3.1.1. Under assumption (iii),
∑︀∞

𝑘=1 𝜏
(𝜍−2)/(𝜍−1)
𝑘

converges, which implies that

∞∑︁
𝑘=1

|Cov(𝑧⊤𝜉0, 𝑧⊤𝜉𝑘)| <∞

by the comparison test. Therefore, by Lebesgue’s dominated convergence,
this shows that the long run variance

lim
𝑇→∞

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑡

)︃

exists.
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We recall first the convergence rates for the sg-LASSO with weakly
dependent data that will be needed throughout the paper from Babii,
Ghysels, and Striaukas (2020b), Corollary 3.1.

Theorem A3.1. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, and 3.2.4
are satisfied. Then

‖X(𝛽 − 𝛽)‖2𝑇 = 𝑂𝑃

(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−2/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇

)︂
.

and

Ω(𝛽 − 𝛽) = 𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃
.

Next, we consider the regularized estimator of the variance of the
regression error

�̂�2 = ‖y −X𝛽‖2𝑇 + 𝜆Ω(𝛽),

where 𝛽 is the sg-LASSO estimator. While the regularization is not needed
to have a consistent variance estimator, the LASSO version of the regularized
estimator (𝛼 = 1) is needed to establish the CLT for the debiased sg-LASSO
estimator. The following result describes the converges of this variance
estimator to its population counterpart 𝜎2 = E‖u‖2𝑇 .

Proposition A3.1.2. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, and
3.2.4 are satisfied and that (𝑢2𝑡 )𝑡∈Z has a finite long run variance. Then

�̂�2 = 𝜎2 +𝑂𝑃

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃

provided that 𝑠𝛼𝑝
1/𝜅

𝑇 1−1/𝜅 ∨ 𝑠𝛼
√︁

log 𝑝
𝑇 = 𝑜(1).

Proof. We have

|�̂�2 − 𝜎2| =
⃒⃒⃒
‖u‖2𝑇 + 2⟨u,m−X𝛽⟩𝑇 − ‖m−X𝛽‖2𝑇 + 𝜆Ω(𝛽)− 𝜎2

⃒⃒⃒
≤ |𝜎2 − ‖u‖2𝑇 |+ 2‖u‖𝑇‖m−X𝛽‖𝑇 + 2‖X(𝛽 − 𝛽)‖2𝑇+

+ 2‖m−X𝛽‖2𝑇 + 𝜆Ω(𝛽)

, 𝐼𝑇 + 𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 + 𝐼𝑉𝑇 + 𝑉𝑇 .
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By the Chebychev’s inequality since the long-run variance exists, for every
𝜀 > 0

Pr

(︃⃒⃒⃒⃒
⃒ 1√
𝑇

𝑇∑︁
𝑡=1

(𝑢2𝑡 − 𝜎2)

⃒⃒⃒⃒
⃒ > 𝜀

)︃
≤ 1

𝜀2

∑︁
𝑡∈Z

Cov(𝑢20, 𝑢
2
𝑡 ),

whence 𝐼𝑇 = 𝑂𝑃

(︁
1√
𝑇

)︁
. Therefore, by the triangle inequality and Theorem A3.1

𝐼𝐼𝑇 = 𝑂𝑃 (1)‖m−X𝛽‖𝑇
≤ 𝑂𝑃 (1)

(︁
‖m−X𝛽‖𝑇 + ‖X(𝛽 − 𝛽)‖𝑇

)︁
= 𝑂𝑃

(︃
𝑠1/2𝛼 𝜆+

𝑠
1/2
𝛼 𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂
𝑠𝛼 log 𝑝

𝑇

)︃
.

By Theorem A3.1 we also have

𝐼𝐼𝐼𝑇 + 𝐼𝑉𝑇 = 𝑂𝑃

(︂
𝑠𝛼𝑝

2/𝜅

𝑇 2−2/𝜅
∨ 𝑠𝛼 log 𝑝

𝑇
+ 𝑠𝛼𝜆

2

)︂
.

Lastly, another application of Theorem A3.1 gives

𝑉𝑇 = 𝜆Ω(𝛽 − 𝛽) + 𝜆Ω(𝛽)

= 𝑂𝑃

(︃
𝜆

(︃
𝑠𝛼𝑝

1/𝜅

𝑇 1−1/𝜅
∨ 𝑠𝛼

√︂
log 𝑝

𝑇

)︃
+ 𝜆𝑠𝛼

)︃
.

The result follows from combining all estimates together.

Next, we look at the estimator of the precision matrix. Consider
nodewise LASSO regressions in equation ((3.2)) for each 𝑗 ∈ [𝑝]. Put
𝑆 = max𝑗∈𝐺 𝑆𝑗, where 𝑆𝑗 is the support of 𝛾𝑗.

Proposition A3.1.3. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, and
3.2.4 are satisfied for each nodewise regression 𝑗 ∈ 𝐺 and that (𝑣2𝑡,𝑗)𝑡∈Z
has a finite long-run variance for each 𝑗 ∈ 𝐺. Then if 𝑆𝜅𝑝𝑇 1−𝜅 → 0 and
𝑆2 log 𝑝/𝑇 → 0

‖Θ̂𝐺 −Θ𝐺‖∞ = 𝑂𝑃

(︃
𝑆𝑝1/𝜅

𝑇 1−1/𝜅
∨ 𝑆
√︂

log 𝑝

𝑇

)︃
and

max
𝑗∈𝐺

|(𝐼 − Θ̂Σ̂)𝑗|∞ = 𝑂𝑃

(︃
𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂

log 𝑝

𝑇

)︃
.
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Proof. By Theorem A3.1 and Proposition A3.1.2 with 𝛼 = 1 (corresponding
to the LASSO estimator of 𝛾𝑗 and 𝜎

2
𝑗 )

‖Θ̂𝐺 −Θ𝐺‖∞ = max
𝑗∈𝐺

|Θ̂𝑗 −Θ𝑗|1

≤ max
𝑗∈𝐺

{︀
|𝛾𝑗|1

⃒⃒
�̂�−2
𝑗 − 𝜎−2

𝑗

⃒⃒
+ |𝛾𝑗 − 𝛾𝑗|1|𝜎−2

𝑗 |
}︀

= 𝑂𝑃

(︃
𝑆𝑝1/𝜅

𝑇 1−1/𝜅
∨ 𝑆
√︂

log 𝑝

𝑇

)︃
,

where we use the fact that |𝐺| is fixed and that �̂�2𝑗
𝑝−→ 𝜎2𝑗 under maintained

assumptions.
Second, for each 𝑗 ∈ 𝐺, by Fermat’s rule,

X⊤
−𝑗(X𝑗 −X−𝑗𝛾𝑗)/𝑇 = 𝜆𝑗𝑧

*, 𝑧* ∈ 𝜕|𝛾𝑗|1,

where 𝛾⊤𝑗 𝑧
* = |𝛾𝑗|1 and |𝑧*|∞ ≤ 1. Then

X⊤
𝑗 (X𝑗 −X−𝑗𝛾𝑗)/𝑇 = ‖X𝑗 −X−𝑗𝛾𝑗‖2𝑇 + 𝛾⊤𝑗 X

⊤
−𝑗(X𝑗 −X−𝑗𝛾𝑗)/𝑇

= ‖X𝑗 −X−𝑗𝛾𝑗‖2𝑇 + 𝜆𝑗𝛾
⊤
𝑗 𝑧

* = �̂�2𝑗 ,

and whence

|(𝐼 − Θ̂Σ̂)𝑗|∞ = |𝐼𝑗 − (X𝑗 −X−𝑗𝛾𝑗)
⊤X/(𝑇 �̂�2𝑗 )|∞

= max
{︀
|1−X⊤

𝑗 (X𝑗 −X−𝑗𝛾𝑗)/(𝑇 �̂�
2
𝑗 )|,

|X⊤
−𝑗(X𝑗 −X−𝑗𝛾𝑗)/(𝑇 �̂�

2
𝑗 )|∞

}︀
= 𝜆𝑗|𝑧*|∞/�̂�2𝑗 = 𝑂𝑃

(︃
𝑝1/𝜅

𝑇 1−1/𝜅
∨
√︂

log 𝑝

𝑇

)︃
,

where the last line follows since �̂�−2
𝑗 = 𝑂𝑃 (1) and |𝑧*|∞ ≤ 1. The conclusion

follows from the fact that |𝐺| is fixed.

Next, we first derive the non-asymptotic Frobenius norm bound with
explicit constants for a generic HAC estimator of the sample mean that
holds uniformly over a class of distributions. We focus on the 𝑝-dimensional
centered stochastic process (𝑉𝑡)𝑡∈Z and put

Ξ =
∑︁
𝑘∈Z

Γ𝑘 and Ξ̃ =
∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
Γ̃𝑘,
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where Γ𝑘 = E[𝑉𝑡𝑉
⊤
𝑡+𝑘] and Γ̃𝑘 =

1
𝑇

∑︀𝑇−𝑘
𝑡=1 𝑉𝑡𝑉

⊤
𝑡+𝑘. Put also Γ = (Γ𝑘)𝑘∈Z and

let ⟨., .⟩ be the Frobenius inner product with corresponding Frobenius norm
‖.‖. The following assumption describes the relevant class of distributions
and kernel functions.

Assumption A3.1.2. Suppose that (i) 𝐾 : R → [−1, 1] is a Riemann
integrable function such that 𝐾(0) = 1; (ii) there exists some 𝜀, 𝜍 > 0 such
that |𝐾(0) − 𝐾(𝑥)| ≤ 𝐿|𝑥|𝜍 for all |𝑥| < 𝜀; (iii) (𝑉𝑡)𝑡∈Z is fourth-order
stationary; (iv) Γ ∈ 𝒢(𝜍,𝐷1, 𝐷2), where

𝒢(𝜍,𝐷1, 𝐷2) =

⎧⎨⎩∑︁
𝑘∈Z

|𝑘|𝜍‖Γ𝑘‖ ≤ 𝐷1, sup
𝑘∈Z

∑︁
𝑙∈Z

∑︁
𝑡∈Z

∑︁
𝑗,ℎ∈[𝑝]

|Cov(𝑉0,𝑗𝑉𝑘,ℎ, 𝑉𝑡,𝑗𝑉𝑡+𝑙,ℎ)| ≤ 𝐷2

⎫⎬⎭
for some 𝐷1, 𝐷2 > 0.

Condition (ii) describes the smoothness (or order) of the kernel in the
neighborhood of zero. 𝜍 = 1 for the Bartlett kernel and 𝜍 = 2 for the Parzen,
Tukey-Hanning, and Quadratic spectral kernels, see Andrews (1991). Since
the bias of the HAC estimator is limited by the order of the kernel, it is
typically not recommended to use the Bartlett kernel in practice. Higher-
order kernels with 𝜍 > 2 do not ensure the positive definiteness of the HAC
estimator and require additional spectral regularization, see Politis (2011).
Condition (iv) describes the class of autocovariances that vanish rapidly
enough. Note that if (iv) holds for some 𝜍, then it also holds for every
𝜍 < 𝜍 and that if (ii) holds for some 𝜍 > 𝜍, then it also holds for 𝜍 = 𝜍.
The covariance condition in (iv) can be justified under more primitive
moment and summability conditions imposed on 𝐿1-mixingale/𝜏 -mixing
coefficients, see Proposition A3.1.1 and Andrews (1991), Lemma 1. The
following result gives a nonasymptotic risk bound uniformly over the class
𝒢 and corresponds to the asymptotic convergence rates for the spectral
density evaluated at zero derived in Parzen (1957).

Proposition A3.1.4. Suppose that Assumption A3.1.2 is satisfied. Then

sup
Γ∈𝒢(𝜍,𝐷1,𝐷2)

E‖Ξ̃− Ξ‖2 ≤ 𝐶1
𝑀𝑇

𝑇
+ 𝐶2𝑀

−2𝜍
𝑇 + 𝐶3𝑇

−2(𝜍∧1),

where 𝐶1 = 𝐷2

(︀∫︀
|𝐾(𝑢)|d𝑢+ 𝑜(1)

)︀
, 𝐶2 = 2

(︀
𝐷1𝐿+ 2𝐷1

𝜀𝜍

)︀2
, and 𝐶3 = 2𝐷2

1.
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Proof. By the triangle inequality, under Assumption A3.1.2 (i)

‖E[Ξ̃]− Ξ‖ =

⃦⃦⃦⃦
⃦⃦∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
𝑇 − 𝑘

𝑇
Γ𝑘 −

∑︁
𝑘∈Z

Γ𝑘

⃦⃦⃦⃦
⃦⃦

≤
∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂
−𝐾(0)

⃒⃒⃒⃒
‖Γ𝑘‖+

1

𝑇

∑︁
|𝑘|<𝑇

|𝑘|‖Γ𝑘‖+
∑︁
|𝑘|≥𝑇

‖Γ𝑘‖

, 𝐼𝑇 + 𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 .

For the first term, we obtain

𝐼𝑇 =
∑︁

|𝑘|<𝜀𝑀𝑇

⃒⃒⃒⃒
𝐾(0)−𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
‖Γ𝑘‖+

∑︁
𝜀𝑀𝑇≤|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂
−𝐾(0)

⃒⃒⃒⃒
‖Γ𝑘‖

≤ 𝐿𝑀−𝜍
𝑇

∑︁
|𝑘|<𝜀𝑀𝑇

|𝑘|𝜍‖Γ𝑘‖+ 2
∑︁

𝜀𝑀𝑇≤|𝑘|<𝑇

‖Γ𝑘‖

≤ 𝐷1𝐿

𝑀 𝜍
𝑇

+
2

𝜀𝜍𝑀 𝜍
𝑇

∑︁
𝜀𝑀𝑇≤|𝑘|<𝑇

|𝑘|𝜍‖Γ𝑘‖

≤ 𝐷1𝐿

𝑀 𝜍
𝑇

+
2𝐷1

𝜀𝜍𝑀 𝜍
𝑇

,

where the second sum is defined to be zero if 𝑇 ≤ 𝜀𝑀𝑇 , the second
line follows under Assumption A3.1.2 (i)-(ii) and the last two under
Assumption A3.1.2 (iii). Next, if 𝜍 ≥ 1,∑︁

|𝑘|<𝑇

|𝑘|‖Γ𝑘‖ ≤
∑︁
|𝑘|<𝑇

|𝑘|𝜍‖Γ𝑘‖,

while if 𝜍 ∈ (0, 1) ∑︁
|𝑘|<𝑇

|𝑘|‖Γ𝑘‖ ≤ 𝑇 1−𝜍
∑︁
|𝑘|<𝑇

|𝑘|𝜍‖Γ𝑘‖.

Therefore, since
∑︀

|𝑘|≥𝑇 ‖Γ𝑘‖ ≤ 𝑇−𝜍
∑︀

|𝑘|≥𝑇 |𝑘|𝜍‖Γ𝑘‖, under Assumption
A3.1.2 (iv)

𝐼𝐼𝑇 + 𝐼𝐼𝐼𝑇 ≤

{︃
𝐷1

𝑇 𝜍 ≥ 1
𝐷1

𝑇 𝜍 𝜍 ∈ (0, 1)

=
𝐷1

𝑇 𝜍∧1 .
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This shows that

‖E[Ξ̃]− Ξ‖ ≤ 𝐷1𝐿

𝑀 𝜍
𝑇

+
2𝐷1

𝜀𝜍𝑀 𝜍
𝑇

+
𝐷1

𝑇 𝜍∧1 . (A3.3)

Next, under Assumption A3.1.2 (i)

E‖Ξ̃− E[Ξ̃]‖2 =
∑︁
|𝑘|<𝑇

∑︁
|𝑙|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
𝐾

(︂
𝑙

𝑀𝑇

)︂
E
⟨
Γ̃𝑘 − EΓ̃𝑘, Γ̃𝑙 − EΓ̃𝑙

⟩
≤
∑︁
|𝑘|<𝑇

⃒⃒⃒⃒
𝐾

(︂
𝑘

𝑀𝑇

)︂⃒⃒⃒⃒
sup
|𝑘|<𝑇

∑︁
|𝑙|<𝑇

⃒⃒⃒
E
⟨
Γ̃𝑘 − EΓ̃𝑘, Γ̃𝑙 − EΓ̃𝑙

⟩⃒⃒⃒
,

where under Assumptions A3.1.2 (iii)

𝑇
⃒⃒⃒
E
⟨
Γ̃𝑘 − EΓ̃𝑘, Γ̃𝑙 − EΓ̃𝑙

⟩⃒⃒⃒
≤ 1

𝑇

𝑇−𝑘∑︁
𝑡=1

𝑇−𝑙∑︁
𝑟=1

∑︁
𝑗,ℎ∈[𝑝]

|Cov(𝑉𝑡,𝑗𝑉𝑡+𝑘,ℎ, 𝑉𝑟,𝑗𝑉𝑟+𝑙,ℎ)|

≤
∑︁
𝑡∈Z

∑︁
𝑗,ℎ∈[𝑝]

|Cov(𝑉0,𝑗𝑉𝑘,ℎ, 𝑉𝑡,𝑗𝑉𝑡+𝑙,ℎ)|.

Therefore, under Assumptions A3.1.2 (i), (iv)

E‖Ξ̃− E[Ξ̃]‖2 ≤𝑀𝑇

(︂∫︁
|𝐾(𝑢)|d𝑢+ 𝑜(1)

)︂
𝐷2

𝑇
. (A3.4)

The result follows from combining estimates in equations ((A3.3)) and
((A3.4)).
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A3.2 Data

News topic Meta topic LASSO sg-LASSO
1 Accounting Asset Managers & I-Banks
2 Acquired investment banks Asset Managers & I-Banks X X
3 Activists Activism/Language
4 Aerospace/defense Trans/Retail/Local Politics X X
5 Agreement reached Negotiations
6 Agriculture Oil & Mining
7 Airlines Trans/Retail/Local Politics
8 Announce plan Activism/Language
9 Arts Social/Cultural
10 Automotive Trans/Retail/Local Politics
11 Bank loans Banks
12 Bankruptcy Buyouts & Bankruptcy
13 Bear/bull market Financial Markets X X
14 Biology/chemistry/physics Science/Language
15 Bond yields Financial Markets
16 Broadcasting Entertainment X X
17 Buffett Activism/Language
18 Bush/Obama/Trump Leaders
19 C-suite Management
20 Cable Industry
21 California Trans/Retail/Local Politics
22 Canada/South Africa International Affairs
23 Casinos Industry X
24 Challenges Challenges
25 Changes Challenges
26 Chemicals/paper Industry
27 China International Affairs
28 Clintons Leaders
29 Committees Negotiations
30 Commodities Financial Markets
31 Company spokesperson Negotiations
32 Competition Industry
33 Computers Technology
34 Connecticut Management
35 Control stakes Buyouts & Bankruptcy X
36 Convertible/preferred Buyouts & Bankruptcy
37 Corporate governance Buyouts & Bankruptcy X X
38 Corrections/amplifications Activism/Language
39 Couriers Industry
40 Courts Courts X
41 Credit cards Industry
42 Credit ratings Banks X X
43 Cultural life Social/Cultural
44 Currencies/metals Financial Markets
45 Disease Trans/Retail/Local Politics X X
46 Drexel Buyouts & Bankruptcy X
47 Earnings Corporate Earnings
48 Earnings forecasts Corporate Earnings
49 Earnings losses Corporate Earnings X
50 Economic growth Economic Growth
51 Economic ideology Social/Cultural
52 Elections Leaders X X
53 Electronics Technology X X
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54 Environment Government X
55 European politics Leaders X
56 European sovereign debt Economic Growth X X
57 Exchanges/composites Financial Markets
58 Executive pay Labor/income
59 Fast food Industry X
60 Federal Reserve Economic Growth X X
61 Fees Labor/income
62 Financial crisis Banks X X
63 Financial reports Corporate Earnings
64 Foods/consumer goods Industry
65 France/Italy International Affairs
66 Futures/indices Activism/Language
67 Gender issues Social/Cultural
68 Germany International Affairs X X
69 Government budgets Labor/income
70 Health insurance Labor/income
71 Humor/language Social/Cultural
72 Immigration Social/Cultural
73 Indictments Courts
74 Insurance Industry
75 International exchanges Financial Markets
76 Internet Technology
77 Investment banking Asset Managers & I-Banks
78 IPOs Financial Markets
79 Iraq Terrorism/Mideast X
80 Japan International Affairs X
81 Job cuts Labor/income
82 Justice Department Courts
83 Key role Challenges
84 Latin America International Affairs X X
85 Lawsuits Courts
86 Long/short term Challenges
87 Luxury/beverages Industry
88 M&A Buyouts & Bankruptcy X
89 Machinery Oil & Mining
90 Macroeconomic data Economic Growth
91 Major concerns Activism/Language
92 Management changes Management X
93 Marketing Entertainment X
94 Mexico Activism/Language X
95 Microchips Technology
96 Mid-level executives Management
97 Mid-size cities Trans/Retail/Local Politics
98 Middle east Terrorism/Mideast X
99 Mining Oil & Mining

100 Mobile devices Technology
101 Mortgages Banks X
102 Movie industry Entertainment X
103 Music industry Entertainment
104 Mutual funds Asset Managers & I-Banks
105 NASD Asset Managers & I-Banks X X
106 National security Government X
107 Natural disasters Trans/Retail/Local Politics X X
108 Negotiations Negotiations
109 News conference Negotiations
110 Nonperforming loans Banks X
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111 Nuclear/North Korea Terrorism/Mideast X
112 NY politics Trans/Retail/Local Politics X
113 Oil drilling Oil & Mining
114 Oil market Oil & Mining X
115 Optimism Economic Growth
116 Options/VIX Financial Markets X X
117 Pensions Labor/income
118 People familiar Negotiations
119 Pharma Trans/Retail/Local Politics
120 Phone companies Technology
121 Police/crime Trans/Retail/Local Politics
122 Political contributions Government
123 Positive sentiment Social/Cultural
124 Private equity/hedge funds Asset Managers & I-Banks
125 Private/public sector Government
126 Problems Challenges
127 Product prices Economic Growth
128 Profits Corporate Earnings X X
129 Programs/initiatives Science/Language
130 Publishing Entertainment X
131 Rail/trucking/shipping Trans/Retail/Local Politics
132 Reagan Leaders
133 Real estate Buyouts & Bankruptcy
134 Recession Economic Growth X X
135 Record high Economic Growth
136 Regulation Government
137 Rental properties Trans/Retail/Local Politics X
138 Research Science/Language
139 Restraint Negotiations
140 Retail Trans/Retail/Local Politics
141 Revenue growth Industry
142 Revised estimate Corporate Earnings
143 Russia International Affairs X
144 Safety administrations Government
145 Sales call Social/Cultural
146 Savings & loans Banks X X
147 Scenario analysis Science/Language
148 Schools Social/Cultural
149 SEC Buyouts & Bankruptcy
150 Share payouts Financial Markets
151 Short sales Financial Markets X
152 Size Science/Language
153 Small business Industry
154 Small caps Financial Markets X X
155 Small changes Corporate Earnings
156 Small possibility Challenges
157 Soft drinks Industry
158 Software Technology X
159 Southeast Asia International Affairs
160 Space program Science/Language
161 Spring/summer Challenges
162 State politics Government
163 Steel Oil & Mining
164 Subsidiaries Industry
165 Systems Science/Language
166 Takeovers Buyouts & Bankruptcy X
167 Taxes Labor/income X
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168 Terrorism Terrorism/Mideast
169 Tobacco Industry
170 Trade agreements International Affairs X X
171 Trading activity Financial Markets
172 Treasury bonds Financial Markets
173 UK International Affairs
174 Unions Labor/income X X
175 US defense Trans/Retail/Local Politics X
176 US Senate Leaders
177 Utilities Government X
178 Venture capital Industry
179 Watchdogs Government
180 Wide range Science/Language

Table A3.1: News series – The column News topic are the news series topics, column Meta
topic are meta topics/groups of news series. Columns LASSO and sg-LASSO reports whether
the series was selected (X) or not by the respective initial estimator.
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Chapter 4

Machine Learning Panel Data Regressions with

Heavy-tailed Dependent Data: Theory and

Applications

with Andrii Babii, Ryan Ball and Eric Ghysels

4.1 Introduction

We analyze panel data regressions in a high-dimensional setting where the
number of time-varying covariates can be very large and potentially exceed
the sample size. We leverage on the structured sparsity approach using
sparse-group LASSO (sg-LASSO) regularization for time series data with
dictionaries. The advantages of this approach for individual time series
data, potentially sampled at mixed frequencies, have been recently reported
in Babii, Ghysels, and Striaukas (2021b), who focus on nowcasting the US
GDP growth in a data-rich environment. In this paper, we first show how to
leverage on the sparse group regularization in a panel data setting. Second,
we study the benefits of using the cross-sectional dimension for prediction
with panel data paying particular attention to the issues of fat-tailed
series which are relevant for the application involving financial time series.
Third, we develop the debiased heteroskedasticity autocorrelation consistent
(HAC) inference for regularized panel data regressions. Lastly, we provide
an illustrative empirical example involving systematically predictable errors
in analysts with individual firm earnings forecasts.

Our paper relates to the literature on high-dimensional panel data models
and the (group) LASSO regularization; see Harding and Lamarche (2019),
Chiang, Rodrigue, and Sasaki (2019), Chernozhukov, Hausman, and Newey
(2019), Belloni, Chen, Padilla, et al. (2019), Belloni, Chernozhukov, Hansen,
and Kozbur (2016), Lu and Su (2016), Kock (2016), Su, Shi, and Phillips
(2016), Farrell (2015), Kock (2013), Lamarche (2010), Koenker (2004),
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among others. However, to the best of our knowledge, the existing literature
relates mostly to the microeconometric problems and does not address
comprehensively (1) the advantages of long panels; (2) the performance of
regularized panel data estimators with potentially heavy-tailed covariates
and regression errors, (3) the debiased HAC inference for regularized panel
data, and (4) the sg-LASSO regularization of Simon, Friedman, Hastie, and
Tibshirani (2013) in a panel data setting.

We recognize that the economic and financial time series data are
often persistent with fat tails. To that end, we introduce a new Fuk-
Nagaev concentration inequality for long panels. Using this inequality, we
obtain oracle inequalities for the sg-LASSO that shed new light on how
the predictive performance of pooled and fixed effect estimators scales
with 𝑁 (cross-section) and 𝑇 (time series), which is especially relevant for
modern panel data applications, where both 𝑁 and 𝑇 can be large; see
Fernández-Val and Weidner (2016), Hansen (2007), Alvarez and Arellano
(2003), Hahn and Kuersteiner (2002), and Phillips and Moon (1999), among
others. Importantly, our theory covers the LASSO and the group-LASSO
estimators as special cases of sg-LASSO.

First, an empirical application to nowcasting firm-specific price/earnings
ratios (P/E ratio, henceforth) is provided. We focus on the current quarter
nowcasts, hence evaluating model-based within quarter predictions for very
short horizons. It is widely acknowledged that P/E ratios are a good
indicator of the future performance of a particular company and therefore
used by analysts and investment professionals to base their decisions on
which stocks to pick for their investment portfolios. A typical value
investor relies on consensus forecasts of earnings made by a pool of analysts.
Hence, we naturally benchmark our proposed machine learning methods
against such predictions. Besides, we compare our methods with a forecast
combination approach used by Ball and Ghysels (2018) and a simple random
walk (RW).

In our second empirical application we revisit a topic raised by Ball
and Ghysels (2018) and Carabias (2018), but not resolved via formal
inference in a high-dimensional setting. Namely, their empirical findings
suggest that analysts tend to focus on their firm/industry when making
earnings predictions while not fully taking into account the macroeconomic
events affecting their firm/industry. More broadly, Ball and Ghysels (2018)
argue that analysts do not fully exploit information embedded in high-
dimensional data and therefore leave money on the table. Thanks to the
theoretical contributions in the current paper we are able to formally
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test that hypothesis in a data-rich environment. Note that, as Ball and
Ghysels (2018) point out, it is important to take into account the mixed
frequency nature of the data flow, which is why the machine learning panel
regression methods presented in the paper apply to mixed frequency data.
We use 26 predictors, including traditional macro and financial series as
well as non-standard series generated by textual analysis of financial news.
Using such a rich set of covariates we test whether analyst’ consensus
earnings prediction errors are systematically related to either one of the
aforementioned variables.

The chapter is organized as follows. Section 4.2 introduces the models
and estimators. Oracle inequalities for sg-LASSO panel data regressions
appear in Section 4.3. Section 4.4 develops the debiased HAC inference for
regularized panel data regressions. The results of our empirical applications
are reported in Section 4.6. Section 4.7 concludes. All technical details and
detailed data descriptions appear in the Appendix section.

Notation: For a random variable 𝑋 ∈ R, let ‖𝑋‖𝑞 = (E|𝑋|𝑞)1/𝑞 be its 𝐿𝑞

norm with 𝑞 ≥ 1. For 𝑝 ∈ N, put [𝑝] = {1, 2, . . . , 𝑝}. For a vector Δ ∈ R𝑝

and a subset 𝐽 ⊂ [𝑝], let Δ𝐽 be a vector in R𝑝 with the same coordinates as
Δ on 𝐽 and zero coordinates on 𝐽 𝑐. Let 𝒢 be a partition of [𝑝] defining the
group structure, which is assumed to be known to the econometrician. For
a vector 𝛽 ∈ R𝑝, the sparse-group structure is described by a pair (𝑆0,𝒢0),
where 𝑆0 = {𝑗 ∈ [𝑝] : 𝛽𝑗 ̸= 0} and 𝒢0 = {𝐺 ∈ 𝒢 : 𝛽𝐺 ̸= 0} are the support
and respectively the group support of 𝛽.

We also use |𝑆| to denote the cardinality of a set 𝑆. For 𝑏 ∈ R𝑝,
its ℓ𝑞 norm is denoted as |𝑏|𝑞 = (

∑︀
𝑗∈[𝑝] |𝑏𝑗|𝑞)1/𝑞 if 𝑞 ∈ [1,∞) and |𝑏|∞ =

max𝑗∈[𝑝] |𝑏𝑗| if 𝑞 = ∞. For a group structure 𝒢, the ℓ2,1 group norm of
𝑏 ∈ R𝑝 is defined as ‖𝑏‖2,1 =

∑︀
𝐺∈𝒢 |𝑏𝐺|2. For u,v ∈ R𝐽 , the empirical

inner product is defined as ⟨u,v⟩𝐽 = 𝐽−1
∑︀𝐽

𝑗=1 𝑢𝑗𝑣𝑗 with the induced

empirical norm ‖.‖2𝐽 = ⟨., .⟩𝐽 = |.|22/𝐽 . For a symmetric 𝑝× 𝑝 matrix 𝐴, let
vech(𝐴) ∈ R𝑝(𝑝+1)/2 be its vectorization consisting of the lower triangular
and the diagonal elements. Let 𝐴𝐺 be a sub-matrix consisting of rows of 𝐴
corresponding to indices in 𝐺 ⊂ [𝑝]. If 𝐺 = {𝑗} for some 𝑗 ∈ [𝑝], then we
simply write 𝐴𝐺 = 𝐴𝑗. Let ‖𝐴‖∞ = max𝑗∈[𝑝] |𝐴𝑗| be the matrix norm. For
𝑎, 𝑏 ∈ R, we put 𝑎 ∨ 𝑏 = max{𝑎, 𝑏} and 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Lastly, we write
𝑎𝑛 . 𝑏𝑛 if there exists a (sufficiently large) absolute constant 𝐶 such that
𝑎𝑛 ≤ 𝐶𝑏𝑛 for all 𝑛 ≥ 1 and 𝑎𝑛 ∼ 𝑏𝑛 if 𝑎𝑛 . 𝑏𝑛 and 𝑏𝑛 . 𝑎𝑛.
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4.2 High-dimensional (mixed frequency)
panels

Motivated by our empirical application, we allow the high-dimensional set
of predictors to be sampled at a higher frequency than the target variable.
Let 𝐾 be the total number of time-varying predictors {𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 : 𝑖 ∈
[𝑁 ], 𝑡 ∈ [𝑇 ], 𝑗 ∈ [𝑚], 𝑘 ∈ [𝐾]} possibly measured at some higher frequency
with 𝑚 observations for every low-frequency period 𝑡 ∈ [𝑇 ] and every entity
𝑖 ∈ [𝑁 ]. Consider the following (mixed frequency) panel data regression

𝑦𝑖,𝑡+ℎ = 𝛼𝑖 +
𝐾∑︁
𝑘=1

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑖,𝑡,𝑘 + 𝑢𝑖,𝑡,

where ℎ ≥ 0 is the prediction horizon, 𝛼𝑖 is the entity-specific intercept,
and

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑖,𝑡,𝑘 =
1

𝑚

𝑚∑︁
𝑗=1

𝛽𝑗,𝑘𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 (4.1)

is a high-frequency lag polynomial with 𝛽𝑘 = (𝛽1,𝑘, . . . , 𝛽𝑚,𝑘)
⊤ ∈ R𝑚. More

generally, the frequency can also be specific to the predictor 𝑘 ∈ [𝐾], in
which case we would have 𝑚𝑘 instead of 𝑚. We can also absorb the (low-
frequency) lags of 𝑦𝑖,𝑡 in covariates. When 𝑚 = 1, we retain the standard
panel data regression model

𝑦𝑖,𝑡+ℎ = 𝛼𝑖 +
𝐾∑︁
𝑘=1

𝛽𝑘𝑥𝑖,𝑡,𝑘 + 𝑢𝑖,𝑡,

while 𝑚 > 1 signifies that the high-frequency lags of 𝑥𝑖,𝑡,𝑘 are also included.
The large number of predictors 𝐾 with potentially large number of high-
frequency measurements 𝑚 can be a rich source of predictive information,
yet at the same time, estimating 𝑁 +𝑚×𝐾 parameters is costly and may
reduce the predictive performance in small samples.

To reduce the proliferation of lag parameters, we follow the MIDAS
literature; see Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Sinko,
and Valkanov (2006), and Babii, Ghysels, and Striaukas (2021a,b). Instead
of estimating 𝑚 individual slopes of high-frequency covariate 𝑘 ∈ [𝐾] in
equation ((4.1)), with some abuse of notation, we estimate a weight function
𝜔 parameterized by 𝛽𝑘 ∈ R𝐿 with 𝐿 < 𝑚

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑖,𝑡,𝑘 =
1

𝑚

𝑚∑︁
𝑗=1

𝜔

(︂
𝑗 − 1

𝑚
; 𝛽𝑘

)︂
𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘,
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where

𝜔(𝑠; 𝛽𝑘) =
𝐿−1∑︁
𝑙=0

𝛽𝑙,𝑘𝑤𝑙(𝑠), ∀𝑠 ∈ [0, 1]

and (𝑤𝑙)𝑙≥0 is a collection of 𝐿 approximating functions, called the dictionary.
An example of a dictionary is the set of orthogonal Legendre polynomials on
[0, 1] that can be computed via the Rodrigues’ formula 𝑤𝑙(𝑠) =

1
𝑙!

d𝑙

d𝑠𝑙
(𝑠2−𝑠)𝑙.1

For instance, the first five elements are

𝑤0(𝑠) = 1

𝑤1(𝑠) = 2𝑠− 1

𝑤2(𝑠) = 6𝑠2 − 6𝑠+ 1

𝑤3(𝑠) = 20𝑠3 − 30𝑠2 + 12𝑠− 1

𝑤4(𝑠) = 70𝑠4 − 140𝑠3 + 90𝑠2 − 20𝑠+ 1.

More generally, we can use Gegenbauer polynomials, trigonometric polynomials,
or wavelets. The orthogonal polynomials usually have better numerical
properties than their popular non-orthogonal counterpart, such as the
Almon (1965) lag structure. The attractive feature of linear in parameters
dictionaries is that we can map the MIDAS regression to the linear regression
framework that can be solved via a convex optimization. To that end, define
x𝑖 = (𝑋𝑖,1𝑊, . . . , 𝑋𝑖,𝐾𝑊 ), where for each 𝑘 ∈ [𝐾],

𝑋𝑖,𝑘 = (𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘)𝑡∈[𝑇 ],𝑗∈[𝑚]

is a 𝑇 ×𝑚 matrix of predictors and 𝑊 = (𝑤𝑙((𝑗 − 1)/𝑚)/𝑚)𝑗∈[𝑚],0≤𝑙≤𝐿−1

is an 𝑚 × 𝐿 matrix corresponding to the dictionary (𝑤𝑙)𝑙≥0. In addition,
let y𝑖 = (𝑦𝑖,1+ℎ, . . . , 𝑦𝑖,𝑇+ℎ)

⊤ and u𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑇 )
⊤. Then the regression

equation after stacking time series observations for each 𝑖 ∈ [𝑁 ] is

y𝑖 = 𝜄𝛼𝑖 + x𝑖𝛽 + u𝑖,

where 𝜄 ∈ R𝑇 is the all-ones vector and 𝛽 ∈ R𝐿𝐾 is a vector of slopes.
Lastly, put y = (y⊤

1 , . . . ,y
⊤
𝑁)

⊤, X = (x⊤
1 , . . . ,x

⊤
𝑁)

⊤, and u = (u⊤
1 , . . . ,u

⊤
𝑁)

⊤.
Then the regression equation after stacking all cross-sectional observations
is

y = 𝐵𝛼 +X𝛽 + u,
1The Legendre polynomials have the universal approximation property and can approximate

any continuous function uniformly on [0, 1]. At the same time they can generate a rich family of
MIDAS weights with a relatively small number of parameters which is attractive in time series
applications where the signal-to-noise ratio is often low.
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where 𝐵 = 𝐼𝑁 ⊗ 𝜄, 𝛼 = (𝛼1, . . . , 𝛼𝑁), and ⊗ is the Kronecker product.

The MIDAS approach allows us to effectively reduce the dimensionality
pertaining to the high-frequency lags. Alternatively, we may apply what is
known as the UMIDAS scheme, see e.g., Foroni, Marcellino, and Schumacher
(2015a), and directly estimate the coefficients associated with each high-
frequency covariate lags separately (see equation ((4.7)) in Section 4.5 for
example). Such a strategy, which as Foroni, Marcellino, and Schumacher
(2015a) argue works in single regressions when the ratio high to low-
frequency sampling is small, may not be appealing in high-dimensional
cases, as the estimation and prediction performance deteriorates due to the
potentially large number of coefficients; see Babii, Ghysels, and Striaukas
(2021b) for further discussion. Also, while assuming that the individual lag
coefficients in equation (4.1) are approximately sparse is highly restrictive,
the approximate sparsity of slopes of the dictionary elements (𝑤𝑙)𝑙≥0 is
plausible. For instance, if 𝑤0(𝑠) = 1 with 𝛽0,𝑘 ̸= 0 and 𝛽𝑙,𝑘 = 0,∀𝑙 ≥ 1, we
recover the averaging of high-frequency lags of covariate 𝑘 as a special case.
More generally, the weight 𝜔 may be a decreasing function over lags and
we may want to learn its shape from the data maximizing the predictive
performance.2

Given that the number of potential predictors 𝐾 can be large, additional
regularization can improve the predictive performance in small samples.
To that end, we take advantage of the sg-LASSO regularization that was
shown to be attractive for individual time series ML regressions in Babii,
Ghysels, and Striaukas (2021b). The fixed effects panel data estimator with
sparse-group regularization solves

min
(𝑎,𝑏)∈R𝑁+𝐿𝐾

‖y −𝐵𝑎−X𝑏‖2𝑁𝑇 + 2𝜆Ω(𝑏), (4.2)

where ‖.‖2𝑁𝑇 = |.|2/(𝑁𝑇 ) is the empirical norm and

Ω(𝑏) = 𝛾|𝑏|1 + (1− 𝛾)‖𝑏‖2,1

is a regularizing functional, which is a linear combination of LASSO and
group LASSO penalties. The parameter 𝛾 ∈ [0, 1] determines the relative
weights of the ℓ1 (sparsity) and the ℓ2,1 (group sparsity) norms, while the
amount of regularization is controlled by the regularization parameter 𝜆 ≥ 0.
Recall also that for a group structure 𝒢 described as a partition of [𝑝] =

2See Ball and Easton (2013) and Ball and Gallo (2018) for further discussion on interpreting
the shape of MIDAS polynomials in accounting data applications considered in our empirical
application.
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{1, 2, . . . , 𝑝}, the group LASSO norm is computed as ‖𝑏‖2,1 =
∑︀

𝐺∈𝒢 |𝑏𝐺|2.
The group structure is assumed to be known to the econometrician, which
in our setting corresponds to time series lags of covariates. More generally,
we may also combine covariates of a similar nature in groups. Throughout
the paper we assume that groups have fixed size, which is well-justified
in our empirical applications.3 Therefore, the selection of covariates is
performed by the group LASSO penalty, which encourages sparsity between
groups. In addition, the ℓ1 LASSO norm promotes sparsity within groups
and allows us to learn the shape of the MIDAS weights from the data.

It is worth mentioning that the linear in parameters approximation to the
MIDAS weight function leads to the convex optimization parameter problem
in equation ((3.1)) that can be solved efficiently, e.g., via the proximal
gradient descent algorithm, or its block-coordinate descent versions. In
contrast, a popular beta weights leads to a nonlinear non-convex optimization
problem that becomes challenging to solve in high-dimensions; cf. Marsilli
(2014b) and Khalaf, Kichian, Saunders, and Voia (2021).

4.3 Oracle inequalities

In this section, we provide the theoretical analysis of predictive performance
of regularized panel data regressions with the sg-LASSO regularization,
including the standard LASSO and the group LASSO regularizations as
special cases. It is worth stressing that the analysis of this section is not
tied to the mixed-frequency data setting and applies to the generic high-
dimensional panel data regularized with the sg-LASSO penalty function.
Importantly, we focus on panels consisting of potentially persistent 𝜏 -mixing
time series with polynomial tails. Consider a generic panel data projection
with a countable number of predictors

𝑦𝑖,𝑡+ℎ = 𝛼𝑖 +
∞∑︁
𝑗=1

𝛽𝑗𝑥𝑖,𝑡,𝑗 + 𝑢𝑖,𝑡, E[𝑢𝑖,𝑡𝑥𝑖,𝑡,𝑗] = 0, ∀𝑗 ≥ 1,

This model subsumes the mixed-frequency data regressions as a special
case, in which case covariates are obtained, e.g., from the aggregation with
Legendre polynomials. The covariates may also include the time-varying
covariates common for all entities (macroeconomic factors), lags of 𝑦𝑖,𝑡, the
intercept, as well as additional lags of a baseline covariate.

3See Babii (2020) for a continuous-time mixed-frequency regression where the group size is
allowed to increase with the sample size under the in-fill asymptotics.
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4.3.1 𝜏-mixing

We measure the persistence of the data with 𝜏 -mixing coefficients. For a
𝜎-algebra ℳ and a random vector 𝜉 ∈ R𝑙, put

𝜏(ℳ, 𝜉) =

⃦⃦⃦⃦
⃦ sup
𝑓∈Lip1

|E(𝑓(𝜉)|ℳ)− E(𝑓(𝜉))|

⃦⃦⃦⃦
⃦
1

,

where Lip1 = {𝑓 : R𝑙 → R : |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|1} is a set of 1-
Lipschitz functions from R𝑙 to R.4 For a stochastic process (𝜉𝑡)𝑡∈Z with a
natural filtration generated by its past ℳ𝑡 = 𝜎(𝜉𝑡, 𝜉𝑡−1, . . . ), the 𝜏 -mixing
coefficients are defined as

𝜏𝑘 = sup
𝑗≥1

1

𝑗
sup

𝑡+𝑘≤𝑡1<···<𝑡𝑗

𝜏(ℳ𝑡, (𝜉𝑡1, . . . , 𝜉𝑡𝑗)), 𝑘 ≥ 0

where the supremum is taken over all 𝑡, 𝑡1, . . . , 𝑡𝑗 ∈ Z. If 𝜏𝑘 ↓ 0, as 𝑘 ↑ ∞
then the process is called 𝜏 -mixing. The class of 𝜏 -mixing processes can
be placed somewhere between the 𝛼-mixing processes and mixingales —
the 𝜏 -mixing condition is less restrictive than the 𝛼-mixing condition,5

yet at the same time, there exists a convenient for us coupling result for
𝜏 -mixing processes, which is not the case for the mixingales or near-epoch
dependent processes; see Dedecker and Doukhan (2003) and Dedecker and
Prieur (2004, 2005) for more details. This allows us to obtain concentration
inequalities and performance guarantees for the sg-LASSO estimator; see
Appendix A4.1 for more details.

4.3.2 Pooled regression

For pooled regressions, we assume that all entities share the same intercept
parameter 𝛼1 = · · · = 𝛼𝑁 = 𝛼. The pooled sg-LASSO estimator 𝜌 =
(�̂�, 𝛽⊤)⊤ solves

min
𝑟=(𝑎,𝑏)∈R1+𝑝

‖y − 𝑎𝜄−X𝑏‖2𝑁𝑇 + 2𝜆Ω(𝑏). (4.3)

Define (a) 𝑧𝑖,𝑡 = (1, 𝑥⊤𝑖,𝑡)
⊤, where 𝑥𝑖,𝑡 ∈ R𝑝 is a vector of predictors, (b)

𝑢𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑇 ) and (c) 𝑥𝑖 = (𝑥⊤𝑖,1, . . . , 𝑥
⊤
𝑖,𝑇 )

⊤ for 𝑖 ∈ [𝑁 ]. The following
assumption imposes mild restrictions on the data.

4See Dedecker and Prieur (2004) and Dedecker and Prieur (2005) for equivalent definitions.
5The class of 𝛼-mixing processes is too restrictive for the predictive linear projection model

with covariates and autoregressive lags; see also Babii, Ghysels, and Striaukas (2021b), Proposition
A.3.1.
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Assumption 4.3.1 (Data). {(𝑢𝑖, 𝑥⊤𝑖 )⊤ : 𝑖 ∈ N} are independent vectors in
R(𝑝+1) ×R𝑇 such that (i) max𝑖∈[𝑁 ],𝑡∈[𝑇 ],𝑗∈[𝑝+1] ‖𝑢𝑖,𝑡𝑧𝑖,𝑡,𝑗‖𝑞 = 𝑂(1) for some

𝑞 > 2; (ii) the 𝜏 -mixing coefficients of (𝑢𝑖,𝑡𝑧𝑖,𝑡)𝑡∈Z satisfy max𝑖∈[𝑁 ],𝑗∈[𝑝+1] 𝜏
(𝑖,𝑗)
𝑘−1 =

𝑂(𝑘−𝑎),∀𝑘 ≥ 1 with 𝑎 > (𝑞−1)/(𝑞−2); (iii) max𝑖∈[𝑁 ],𝑡∈[𝑇 ],𝑗,𝑘∈[𝑝+1] ‖𝑧𝑖,𝑡,𝑗𝑧𝑖,𝑡,𝑘‖𝑞 =
𝑂(1) for some 𝑞 > 2; (iv) the 𝜏 -mixing coefficients of vech((𝑧𝑖,𝑡𝑧

⊤
𝑖,𝑡))𝑡∈Z

satisfy max𝑖∈[𝑁 ],𝑗∈[(𝑝+1)(𝑝+2)/2] 𝜏
(𝑖,𝑗)
𝑘−1 ≤ 𝑐𝑘−�̃�,∀𝑘 ≥ 1 with 𝑐 > 0 and �̃� >

(𝑞 − 1)/(𝑞 − 2).

Note that we do not impose stationarity over 𝑡 ∈ Z and require that
only 2 + 𝜖 moments exist with 𝜖 > 0, which is a realistic assumption in
our empirical application and more generally for datasets encountered in
time series and financial econometrics applications. Note also that the
time series dependence is assumed to fade away relatively slowly — at a
polynomial rate as measured by the 𝜏 -mixing coefficients.

Next, we assume that the (1 + 𝑝)× (1 + 𝑝) matrix

Σ𝑁,𝑇 =
1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

E[𝑧𝑖,𝑡𝑧
⊤
𝑖,𝑡]

exists and is non-singular uniformly over 𝑁, 𝑇, 𝑝:

Assumption 4.3.2 (Covariance matrix). The smallest eigenvalue of Σ𝑁,𝑇

is uniformly bounded away from zero by some universal constant 𝛾min > 0.

Assumption 4.3.2 is satisfied for the spiked identity and Topelitz covariance
structures. It can be interpreted as a completeness condition, see Babii and
Florens (2020), and can also be relaxed to the restricted eigenvalue condition
imposed on the population covariance matrix Σ𝑁,𝑇 ; see Babii, Ghysels, and
Striaukas (2021b). We can also allow for 𝛾min ↓ 0 as 𝑁, 𝑇, 𝑝 ↑ ∞, in which
case 𝛾−1

min would slow down the convergence rates in oracle inequalities
and could be interpreted as a measure of ill-posedness; see also Carrasco,
Florens, and Renault (2007).

Lastly, we assume that the regularization parameter 𝜆 scales appropriately
with the number of covariates 𝑝, the length of the panel 𝑇 , the size of
the cross-section 𝑁 , and a certain exponent 𝜅 that depends on the tail
parameter 𝑞 and the persistence parameter 𝑎. The precise order of the
regularization parameter is described by the Fuk-Nagaev inequality for long
panels appearing in the Appendix; see Theorem A4.1.
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Assumption 4.3.3 (Regularization). For some 𝛿 ∈ (0, 1)

𝜆 ∼
(︂

𝑝

𝛿(𝑁𝑇 )𝜅−1

)︂1/𝜅

∨
√︂

log(𝑝/𝛿)

𝑁𝑇
,

where 𝜅 = ((𝑎+ 1)𝑞 − 1)/(𝑎+ 𝑞 − 1) and 𝑎, 𝑞 are as in Assumptions 4.3.1.

Our first result is the oracle inequality for the pooled sg-LASSO estimator
described in equation (4.3). The result allows for misspecified regressions
with a non-trivial approximation error in the sense that we consider more
generally

y = m+ u,

where m ∈ R𝑁𝑇 is approximated with Z𝜌, Z = (𝜄,X), 𝜄 ∈ R𝑁𝑇 is all-ones
vector, and 𝜌 = (𝛼, 𝛽⊤)⊤. The approximation errorm−Z𝜌 might come from
the fact that the MIDAS weight function may not have the exact expansion
in terms of the specified dictionary or from the fact that some of the relevant
predictors are not included in the regression equation. To state the result, let
𝑆0 = {𝑗 ∈ [𝑝] : 𝛽𝑗 ̸= 0} be the support of 𝛽 and let 𝒢0 = {𝐺 ∈ 𝒢 : 𝛽𝐺 ̸= 0}
be the group support of 𝛽. Consider the effective sparsity of the sparse-
group structure, defined as 𝑠1/2 = 𝛾

√︀
|𝑆0|+ (1− 𝛾)

√︀
|𝒢0|. Note that 𝑠 is

proportional to the sparsity |𝑆0|, when 𝛾 = 1 and to the group sparsity |𝒢0|
when 𝛾 = 0. Define 𝑟pooled𝑁,𝑇 = 𝑠�̃�𝑝2/(𝑁𝑇 )�̃�−1 + 𝑝2 exp(−𝑐𝑁𝑇/𝑠2).

Theorem 4.1. Suppose that Assumptions 4.3.1, 4.3.2, and 4.3.3 are
satisfied. Then with probability at least 1− 𝛿 −𝑂(𝑟pooled𝑁,𝑇 )

‖Z(𝜌− 𝜌)‖2𝑁𝑇 . 𝑠𝜆2 + ‖m− Z𝜌‖2𝑁𝑇

and
|𝜌− 𝜌|1 . 𝑠𝜆+ 𝜆−1‖m− Z𝜌‖2𝑁𝑇 + 𝑠1/2‖m− Z𝜌‖𝑁𝑇 ,

for some 𝑐 > 0 and �̃� = ((�̃�+ 1)𝑞 − 1)/(�̃�+ 𝑞 − 1).

The proof of this result can be found in the Appendix. Theorem 4.1
describes the non-asymptotic oracle inequalities for the prediction and the
estimation accuracy in the environment where the number of regressors 𝑝 is
allowed to scale with the effective sample size 𝑁𝑇 . Importantly, the result is
stated under the weak tail and persistence conditions in Assumption 4.3.1.
Parameters 𝜅 and �̃� are the dependence-tails exponents for stochastic
processes driving the regression score and the covariance matrix respectively.
Theorem 4.1 shows that the prediction and the estimation accuracy of pooled
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panel data regressions improves when the sparse-group structure is taken
into account. Indeed, for the LASSO regression, the effective sparsity
reduces to 𝑠1/2 =

√︀
|𝑆0|, which is larger than 𝛾

√︀
|𝑆0|+ (1− 𝛾)

√︀
|𝒢0| in the

case of sg-LASSO.

Next, we consider the convergence rates of the prediction and estimation
errors. The following assumption considers a simplified setting, where the
approximation error vanishes sufficiently fast, and the total number of
regressors vanishes sufficiently fast with the effective sample size 𝑁𝑇 .

Assumption 4.3.4. (i) ‖m−Z𝜌‖2𝑁𝑇 = 𝑂𝑃 (𝑠𝜆
2); and (ii) 𝑠�̃�𝑝2(𝑁𝑇 )1−�̃� → 0

and 𝑝2 exp(−𝑐𝑁𝑇/𝑠2) → 0.

Note that Assumption 4.3.4 allows for (1) 𝑁 → ∞ while 𝑇 is fixed;
(2) 𝑇 → ∞ while 𝑁 is fixed; and (3) both 𝑁 → ∞ and 𝑇 → ∞ without
restricting the relative growth of the two. The following result describes
the prediction and the estimation convergence rates in the asymptotic
environment outlined in Assumption 4.3.4 and is an immediate consequence
of Theorem 4.1.

Corollary 4.3.1. Suppose that Assumptions 4.3.1, 4.3.2, 4.3.3, and 4.3.4
are satisfied. Then

‖Z(𝜌− 𝜌)‖2𝑁𝑇 = 𝑂𝑃

(︂
𝑠𝑝2/𝜅

(𝑁𝑇 )2−2/𝜅
∨ 𝑠 log 𝑝

𝑁𝑇

)︂
and

|𝜌− 𝜌|1 = 𝑂𝑃

(︃
𝑠𝑝1/𝜅

(𝑁𝑇 )1−1/𝜅
∨ 𝑠
√︂

log 𝑝

𝑁𝑇

)︃
.

Corollary 4.3.1 describes the prediction and the estimation accuracy of
pooled sparse-group panel data regressions. It suggests that the predictive
performance of the sg-LASSO (and consequently LASSO and group LASSO)
regressions may deteriorate when regression errors and/or predictors are
heavy-tailed or when the data are extremely persistent. However, for
geometrically ergodic Markov processes, e.g., stationary AR(1) process,
the 𝜏 -mixing coefficients decline geometrically fast, so that 𝜅 ≈ 𝑞 and
�̃� ≈ 𝑞. In this case, the prediction accuracy scales approximately at the

rate 𝑂𝑃

(︁
𝑝2/𝑞

(𝑁𝑇 )2−2/𝑞 ∨ log 𝑝
𝑁𝑇

)︁
and the predictive performance may be affected

only by the tails constant 𝑞.

If additionally, the data are sub-Gaussian, then moments of all order
𝑞 ≥ 2 exist and for any particular effective sample size 𝑁𝑇 , the first
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term can be made arbitrarily small relatively to the second term. In this

case we recover the 𝑂𝑃

(︁
log 𝑝
𝑁𝑇

)︁
rate typically obtained for sub-Gaussian

data. On the other hand, if the polynomial tail dominates, then we need
𝑝 = 𝑜((𝑁𝑇 )𝑞−1) for the prediction and the estimation consistency provided
that 𝑞 ≥ 2𝑞− 1 and the sparsity constant 𝑠 is fixed. In this case, we have a
significantly weaker requirement than 𝑝 = 𝑜(𝑇 𝑞−1) needed for time series
regressions in Babii, Ghysels, and Striaukas (2021b). Moreover, since 𝑞 > 2,
𝑝 = 𝑜((𝑁𝑇 )𝑞−1) can be significantly weaker than 𝑝 = 𝑜(𝑁𝑇 ) condition
typically needed for QMLE/GMM estimators without regularization.

Theorem 4.1 and Corollary 4.3.1 imply two practical consequences: (1)
one may want to exclude (or suitably transform) the heavy-tailed series
from the high-dimensional predictive regressions based on the preliminary
estimates of the tail index, e.g., using the Hill estimator; (2) if the individual
heterogeneity can be ignored, then pooling panel data can improve significantly
the predictive performance. In the latter case, one can also preliminary
cluster similar series in groups, e.g., based on the unsupervised clustering
algorithms, which may strike a good balance between the pooling benefits
and heterogeneity.

4.3.3 Fixed effects

Pooled regressions are attractive since the effective sample size 𝑁𝑇 can
be huge, yet the heterogeneity of individual time series may be lost. If
the underlying series have a substantial heterogeneity over 𝑖 ∈ [𝑁 ], then
taking this into account might reduce the projection error and improve the
predictive accuracy. At a very extreme side, the cross-sectional structure
can be completely ignored and individual time-series regressions can be used
for prediction. The fixed effects panel data regressions strike a good balance
between the two extremes controlling for heterogeneity with entity-specific
intercepts.

The fixed effects sg-LASSO estimator 𝜌 = (�̂�⊤, 𝛽⊤)⊤ solves

min
(𝑎,𝑏)∈R𝑁+𝑝

‖y −𝐵𝑎−X𝑏‖2𝑁𝑇 + 2𝜆Ω(𝑏),

where 𝐵 = 𝐼𝑁 ⊗ 𝜄, 𝐼𝑁 is 𝑁 × 𝑁 identity matrix, 𝜄 ∈ R𝑇 is an all-ones
vector, and Ω is the sg-LASSO regularizing functional. It is worth stressing
that the design matrix X does not include the intercept and that we do
not penalize the fixed effects, that are typically not sparse. By Fermat’s
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rule, the first-order conditions are

�̂� = (𝐵⊤𝐵)−1𝐵⊤(y −X𝛽)

0 = X⊤𝑀𝐵(X𝛽 − y)/𝑁𝑇 + 𝜆𝑧*
(4.4)

for some 𝑧* ∈ 𝜕Ω(𝛽), where 𝑏 ↦→ 𝜕Ω(𝑏) is the subdifferential of Ω and
𝑀𝐵 = 𝐼 −𝐵(𝐵⊤𝐵)−1𝐵⊤ is the orthogonal projection matrix. It is easy to
see from the first-order conditions that the estimator of 𝛽 is equivalent to:
1) penalized GLS estimator for the first-differenced regression; 2) penalized
OLS estimator for the regression written in the deviation from time means;
and 3) penalized OLS estimator where the fixed effects are partialled-out.
Therefore, the equivalence between the three approaches is not affected by
the penalization; cf. Arellano (2003) for low-dimensional panels.

With some abuse of notation, redefine

Σ̂𝑁,𝑇 =

(︃
1
𝑇
𝐵⊤𝐵 1√

𝑁𝑇
𝐵⊤X

1√
𝑁𝑇

X⊤𝐵 1
𝑁𝑇

X⊤X

)︃
and Σ𝑁,𝑇 =

(︃
𝐼𝑁

1√
𝑁𝑇
E
[︀
𝐵⊤X

]︀
1√
𝑁𝑇
E
[︀
X⊤𝐵

]︀
E[𝑥𝑖,𝑡𝑥

⊤
𝑖,𝑡]

)︃
.

(4.5)

We will assume that the smallest eigenvalue of Σ𝑁,𝑇 is uniformly bounded
away from zero by some constant. Note that if 𝑥𝑖,𝑡 ∼ 𝑁(0, 𝐼𝑝), then
Σ𝑁,𝑇 = 𝐼𝑁+𝑝 and this assumption is trivially satisfied.

The order of the regularization parameter is governed by the Fuk-Nagaev
inequality for long panels; see Appendix, Theorem A4.1.

Assumption 4.3.5 (Regularization). For some 𝛿 ∈ (0, 1)

𝜆 ∼
(︂
𝑝 ∨𝑁𝜅/2

𝛿(𝑁𝑇 )𝜅−1

)︂1/𝜅

∨
√︂

log(𝑝 ∨𝑁/𝛿)
𝑁𝑇

,

where 𝜅 = ((𝑎+ 1)𝑞 − 1)/(𝑎+ 𝑞 − 1), and 𝑎, 𝑞 are as in Assumptions 4.3.1.

Similarly to the pooled regressions, we state the oracle inequality
allowing for the approximation error. For fixed effects regressions, with
some abuse of notation we redefine Z = (𝐵,X) and 𝜌 = (𝛼⊤, 𝛽⊤)⊤. Put
also 𝑟fe𝑁,𝑇 = 𝑝(𝑠 ∨ 𝑁)�̃�𝑇 1−�̃�(𝑁 1−�̃�/2 + 𝑝𝑁 1−�̃�) + 𝑝(𝑝 ∨ 𝑁)𝑒−𝑐𝑁𝑇/(𝑠∨𝑁)2 with
�̃� = ((�̃�+ 1)𝑞 − 1)/(�̃�+ 𝑞 − 1) and some 𝑐 > 0.

Theorem 4.2. Suppose that Assumptions 4.3.1, 4.3.2, and 4.3.5 are
satisfied. Then with probability at least 1− 𝛿 −𝑂(𝑟fe𝑁,𝑇 )

‖Z(𝜌− 𝜌)‖2𝑁𝑇 . (𝑠 ∨𝑁)𝜆2 + ‖m− Z𝜌‖2𝑁𝑇 .
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Theorem 4.2 states a non-asymptotic oracle inequality for the prediction
error in the fixed effects panel data regressions estimated with the sg-LASSO.
To see clearly, how the prediction accuracy scales with the sample size, we
make the following assumption.

Assumption 4.3.6. Suppose that (i) ‖m− Z𝜌‖2𝑁𝑇 = 𝑂𝑃 ((𝑠 ∨𝑁)𝜆2); (ii)
(𝑝+𝑁 �̃�/2)𝑝(𝑠 ∨𝑁)�̃�𝑁 1−�̃�𝑇 1−�̃� → 0 and 𝑝(𝑝 ∨𝑁)𝑒−𝑐𝑁𝑇/(𝑠∨𝑁)2 → 0.

The following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.3.2. Suppose that Assumptions 4.3.1, 4.3.2, 4.3.5, and 4.3.6
are satisfied. Then

‖Z(𝜌− 𝜌)‖2𝑁𝑇 = 𝑂𝑃

(︂
(𝑠 ∨𝑁)(𝑝2/𝜅 ∨𝑁)

𝑁 1−2/𝜅𝑇 2−2/𝜅
∨ (𝑠 ∨𝑁) log(𝑝 ∨𝑁)

𝑁𝑇

)︂
.

Corollary 4.3.2 allows for 𝑠, 𝑝,𝑁, 𝑇 → ∞ at appropriate rates. However,
we pay additional price for estimating 𝑁 fixed effects which plays a similar
role to the effective dimension of covariates. An immediate practical
implication is that in order to achieve accurate predictions with high-
dimensional fixed effect regressions, the panel has to be sufficiently long in
order to offset the estimation error of the individual fixed effects. Likewise,
the tails and the persistence of the data may also reduce the prediction
accuracy in small samples through 𝜅, which is approximately equal to 𝑞 for
geometrically decaying 𝜏 -mixing coefficients.

4.4 Debiased inference

In this section, we develop the debiased inferential methods for pooled
panel data regressions. For a vector 𝜌 ∈ R𝑝+1, we use 𝜌𝐺 ∈ R|𝐺| to
denote the subvector of elements of 𝜌 ∈ R𝑝+1 indexed by 𝐺 ⊂ [𝑝 + 1].
Let 𝐵 = Θ̂Z⊤(y − Z𝜌)/𝑁𝑇 denote the bias-correction for the sg-LASSO
estimator, where Θ̂ is the nodewise LASSO estimator of the precision matrix
Θ = Σ−1, where Σ = E[𝑧𝑖,𝑡𝑧

⊤
𝑖,𝑡]. For pooled panel data, this estimator can

be obtained as follows:
1. For each 𝑗 ∈ [𝑝+ 1], let �̂�𝑗 = (�̂�𝑗,1, . . . , �̂�𝑗,𝑝)

⊤ be a solution to

min
𝜇∈R𝑝

‖Z𝑗 − Z−𝑗𝜇‖2𝑁𝑇 + 2𝜆𝑗|𝜇|1,

where Z𝑗 is 𝑁𝑇 × 1 vector of stacked observations {𝑧𝑖,𝑡,𝑗 ∈ R : 𝑖 ∈
[𝑁 ], 𝑡 ∈ [𝑇 ]} and Z−𝑗 is the 𝑁𝑇 × 𝑝 matrix of stacked observations
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{(𝑧𝑖,𝑡,𝑘)𝑘 ̸=𝑗 ∈ R𝑝 : 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]}. Put

�̂�2𝑗 = ‖Z𝑗 − Z−𝑗�̂�𝑗‖2𝑁𝑇 + 𝜆𝑗|�̂�𝑗|,

2. Compute Θ̂ = �̂�−1𝐶, where �̂� = diag(�̂�21, . . . , �̂�
2
𝑝+1), and

𝐶 =

⎛⎜⎜⎝
1 −�̂�1,1 . . . −�̂�1,𝑝

−�̂�2,1 1 . . . −�̂�2,𝑝
...

... . . . ...
−�̂�𝑝,1 . . . −�̂�𝑝,𝑝 1

⎞⎟⎟⎠ .

Let 𝑣𝑖,𝑡,𝑗 = 𝑧𝑖,𝑡,𝑗 −
∑︀

𝑘 ̸=𝑗 𝜇𝑗,𝑘𝑧𝑖,𝑡,𝑘 be the regression error for 𝑗th nodewise

LASSO regression. Let 𝑠𝑗 be the number of non-zero elements in 𝑗th row of
precision matrix Θ𝑗, and put 𝑆 = max𝑗∈𝐺 𝑠𝑗, and 𝑠

* = 𝑠 ∨ 𝑆.
The following assumption describes an additional set of conditions for

the debiased central limit theorem.

Assumption 4.4.1. (i) sup𝑧 E[𝑢
2
𝑖,𝑡|𝑧𝑖,𝑡 = 𝑧] = 𝑂(1); (ii) ‖Θ𝐺‖∞ = 𝑂(1) for

𝐺 ⊂ [𝑝+1] of fixed size; (iii) the long run variance of (𝑢2𝑖,𝑡)𝑡∈Z and (𝑣2𝑖,𝑡,𝑗)𝑡∈Z

exists for every 𝑗 ∈ 𝐺; (iv) 𝑠*2 log2 𝑝/𝑇 → 0 and 𝑝/
√︀
𝑇 𝜅−2 log𝜅 𝑝 → 0;

(v) ‖m − Z𝜌‖𝑁𝑇 = 𝑜𝑃 (1/
√
𝑁𝑇 ); (vi) for every 𝑗, 𝑙 ∈ [𝑝] and 𝑘 ≥ 0, the

𝜏 -mixing coefficients of (𝑢𝑖,𝑡𝑢𝑖,𝑡+𝑘𝑥𝑖,𝑡,𝑗𝑥𝑖,𝑡+𝑘,𝑙)𝑡∈Z are 𝜏𝑡 ≤ 𝑐𝑡−𝑑 for some
universal constants 𝑐 > 0 and 𝑑 > 1; (vi) for each 𝑖, {(𝑢𝑖,𝑡, 𝑧⊤𝑖,𝑡)⊤ : 𝑡 ∈ Z} is
a stationary process that is also i.i.d. over 𝑖, Assumption 4.3.1 holds with
𝑎 > (𝑞 − 1)/(𝑞 − 2) ∨ (𝑞𝛿 + 1)/(𝑞 − 2− 𝛿) with 𝑞 > 2 + 𝛿 and 𝛿 > 0.

Assumption 4.4.1 (i) requires that the conditional variance of the
regression error is bounded. Condition (ii) requires that the rows of the
precision matrix have bounded ℓ1 norm and is a plausible assumption in
the high-dimensional setting, where the inverse covariance matrix is often
sparse. Condition (iii) is a mild restriction needed for the consistency of the
sample variance of regression errors. The rate conditions in (iv) is similar
to the condition used in Babii, Ghysels, and Striaukas (2021a). Lastly,
condition (v) is trivially satisfied when the projection coefficients are sparse
and, more generally, it requires that the misspecification error vanishes
asymptotically sufficiently fast.

The following result describes a large-sample approximation to the
distribution of the debiased sg-LASSO estimator with serially correlated
heavy-tailed errors.
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Theorem 4.1. Suppose that Assumptions 4.3.1, 4.3.2, 4.3.3, 4.3.4, and
4.4.1 are satisfied for the sg-LASSO regression and for each nodewise LASSO
regression 𝑗 ∈ 𝐺. Then

√
𝑁𝑇 (𝜌𝐺 +𝐵𝐺 − 𝜌𝐺)

𝑑−→ 𝑁(0,Ξ𝐺)

with the long-run variance Ξ𝐺 = lim𝑇→∞Var
(︁

1√
𝑇

∑︀𝑇
𝑡=1 𝑢𝑖,𝑡Θ𝐺𝑧𝑖,𝑡

)︁
.

Theorem 4.1 applies to panel data consisting of non-Gaussian, heavy-
tailed, and persistent time series under the large 𝑁 and 𝑇 large sample
approximation. In contrast to the fixed 𝑇 approximations, Theorem 4.1
leads to more precise inference, e.g., the standard errors and the length of
confidence intervals would scale at 𝑂(1/

√
𝑁𝑇 ) rate instead of 𝑂(1/

√
𝑁)

that we typically encounter for fixed 𝑇 approximations.

To estimate Ξ𝐺, we can use the following pooled HAC estimator

Ξ̂𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
|𝑘|<𝑇

𝐾

(︂
𝑘

𝑀𝑇

)︂
Γ̂𝑘,𝑖,

where Γ̂𝑘,𝑖 = Θ̂𝐺

(︁
1
𝑇

∑︀𝑇−𝑘
𝑡=1 �̂�𝑖,𝑡�̂�𝑖,𝑡+𝑘𝑥𝑖,𝑡𝑥

⊤
𝑖,𝑡+𝑘

)︁
Θ̂⊤

𝐺, �̂�𝑖,𝑡 is the sg-LASSO residual,

and Γ̂−𝑘,𝑖 = Γ̂⊤
𝑘,𝑖. The kernel function𝐾 : R → [−1, 1] with𝐾(0) = 1 is puts

less weight on more distant noisy covariances, while𝑀𝑇 ↑ ∞ is a bandwidth
(or lag truncation) parameter; see Babii, Ghysels, and Striaukas (2021a) for
more details as well as formal results on the validity of HAC-based inference
using sg-LASSO residuals.

4.5 Monte Carlo experiments

This section presents Monte Carlo simulation results.

First, we investigate the finite sample nowcasting performance of machine
learning methods applied to large dimensional panel data. We consider
the unstructured elastic net with UMIDAS and sg-LASSO with MIDAS.
Both methods require selecting two tuning parameters 𝜆 and 𝛾. In the
case of sg-LASSO, 𝛾 is the relative weight of LASSO and group LASSO
penalties while in the case of the elastic net 𝛾 interpolates between LASSO
and ridge. We compute the optimal 𝜆 using BIC and we report results on
a grid {0, 0.2, . . . , 1}.

Second, we assess the finite sample performance of the Granger causality
tests for high-dimensional pooled panel data MIDAS regressions. A first
subsection describes the design, followed by a second reporting the findings.
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4.5.1 Simulation design (nowcasting)

To assess the predictive performance of pooled panel data models, we
simulate the data from the following DGP:

𝑦𝑖,𝑡 = 𝛼+ 𝜌1𝑦𝑖,𝑡−1 + 𝜌2𝑦𝑖,𝑡−2 +
𝐾∑︁
𝑘=1

1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 + 𝑢𝑖,𝑡,

where 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ], 𝛼 is the the common intercept, 1
𝑚

∑︀𝑚
𝑗=1 𝜔((𝑗 −

1)/𝑚; 𝛽𝑘) is the weight function for 𝑘-th high-frequency covariate and
the error term is 𝑢𝑖,𝑡 ∼𝑖.𝑖.𝑑. 𝑁(0, 1) or 𝑢𝑖,𝑡 ∼𝑖.𝑖.𝑑. student-𝑡(5). The DGP
corresponds to the target variable of interest 𝑦𝑖,𝑡 driven by two autoregressive
lags augmented with high frequency series, and therefore is a pooled MIDAS
panel data model.

We set 𝜌1 = 0.4, 𝜌2 = 0.01, and take the number of relevant high
frequency regressors 𝐾 = 6. We are interested in quarterly/monthly data,
and use four quarters of data for the high frequency regressors so that 𝑚 =
12, which covers four low frequency lags of each high frequency regressor.
The high frequency regressors are generated as 𝐾 i.i.d. realizations of the
univariate autoregressive (AR) process 𝑥ℎ = 𝜌𝑥ℎ−1 + 𝜀ℎ, where 𝜌 = 0.6
and either 𝜀ℎ ∼𝑖.𝑖.𝑑. 𝑁(0, 1) or 𝜀ℎ ∼𝑖.𝑖.𝑑. student-𝑡(5), where ℎ denotes the
high-frequency sampling. We rely on a commonly used weighting scheme
in the MIDAS literature, namely 𝜔(𝑠; 𝛽𝑘) for 𝑘 = 1, 2, . . . , 6 are determined
by beta densities respectively equal to Beta(1, 3) for 𝑘 = 1, 4, Beta(2, 3) for
𝑘 = 2, 5, and Beta(2, 2) for 𝑘 = 3, 6; see Ghysels, Sinko, and Valkanov (2007)
or Ghysels and Qian (2019), for further details. The MIDAS regressions
are estimated using Legendre polynomials of degree 𝐿 = 3. Lastly, we draw
the intercepts 𝛼 ∼ Uniform(−4, 4).

We also consider DGPs featuring fixed effects. They are identical to
pooled MIDAS panel data model except for the common intercept 𝛼 which
replaced by

𝑦𝑖𝑡 = 𝛼𝑖 + 𝜌1𝑦𝑖,𝑡−1 + 𝜌2𝑦𝑖,𝑡−2 +
𝐾∑︁
𝑘=1

1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 + 𝑢𝑡.

The individual fixed effects are simulated as 𝛼𝑖 ∼i.i.d Uniform(−4, 4) and
are kept fixed throughout the experiment.

For the Baseline scenario, in the estimation procedure we add 24 noisy
covariates which are generated in the same way as the relevant covariates,
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use 4 low-frequency lags and the error terms 𝑢𝑖,𝑡 and 𝜀ℎ are Gaussian. In
the student-𝑡(5) scenario we replace Gaussian error terms with draws from
a student-𝑡(5) distribution while in the large dimensional scenario we add
94 noisy covariates. For each scenario, we simulate 𝑁 = 25 i.i.d. time series
of length 𝑇 = 50; next we increase the cross-sectional dimension to 𝑁 = 75
and time series to 𝑇 = 100.

4.5.2 Simulation results (nowcasting)

Table 4.1 covers the average mean squared forecast errors for one-step-ahead
nowcasts. We report results for pooled panel data (left block) and fixed
effects (right block) estimators. First, for all DGPs and both estimators,
structured sg-LASSO-MIDAS performs better compared to unstructured
elastic net. In the case of sg-LASSO-MIDAS the best performance is
achieved for 𝛾 /∈ {0, 1} for both pooled panel data and fixed effects cases,
while 𝛾 = 0, i.e. ridge regression, seems to dominate in the case of elastic net
for both the pooled and fixed effects cases. For the student-𝑡(5) and large
dimensional DGP, we observe a decrease in the performance for all methods.
However, the decrease in the performance is larger for the student-𝑡(5)
DGP, suggesting that heavy-tailed data may have a stronger impact on the
performance of the estimators.

For the pooled panel data case, increasing 𝑁 from 25 to 75 seems to
have larger positive impact on the performance than an increase in the
time-series dimension from 𝑇 = 50 to 𝑇 = 100. The difference appears
to be larger for student-𝑡(5) and large dimensional DGPs and/or for the
elastic net case. Turning to the fixed effects results, the differences seem to
be even sharper, in particular for student-𝑡(5) and large dimensional DGPs.

4.5.3 Simulation design (Granger causality)

We simulate the data from the following DGP:

𝑦𝑖,𝑡 = 𝛼 + 𝜌𝑦𝑖,𝑡−1 +
𝐾∑︁
𝑘=1

1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 + 𝑢𝑖,𝑡, (4.6)

where 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ], 𝛼 is the the common intercept, 1
𝑚

∑︀𝑚
𝑗=1 𝜔((𝑗 −

1)/𝑚; 𝛽𝑘) is the weight function for 𝑘-th high-frequency covariate and
the error term is 𝑢𝑖,𝑡 ∼𝑖.𝑖.𝑑. 𝑁(0, 4). The DGP corresponds to the target
variable of interest 𝑦𝑖,𝑡 driven by one autoregressive lag augmented with
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Table 4.1: The table reports simulation results for nowcasting accuracy for pooled and
fixed effects estimators. Panel A. reports results for the baseline DGP, Panel B. for student-𝑡(5)
DGP and Panel C. for large dimensional DGP with 100 time-varying covariates. We vary the
cross-sectional dimension 𝑁 ∈ {25, 75} and time series dimension 𝑇 ∈ {50, 100}.

Pooled panel data Fixed effects

𝛾 = 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Panel A. Baseline scenario

N = 25, T = 50
Elnet 1.647 1.687 1.703 1.733 1.744 1.750 1.828 2.157 2.462 2.456 2.507 2.510

sg-LASSO-MIDAS 1.556 1.374 1.365 1.378 1.398 1.428 1.674 1.588 1.528 1.540 1.566 1.668
N = 75, T = 50

Elnet 1.290 1.311 1.318 1.322 1.323 1.325 1.464 1.575 1.693 1.718 1.720 1.720
sg-LASSO-MIDAS 1.211 1.210 1.211 1.212 1.218 1.256 1.257 1.230 1.262 1.262 1.304 1.398

N = 25, T = 100
Elnet 1.345 1.360 1.378 1.391 1.402 1.409 1.512 1.768 1.889 1.921 1.930 1.939

sg-LASSO-MIDAS 1.225 1.225 1.230 1.258 1.274 1.322 1.463 1.342 1.315 1.313 1.360 1.421

Panel B. Student-𝑡(5)

N = 25, T = 50
Elnet 1.846 1.989 2.061 2.066 2.073 2.075 2.197 2.445 2.669 2.699 2.713 2.725

sg-LASSO-MIDAS 1.926 1.554 1.545 1.554 1.575 1.635 1.980 1.951 1.924 1.945 1.998 1.991
N = 75, T = 50

Elnet 1.425 1.444 1.466 1.475 1.484 1.491 1.634 1.721 1.818 1.868 1.886 1.894
sg-LASSO-MIDAS 1.333 1.324 1.339 1.340 1.340 1.360 1.424 1.396 1.395 1.391 1.393 1.530

N = 25, T = 100
Elnet 1.592 1.592 1.601 1.638 1.658 1.670 1.834 1.890 1.982 1.989 1.990 1.998

sg-LASSO-MIDAS 1.415 1.392 1.385 1.404 1.411 1.476 1.630 1.591 1.581 1.561 1.591 1.668

Panel C. Large dimensional (𝑝 = 100)

N = 25, T = 50
Elnet 1.992 1.664 1.720 1.735 1.740 1.746 2.351 2.347 2.034 2.132 2.166 2.192

sg-LASSO-MIDAS 1.757 1.413 1.387 1.399 1.424 1.484 2.131 1.951 1.601 1.710 1.826 1.893
N = 75, T = 50

Elnet 1.406 1.278 1.285 1.289 1.291 1.292 1.523 1.579 1.681 1.705 1.712 1.717
sg-LASSO-MIDAS 1.224 1.217 1.217 1.217 1.224 1.278 1.326 1.245 1.272 1.276 1.327 1.399

N = 25, T = 100
Elnet 1.405 1.393 1.401 1.412 1.421 1.429 1.789 1.601 1.727 1.756 1.773 1.776

sg-LASSO-MIDAS 1.299 1.277 1.277 1.292 1.310 1.342 1.549 1.408 1.386 1.378 1.427 1.481
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high-frequency series. The DGP is therefore a pooled MIDAS panel data
model.

We set 𝜌 = 0.15 and take the first high-frequency regressor, 𝑘 = 1, as
relevant, i.e. the first regressor Granger causes the response variable. We are
interested in quarterly/monthly data, and use four quarters of data for the
high-frequency regressors so that 𝑚 = 12. The high-frequency regressors are
generated as 𝐾 i.i.d. realizations of univariate autoregressive (AR) processes
𝑥ℎ = 𝜌𝑥ℎ−1 + 𝜀ℎ, where 𝜌 = 0.7 and 𝜀ℎ ∼𝑖.𝑖.𝑑. 𝑁(0, 1), where ℎ denotes
the high-frequency sampling. For the DGP we rely on a commonly used
weighting scheme in the MIDAS literature, namely the weights 𝜔(𝑠; 𝛽𝑘) for
the only relevant high-frequency regressor 𝑘 = 1 determined by the beta
density, Beta(3, 3); see Ghysels, Sinko, and Valkanov (2007) or Ghysels and
Qian (2019), for further details. The empirical estimation involves MIDAS
regressions with Legendre polynomials of degree 𝐿 = 3. Lastly, we draw
the intercepts 𝛼 ∼ Uniform(−4, 4). Throughout the experiment, we fix the
sample sizes to 𝑇 = 50 and 𝑁 = 30.

We compare the empirical size and power of the Granger causality test
under different structures placed on the regression models.

First, we compare sg-LASSO-MIDAS with LASSO-UMIDAS pooled
panel data models. The former exploits the group structure of covariates
by applying the sg-LASSO penalty function and a flexible way to model
lags for each covariate using the MIDAS weight functions parametrized
by low-dimensional coefficients. The latter pertains to the unstructured
LASSO estimator together with the UMIDAS scheme. Introduced by Foroni,
Marcellino, and Schumacher (2015a), UMIDAS consists of estimating a
regression coefficient for each high-frequency lag separately, and therefore
the weight function for each covariate is

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 =
𝑚∑︁
𝑗=1

𝑏𝑗,𝑘𝑥𝑖,𝑡−(𝑗−1)/𝑚,𝑘 (4.7)

where 𝑏𝑗,𝑘 is a regression coefficient associated with each high-frequency lag.
We estimate regression coefficients by applying the standard unstructured
LASSO estimator; hence we call the model LASSO-UMIDAS.

Second, we compare the pooled panel with individual time series
regressions, for sg-LASSO-MIDAS and LASSO-UMIDAS, where the former
exploits the benefits of the panel structure and the latter does not. In this
case, we take the first sample 𝑖 = 1 to compute empirical size and power
of the Granger test for the individual regression models. Babii, Ghysels,
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and Striaukas (2021a) propose tests of Granger causality in univariate
regularized regressions and high-dimensional data.

Table 4.2: HAC-based inference simulation results — We report results for a set of
bandwidth parameters, denoted 𝑀𝑇 , and two kernel functions.

Pooled Panel
Parzen kernel Quadratic spectral kernel

𝑀𝑇 ∖𝑎 0 1/5 1/4 1/3 0 1/5 1/4 1/3
sg-LASSO-MIDAS

10 0.051 0.835 0.959 0.999 0.056 0.841 0.963 0.998
20 0.049 0.822 0.954 0.999 0.047 0.828 0.957 0.998
30 0.046 0.803 0.953 0.999 0.047 0.823 0.956 0.998

LASSO-UMIDAS
10 0.039 0.551 0.788 0.978 0.042 0.549 0.797 0.979
20 0.030 0.514 0.762 0.970 0.033 0.535 0.780 0.977
30 0.021 0.494 0.735 0.964 0.025 0.514 0.758 0.972

Individual Regressions
Parzen kernel Quadratic spectral kernel

𝑀𝑇 ∖𝑎 0 1/5 1/4 1/3 0 1/5 1/4 1/3
sg-LASSO-MIDAS

10 0.090 0.356 0.406 0.548 0.094 0.349 0.356 0.486
20 0.097 0.345 0.406 0.548 0.094 0.350 0.360 0.492
30 0.092 0.345 0.403 0.547 0.093 0.356 0.379 0.524

LASSO UMIDAS
10 0.110 0.201 0.228 0.362 0.107 0.210 0.236 0.378
20 0.111 0.240 0.272 0.406 0.108 0.212 0.206 0.388
30 0.107 0.245 0.370 0.494 0.105 0.204 0.206 0.386

4.5.4 Simulation results (Granger causality)

In Table 4.2, we report the empirical rejection frequency (ERF) for the
Granger causality test based on the HAC estimator with two different kernel
functions, Parzen and Quadratic spectral, and two different estimation
strategies, sg-LASSO-MIDAS and LASSO-UMIDAS. We test whether the
first high-frequency covariate Granger causes the low-frequency series, which
corresponds to the DGP potential causal pattern. We report results for a
set of bandwidth parameters, denoted 𝑀𝑇 = 10, 20 and 30. The reported
results are based on 2000 Monte Carlo replications.

To assess the performance we scale the Beta density function by multiplying
it with a constant 𝑎 ∈ {0, 1/5, 1/4, 1/3}, i.e. the weight function for the
relevant covariate is:

𝑎
1

𝑚

𝑚∑︁
𝑗=1

𝜔((𝑗 − 1)/𝑚; 𝛽𝑘)
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For 𝑎 = 0, the ERF shows the empirical size of the test for the nominal level
of 5%, while 𝑎 ∈ {1/5, 1/4, 1/3} the ERF shows the empirical power of the
Granger causality test. For the larger scaling constant 𝑎, the alternatives are
separated further away from the null hypothesis and the Granger causality
test is expected to perform better.

The results reported in Table 4.2 show that the Granger causality test
based on the sg-LASSO-MIDAS has empirical size close to the nominal
level of 5%. In contrast, the LASSO-UMIDAS leads to undersized Granger
causality tests with size distortions around 0.01. The Granger causality test
based on the sg-LASSO-MIDAS has also better empirical power against
each of the alternative hypotheses 𝑎 ∈ {1/5, 1/4, 1/3}. Additionally, it
approaches 1 much faster as opposed to the LASSO-UMIDAS.

The results for individual regressions reveal worse performance compared
to pooled panel data regressions, hence showing the usefulness of pooling
the data. The empirical size shows considerable size distortions of around
0.05. Tests for individual regressions have worse power compared to the
pooled panel data cases. Nonetheless, similar to the pooled panel data cases,
the sg-LASSO-MIDAS estimation method seems to have better empirical
power when comparing to LASSO-UMIDAS.

Overall, the results of the Monte Carlo experiments indicate that the
structured regularization leads to better Granger causality tests in small
samples and that pooling individual series improves the results even further.

4.6 Empirical Applications

The fundamental value of equity shares is determined by the discounted
value of future payoffs. Every quarter investors get a glimpse of a firms’
potential payoffs with the release of corporate earnings reports. In a data-
rich environment, stock analysts have many indicators regarding future cash
flows that are available much more frequently. Ball and Ghysels (2018) took
a first stab at automating the process using MIDAS regressions. Since their
original work, much progress has been made on machine learning regularized
mixed frequency regression models. In the Section 4.6.1, we significantly
expand the tools of nowcasting in a data-rich environment by exploiting
panel data structures. Panel data regression models are well suited for the
firm-level data analysis as both time series and cross-section dimensions can
be properly modeled. In such models, time-invariant firm-specific effects
are typically modeled in a flexible way which allows capturing heterogeneity
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in the data. At the same time, machine learning methods are becoming
increasingly popular in economics and finance as a flexible way to model
relationships between the response and covariates.

In our second application, we revisit a topic raised by Ball and Ghysels
(2018) and Carabias (2018). Their empirical findings suggest that analysts
tend to focus on their firm/industry when making earnings predictions while
not fully taking into account the impact of macroeconomic events. While
their findings were suggestive, there was no formal testing in a data-rich
environment. The theory established in the previous sections allows us to
do so.

4.6.1 Nowcasting P/E ratios

In our first empirical application, we consider nowcasting the P/E ratios of
210 US firms using a set of predictors that are sampled at mixed frequencies.
We use 24 predictors, including traditional macro and financial series as well
as non-standard series generated by the textual analysis. We apply pooled
and fixed effects sg-LASSO-MIDAS panel data models and compare them
with several benchmarks such as random walk (RW), analysts consensus
forecasts, and unstructured elastic net. We also compute predictions using
individual-firm high-dimensional time series regressions and provide results
for several choices of the tuning parameter. Lastly, we provide results for
low-dimensional single-firm MIDAS regressions using forecast combination
techniques used by Andreou, Ghysels, and Kourtellos (2013) and Ball and
Ghysels (2018). The latter is particularly relevant regarding the analysis
in the current paper as it also deals with nowcasting price earnings ratios.
The forecast combination methods consist of estimating ARDL-MIDAS
regressions with each of the high-frequency covariates separately. In our
case this leads to 24 predictions, corresponding to the number of predictors.
Then a combination scheme, typically discounted mean squared error type,
produces a single nowcast. One could call this a pre-machine learning large
dimensional approach. It will, therefore, be interesting to assess how this
approach compares to the regularized MIDAS panel regression machine
learning approach introduced in this chapter.

We consider nowcasting the P/E ratios of 210 US firms using a set of
predictors that are sampled at mixed frequencies. We use 24 predictors,
including traditional macro and financial series as well as non-standard
series generated by textual analysis of financial news. We apply pooled
and individual fixed effects sg-LASSO-MIDAS panel data models and
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compare them with several benchmarks such as random walk (RW), analysts
consensus forecasts, and unstructured elastic net.

We also compute predictions using individual-firm high-dimensional
time series regressions and provide results for several choices of the tuning
parameter. Moreover, our analysis includes results for sg-LASSO-MIDAS
panel data models which include the median consensus analysts predictions.
Adding the consensus forecast as a regressor allows us to address besides
the question of ML versus analysts also the topic of a combined ML/analyst
nowcasts – a theme explored by Ball and Ghysels (2018). Our analysis
includes formal significance testing of predictors in the augmented sg-
LASSO-MIDAS panel data model which allows us to determine whether
analysts take all relevant information to them fully into account.

Lastly, we provide results for the low-dimensional single-firm MIDAS
regressions using forecast combination techniques used by Andreou, Ghysels,
and Kourtellos (2013) and Ball and Ghysels (2018). The latter is particularly
relevant as it also deals with nowcasting price earnings ratios. The forecast
combination methods consist of estimating ARDL-MIDAS regressions for
each of the high-frequency covariates separately. In our case this leads to 24
predictions, corresponding to the number of predictors. Then a combination
scheme, typically of the discounted mean squared error type, produces a
single nowcast with time-varying combination weights. One could call this
a pre-machine learning large dimensional approach and it will therefore be
interesting to assess how it compares with the regularized MIDAS panel
regression machine learning approach introduced in the current paper.

The remainder of the section is structured as follows. We start with
a short review of the data, with more detailed descriptions and tables
appearing in Appendix Section A4.6, followed by a summary of the methods
and empirical results.

4.6.1.1 Data description

The full sample consists of observations between the 1𝑠𝑡 of January, 2000
and the 30𝑡ℎ of June, 2017. Due to the lagged dependent variables in the
models, our effective sample starts the third fiscal quarter of 2000. We use
the first 25 observations for the initial sample, and use the remaining 42
observations for evaluating the out-of-sample forecasts, which we obtain
by using an expanding window forecasting scheme. We collect data from
CRSP and I/B/E/S to compute the quarterly P/E ratios and firm-specific
financial covariates; RavenPack is used to compute daily firm-level textual-
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analysis-based data; real-time monthly macroeconomic series are from the
FRED-MD dataset, see McCracken and Ng (2016) for more details; FRED
is used to compute daily financial markets data and, lastly, monthly news
attention series extracted from the Wall Street Journal articles is retrieved
from Bybee, Kelly, Manela, and Xiu (2020).6 Appendix Section A4.6
provides a detailed description of the data sources.

P/E ratio and analysts’ forecasts sample construction: Our target
variable is the P/E ratio for each firm. To compute it, we use CRSP stock
price data and I/B/E/S earnings data. Earnings data are subject to release
delays of 1 to 2 months depending on the firm and quarter. Therefore, to
reflect the real-time information flow, we separately compute the target
variable and analysts’ consensus forecasts, using stock prices that were
available in real-time. We also take into account that different firms have
different fiscal quarters, which also affects the real-time information flow.

For example, suppose for a particular firm the fiscal quarters are at the
end of the third month in a quarter, i.e. end of March, June, September,
and December. The consensus forecast of the P/E ratio is computed
using the same end of quarter price data which is divided by the earnings
consensus forecast value. The consensus is computed by taking all individual
prediction values up to the end of the quarter and aggregating those values
by taking either the mean or the median. To compute the target variable,
we adjust for publication lags and use prices of the publication date instead
of the end of fiscal quarter prices. More precisely, suppose we predict the
P/E ratio for the first quarter. Earnings are typically published with 1 to 2
months delay; say for a particular firm the data is published on the 25𝑡ℎ of
April. In this case, we record the stock price for the firm on 25𝑡ℎ of April,
and divide it by the earnings announced on that date.

4.6.1.2 Tuning parameters

We consider several approaches to select the tuning parameter 𝜆. First, we
adapt the 𝑘-fold cross-validation to the panel data setting. To that end,
we resample the data by blocks respecting the time-series dimension and
creating folds based on individual firms instead of the pooled sample. We
use 5-fold cross-validation as the sample size of the dataset we consider in
our empirical application is relatively small. We also consider the following
three information criteria: BIC, AIC, and corrected AIC (AICc) of Hurvich
and Tsai (1989). Assuming that 𝑦𝑖,𝑡|𝑥𝑖,𝑡 are i.i.d. draws from𝑁(𝛼𝑖+𝑥

⊤
𝑖,𝑡𝛽, 𝜎

2),
6The dataset is publicly available at http://www.structureofnews.com/.
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the log-likelihood of the sample is

ℒ(𝛼, 𝛽, 𝜎2) ∝ − 1

2𝜎2

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

(𝑦𝑖,𝑡 − 𝛼𝑖 − 𝑥⊤𝑖,𝑡𝛽)
2.

Then, the BIC criterion is

BIC =
‖y − �̂�−X𝛽‖2𝑁𝑇

�̂�2
+

log(𝑁𝑇 )

𝑁𝑇
× 𝑑𝑓,

where 𝑑𝑓 denotes the degrees of freedom, �̂�2 is a consistent estimator of 𝜎2,
�̂� = �̂�𝜄 for the pooled regression, and �̂� = 𝐵�̂� for fixed effects regression.
The degrees of freedom are estimated as ̂︀𝑑𝑓 = |𝛽|0 + 1 for the pooled

regression and ̂︀𝑑𝑓 = |𝛽|0 +𝑁 for the fixed effects regression, where |.|0 is
the ℓ0-norm defined as a number of non-zero coefficients; see Zou, Hastie,
and Tibshirani (2007) for more details. The AIC is computed as

AIC =
‖y − �̂�−X𝛽‖2𝑁𝑇

�̂�2
+

2

𝑁𝑇
× ̂︀𝑑𝑓.

Lastly, the corrected Akaike information criteria is

AICc =
‖y − �̂�−X𝛽‖2𝑁𝑇

�̂�2
+

2 ̂︀𝑑𝑓
𝑁𝑇 − ̂︀𝑑𝑓 − 1

.

The AICc is typically a better choice when 𝑝 is large relatively to the
sample size. We report results for each of these four choices of the tuning
parameters.

4.6.1.3 Models and main results

To compute forecasts, we estimate several regression models. First, we
estimate the individual sg-LASSO-MIDAS regressions for each firm 𝑖 =
1, . . . , 𝑁 , which in Table 4.3 we refer to as Individual,

y𝑖 = 𝜄𝛼𝑖 + x𝑖𝛽𝑖 + u𝑖,

where the firm-specific predictions are computed as 𝑦𝑖,𝑡+1 = �̂�𝑖+𝑥
⊤
𝑖,𝑡+1𝛽𝑖. As

noted in Section 4.2, x𝑖 contains lags of the low-frequency target variable
and high-frequency covariates to which we apply Legendre polynomials of
degree 𝐿 = 3.
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Next, we estimate the following pooled and fixed effects sg-LASSO-
MIDAS panel data models

y = 𝛼𝜄+X𝛽 + u Pooled

y = 𝐵𝛼 +X𝛽 + u Fixed Effects

and compute predictions as

𝑦𝑖,𝑡+1 = �̂� + 𝑥⊤𝑖,𝑡+1𝛽 Pooled

𝑦𝑖,𝑡+1 = �̂�𝑖 + 𝑥⊤𝑖,𝑡+1𝛽 Fixed Effects.

We benchmark firm-specific and panel data regression-based nowcasts
against two simple alternatives. First, we compute forecasts for the RW
model as

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡.

Second, we consider predictions of P/E implied by analysts earnings
nowcasts using the information up to time 𝑡+ 1, i.e.

𝑦𝑖,𝑡+1 = 𝑦𝑖,𝑡+1,

where 𝑦 indicates that the forecasted P/E ratio is based on consensus
earnings forecasts made at the end of the 𝑡+ 1 quarter, and the stock price
is also taken at the end of 𝑡+ 1. Recall that the actual earnings are only
available two months after the end of quarter 𝑡+ 1 as explained earlier in
the section.

To measure the forecasting performance, we compute the mean squared
forecast errors (MSE) for each method. Let ȳ𝑖 = (𝑦𝑖,𝑇𝑖𝑠+1, . . . , 𝑦𝑖,𝑇𝑜𝑠

)⊤

represent the out-of-sample realized P/E ratio values, where 𝑇𝑖𝑠 and 𝑇𝑜𝑠
denote the last in-sample observation for the first prediction and the last out-
of-sample observation respectively, and let ŷ𝑖 = (𝑦𝑖,𝑡𝑖𝑠+1, . . . , 𝑦𝑖,𝑡𝑜𝑠) collect
the out-of-sample forecasts. Then, the mean squared forecast errors are
computed as

MSE =
1

𝑁

𝑁∑︁
𝑖=1

1

𝑇 − 𝑇𝑖𝑠 + 1
(ȳ𝑖 − ŷ𝑖)

⊤(ȳ𝑖 − ŷ𝑖).

The main results for pooled panel data and fixed effects sg-LASSO-
MIDAS regressions are reported in Table 4.3, while additional results for
longer horizon predictions, unstructured LASSO estimators and the forecast
combination approach appear in Appendix Tables A4.1-A4.3.
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Table 4.3: Prediction results – The table reports average over firms MSEs of out-of-sample
predictions. The nowcasting horizon is the current quarter, i.e. we predict the P/E ratio using
information up to the end of current fiscal quarter. Block in Panel A1-D1 correspond to ML-only
forecast errors while in Panel A2-D2 to ML models augmented with median consensus nowcasts.
Each Panel A1-D1 and A2-D2 block represents different ways of calculating the tuning parameter
𝜆. Bold entries are the best results in a block.

RW MSE An.-mean MSE An.-median MIDAS ML
2.331 2.339 2.088 𝛾 = 0 0.2 0.4 0.6 0.8 1

sg-LASSO-MIDAS

Panel A1. Cross-validation
Individual 1.545 1.551 1.567 1.594 1.614 1.606

Pooled 1.459 1.456 1.455 1.456 1.455 1.459
Fixed Effects 1.500 1.489 1.487 1.501 1.480 1.489

Panel B1. BIC
Individual 1.657 1.634 1.609 1.543 1.561 1.610

Pooled 1.482 1.498 1.491 1.495 1.493 1.483
Fixed Effects 1.515 1.496 1.472 1.512 1.483 1.476

Panel C1. AIC
Individual 1.622 1.589 1.560 1.603 1.674 1.688

Pooled 1.494 1.492 1.488 1.487 1.490 1.492
Fixed Effects 1.504 1.487 1.486 1.504 1.479 1.489

Panel D1. AICc
Individual 2.025 2.122 2.272 2.490 2.923 3.255

Pooled 1.494 1.484 1.488 1.487 1.490 1.492
Fixed Effects 1.491 1.488 1.486 1.504 1.479 1.489

sg-LASSO-MIDAS augmented with An.-median

Panel A2. Cross-validation
Individual 1.528 1.542 1.552 1.552 1.537 1.534

Pooled 1.422 1.419 1.417 1.418 1.420 1.425
Fixed Effects 1.385 1.385 1.358 1.364 1.370 1.362

Panel B2. BIC
Individual 1.638 1.610 1.584 1.566 1.506 1.508

Pooled 1.453 1.425 1.398 1.425 1.453 1.447
Fixed Effects 1.400 1.400 1.372 1.379 1.384 1.379

Panel C2. AIC
Individual 1.618 1.580 1.565 1.577 1.621 1.610

Pooled 1.453 1.453 1.482 1.483 1.486 1.488
Fixed Effects 1.434 1.434 1.405 1.412 1.418 1.407

Panel D2. AICc
Individual 1.618 1.580 1.565 1.577 1.621 1.610

Pooled 1.453 1.453 1.482 1.483 1.486 1.488
Fixed Effects 1.434 1.434 1.405 1.412 1.418 1.407
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The first entries to Table 4.3 show that analysts-based predictions, both
median and mean, have much larger mean squared forecast errors (MSEs)
compared to model-based predictions. This is also the case for the RW
predictions. The sharp increase in quality of model- versus analyst-based
predictions indicates the usefulness of machine learning methods to nowcast
P/E ratios, see Tables 4.3 Panel A1-D1 and A4.2. A better performance is
achieved for almost all machine learning methods - single firm or panel data
regressions - and all tuning parameter choices.7 Table 4.3 also reports results
for panel data ML methods augmented with median consensus analysts
forecasts (see Panels A2-D2). Notably, it shows that the augmented models
further improve upon ML-only models.

Turning to the comparison of model-based predictions, we see from the
results in Table 4.3 that sg-LASSO-MIDAS panel data models improve the
quality of predictions in comparison to individual sg-LASSO-MIDAS models
irrespective of the 𝛾 weight or the tuning parameter choice. This indicates
that panel data structures are relevant for nowcasting P/E ratios.8 Among
the panel data models, we observe that fixed effects regressions improve
over the pooled regressions in most cases except when cross-validation is
used, namely compare Panels A1 with Panel B1-D in Tables 4.3 and A4.3.
The pooled model tuned by cross-validation seems to yield the best overall
performance. In general, one can expect that cross-validation improves
prediction performance over different tuning methods as it is directly linked
to empirical risk minimization. In the case of fixed effects, however, we may
lose the predictive gain due to the smaller samples with each fold used in
estimating the model. Lastly, the best results per tuning parameter block
seem to be achieved when 𝛾 /∈ {0, 1}, indicating that both sparsity within
the group and at the group level matters for prediction performance.

In Figure 4.1, we plot the sparsity patterns of the selected covariates
for the two best-performing methods: (a) pooled sg-LASSO regressions,
tuned using cross-validation with 𝛾 = 0.4, and (b) fixed effects sg-LASSO
model with BIC tuning parameter and the same 𝛾 parameter. We also plot
the forecast combination weights which are averaged over firms. The plots
in Figure 4.1 reveal that the fixed effects estimator yields sparser models
compared to pooled regressions, and the sparsity pattern is clearer. In the

7Similar findings for one-quarter ahead predictions are reported in Table A4.1. The
unstructured panel data methods and the forecast combination approach also yield more accurate
forecasts, see Appendix Table A4.2-A4.3. The latter confirms the findings of Ball and Ghysels
(2018).

8We also report similar findings for unstructured estimators (see Table A4.2) and one quarter
ahead forecasts (see Table A4.1).
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(a) Pooled sg-LASSO, 𝛾 = 0.4,
cross-validation.
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(b) Fixed effects sg-LASSO,
𝛾 = 0.4, BIC.
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(c) Average forecast
combination weights.

Figure 4.1: Sparsity patterns and forecast combination weights.

fixed-effects case, the revenue growth and the first lag of the dependent
variable are selected throughout the out-of-sample period. BAA minus AAA
bond yield spread, firm-level volatility, and the aggregate event sentiment
index are also selected quite frequently. Similarly, these variables are selected
in the pooled regression, but the pattern is less apparent. The forecast
combination weights seem to yield similar, yet more dispersed patterns.9

In this case, revenue growth and firm-level stock returns covariates obtain
relatively larger weights compared to the rest of covariates, particularly for
the first part of the out-of-sample period. Therefore, the gain of machine
learning methods - both single-firm and panel data - can be associated with
sparsity imposed on the regression coefficients.

In addition it is worth noting that the textual news data analytics
also appear in the models according the results displayed in Figure 4.1.
These are the ESS, AES, AEV, CSS and NEP regressors described in
detail in Appendix Section A4.6. Among them, as already noted, AES –
the aggregate event sentiment index – features most prominently in the
sg-LASSO models. It is worth emphasizing that the time series of news
data is sparse as many days are without firms-specific news. For such

9Note that forecast combination weights start in 2009 Q1 due to the first eight quarters
being used as a pre-sample to estimate weights, see Ball and Ghysels (2018) for further details.
Also, the forecast combination weights figure does not contain autoregressive lags; all four lags
are always included in all forecasting regressions.
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days, we impute zero values. The nice property of our mixed frequency
data treatment with dictionaries, imputing zeros also implies that non-zero
entries get weights with a decaying pattern for distant past values.

Finally, Figure 4.2 shows the flexibility of our approach when dealing
with high-dimensional MIDAS panel data models. First, we show that
various shapes and forms of the weighting function can be estimated by
applying Legendre polynomials over the high-frequency lags. For instance,
the BAA minus 10-Year Treasury bond yield spread is estimated to have
slowly decaying weights, while the TED rate covariate has a humped shape
of the weights. Our approach provides a foundation for future research that
focuses on the economic interpretations of the various MIDAS polynomial
shapes (e.g., Ball (2013); Ball and Easton (2013); Ball and Gallo (2018)).
Finally, our approach allows for the recovery of smooth lag functions for
such series, even for daily textual news series that are sparse, see Figure
4.2 (a) and (e).

4.6.1.4 Significance test of nowcasts

To test for the superior forecast performance, we use the Diebold and
Mariano (1995) test for the pool of P/E ratio nowcasts. We compare the
median consensus forecasts versus panel data machine learning regressions
with the smallest forecast error for pooled and fixed effects panel regressions
and report the forecast accuracy test results in Table 4.4.

When testing the full sample of pooled nowcasts, the gain in prediction
accuracy is not significant even though the MSEs are much lower for the
panel data sg-LASSO regressions relative to the consensus forecasts. The
result may not be surprising, however, as some firms have a large number of
outliers. We report three additional columns where we pool the prediction
based on the relative performance of machine learning methods versus
analysts. First, we pool all errors for firms where sg-LASSO-MIDAS and
elastic net outperform the analysts’ median consensus forecasts, i.e. has
smaller average prediction error. Second, we pool the errors where sg-
LASSO-MIDAS outperforms the analysts, but the elastic net does not.
Lastly, we pool prediction errors where none of the methods outperforms
analysts.10

10We do not report results for the pool of firms for which the elastic net outperforms analysts
and the sg-LASSO-MIDAS does not, since there is only one such firm in the case of fixed effects
regressions, while in the case of pooled regressions there are no such firms.
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Figure 4.2: Weighting schemes for various covariates
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The results reveal heterogeneous performance for sg-LASSO-MIDAS
and elastic net panel data regressions. First, for the pool of firms where
both structured sg-LASSO-MIDAS and unstructured elastic net outperform
the analysts, the gains over the analysts predictions are significant for
both machine learning techniques. Second, for the firms where both
methods yield less accurate forecasts compared to the analysts, the loss in
prediction accuracy is also significant. Lastly, the portion of firms sg-LASSO
outperforms analysts while elastic net does not yields significantly higher
quality predictions for sg-LASSO and significantly worse for the elastic net.

Table 4.4: Forecasting performance significance – The table reports the Diebold and Mariano
(1995) test statistic for pooled nowcasts comparing machine learning panel data regressions
with analysts’ implied median consensus forecasts. We compare panel models that have the
smallest forecast error per tuning parameter block in Table 4.3 (sg-LASSO-MIDAS) and Table
A4.2 (elastic net or elastic net UMIDAS) for pooled and fixed effects regressions respectively.
We report test statistics for a) all firms in column Full sample, b) pooled firms where both
sg-LASSO and elastic net outperform analysts in column sg-LASSO & elnet, c) pooled firms
where sg-LASSO outperforms analysts but elastic net does not in column sg-LASSO , and d)
where none of the machine learning methods outperforms analysts’ forecasts in column none.

Full sample sg-LASSO & elnet sg-LASSO none
sg-LASSO

Pooled 0.694 2.328 1.924 -2.738
Fixed Effects 0.672 2.319 1.681 -2.555

Elastic net
Pooled 0.656 2.299 -3.112 -2.698

Fixed Effects 0.656 2.314 -2.244 -2.571
Number of firms

Pooled 210 63 12 135
Fixed Effects 210 66 8 134

Large differences in prediction accuracy for different pools of P/E ratios
may relate to the heavy-tailedness of regression errors.11 In Table 4.5,
we report the maximum likelihood estimates of the degrees of freedom
parameter of a student-𝑡 distribution for the in-sample residuals pooled
as in Table 4.4.12 The smaller values indicate that the tails are heavier,
while the larger values correspond to lighter, closer to Gaussian, tails. In
line with our theory, the results show that LASSO-type regressions yield

11Our theory applies to the tail behavior of covariates as well as regression errors. However,
some of the covariates do not feature cross-sectional variation, which is why we focus only on the
errors.

12We follow a parametric approach since the time series are relatively short, see however also
Appendix, Table A4.4 for the nonparametric tail index estimates.
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much more accurate predictions when the residuals are less heavy-tailed.
Interestingly, for the pool of firms where analysts’ predictions are more
accurate than both machine learning methods (column none), tails of the
residuals appear to be the heaviest.

Lastly, we report the Diebold and Mariano (1995) test statistic comparing
whether the sg-LASSO-MIDAS model combined with the median consensus
nowcasts (An.-median) outperforms the analysts-only nowcasts (see Table
4.3 Panels A2-D2). Note that median consensus predictions are always
selected by the sg-LASSO-MIDAS throughout out-of-sample period while
other covariates retain a selection pattern similar to that of sg-LASS-
MIDAS regressions reported in Figure 4.1. We pick the best panel model
specification and compute the statistic of out-of-sample residuals. The
statistic is 1.327, suggesting that combined model and analysts predictions
seem to outperform analysts when using a one-sided 10% level test.

Table 4.5: Heaviness of tails – The table reports the maximum likelihood estimate of the
degree of freedom of student-t distribution of in-sample residuals. The results are reported for
the models as in Table 4.4.

Full sample sg-LASSO & elnet sg-LASSO none
sg-LASSO

Pooled 4.803 7.413 5.497 4.217
Fixed Effects 4.871 6.966 5.003 4.321

Elastic net
Pooled 4.926 7.588 5.762 4.341

Fixed Effects 5.332 7.422 5.479 4.741

Regressands
5.627 7.031 5.303 5.228

Number of firms
Pooled 210 63 12 135

Fixed Effects 210 66 8 134

4.6.2 Do analysts leave money on the table?

In this section we revisit a topic raised by Ball and Ghysels (2018) and
Carabias (2018). Their empirical findings suggest that analysts tend to
focus on their firm/industry when making earnings predictions while not
fully taking into account the impact of macroeconomic events. While
their findings were suggestive, there was no formal testing in a data-rich
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environment. The theory established in the previous sections allows us to
do so.

More specifically, similarly as in nowcasting application, we consider the
earnings of 210 US firms using a set of predictors that are sampled at mixed
frequencies – quarterly, monthly and daily series. We use 26 predictors
(and their lags), including traditional macro and financial series as well as
non-standard series generated by textual analysis of financial news. We use
similar data set as in nowcasting application, see Table A4.6, but include
two additional predictors in unemployment rate and real GDP growth rate.

4.6.2.1 Granger causality tests

Whether analysts leave money on the table amounts to testing whether
forecast errors in earnings can be predicted by current information variables.
Hence, this amounts to performing something akin to the Granger causality
test. In our empirical application we are dealing with a panel, and it is
important to exploit the multivariate data structure to perform such tests.

We analyze the difference between realized earnings and analysts’ predictions,
i.e., the response variable 𝑦𝑖,𝑡+1 is computed by taking the difference between
realized earnings, denoted 𝑒𝑖,𝑡+1, and the median of analysts’ predictions
for the quarter 𝑡+ 1, denoted 𝑓𝑖,𝑡+1|𝑡,

𝑦𝑖,𝑡+1 = 𝑒𝑖,𝑡+1 − 𝑓𝑖,𝑡+1|𝑡.

We then fit the following pooled panel data MIDAS model using sg-LASSO
estimator:

𝑦𝑖,𝑡+1 = 𝛼 + 𝜌𝑦𝑖,𝑡 +
𝐾∑︁
𝑘=1

𝜓(𝐿1/𝑚; 𝛽𝑘)𝑥𝑖,𝑡,𝑘 + 𝑢𝑖,𝑡+1.

We test which factors Granger cause future errors of earnings forecasts
made by the analysts. In the sg-LASSO, groups are defined as all lags of
a single covariate 𝑘; Legendre polynomials up to degree three are applied
to all weight functions 𝜓(𝐿1/𝑚; 𝛽𝑘). We use 10-fold cross-validation to tune
both 𝜆 and 𝛾, where we define folds as adjacent blocks over the time series
dimension to take into account the time series dependence. Similarly, we
estimate the precision matrix using nodewise LASSO regressions selecting
the tuning parameter in a similar vein. The results are reported in Table
4.6.

In Panel (A) of Table 4.6 we find that the AR(1) lag is significant,
leading us to conclude that the prediction errors made by the analysts

Page 143



Chapter 4
Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data:

Theory and Applications

Table 4.6: Significance testing results — We report p-values for the AR(1)
in Panel (A) and for the sg-LASSO using the MIDAS scheme with Legendre
polynomials in Panel (B) displaying series significant at the 5% or 10%
significance level. We also report results for the standard LASSO estimator
together with the UMIDAS scheme in Panel (C). The results are reported
for a range of bandwidth parameters (𝑀𝑇 = 10, 20 and 30) and two kernel
functions (Quadratic Spectral and Parzen).

Variable ∖𝑀𝑇 10 20 30 10 20 30
Quadratic Spectral Parzen

Panel (A) – AR(1)

AR(1) 0.001 0.000 0.000 0.002 0.001 0.001

Panel (B) – sg-LASSO

Significant variables at 5% or less
AR(1) 0.001 0.000 0.000 0.002 0.001 0.000

TED rate 0.001 0.001 0.000 0.003 0.001 0.001
CPI inflation 0.003 0.001 0.001 0.013 0.003 0.001

Real GDP 0.028 0.003 0.001 0.035 0.021 0.006
Significant variables at 10% level

Term spread 0.012 0.014 0.023 0.053 0.016 0.015

Panel (C) – LASSO (significant for sg-LASSO)

Significant variables at 5% or less
AR(1) 0.001 0.000 0.000 0.002 0.001 0.000

TED rate 0.000 0.000 0.000 0.000 0.000 0.000
CPI inflation 0.677 0.390 0.461 0.651 0.724 0.576

Real GDP 0.341 0.247 0.094 0.339 0.328 0.270
Significant variables at 10% level

Term spread 0.273 0.060 0.022 0.235 0.387 0.365

LASSO (significant only for LASSO)

Significant variables at 5% or less
AAA less 10 year 0.009 0.001 0.001 0.015 0.014 0.007
BAA less 10 year 0.000 0.000 0.000 0.000 0.000 0.000
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are persistent. The autoregressive coefficient is significant throughout all
specifications of the models, including in a simple pooled AR(1) model. In
the latter case, the AR(1) coefficient is estimated to be 0.147.

Panel (B) of Table 4.6 reports that beyond the AR(1) we find that the
highly significant covariates are TED rate, CPI inflation and real GDP
growth. These results support previous findings that analysts tend to miss
information associated with macroeconomic conditions — including real
GDP growth and the TED spread, which is an indicator of measure credit
risk. The latter is rather surprising, as it indicates that analysts tend to
miss out on credit risk information at the macro level in their earnings
forecasts. Lastly, the term spread (10-year less 3-month treasury yield),
often viewed as a business cycle indicator, is also significant at the 10%
level.

Finally, in Panel (C) of Table 4.6 we report results based on the
unstructured LASSO applying UMIDAS for the lag polynomials of each
covariate. The findings reveal similar results for the TED rate, but notably
miss real GDP and CPI inflation as significant covariates.

In Table 4.7 we show results based on a different way of pooling analysts’
prediction errors 𝑦𝑖,𝑡+1. We split the data into two parts based on how large
the average disagreement among analysts is. For each firm, we compute
the forecast disagreement as the difference between 95% and 5% percentile
of the empirical forecast distribution and take the average over the sample.
We sort from high to low disagreement and split the sample of firms into two
subsamples of equal size. The results show that macro variables which are
significant for the full sample are also significant for the large disagreement
subsample. On the other hand, little significance is reported for the low
disagreement subsample. In this case, only the AR(1) lag and stock returns
are significant at the 5% significance level.

Lastly, in Figure 4.3 we plot the ratio of firms for which we find Granger
causality based on individual regressions versus panel models. In Panel (a)
we plot the ratios for sg-LASSO estimator using MIDAS weighting scheme
while in Panel (b) we plot the ratios for the LASSO estimator with UMIDAS
scheme. The plot shows ratios for each covariate representing the fraction
with respect to sg-LASSO (Panel (a)) or LASSO with UMIDAS (Panel (b))
each covariate is significant by running individual regressions. For example,
the AR(1) lag is significant for around 30% (0.3) of firms when running
individual sg-LASSO-MIDAS regressions. Some covariates that are not
significant in pooled panels are significant for some firms; therefore, we show
results for all covariates, including those that are not significant in pooled
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Table 4.7: Significance testing results — We report p-values for the AR(1)
and for the sg-LASSO-MIDAS models, displaying series significant at the 5%
or 10% significance level. The results are reported for a range of bandwidth
parameters and two kernel functions. We pool the response based on large
versus small disagreement, which we measure as the average (over time
series) of the difference between 95% and 5% percentile of the empirical
forecast distribution of the analysts.

Variable ∖𝑀𝑇 10 20 30 10 20 30
Quadratic Spectral Parzen

Large disagreement
Significant variables at 5% or less

AR(1) 0.002 0.001 0.000 0.004 0.001 0.001
Term spread 0.029 0.023 0.016 0.085 0.036 0.026

TED rate 0.002 0.001 0.001 0.016 0.002 0.001
CPI inflation 0.016 0.009 0.007 0.040 0.018 0.011

Significant variables at 10% level
Real GDP 0.098 0.005 0.000 0.098 0.082 0.021

Small disagreement
Significant variables at 5% or less

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000
Stock returns 0.008 0.004 0.003 0.015 0.008 0.006

Significant variables at 10% level
Unemployment rate 0.060 0.043 0.045 0.060 0.056 0.048

panel cases. We also show how the ratios differ for low (dark-gray color)
versus high disagreement (light-gray color) firms. They represent whether a
specific firm we run an individual regression for is in the high-disagreement
versus low-disagreement subsample. Interestingly, the largest ratios are for
AR(1), TED rate, Real GDP, CPI inflation and term spread in the case of
sg-LASSO-MIDAS. Moreover, the portion of firms in the high disagreement
subsample seem to have the largest ratios. In the case of LASSO-UMIDAS,
the ratios show a less clear pattern, with only the AR(1) and TED rate
covariates significant for a larger number of firms.
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Figure 4.3: Individual regression-based Granger causality tests. In Panel
(a) we plot the ratios based on sg-LASSO estimator and MIDAS weighting
scheme with Legendre polynomials, while in Panel (b) we plot for the ratios
for the standard LASSO estimator with UMIDAS weighting scheme. The
lighter-gray color shows the ratio for firms with high disagreement, while
the dark-gray color shows the ratio for firms with low disagreement; see
Table 4.7. All results are based on the 5% significance level.

4.7 Conclusions

This paper introduces a new class of high-dimensional panel data regression
models with dictionaries and sg-LASSO regularization. This type of
regularization is an especially attractive choice for predictive panel data
regressions, where the low- and/or the high-frequency lags define a clear
group structure. The estimator nests the LASSO and the group LASSO
estimators as special cases. Our theoretical treatment allows for heavy-
tailed data frequently encountered in financial time series. To that end, we
obtain a new panel data concentration inequality of the Fuk-Nagaev type
for 𝜏 -mixing processes, which allows us to establish oracle inequalities that
are used subsequently to develop the debiased HAC inference for the panel
data sg-LASSO estimator.

Our empirical analysis sheds light on the advantage of the regularized
panel data regressions for nowcasting corporate earnings. We focus on
nowcasting the P/E ratio of 210 US firms and find that the regularized panel
data regressions outperform several benchmarks, including the analysts’
predictions. Furthermore, we find that the regularized machine learning
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regressions outperform the forecast combinations and that the panel data
approach improves upon the predictive time series regressions for individual
firms.

While nowcasting earnings is a leading example of applying panel
data MIDAS machine learning regressions, one can think of many other
applications of interest in finance. Beyond earnings, analysts are also
interested in sales, dividends, etc. Our analysis can also be useful for other
areas of interest, such as regional and international panel data settings.

Using the theory of HAC-based inference for pooled panel data regressions
developed in our paper, our empirical analysis revisits a topic raised by
earlier literature that analysts tend to focus on firm and/or industry
information when forming earnings forecasts, while not fully taking into
account the macroeconomic data. Our results suggest that indeed analysts
tend to miss on macro information, i.e., macro variables turn out to be
significant in pooled panel regression models.

Page 148



Chapter 4
Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data:

Theory and Applications

APPENDIX

A4.1 Concentration and moment
inequalities

In this section we present a suitable for us Rosenthal’s moment inequality
for dependent data and a new Fuk-Nagaev concentration inequality for
panel data reflecting the concentration jointly over 𝑁 and 𝑇 .

For a random vector 𝜉𝑖,𝑡 = (𝜉𝑖,𝑡,1, . . . , 𝜉𝑖,𝑡,𝑝) ∈ R𝑝, let 𝜏
(𝑖,𝑗)
𝑘 denote the

𝜏 -mixing coefficient of 𝜉𝑖,𝑡,𝑗. The following result describes a Fuk-Nagaev
concentration inequality for panel data. It is worth mentioning that the
inequality does not follow from Babii, Ghysels, and Striaukas (2021a) and
is of independent interest for the high-dimensional panel data.13

Theorem A4.1. Let {𝜉𝑖,𝑡 : 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]} be an array of centered
random vectors in R𝑝 such that (𝜉𝑖,1, . . . , 𝜉𝑖,𝑇 ) are independent over 𝑖 and (i)

max𝑖∈[𝑁 ],𝑡∈[𝑇 ],𝑗∈[𝑝] ‖𝜉𝑖,𝑡,𝑗‖𝑞 = 𝑂(1) for some 𝑞 > 2; (ii) max𝑖∈[𝑁 ],𝑗∈[𝑝] 𝜏
(𝑖,𝑗)
𝑘 =

𝑂(𝑘−𝑎) for some 𝑎 > (𝑞 − 1)/(𝑞 − 2). Then for every 𝑢 > 0

Pr

(︃⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑖,𝑡

⃒⃒⃒⃒
⃒
∞

> 𝑢

)︃
≤ 𝑐1𝑝𝑁𝑇𝑢

−𝜅 + 4𝑝𝑒−𝑐2𝑢
2/𝑁𝑇

for some universal constants 𝑐1, 𝑐2 > 0 and 𝜅 = ((𝑎+ 1)𝑞 − 1)/(𝑎+ 𝑞 − 1).

Proof of Theorem A4.1. Suppose first that 𝑝 = 1. For 𝑎 ∈ R with some
abuse of notation, let [[𝑎]] denote its integer part. For each 𝑖 ∈ [𝑁 ], split
the partial sum into blocks with at most 𝐽 ∈ N summands

𝑉𝑖,𝑘 = 𝜉𝑖,(𝑘−1)𝐽+1 + · · ·+ 𝜉𝑖,𝑘𝐽 , 𝑘 = 1, 2, . . . , [[𝑇/𝐽 ]]

𝑉𝑖,[[𝑇/𝐽 ]]+1 = 𝜉𝑖,[[𝑇/𝐽 ]]𝐽+1 + · · ·+ 𝜉𝑖,𝑇 ,

where we set 𝑉𝑖,[[𝑇/𝐽 ]]+1 = 0 if [[𝑇/𝐽 ]]𝐽 = 𝑇 . Let {𝑈𝑖,𝑡 : 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]} be
i.i.d. random variables uniformly distributed on (0, 1) and independent of
{𝜉𝑖,𝑡 : 𝑖 ∈ [𝑁 ], 𝑡 ∈ [𝑇 ]}. Put ℳ𝑖,𝑡 = 𝜎(𝑉𝑖,1, . . . , 𝑉𝑖,𝑡−2) for every 𝑡 ≥ 3. For
each 𝑖 ∈ [𝑁 ], if 𝑡 = 1, 2, set 𝑉 *

𝑖,𝑡 = 𝑉𝑖,𝑡, while if 𝑡 ≥ 3, then by Dedecker and
Prieur (2004), Lemma 5, there exist random variables 𝑉 *

𝑖,𝑡 =𝑑 𝑉𝑖,𝑡 such that
1. 𝑉 *

𝑖,𝑡 is ℳ𝑖,𝑡 ∨ 𝜎(𝑉𝑖,𝑡) ∨ 𝜎(𝑈𝑖,𝑡)-measurable.
13The direct application of the time series Fuk-Nagaev inequality of Babii, Ghysels, and

Striaukas (2021a) leads to inferior concentration results for panel data.
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2. 𝑉 *
𝑖,𝑡 ⊥⊥ (𝑉𝑖,1, . . . , 𝑉𝑖,𝑡−2).

3. ‖𝑉𝑖,𝑡 − 𝑉 *
𝑖,𝑡‖1 = 𝜏(ℳ𝑖,𝑡, 𝑉𝑖,𝑡).

Property 1. implies that there exists a measurable function 𝑓𝑖 such that

𝑉 *
𝑖,𝑡 = 𝑓𝑖(𝑉𝑖,𝑡, 𝑉𝑖,𝑡−2, . . . , 𝑉𝑖,1, 𝑈𝑖,𝑡).

Property 2. implies that (𝑉 *
𝑖,2𝑡)𝑡≥1 and (𝑉 *

𝑖,2𝑡−1)𝑡≥1 are sequences of independent
random variables for every 𝑖 ∈ [𝑁 ]. Moreover, {𝑉 *

𝑖,2𝑡 : 𝑖 ∈ [𝑁 ], 𝑡 ≥ 1} and
{𝑉 *

𝑖,2𝑡−1 : 𝑖 ∈ [𝑁 ], 𝑡 ≥ 1} are sequences of independent random variables
since {𝜉𝑖,𝑡 : 𝑡 ∈ [𝑇 ]} are independent over 𝑖 ∈ [𝑁 ].

Decompose⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑖,𝑡

⃒⃒⃒⃒
⃒ ≤

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

𝑉 *
𝑖,2𝑡

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

𝑉 *
𝑖,2𝑡−1

⃒⃒⃒⃒
⃒+

𝑁∑︁
𝑖=1

[[𝑇/𝐽 ]]+1∑︁
𝑡=3

⃒⃒
𝑉𝑖,𝑡 − 𝑉 *

𝑖,𝑡

⃒⃒
, 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

By Fuk and Nagaev (1971), Corollary 4 for independent data there exist
constants 𝑐1, 𝑐2 > 0 such that

Pr(𝐼 > 𝑢/3) ≤ 𝑐1𝑢
−𝑞

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

E|𝑉 *
𝑖,2𝑡|𝑞 + 2 exp

(︃
− 𝑐2𝑢

2∑︀𝑁
𝑖=1

∑︀
𝑡≥1Var(𝑉

*
𝑖,2𝑡)

)︃

≤ 𝑐1𝑢
−𝑞

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

E|𝑉𝑖,2𝑡|𝑞 + 2 exp

(︂
−𝑐2𝑢

2

𝑁𝑇

)︂
,

where we use 𝑉 *
𝑖,𝑡 =𝑑 𝑉𝑖,𝑡 and

∑︀𝑁
𝑖=1

∑︀
𝑡≥1Var(𝑉𝑖,2𝑡) = 𝑂(𝑇 ), which follows

from Babii, Ghysels, and Striaukas (2021a), Lemma A.1.2 under assumptions
(i) and (ii). Similarly,

Pr(𝐼𝐼 > 𝑢/3) ≤ 𝑐1𝑢
−𝑞

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

E|𝑉𝑖,2𝑡|𝑞 + 2 exp

(︂
−𝑐2𝑢

2

𝑁𝑇

)︂
.

Finally, since ℳ𝑖,𝑡 and 𝑉𝑖,𝑡 are separated by 𝐽 + 1 lags of 𝜉𝑖,𝑡, we have

𝜏(ℳ𝑖,𝑡, 𝑉𝑖,𝑡) ≤ 𝐽𝜏
(𝑖,𝑗)
𝐽 (𝐽 + 1). By Markov’s inequality and property 3., this

gives

Pr(𝐼𝐼𝐼 > 𝑢/3) ≤ 3

𝑢

𝑁∑︁
𝑖=1

[[𝑇/𝐽 ]]+1∑︁
𝑡=3

‖𝑉𝑖,𝑡 − 𝑉 *
𝑖,𝑡‖1 ≤

3𝑁𝑇

𝑢
max
𝑖∈[𝑁 ]

𝜏
(𝑖,1)
𝐽+1 .
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Combining all estimates together under (i)-(ii)

Pr

(︃⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑖,𝑡

⃒⃒⃒⃒
⃒ > 𝑢

)︃
≤ Pr(𝐼 > 𝑢/3) + Pr(𝐼𝐼 > 𝑢/3) + Pr(𝐼𝐼𝐼 > 𝑢/3)

≤ 𝑐1𝑢
−𝑞𝑁

𝑁∑︁
𝑖=1

∑︁
𝑡≥1

‖𝑉𝑖,𝑡‖𝑞𝑞 + 4𝑒−𝑐2𝑢
2/𝑁𝑇+

+
3𝑁𝑇

𝑢
max
𝑖∈[𝑁 ]

𝜏
(𝑖,1)
𝐽+1

≤ 𝑐1𝑢
−𝑞𝐽𝑞−1𝑁𝑇 +

3𝑁𝑇

𝑢
(𝐽 + 1)−𝑎 + 4𝑒−𝑐2𝑢

2/𝑁𝑇

for some constants 𝑐1, 𝑐2 > 0. To balance the first two terms, we shall

choose the length of blocks 𝐽 ∼ 𝑢
𝑞−1

𝑞+𝑎−1 , in which case we get

Pr

(︃⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑖,𝑡

⃒⃒⃒⃒
⃒ > 𝑢

)︃
≤ 𝑐1𝑁𝑇𝑢

−𝜅 + 4𝑒−𝑐2𝑢
2/𝑁𝑇

for some 𝑐1, 𝑐2 > 0. Finally, for 𝑝 > 1, the result follows by the union
bound.

It follows from Theorem A4.1 that there exists 𝐶 > 0 such that for
every 𝛿 ∈ (0, 1)

Pr

(︃⃒⃒⃒⃒
⃒ 1

𝑁𝑇

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝜉𝑖,𝑡

⃒⃒⃒⃒
⃒
∞

≤ 𝐶

(︂
𝑝

𝛿(𝑁𝑇 )𝜅−1

)︂1/𝜅

∨
√︂

log(𝑝/𝛿)

𝑁𝑇

)︃
≥ 1− 𝛿.

Note that the inequality reflects the concentration jointly over 𝑁 and 𝑇 and
that tails and persistence play an important role through the mixing-tails
exponent 𝜅. The inequality is a key technical tool that allows us to handle
panel data with heavier than Gaussian tails and non-negligible 𝑇 and 𝑁 .
It is worth mentioning that the concentration over 𝑁 is also influence by
the weak dependence, which probably can be relaxed with a sharper proof
technique. However, for geometrically ergodic processes, e.g., for stationary
𝐴𝑅(𝑝), we have 𝜅 ≈ 𝑞, in which case the time series dependence does not
influence the concentration at all.

Let (𝜉𝑡)𝑡∈N be a real-valued stochastic process and let 𝑄𝑡 denote the
generalized inverse of the tail function 𝑥 ↦→ Pr(|𝜉𝑡| ≥ 𝑥). Let 𝜉 ∈ R be a
random variable corresponding to (𝜉𝑡)𝑡∈Z such that 𝑄 ≥ sup𝑡∈N𝑄𝑡, where
𝑄 is a generalized inverse of 𝑥 ↦→ Pr(|𝜉| ≥ 𝑥). The following Rosenthal’s
moment inequality for 𝜏 -dependent sequences follows from Dedecker and
Prieur (2004); see also Dedecker and Doukhan (2003).
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Theorem A4.2. Let (𝜉𝑡)𝑡∈N be a centered stochastic process such that (i)
there exists 𝑞 > 2 such that ‖𝜉‖𝑞 <∞, where 𝜉 ∈ R corresponds to (𝜉𝑡)𝑡∈N;
(ii) the 𝜏 -mixing coefficients are 𝜏𝑘−1 ≤ 𝑐𝑘−𝑎,∀𝑘 ≥ 1 for some universal
constants 𝑐 > 0 and 𝑎 > (𝑞(𝑟 − 2) + 1)/(𝑞 − 𝑟). Then for every 𝑟 ∈ [2, 𝑞)

E

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒
𝑟

≤ 𝑐𝑞,𝑟

(︁
𝑇 𝑟/2‖𝜉‖𝑞𝑟/2(𝑞−1)

𝑞 + 𝑇‖𝜉‖𝑞(𝑟−1)/(𝑞−1)
𝑞

)︁
,

where the constant 𝑐𝑞,𝑟 depend only on 𝑞 and 𝑟.

Proof. Let 𝐺 be the inverse of 𝑥 ↦→
∫︀ 𝑥

0 𝑄(𝑢)d𝑢 and put𝐻(𝑢) =
∑︀∞

𝑘=0 12𝑢<𝜏𝑘 ,
where (𝜏𝑘)𝑘∈N are 𝜏 -mixing coefficients of (𝜉𝑡)𝑡∈N. Note that for every 𝑞 ≥ 1,∫︁ ‖𝜉‖1

0

|𝑄 ∘𝐺(𝑢)|𝑞−1d𝑢 =

∫︁ 1

0

𝑄𝑞(𝑣)d𝑣 = ‖𝜉‖𝑞𝑞.

Then by Hölder’s inequality

∫︁ ‖𝜉‖1

0

|𝐻(𝑢)𝑄 ∘𝐺(𝑢)|𝑟−1d𝑢 ≤

(︃∫︁ ‖𝜉‖1

0

𝐻(𝑞−1)(𝑟−1)/(𝑞−𝑟)(𝑢)d𝑢

)︃ 𝑞−1
𝑞−𝑟

‖𝜉‖𝑞(𝑟−1)/(𝑞−1)
𝑞

Note also that for some constant 𝐶𝑞,𝑟 that depends only on 𝑞 and 𝑟 we have∫︁ ‖𝜉‖1

0

𝐻(𝑞−1)(𝑟−1)/(𝑞−𝑟)(𝑢)d𝑢 ≤ (1 ∨ 𝑠𝑞,𝑟)
∫︁ ‖𝜉‖1

0

∞∑︁
𝑘=0

(𝑘 + 1)(𝑞−1)(𝑟−1)/(𝑞−𝑟)−112𝑢<𝜏𝑘d𝑢

≤ 0.5(1 ∨ 𝑠𝑞,𝑟)
∞∑︁
𝑘=0

(𝑘 + 1)(𝑞−1)(𝑟−1)/(𝑞−𝑟)−1𝜏𝑘

≤ 0.5𝑐(1 ∨ 𝑠𝑞,𝑟)
∞∑︁
𝑘=1

𝑘(𝑞−1)(𝑟−1)/(𝑞−𝑟)−1−𝑎

≤ 𝐶𝑞,𝑟

where we use the fact that𝐻𝑠(𝑢) =
∑︀∞

𝑘=0((𝑘+1)𝑠−𝑘𝑠)12𝑢<𝜏𝑘 , (𝑘+1)𝑠−𝑘𝑠 ≤
(1∨𝑠)(𝑘+1)𝑠−1 with 𝑠 = 𝑠𝑞,𝑟 = (𝑞−1)(𝑟−1)/(𝑞−𝑟), and the series converges
since 𝑎 > (𝑞(𝑟 − 2) + 1)/(𝑞 − 𝑟). Combining these estimates∫︁ ‖𝜉‖1

0

|𝐻(𝑢)𝑄 ∘𝐺(𝑢)|𝑟−1d𝑢 ≤ 𝐶
𝑞−1
𝑞−𝑟
𝑞,𝑟 ‖𝜉‖𝑞(𝑟−1)/(𝑞−1)

𝑞 . (A4.1)
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By Dedecker and Prieur (2004), Corollary 1, for some constant 𝑐𝑟 > 0 that
depends only on 𝑟

E

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝜉𝑡

⃒⃒⃒⃒
⃒
𝑟

≤ 𝑐𝑟

⎧⎨⎩
(︃
𝑇

∫︁ ‖𝜉‖1

0

𝐻(𝑢)𝑄 ∘𝐺(𝑢)d𝑢

)︃𝑟/2

+

+𝑇

∫︁ ‖𝜉‖1

0

|𝐻(𝑢)𝑄 ∘𝐺(𝑢)|𝑟−1d𝑢

}︃

≤ 𝑐𝑟

{︃
𝑇 𝑟/2

(︂
𝐶

𝑞−1
𝑞−2
𝑞,𝑟 ‖𝜉‖𝑞/(𝑞−1)

𝑞

)︂𝑟/2

+ 𝑇𝐶
𝑞−1
𝑞−𝑟
𝑞,𝑟 ‖𝜉‖𝑞(𝑟−1)/(𝑞−1)

𝑞

}︃
≤ 𝑐𝑞,𝑟

(︁
𝑇 𝑟/2‖𝜉‖𝑞𝑟/2(𝑞−1)

𝑞 + 𝑇‖𝜉‖𝑞(𝑟−1)/(𝑞−1)
𝑞

)︁
,

where the second line follows by equation ((A4.1)) and 𝑐𝑞,𝑟 > 0 depends
only on 𝑞 and 𝑟.

A4.2 Large 𝑁 and 𝑇 central limit theorem

For a double sequence {𝑎𝑁,𝑇 : 𝑁, 𝑇 ∈ N}, we use lim𝑁,𝑇→∞ 𝑎𝑁,𝑇 to denote
the limit when 𝑁, 𝑇 → ∞ jointly and max𝑁,𝑇∈N 𝑎𝑁,𝑇 = max{𝑎𝑁,𝑇 : 𝑁 ∈
N, 𝑇 ∈ N}. The following central limit theorem holds for panel data
consisting of 𝜏 -mixing processes that may change over 𝑁 and 𝑇 .

Theorem A4.1. Let {𝜉𝑁,𝑇,𝑖,𝑡 : 𝑖 ∈ N, 𝑡 ∈ Z} be an array of centered random
vectors in R𝑝 such that for each 𝑁, 𝑇 , and 𝑖, {𝜉𝑁,𝑇,𝑖,𝑡 : 𝑡 ∈ Z} is a stationary
process in R𝑝 and {(𝜉𝑁,𝑇,𝑖,1, . . . , 𝜉𝑁,𝑇,𝑖,𝑇 ) : 𝑖 ∈ N} are independent arrays
in R𝑝 ×R𝑇 satisfying (i) for some 𝑞 > 2, max𝑖∈[𝑁 ],𝑗∈[𝑝] ‖𝜉𝑁,𝑇,𝑖,𝑡,𝑗‖𝑞 = 𝑂(1);
(ii) for all 𝑁, 𝑇, 𝑖, 𝑗, the 𝜏 -mixing coefficients of {𝜉𝑁,𝑇,𝑖,𝑡,𝑗 : 𝑡 ∈ Z} satisfy
𝜏𝑘−1 ≤ 𝑐𝑘−𝑎,∀𝑘 ≥ 1 for some universal constants 𝑐 > 0 and 𝑎 > (𝑞 −
1)/(𝑞 − 2) ∨ (𝑞𝛿 + 1)/(𝑞 − 2− 𝛿) with 𝑞 > 2 + 𝛿 and 𝛿 > 0; (iii) for every
𝑖, 𝑁 ∈ N, lim𝑇→∞Var(𝜉𝑁,𝑇,𝑖,𝑡) <∞. Then

1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑁,𝑇,𝑖,𝑡
d−→ 𝑁(0,Ξ) as 𝑁, 𝑇 → ∞,

where Ξ = lim𝑁,𝑇→∞
1
𝑁

∑︀𝑁
𝑖=1Var

(︁
1√
𝑇

∑︀𝑇
𝑡=1 𝜉𝑁,𝑇,𝑖,𝑡

)︁
is a finite matrix, assumed

to be a positive definite.
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Proof. By the Cramér-Wold device, see Billingsley (1995), Theorem 29.4,

1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑁,𝑇,𝑖,𝑡
d−→ 𝑁(0,Ξ) as 𝑁, 𝑇 → ∞

in R𝑝 if and only if for every 𝑧 ∈ R𝑝, the following weak convergence holds
in R

𝑧⊤

(︃
1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑁,𝑇,𝑖,𝑡

)︃
d−→ 𝑁(0, 𝑧⊤Ξ𝑧) as 𝑁, 𝑇 → ∞.

Note that under maintained assumptions, for each 𝑁, 𝑇 and 𝑧 ∈ R𝑝,

𝑧⊤

(︃
1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝜉𝑁,𝑇,𝑖,𝑡

)︃
=

𝑁∑︁
𝑖=1

𝑧⊤

(︃
1√
𝑁𝑇

𝑇∑︁
𝑡=1

𝜉𝑁,𝑇,𝑖,𝑡

)︃
is a sum of 𝑁 independent zero-mean random variables. By independence
and stationarity, the variance of this sum is

𝜎2𝑁,𝑇,𝑧 ,
1

𝑁

𝑁∑︁
𝑖=1

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡

)︃

=
1

𝑁

𝑁∑︁
𝑖=1

{︃
Var(𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡) + 2

𝑇−1∑︁
𝑘=1

(︂
1− 𝑘

𝑇

)︂
Cov(𝑧⊤𝜉𝑁,𝑇,𝑖,0, 𝑧

⊤𝜉𝑁,𝑇,𝑖,𝑘)

}︃
.

If we show that the limit in the parentheses exists for every 𝑖, 𝑁 ∈ N, then
the joint limit of 𝜎2𝑁,𝑇,𝑧 as 𝑁, 𝑇 → ∞ is the same as the sequential limit

lim
𝑁→∞

lim
𝑇→∞

1

𝑁

𝑁∑︁
𝑖=1

{︃
Var(𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡) + 2

𝑇−1∑︁
𝑘=1

(︂
1− 𝑘

𝑇

)︂
Cov(𝑧⊤𝜉𝑁,𝑇,𝑖,0, 𝑧

⊤𝜉𝑁,𝑇,𝑖,𝑘)

}︃
;

see Apostol (1974), Theorem 8.39. By Babii, Ghysels, and Striaukas (2021a),
Lemma A.1.1, for every 𝑘 ≥ 1

|Cov(𝑧⊤𝜉𝑁,𝑇,𝑖,0, 𝑧
⊤𝜉𝑁,𝑇,𝑖,𝑘)| ≤ 𝜏

𝑞−2
𝑞−1

𝑘 ‖𝑧⊤𝜉𝑁,𝑇,𝑖,0‖𝑞/(𝑞−1)
𝑞 = 𝑂(𝑘−𝑎),

where the second inequality follows under (i)-(ii). Moreover,
∑︀∞

𝑘=1 𝑘
−𝑎 <∞

under (ii). Therefore, by Lebesgue’s dominated convergence theorem, for
every 𝑖, 𝑁 ∈ N,

lim
𝑇→∞

𝑇−1∑︁
𝑘=1

(︂
1− 𝑘

𝑇

)︂
Cov(𝑧⊤𝜉𝑁,𝑇,𝑖,0, 𝑧

⊤𝜉𝑁,𝑇,𝑖,𝑘) <∞,
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and whence under (ii)

lim
𝑁,𝑇→∞

𝜎2𝑁,𝑇 = lim
𝑁,𝑇→∞

1

𝑁

𝑁∑︁
𝑖=1

Var

(︃
1√
𝑇

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡

)︃
= 𝑧⊤Ξ𝑧 <∞.

The statement of the theorem follows by the central limit theorem for
independent random variables, provided that the following Lyapunov
condition holds

lim
𝑁,𝑇→∞

1

(𝑁𝑇 )1+𝛿/2

𝑁∑︁
𝑖=1

E

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡

⃒⃒⃒⃒
⃒
2+𝛿

= 0;

see Billingsley (1995), Theorem 27.3 and Phillips and Moon (1999), Theorem
2.

By Theorem A4.2, for some 𝑐𝑞,𝛿 that depends only on 𝑞 and 𝛿,

E

⃒⃒⃒⃒
⃒

𝑇∑︁
𝑡=1

𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡

⃒⃒⃒⃒
⃒
2+𝛿

≤ 𝑐𝑞,𝛿
{︀
𝑇 1+𝛿/2‖𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡‖𝑞(1+𝛿/2)/(𝑞−1)

𝑞 + 𝑇‖𝑧⊤𝜉𝑁,𝑇,𝑖,𝑡‖𝑞(1+𝛿)/(𝑞−1)
𝑞

}︀
.

Therefore, the Lyapunov condition holds under (i).

A4.3 Proofs

Proof of Theorem 4.1. By Fermat’s rule, the pooled sg-LASSO satisfies

Z⊤(Z𝜌− y)/𝑁𝑇 + 𝜆𝑧* = 0𝑝+1

for some 𝑧* ∈ 𝜕Ω(𝜌), where 𝜕Ω(𝜌) is the subdifferential of 𝑏 ↦→ Ω(𝑏) at 𝜌.
Taking the inner product with 𝜌− 𝜌

⟨Z⊤(y − Z𝜌), 𝜌− 𝜌⟩𝑁𝑇 = 𝜆⟨𝑧*, 𝜌− 𝜌⟩
≤ 𝜆 {Ω(𝜌)− Ω(𝜌)} ,

where the last line follows from the definition of the subdifferential. Since
y = m+ u, the inequality can be rewritten as

‖Z(𝜌− 𝜌)‖2𝑁𝑇 − 𝜆 {Ω(𝜌)− Ω(𝜌)} ≤ ⟨Z⊤(Z𝜌− y), 𝜌− 𝜌⟩𝑁𝑇

= ⟨Z⊤u, 𝜌− 𝜌⟩𝑁𝑇 + ⟨m− Z𝜌,Z(𝜌− 𝜌)⟩𝑁𝑇 .

By the dual norm inequality ⟨Z⊤u, 𝜌−𝜌⟩𝑁𝑇 ≤ Ω*(Z⊤u/𝑁𝑇 )Ω(𝜌−𝜌), where
Ω* is the dual norm of Ω. Then by Babii, Ghysels, and Striaukas (2021b),
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Lemma A.2.1

Ω*(Z⊤u/𝑁𝑇 ) ≤ 𝛾|Z⊤u/𝑁𝑇 |∞ + (1− 𝛾)max
𝐺∈𝒢

|Z⊤
𝐺u/𝑁𝑇 |2

≤ max
𝐺∈𝒢

√︀
|𝐺||Z⊤u/𝑁𝑇 |∞

≤ 𝜆/𝑐,

where the last line follows from Theorem A4.1 with probability at least
1− 𝛿 and Assumption 3.2.3 for some 𝑐 > 1. Therefore,

‖ZΔ‖2𝑁𝑇−𝜆 {Ω(𝜌)− Ω(𝜌)} ≤ 𝜆

𝑐
Ω(Δ)+‖m−Z𝜌‖𝑁𝑇‖ZΔ‖𝑁𝑇 with Δ = 𝜌−𝜌.

(A4.2)
Note that the sg-LASSO penalty function can be decomposed as a sum of
two semi-norms Ω(𝑟) = Ω0(𝑟) + Ω1(𝑟),∀𝑟 ∈ R1+𝑝 with

Ω0(𝑟) = 𝛾|𝑟𝑆0
|1+(1−𝛾)

∑︁
𝐺∈𝒢0

|𝑟𝐺|2 and Ω1(𝑟) = 𝛾|𝑟𝑆𝑐
0
|1+(1−𝛾)

∑︁
𝐺∈𝒢𝑐

0

|𝑟𝐺|2.

Note also that Ω1(𝜌) = 0 and Ω1(𝜌) = Ω1(𝜌− 𝜌). Then

Ω(𝜌)− Ω(𝜌) = Ω0(𝜌)− Ω0(𝜌)− Ω1(𝜌)

≤ Ω0(𝜌− 𝜌)− Ω1(𝜌− 𝜌) = Ω0(Δ)− Ω1(Δ).
(A4.3)

Suppose that ‖m − Z𝜌‖𝑁𝑇 ≤ 1
2‖ZΔ‖𝑁𝑇 . Then it follows from equations

(A4.2) and (A4.3) that

‖ZΔ‖2𝑁𝑇 ≤ 2
𝜆

𝑐
Ω(Δ) + 2𝜆 {Ω0(Δ)− Ω1(Δ)}

= 2
𝜆

𝑐
{Ω1(Δ) + Ω0(Δ)}+ 2𝜆 {Ω0(Δ)− Ω1(Δ)}

Since the left side of this equation is greater or equal to zero, this shows
that

Ω1(Δ) ≤ 𝑐+ 1

𝑐− 1
Ω0(Δ). (A4.4)

Put Σ𝑁,𝑇 = 1
𝑁𝑇

∑︀𝑁
𝑖=1

∑︀𝑇
𝑡=1E[𝑧𝑖,𝑡𝑧

⊤
𝑖,𝑡]. Therefore,

Ω(Δ) ≤ 2𝑐

𝑐− 1
Ω0(Δ) ≤ 2𝑐

𝑐− 1

√︁
𝑠|Δ|22 ≤

2𝑐

𝑐− 1

√︂
𝑠

𝛾min
|Σ1/2

𝑁,𝑇Δ|22

=
2𝑐

𝑐− 1

√︂
𝑠

𝛾min

{︁
‖ZΔ‖2𝑁𝑇 +Δ⊤(Σ̂− Σ𝑁,𝑇 )Δ

}︁
≤ 2𝑐

𝑐− 1

√︂
𝑠

𝛾min

{︁
‖ZΔ‖2𝑁𝑇 + Ω(Δ)Ω*((Σ̂− Σ𝑁,𝑇 )Δ)

}︁
≤ 2𝑐

𝑐− 1

√︂
𝑠

𝛾min

{︁
2(1 + 𝑐−1)𝜆Ω(Δ) + Ω2(Δ)𝐺*|vech(Σ̂− Σ𝑁,𝑇 )|∞

}︁
,

Page Appx. - 156



Chapter 4
Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data:

Theory and Applications

where we set 𝐺* = max𝐺∈𝒢
√︀

|𝐺| and use Hölder’s inequality, inequalities

in equations ((A4.2)) and ((A4.4)), Assumption 3.2.2, Σ̂ = Z⊤Z/𝑁𝑇 , and
Babii, Ghysels, and Striaukas (2021b), Lemma A.2.1. This shows that with
probability at least 1− 𝛿

Ω(Δ) ≤ 4𝑐2𝑠

(𝑐− 1)2𝛾min

{︁
2(1 + 𝑐−1)𝜆+ Ω(Δ)𝐺*|vech(Σ̂− Σ𝑁,𝑇 )|∞

}︁
.

(A4.5)
Consider the following event 𝐸 = {|vech(Σ̂− Σ𝑁,𝑇 )|∞ < (2𝑐*𝐺*𝑠)−1} with
𝑐* = (3𝑐 + 1)2/(𝛾min(𝑐 − 1)2), and note that under Assumption 3.2.1 by
Theorem A4.1

Pr(𝐸𝑐) = Pr

(︃
max

1≤𝑗≤𝑘≤𝑝

⃒⃒⃒⃒
⃒ 1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑧𝑖,𝑡,𝑗𝑧𝑖,𝑡,𝑘 − E[𝑧𝑖,𝑡,𝑗𝑧𝑖,𝑡,𝑘]

⃒⃒⃒⃒
⃒ ≥ 1

2𝑐*𝐺*𝑠

)︃
. 𝑝2(𝑁𝑇 )1−�̃�𝑠�̃� + 𝑝2𝑒−𝑐𝑁𝑇/𝑠2

for some 𝑐 > 0. On the event 𝐸, the inequality in equation (A4.5) implies
Ω(Δ) . 𝑠𝜆, and whence from the equation (A4.2) by the triangle inequality

‖ZΔ‖2𝑁𝑇 ≤ 2(1 + 𝑐−1)𝜆Ω(Δ) . 𝑠𝜆2.

Therefore, we obtain the statement of the theorem as long as ‖m−Z𝜌‖𝑁𝑇 ≤
1
2‖ZΔ‖𝑁𝑇 . Suppose now that ‖m− Z𝜌‖𝑁𝑇 >

1
2‖ZΔ‖𝑁𝑇 . Then

‖ZΔ‖2𝑁𝑇 ≤ 4‖m− Z𝜌‖2𝑁𝑇 .

Therefore, the first statement of the theorem always holds with probability
at least 1− 𝛿 −𝑂(𝑟pooled𝑁,𝑇 )

‖ZΔ‖2𝑁𝑇 . 𝑠𝜆2 + ‖m− Z𝜌‖2𝑁𝑇 .

For the second statement, suppose first that

Ω1(Δ) ≤ 2
𝑐+ 1

𝑐− 1
Ω0(Δ). (A4.6)

Then by the same arguments as before, on the event 𝐸, we have

Ω(Δ) ≤
(︂
1 + 2

𝑐+ 1

𝑐− 1

)︂
Ω0(Δ)

≤ 3𝑐+ 1

𝑐− 1

√︃
𝑠

𝛾min

{︂
‖ZΔ‖2𝑁𝑇 +

1

2𝑐*𝑠
Ω2(Δ)

}︂

=

√︃
(3𝑐+ 1)2

(𝑐− 1)2𝛾min
𝑠‖ZΔ‖2𝑁𝑇 +

1

2
Ω2(Δ)
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or simply

Ω(Δ) ≤
√
2
(3𝑐+ 1)

(𝑐− 1)

√︂
𝑠

𝛾min
‖ZΔ‖𝑁𝑇 . 𝑠𝜆+

√
𝑠‖m− Z𝜌‖𝑁𝑇 ,

where we use the first statement of the theorem. On the other hand, if the
inequality in equation (A4.6) does not hold, then the inequality in equation
(A4.4) also does not hold, which implies that

‖m− Z𝜌‖𝑁𝑇 >
1

2
‖ZΔ‖𝑁𝑇 .

Then since ‖ZΔ‖𝑁𝑇 ≥ 0 from (A4.2) we obtain

0 ≤ 1

𝑐
Ω(Δ) + Ω(𝜌)− Ω(𝜌) +

2

𝜆
‖m− Z𝜌‖2𝑁𝑇

≤ 1

𝑐
Ω(Δ) + Ω0(Δ)− Ω1(Δ) +

2

𝜆
‖m− Z𝜌‖2𝑁𝑇 ,

where we use equation (A4.3). Since Ω(Δ) = Ω1(Δ) + Ω0(Δ)

Ω1(Δ) ≤ 𝑐+ 1

𝑐− 1
Ω0(Δ) +

2𝑐

𝜆(𝑐− 1)
‖m− Z𝜌‖2𝑁𝑇

≤ 1

2
Ω1(Δ) +

2𝑐

𝜆(𝑐− 1)
‖m− Z𝜌‖2𝑁𝑇 ,

where we use the fact that the inequality in equation (A4.6) does not hold.
Therefore,

Ω1(Δ) ≤ 4𝑐

𝜆(𝑐− 1)
‖m− Z𝜌‖2𝑁𝑇 ,

which shows that

Ω(Δ) . Ω1(Δ) ≤ 4𝑐

𝜆(𝑐− 1)
‖m− Z𝜌‖2𝑁𝑇 .

Therefore, with probability at least 1− 𝛿 −𝑂(𝑟pooled𝑁,𝑇 ), we always have

Ω(Δ) . 𝑠𝜆+
√
𝑠‖m− Z𝜌‖𝑁𝑇 +

1

𝜆
‖m− Z𝜌‖2𝑁𝑇 .

The result follows from the equivalence between Ω and |.|1 norms provided
that groups have fixed size.
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Proof of Theorem 4.2. By Fermat’s rule the solution to the fixed effects
regression satisfies

Z⊤(Z𝜌− y)/𝑁𝑇 + 𝜆𝑧* = 0𝑁+𝑝, for some 𝑧* =

(︂
0𝑁
𝑧*𝑏

)︂
,

where 0𝑁 is 𝑁 -dimensional vector of zeros, 𝑧*𝑏 ∈ 𝜕Ω(𝛽), 𝜌 = (�̂�⊤, 𝛽⊤)⊤, and

𝜕Ω(𝛽) is the sub-differential of 𝑏 ↦→ Ω(𝑏) at 𝛽. Taking the inner product
with 𝜌− 𝜌

⟨Z⊤(y − Z𝜌), 𝜌− 𝜌⟩𝑁𝑇 = 𝜆⟨𝑧*, 𝜌− 𝜌⟩

= 𝜆⟨𝑧*𝑏 , 𝛽 − 𝛽⟩ ≤ 𝜆
{︁
Ω(𝛽)− Ω(𝛽)

}︁
,

where the last line follows from the definition of the sub-differential. Rearranging
this inequality and using y = m+ u

‖Z(𝜌− 𝜌)‖2𝑁𝑇 − 𝜆 {Ω(𝛽)− Ω(𝛽)
}︁
≤ ⟨Z⊤u, 𝜌− 𝜌⟩𝑁𝑇 + ⟨Z⊤(m− Z𝜌), 𝜌− 𝜌⟩𝑁𝑇

≤⟨𝐵⊤u, �̂�− 𝛼⟩𝑁𝑇 + ⟨X⊤u, 𝛽 − 𝛽⟩𝑁𝑇

+ ‖m− Z𝜌‖𝑁𝑇‖Z(𝜌− 𝜌)‖𝑁𝑇

≤|𝐵⊤u/𝑁𝑇 |∞|�̂�− 𝛼|1 + Ω*(X⊤u/𝑁𝑇 )Ω(𝛽 − 𝛽)

+ ‖m− Z𝜌‖𝑁𝑇‖Z(𝜌− 𝜌)‖𝑁𝑇

≤|𝐵⊤u/
√
𝑁𝑇 |∞ ∨ Ω*(X⊤u/𝑁𝑇 )

×
{︁
|�̂�− 𝛼|1/

√
𝑁 + Ω(𝛽 − 𝛽)

}︁
+ ‖m− Z𝜌‖𝑁𝑇‖Z(𝜌− 𝜌)‖𝑁𝑇 ,

(A4.7)
where the second line follows by the dual norm inequality and the Cauchy-
Schwartz inequality, and Ω* is the dual norm of Ω. By Babii, Ghysels, and
Striaukas (2021b), Lemma A.2.1. and Theorem A4.1 under Assumption 3.2.1,
with probability at least 1− 𝛿/2

Ω*(X⊤u/𝑁𝑇 ) ≤ max
𝐺∈𝒢

√︀
|𝐺||X⊤u/𝑁𝑇 |∞ .

(︂
𝑝

𝛿(𝑁𝑇 )𝜅−1

)︂1/𝜅

∨
√︂

log(16𝑝/𝛿)

𝑁𝑇
.

Similarly, under Assumption 3.2.1 by Babii, Ghysels, and Striaukas (2021a),
Theorem 3.1 with probability at least 1− 𝛿/2

|𝐵⊤u/
√
𝑁𝑇 |∞ = max

𝑖∈[𝑁 ]

⃒⃒⃒⃒
⃒ 1√
𝑁𝑇

𝑇∑︁
𝑡=1

𝑢𝑖,𝑡

⃒⃒⃒⃒
⃒ .

(︂
𝑁

𝛿𝑁𝜅/2𝑇 𝜅−1

)︂1/𝜅

∨
√︂

log(16𝑁/𝛿)

𝑁𝑇
.
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Therefore, under Assumption 4.3.5 with probability at least 1− 𝛿

|𝐵⊤u/𝑁𝑇 |∞ ∨ Ω*(X⊤u/𝑁𝑇 ) .

(︂
(𝑝𝑁 1−𝜅) ∨𝑁 1−𝜅/2

𝛿𝑇 𝜅−1

)︂1/𝜅

∨
√︂

log(𝑝 ∨𝑁/𝛿)
𝑁𝑇

. 𝜆.

In conjunction with the inequality in equation ((A4.7)), this gives

‖ZΔ‖2𝑁𝑇 ≤ 𝑐−1𝜆
{︁
|�̂�− 𝛼|1/

√
𝑁 + Ω(𝛽 − 𝛽)

}︁
+ ‖m− Z𝜌‖𝑁𝑇‖ZΔ‖𝑁𝑇 + 𝜆

{︁
Ω(𝛽)− Ω(𝛽)

}︁
≤ (𝑐−1 + 1)𝜆

{︁
|�̂�− 𝛼|1/

√
𝑁Ω(𝛽 − 𝛽)

}︁
+ ‖m− Z𝜌‖𝑁𝑇‖ZΔ‖𝑁𝑇

(A4.8)

for some 𝑐 > 1 and Δ = 𝜌− 𝜌, where the second line follows by the triangle
inequality. Note that the sg-LASSO penalty function can be decomposed
as a sum of two semi-norms Ω(𝑏) = Ω0(𝑏) + Ω1(𝑏),∀𝑏 ∈ R𝑝 with

Ω0(𝑏) = 𝛾|𝑏𝑆0
|1+(1−𝛾)

∑︁
𝐺∈𝒢0

|𝑏𝐺|2 and Ω1(𝑏) = 𝛾|𝑏𝑆𝑐
0
|1+(1−𝛾)

∑︁
𝐺∈𝒢𝑐

0

|𝑏𝐺|2.

Note also that Ω1(𝛽) = 0 and Ω1(𝛽) = Ω1(𝛽 − 𝛽). Then

Ω(𝛽)− Ω(𝛽) = Ω0(𝛽)− Ω0(𝛽)− Ω1(𝛽)

≤ Ω0(𝛽 − 𝛽)− Ω1(𝛽 − 𝛽).
(A4.9)

Suppose that ‖m− Z𝜌‖𝑁𝑇 ≤ 1
2‖ZΔ‖𝑁𝑇 . Then from the first inequality in

equation ((A4.8)) and equation ((A4.3)), we obtain

‖ZΔ‖2𝑁𝑇 ≤ 2𝑐−1𝜆
{︁
|�̂�− 𝛼|1/

√
𝑁 + Ω(𝛽 − 𝛽)

}︁
+ 2𝜆

{︁
Ω0(𝛽 − 𝛽)− Ω1(𝛽 − 𝛽)

}︁
.

Since the left side of this equation is ≥ 0, this shows that

(1− 𝑐−1)Ω1(𝛽 − 𝛽) ≤ (1 + 𝑐−1)Ω0(𝛽 − 𝛽) + 𝑐−1|�̂�− 𝛼|1/
√
𝑁

or equivalently

Ω1(𝛽 − 𝛽) ≤ 𝑐+ 1

𝑐− 1
Ω0(𝛽 − 𝛽) + (𝑐− 1)−1|�̂�− 𝛼|1/

√
𝑁. (A4.10)
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Put Δ𝑁 = ((�̂�− 𝛼)⊤/
√
𝑁, (𝛽 − 𝛽)⊤)⊤. Then under Assumption 3.2.2

|Δ𝑁 |1 . Ω(𝛽 − 𝛽) + |�̂�− 𝛼|1/
√
𝑁

≤ 2𝑐

𝑐− 1
Ω0(𝛽 − 𝛽) +

𝑐

𝑐− 1
|�̂�− 𝛼|1/

√
𝑁

. |�̂�− 𝛼|2 +
√
𝑠|𝛽 − 𝛽|2

≤
√︁
𝑠 ∨𝑁 |Δ𝑁 |22

.
√︁
𝑠 ∨𝑁 |Σ1/2Δ𝑁 |22

=

√︂
𝑠 ∨𝑁

{︁
‖ZΔ‖2𝑁𝑇 +Δ⊤

𝑁(Σ̂− Σ)Δ𝑁

}︁
≤
√︂
𝑠 ∨𝑁

{︁
‖ZΔ‖2𝑁𝑇 + |Δ𝑁 |21|vech(Σ̂− Σ)|∞

}︁
.

√︂
𝑠 ∨𝑁

{︁
𝜆|Δ𝑁 |1 + |Δ𝑁 |21|vech(Σ̂− Σ)|∞

}︁
.

Consider the following event 𝐸 = {|vech(Σ̂− Σ)|∞ < 1/(2𝑠 ∨𝑁)}. Under
Assumption 3.2.1 by Theorem A4.1 and Babii, Ghysels, and Striaukas
(2021a), Theorem 3.1

Pr(𝐸𝑐) ≤ Pr

(︃
max

𝑖∈[𝑁 ],𝑗∈[𝑝]

⃒⃒⃒⃒
⃒ 1√
𝑁𝑇

𝑇∑︁
𝑡=1

{𝑥𝑖,𝑡,𝑗 − E[𝑥𝑖,𝑡,𝑗]}

⃒⃒⃒⃒
⃒ ≥ 1

2𝑠 ∨𝑁

)︃

+ Pr

(︃
max

1≤𝑗≤𝑘≤𝑝

⃒⃒⃒⃒
⃒ 1

𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑥𝑖,𝑡,𝑗𝑥𝑖,𝑡,𝑘 − E[𝑥𝑖,𝑡,𝑗𝑥𝑖,𝑡,𝑘]

⃒⃒⃒⃒
⃒ ≥ 1

2𝑠 ∨𝑁

)︃
. 𝑝(𝑠 ∨𝑁)�̃�𝑇 1−�̃�(𝑁 1−�̃�/2 + 𝑝𝑁 1−�̃�) + 𝑝(𝑝 ∨𝑁)𝑒−𝑐𝑁𝑇/(𝑠∨𝑁)2.

Therefore, on the event 𝐸

|�̂�− 𝛼|1/
√
𝑁 + |𝛽 − 𝛽|1 = |Δ𝑁 |1 . (𝑠 ∨𝑁)𝜆,

and whence from equation ((A4.8)) we obtain

‖ZΔ‖2𝑁𝑇 . 𝜆
{︁
|�̂�− 𝛼|1/

√
𝑁 + Ω(𝛽 − 𝛽)

}︁
. 𝜆|Δ𝑁 |1 ≤ (𝑠 ∨𝑁)𝜆2.

Suppose now that ‖m− Z𝜌‖𝑁𝑇 >
1
2‖ZΔ‖𝑁𝑇 . Then, obviously,

‖Z(𝜌− 𝜌)‖2𝑁𝑇 ≤ 4‖m− Z𝜌‖2𝑁𝑇 .
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Therefore, on the event 𝐸, we always have

‖Z(𝜌− 𝜌)‖2𝑁𝑇 . (𝑠 ∨𝑁)𝜆2 + 4‖m− Z𝜌‖2𝑁𝑇 ,

which proves the statement of the theorem.

Proof of Theorem ??. By Fermat’s rule, the pooled sg-LASSO estimator
in equation ?? satisfies

Z⊤(Z𝜌− y)/𝑁𝑇 + 𝜆𝑧* = 0

for some 𝑧* ∈ 𝜕Ω(𝜌). Rearranging this expression and multiplying by Θ̂

𝜌− 𝜌+ Θ̂𝜆𝑧* = Θ̂Z⊤u/𝑁𝑇 + (𝐼 − Θ̂Σ̂)(𝜌− 𝜌) + Θ̂Z⊤(m− Z𝜌)/𝑁𝑇,

where we use Σ̂ = Z⊤Z/𝑁𝑇 and y = m + u. Plugging 𝜆𝑧* from the
first-order conditions and multiplying by

√
𝑁𝑇

√
𝑁𝑇 (𝜌− 𝜌+𝐵) = Θ̂Z⊤u/

√
𝑁𝑇 +

√
𝑁𝑇 (𝐼 − Θ̂Σ̂)(𝜌− 𝜌)

+ Θ̂Z⊤(m− Z𝜌)/
√
𝑁𝑇.

Then for a group of regression coefficients 𝐺 ⊂ [𝑝+ 1], we have

√
𝑁𝑇 (𝜌𝐺 − 𝜌𝐺 +𝐵𝐺) =

1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑢𝑖,𝑡Θ𝐺𝑧𝑖,𝑡

+
1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑢𝑖,𝑡(Θ̂𝐺 −Θ𝐺)𝑧𝑖,𝑡

+
√
𝑁𝑇 (𝐼 − Θ̂Σ̂)𝐺(𝜌− 𝜌)

+ Θ̂𝐺Z
⊤(m− Z𝜌)/

√
𝑁𝑇

, 𝐼𝑁,𝑇 + 𝐼𝐼𝑁,𝑇 + 𝐼𝐼𝐼𝑁,𝑇 + 𝐼𝑉𝑁,𝑇 .

We will show that by Theorem A4.1, 𝐼𝑁,𝑇
𝑑−→ 𝑁(0,Ξ𝐺) as 𝑁, 𝑇 → ∞. To

that end, by Minkowski’s inequality under Assumptions 3.2.1 (i) and 3.2.5
(ii)

max
𝑖∈[𝑁 ],𝑗∈𝐺

‖𝑢𝑖,𝑡Θ𝑗𝑧𝑖,𝑡‖𝑞 ≤ max
𝑖∈[𝑁 ],𝑗∈𝐺

𝑝+1∑︁
𝑘=1

‖𝑢𝑖,𝑡𝑧𝑖,𝑡,𝑘Θ𝑗,𝑘‖𝑞

≤ ‖Θ𝐺‖∞ max
𝑖∈[𝑁 ],𝑗∈𝐺,𝑘∈[𝑝+1]

‖𝑢𝑖,𝑡𝑧𝑖,𝑡,𝑘‖𝑞 = 𝑂(1).
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Lastly, under Assumption 3.2.5 (i), for every 𝑖, 𝑁 ∈ N,

lim
𝑇→∞

Var(𝑢𝑖,𝑡Θ𝐺𝑧𝑖,𝑡) = lim
𝑇→∞

Θ𝐺Var(𝑢𝑖,𝑡𝑧𝑖,𝑡)Θ
⊤
𝐺

. lim
𝑇→∞

Θ𝐺ΣΘ𝐺 = (Θ⊤
𝐺)𝐺 <∞

since groups have a fixed size. In conjunction with Assumption 3.2.1 (ii),

this verifies conditions of Theorem A4.1 and shows that 𝐼𝑁,𝑇
𝑑−→ 𝑁(0,Ξ𝐺).

Next,

|𝐼𝐼𝑁,𝑇 | ≤ ‖Θ̂𝐺 −Θ𝐺‖∞

⃒⃒⃒⃒
⃒ 1√
𝑁𝑇

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑢𝑖,𝑡𝑧𝑖,𝑡

⃒⃒⃒⃒
⃒
∞

= 𝑂𝑃

(︃
𝑆𝑝1/𝜅

(𝑁𝑇 )1−1/𝜅
∨ 𝑆
√︂

log 𝑝

𝑁𝑇

)︃

= 𝑂𝑃

(︂
𝑝1/𝜅

(𝑁𝑇 )1/2−1/𝜅
∨
√︀

log 𝑝

)︂
= 𝑜𝑃 (1),

where we use Proposition A4.3.1 and Theorem A4.1. Similarly by Proposition A4.3.1
and Corollary 4.3.1

|𝐼𝐼𝐼𝑁,𝑇 | ≤
√
𝑁𝑇 max

𝑗∈𝐺
|(𝐼 − Θ̂Σ̂)𝑗|∞|𝜌− 𝜌|1

= 𝑂𝑃

(︂
𝑝1/𝜅

(𝑁𝑇 )1/2−1/𝜅
∨
√︀

log 𝑝

)︂
= 𝑂𝑃

(︃
𝑠𝑝1/𝜅

(𝑁𝑇 )1−1/𝜅
∨ 𝑠
√︂

log 𝑝

𝑁𝑇

)︃
= 𝑜𝑃 (1).

Lastly, by the Cauchy-Schwartz inequality

|𝐼𝑉𝑁,𝑇 |∞ ≤ max
𝑗∈𝐺

|ZΘ̂⊤
𝑗 |2‖m− Z𝜌‖𝑁𝑇 = max

𝑗∈𝐺

√︁
Θ̂⊤

𝑗 Σ̂Θ̂𝑗𝑜𝑃 (1)

≤ ‖Θ̂𝐺‖∞
√︁

|vech(Σ̂)|∞𝑜𝑃 (1) = 𝑜𝑃 (1),

where the second line follows under Assumption 3.2.5 (v), and the last by
Proposition A4.3.1 and Theorem A4.1 under maintained assumptions.

Proposition A4.3.1. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4,
and 3.2.5 are satisfied for each nodewise regression 𝑗 ∈ 𝐺. Then if
𝑆𝜅𝑝(𝑁𝑇 )1−𝜅 → 0 and 𝑆2 log 𝑝/𝑁𝑇 → 0

‖Θ̂𝐺 −Θ𝐺‖∞ = 𝑂𝑃

(︃
𝑆𝑝1/𝜅

(𝑁𝑇 )1−1/𝜅
∨ 𝑆
√︂

log 𝑝

𝑁𝑇

)︃
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and

max
𝑗∈𝐺

|(𝐼 − Θ̂Σ̂)𝑗|∞ = 𝑂𝑃

(︃
𝑝1/𝜅

(𝑁𝑇 )1−1/𝜅
∨
√︂

log 𝑝

𝑁𝑇

)︃
.

Proof. The proof is similar to the proof of Babii, Ghysels, and Striaukas
(2021a), Propositions A.1.2 and A.1.3.
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A4.4 Additional empirical results –
nowcasting application

Table A4.1: Prediction results – The table reports average over firms MSEs of out-of-sample
predictions. The nowcasting horizon is the next quarter, i.e. we predict the next quarter P/E
ratio. Block in Panel A1-D1 correspond to ML-only forecast errors while in Panel A2-D2 to
ML models augmented with median consensus nowcasts. Each Panel A1-D1 and A2-D2 block
represents different ways of calculating the tuning parameter 𝜆. Bold entries are the best results
in a block.

RW MSE An.-mean MSE An.-median MIDAS ML
2.831 2.762 2.614 𝛾 = 0 0.2 0.4 0.6 0.8 1

sg-LASSO-MIDAS

Panel A1. Cross-validation
Individual 1.816 1.813 1.805 1.866 1.810 1.812

Pooled 1.756 1.706 1.724 1.741 1.784 1.937
Fixed Effects 1.762 1.762 1.764 1.766 1.761 1.961

Panel B1. BIC
Individual 1.940 1.906 1.957 1.982 1.950 1.935

Pooled 1.808 1.796 1.794 1.798 1.811 1.889
Fixed Effects 1.793 1.794 1.789 1.799 1.790 1.794

Panel C1. AIC
Individual 1.971 1.953 1.971 1.937 1.981 1.934

Pooled 1.785 1.785 1.793 1.794 1.794 1.792
Fixed Effects 1.715 1.706 1.796 1.762 1.714 1.708

Panel D1. AICc
Individual 2.047 2.154 2.278 2.452 2.659 2.862

Pooled 1.785 1.785 1.793 1.794 1.794 1.792
Fixed Effects 1.715 1.706 1.796 1.762 1.714 1.708

sg-LASSO-MIDAS augmented with An.-median

Panel A2. Cross-validation
Individual 1.743 1.753 1.745 1.732 1.734 1.889

Pooled 1.746 1.732 1.738 1.741 1.761 1.878
Fixed Effects 1.723 1.698 1.702 1.725 1.764 1.867

Panel B2. BIC
Individual 1.751 1.752 1.761 1.772 1.780 1.781

Pooled 1.756 1.747 1.743 1.742 1.771 1.784
Fixed Effects 1.749 1.712 1.721 1.735 1.761 1.835

Panel C2. AIC
Individual 1.762 1.761 1.769 1.778 1.781 1.801

Pooled 1.765 1.765 1.763 1.764 1.764 1.771
Fixed Effects 1.755 1.753 1.760 1.757 1.757 1.789

Panel D2. AICc
Individual 1.762 1.761 1.769 1.778 1.781 1.801

Pooled 1.765 1.765 1.763 1.764 1.764 1.771
Fixed Effects 1.755 1.753 1.760 1.757 1.757 1.789
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Table A4.2: Prediction results – The table reports average over firms MSEs of out-of-
sample predictions. The nowcasting horizon is the current month, i.e. we predict the P/E ratio
using information up to the end of current fiscal quarter. Each Panel A-D block represents
different ways of calculating the tuning parameter 𝜆. Bold entries are the best results in a block.
We report the best elastic net MSEs over LASSO/ridge weight [0, 0.2, 0.4, 0.6, 0.8, 1]: elnet-U
method is where high-frequency lags are unrestricted, elnet method is where we use only the first
high-frequency lag for each covariate. We also report the best sg-LASSO specification for each
tuning parameter method and each model specification, see Table 4.3.

RW MSE An.-mean MSE An.-median sg-LASSO elnet-U elnet
2.331 2.339 2.088

Panel A. Cross-validation
Individual 1.545 1.606 1.606

Pooled 1.455 1.489 1.499
Fixed Effects 1.480 1.490 1.509

Panel B. BIC
Individual 1.543 1.597 1.611

Pooled 1.482 1.486 1.485
Fixed Effects 1.472 1.489 1.489

Panel C. AIC
Individual 1.560 1.640 1.652

Pooled 1.487 1.491 1.494
Fixed Effects 1.479 1.487 1.495

Panel D. AICc
Individual 2.025 1.699 1.866

Pooled 1.484 1.491 1.493
Fixed Effects 1.479 1.487 1.495

Table A4.3: Prediction results – The table reports average over firms MSEs of out-of-sample
predictions for the same models as in Table 4.3 - discarding the first 8 quarters to compute
for forecast combination weights - with additional result of prediction errors using forecast
combination approach of Ball and Ghysels (2018), denoted as F.Comb. Hence the out-of-sample
quarters start at 2009 Q1. The nowcasting horizon is the current month, i.e. we predict the P/E
ratio using information up to the end of current fiscal quarter. Each Panel A-D block represents
different ways of calculating the tuning parameter 𝜆. Bold entries are the best results in a block.

RW MSE An.-mean MSE An.-median F.Comb sg-LASSO
2.794 2.836 2.539 2.405 𝛾 = 0 0.2 0.4 0.6 0.8 1

Panel A. Cross-validation
Individual 1.808 1.817 1.836 1.864 1.889 1.884

Pooled 1.692 1.689 1.688 1.688 1.688 1.689
Fixed Effects 1.743 1.726 1.725 1.743 1.712 1.726

Panel B. BIC
Individual 1.972 1.945 1.914 1.833 1.853 1.912

Pooled 1.723 1.741 1.733 1.738 1.736 1.724
Fixed Effects 1.760 1.734 1.707 1.756 1.717 1.710

Panel C. AIC
Individual 1.929 1.889 1.853 1.903 1.989 2.003

Pooled 1.737 1.735 1.729 1.728 1.732 1.734
Fixed Effects 1.747 1.724 1.724 1.747 1.712 1.726

Panel D. AICc
Individual 2.401 2.513 2.679 2.918 3.404 3.732

Pooled 1.737 1.725 1.729 1.728 1.732 1.734
Fixed Effects 1.732 1.725 1.724 1.747 1.712 1.726
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Table A4.4: Heaviness of tails – The table reports the tail index of in-sample residuals.
Tail index is computed using the Hill estimator. The results are reported for the models as in
Table 4.4.

Full sample sg-LASSO & elnet sg-LASSO none
sg-LASSO

Pooled 4.827 7.004 5.370 5.001
Fixed Effects 4.261 7.777 5.648 5.256

Elastic net
Pooled 5.805 6.868 5.536 4.958

Fixed Effects 7.990 5.956 5.324 5.026

Tail index for regressands
3.954 5.236 4.702 4.630

Number of firms
Pooled 210 63 12 135

Fixed Effects 210 66 8 134
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A4.5 Additional empirical results –
Granger causality application

Table A4.5: Significance testing results – We report p-values for the AR(1) and for the
sg-LASSO-MIDAS models, displaying series that are significant at 5% or 10% significance level.
The results are reported for a range of bandwidth parameters and two kernel functions. We pool
the response based on large vs. small disagreement, which we measure as the average (over time
series) of the difference between 95% and 5% percentile of the empirical forecast distribution of
the analysts.

Variable ∖𝑀𝑇 10 20 30 10 20 30
Quadratic Spectral Parzen

Large disagreement
Significant variables at 5% or less

AR(1) 0.002 0.001 0.000 0.004 0.001 0.001
Term spread 0.029 0.023 0.016 0.085 0.036 0.026

TED rate 0.002 0.001 0.001 0.016 0.002 0.001
CPI inflation 0.016 0.009 0.007 0.040 0.018 0.011

Significant variables at 10% level
Real GDP 0.098 0.005 0.000 0.098 0.082 0.021

Small disagreement
Significant variables at 5% or less

AR(1) 0.000 0.000 0.000 0.000 0.000 0.000
Firm-level returns 0.008 0.004 0.003 0.015 0.008 0.006

Significant variables at 10% level
Unemployment rate 0.060 0.043 0.045 0.060 0.056 0.048
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A4.6 Data description

A4.6.1 Firm-level data

The full list of firm-level data is provided in Table A4.6. We also add two
daily firm-specific stock market predictor variables: stock returns and a
realized variance measure, which is defined as the rolling sample variance
over the previous 60 days (i.e. 60-day historical volatility).

A4.6.1.1 Firm sample selection

We select a sample of firms based on data availability. First, we remove all
firms from I/B/E/S which have missing values in earnings time series. Next,
we retain firms that we are able to match with CRSP dataset. Finally, we
keep firms that we can match with the RavenPack dataset.

A4.6.1.2 Firm-specific text data

We create a link table of RavenPack ID and PERMNO identifiers which
enables us to merge I/B/E/S and CRSP data with firm-specific textual
analysis generated data from RavenPack. The latter is a rich dataset
that contains intra-daily news information about firms. There are several
editions of the dataset; in our analysis, we use the Dow Jones (DJ) and
Press Release (PR) editions. The former contains relevant information
from Dow Jones Newswires, regional editions of the Wall Street Journal,
Barron’s and MarketWatch. The PR edition contains news data, obtained
from various press releases and regulatory disclosures, on a daily basis from
a variety of newswires and press release distribution networks, including
exclusive content from PRNewswire, Canadian News Wire, Regulatory
News Service, and others. The DJ edition sample starts at 1𝑠𝑡 of January,
2000, and PR edition data starts at 17𝑡ℎ of January, 2004.

We construct our news-based firm-level covariates by filtering only highly
relevant news stories. More precisely, for each firm and each day, we filter
out news that has the Relevance Score (REL) larger or equal to 75, as is
suggested by the RavenPack News Analytics guide and used by practitioners,
see for example Kolanovic and Krishnamachari (2017). REL is a score
between 0 and 100 which indicates how strongly a news story is linked
with a particular firm. A score of zero means that the entity is vaguely
mentioned in the news story, while 100 means the opposite. A score of 75
is regarded as a significantly relevant news story. After applying the REL
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filter, we apply a novelty of the news filter by using the Event Novelty Score
(ENS); we keep data entries that have a score of 100. Like REL, ENS is a
score between 0 and 100. It indicates the novelty of a news story within
a 24-hour time window. A score of 100 means that a news story was not
already covered by earlier announced news, while subsequently published
news story score on a related event is discounted, and therefore its scores
are less than 100. Therefore, with this filter, we consider only novel news
stories. We focus on five sentiment indices that are available in both DJ
and PR editions. They are:

Event Sentiment Score (ESS), for a given firm, represents the strength
of the news measured using surveys of financial expert ratings for firm-
specific events. The score value ranges between 0 and 100 - values above
(below) 50 classify the news as being positive (negative), 50 being neutral.

Aggregate Event Sentiment (AES) represents the ratio of positive
events reported on a firm compared to the total count of events measured
over a rolling 91-day window in a particular news edition (DJ or PR). An
event with ESS > 50 is counted as a positive entry while ESS < 50 as
negative. Neutral news (ESS = 50) and news that does not receive an ESS
score does not enter into the AES computation. As ESS, the score values
are between 0 and 100.

Aggregate Event Volume (AEV) represents the count of events for a
firm over the last 91 days within a certain edition. As in AES case, news
that receives a non-neutral ESS score is counted and therefore accumulates
positive and negative news.

Composite Sentiment Score (CSS) represents the news sentiment of
a given news story by combining various sentiment analysis techniques.
The direction of the score is determined by looking at emotionally charged
words and phrases and by matching stories typically rated by experts as
having short-term positive or negative share price impact. The strength of
the scores is determined by intra-day price reactions modeled empirically
using tick data from approximately 100 large-cap stocks. As for ESS and
AES, the score takes values between 0 and 100, 50 being the neutral.

News Impact Projections (NIP) represents the degree of impact a news
flash has on the market over the following two-hour period. The algorithm
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produces scores to accurately predict a relative volatility - defined as scaled
volatility by the average of volatilities of large-cap firms used in the test set
- of each stock price measured within two hours following the news. Tick
data is used to train the algorithm and produce scores, which take values
between 0 and 100, 50 representing zero impact news.

For each firm and each day with firm-specific news, we compute the
average value of the specific sentiment score. In this way, we aggregate
across editions and groups, where the later is defined as a collection of
related news. We then map the indices that take values between 0 and 100
onto [−1, 1]. Specifically, let 𝑥𝑖 ∈ {ESS,AES,CSS,NIP} be the average
score value for a particular day and firm. We map 𝑥𝑖 ↦→ �̄�𝑖 ∈ [−1, 1] by
computing �̄�𝑖 = (𝑥𝑖 − 50)/50.
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Table A4.6: Firm-level data description table – The id column gives mnemonics according
to data source, which is given in the second column Source. The column frequency states the
sampling frequency of the variable. The column T-code denotes the data transformation applied
to a time-series, which are: (1) not transformed, (2) 100[(𝑥𝑡/𝑥𝑡−1)

4 − 1], (3) Δ log (𝑥𝑡), (4) Δ
2

log (𝑥𝑡). The block of firm-level series contains three panels: A1 - describes earnings data, B1
- daily firm-level stock market data and C1 - daily firm-level sentiment data series. The block
labeled other series also has three panels: A2 - describes real-time monthly macro series, B2 -
describes daily financial markets data and C2 - monthly news attention series. In the models we
include 365 daily lags, 12 monthly lags and 4 quarterly lags respectively. Series with (N) are not
being used in nowcasting application.

id Frequency Source T-code

Firm-level series
Panel A1.

- Earnings quarterly CRSP & I/B/E/S 1
- Earnings consensus forecasts quarterly CRSP & I/B/E/S 1
- Other earnings/earnings forecast implied series quarterly CRSP & I/B/E/S 1

Panel B1.
1 Stock returns daily CRSP 1
2 Realized variance measure daily CRSP/computations 1

Panel C1.
3 Event Sentiment Score (ESS) daily RavenPack 1
4 Aggregate Event Sentiment (AES) daily RavenPack 1
5 Aggregate Event Volume (AEV) daily RavenPack 1
6 Composite Sentiment Score (CSS) daily RavenPack 1
7 News Impact Projections (NIP) daily RavenPack 1

Other series
Panel A2.

8 Industrial Production Index monthly ALFRED 3
9 CPI inflation monthly ALFRED 4
10 Unemployment rate (N) monthly ALFRED 1
11 Real GDP (N) quarterly ALFRED 2

Panel B2.
12 Crude Oil Prices daily FRED 4
13 S&P 500 daily CRSP 3
14 VIX Volatility Index daily FRED 1
15 Moodys Aaa less 10-Year Treasury daily FRED 1
16 Moodys Baa less 10-Year Treasury daily FRED 1
17 Moodys Baa less Aaa (corporate yield spread) daily FRED 1
18 10-Year Treasury minus 3-Month Treasury (term spread) daily FRED 1
19 3-Month Treasury minus EFFR daily FRED 1
20 TED rate daily FRED 1

Panel C2.
21 Earnings monthly Bybee et al. (2019) 1
22 Earnings forecasts monthly Bybee et al. (2019) 1
23 Earnings losses monthly Bybee et al. (2019) 1
24 Recession monthly Bybee et al. (2019) 1
25 Revenue growth monthly Bybee et al. (2019) 1
26 Revised estimate monthly Bybee et al. (2019) 1
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