
One Bit at a Time
The Use of Quantized Compressive Sensing in

RADAR Signal Processing

Thomas Feuillen

Thesis submitted in partial fulfillment
of the requirements for the degree of

Ph.D. in Engineering Sciences

Dissertation committee:

Prof. Laurent Jacques (UCLouvain, advisor)
Prof. Luc Vandendorpe (UCLouvain, advisor)
Prof. Christophe Craeye (UCLouvain)
Prof. Mike E. Davies (Edinburgh University, Scotland)
Dr. Matthias Weiß (Fraunhofer FHR, Germany)
Prof. Laurent Francis (UCLouvain)

Version of October 2021.





Contents

Contents i

List of Figures v

Abbreviations & Notations 7

I Introduction 11

1 Introduction 13
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . 20

2 FMCW Radar System 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Basic Pulse Radar . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 FMCW Radar Signal Model . . . . . . . . . . . . . . . . . . . 29

3 Compressive Sensing 37
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Quantized Compressive Sensing . . . . . . . . . . . . . . . . . 49

II Additive Dithering 57

4 Range estimation using an FMCW radar 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

i



CONTENTS

4.2 Radar System Model . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Quantization: Model & Ambiguity . . . . . . . . . . . . . . . 63
4.4 Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . 66
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6 Measurements in Laboratory . . . . . . . . . . . . . . . . . . 71
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Range and Angle of Arrival Estimation 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Radar System Model . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Quantizing Radar observations . . . . . . . . . . . . . . . . . 80
5.4 2D Target Localization in Quantized Radar . . . . . . . . . . 81
5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Experimental Validation . . . . . . . . . . . . . . . . . . . . . 86
5.7 Channel Dropping Model . . . . . . . . . . . . . . . . . . . . 88
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.9 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

III Phase-Only Acquisition and 1-bit Quantization
with Multiplicative Dithering 95

6 Phase-Only Acquisition as an Extension of 1-bit Quantiza-
tion 97
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Notations and conventions . . . . . . . . . . . . . . . . . . . . 99
6.3 Phase-Only sensing model . . . . . . . . . . . . . . . . . . . . 99
6.4 Bound on the PBP reconstruction error . . . . . . . . . . . . 100
6.5 The (`1, `2)-RIP of Complex Gaussian Matrices . . . . . . . . 103
6.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Multiplicative Dithering for 1-bit CS Radar 111
7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Multiplicative Dithering . . . . . . . . . . . . . . . . . . . . . 115
7.3 Limitations of Phase-Only acquisition . . . . . . . . . . . . . 118
7.4 Reconstruction Guarantee . . . . . . . . . . . . . . . . . . . . 121

ii



CONTENTS

7.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Radar Measurements . . . . . . . . . . . . . . . . . . . . . . . 128
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IV Quantizing the Reconstruction 137

8 Binarizing the Reconstruction in 1-bit CS 139
8.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Signal and Quantized Reconstruction Model . . . . . . . . . . 142
8.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.4 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . 144
8.5 1-bit Factorizable Back-Projection . . . . . . . . . . . . . . . 148
8.6 Simulation and Discussion . . . . . . . . . . . . . . . . . . . . 156
8.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

V Conclusions & Perspectives 175

9 Conclusions and Perspectives 177

Bibliography 185

iii





List of Figures

1.1 Representation of the different processes involved in radar
detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 (a) Picture of a scene that was measured with the KMD2
radar by [RFB]. (b) The corresponding Range-Doppler ob-
tained by a 2D-FFT on the received signal. . . . . . . . . . . 15

1.3 Link between the chapters of the thesis; Chapters linked
through the Theory in red (as a direct applications or ex-
tensions); Chapters linked by practical considerations in blue. 17

2.1 A single target scene at a range R from the pulse radar. . . . 27
2.2 Graphical representation of the received signal r(t) and its

associated matched filter with the transmitted signal s(t). . . 28
2.3 Representation of the frequency content of the transmitted

(blue) and received (red) chirps with a delay τ . . . . . . . . 30
2.4 Spectral representation of r(t) and r(t) exp (− i(f0 + B

2 )t). . . 31
2.5 Representation of a IQ coherent demodulation for an FMCW

radar with one transmit and one receive antenna . . . . . . . 31
2.6 Representation of the Fourier transform of a baseband re-

ceived signal with different Bandwidths (30MHz and 12MHz)
for a target located at a 20m range . . . . . . . . . . . . . . . 33

2.7 Schematic representation of leakage between the transmit
and received circuit of the radar. Direct coupling between
the antennas is represented in green and within the circuit
is represented in yellow. . . . . . . . . . . . . . . . . . . . . . 34

v



LIST OF FIGURES

3.1 (a) Picture of a not so well-behaved dog. (b) Wavelet trans-
form of the grayscale version of Fig. 3.1a using Daubechies 1
wavelets with 2 levels. . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Sorted amplitudes of the wavelet coefficient of Fig. 3.1a. . . . 42

3.3 Inverse wavelet transform (Daubechie 1 at level 4) of Fig. 3.1a
where only 10%, 5%, 1%, 0.1% of the coefficient are kept. . . . 43

3.4 Back-projection of Partial Fourier measurement 1
m |Φ

HΦx|;
the original 1-sparse x ∈ C128 is located in 75 and the signals
in blue and green are the reconstruction for m = N

2 = 64
and m = N

4 = 32 respectively; the dotted line represent the
coherence µ obtained for each sub-sampling. . . . . . . . . . . 45

3.5 Representation of the mid-rise quantizer of resolution ε with
b bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 (a) Graphical representation of Qε(λ). (b) Extension to the
complex domain. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 1-bit quantization applied to the Fig.3.1a in grayscale; in
(a) the grayscale image; in (b) with the deterministic 1-bit
quantization; in (c) with an additive dither added before the
quantization). . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Graphical representation of the effect of the dither on the
1-bit quantization. . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 test (a) Graphical representation of r0 and r1 and the do-
main on which r1 lies. (b) Extension to 3 targets, where the
domain to consider for the verification of (AC) is enlarged. . 65

vi



LIST OF FIGURES

4.2 [best viewed in color] (a) and (b): TPR vs log2 B for PBP; (c)
and (d): Comparison between PBP (disks) and QIHT (tri-
angles) in function of log2 B. In all figures, solid, dashed and
dotted curves stand for dithered, undithered and unquan-
tized schemes, respectively. The first (second) gray vertical
line represents a bit-rate of 28 (213) bits corresponding to
m = 256 (m = 8192) for 1-bit and m = 16 (m = 256) for no
quantization. In (a) and (b), the resolution is represented by
colors, blue for 1-bit, green for 2-bits and gray in absence
of quantization. In (c) and (d) blue stands for 1-bit PBP,
red for 1-bit QIHT and gray for no quantization. Figures
(a,c) and (b,d) are for s = 2 and s = 10, respectively. . . . . . 69

4.3 [best viewed in color] TPR vs number of targets for 1-bit PBP
and 1-bit QIHT with B = 29 bits, PBP is represented by disks
and QIHT by triangles, blue stands for 1-bit PBP, red for
1-bit QIHT, the solid lines are with additive dithering, the
dashed are without dithering. . . . . . . . . . . . . . . . . . 71

4.4 (a) Experimental setup: radar in front of the simulator. (b) Block
representation of the 2 targets simulator by AMG. . . . . . . 72

4.5 [best viewed in color] TPR vs bit-rate using real FMCW
radar measurements for s = 2. In all figures, PBP is rep-
resented by disks and QIHT by triangles, blue stands for
1-bit PBP, red for 1-bit QIHT, and gray for no quantiza-
tion, the solid lines are with additive dithering, the dashed
are without dithering. . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Illustration of the two antennas radar system with an array
of receiving antennas. . . . . . . . . . . . . . . . . . . . . . . 78

5.2 (a) Example of a possible 2D target localization ambiguity.
(b) and (c), positions error in meters for Monte Carlo simu-
lations with one target and M = 512, for 1-bit non-dithered
and 1-bit dithered quantization scheme, respectively. . . . . . 84

5.3 Positions error in meters for Monte Carlo simulations with
two targets; (a) m = 512, 1-bit non-dithered quantization;
(b) m = 512, 1-bit dithered quantization; (c) m = 16, 32-bit
non-dithered; (d) m = 256, 32-bit full measurements. . . . . . 85

vii



LIST OF FIGURES

5.4 Positions error in meters for Monte Carlo simulations with
two targets, m = 512 and 1-bit quantization; in (a) and (b),
strongest and weakest target for the non-dithered scheme,
respectively; in (c) and (d), strongest and weakest target for
the dithered scheme, respectively. . . . . . . . . . . . . . . . . 86

5.5 Experiment set-up with a FMCW radar on the left and two
corner reflectors on the right. . . . . . . . . . . . . . . . . . . 86

5.6 Reconstruction using real measurements, (a) mean positions
error for different levels of dithering; (b) reconstructions achieved
with weighted dithering. . . . . . . . . . . . . . . . . . . . . . 87

5.7 Example of the selection operated by HSym
s for a vector x̂1 +

x̂2 estimated from the measurements of a 3-sparse vector;
each pair of ambiguous peak are in different colours and the
selected peaks are highlighted in yellow. . . . . . . . . . . . . 90

5.8 Positions error in meters for Monte Carlo simulations with
one target; (a) 1-bit dithered with m

N = 20% ; (b) 1-bit
dithered with m

N = 200%; (c) 1-bit dithered with m
N = 200%

using PBP in [Feu+18a]; (d) 1-bit non-dithered with m
N =

200%, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 90
5.9 Positions error in meters for Monte Carlo simulations with

two targets; (a) 1-bit non-dithered with m
N = 200% ; (b) 1-bit

dithered with m
N = 200%; (c) 32 bit non-dithered with m

N =
6.25%; (d) 32 bit non-dithered with m

N = 100%, respectively. . 91

6.1 (Best viewed in color) Reconstruction error of (PBP) for dif-
ferent measurement models. (dashed lines) compressive sens-
ing; (solid lines) phase-only measurements. The colors repre-
sent the sparsity, namely s = 2 in red, s = 4 in blue, s = 10
in green, s = 20 in yellow, and s = 50 in black. The dotted
lines represent the rates of m− 1

2 in gray and m− 1
4 in black. 108

6.2 Reconstruction error of (PBP) for noiseless (dashed lines) and
noisy measurements (solid lines) for different τ with s = 10
and m = 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Example of FMCW radar architecture with additive dither-
ing and 1-bit quantization . . . . . . . . . . . . . . . . . . . . 113

viii



LIST OF FIGURES

7.2 Example of FMCW radar architecture with non zero IF de-
modulation and 1-bit quantization . . . . . . . . . . . . . . . 116

7.3 Example of FMCW radar architecture with multiplicative
dithering and 1-bit quantization . . . . . . . . . . . . . . . . . 116

7.4 Example of an ambiguous scenario where the PO measure-
ments from the blue and red signals are identical . . . . . . 120

7.5 Example, in the frequency domain, of an ambiguous scenario
where the PO measurements from the x and h∗x signals are
identical, the filter h is represented in green . . . . . . . . . 120

7.6 Comparison of different reconstructions using PBP between
different quantization schemes for s = 10, 1-bit with additive
dither in red; 1-bit without dither in yellow; 1-bit with mul-
tiplicative dither in blue; Phase-Only acquisition in green;
without quantization in gray; the dotted curve in gray rep-
resent O(m− 1

2 ). . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.7 Comparison of different reconstructions using QIHT between

different quantization schemes for s = 10, 1-bit with additive
dither in red; 1-bit without dither in yellow; 1-bit with mul-
tiplicative dither in blue; Phase-Only acquisition in green;
without quantization in gray; the dotted curve in gray rep-
resent O(m− 1

2 ), the black dotted curve O(m−1). . . . . . . . 126
7.8 Comparison between the random dithering in blue and the

deterministic and structured dither in red for s = 10; for
the PBP algorithm in solid; and QIHT in dashed; the dot-
ted curve in gray represent O(m− 1

2 ), the black dotted curve
O(m−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.9 Comparison for s = 10 of different 1-bit scheme; using, in
solid, PBP, QIHT in dashed, 1-bit with additive dither in
red with perfect dynamic estimation; 1-bit additive dithering
with imperfect dynamic estimation in green, and the 1-bit
with multiplicative dither in blue. . . . . . . . . . . . . . . . 127

7.10 Comparison of PBP in terms of TPR for s = 4 solid, s = 20
in dashed; 1-bit with additive dither in red; 1-bit without
dither in yellow; 1-bit with multiplicative structured dither
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



LIST OF FIGURES

7.11 Comparison of QIHT in terms of TPR for s = 4 solid, s = 20
in dashed, 1-bit with additive dither in red; 1-bit without
dither in yellow; 1-bit with multiplicative structured dither
in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.12 Radar measurements set-up: (a) the KMD2 radar in front of
the target simulator; (b) its functional representation. . . . . 129

7.13 `2 reconstruction for s = 10 with PBP using actual radar
measurements, 1-bit with additive dither in red; 1-bit with-
out dither in yellow; 1-bit with multiplicative structured
dither in blue ; without quantization in gray; the dotted
curve in gray represent O(m− 1

2 ). . . . . . . . . . . . . . . . 130

7.14 Comparison of different TPR using actual radar measure-
ments, for s = 4 solid, s = 20 in dashed, 1-bit with additive
dither in red; 1-bit without dither in yellow; 1-bit with mul-
tiplicative structured dither in blue. . . . . . . . . . . . . . 131

8.1 Representation of the multiplication of a complex measure-
ment zi, represented in complex binary form, by Q(Φ∗ji) = − i.141

8.2 ‖x − x̂
‖x̂‖2
‖2 in dB, for different numbers of measurements

(log2(mN )), the dotted curves are the classic PBP; the dashed,
PBPQ and the solid, QPBPQ. The colours represent the
sparsity, s = 2 for red and s = 10 for blue. The dashed
grey line represents the decrease rate of O(m− 1

2 ). . . . . . . . 157

8.3 ‖x − x̂
‖x̂‖2
‖2 in dB, for different number of measurements

(log2(mN )), for different schemes with a sparsity of s = 4,
namely QPBPQ with dithering in red for Fourier matrices
and the QPBPQ with dithering for complex Gaussian matri-
ces in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.4 ‖x − x̂
‖x̂‖2
‖2 in dB for the BP performed as a factorized

model, for different values of repetition ρ (log2(ρ)), for dif-
ferent schemes with a sparsity of s = 4 and µ = 1, namely
QPBPQ in red; PBP in yellow; QPBP in blue; PBPQ in
green; the dashed gray line represents O(ρ− 1

2 ). . . . . . . . 158

x



LIST OF FIGURES

8.5 ‖x− x̂
‖x̂‖2
‖2 in dB for the BP performed as a factorized model,

for different values of sub-sampling µ (log2(µ)), for different
schemes with a sparsity of s = 4 and ρ = 32, namely QPBPQ
in red; PBP in yellow; QPBP in blue; PBPQ in green; the
dashed gray line represents O(µ− 1

2 ). . . . . . . . . . . . . . . 159
8.6 Comparison using ‖x − x̂

‖x̂‖2
‖2 in dB between the Quan-

tized BP performed as a matrix multiplication with additive
dithering (solid) and without (dashed), for different number
of measurements (log2(mN )), with a sparsity of s = 4, namely
QPBPQ in red; QPBP in yellow. . . . . . . . . . . . . . . . 160

8.7 Comparison using ‖x− x̂
‖x̂‖2
‖2 in dB between the Quantized

BP performed as a factorized model with additive dither-
ing (solid) and without (dashed), for different number of
measurements (log2(mN )), with a sparsity of s = 4, namely
QPBPQ in blue; QPBP in green. . . . . . . . . . . . . . . . 160

8.8 Comparison using ‖x − x̂
‖x̂‖2
‖2 in dB between the BP per-

formed as a matrix multiplication (solid) and factorized model
(dashed), for different computational complexity #op (log2(#op)),
for different schemes with a sparsity of s = 4, namely QPBPQ
in red; PBP in yellow; QPBP in blue. . . . . . . . . . . . . 161

xi





Abstract

This thesis studies the harsh quantization of radar signals. More
specifically, what can be achieved in terms of localization of tar-
gets using FMCW radars from 1-bit dithered measurements and

processing. The first part of this thesis leverages the framework of Quan-
tized Compressive Sensing to achieve high quality localizations using coarse
1-bit measurements from an FMCW radar. The gain provided by the added
dither is highlighted through simulations and actual radar measurements
and are compared with the developed reconstruction bounds. Range and
angle estimations are achieved using the PBP and QIHT algorithms. The
second part highlights some difficulties inherent to adding a random dither
to radar signals and in response, studies an alternative way of dithering the
measurements by altering instead their phases. This method, compared to
the additive case, is shown to be a viable alternative in the search for an
implementation of 1-bit quantization of radar signal that has theoretical
guarantees and is cost-effective to implement. This new way of dithering
radar signals is compared using Monte-Carlo simulations against its additive
counter-part and using actual radar data. This alternative way of dithering
is linked to the Phase-Only acquisition, that only measures the phase of
complex signals, and its reconstruction performances are studied through
the lens of the guarantees provided to PBP using the (`1, `2)-Restricted
Isometry Property. This property is proved for complex Gaussian random
matrices. The thesis does not finish by the study of yet another way of
acquiring a quantized version of a signal but by studying the quantiza-
tion of the processing itself. Indeed, using low resolution processing could
enable more power-efficient implementations. To that end, we study the
reconstruction guarantees of the Projected Back Projection algorithm in

1
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the setting where the back-projection used is a 1-bit quantized version with
additive dithering of the one used in high resolution processing. We show
a uniform bound on the `2 reconstruction that behaves as O(m− 1

2 ). This
study is then extended to the case of back-projection operators that have
a factorized representation. These factorized representations, among which
the FFT is the most well-known, can often be computed efficiently thanks
to their sparse and factorized structures.

This thesis shows that in cases where either the power or the amount of
data that one can use for the estimation is limited, lowering the individual
resolution of the measurements and possibly of the processing, can allow for
better results than sub-sampling those high-resolution measurements to fit
within the limitations. This was shown throughout the thesis using both
theory and simulations often accompanied by real radar measurements.
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ADC Analog to Digital Converter

BP Back-Projection

BPDN Basis-Pursuit-DeNoising

CS Compressive Sensing

CW Continuous Wave

FFT Fast Fourier Transform

FMCW Frequency Modulated Continuous Wave

FPGA Field Programmable Gate Arrays

IHT Iterative Hard-Thresholding

LIDAR Light Detection And Ranging
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PO Phase-Only

PRF Pulse Repetition Frequency
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QIHT Quantized Iterative Hard-Thresholding

QPBP(Q) Quantized Projected-Back-Projection of (possibly Quantized)
measurements

RCS Radar Cross Section

RF Radio Frequency

RIP Restricted Isometry Property

Notations

(·)∗ denotes the complex conjugate and the adjoint operator for
scalar and matrices, respectively.

[D] [D] := {1, · · · , D} for D ∈ N

∠(·) ∠(reiα) = α

BN The `2 (or Frobenius) unit ball in RN (resp. RD×D′) is
denoted by BN (resp. BD×D

′

F ' BDD′).

Zδ Zδ := δZ + δ/2

B:,j (or Bj,:) are the jth column (resp. row) of B.

BS , uS For any B ∈ CD×D′ (or u ∈ CD′), BS (resp. uS) is the
cropped matrix (resp. vector) obtained by restricting the
columns (resp. components) of B (resp. u) to those in-
dexed in S ⊂ [D′]

x,Φ Vectors and matrices are denoted with bold symbols

UC
δ its complex counterpart is UC

δ := UR
δ + iUR

δ

UR
δ The uniform distribution over [− δ2 , δ2 ] is denoted UR

δ

ΓT (t) the window function of length T

i The imaginary unit is i =
√
−1

b·c is the flooring operator
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‖B‖F the Frobenius norm and scalar product of matrices are re-
lated by ‖B‖F = (〈B,B〉F )1/2 = (trB∗B)1/2

‖u‖0 `0-norm of u defined as ‖u‖0 =| supp(u) |

‖u‖p For p ≥ 1, the `p-norm of a complex vector u reads ‖u‖p :=
(
∑
k | uk |p)1/p, with ‖u‖ := ‖u‖2 and ‖u‖∞ = maxk | uk |.

1N is the unitary vector of size d that made only of 1.

c the speed of light

| S | is the cardinality of a set S

supp(u) supp(u) = {i : ui 6= 0} is the support of u

BR, BI for any complex quantity B, e.g., a scalar, a vector or a ma-
trix, BR = <(B) and BI = =(B) are the real and imaginary
parts of B, respectively

x mod y is the modulo operator of size y applied to x

Id is the identity matrix

B̄N is the `2 unit ball in CN

ΣNs is the set of real s-sparse vectors in RN

Σ̄Ns is the set of complex s-sparse vectors in CN

Σ̃Ns is the set of complex s-sparse vectors in B̄N
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Chapter 1

Introduction

Since the first expirements made by Christian Hülsmeyer in 1904 in
Cologne, radars have continued to grow in popularity. From being
only able to detect the presence of boats to being able to detect the ef-

fect of climate change from measurements performed from satellites in space,
radar technology has always focused on remotely detecting and measuring
its environment. In previous decades, radar technology was strictly confined
to applications managed by government agencies such as remote sensing re-
search, military and the police. Recently, radars have now conquered new
markets and will be more and more omnipresent in day-to-day use, from
autonomous cars, to smart cities, home automation and cellphones.

RADAR ACQ PROC

y(t)=f(x) z = Q(y) x̂ = A(z)

Figure 1.1: Representation of the different processes involved in radar detection.

In classic radar signal processing, the radar transmits a high frequency
signal that interacts with its environment and is reflected back to the
radar. The radar then demodulates this signal and generates a low frequency
analogic signal y(t). To be processed, this signal first needs to be sampled by
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Analog to Digital Converters (ADCs). These ADCs record the signal y(t)
in the digital domain according to a sampling frequency and a resolution
i.e., z[n] = Q(y(nTs)). This acquisition process is called quantization.
The digital measurements are then transmitted to the Processing Unit
where an algorithm estimates the desired properties of the environment x̃
from the quantized measurements z.

Because the signals are digitized to a finite number of bits, the quanti-
zation Q(y(t)) cannot capture perfectly the analogical signal y(t), inducing
a discrepancy between the two. In classic radar signal processing, the effect
of the ADCs on the measurements is often omitted. To that end, y(t) is
sampled according to the Shannon’s theorem and the resolution and the dy-
namic of the ADCs are extremely high so that the quantization is negligible,
i.e., z ≈ y.

This way of acquiring data is really effective in applications where neither
the cost of the hardware, the amount of data to be transmitted between the
acquisition and the processing unit, nor the power required are limited.
But in new radar applications that are more constrained, this represents a
challenge because of their size and cost.

On the one hand, new radars are often Multi-Input Multi-Output, which
means radars that have more than one transmitting and receiving antennas,
which multiplies the amount of data that needs to be recorded. Having high
resolutions ADCs might create too much data that need to be transmitted
and processed in a timely manner. On the other hand, fast and high reso-
lution ADCs have a certain cost and power requirements that are not well
suited to these new applications.

One way of easing these requirements is to lower the number of mea-
surements required, i.e., going below Nyquist’s rate. Among the numerous
methods that try to lower the amount of measurement required to achieve
high quality of reconstruction, Compressive Sensing is of particular note.
The Compressive Sensing (CS) theory leverages the low-complexity nature
of structured signals (e.g., their sparsity, compressibility or low-rankness)
to reduce the signal sampling rate at the acquisition [CRT06b; FR13]. In
a radar context, scenes that are illuminated by a radar can often be repre-
sented as sparse. For example Fig. 1.2b is the Range-Doppler map obtained
using a Frequency Modulated Continuous Wave (FMCW) radar from the
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(a)

(b)

Figure 1.2: (a) Picture of a scene that was measured with the KMD2 radar by [RFB].
(b) The corresponding Range-Doppler obtained by a 2D-FFT on the received signal.

measurements collected from the scene in Fig. 1.2a. The signal transmitted
by the radar is reflected by all the objects present in the scene. Metallic ob-
jects, however, reflect the emitted power at orders of magnitude above other
materials such as wood [Sko80] therefore the Range-Doppler map has only
a few high amplitude points corresponding to the different cars in Fig. 1.2a,
making the observed scene effectively sparse. CS shows that, with high
probability, one can stably and robustly estimate such signals by collecting
a number of random linear measurements driven by the signal “information-
rate", e.g., its sparsity level (which in this example corresponds to the num-
ber of cars). During the last ten years, many works have considered the
association of the radar principles with CS theory: first, to increase a tar-
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get’s parameter resolution [HS09], and later to reduce the number of samples
to be processed [End13]. The survey [CE18] describes the reduced sampling
rate of different compressive (or sub-Nyquist) radar systems, in comparison
with traditional Nyquist sampling schemes, although digitization impact is
not covered.

The classical CS setting still considers that the measured signals are of
infinitely high resolution, which in turns requires the use of costly and high
power ADCs. In the first part of this thesis, we propose to remove this limi-
tation by integrating the quantization directly in the signal model, using the
framework of Quantized Compressive Sensing (QCS). More specifically, we
focus on lightening the acquisition of radar signals by strongly lowering the
resolution (or bit-depth) of each sample collected by a radar sensor without
sacrificing accurate depth estimation. We consider several different quan-
tization procedures and study both their theoretical guarantees and their
applicability in the context of radar signal processing. A special interest
will be taken to the harsh 1-bit quantization with dithering of these radar
signals, effectively only recording the signs of their analog signal to which a
random variable is added.

The second part of this thesis focuses not only on lightening the acqui-
sition but also on the processing that estimates the signal of interest from
possibly quantized measurements. Indeed, regardless of the resolution of
the individual measurements, the algorithms used for the reconstruction
are performed using methods that are often designed for high-resolution
signals. Such high-resolution processing requires complex hardware archi-
tecture with high power demand. Similarly to the quantization noise gen-
erated by coarse acquisitions, lowering the resolution of the processing will
also impact the quality of the reconstruction. In the last part of the thesis,
we study how to efficiently lower the resolution of the Back-Projection to
1-bit and study its effect on the reconstruction.

1.1 Contributions

What this thesis is not is a search for the best reconstruction performances
of complex radar scenes, regardless of theoretical guarantees. It is rather an
exploratory venture into the highly theoretical field of Quantized Compres-
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sive Sensing through the lens of radar signal processing. Consequently, the
algorithms used in this thesis do not provide the best reconstructions but
attempt to offer the strongest guarantees while remaining consistent with
actual radar applications. This work tries to combine the highly theoret-
ical field and results from Quantized Compressive Sensing with the more
applied setting of FMCW radar signal processing. To that end, we deliber-
ately chose a restrictive and idealized radar setting where, for example, the
measurements are noiseless, and explore what can be shown theoretically
about these scenarios and then demonstrate these conclusions practically
using real radar measurements. This restrictive setting allows us to high-
light specific effects imparted on the signal by the 1-bit quantization that
a more complex scenario with, for example noise and clutter, would over-
shadow. This work thus focuses on the careful interplay between theoretical
considerations and their real world impact in radar signal processing.

Chap 2 & Chap 3
Radar QCS

Chap 4
Range estima-
tion with Q+

ε

Chap 5
2D estima-

tion with Q+
ε

Chap 6
PO-CS with
(`1, `2)-RIP

Chap 7
Multiplicative
dither for radar

Chap 8
Quantized PBP

Apply QCS to radar ? Dithering ?

More complex model ? Use less channels ?

Practical dither ?

Extend 1-bit CS R → C ?

Quantizing the PO acq ?

Q+
ν (ΦH)?

Efficient implementation ?

Figure 1.3: Link between the chapters of the thesis; Chapters linked through the Theory
in red (as a direct applications or extensions); Chapters linked by practical considerations
in blue.

In Fig. 1.3, we present the different connections and interactions between
the different chapters of this thesis. Chapters 2 and 3 constitute a non-
exhaustive summary of FMCW radars and (Q)CS. These chapters provide
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the necessary background and set the stage for the study of quantization
schemes applied to radar.

In Part II, the harsh quantization to 1-bit of radar signals coming from
an FMCW radar is studied. We show that in order to have successful recon-
structions of sparse scenes where the resolution of the acquisition has been
lowered to 1-bit, one must add a random dithering before the quantization.

• In chapter 4, we compare different resolutions of ADCs (namely one-
bit, 2-bits and high resolution linear measurements) using the com-
mon metric of the bit-rate, i.e., the number of bits that are stored
to represent the acquired data used for the reconstruction. We show
that lowering dramatically the resolution to 1-bit, which allows one
to increase the number of measurements for a given bit-rate, gives
better reconstruction results than using a low number of high quality
measurements; in other words quantity over quality. Furthermore, we
show that in the case of Fourier based measurements, a direct 1-bit
quantization results in possible ambiguous scenarios that cannot be
estimated accurately without the addition of a dither. These results
are highlighted using extensive Monte-Carlo simulations in the setting
of reconstruction the range profile observed by the radar. The results
from the simulations are then confirmed using real radar measure-
ments thanks to a hardware device that is able to simulate a scene of
targets in front of an actual radar. This experimental set-up shows
that adding a random dither before the quantization is a necessity in
practical settings for the reconstruction to be successful.

• In chapter 5, we extend the sparse recovery problem to a 2-D setting
where the FMCW radar has two receiving antennas. We show first
that, similarly to the previous 1-D ranging problem, estimating the
angle of arrival from the received 1-bit measurements can be a highly
ambiguous process if no dither is added before the quantization, espe-
cially when only one target is measured. This is shown theoretically
and confirmed through simulations. Second, we show that the amount
of data required to perform the localization could even be further re-
duced by omitting the real or imaginary part of the measured signal
on the different antennas, halving the number of measurements and
the number of ADCs required whithout sacrificing on the maximum
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estimated range. Lowering the resolution to 1-bit combined with this
channel dropping generated a gain of almost 98% of data compres-
sion in terms of allocated bit rate compared to the classic acquisition
scheme.

In Part III, an alternative way of lowering the resolution of signals is studied.
Indeed, while adding a random dither has the benefit of strong theoretical
guarantees when used in conjunction with the PBP algorithm, implementing
a cost efficient additive dithering is a rather challenging task. We thus
study alternative and cost efficient ways of lowering the resolution of radar
measurements.

• In chapter 6, the coarse Phase-Only acquisition is studied (i.e., signC).
This acquisition only measures the phase of the complex measure-
ments and discards the amplitude. We show that provided that the
measurement matrix follows the (`1, `2)-RIP (2s, δ), then the recon-
struction obtained by the PBP algorithm can be bounded by the RIP
constant δ. We further show that the complex Gaussian measurement
follows this property for a number of measurements m sufficiently
high. Although this acquisition process is a bit more removed from
any direct application such as radar or others, it offers insights into
other acquisition processes that quantize, for example, the phase of
complex signals.

• In chapter 7, we propose to multiplicatively dither the measurements,
i.e., dithering their phases. We show that the advantages of this
dithering process are threefold: (i) this dithering procedure can be ef-
ficiently implemented in FMCW radar architecture using off-the-shelf
components, (ii) using PBP algorithm, the multiplicative dithering
procedure is more resistant to high sparsity signals, (iii) the constraint
on the random phase of the dither can be relaxed to a deterministic
single tone complex exponential which can be efficiently implemented
in hardware. These advantages, however, come at a cost in terms of
theoretical guarantees. Indeed, we show that this 1-bit quantization
with a dithered phase can be related to the Phase-Only acquisition
and we introduce, similarly to Chapter 4 and Chapter 5, ambiguous
scenarios that demonstrate the impossibility of uniform guarantees
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using Fourier based measurements. However, we show that the dis-
crepancy between the reconstruction obtained using proposed 1-bit
quantization and the PO measurements can be upper-bounded using
a non-uniform proof. The simulations and real radar measurements
show that this way of dithering the measurements represents an inter-
esting trade-off between performances, complexity of implementation
and theoretical guarantees.

In the third and last part, we shift the focus from the quantization of mea-
surements to the quantization of the reconstruction process itself.

• In chapter 8, we study the quantization of the Projected-Back-Projection
algorithm (QPBP). We first develop uniform guarantees on the `2-
reconstruction when a 1-bit equivalent of the measurement matrix is
used for the reconstruction. This shows that the reconstruction error
can be made arbitrary low for a sufficient number of measurements,
regardless of their resolution. In the second part of this chapter, we ex-
tend the study to back-projection operators that can be factorized into
multiple sub-matrices whose lines are sparse and have a fast matrix-
vector multiplication. One example of this type of back-projection is
the ubiquitous Fast Fourier Transform. Again we develop uniform re-
covery guarantee for linear and 1-bit measurements (i.e., QPBP and
QPBPQ). These bounds are then assessed using Monte-Carlo simula-
tions.

A summary of these contributions and how they interact with the state
of the art is presented in Table 1.1.

1.2 List of Publications

1.2.1 Journal Papers

• (To Be Submitted) T. Feuillen, A. Stollenwerk, L. Vandendorpe, L.
Jacques, One Bit to Rule them All, Quantizing the Backprojection for
Factorizable Models; IEEE Transactions on Signal Processing

• (To Be Submitted) T. Feuillen, L. Vandendorpe, L. Jacques, Multi-
plicative Dithering for 1-Bit Radar Signal Pocessing; IEEE Transac-

20



1.2. List of Publications

Sensing Method
Algorithm Φx Q+

ε (Φx) Q�(Φx) signC(Φx)
PBP Classic Applied to

Radar
Non-uniform
reconstruction
bound, applied
to radar

Uniform re-
construction,
(`1, `2) RIP
for complex
gaussian

IHT Classic Applied to
Radar

Applied to
radar

Applied to
radar

QPBP Uniform re-
construction
bound

Uniform re-
construction
bound

Table 1.1: Table representing part of the contributions of this thesis; The cells in blue
are subjects already covered in other works; green cells are the subjects of this thesis;
the red cells are left as open questions and possible future works.

tions on Aerospace and Electronic Systems

• (2020, Submitted) H. Kassab, F. Rottenberg, T. Feuillen, C. Wiame,
J. Louveaux, Superposition of Rectangular Power Pulses and CP-
OFDM Signal for SWIPT ; EURASIP Journal on Wireless Communi-
cations and Networking

• (2020) D. Dardari, N. Decarli, A. Guerra, M. Fantuzzi, D. Masotti,
A. Costanzo, D. Fabbri, A. Romani, M. Drouguet, T. Feuillen, C.
Raucy, L. Vandendorpe, C. Craeye, An Ultra-Low Power Ultra-Wide
Bandwidth Positioning System; IEEE Journal of Radio Frequency
Identification 4 (4), 353-364

• (2020)T. Feuillen, M.E. Davies, L. Vandendorpe, L. Jacques, (`1, `2)-
RIP and Projected Back-Projection Reconstruction for Phase-Only
Measurements; IEEE Signal Processing Letters 27, 396-400

• (2020) L. Jacques, T. Feuillen, The importance of phase in complex
compressive sensing; ArXiv preprint 2001.02529; IEEE Transactions
on Information Theory, doi: 10.1109/TIT.2021.3073566.

• (2017) T. Feuillen, T. Pairon, C. Craeye, L. Vandendorpe, Local-
ization of Rotating Targets Using a Monochromatic Continuous-Wave
Radar ; IEEE Antennas and Wireless Propagation Letters 16, 2598-
2601
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1.2.2 Conference Papers

• (2021) G. Monnoyer, T. Feuillen, L. Vandendorpe, L. Jacques, Sparse
Factorization-based Detection of Off-the-Grid Moving targets using
FMCW radars; ArXiv 2102.05072, ICASSP 2021

• (2020) L. Jacques, T. Feuillen, Keep the phase! Signal recovery in
phase-only compressive sensing; ArXiv 2011.06499; iTWIST’20.

• (2020) G. Monnoyer, T. Feuillen, L. Vandendorpe, L. Jacques, Going
Below and Beyond, Off-the-Grid Velocity Estimation from 1-bit Radar
Measurements; ArXiv 2011.05034, RadarConf 2021.

• (2020) T. Feuillen, M.E. Davies, L. Vandendorpe, L. Jacques, One
Bit to Rule Them All: Binarizing the Reconstruction in 1-bit Com-
pressive Sensing; ArXiv 2008.07264; iTWIST’20.

• (2019) G. Monnoyer, T. Feuillen, L. Jacques, L. Vandendorpe, Sparsity-
driven moving target detection in distributed multistatic FMCW radars;
2019 2019 IEEE 8th International Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing (CAMSAP).

• (2019) D. Dardari, N. Decarli, D. Fabbri, A. Guerra, M. Fantuzzi,
D. Masotti, A. Costanzo, A. Romani, M. Drouguet, T. Feuillen, C.
Raucy, L. Vandendorpe, C. Craeye, An Ultra-wideband Battery-less
Positioning System for Space Applications; 2019 IEEE International
Conference on RFID Technology and Applications (RFID-TA), 104-
109.

• (2019) T. Feuillen, C. Xu, J. Louveaux, L. Vandendorpe, L. Jacques
Quantity over quality: dithered quantization for compressive radar sys-
tems; 2019 IEEE Radar Conference (RadarConf), 1-6.

• (2019) T. Feuillen, L. Vandendorpe, L. Jacques, An extreme bit-
rate reduction scheme for 2D radar localization; ArXiv 1812.05359;
iTWIST’18.

• (2018) T. Feuillen, C. Xu, L. Vandendorpe, L. Jacques, 1-bit Lo-
calization Scheme for Radar using Dithered Quantized Compressed

22



1.2. List of Publications

Sensing; ArXiv 1806.05408; 2018 5th International Workshop on Com-
pressed Sensing applied to Radar, Multimodal Sensing, and Imaging
(CoSeRa).

• (2016) T. Feuillen, A. Mallat, L. Vandendorpe, Stepped frequency
radar for automotive application: Range-Doppler coupling and distor-
tions analysis; MILCOM 2016-2016 IEEE Military Communications
Conference, 894-899

The results in [Feu+19; Feu+18a; Feu+18b; FVJ18; Feu+20] are presented
within the different chapters of this thesis along with the results of the soon
to be submitted papers. The publications [FMV16; JF21; Dar+19; Dar+20;
Feu+17; Gal+19; Gal+20; Gal+21] are not included for conciseness as their
contributions are more tangential to the topic of the thesis. A short sum-
mary of these papers is provided hereafter. In [FMV16], the Range-Doppler
coupling that arises in applications with high velocity targets is tackled us-
ing a computationally efficient filter. In [Feu+17], a cost effective method of
estimating the range of rotating targets using a single tone Doppler radar is
proposed. This method relies on the structured spectral signature estimated
from the received signal to infer the range of a rotating target. These results
were confirmed using real radar measurements. Passive tag localisation us-
ing Ultra Wide Band technology is studied in [Dar+19; Dar+20]. These
works were conducted within the framework of an European Space Agency
(ESA) project in collaboration with the University of Bologna in Italy, and
culminated in a live demonstration in the ESA headquarters of the UWB
battery-less localization system. My contribution to these works was to de-
velop a computationally efficient correlation of the UWB signals used in a
time-of-arrival estimation scheme. This method relies on the structure of
the spectrum of the pulse that allowed an undersampling of the received sig-
nal that is then leveraged in order to compute the correlation. The system
showcased an accuracy of ∼ 4cm. The works presented in [Gal+19; Gal+20;
Gal+21] are a joint work with Gilles Monnoyer, a PhD student supervised
by Laurent Jacques and Luc Vandendorpe in UCLouvain whose master the-
ses I also supervised. These works focus on the efficient estimation of the
off-the-grid target’s parameter such as the position and velocity in appli-
cations using MIMO radars by relying on the factorization of the signal’s
representation in order to reach efficient computations. This off-the-grid
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estimation scheme was combined in [Gal+20] with a one-bit quantization
scheme with dithering that will be introduced in Chapter 3. The letter
[Feu+19] that is the focus of Chapter 6 was extended in [JF21], where a
non-uniform reconstruction guarantee is studied for the reconstruction of
sparse vectors from Phase-Only measurements using Instance Optimal al-
gorithm such as Basis Pursuit Denoising. In Superposition of Rectangular
Power Pulses and CP-OFDM Signal for SWIPT, that has been submitted
to the EURASIP Journal on Wireless Communications and Networking, a
new SWIPT modulation waveform is introduced. My contribution to this
work was in the test-bed used for practical measurements with USRPs. Al-
though not directly connected to the field of quantized compressive sensing,
all of these articles are centred around the idea of implementing cost or en-
ergy efficient methods to estimate parameters from incomplete or imperfect
measurements.

Finally, during my thesis I also had the opportunity to supervise several
master thesis. For the sake of conciseness, these are only listed hereafter.
Radar target classification based on micro-Doppler signature analysis in 2016
by Jean Leger; Synthetic aperture radar at small scale in 2019 by Marie-
Pierre van Oldeneel and Adrien Delhaye; Sparsity-driven moving target de-
tection in distributed multistatic FMCW radars in 2019 by Gilles Monnoyer;
Analysis of a channel of communication for on-board Drone transmission
with SDR processing in 2020 by Dylan Feron; Formation of high resolution
images via Synthetic Aperture Radar embedded on satellite in 2020 by Cyril
Wain.
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FMCW Radar System

In this chapter, a short review of the model and architecture of Fre-
quency Modulated Continuous Wave (FMCW) radars are presented.
We start by a short history of radar technology and its applications be-

fore reviewing the basic mode of operation and limitation of a pulse radar.
The next section is then devoted to the FMCW radar. The signal model
corresponding to the observation of a scene with multiple targets located
at different ranges is presented as well as common non-idealities typically
found in such radar systems.

2.1 Introduction

Radar stands for Radio Dectection And Ranging. It is a device that trans-
mits electromagnetic waves through an antenna and then uses the received
echoes to infer information about the scene it has interacted with.

There is no definite sole inventor of the radar in the modern sense of
the word as it was independently studied by various countries during World
War 2 [Sko80]. However, one inventor in 1904 can be credited with the first
wireless detection of metallic object using electromagnetic waves [Hul06].
Christian Hülsmeyer demonstrated in Cologne his telemobiloscope in front
of German military officials but his invention failed to gain traction. One
reason was that this early prototype was only able to detect the presence
of ships but not their range, furthermore the detection range was of only a
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few hundred meters [Sko80].
During WW2, the ability to detect enemy ships and planes became of

paramount importance. Consequently radar technology evolved at a rapid
pace during this period, from the ability to detect targets from a few miles
to several tens of miles. Although Hülsmeyer telemobiliscope used pulses,
early radar research focused first on Continuous Wave modulation before
switching to pulses. These changes of modulations were dictated by the
advancements in the Radio-Frequency hardware that these early radars were
using.

Regardless of the modulation used, radars are governed by the following
equation:

Pr = PtGAσ

(4π)2R4 , (2.1)

where Pr is the power density of the signal coming from a target at a range
R, G is the gain of the transmitting antenna, A is the effective area of the
receiving antenna and σ is the Radar-Cross-Section (RCS).

The gain of the transmitting antenna in the direction of the target is
defined with respect to the gain of an isotropic antenna that radiates the
same power in all direction. Depending on the application, it is desirable,
or not, to have antennas that are highly directive, i.e., that can transmit
and receive power in specific directions. The amount of power reflected
back to the radar by the target is characterized using an area called the
RCS. It is equivalent to the cross-sectional area of a perfectly reflecting
sphere that would radiate the same power. It is thus a measure of the
reflecting properties of the target. The value of the RCS of a target is
highly dependent on its geometry and materials but also on the frequency
band and polarization used for the radar observation. Equation (2.1) shows
that compared to other sensing schemes, the power received from targets
measured by a radar can vary greatly, depending on the material of the
target or its location.

Since WW2, where it was only restricted to the military, the use of radar
has reached multiple fields and applications. Although discrete, it is now
ubiquitous in our daily lives, from the "beloved" Doppler radars used by the
police here on Earth, to the Synthetic Aperture radar in space that are used
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for monitoring ships [Bru+11], the environment [ZLT12] and illegal defor-
estation [Wat+18]. More recently, thanks to advances in radar technology
that allow for higher carrier frequency and bandwidth in the TeraHertz
band [Sta+16], radar are now used in cars, helping to reach autonomous
driving [Bil+19]. The higher frequency also generates technologies that are
smaller and smaller, for example, Google has now multiple products with
radars embedded in them [Wan+16] such as smartphones and home ap-
pliances. The following sections present a short overview of the different
modulations used in radar.

2.2 Basic Pulse Radar

We now review the basic principle of the pulse radar. Let us consider a
scene, see Fig. 2.1, where a static target is located at a range R. In order
to estimate the range, one can emit a pulse of duration Tp, and then record
the echo coming from the environment. The transmitting signal can be

0 R

Figure 2.1: A single target scene at a range R from the pulse radar.

expressed as

s(t) =
√
PΓTp(t),

with P the transmitting power that also encapsulates the different gains in
the radio frequency chain, and ΓT (t) the window function of length T . For
the sake of simplicity, we consider that the antennas have a flat frequency
response. The consequence of considering non-ideal antennas is explained
at the end of this chapter.

The received signal can be expressed as :

r(t) = s(t− τ) = s(t− 2R
c ),
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with c being the speed of light. One can directly observe that the accuracy
of the estimated delay depends directly on the sampling frequency 1

Ts
used

to acquire the received signal.

δR = cTs
2 ,

where δR is the range accuracy.
From this simple equation, one can observe that in order to reach a high

accuracy using a pulse, one should use extremely high sampling frequency.
For example, to have an accuracy of δR ∼ 1m, the sampling frequency should
be of the order of 100MHz. One can also notice that this sampling frequency
does not depend at all on the desired maximum range. The width of the
pulse dictates the resolution with which one can estimate targets. Using a
matched filter on the received signal to estimate the positions of targets,
i.e., |r(t) ∗ s(t)|, the width of the resulting ambiguity function is a multiple
of Tp and its shape is represented in Fig. 2.2.

t

r(t)

|r(t) ∗ s(t)|

τ

Figure 2.2: Graphical representation of the received signal r(t) and its associated matched
filter with the transmitted signal s(t).

In order to increase the accuracy of the estimation using this modulation,
one needs to shorten the pulse ΓTp(t), i.e., reduce Tp. This basic system,
while being fairly simple and omitting some other hardware considerations,
allows us to highlight two issues when using such pulse radars: (i) the
total energy transmitted PTp will dictate the SNR that can be attained.
At constant SNR, shortening the pulse thus increases the amplitude of the
pulse, which requires more complex hardware able to generate high power
pulses of short duration. (ii) Recovering the delay τ = 2R

c directly from the
measurements requires extremely high sampling rate if sub-meter accuracy
is desired. These two effects make the use of pulse radar an expensive
endeavour that is not often suited for low power and low cost applications.
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2.3. FMCW Radar Signal Model

This drove radar research to develop other modulations, one of them being
the Frequency-Modulated-Continuous-Wave Radar that is the focus of the
next section.

2.3 FMCW Radar Signal Model

In this section, we focus on Frequency Modulated Continuous Wave radars
with one transmitting and one receiving antenna, this model is extended to
2-D localization in Chapter 5. The radar’s transmitting antenna emits a
signal s(t) modelled as

sRF (t) =
√
Pt exp

(
i 2π
( ∫ t

0
fc(ξ)dξ

)
+ iφ0

)
ΓTc(t mod Tp), (2.2)

where Pt is the transmitted power, fc(t) the transmitted frequency pattern,
and φ0 ∈ [0, 2π] is the initial phase of the oscillator. The chirp has a duration
Tc and is repeated at a Pulse Repetition Frequency (PRF) of 1

Tp
. The super-

script (·)RF is added to highlight the fact that this signal is centred around a
carrier frequency, which, in common radar applications such as automotive,
is in the order of GHz (e.g., the Ka-band is around 24GHz [Sko80]).

The carrier frequency pattern fc(t) of an FMCW radar can be charac-
terized as a saw-tooth function (see Fig. 2.3):

fc(t) = f0 + B

Tc
(t mod Tp), (2.3)

with f0 the central frequency, and B the spanned bandwidth. Note that, in
practical applications, B is not a design parameter but a constraint imposed
by government regulations. Considering, for now, a simple ranging problem
where the scene is made of only one target located at a range R from the
radar which has one receiving antenna, as in Fig. 2.1. The received signal
is a time-delayed version of the transmitted signal (2.2),

rRF (t) = αs(t− τ),

and is represented in Fig. 2.3 (see the red curve). The delay τ is simply the
round-trip between the radar and the target and can be thus expressed as
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fc(t)

t

f0

f0 +B

TpTc
τ

B
Tc
τ

fs(t)

fr(t)

Figure 2.3: Representation of the frequency content of the transmitted (blue) and re-
ceived (red) chirps with a delay τ

τ = 2R
c . The variable α ∈ C represents the amplitude of the received signal,

this encompasses the Radar Cross Section (RCS) of the target but also all
the other losses (e.g., path losses as in (2.1), and gains in the acquisition
chain, . . . ). For the sake of simplicity, in the rest of our presentation,
the complex value α will refer to a global constant amplitude that may
change from one line to the other in the description of the reception and
demodulation processes. Indeed, each of the these stages is associated with
its respective complex gain. It is interesting to note that in Fig. 2.3, the
delay τ in the time domain between s(t) and r(t) can also be observed as
a frequency shift B

Tc
τ in the frequency domain. From (2.2), the received

analytical signal in radio frequency can be expressed as:

rRF (t) = α exp
(

i 2π(
∫ t−τ

0
fc(ξ)dξ) + iφ0

)
ΓTc(t− τ mod Tp). (2.4)

The spectrum of (2.4), although narrowband, is centred around f0 which is,
in the case of Ka-band radar, in the tens of GHz. Directly sampling this sig-
nal is inadvisable as it would require prohibitively high sampling rate that
would then incur complex hardware and high costs. One possibility would
be to instead sample the signal around its central frequency f0+ B

2 by multi-
plying the received signal in (2.4) by the carrier signal exp (− i 2π(f0 + B

2 )t).
As depicted in Fig. 2.4 the sampling requirements have lowered from the
order of the carrier frequency (in GHz) to the order of the bandwidth B of
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0 ff0 + B
2

B
2

× exp (i 2π(f0 + B
2 )t)

Figure 2.4: Spectral representation of r(t) and r(t) exp (− i(f0 + B
2 )t).

the modulated signal, i.e., in the order of the hundreds of MHz.

In essence, using this demodulation process, we are now only recording
the changes that are imparted by the environment. However, sampling at
multiple hundreds of MHz might still be prohibitively high compared to the
observation made earlier in Fig. 2.3 that, for small ranges, the delay of inter-
est manifests itself as a frequency shift between the received and transmitted
signals. In order to leverage that fact, FMCW radars use coherent demod-
ulation, where to recover this frequency shift, the received signal rRF (t)
is demodulated using the transmitted signal s(t) itself. The architecture
required to perform this coherent demodulation is presented in Fig. 2.5,
where the I and Q channels represent the real and imaginary part of the
demodulated received signal r(t) respectively. The process represented in

×

×
−π
2

RF Hardware

Analog

LP F

LP F

ADC

ADC

Quantization
& Processing

Digital

DSP

I

Q

Tx

Rx

Figure 2.5: Representation of a IQ coherent demodulation for an FMCW radar with one
transmit and one receive antenna

Fig. 2.5, can be expressed mathematically simply as

r(t) = rRF (t)s∗(t). (2.5)
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Using the expression of the transmitted signal (2.2), (2.5) reduces to

r(t) = α exp
(
−i 2π

∫ t

t−τ0

fc(ξ)dξ
)
ΓTc
(
(t−τ) mod Tp

)
ΓTc(t mod Tp). (2.6)

As mentioned earlier, assuming a delay τ � Tc small enough such that
ΓTc(t − τ mod Tp) ≈ ΓTc(t mod Tp) and using the saw-tooth model (2.3),
the integral in (2.6) becomes

∫ t

t−τ0

fc(ξ)dξ =
∫ t

t−τ0

(f0 + B

T
ξ)dξ = τ0fc(t)−

B

2T τ
2
0 . (2.7)

Combining (2.6) with (2.7) allows us to express the received signal r(t) in
base-band, i.e., we have

r(t) = α exp
(
− i 2πτfc(t)

)
ΓTc(t mod Tp), (2.8)

where α also encompasses the static phase-shift − B
2T τ

2
0 in (2.7). In words,

(2.8) shows that the coherent demodulation expresses the time difference τ
coming from the target as a frequency shift between the transmitted and
received signals. This frequency shift linked to the range is represented in
Fig. 2.3.

It is interesting to note that this frequency shift B
Tc
τ is often several

orders of magnitude below the bandwidth B. This fact motivates the use of
the coherent demodulation as the sampling frequency is now linked to B

Tc
τ

instead of B. For example, in the context of K-band radar with f0 = 24Ghz
and B = 250MHz, a target at range of 300m will generate a frequency shift
of 200kHz for a PRF of 12kHz. The resolution with which a target can be
estimated is not linked to the duration of the transmitted pulse, i.e., Tc or
the PRF but is related to the bandwidth B of the chirp signal f(t). The
resolution δR can be simply expressed as δR = c

2B thanks to the property of
the Fourier transform. We illustrate this by giving an example in Fig. 2.6.
Two Fourier transforms of r(t) for a target located at 20m with two different
bandwidths B = 30Mhz in blue and B = 12MHz in green are represented.
For Ka-band radar, the regulations allows for a bandwidth of 250MHz which
gives a resolution of 0.6m.

Considering a simple additive model, the received base-band signal from
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Figure 2.6: Representation of the Fourier transform of a baseband received signal with
different Bandwidths (30MHz and 12MHz) for a target located at a 20m range

a scene with s targets can be expressed as

r(t) =
s∑

i

αi exp
(
− i 2π 2Ri

c fc(t)
)
ΓTc(t mod Tp), (2.9)

where αi and Ri are the received powers and ranges from each of the s
targets measured in the scene. If the duration of the acquisition is restricted
to t ∈ [0, Tc], one can see that the problem of estimating the ranges of these
s targets is tantamount to estimating the frequency content of r(t) and by
associating each peak in the frequency domain to a specific range. Chapter 4
will describe in detail the acquisition process and its effect on the accuracy
and precision on the range estimation problem.

This model is remarkably simple in its interpretation of the estimation
process. It is however important to acknowledge all of the non-idealities that
are not accounted within (2.9). It is assumed that the frequency response
of the antennas and of the local oscillator that generates the chirp are flat
for the considered bandwidth B. In practice, the frequency response of
these components are never exactly flat and this impacts the quality of the
baseband signals [SSS06; Vin+11]. Indeed, the received signal in (2.8) is
affected in the following fashion

r(t) = αh(fc(t)) exp
(
− i 2πτfc(t)

)
ΓTc(t mod Tp),

where h(f) is the combined frequency response of the system that encom-
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passes the transmitting and receiving antennas as well as the RF hardware.
Given the fact that the estimation process, in its simplest sense, is a Fourier
transform, the perfect target response corresponding to a delta centred on
the range R will be tainted by H(d) =

∫ f0+B
f0

h(ξ) exp (− i 2πξ 2d
c )dξ. In

extreme cases, this could impair the proper estimation of the s different
targets as these responses H(d) might overlap.

The model in (2.9) also assumes point-like targets. While this assump-
tion might be valid in cases where resolution δR is coarser than the dimen-
sion of the targets itself. In most applications, however, resolutions that are
thinner then the target are often desired. The effect of the noise and the
clutter generated by the environment has also been omitted in this model,
Chapters 5 and 7 will highlight its effect on the particular case of the 1-bit
quantization of these noisy measurements.

Finally, the coherent demodulation process is assumed to be perfect and
to have a perfect isolation between the transmit and receive circuits. In
practice as depicted in Fig. 2.7, leakages between these two circuits might
happen. This, in turns, affects the coherent demodulation as the RF re-
ceived signal is now a weighted sum between the actual echo from the target
and the time delayed leakage signal [Haf+20]:

rRF (t) = αs(t− τ) +
∑

i

βis(t− τi,leakage),

where βi is the amplitude, and τi,leakage of the different leakages that can
occur in the radar system.

×

×
−π
2

LP F

LP F

I

Q

Tx

Rx

Figure 2.7: Schematic representation of leakage between the transmit and received circuit
of the radar. Direct coupling between the antennas is represented in green and within
the circuit is represented in yellow.

After the coherent demodulation, the baseband signal can now be de-

34



2.3. FMCW Radar Signal Model

noted as

r(t) = α exp (− i 2πτfc(t)) +
∑

i

βivi(t),

where vi(t) = exp (− i 2πτi,leakagefc(t)) is the low frequency signal of one
source of leakage i. As τi,leakage � τ , this low frequency signal thus disrupts
the received signal and, in some cases, might have a dynamic larger than
the signal of interest which also hinders its acquisition. Indeed, adjusting
the dynamic range of the ADCs to this larger dynamic reduces the effective
number of bits devoted to the signals coming from the targets. This leakage
can often be corrected during the processing in classical acquisition scheme.
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Chapter 3

Compressive Sensing

The work presented in this thesis relies heavily on the framework
of Compressive Sensing and its quantized counterpart Quantized
Compressive Sensing. Consequently this chapter constitutes a non-

exhaustive summary of this field with a particular attention to the tools,
notions, and theorems used throughout this thesis. The problem of estimat-
ing sparse vectors from the compressed measurements is first introduced in
the context of Fourier transform, before being generalized to linear sys-
tems. To that end, the notion of sparse vectors is briefly reviewed and the
requirements on the measurement process is explicited using the Restricted
Isometry Property. Different flavours of reconstruction algorithms are then
presented before concluding with the introduction of the different quantizers
commonly used in QCS.

3.1 Problem Statement

As seen in the previous chapter regarding radar signal models, estimating
the range of targets using an FMCW radar is equivalent to estimating the
frequency content of the received signal (see (2.9)). These analogic signals
must be first measured and sampled before one can study their frequency
content. One of the most fundamental results of signal processing is Shan-
non’s sampling theorem [Sha49] that says:

37



Chapter 3. Compressive Sensing

Theorem 3.1 (Shannon’s sampling theorem, Theorem 1 in [Sha49]). If a
function s(t) contains no frequencies higher than B Hertz, it is completely
determined by giving higher than its ordinates at a series of points spaced
1

2B seconds apart.

Considering a signal s(t) of duration T , the sampling rate defined in
Theorem 3.1 will generate 2TB samples, i.e., s[m] = s(m 1

2B ), with m ∈
[2TB]. With s[m], one can now estimate its spectral content S[n] using the
Discrete Fourier Transform (DFT):

S[n] =
∑

m

s[m] exp (− i 2πmn
N

),

withN = 2TB. Furthermore, its continuous representation in the frequency
domain can be computed using a simple sinc interpolation at each of the
points in S[n].

This is the foundation on which signal processing is built on. But this re-
quirement does not depend on the actual frequency content of S(f). Indeed,
only the bandwidth occupied by the signal defines the sampling frequency,
not the structure of the signal. In this seminal work that triggered an en-
thusiasm for the study of compressive sensing, authors in [CRT06a], showed
that in the context of band limited signals (in the complex domain) that
are composed of only s� N frequency tones, i.e.,

s(t) =
s∑

i

xi exp(i 2πfit),

with xi ∈ C and fi ∈ [−B2 , B2 ] being the amplitude and frequency associated
to the ith ∈ [s] frequency tone, it is possible to reconstruct the spectral infor-
mation S[n], from incomplete time domain measurements. In that case, they
showed that the number of measurements m needed for the reconstruction
of S[n] using convex optimisation can be lowered to m ≤ Cs log (N) ≤ N ,
with C > 0. In other words, if the signal has s non-zero components in the
frequency domain, one can relate the minimum number of measurements m
to s instead of N , i.e., by sub-sampling the signal in the time domain. As it
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will be introduced in the next sections, Compressive Sensing is the general-
isation of this fact to a broader class of problems where the measurements
can be represented in a low-dimensional space.

3.2 Compressive Sensing

The section above hinted that the number of measurements prescribed by
Shannon’s theorem, in Theorem 3.1, could be lowered provided some as-
sumptions on the signal of interest (e.g., few non-zero components in the
frequency domain) thanks to the theory of Compressive Sensing. The rest
of this chapter is intended to be an introduction to this field.

We start by considering the following linear model:

y = Φx, (3.1)

with y ∈ Cm representing the measurements, x ∈ CN is the signal that one
wants to estimate from the measurements, and the matrix Φ ∈ Cm×N that
represents the linear measurement process of the signal x, with m < N .

One could try to directly solve the linear model defined in (3.1) but
because m ≤ N , the system is undetermined. This means that without any
other assumptions on the model, there is potentially an infinite number of
solutions to this problem. Compressive Sensing attempts to solve this issue.

The spirit of Compressive Sensing and the different ingredients that are
usually involved, can be expressed in the following recovery algorithm.

Theorem 3.2 (Basis Pursuit Denoising, from Theorem 6.12 in [FR13]).
If a matrix Φ ∈ Cm×N follows the (`2, `2)-Restricted Isometry Property of
order 2s with a constant δ such that

δ <
4√
41
≈ 0.6246.

Then, for any vector x ∈ CN and its associated noisy measurements y with
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‖Φx− y‖2 ≤ η, a solution x# of

min
z∈CN

‖z‖1 s.t ‖Φz − y‖2 ≤ η

approximates the vector x with an error upper-bounded by

‖x− x#‖2 ≤
C√
s
σs(x)1 +Dη,

where the constants C,D > 0 depend only on δ.

The result of Theorem 3.2 is striking. In words, this theorem shows that
the Basis Pursuit Denoising algorithm is robust to noise and stable when
reconstructing vectors that are not exactly sparse (the meaning of σs(·)1 will
be explicited later) in a specific setting. What is more, when the signal of
interest is noiseless and sparse, the BPDN algorithm provides perfect recon-
structions, and this in the challenging m ≤ N setting. Compressive Sensing
has been used in numerous applications : radar [End13], MRI [LDP07], and
many others (see [FR13; RDD18] and reference therein). Let us now review
the different ingredients that are required by BPDN.

3.2.1 Sparsity

The noiseless reconstruction error of BPDN depends on the term C√
s
σs(x)1,

with
σs(x)1 = min

z∈Σ̄Ns
‖x− z‖1, (3.2)

where the set Σ̄Ns is the set of complex s-sparse vectors. σs(x)1 measures
how close the vector x is to being s-sparse. For a vector to be s-sparse, it
must not have more than s non-zero components, i.e., | supp(x)| = ‖x‖0 ≤
s. Fig. 1.2 provides an example of a signal that is approximately sparse.
Indeed, the Range-Doppler map is made of a few dominant components
corresponding to the different cars measured by the radar. These approx-
imately sparse signals, however, are not what is directly measured by the
radar. Indeed, the previous chapter showed that using an FMCW radar,
the measured signal is the sum of different complex exponentials (see (2.9)).
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The supports of these received signals are far from sparse, only their spec-
trum are. In fact, in numerous applications, the signals of interests are
rarely sparse in the domain of acquisition.

Like radar signals, images acquired by a camera sensor are not sparse,
but can have a representation that is sparse in another domain. The signal
x can be represented as

x = Ψα,

where x is the signal of interest, α is the sparse representation of x using the
appropriate representation Ψ. For example, using the wavelet transform,
the Fig. 3.1a can be represented as Fig. 3.1b.

(a) (b)

Figure 3.1: (a) Picture of a not so well-behaved dog. (b) Wavelet transform of the
grayscale version of Fig. 3.1a using Daubechies 1 wavelets with 2 levels.

If one studies the amplitude of the different coefficients of Fig. 3.1b by
sorting them according to their amplitude in Fig. 3.2, one can see that
most of the energy of the image α are encapsulated in only a few non-zero
elements in x. The curve in blue represents the evolution of the amplitude
of the sorted coefficients, while the red curve corresponds to the cumulative
sum of the coefficient αi. In fact, this cumulative sum can be linked to
the `1-approximation error in (3.2) as

∑i
j=0 |αj |/‖α‖1 = 1− σi(α)1/‖α‖1.

Thanks to the steep decrease of the amplitude of these coefficients, one can
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Figure 3.2: Sorted amplitudes of the wavelet coefficient of Fig. 3.1a.

see that more than 70% of the cumulative sum is enclosed in a ninth of the
coefficients.

In fact, if one only keeps the biggest coefficients of the wavelet trans-
form and then applies the inverse transform, one can see that most of the
image’s information is indeed enclosed in these few coefficients. Fig. 3.3
shows the reconstruction of Fig. 3.1a by Hard-Thresholding the coefficients
in Fig. 3.2 and applying the inverse transform. In Fig. 3.3a, only 10% of
the coefficients are kept and no discernible degradation can be observed. As
less and less coefficients remain for the reconstruction, the image’s quality
deteriorates but the fact that the compression operated in Fig. 3.3d is of
0.1% is impressive. This example, although simple, clearly shows that using
the proper representation can significantly help sparsifying signals, provided
this representation does exist.

3.2.2 The Restricted Isometry Property

The second condition imposed on the linear system introduced in (3.1) for
the reconstruction to be successful is that the measurement matrix Φ ∈
Cm×N that links the measurement y ∈ Cm and the sparse vector x ∈ CN

must follow the Restricted Isometry Property (RIP). The RIP can be defined
as:
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(a) 10% (b) 5%

(c) 1% (d) 0.1%

Figure 3.3: Inverse wavelet transform (Daubechie 1 at level 4) of Fig. 3.1a where only
10%, 5%, 1%, 0.1% of the coefficient are kept.

Definition 3.1. Given δ > 0, the matrix Φ ∈ Cm×N satisfies the (`2, `2)-
RIP(s, δ) if, for all x ∈ Σ̄Ns ,

(1− δ)‖x‖22 ≤ 1
m‖Φx‖22 ≤ (1 + δ)‖x‖22.
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The definition in Def. 3.1 is tantamount to saying that the columns of
Φ should be close to orthogonal. The RIP can also be defined as

Remark 3.1. Given δ > 0, the matrix Φ ∈ Cm×N satisfies the (`2, `2)-
RIP(s, δ) if,

δ = max
S∈[N ],|S|≤s

‖Id − 1
mΦH

S ΦS‖

This definition can be linked back to the problem of estimating the
frequency content of a measured signal. One ubiquitous property of the
Fourier transform is what is referred as Parseval’s Theorem,

Definition 3.2 (Parseval’s Theorem). For a signal x(t) and its associated
Fourier representation X(f), the energy of these two signals are linked by

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f)|2df.

In words, the Fourier transform of a signal has the same energy as the
signal itself and there is an isometry between the time domain and the
frequency domain. Discretizing the representation by sampling the signal
in the time domain gives us the corresponding expression:

Remark 3.2 (Parseval’s Theorem for discrete signals). For a discrete signal
x and its associated Fourier representation Fx, the energy of these two
signals are linked by

‖x‖22 = 1
m‖Fx‖22.

It is important to note that here x ∈ CN and F ∈ CN×N , i.e., our linear
system is not sub nor over-sampled. Comparing Remark 3.2 to the definition
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of the RIP found in Def. 3.1, one could interpret the RIP as an extension
of Parseval’s theorem in the setting where the number of measurements
does not match the dimension of the signal of interest, i.e., m 6= N . This
generalization, however, comes at a cost in the restriction to the set of s-
sparse vector Σ̄Ns for the RIP while Parseval’s theorem applies to all signals
CN .

Indeed, for non-sub-sampled Fourier transform Remark 3.2 also means
that all the columns of F are orthogonal with each other, i.e.,

1
mF

HF = IN → ∀i 6= j ∈ [N ], 〈F :,i,F :,j〉 = 0

this relationship cannot be assumed to hold when the Fourier transform is
sub-sampled, Φ = FΩ, with |Ω| = m ≤ N . In that case

µ = 1
m maxi 6=j∈[N ] |〈FΩ,i,FΩ,j〉|

which can be far from zero for some m � N . This measure of the orthog-
onality of the columns of the sub-sampled matrix is called the coherence.
Fig. 3.4 shows the back-projection different measurements FΩx, with x be-
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Figure 3.4: Back-projection of Partial Fourier measurement 1
m
|ΦHΦx|; the original 1-

sparse x ∈ C128 is located in 75 and the signals in blue and green are the reconstruction
for m = N

2 = 64 and m = N
4 = 32 respectively; the dotted line represent the coherence

µ obtained for each sub-sampling.

ing a 1-sparse vector different amount of sub-sampling |Ω| = m ≤ N . As
the number of measurements is lowered the mutual coherence of Φ = FΩ

increases.
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The RIP constant δ can be bounded using the coherence by µ ≤ δ ≤
(s−1)µ for s ≥ 2. The coherence of a matrix is lower-bounded by the Welsh
bound that states as

Theorem 3.3 (Welsh Bound from Thm.5.7 in [FR13] ). The coherence of
a matrix Φ ∈ Km×N with `2-normalized columns satisfies

µ ≥
√

N −m
m(N − 1) .

Theorem 3.3 tells us that regardless of the sub-sampling or of the matrix
used, the coherence cannot decrease faster than O(m− 1

2 ). Conversely, the
RIP can be used to upper-bound the coherence. For s = 2 the expression
of the RIP in Rem. 3.1 corresponds to the coherence.

Estimating the RIP constant δ of deterministic matrices is computation-
ally expensive [FR13]. Compressive Sensing solves this issue by studying
instead the properties of random matrices. The RIP property has been
established for Gaussian and sub-Gaussian matrices and more importantly
in the setting of radar signal processing, for randomly sub-sampled Fourier
transform.

3.2.3 Reconstruction Algorithms

Given that the aim of Compressive Sensing is to estimate a sparse vector
x ∈ Σ̄Ns from measurements y = Φx, a natural reconstruction strategy
would be

min
u∈CN

‖u‖0 such that ‖y −Φu‖2 ≤ η

Solving this, however, is not computationally tractable [FR13; Don06b].
A relaxed version of this problem is to substitute the `0-norm with the
`1-norm, which corresponds to the Basis Pursuit Denoising introduced in
Theorem 3.2.

There exist other methods that can solve the problem of recovering a
sparse vector from measurements. Projected-Back-Projection (PBP) is one
of the simplest algorithms and is defined as
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Definition 3.3 (Projected-Back-Projection). For a measurement vector
y ∈ Cm and given a linear model with a measurement matrix Φ ∈ Cm×N ,
one can estimate a s-sparse vector using the following algorithm,

x̂ = 1
mHs

(
ΦHy

)
,

where Hs(·) is the hard-thresholding operator that keeps the s biggest ele-
ments in amplitude.

Which is simply applying a matched filter on measurement y and keeping
the s-biggest elements (in amplitude). Although extremely simple, this
algorithm has a uniform bound on the `2-reconstruction for all s-sparse
vectors.

Theorem 3.4 (PBP reconstruction [FR13]). Using the PBP algorithm de-
fined in Def. 3.3 and its estimate x̂, one can upper-bound the `2 reconstruc-
tion error for all vectors x ∈ Σ̃Ns by

‖x− x̂‖2 ≤ 2δ,

if the measurement matrix follows the (`2, `2)-RIP(2s, δ).

Proof. Starting with the definition of the PBP estimate, with S = supp(x̂),
one can upper-bound the reconstruction by

‖x− 1
mHs

(
ΦHy

)
‖2 = ‖x− 1

m

(
ΦHy

)
S‖2 (3.3)

≤ ‖x− 1
m

(
ΦHy

)
T ‖2 + 1

m‖
(
ΦHy

)
S −

(
ΦHy

)
T ‖2,

with T = supp(x)∪S, with |T | ≤ 2s. Because
(
ΦHy

)
S is the best s-sparse

approximation of ΦHy, one can bound the second term of (3.3) by the first.
The bound becomes

‖x− 1
mHs

(
ΦHy

)
‖2 ≤ 2‖x− 1

m

(
ΦHy

)
T ‖2.
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Using the definition of RIP in Remark 3.1 and the fact that y = Φx, one
can finally bound

‖x− 1
mHs

(
ΦHy

)
‖2 = 2‖

(
x− 1

mΦHΦx
)
T ‖2

≤ 2‖
(
Id − 1

mΦHΦ
)
T ‖‖x‖2 ≤ 2δ.

The reconstruction provided by PBP is directly linked to the RIP con-
stant of Φ. This proof was also included to showcase the basic tools that
are used in the different chapters.

One can build upon this first estimate by trying to enforce a consistency
between the current estimate and the measurements used for the recon-
struction.

Definition 3.4 (Iterative-Hard-Thresholding, [BD09]). The kth iteration
of the IHT algorithm is expressed as

x̂k = Hs
(
x̂k−1 + 1

mΦH(y −Φx̂k−1)
)
,

where x̂0 is the PBP estimate.

Leveraging again the RIP property of Φ, one can also upper-bound the
reconstruction of IHT.

Theorem 3.5 (Reconstruction guarantee of IHT, Corr.1 from [BD09]).
Given a noisy observation y = Φx + e, where x ∈ CN and x̃ ∈ Σ̄Ns being
the best s-sparse approximation of x. If Φ has the (`2, `2)-RIP(3s, δ) with
δ < 1

8 , then, at iteration k, IHT will recover an approximation x̂k satisfying

‖x− x̂k‖2 ≤ 2−k‖x̃‖2 + 5ε̃s,

where
ε̃s = ‖x− x̃‖2 + 1√

s
σs(x)1 + ‖e‖2.
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Furthermore, after at most

k? = dlog2

(‖x‖2
ε̃s

)
e

iterations, IHT estimates x with accuracy

‖x− x̂k?‖2 ≤ 6ε̃s.

What is striking about this result is that thanks to the RIP property of
the measurement matrix, one can reconstruct sparse signals perfectly while
being in the challenging setting of m ≤ N .

3.3 Quantized Compressive Sensing

In this section, a brief overview of the quantization process is presented.
The motivation of including this process in the signal model is explicited
before reviewing the most common type of quantizers and their properties.
The chapter finishes with the introduction of the dithering, which is one of
the central focus of this thesis.

Up to now, the measurements y used for the reconstructions were treated
as variables existing in a continuous space such as Cm. However, before any
signals can be processed, it needs to be digitized. This is done using ADCs
(Analogic to Digital Converters) that convert continuous signals coming
from the sensor in volts to a digital representation expressed in bits. This
is this digital representation of the analogic signal that is used in the recon-
struction process. These ADCs have a finite resolution represented by the
number of bits b on which the acquired measurements are represented as
well as a dynamic range beyond which the digital measurements saturate.
This induces a discrepancy between the continuous signal and its quantized
counter-part, even in a noiseless setting.

The linear model introduced in (3.1) becomes

z = A(Φx),
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Chapter 3. Compressive Sensing

where A(·) is the quantizer. For the purpose of this introduction, we restrict
our presentation to uniform scalar quantizers. There exist however other
quantizers such as the Σ∆ quantization that has been studied in QCS in
[Bou+15; Gun+10] (and see reference contained therein). The most com-
mon quantizer is the mid-rise quantizer defined as

Qbε(λ) =





(2b − 1) ε2 if λ ≥ (2b − 1) ε2
bλε cε+ ε

2 if |λ| < (2b − 1) ε2
−(2b − 1) ε2 if λ < −(2b − 1) ε2

This function has a resolution of ε and the measurements are recorded using
b bits. The quantizer has thus a dynamic range of 2bε centred around 0 be-
fore saturating. Depending on the resolution and dynamic of this quantizer
with respect to the measurements that need to be acquired, the effect of
this quantization can be ignored. One naive way of dealing with the effect

ε

y

Qb
ε(y)

Figure 3.5: Representation of the mid-rise quantizer of resolution ε with b bits.

of this quantizer is to consider the discrepancy it induces as a noise, i.e.,

z = Qbε(Φx) = Φx+ q. (3.4)

If the measured signal does not saturate the quantizer, then this quanti-
zation noise is bounded by the resolution of the quantizer, i.e., ‖q‖∞ ≤ ε

2
which in turns means that ‖q‖2 ≤

√
m ε

2 . There is a trade-off, however, for
ADCs between the resolution and the sampling frequency [Wal99; Le+05;
ZO18]. So, restricting the acquisition of signals to only high-resolution
ADCs might result in more power or cost demanding hardware.
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3.3. Quantized Compressive Sensing

Futhermore, all ADCs have a finite dynamic range and thus suffer from
saturation. This effect on the reconstruction of sparse signals was studied in
[Las+11; FL18], where modifications of the reconstruction algorithms were
studied to include explicitely this effect, for example through a consistency
condition, or by ignoring the saturated measurements by relying on the
democratic property of the measurement matrix.

This thesis however, studies quantizers that are extremely coarse where
using these assumptions would result in poor reconstruction performances.

3.3.1 One-bit Quantization

We now study the coarsest quantization that exists: the 1-bit quantization.
It is defined, for real, signals as

Qε(λ) = Q1
ε(λ) = ε

2 sign (λ).

In this setting, the quantized measurements are now all saturated and the
information regarding the norm of λ is completely lost as illustrated in
Fig. 3.6a. As seen in Chapter 2, received radar signals are complex thanks
to the demodulation process and thus both the real and imaginary part
of the signal need to be acquired. The quantization of complex signals is
performed as

Qε(λR + iλI) = ε

2 sign(λR) + i ε2 sign(λI). (3.5)

The quantization process in (3.5), represented in Fig. 3.6b, effectively only
records in which quadrant in the complex plane the measurements are lying.
Given these extremely coarse measurements, using the approximation in
(3.4) is tantamount to considering a quantization noise that is as big as the
signal itself. Furthermore, this quantization noise is not independent from
the signal itself. Although classical Compressive Sensing methods are robust
to noise, ignoring the effect of this quantization limits the reconstructions
severely.

One-bit CS was first introduced in [BB08] and was then the subject of
numerous studies (see [Dir19; Bou+15] and the references therein). This
challenging acquisition setting showed that the common tools of CS such
as the (`2, `2)-RIP were not sufficient to obtain high quality reconstruc-
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− ε
2

ε
2

λ

Qε(λ)

(a)

(1 + i) ε
2

(1 − i) ε
2(−1 − i) ε

2

(−1 + i) ε
2

<

=

(b)

Figure 3.6: (a) Graphical representation of Qε(λ). (b) Extension to the complex domain.

tions. Some research relied on specific properties of the considered linear
systems, such as the (`1, `2)-RIP in [Fou17], the use of circulant matrices in
[DJR19], or the study of other properties such as the binary-ε-stable embed-
ding (BεSE) [Jac+13]. While these tools provide interesting insights into
the 1-bit CS potentialities, their applicability in a radar context are far from
straightforward. Indeed, the radar model, as presented in Chapter 2 do not
possess these specific properties such as the (`1, `2)-RIP (see Def. 3.1).

3.3.2 Additive Dithering

As mentioned in the previous section, one way of dealing with the effect of
this 1-bit quantization is to associate it to a quantization noise. In numerous
applications, noisy measurements y can be modeled as being tainted by a
Gaussian random vector n ∼ Nm(0, σ2). The common practice in signal
processing when encountering such noisy measurements is simply to increase
the duration of the acquisition (i.e., m) and leveraging the fact that

E{y + n} = y.

This property, however, for the 1-bit quantization cannot be assumed to
be true. For some systems, and in particular for FMCW radars as will
be highlighted in Part II, the coarse acquisition might discard information
about the signals of interest that cannot be recovered, regardless from the
reconstruction algorithm or the number of measurements used.
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3.3. Quantized Compressive Sensing

Indeed, beside the obvious loss of information regarding the amplitude
as Qε(y) = Qε(cy) for any c ∈ R+, some linear models might suffer from
ambiguities where two different vectors are, once measured and quantized,
sent to the same 1-bit measurement vectors.

The canonical example of this ambiguity has been introduced by [PV12]
for Bernoulli measurements. Considering a measurement matrix Φ ∈ Rm×N

made of ±1, two vectors u = [1, 0, . . . , 0]T and v = [1, α, . . . , 0]T give the
same 1-bit measurements, with α < 1, i.e.,

Qε(Φu) = Qε(Φv). (3.6)

Indeed, given the distribution of each Φij ∈ ±1 with i ∈ [m], j ∈ [N ], one
can directly observe that ∀i ∈ m, sign(Φu)i = sign(±1) = sign(±1 ± α) =
sign(Φv)i. The two 1-bit measurements vectors are identical. Chapters 4
and 5 will elaborate more on the existence of such ambiguous scenarios in
the radar setting.

One way of solving this issue is to dither the measurements, i.e., adding
a variable before the quantization, i.e., for i ∈ [m],

zi = Qε(yi + ξi).

Dithering has been studied in various fields [Wan97]. It is, for example, used
in image processing [Buh+98] to perform image compression without the
apparition of colour banding. This effect is clearly visible in Fig.3.7b where
the image in Fig.3.7a is directly quantized to 1-bit. Fig.3.7c uses the same
quantization but with an added random dither. Although both images are
represented using only binary values, the quantization used in Fig.3.7c is
able to visually retain more information about the original image.

In QCS, two modalities exist for the generation of this dither. The dither
is either randomly generated [JC17; XJ19] and thus does not depend on the
previous measurements, or it is specifically designed at each measurement or
estimation [Kam+12; Dir19; Bar+17]. This thesis will focus on the former,
as it provides the simplest hardware implementation. Indeed, generating
this dither at each measurement requires a communication between the
acquisition and the processing of the data, where as a fully random dither
does not.
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(a) y (b) Qε(y) (c) Qε(y + ξ)

Figure 3.7: 1-bit quantization applied to the Fig.3.1a in grayscale; in (a) the grayscale
image; in (b) with the deterministic 1-bit quantization; in (c) with an additive dither
added before the quantization).

In [XJ19], the authors proposed and studied uniform reconstruction
guarantee when applying a uniform dither whose dynamic matches the res-
olution of the quantizer. Although their study applies to the more general
mid-rise quantizer as introduced in the section above, we adapt and present
these results in the context of 1-bit acquisition.

The dithered 1-bit quantizer becomes

Q+
ε (y) = Qε(y + ξ),

with ξ ∈ Rm ∼ Um(− ε
2 ,

ε
2 ) if y is strictly real and ξ ∈ Cm ∼ Um(− ε

2 ,
ε
2 ) +

iUm(− ε
2 ,

ε
2 ) if the measurements to be quantized lie in the complex domain.

Measurements acquired by this process and whose measurement matrix
follows the RIP defined in Def. 3.1, can be shown to obey the following
theorem in [XJ19]:

Remark 3.3 (Remark from [XJ19] in Sec.7.3.A). If Φ ∈ Cm×N is gener-
ated by a RIP matrix distribution and if ξ ∼ Um([0, ε]), then, with high
probability and up to some missing log factors, PBP produces for all vectors
x ∈ Σ̄Ns ∈ BN an estimate x̂ from y = Qbε(Φx + ξ) whose error has the
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3.3. Quantized Compressive Sensing

following decay rate when m increases:

‖x− x̂‖2 = O
(1 + ε√

m

)
.

One can see that now, compared to the ambiguous case presented in
(3.6), there is no ambiguous scenario where the reconstruction is bounded.
If one wants a better estimate of the sparse vector, it is sufficient to simply
increase the number of measurements. Presenting the theory on which this
theorem relies is out of the scope of this simple introduction to QCS. How-
ever, we highlight here one new property that the quantized measurements
z now enjoy thanks to this dither.

Lemma 3.6. For a vector y ∈ Cm, if the resolution ε is set as ε ≥ 2‖y‖∞,
then the quantized and dithered 1-bit measurements follow

E{Q+
ε (y)} = y.

This means that the quantizer Q+
ε (·) can potentially recover all of the

information about y. Fig. 3.8 gives some insights on the underlying effect
of the added dither. It is interesting to note that this effect heavily relies

− ε
2

ε
2

y

Qε(y)

− ε
2

ε
2

1
ε

ξ

pdf(ξ)

− ε
2

ε
2

y

E{Qε(y + ξ)}∗ =

Figure 3.8: Graphical representation of the effect of the dither on the 1-bit quantization.
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on the dynamic of the dither ε with respect to the dynamic of the consid-
ered measurements. The next chapter will study in depth the effect and
requirements that this additive dithering has on radar signal processing.
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Chapter 4

Range estimation using an
FMCW radar

IN this chapter, we investigate a trade-off between the number of radar
observations (or measurements) and their resolution in the context of
radar range estimation. To this end, we introduce a novel estimation

scheme that can deal with strongly quantized received signals, going as low
as 1-bit per signal sample. We leverage for this a dithered quantized com-
pressive sensing framework that can be applied to classic radar processing
and hardware. This allows us to remove ambiguous scenarios prohibit-
ing correct range estimation from (undithered) quantized base-band radar
signal. Two range estimation algorithms are studied: Projected Back Pro-
jection (PBP) and Quantized Iterative Hard Thresholding (QIHT). The
effectiveness of the reconstruction methods combined with the dithering
strategy is shown through Monte Carlo simulations. Furthermore we show
that: (i), in dithered quantization, the accuracy of target range estimation
improves when the bit-rate (i.e., the total number of measured bits) in-
creases, whereas the accuracy of other undithered schemes saturate in this
case; and (ii), for fixed, low bit-rate scenarios, severely quantized dithered
schemes exhibit better performances than their full resolution counterparts.
These observations are confirmed using real measurements obtained in a
controlled environment, demonstrating the feasibility of the method in real
ranging applications.
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4.1 Introduction

Civilian radar applications such as automotive radar design or the growing
field of smart cities are more and more in need of small form factor and
affordable radars [HS09; End13; CE18]. As these complex applications often
require the deployment of many radar sensors working in a collaborative
mode, the increasing amount of data recorded by these systems challenges
both data transmission and processing techniques.

In this chapter we investigate a trade-off between the number of radar ob-
servations (or measurements) and their resolutions in the case of an FMCW
radar with one transmitting and one receiving antenna. While this set-
ting might seem restrictive as it only considers target range recovery, its
set-up allows us to perform thorough tests using both simulations and ac-
tual radar measurements. To this end, two range estimation algorithms,
adapted to quantized radar signal, are used: Projected Back Projection
(PBP) [XJ19] and Quantized Iterative Hard Thresholding (QIHT) [JDD13].
Compared to [Feu+18a], this work deeply investigates the comparisons be-
tween severely quantized and high-resolution measurements constrained to
the same bit-rate, i.e., between quantity and quality.

One-bit quantized compressive radar schemes have been studied in, e.g.,
[DZ15; Li+16; Wan+19]. One limiting effect is that, as the digitization
becomes coarser, ambiguities might appear between different unquantized
signals — and thus different target configurations — that are digitized to
the same bits, rendering the estimation ambiguous. These works, however,
failed to address these ambiguities. Our previous work in 1-bit quantization
applied to Frequency-Modulated Continuous-Wave radar (FMCW) [Feu+18a]
showed that these ambiguities do happen in realistic settings and measure-
ments and can be counteracted using a pre-quantization dither. Dithering
amounts to adding a designed noise on the signal, before quantizer’s action,
with the goal of attenuating quantization distortions [GS93; XJ19]. This
procedure is also used in, e.g., LIDAR imaging [RDG18] where dithering is
implemented in a real set-up by physically varying a time-delay before the
acquisition, and was studied for high sampling rate ADCs [Bra96].

Let us summarize the main contributions of this work: (i) we show that
ambiguities due to the combination of the intrinsic radar Fourier domain
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with harsh quantization exist and are removed using dithered quantization;
(ii) we observe that as the number of measurements m grows, non-dithered
quantization yields range estimation error (using either PBP or QIHT) that
saturates whereas the dithered schemes reach a decaying error when m

increases; (iii) we show that QIHT provides the best performances at low
resolution for harsh bit-rate condition; and (iv) we confirm all the above
observations on a controlled laboratory set-up using an FMCW radar.

The rest of the chapter is structured as follows. In Sec. 4.2, the com-
plete FMCW radar model (i.e., its transmission and reception principles)
is introduced, as well as a linear inverse problem formulation focused on a
Fourier sensing model of the range profile. Sec. 4.3 defines the quantiza-
tion procedure applied on the received radar signal. We then prove that
unavoidable ambiguities are induced by this scheme, i.e., the existence of
distinct received signals (and thus distinct range profiles) whose quantized
measurements are identical. A dithered quantizer is then proposed to cancel
out these ambiguous situations. Sec. 4.4 describes two algorithms capable
to estimate sparse range profiles from quantized observations, namely PBP
and QIHT. Finally, we demonstrate the efficiency of our approach through
intensive Monte Carlo simulations in Sec. 4.5, and via real radar measure-
ments in Sec. 4.6, before concluding in Sec. 4.7.

4.2 Radar System Model
This work tackles the issue of quantizing FMCW radar signals and studies
its effect on the localization performance. The time domain expression of
the received signal coming from a target located at a range R has been
introduced in (2.9). For this signal to be processed it first needs to be
sampled. Sampling r(t) at the receiver at a rate T/N for some integer N ,
i.e., at time samples ti := i(T/N), i ∈ Z, gives

r[i] = A exp
(
− i 2πfi 2R

c
)
, (4.1)

with fi := fc(ti) = f0 + B ( iN mod 1). A single ramp can thus be sampled
over at most N time samples, which implicitly determines both the resolu-
tion c/(2B) and the maximum range Rmax := cN/(2B) at which R can be
estimated.

61



Chapter 4. Range estimation using an FMCW radar

Let us now turn to a multi-target scenario restricted to a purely additive
model; all the targets are in a direct line of sight from the radar, without
any possible multipath propagation. Taking into account the radar range
resolution (c/2B) and Rmax, we discretize the range domain (0, Rmax] with
N ranges R := {Rn := n(c/2B), 1 ≤ n ≤ N}. A range profile resulting
from s targets with ranges in R is expressed as a s-sparse vector a =
(a1, · · · , aN )>, i.e., the amplitude an 6= 0 if there is a target at the nth

range bin Rn, and ‖a‖0 := | supp(a)| ≤ s. Then, the single target case (4.1)
generalizes to the multi-target sensing model

r[i] =
∑N
n=1 ane

− i 2πfi 2Rn
c =

∑N
n=1 a

′
ne
− i 2π inN , (4.2)

where a′n = ane
− i 2πnf0/B . In words, each observation r[i] at time ti

amounts to probing the ith frequency of the discrete Fourier transform the
range profile a′ = (a′1, · · · , a′N )>. Hereafter, since a′ encodes the same
range profile as a (up to a modulation), we drop the prime symbol for the
sake of simplicity. Classically, in a Nyquist sensing scenario, if we collect N
samples r = (r[1], · · · , r[N ])>, (4.2) is equivalent to r = F ∗a, with F the
Fourier matrix (i.e., Fin := exp(i 2π inN )), and an inverse Fourier transform
recovers a. For noisy observations, a sampling over multiple ramps — hence
reaching an oversampled sensing model — yields a robust estimate of a.

In this work, we leverage the sparsity assumption made on a to allow this
estimation through severely quantized, possibly oversampled, received signal
samples. Without quantization, Compressive Sensing (CS) theory from
partial random Fourier sensing matrices shows that, with high probability,
we can recover any s-sparse vector a from only m = O(s log4(N)) random
samples of r [FR13]. However, as made clear in Sec. 4.3, QCS aims to
reduce the impact of signal measurement quantization in signal estimation
by possibly increasing the number of measurements beyond N ; what truly
matters in QCS is indeed the total bit-rate B (i.e., m× the bit depth b)
used to encode the observations [Bou+15; XJ19].

Consequently, our sensing scheme is determined by sampling the received
signal r(t) over a set of m (discrete) time samples T = {t′i : 1 ≤ i ≤ m}
determined as follows. If m < N , then (t′1, · · · , t′m) is picked uniformly at
random among all possible subsets of m time samples of {ti : 1 ≤ i ≤ N}.
If m > N , in an effort to obtain an acquisition time as short as possible,
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we take then t′i = ti for 1 ≤ i ≤ Nbm/Nc, i.e., the first bm/Nc ramps
are fully sampled, and the set of m′ = m−Nbm/Nc remaining samples is
picked uniformly at random among all possible subset of m′ time samples
of {ti : Nbm/Nc+ 1 ≤ i ≤ N(bm/Nc+ 1)}, i.e., the last ramp is randomly
sub-sampled.

Correspondingly, these time samples are associated with m, possibly
non-distinct, frequencies {f ′i = fc(t′i) : 1 ≤ i ≤ m}. Finally, if Ω is a
multiset (i.e., a set with repeated elements) representing the indices of these
frequencies in [N ], the final CS model, before quantization, reads

r = Φa = F ∗Ωa, (4.3)

where Φ := F ∗Ω, FΩ gathers the (possibly repeated) columns of F indexed
in Ω, and r follows the sampling of r(t) over T . Note that for m > N ,
the addition of a dither ensures that the observations of r over repeated
frequencies carry additional information (see Sec. 4.3).

4.3 Quantization: Model & Ambiguity

We select in this work on a uniform b-bit scalar quantizer applied compo-
nentwise onto complex vectors as defined in 3.3, separately on the real and
the imaginary domains, i.e.,

Qbε(r) = Qbε(<(r)) + iQbε(=(r)), (4.4)

where b is the number of bits per vector component (i.e., the I and Q
channels), or bit depth. This quantization takes place on the received base-
band signal r using ADCs with a resolution of b bits. In (4.4), Qbε(·) is the
standard mid-riser quantizer of quantization step size ε > 0 [GS93; XJ19]

Qbε(λ) := εbλ
ε
c+ ε

2 , ∀λ ∈ R.

The step size is set to ε = αb∆, where ∆ is the dynamic range of the
ADC, i.e., its voltage range [−∆,∆], and αb = 21−b ensures that the bit-
depth of each sample is b. For example, for b = 1, the ADC is then a
simple voltage comparator over its domain, i.e., 2Q1

∆(·)/∆ ≡ sign(·). This
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definition assumes that the quantizer is adjusted to the variations of r,
i.e., we must have ∆ ≥ ‖r‖∞, with ∆ as small as possible to minimize the
quantization distortion which scales like O(ε). Note that one can also decide
to set ∆ ≥ |r[i]| only for a significant fraction of indices i, e.g., if ‖r‖∞ is
not bounded or if we allow for some saturation. Hereafter, we just assume
that ∆ is given.

Similarly to Section 3.3.2, let us stress an important limitation of a too
direct quantization of the radar sensing model (4.3): the existence of dis-
tinct vectors whose quantized Fourier observations are sent to the same
quantized vector, rendering the estimation process ambiguous. This bears
similarities with known ambiguities in 1-bit CS with binary matrices [PV14]
and for QCS for multiple antennas and a single target [Feu+18a] (see Chap-
ter 5). We show here that the same effect exists for multiple targets and
one receiving antenna.

This ambiguity is explained by the following construction. Given two dis-
tinct n0, n1 ∈ [N ], we build a0 = bn0e

− iψn0 and a1 = a0+γbn1e
− iψn1 , with

ψn0 and ψn1 two arbitrary phases in [−π, π), 0 < γ < 1, and bi ∈ {0, 1}N
the (canonical) vector whose components are all 0 but the ith (i ∈ [N ]). The
signal a0 can be seen as one unit-amplitude target at location Rn0 , while
a1 contains an additional target at Rn1 with amplitude γ. According to the
CS model (4.3), the acquired received signals are r0 = Φa0 and r1 = Φa1,
with

r0[i] = e− iψn0 e− i 2π in0
N ,

r1[i] = e− iψn0 e− i 2π in0
N + γe− iψn1 e− i 2π in1

N ,
(4.5)

Interestingly, there exist parameter values where the quantizer (4.4) sends
the two signals to the same quantized vector, i.e., for which the ambiguity
condition (AC) holds:

Qbε(r0) = Qbε(r1). (AC)

Consequently, in these cases, while the `2-distance ‖a1 − a0‖ = γ is non-
zero, recovering both a1 and a0 from their identical quantized observations
is impossible. Let us study when (AC) occurs for 1-bit quantization (b = 1),
i.e., QC

1 (·) ∝ sign (<(·)) + i sign (=(·)). In this case, (AC) involves that r0[i]
and r1[i] are always in the same quadrant of the complex plane C for all
i. Since from (4.5) r1[i] lies on a circle of center r0[i] and radius γ in C,
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Figure 4.1: test (a) Graphical representation of r0 and r1 and the domain on which r1
lies. (b) Extension to 3 targets, where the domain to consider for the verification of (AC)
is enlarged.

regardless of the values of ψn1 or Rn1 (see Fig. 4.1a), (AC) holds if

min
i

min(|<(r0[i])|, |=(r0[i])|) > γ. (4.6)

As r0[i] = e− i(ψ0+2π n0i
N ), (4.6) shows a clear dependency between the param-

eters ψ0, N ,m, and n0 for two quantized vectors to be indistinguishable. For
instance, if n0 = N/4, then we just need γ < min(| sinψ0|, | cosψ0|) for (AC)
to hold for any values of ψ1 and n1 (see Fig. 4.1a). Similar examples can be
constructed for other values of n0, as well as with multiple targets, with then
more restriction on the amplitudes of the additional targets, as suggested
in Fig. 4.1b. For b > 1, there also exist vectors satisfying (AC), but their
`2-distance must decay if b increases since Qb splits C into square cells of
size 21−b∆. Therefore, if an algorithm wrongly estimates r1 with the value
of r0, its error decays as 2−b if b increases, but this error is not ensured to
decay if m increases.

In this work, we stress that the previous ambiguities can be removed
by deliberately introducing randomness in the quantization, i.e., by insert-
ing a random dither in the quantizer input. Consequently, one can design
algorithms whose estimation error of range profile decay as m increases.
While dithered quantization is a well-known strategy to improve signal es-
timation techniques (see, e.g., [GS93; Llo52; RDG18]), its use in quantized
compressive sensing is recent and we follow here the approach of [XJ19].
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Chapter 4. Range estimation using an FMCW radar

Given a range profile a ∈ CN , our dithered QCS sensing model is thus
defined by

z = Qbε(Φa+ ξ), (4.7)

where ξ ∈ Cm is a complex dither defined as ξi = ξ<i + i ξ=i , with ξ<i , ξ=i ∼
U(− ε

2 ,
ε
2 ). This dither induces more diversity in the quantized measure-

ments, especially form > N . Moreover similarly to Lemma 3.6, Eξ{Qbε(Φa+
ξ)} = Φa, i.e., the dither cancels out the quantization error in expectation,
or, equivalently, if m is large [XJ19]. Note that this also changes the dy-
namic range of the signal before quantization, i.e., we must adapt the range
∆ ≥ ‖r‖∞ + ε

2 .

4.4 Reconstruction Algorithm

To reconstruct the range profile a from the quantized measurements y, two
algorithms are studied. The first is Projected Back Projection (PBP) that
was introduced in Chapter 3 in Def. 3.3 and is defined as follow:

â = 1
mHs

(
ΦHz

)
,

where s is the range profile sparsity, assumed known a priori, Hs is the
hard-thresholding operator setting all the components of its vector input to
zero but those with the s largest amplitudes.

The advantages of PBP are threefold. First, its complexity isO(N logN)
since ΦH only requires the computation of an inverse FFT applied on a zero-
padding1 of z from Ω to [N ] (or [ρN ] for ρ = O(1) ramps) and Hs involves
a vector component ordering of O(N logN) computations. Second, as a
function of z, PBP does not explicitly invoke the dither ξ; its implemen-
tation only requires the knowledge of Φ, i.e., of Ω. Finally, in the context
of dithered QCS, PBP enjoys a reconstruction error that decays when m

increases for all sensing matrices Φ respecting with high probability the
restricted isometry property (RIP) [XJ19], such as for the random partial
Fourier matrix in (4.3). Remark 3.3 from [XJ19] shows that, for a sparse

1In this sense, PBP is similar to a Maximum Likelihood Estimator.
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4.4. Reconstruction Algorithm

range profile a, the reconstruction guarantees is

‖a− â‖ = O(m− 1
2 ). (4.8)

In other words, compared to the undithered context, no counterexamples
exist that would make this error stagnate when m is increased.

Note that (4.8) is a root-mean-square error bound for the estimation of a.
In this work, our interest is, however, to characterize the range recovery of
several targets, i.e., the support of a. Interestingly, since ‖a−â‖∞ ≤ ‖a−â‖
one can show the following.

Lemma 4.1 (Support recovery). If a is s-sparse, with s given, and if we
know that min{|ai| : i ∈ suppa} > η for some η > 0, then, one can expect
that

m ≥ C/η2 ⇒ supp(â) = supp(a), (4.9)

for some C > 0.

Proof. Indeed, support recovery is ensured if |âi| > |âj | for all i ∈ suppa
and all j ∈ [N ] \ {suppa}, which is achieved if |ai| − |âi − ai| > |âj − aj |.
This holds if |ai| > η > 2‖a− â‖∞ = O(m−1/2), or if m ≥ C/η2.

While requiring a single iteration, PBP does not ensure that its estimate
â is consistent with z, i.e., Qbε(Φâ + ξ) 6= z = Qbε(Φa + ξ); the quantized
sensing model is thus not fully exploited while estimating a from z. To solve
this situation, [JDD13] has proposed the Quantized Iterative Hard Thresh-
olding (QIHT) algorithm, i.e., a variant of the Iterative Hard Thresholding
(IHT) [BD09] (see Def. 3.4) and of the Binary IHT [Jac+13], iteratively en-
forcing both consistency and sparsity of a signal estimate. QIHT is defined
by

âj+1 = Hs
[
âj + µ

MΦH
(
z −Qbε(Φâj + ξ)

)]
, (4.10)

where j is the iteration index, µ is a step size parameter, and â0 is the
PBP estimate. Compared to PBP, this algorithm is not ensured to con-
verge. However, numerically, QIHT often provides a sparse and consistent
estimate. If this happens at the J th iteration, i.e., z − Qbε(ΦâJ + ξ) = 0,
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Chapter 4. Range estimation using an FMCW radar

and if Φ is a random Gaussian matrix, the QIHT estimate â = âJ reaches
an error ‖a − â‖ = O(1/m) [Jac16; Fri+20]. Consequently, we decide to
also investigate the efficiency of QIHT for the radar sensing model (4.7).

While QIHT has more to offer in terms of reconstruction by enforcing
the consistency, one must also note that knowing the dither at the recon-
struction, as imposed by the computation of Qbε(ΦâJ + ξ) in (4.10), will
impact the physical implementation of the system. Indeed PBP could use
analogical random noise source such as a noise diode [Bra96], whereas QIHT
would require a more advanced implementation. A more in-depth discussion
of this different requirements is provided in Chapter 7.

4.5 Numerical Results

We here challenge the possibility of recovering sparse range profiles from
quantized radar observations, i.e., from measurements associated with the
dithered QCS model (4.7). To this aim, we present the result of extensive
Monte Carlo (MC) simulations for various parameters of our setup: we
have set the sparsity level s — the number of targets — in [2, 10], a total
bit-rate B = bm in [23, 213] with measurement number m in [23, 213] and
a bit depth b ∈ [1, 32], N = 256. Concerning QIHT, we have set µ = 1
and a total number of iterations between 20 and 100s, with an early stop
if, either, the consistency m−1∑

k(Qbε(Φâj + ξ)k=zk) between âj and a
exceeds 95%, or if the consistency decreases from the previous iterations.
Note that unquantized observations are actually associated with 32-bits
floating point variables.

For any fixed values of these parameters, 2000 trials of the MC simula-
tions were considered by randomly drawing both the sparsity range profile
a, the radar sensing matrix Φ, and the dither ξ. The resulting full resolution
signals Φa were then dithered and quantized from (4.7) before estimation
of a from PBP or QIHT.

More precisely, each s-sparse vector a was randomly built by picking
its support uniformly at random among the

(
N
s

)
possible supports, and by

independently drawing its s non-zero components as the random variable
C exp(iψ), with C ∼ U([0, 1]) and ψ ∼ U([0, 2π)), before the normalization
a← a/‖a‖∞. Following Sec. 4.2, the random sensing matrix Φ = F ∗Ω was
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Figure 4.2: [best viewed in color] (a) and (b): TPR vs log2 B for PBP; (c) and (d):
Comparison between PBP (disks) and QIHT (triangles) in function of log2 B. In all
figures, solid, dashed and dotted curves stand for dithered, undithered and unquantized
schemes, respectively. The first (second) gray vertical line represents a bit-rate of 28

(213) bits corresponding to m = 256 (m = 8192) for 1-bit and m = 16 (m = 256) for
no quantization. In (a) and (b), the resolution is represented by colors, blue for 1-bit,
green for 2-bits and gray in absence of quantization. In (c) and (d) blue stands for
1-bit PBP, red for 1-bit QIHT and gray for no quantization. Figures (a,c) and (b,d) are
for s = 2 and s = 10, respectively.

generated according to a random draw of T (inducing a random multiset
Ω). The complex dither ξ was generated as a complex random uniform
vector adjusted to Q and ε = αb∆ (see Sec. 4.3).

We assessed the efficiency of the range profile estimation by measuring
the accuracy of the support recovery. In particular, we computed the True
Positive Rate, i.e., TPR = TP/s, where the number of True Positives TP
is the number of estimated targets that were actually part of the true range
profile, i.e., TP := | supp (â) ∩ supp (a)|. We solely focus on the TPR as
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Chapter 4. Range estimation using an FMCW radar

opposed to also including the False Positive Rate as the number of targets
(i.e., s) is known a priori.

As a first evaluation of the potential of dithered quantization, we have
focused on the performances of PBP; hence establishing a reference level
for further experiments. Fig. 4.2a shows that for B = bm ∈ [28, ..., 213], low
bit-depth strategies (e.g., b ∈ 1, 2) outperform the TPR of high-resolution
quantizers (with m ≤ N at b = 25 in this bit-rate range). Moreover, in
Fig. 4.2a as well as in Fig. 4.2b, we clearly observe a TPR saturation for
undithered schemes from m = B/b ≥ N , i.e., for B ≥ 28 and B ≥ 29 at
one and two-bit quantization, respectively; deterministic quantization does
not provide more information from repeated quantized measurements in
our synthetic examples. The TPR performances of the dithered schemes,
however, continue to scale as B increases, as hinted by (4.8) and (4.9).

The simplicity of the PBP algorithm, i.e., the absence of an explicit
usage of the dither and the non-consistency of the produced estimate (see
Sec. 4.4), limits its ability to distinguish targets with weak amplitudes before
the quantization level. Therefore, as observed by comparing the TPR of
Fig. 4.2a (s = 2) and Fig. 4.2b (s = 10) for low resolutions dithered schemes,
the PBP performances are rather poor for larger values of s at identical
values of b and m = B/b. We have thus compared the performances of
QIHT — which targets consistency and explicitly uses the dither — and
PBP in Fig. 4.2c and Fig. 4.2d in the context of 1-bit quantization, as well
as in absence of quantization. In this last case, QIHT and PBP reduces
to the IHT and Thresholding algorithms [BD09; FR13], respectively, and
IHT also outperforms the Thresholding algorithm by fully exploiting the
RIP of Φ [FR13]. In these two figures, the TPR of QIHT clearly exceeds
the one of PBP in every quantization and bit-rate scenarios. Furthermore,
for large values of s, the drop in performances in Fig. 4.2d between the
non-dithered and dithered schemes for the 1-bit PBP is reduced for 1-bit
QIHT. In Fig. 4.2d, the dithered 1-bit QIHT is markedly better than any
other methods for B = 29 bits and above, reducing the bit-rate by as much
as 93.75% compared to the classic high resolution Nyquist sampling scheme.
This bit-rate corresponds to m ≥ 2N = 512 for 1-bit and m ≥ N/24 = 16
in absence of quantization; at harsh bit-rates quantity outweighs quality.

Finally, we study in Fig. 4.3 the TPR of PBP and QIHT vs s for a
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Figure 4.3: [best viewed in color] TPR vs number of targets for 1-bit PBP and 1-bit
QIHT with B = 29 bits, PBP is represented by disks and QIHT by triangles, blue stands
for 1-bit PBP, red for 1-bit QIHT, the solid lines are with additive dithering, the dashed
are without dithering.

fixed bit-rate B = 29. Here also, the gain offered by the explicit knowledge
of the dither in QIHT is quite obvious. For low s, both of the dithered
schemes have better TPR than their non dithered counterparts. However,
as s increases above 4, the performances of the 1-bit dithered PBP plum-
mets quickly below its non dithered version. On the other hand, QIHT with
dithering always outperforms its performances with non dithered quantiza-
tion. We thus conclude that, provided a uniform dithering can be imple-
mented efficiently and later reproduced in QIHT, dithered quantization has
always a positive impact on the range estimation.

4.6 Measurements in Laboratory

Sec. 4.5 has focused on the study of range estimation performances from
noiseless and synthetic simulations, under a perfect linear sensing model
(before quantization) where an idealized radar interacts with point-like tar-
gets. We thus present here different tests of resilience of both our model
and algorithms by confronting them with real data acquired in a controlled
laboratory setting.

The radar used for this experiment is the KMD2 radar [RFB], i.e., an
FMCW radar with one transmitting antenna and three receiving antennas.
The radar lies in the K -band and its bandwidth can be extended up to
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Chapter 4. Range estimation using an FMCW radar

770MHz. The AMG43-007 [AMG] is a target simulator distributed by
AMG-microwave which is able to simulate a target with varying velocity,
range, and power. In the context of this work, two simulators are used
with the velocity set to zero and with a power changing according to a
logarithmic uniform distribution. This setup allows one to simulate target
ranges up to 64m by 1m step. We thus set the bandwidth of the FMCW
radar to 150MHz to match this spatial resolution.

(a)

L1

L0

(b)

Figure 4.4: (a) Experimental setup: radar in front of the simulator. (b) Block represen-
tation of the 2 targets simulator by AMG.

The radar is placed in front of these two simulators and emits the fre-
quency pattern (2.3), the signal received by the two simulators is then de-
layed and attenuated according to user-defined parameters and then re-
emitted towards the radar (see Fig. 4.4a and Fig. 4.4b). This process allows
the simulation of a specific support while adding the concrete effect associ-
ated with the radar that are not taken into account in the developed model.
These effects range from the inherent noise in RF and electronics hardware,
IQ imbalance, non linearities in the coherent demodulation and all other
non idealities related to radar applications (e.g., the non-idealities listed
at the end of Chapter 2). This experimental setup has thus the ability to
combine the rigor and completeness of Monte Carlo simulations with the
possibility to program and repeat specific scenarios (i.e., specific a), and to
test them against a real acquisition system.

We recorded 196 runs with different sparse range profiles using the same
parametrization as in Fig. 4.2c. We observed that the SNR of the configura-
tion in Fig. 4.4a is sufficiently high to neglect the impact of the noise on the
quantization. Note that this effect was briefly addressed in [Feu+18a] by
experimentally adjusting the dither to the noise amplitude, and its thorough
theoretical study is ongoing.
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Figure 4.5: [best viewed in color] TPR vs bit-rate using real FMCW radar measurements
for s = 2. In all figures, PBP is represented by disks and QIHT by triangles, blue stands
for 1-bit PBP, red for 1-bit QIHT, and gray for no quantization, the solid lines are with
additive dithering, the dashed are without dithering.

The curves in Fig. 4.5 exhibit the same tendencies as in Fig. 4.2c. The
only difference is the TPR at which the non-dithered schemes saturate; an
effect most probably due to some discrepancies in the range profile ampli-
tudes between this setup and the previous simulations. Once again, 1-bit
dithered QIHT is the algorithm with the highest TPR from B = 26 bits
to 213, i.e., the bit-rate of a full resolution Nyquist sensing. These results
from real measurements are fully consistent with the previously developed
theory and simulations; this paves the way to more complete and practical
realizations of the proposed quantized architecture.

4.7 Discussion

In this chapter, we demonstrated that a pre-quantization dither removes
unavoidable range estimation ambiguities when one quantizes the received
radar signal. Moreover, in this dithered scheme, we proved that severe
quantization, as low as 1-bit per received signal sample, still allows for an
accurate range profile estimation as soon as the total bit-rate is large enough;
a tradeoff between the number of radar observations (or measurements) and
their resolution (or bit-depth) must be respected. Moreover, we showed that
for low bit-rate scenarios, low bit-depth exhibits better performances than
an unquantized scheme. These results are achieved thanks to two QCS re-
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construction algorithms, PBP and QIHT, that leverage the sparsity of the
range profile. Moreover, when the number of targets – and thus the spar-
sity level of the range profile – increases, Monte Carlo simulations proved
that QIHT still provides high range estimation performances by promoting
consistency with the quantized radar observations. As a proof of concept,
we obtained similar range estimation performances from quantized obser-
vations of an actual radar in a controlled environment; hence showing that
this QCS radar framework could apply in radar applications with limited
bit-rate, e.g., for radar signal reception with cheap ADCs. Future work will
address the interplay between the dither and the background noise, with a
practical realization of the proposed highly quantized and dithered archi-
tecture. On top of the noise, the other non-idealities introduced at the end
of Chapter 2 should also be added to the study. For example, the dithering
process heavily depends on the dynamic range of the received signal, which
can be modified by the RF leakage.
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Chapter 5

Range and Angle of
Arrival Estimation

WE present a novel scheme allowing for 2D target localization using
highly quantized 1-bit measurements from a Frequency Modu-
lated Continuous Wave (FMCW) radar with two receiving an-

tennas. Quantization of radar signals introduces localization artifacts; we
remove this limitation by inserting a dithering on the unquantized observa-
tions. We then adapt the projected back projection algorithm to estimate
both the range and angle of targets from the dithered quantized radar ob-
servations, with provably decaying reconstruction error when the number
of observations increases. Simulations are performed to highlight the ac-
curacy of the dithered scheme in noiseless conditions when compared to
the non-dithered and full 32-bit resolution under severe bit-rate reduction.
Measurements are performed using a radar sensor to demonstrate the ef-
fectiveness and performances of the proposed quantized dithered scheme in
real conditions. Finally, to further reduce the hardware requirements and
bit rate, we study the effect of dropping one of the baseband IQ channels
from each receiving antenna. To that end, the structure of the received sig-
nals is exploited to recover the positions of multiple targets. Simulations are
performed to highlight the accuracy and limitations of the proposed scheme
under severe bit-rate reduction.
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5.1 Introduction

Compressive sensing aims at compressively and non-adaptively sampling
structured signals, e.g., sparse or compressible signals in an appropriate
basis, by correlating them with a few random patterns, i.e., much less nu-
merous than the ambient signal dimension [CRT06b]. The compressively
observed signal is then estimated from non-linear algorithms such as basis
pursuit denoise (BPDN) [CT05], iterative hard thresholding (IHT) [BD09],
or CoSaMP [NT09].

In radar processing, CS offers the potential to simplify the acquisition
process [BS07] or to use super resolution algorithms to solve ambiguous
estimation problems [HS09]. However, the underlying assumption of such
schemes is the availability of high resolution radar signals, requiring high
bit-rate data transmission to a processing unit.

In this chapter, we aim to break this assumption and to further explore
the reconstruction of the target scene on the basis of radar signals acquired
under harsh bit-rate acquisition process, i.e., a regime where classic estima-
tion methods fail (e.g., Maximum Likelihood [Kay93]). Bit-rate reduction
in radar applications indeed opens new study directions, e.g., through the
use of 1-bit comparators to design cost-efficient acquisition hardware, or
the use of several radar sensors run in parallel with fixed data-rate, as in
Internet of Things (IOT) applications relying on a massive collection of sen-
sors. Moreover, this loss of resolution can be counteracted by increasing the
number of observations, provided that new algorithms be designed for this
context.

We propose to reconstruct the target scene in the extreme 1-bit mea-
surement regime, in a similar way to only recording the sign of each sam-
ple [BB08; Jac+13; PV13]. Comparing with the existing literature on 1-bit
quantization of “IQ” signals for different radar applications [DZ15; Li+16],
our main contributions lie in the following aspects. First, we show that esti-
mating the 2D-localization of multiple targets observed from a radar system
with two antennas under the harsh bit-rate requirement is feasible. This
problem amounts to estimating a sparse signal, whose support and phases
encode the target ranges and angles, from a quantized CS (QCS) model. In
particular, we explore the estimation in an extreme bit-rate scenario where
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every measurement takes a single bit achieved by a uniform scalar quanti-
zation combined with a random dithering vector [DJR19; XJ19; XSJ18].

Second, we provide theoretical guarantees on the estimation error of
multiple targets localization using the projected back projection (PBP) al-
gorithm [Bar+17; XJ19; XSJ18]. This is achieved by promoting in PBP a
joint support between the range profiles observed by the two antennas. In
particular, we show that the estimation error decays when the number of
quantized observations increases. We further reveal, through Monte Carlo
simulations, a certain trade-off between the number of measurements and
the total bit-rate by comparing the performances of PBP under multiple
scenarios involving one or two targets and different measurement numbers
and resolutions. The importance of the dithering process is also stressed by
the existence of strong artefacts in the 2D-localization of targets when this
dithering is not added. We demonstrate our method in real experiments,
locating corner reflectors in an anechoic chamber. In this context, we show
that the random dithering still improves the localization of targets provided
this dithering is adapted to the signal noise. Finally, by leveraging the struc-
ture between received signals from different antennas, we show that one can
further simplify the acquisition process by only recording half of the signals
outputted by the coherent demodulation, i.e., by Dropping Channels. We
show that this restriction does not affect the maximum recoverable range
but rather only renders pairs of ranges possibly ambiguous in exchange of
cutting in half the amount of data required for the estimation.

The rest of this chapter is structured as follows. The radar signal model
presented in Chapter 2 and Chapter 4 are extended to the 2D setting in
Sec. 5.2. The quantized radar observation model, the adaptation of the
PBP algorithm to the 2D-localization of multiple targets and the theoretical
analysis of its reconstruction error are provided in Sec. 5.3 and Sec. 5.4.
In Sec. 5.5, the proposed scheme is tested under different scenarios using
Monte Carlo simulations. Finally, we report the use of our framework in a
real experiment in Sec. 5.6 and introduce the Channel Dropping acquisition
in Sec. 5.7 before concluding.
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5.2 Radar System Model

In this section, we show how the 2D target localization information is lin-
early encoded in the signals recorded by a radar system involving two an-
tennas illustrated in Fig. 5.1. To that end, we extend the model of the
received signal r(t) in (2.8) introduced in Chapter 2 for one transmit and
one receive antennas to the 2 receive antennas configurations.

Let us first consider one static target located at range R > 0 and angle
θ ∈ [−π, π] from a receiving linear array comprised of two receiving antennas
Y1 and Y2, located in (0, 0) and (0, d), respectively (see Fig. 5.1).

Target

R� d

d
sin
θ

θ

(0, d)

(0, 0) Y1

Y2

Figure 5.1: Illustration of the two antennas radar system with an array of receiving
antennas.

The signal received on Yp (p ∈ {1, 2}) is:

yp(t) = As(t− τp),

where A is the complex received amplitude coefficient that depends on sev-
eral parameters such as the range R and the Radar Cross-Section (RCS) and
s(t) is the transmitted signal defined in (2.2). Under the far-field approxi-
mation, the delay τp = c−1(2R + p d sin θ) is the round-trip time between
the transmitting antenna in (0, 0), the target and Yp (p ∈ {1, 2}), with c
the speed of light.

After coherent demodulation of the FMCW radar signals as in Sec-
tion 2.3, the acquisition model links the sampling time with the frequency
that is being transmitted. The sampled signal can be seen as a measurement
of the phase-shift at time t of the transmitted frequency fc(t) depending on
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the target position. For a regular sampling at rate N/T (similarly to Chap-
ter 4), the sampled frequencies are fi := fc(i TN ), 1 ≤ i ≤ N , so that, at the
ith frequency, Yp receives the signal:

Yip = x e− i 2πfiτp ≈ x e− i 2πfi 2R
c e− i 2πf0

pd sin θ
c , (5.1)

where x is the received amplitude after the coherent demodulation. The
approximation in (5.1) is reasonable for K-band radars where B � f0, i.e.,
B = 250MHz and f0 = 24GHz respectively.

Comparing (5.1) for Y1 and Y2 shows that the angle of arrival acts as
a complex gain on Y2. Furthermore, this chapter considers a multi-target
scenario using a purely additive model. This means that all the targets are
in a direct line of sight from the radar, i.e., there is no multi-path. For
a scene with K targets, recasting (5.1) into a linear matrix sensing model
and taking advantages of the phase relation between Y1 and Y2, the sensed
signals Y = {Yip}ip ∈ Cm×2 are

Y = [y1,y2] = Φ [x,Gx], (5.2)

where x ∈ CN encodes the range profile, i.e., xn 6= 0 if there exists a tar-
get at range Rn, ‖x‖0 := | suppx| ≤ s� N , Φ = {e− i 4π

c fiRn}in ∈ Cm×N

is the range measurement matrix, G = diag(ei 2π
c f0d sin θ1 , · · · , ei 2π

c f0d sin θN )
with supp(θ) = supp(x), i.e., G is the phase difference between the first
and second receiving antennas. Therefore, the 2D-localization problem is
tantamount to estimating the support T of x from the sensing model (5.2),
hence extracting the target ranges according to the discretization {Rn}.
Comparing the phases of x1 and x2 on the index set T then allows to de-
duce the angles θT . Interestingly, in this process, only the target ranges are
discretized, i.e., the angles are estimated from continuous phase differences.
This, however, comes at a cost as this simplified two-antenna model does
not allow the recovery of multiple targets located on the same range Rn.

Note that, in the absence of quantization, inverting (5.2) can be solved
using Maximum Likelihood [Kay93] if m ≥ N , or using CS algorithms (e.g.,
IHT [BD09] or CoSaMP [NT09]) if m ≤ N .
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5.3 Quantizing Radar observations

In this work, we propose to quantize the observations Y achieved in the
digital beamforming model (5.2). Our quantization procedure relies on
the 1-bit quantizer with dithering Q+

ε defined in Chapter 3. The res-
olution ε is according to the dynamic of the received signals i.e., ε >

2 max(‖Φx1‖∞, ‖Φx2‖∞).
Our global objective is thus to estimate the localization of targets, as

encoded in the matrixX = (x1,x2) = (x,Gx) ∈ CN×2, from the quantized
observation model

Z = Q+
ε (Y ) :=

(
Q+
ε (Φx1),Q+

ε (Φx2)
)
. (5.3)

In Q+
ε , a uniform random dithering ξ ∈ Cm, i.e., ξi ∼i.i.d. UC

ε for all i ∈ [m],
is added to the quantizer input. The signals received on the different anten-
nas are dithered with different random dithering. For real sensing models,
such a dithering attenuates the impact of the quantizer on the estimation
of sparse/compressible signals in quantized CS [Bou12; JC17; XJ19], the
previous chapter also showed that dithering is necessary in ranging appli-
cations in order to be able to recover all sparse scenes. As will be clearer
below, ξ also enables accurate estimation of X, thus not only the range but
the angle of arrival as well.

As written in (5.3), we can identify a low-complexity model forX in the
case where only s targets, with distinct ranges, are observed. We quickly
see that

X ∈ Θs :=
⋃

T⊂[N ],|T |≤s
ΘT ,

with ΘT := {U ∈ CN×2 : supp(U :,1) = supp(U :,2) ⊂ T}, which is a
union of

(
N
s

)
s-dimensional subspaces. Note that, according to (5.2), since

|Gjj | = 1 we could further impose |Xj1| = |Xj2| for all j ∈ [N ]. However,
this leads to an hardly integrable non-convex constraint on the domain of
X.

The next sections assess the quality of the reconstruction that can be
obtained using these quantized measurements. To that end, we highlight
the link between this 1-bit quantization Q+

ε and the mid-rise multibit ac-
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5.4. 2D Target Localization in Quantized Radar

quisition of resolution ε. Because of the careful scaling of the resolution ε,
these two acquisitions are identical (Qε = Q1

ε) and thus, allow us to use the
framework developed in [XJ19].

5.4 2D Target Localization in Quantized Radar

Despite the quantization, the sensing model (5.3) still enables target lo-
calization. We adopt here a simple method, the projected back projection
(PBP) proposed in [XJ19], for which the estimation error provably decays
when the number of observations m increases. The PBP estimate is defined
from

X̂ = PΘs( 1
mΦHZ), (5.4)

with the projector PΘs(U) := arg minV ∈Θs ‖U − V ‖2F . In words, the esti-
mate X̂ is achieved by first back projecting Z in the signal domain thanks to
the adjoint sensing ΦH , and then taking the closest point in Θs to 1

mΦHZ

from the projector PΘs .
Interestingly, for any U ∈ CN×2, V = PΘs(U) is easily computed.

Denoting by Hs(v) the hard-thresholding operator setting all but the s

largest components (in magnitude) of v ∈ CN to zero, we first form T =
supp(Hs(u)) with u = S(U) ∈ RN+ and S(U)n = (|Un,1|2 + |Un,2|2)1/2 for
all n ∈ [N ], and then, for p ∈ {1, 2}, Vnp equals to Unp if n ∈ T , and to 0
otherwise. This provides clearly ‖PΘs(U)−U‖2F = ‖Hs(S(U))−S(U)‖22 ≤
‖ũ − S(U)‖22 for any ũ ∈ Rn+ such that | supp(ũ)| ≤ K. Since for any
U ′ ∈ Θs, ũ := S(U ′) ∈ Rn+, we thus have ‖PΘs(U) − U‖2F ≤ ‖S(U ′) −
S(U)‖22 = ‖U ′ −U‖2F as required from the definition of PΘs .

Given the estimate X̂ in (5.4), the range profile T̂ is simply obtained
as T̂ = supp

(
S(X̂)

)
, so that targets are localized in the polar coordinates

(Rn, θn) for all n ∈ T̂ with θn = arcsin
(

c
2πf0d

∠(x̂2[n]∗x̂1[n])
)
.

We now establish how the estimation error ‖X̂ −X‖F of (5.4) can be
bounded with high probability. This is important to ensure the quality of
the estimated target coordinates. To this end, given 0 < ε < 1, we first
assume that our radar sensing matrix 1√

mΦ respects the restricted isometry
property over the set Σ̄Ns := {u ∈ CN : | suppu| ≤ s} of complex s-sparse
signals, in short 1√

mΦ ∈ RIP(Σ̄Ns , ε).
Many random matrix constructions have been proved to respect the
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Chapter 5. Range and Angle of Arrival Estimation

RIP with high probability (w.h.p.1) [Bar+08; FR13; CRT06b]. Given the
discrete Fourier matrix F ∈ CN×N , the selection matrix RΩ such that
RΩu = uΩ, and provided m & δ−2s (ln s)2 lnN , if Ω ⊂ [N ] has cardinality
m and is picked uniformly at random among the

(
N
m

)
m-length subsets of

[N ], then Φ =
√
NRΩF respects w.h.p. the RIP(Σ̄Ns , δ) [FR13; Rau10].

Therefore, up to a random sub-sampling of the m frequencies {fi}, the
radar sensing matrix Φ follows a similar construction.

Second, given ν > 0, we assume that A+
b := Qbε(Φ · +ξ) satisfies the

(complex) limited projection distortion over Σ̄Ns , or A+
b ∈ LPD(Σ̄Ns ,Φ, ν),

i.e.,
1
m |〈A+

b (w),Φv〉 − 〈Φw,Φv〉| ≤ ν, ∀w,v ∈ Σ̄N ∩ BN . (5.5)

Thanks to these two conditions, we get the following guarantee on X̂.

Lemma 5.1. Given δ, ν > 0, if 1√
mΦ ∈ RIP(Σ̄N2s, δ)

and A+
b ∈ LPD(Σ̄N2s,Φ, ν), then, for all X ∈ Θs the PBP estimate

(5.4) satisfies ‖X̂ −X‖F ≤ 2(δ + 2ν).

The next proposition determines when A+
b respects the LPD, as required

by Lemma. 5.1.

Lemma 5.2. Given δ > 0, if 1√
mΦ ∈ RIP(Σ̄N2s, δ) and if m ≥

Cδ−2s ln(Ns ) ln(1 + c
δ3 ), then, w.h.p., A+

b ∈ LPD(Σ̄Ns ,Φ, 4δ(1 + ε)).

In other words, inverting the role of m and ε in the requirement of
Prop. 5.2 and assuming 1√

mΦ is RIP, up to some log factors, Prop. 5.1
shows that, w.h.p., the estimation error of PBP decays like ‖X̂ −X‖F =
O
(
(1 + ε)

√
s/m

)
when m increases.

1“w.h.p.” means with probability exceeding 1− Ce−cε2m for C, c > 0.
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5.5. Numerical Results

5.5 Numerical Results

In this section, Monte Carlo simulations are performed for different sparsity
levels to assess the accuracy of the proposed scheme for a variety of targets’
positions.

5.5.1 Parameters and metrics

We simulate the working mode of a noiseless K-Band radar, i.e., giving
f0 = 24GHz and a bandwidth of B = 250MHz. The spacing d between
the two antennas is defined as half a wavelength, i.e., d = c

2f0
, allowing for

angular estimation in [−π2 , π2 ]. In all our simulations, we set the number
of ranges N to 256, giving a range limit of Rmax = 153.6m and a range
resolution of 0.6m. We test 320 000 × s Monte Carlo runs, where s is the
considered sparsity, the targets’ localization are picked uniformly at random
in a 40×40 discretized polar domain (R, θ) ∈ [0, Rmax]×[−π/2, π/2]. In this
domain, all targets receive uniformly random phases in [0, 2π], the strongest
target being set to a unit amplitude and the weaker ones having uniformly
distributed amplitudes in [0, 1]. In order to focus on bit-rate reduction in
radar processing, a total budget of 512 bits per channel is fixed for each
acquisition with m measurements, i.e., giving m = 512 measurements for
1-bit measurement quantization (i.e., 2 complete FMCW saw-tooths), or
m = 16 for 32-bit measurements. Our regime thus leads to a bit-rate
reduction of 93.75% compared to a full acquisition with m = 256 for 32-bit
measurements. The quality of the position estimation is simply measured
as mink |Rei θ − R̂kei θ̂k |, i.e., the distance between the true target location
and the closest estimated targets in (R̂, θ̂). This quality measure is then
averaged over runs which have the same position (R, θ). These results are
reported in a 2D polar graph (Fig. 5.2, Fig. 5.3, Fig. 5.4).

5.5.2 Simulations for a Single Target Scenario

In this first simulation, we test the 2D-localization of a single target (i.e.,
X ∈ Θ1) for the dithered and non-dithered schemes. In Fig. 5.2b, the
non-dithered scheme exhibits systematic artifacts in the estimation qual-
ity. Indeed, in the context of radar localization of one target, ambiguities
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Figure 5.2: (a) Example of a possible 2D target localization ambiguity. (b) and (c),
positions error in meters for Monte Carlo simulations with one target and M = 512, for
1-bit non-dithered and 1-bit dithered quantization scheme, respectively.

appear when full resolution signals from different receiving antennas once
quantized are the same. This is similar to the limitations encountered by
the deterministic quantization that were highlighted in the previous chapter
(see Section 4.3). One obvious possibility is when the angle of arrival θ is
so small that G ≈ Id which means that Qε(Φx) = Qε(ΦGx). But this
ambiguity can only appear for small angles of arrival and does not depend
on the range. The artefacts present in Fig. 5.2b are highly structured and
depend on the range. Another possibility appears for targets with large an-
gles of arrival at certain ranges, as seen in the artifact pattern in Fig. 5.2b.
Certain ranges induce a strong repetition between quantized measurements,
as depicted for illustration in Fig. 5.2a for a range of 1

4Rmax. The measure-
ments in blue correspond to the signal coming from the first antenna and
the one in red is the phase-shifted signal received on the second antenna.
Without dithering, these signals lie in the same quadrants, even for sub-
stantially large phase-shift, and thus large θ. The quantized signals being
identical, the estimated angle is 0◦ regardless of the actual angle. This am-
biguity is the equivalent of the one presented in Chapter 4 consider a 1D
problem with more than one target but here the 2D localization problem is
considered and ambiguities appear with only one target.

The dithered scheme in Fig. 5.2c exhibits good performances on a wide
range of positions and the effect of the dithering is clearly visible by the
absence of artefacts. The drop of performances in Fig. 5.2b and Fig. 5.2c
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at ±72◦ degrees is related to the sensitivity of the arcsin function.

5.5.3 Simulations for the 2 Targets Scenario

Fig. 5.3 shows the performances of the schemes for 2 targets. When com-
pared to the non-dithered (Fig. 5.3a) or full resolution (Fig. 5.3c), the
dithered strategy in Fig. 5.3b surpasses the others constrained to the same
bit rate. Comparing Fig. 5.2c and Fig. 5.3b, a drop of performances can
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Figure 5.3: Positions error in meters for Monte Carlo simulations with two targets; (a)
m = 512, 1-bit non-dithered quantization; (b) m = 512, 1-bit dithered quantization; (c)
m = 16, 32-bit non-dithered; (d) m = 256, 32-bit full measurements.

be seen from the increase in sparsity. This is consistent with the results in
Sec. 5.3, where we showed that the bound on the error of PBP grows as the
sparsity increases. Moreover, in the absence of dithering in our quantized
radar scheme, extremely sparse signals can lead to ambiguous estimations
as was showcased in the previous Chapter (see Chap. 4). In Fig. 5.4, the
strongest and weakest estimated targets are separated to study their re-
spective accuracy. For the non-dithered scheme in Fig. 5.4a the strongest
target still exhibits artifacts whereas the weakest (Fig. 5.4b) is consistently
wrongly estimated. The dithering reduces partly these situations and offers
better performances for both targets in Fig. 5.4c and Fig. 5.4d. While the
accuracy of the second target for the dithered scheme is impressive when
compared to the non-dithered one, it is far from what can be achieved in
Fig. 5.3d for the full measurements and resolution approach. This work is
one of the first venture into radar localization using 1-bit dithered scheme
that is, furthermore, constrained to a specifically low bit-rate. In the fu-
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ture, better reconstruction qualities could be obtained by replacing PBP
with other algorithms explicitly using the dithering to reach consistent sig-
nal estimates [DJR19; Bar+17]. The reconstruction could be enhanced
using the quantized version of IHT [BD09], as was done in Chapter 4.
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Figure 5.4: Positions error in meters for Monte Carlo simulations with two targets,
m = 512 and 1-bit quantization; in (a) and (b), strongest and weakest target for the
non-dithered scheme, respectively; in (c) and (d), strongest and weakest target for the
dithered scheme, respectively.

5.6 Experimental Validation
The study of the proposed scheme is now extended to real measurements to
test the model and reconstruction algorithm against noise and non-idealities
from the environment, the targets and the radar (see Sec. 2.3).

Figure 5.5: Experiment set-up with a FMCW radar on the left and two corner reflectors
on the right.

The measurements are performed in an anechoic chamber where two
targets are located in front of a commercial radar product [RFB] at different
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Figure 5.6: Reconstruction using real measurements, (a) mean positions error for different
levels of dithering; (b) reconstructions achieved with weighted dithering.

ranges and angles (see Fig.5.5). The radar parameters, e.g., B andN , mirror
the ones used in the simulations. The proposed scheme and the developed
theory only considers the noiseless case. Practical measurements with real
radar sensors are, however, inherently corrupted by noise. To this end, the
reconstruction is studied with different levels of added dithering to assess
the impact of the already present noise on the quantization. Fig. 5.6a shows
the mean position errors for the two targets for a weighted dithering ξ̃ = αξ,
with α ∈ [0, 1], where ξ is the dithering defined in Sec. 5.3. Fig. 5.6a shows
that a certain amount of dithering is required to achieve good performance
but also that adding a full dithering (i.e., α = 1) is not the by default
optimum. Fig. 5.6b shows the reconstruction achieved using the optimal
scaling α = 0.55 of the dithering versus the absence of dithering (α = 0).
The radar is located in (0, 0). The variations in the estimations for 106
consecutive measurements are represented by the two sigma span around the
mean estimated positions. As already hinted in Fig. 5.6a, the non-dithered
scheme exhibits poor performances as it is not able to resolve the second
target at the 4.8m range. The 1-bit non-dithered quantization has effectively
removed the second target from the signal. It is interesting to see that the
effect obtained in Fig. 4.5 in the previous chapter, with an actual radar and
target simulators are replicated using here a fully practical setting. Adding
the weighted dithering allows the recovery of the two targets consistently but
at a price in the variance of the closest one. This result shows nonetheless
a promising gain of the use of dithering on real applications where noise is
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encountered.

5.7 Channel Dropping Model

In this section, we expand on the result presented in the first part of this
chapter by studying a modified acquisition setting of an FMCW radar with
two receiving antennas.

5.7.1 Modified Signal and Quantization Model

The coherent demodulation of the signals received by the antennas produces
complex signals that are each transmitted on 2 channels representing the real
and the imaginary parts as depicted in Fig. 2.5. Common radar acquisition
scheme requires the sampling of both of these channels, resulting in 2m
measurements per antenna. We propose to acquire only half of the channels
as follows:

ỹ1 = Re{y1}, ỹ2 = i Im{y2} (5.6)

This simplification, however, comes at a cost. As explained in [Feu+18a],
range estimation is equivalent to estimating the support of the spectrum of
the received signals. y1 and − iy2, being purely real signals, their spectrums
are by definition symmetric, doubling the sparsity in an ambiguous way. In
the spectrum of these incomplete measurements, a target at a range R

will appear at R and Rmax − R with a complex amplitude of α and α∗

respectively. To partly solve this problem, we observe that for one target
at (Rk, θ) :

ŷ = ỹ1 + ỹ2 (5.7)

= (1 +Gkk) e− i 2πfm 2Rk
c + (1−G∗kk) ei 2πfm 2Rk

c

Eq.(5.7) shows, provided G tends to 1 (i.e., for small angles) that the
unambiguous support of the complex signal can be approximated (i.e.,
supp(ΦH ŷ) ≈ supp(x1)). Indeed, if Gkk ≈ 1 then one can expect that
|1 +Gkk| ≥ |1−G∗kk|, which a hard-thresholding operator can recover suc-
cessfully. The next section introduces a variant of the hard-thresholding
operator Hs that can deal with this symmetry for s ≥ 2 and its impact on
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the performances.
It is important to stress that, given the Fourier nature of (5.2) some

ranges will remain ambiguous e.g., for ranges R = 0 and R = Rmax/2 and
that this limitation affects the signal regardless of the quantization.

In this work, we propose to quantize the observations Y achieved in
the digital beamforming model (5.6). Our global objective is thus to esti-
mate the localization of targets, as encoded in the matrix X = (x1,x2) =
(x,Gx) ∈ CN×2, from the quantized observation model

Z = Q̃+
ε (ΦX) :=

(
Re{Q+

ε (Φx1)}, i Im{Q+
ε (Φx2)}

)
. (5.8)

5.7.2 Modified 2D Target Localization in Quantized
Radar

Given the altered structure of the signal caused by the Dropping Channel
model and the ability of the estimate in (5.7) to recover the ranges of targets,
one needs to adapt the reconstruction algorithm. We adopt here a simple
method, which is an adaptation of PBP proposed in [XJ19] and that was
used successfully in this chapter to recover the 2D position of targets. The
estimate is, first, defined from the back-projection:

X̂ = 1
mΦHZ. (5.9)

Next, to recover the support T̂ from X̂ we rely on the approximation defined
in (5.7) to partly cancel the symmetrical shape of x̂1 and x̂2 :

T̂ = supp
(
HSym
s (x̂1 + x̂2)

)
(5.10)

where HSym
s (·) is the hard-thresholding operator which takes the s biggest

elements excluding the weakest symmetrical elements. An example of the
application of this operator is provided in Fig. 5.7. The symmetric pairs
of ambiguous targets are centred around 1

2Rmax and the hard-thresholding
operator HSym

s selects the biggest (in amplitude) of the pairs and ignores
the other. This allows the detection of targets on the whole range [0, Rmax]
but with the added restriction that targets lying at range symmetrical from
1
2Rmax will be ambiguous.

It is interesting to note that some radar modules only samples the real
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0 RmaxRmax/2

|x̂1 + x̂2|

Figure 5.7: Example of the selection operated by HSym
s for a vector x̂1 + x̂2 estimated

from the measurements of a 3-sparse vector; each pair of ambiguous peak are in different
colours and the selected peaks are highlighted in yellow.

parts of the demodulated signals, which simplifies the demodulation proce-
dure presented in Fig. 2.5. This impacts the estimation in a different way.
Because of the symmetry introduced by the strictly real measurements, the
unambiguous maximum range is Rmax

2 while the proposed model keeps the
maximum range.

The targets are localized in the polar coordinates (Rn, θn) for all n ∈ T̂ ,
with θn = arcsin

(
c

2πf0d
∠(x̂∗2[n]x̂1[n])

)
.

5.7.3 Simulations Results

The simulations setting and parameters are identical to the one used in
Sec. 5.5 and in [Feu+18a]. Fig. 5.8 shows the performances of the proposed
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Figure 5.8: Positions error in meters for Monte Carlo simulations with one target; (a)
1-bit dithered with m

N
= 20% ; (b) 1-bit dithered with m

N
= 200%; (c) 1-bit dithered with

m
N

= 200% using PBP in [Feu+18a]; (d) 1-bit non-dithered with m
N

= 200%, respectively.

scheme for different configurations for s = 1. Fig. 7.12b and Fig. 7.12a
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show that the localization error decreases as m increases. Furthermore
the bit-rate reduction compared to classic sampling scheme is of 99.69%
and 96.87% respectively. Fig. 5.8c is the performance obtained when the
scheme in [Feu+18a] is applied after channel dropping. The hard thresh-
olding operator introduced in Eq.(5.10) is shown to be the key to recover
from the omissions of channels. The artifacts showcased in [Feu+18a] and in
Sec. 5.5 resulting from the 1-bit non dithered quantization are still present
in Fig. 5.8d. The maximum angle that can be recovered is also reduced from
[Feu+18a] which is consistent with the approximation (5.7). The sparsity
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Figure 5.9: Positions error in meters for Monte Carlo simulations with two targets; (a)
1-bit non-dithered with m

N
= 200% ; (b) 1-bit dithered with m

N
= 200%; (c) 32 bit

non-dithered with m
N

= 6.25%; (d) 32 bit non-dithered with m
N

= 100%, respectively.

is increased to s = 2 in Fig. 5.9. Similarly to what has been observed in
[Feu+18a], the dithered scheme in Fig. 5.9b clearly outperforms the non-
dithered one in Fig. 5.9a. Fig. 5.9c shows the performances of the scheme
when constrained to the same bit rate, thus with a smaller m, with a classic
full acquisition scheme. The 1-bit dithered scheme represents an interesting
trade off between the bit resolution and the transmitted bit-rate when com-
pared to Fig. 5.9d. Finally the ambiguity in Rmax

2 is present, as expected in
every presented schemes.

5.8 Discussion

In this chapter, we have studied the 2D-localization of multiple targets
configurations by using two receiving antennas combined with 1-bit radar
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quantization, which resulted into the QCS model (5.8). We proved that
the PBP algorithm for the 2D-localization of targets achieves a bounded
reconstruction error decaying as the number of measurements increases.
This decaying reconstruction error of the PBP algorithm was further ver-
ified using the Monte Carlo simulations and real radar measurements. In
particular, the real radar measurements experiments with the radar sen-
sor shed light on the interaction between the system noise and the uniform
dithering. Furthermore, we showed how some deterministic artifacts van-
ish when a random dithering vector is added in the quantization process.
In the second part of this chapter we showed that on top of lowering the
resolution of the measurements, the structure of the beam-forming model
can be leveraged in order to only record half of the channels (corresponding
to the real and imaginary domain) and we showed that the reconstruction
only suffered from minor ambiguities. Future work regarding this work will
study the extension of this scheme beyond the 2D estimation of target. In-
deed, recording consecutive FMCW chirps can also be used to estimate the
velocity of targets thanks to the Doppler Effect. This work also showcased
the impact of the noise on the dithered quantization. An in-depth study of
the interplay between this added uniform random variable and the already
present Gaussian noise is one of the next steps towards using 1-bit radar in
more complex applications.

5.9 Proofs

Lemma 5.1. Given δ, ν > 0, if 1√
mΦ ∈ RIP(Σ̄N2s, δ)

and A+
b ∈ LPD(Σ̄N2s,Φ, ν), then, for all X ∈ Θs the PBP estimate

(5.4) satisfies ‖X̂ −X‖F ≤ 2(δ + 2ν).

Proof. If 1√
mΦ ∈ RIP(Σ̄N2s, δ), then 1√

mΦ ∈ RIP(Θ2s, δ) with respect to the
Frobenius norm since

| 1
m‖ΦU‖2F − ‖U‖2F | ≤ |

1
m‖Φu1‖2 − ‖u1‖2|+ | 1

M ‖Φu2‖2 − ‖u1‖2|
≤ δ(‖u1‖2 + ‖u2‖2) = δ‖U‖2F ,
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for all U = (u1,u2) ∈ Θ2s ⊂ (Σ̄N2s, Σ̄N2s). Moreover, extending the LPD (5.5)
to matrices with the Frobenius scalar product, ifA+

b ∈ LPD(Σ̄N2s,Φ, ν), then
the matrix mapA+

b ∈ LPD(Θ2s,Φ, 2ν) since 〈A+
b (W ),ΦV 〉F = 〈A+

b (w1),Φv1〉+
〈A+

b (w2),Φv2〉 for any W = (w1,w2),V = (v1,v2) ∈ Θs, and similarly
for 〈ΦW ,ΦV 〉F . The rest of the proof is a quick extension of [XJ19, Thm.
4.1] to complex N × 2 matrices belonging to the union of low-dimensional
subspaces Θs.

Lemma 5.2. Given δ > 0, if 1√
mΦ ∈ RIP(Σ̄N2s, δ) and if m ≥

Cδ−2s ln(Ns ) ln(1 + c
δ3 ), then, w.h.p., A+

b ∈ LPD(Σ̄Ns ,Φ, 4δ(1 + ε)).

Proof. Extending the LPD to real mappings, we first note that Ā+
b ∈

LPD(Σ2N
2s , Φ̄, ν) involvesA+

b ∈ LPD(Σ̄Ns ,Φ, 4ν), with Ā+
b (u) := Q(Φ̄u+ ξ),

Φ̄ := (ΦR,ΦI) ∈ Rm×2N and Σ2N
2s := Σ̄2N

2s ∩ R2N . Indeed, for all u ∈ Σ̄Ns ,
defining uR := (u>R ,−u>I )> ∈ Σ2N

2s and uI := (u>I ,u>R)> ∈ Σ2N
2s , we have

Φu = Φ̄uR + i Φ̄uI and A+
b (u) = Ā+

b (uR) + i Ā+
b (uI). Therefore, if Ā+

b ∈
LPD(Σ2N

2s , Φ̄, ν), |〈A+
b (w),Φv〉−〈Φw,Φv〉| ≤∑r,t∈{“R”,“I”} |〈Ā+

b (wr), Φ̄vt〉−
〈Φ̄wr, Φ̄vt〉| ≤ 4νm.

Interestingly, provided 1√
m‖Φ̄(u−v)‖ ≤ Lη as soon as ‖u−v‖ ≤ η for any

η > 0, L = O(1) and u,v ∈ Σ2N
2s (i.e., if 1√

m
Φ̄ is (η, L)-Lipschitz over Σ2N

2s ),
[XJ19, Prop. 6.5] proves that w.h.p. Ā+

b ∈ LPD
(
Σ2N

2s , Φ̄, ν = δ(1 + ε)
)
pro-

vided m ≥ Cδ−2s ln(Ns ) ln(1 + c
δ3 ) for some constants C, c > 0. However,

for all u := (u>1 ,u>2 )>,v := (v>1 ,v>2 )> ∈ Σ2N
2s , if 1√

mΦ ∈ RIP(Σ̄N2s, δ), then
1
2‖Φ̄(u − v)‖2 ≤ ‖ΦR(u1 − v1)‖2 + ‖ΦI(u2 − v2)‖2 = ‖Φ(u1 − v1)‖2 +
‖Φ(u2 − v2)‖2 ≤ m (1 + δ)‖u− v‖2 since ui,vi ∈ ΣN2s ⊂ Σ̄N2s, which shows
that 1√

mΦ̄ is (η, 4)-Lipschitz over Σ2N
2s for any η > 0. This concludes the

proof.
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Chapter 6

Phase-Only Acquisition as
an Extension of 1-bit
Quantization

This chapter analyses the performances of a simple reconstruction
method, namely the Projected Back-Projection (PBP), for esti-
mating the direction of a sparse signal from its phase-only (or

amplitude-less) complex Gaussian random measurements, i.e., an extension
of one-bit compressive sensing to the complex field. To study the perfor-
mances of this algorithm, we show that complex Gaussian random matrices
respect, with high probability, a variant of the Restricted Isometry Prop-
erty (RIP) relating to the `1-norm of the sparse signal measurements to
their `2-norm. This property allows us to upper-bound the reconstruction
error of PBP in the presence of phase noise. Monte Carlo simulations are
performed to highlight the performance of our approach in this phase-only
acquisition model when compared to error achieved by PBP in classical
compressive sensing.
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6.1 Introduction

One aspect of compressive sensing (CS) is to reduce the number of mea-
surements needed to achieve (high) quality reconstruction of low-complexity
signals (e.g., sparse) [Don06a; CRT06b]. Recent research has also focused
on reducing the accuracy of each measurement, e.g., by lowering their res-
olution (or bit-depth) in specific quantization contexts [BB08; Gün+10;
Jac+13; JHF11] (see Part II of this thesis). This chapter investigates
the consequences of removing the information about the amplitude of a
complex signal, i.e., using only the measurement phase for the reconstruc-
tion. While phase-only (PO) acquisition can serve as a stepping stone to
study new quantizations schemes, e.g., when quantizing the measurement
phase [Bou13b] and as developed in the next chapter (see Chap. 7 , this
sensing is tantamount to a complex form of one-bit quantization, that was
extensively studied in one-bit CS [Fou17; Jac+13; BB08]. The next chapter
of this thesis will present how this more abstract acquisition procedure can
be linked to applied scenarios.

Oppenheim and co-authors [OL81; OHL82] proved in a few seminal
contributions that real, band-limited signals can be reconstructed, up to
a lost amplitude, from the phase of their Fourier transform. More re-
cently, for phase-only CS (PO-CS) with complex Gaussian random matrices,
Boufounos determined that a specific distance between the measurement
phases of two sparse signals encodes their angular distance up to an ad-
ditive distortion [Bou13a]. While this distortion prevents us from proving
perfect estimation of sparse signal direction, the author showed experimen-
tally that this is achievable, thanks to a greedy algorithm enforcing the
phase consistency between the signal estimate and the PO measurements.

In this context, our contributions are as follows. While the question
of perfect recovery of signal direction remains open, we here focus on a
simple, non-iterative algorithm, the Projected Back-Projection (PBP, see
Sec. 6.3), and show that this method accurately estimates the direction of
sparse signals in PO-CS (Sec. 6.4). This is possible if the sensing matrix
respects a variant of the RIP, the (`1, `2)-RIP in the complex field, which
was previously introduced for (real) one-bit CS. Using tools from measure
concentration [Led91], we then prove that complex Gaussian random ma-
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trices satisfy, with high probability (w.h.p.), the (`1, `2)-RIP if the number
of measurements is large compared to the signal sparsity level (Sec. 6.5).
Note that the `1-norm of this RIP prevents a simple proof of this result by
recasting the complex field to the real field. Finally, extensive Monte Carlo
simulations confirm that the PBP estimation error for PO-CS compares
favourably to the one of an unaltered, linear CS scheme (Sec. 6.6).

6.2 Notations and conventions

The Hadamard product is �; and the angle operator (applied component-
wise onto vectors) reads ∠(ceiφ) = φ for c > 0 and φ ∈ [−π, π]. We denote
by Nm×N (µ, σ2) and CNm×N (µ, 2σ2) (dropping the symbol N if N =
1) the m × N random matrices with entries independently and identically
distributed (i.i.d.) as the normal distribution N (µ, σ2) and the complex
normal distribution CN (µ, 2σ2) ∼ N (µ<, σ2) + iN (µ=, σ2), respectively,
for some mean µ and variance σ2. Given g, g′ ∼ N (0, σ2), the random
variable (r.v.) z := |g+ i g′| is distributed as the Rayleigh distribution R(σ)
with parameter σ [Pap02].

6.3 Phase-Only sensing model

Let us consider a complex s-sparse vector x ∈ Σ̄Ns . Given a complex matrix
Φ ∈ Cm×N , this work is concerned with the following noisy non-linear
sensing model [Bou13a], which generalizes one-bit CS [Fou17; XJ19] to the
complex field:

z = signC(Φx)� ei ξ, (6.1)

where signC(·) is the complex signum operator, applied component-wise onto
vectors, i.e., signC(λ) = λ/|λ| for λ ∈ C \ {0}, and ξ stands for a possible
corruption of the measurement phase (with ξi ∈ [0, 2π), i ∈ [m]). The
matrix Φ can be, e.g., a complex Gaussian random matrix (see Sec. 6.5).

The sensing model (6.1) thus discards the amplitudes of the measure-
ments Φx; estimating x from z is possible only up to a global unknown
normalization of x, i.e., only the direction x/‖x‖2 can be estimated.

We aim to show that the projected back projection (PBP) algorithm
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[XJ19; Fou17] accurately estimates the direction of complex sparse signals
provided the complex sensing matrix respects a variant of the RIP property
(see Sec. 6.4). Given s ∈ [N ], the sensing matrix Φ, and the measurement
vector z, this algorithm is simply defined as

x̂ = Hs
(
ΦHz

)
, (PBP)

where Hs(u) is the hard thresholding operator setting all of the compo-
nents of the vector u to zero but the s strongest in amplitude (which are
unchanged). For CS, PBP is often used as the first iteration of more complex
iterative methods such as iterative hard thresholding (IHT) [BD09; XJ19].
Despite its simplicity, analyzing PBP can thus lead to better iterative recon-
struction algorithms for PO-CS. The simulations in Chapter 7 showcase the
results one can obtain when using PO measurements in conjunction with
an adapted QIHT algorithm.

6.4 Bound on the PBP reconstruction error

In CS theory, the error of most signal reconstruction algorithms is controlled
by the restricted isometry property — or (`2, `2)-RIP — of the sensing
matrix [FR13].) We repeat here the definition provided in Sec. 3.2.2, the
RIP amounts to asking that for some δ > 0,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22,

holds true for all sparse vectors x. For instance, if the (real or complex) ma-
trix Φ respects the (`2, `2)-RIP over all 2s-sparse vectors and one observes
a s-sparse vector from the model y = Φx, as seen in Theorem 3.4, the error
of the estimate x̂ = Hs(ΦHy) is bounded as ‖x− x̂‖ = O(δ) [FR13; XJ19]
(see Thm. 3.4).

As will be clear below, the capacity of PBP to estimate a sparse vec-
tor x from its complex, phase-only observations z in (6.1) depends on the
following RIP variant.
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Definition 6.1. Given δ > 0, the matrix Φ ∈ Cm×n satisfies the (`1, `2)-
RIP(s, δ) if, for all x ∈ Σ̄ns ,

(1− δ)‖x‖2 ≤ ‖Φx‖1 ≤ (1 + δ)‖x‖2.

This property was introduced for real one-bit CS [Fou17; PV14]; with it,
specific algorithms (including PBP) yield a good estimate of a real sparse
signal from the sign of its random measurements. Moreover, provided that
m is large compared to s, different types of real random matrix construc-
tions, such as Gaussian random matrices [PV14, Lemma 2.1][JHF11] or ran-
domly sub-sampled Gaussian circulant matrices [DJR19], have been shown
to respect the (`1, `2)-RIP(s, δ) w.h.p..

To bound the reconstruction error of PBP, we first need the following
lemma that is adapted from [Fou17, Lemma 3].

Lemma 6.1. If Φ satisfies the (`1, `2)-RIP(δ, s) for 0 < δ < 1 and s ∈ [N ],
then for any vector x ∈ CN with unit `2-norm such that suppx ⊂ S ⊂ [N ]
with |S| = s, ∥∥HS(ΦH signC(Φx)

)
− x

∥∥
2 ≤
√

5δ.

We can now determine the main result of this section, which derives
from an adaptation of [Fou17, Thm 8] to the complex field.

Theorem 6.2. If Φ satisfies (`1, `2)-RIP(2s,δ), then the PBP estimate x̂
of any signal x ∈ Σ̄Ns with ‖x‖2 = 1 observed via (6.1) with ‖ξ‖∞ ≤ τ

respects
‖x− x̂‖2 ≤ 2

√
5δ + 4τ. (6.2)

Proof. Let S0 and T be the s-sparse supports of x and x̂, respectively.
Writing S := S0 ∪ T (with |S| ≤ 2s) and a = ΦHz, we first note that ‖x−
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x̂‖2 ≤ ‖x−HS(a)‖2+‖x̂−HS(a)‖2, so that ‖x−x̂‖2 ≤ 2‖x−HS(a)‖2 since
x̂ is the best s-term approximation of both a and HS(a). The triangular
inequality and Lemma 6.1 then provide

‖x− HS(a)‖2 = ‖x− HS
(
ΦH [signC(Φx)� exp(i ξ)]

)
‖2

≤
√

5δ + ‖HS
(
ΦH [signC(Φx)� (1− ei ξ)]

)
‖2.

Since Φ respects the (`1, `2)-RIP(2s,δ), we get

‖HS
(
ΦH [signC(Φx)� (1− ei ξ)]

)
‖2

= sup
u∈B̄N

〈Φ(HS(u)), signC(Φx)� (1− ei ξ)〉

≤ ‖1− ei ξ‖∞ sup
u∈B̄n

‖Φ(HS(u))‖1

≤ 2‖1− ei ξ‖∞ ≤ 2‖ξ‖∞ ≤ 2τ.

Gathering all bounds provides the result.

Interestingly, (6.2) shows that one can still accurately estimate the di-
rection of a complex sparse signal in PO-CS if Φ is (`1, `2)-RIP(2s, δ) with
a small constant δ.

Moreover, as clarified in Sec. 6.5, (6.2) allows us to understand how,
for complex Gaussian sensing matrices, the error of PBP decays when m

increases. Indeed, up to some missing log factors, we prove in Thm. 6.7 that
complex Gaussian random matrices satisfy the (`1, `2)-RIP(2s, δ) w.h.p.
provided m ≥ Cδ−2s for some C > 0. By saturating this condition, we
see that, for noiseless PO-CS, PBP achieves the error

‖x− x̂‖2 = O
(

4
√
s/m

)
(6.3)

when m increases, i.e., which tends to zero for large m.
This evolution of the PBP error meets the one encountered for real

one-bit CS [Fou17] and non-linear CS [PV16]. However, this behavior is a
bit pessimistic compared to the experimental decay in O(

√
s/m) reached

by simulations (see Sec. 6.6). The exponent over δ in (6.2) could thus be
improved from

√
δ to δ. This would then match the performances of PBP in

linear CS (see the beginning of this section and Theorem 3.4) and dithered
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quantized CS [XJ19; JC17] where it reaches an error bounded by O(δ) for
(`2, `2)-RIP(2s, δ) sensing matrices, i.e., a decay in O(

√
s/m) for Gaussian

random sensing matrices.

6.5 The (`1, `2)-RIP of Complex Gaussian Ma-
trices

While one easily extends the (`2, `2)-RIP of certain random matrix construc-
tions from the real to the complex fields — e.g., by recasting the signal space
CN and measurement domain Cm to R2N and R2m, respectively [FR13] —
such an extension for (`1, `2)-RIP matrices is not known.

Fortunately, using the tools of measure concentration [Led91], we prove
below that complex Gaussian random matrices Φ respects the (`1, `2)-RIP
w.h.p. provided m is large compared to the signal sparsity. To show this,
we first establish that, given x ∈ CN , E‖Φx‖1 is proportional to ‖x‖2 since
each random variable |(Φx)i| is Rayleigh distributed.

Lemma 6.3. Given x ∈ CN and a random matrix Φ ∼ CNm×n(0, σ2)
with σ := 1

m

√
2√
π
, we have

E
[
‖Φx‖1

]
= ‖x‖2.

Proof. By decomposing both the entries of Φ and the components of x into
their real and imaginary parts, we get

‖Φx‖1 =
m∑

i=1
|
N∑

j=1
Φijxj | =

m∑

i=1

∣∣
n∑

j=1
g<ij + i g=ij

∣∣,

with g<ij := Φ<ijx<j − Φ=ijx=j and g=ij := Φ<ijx=j + Φ=ijx<j .
We note that, for all indices i, i′ ∈ [m] and j, j′ ∈ [N ], Φ<ij and Φ=ij

are Gaussian random variables with E[Φ<ij ] = E[Φ=ij ] = E[Φ<ijΦ=i′j′ ] = 0.
Therefore, g<ij , g=ij ∼i.i.d.N (0, σ2|xj |2) and a simple computation provides
Eg<ijg=i′j′ = 0. The r.v.s Γ<i :=

∑n
j=1 g

<
ij and Γ=i :=

∑n
j=1 g

=
ij are thus
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independent and distributed as N (0, σ2‖x‖22) for all i ∈ [m]. Consequently,

E
[
‖Φx‖1

]
=

m∑

i=1
E
[
|Γ<i + i Γ=i |

]
= mE

[
Γ0
]
,

where Γ0 follows a Rayleigh distributionR(σ‖x‖2). Since E[Γ0] = σ
√

π
2 ‖x‖2

[Pap02] and σ = 1
m

√
2
π , we find E

[
‖Φx‖1

]
= σ‖x‖2

√
π
2m = ‖x‖2.

The following proof uses ρ-covering of the set of complex s-sparse vectors
Σ̃Ns .

Definition 6.2. A covering Jρ is defined as the union of points uj ∈ Jρ ⊂
Σ̃Ns whose associated `2-ball of radius ρ can cover entirely the set Σ̃Ns i.e.,

Σ̃Ns ⊂ ∪
|Jρ|
j {x ∈ Σ̃Ns , ‖x− uj‖2 ≤ ρ}.

This covering has a bounded size.

Lemma 6.4 (ρ-covering of Σ̃Ns ). A ρ-covering Jρ that covers the set of
s-sparse vectors Σ̃Ns has a size that can be upper-bounded by

|Jρ| ≤
(
N

s

)
(1 + 2

ρ
)2s ≤ (eN

s
)s(1 + 2

ρ
)2s.

Proof. We note that Σ̃Ns =
⋃
S⊂[N ]:|S|=s Σ̃N (S), with Σ̃N (S) := {u ∈ B̄N :

supp(u) = S}. Moreover, Σ̃N (S) is isomorphic to B̄s, and thus to B2s. Since
this last set, and thus Σ̃N (S), can be covered with no more than (1 + 2

ρ )2s

vectors [Bar+08], a covering Jρ of Σ̃Ns can be reached by gathering all
coverings —

(
N
s

)
in total — so that

|Jρ| ≤
(
N

s

)
(1 + 2

ρ
)2s ≤ (eN

s
)s(1 + 2

ρ
)2s.
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Remark 6.1. Interestingly, by design, this covering is such that all x ∈ Σ̃Ns
can be written as x = u + r with u ∈ Jρ ⊂ Σ̃Ns , r ∈ ρB̄N ∩ Σ̃Ns = ρΣ̃Ns ,
with suppx = suppu = supp r.

We also need this classical result from Ledoux and Talagrand [Led91,
Eq. 1.6], see also [JHF11, Lemma 5].

Lemma 6.5. If the function F is Lipschitz with λ = ‖F‖Lip, then, for
r > 0 and γ ∼ Nm(0, 1),

P
(∣∣F (γ)− E(F (γ))

∣∣ > r
)
≤ 2 exp(−1

2r
2λ−2).

In our developments, F will be of the following kind.

Lemma 6.6. The functions G : u ∈ Cm 7→ ‖u‖1 ∈ R+ and of G′ :
(u<,u=) ∈ Rm×2 7→ ‖(u<,u=)‖2,1 ∈ R+ have a Lipschitz constant equal to√
m.

Proof. For all u,v ∈ Cm, |‖u‖1 − ‖v‖1| ≤ ‖u− v‖1 ≤
√
m‖u− v‖2, which

gives the Lipschitz constant of G. The one of G′ follows from ‖u‖1 =
‖(u<,u=)‖2,1 .

We are now ready to prove the main result of this section.

Theorem 6.7. Let δ ∈ (0, 1), σ = 1
m

√
2√
π
, and Φ ∼ CNm×N (0, σ2) be

a complex Gaussian random matrix. If m ≥ 36
π δ
−2[s log

(
eN
s (1 + 6

δ )2) +
log( 2

η )
]
, then, with probability exceeding 1 − η, the matrix Φ satisfies the

(`1, `2)-RIP(s, δ).
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Proof. The proof strategy follows the one developed in [Bar+08] for proving
that real Gaussian random matrices satisfy the (`2, `2)-RIP w.h.p.. By
homogeneity of the (`1, `2)-RIP, it is enough to prove that complex Gaussian
random matrices satisfy it w.h.p. for all vectors of Σ̃Ns := Σ̄Ns ∩ B̄N .

We first show that for a fixed vector x ∈ CN , ‖Φx‖1 concentrates around
‖x‖2. Using the r.v.s Γ<i ,Γ=i defined in the proof of Lemma 6.3, we can write

p := P
( ∣∣‖Φx‖1 − ‖x‖2

∣∣ > t‖x‖2
)

= P
( ∣∣

m∑

i=1

(
(Γ<i )2 + (Γ=i )2)1/2 − ‖x‖2

∣∣ > t‖x‖2
)

= P
( ∣∣

m∑

i=1

(
(γ<i )2 + (γ=i )2)1/2 −m

√
π

2
∣∣ > tm

√
π

2
)
,

where we defined the independent Gaussian random vectors γ<,γ=∼i.i.d.Nm(0, 1).
Since

∑m
i=1
(
(γ<i )2 + (γ=i )2)1/2 = ‖(γ<,γ=)‖2,1, Lemma 6.5 provides

p = P
( ∣∣ ‖(γ<,γ=)‖2,1 −m

√
π

2
∣∣ > tm

√
π

2
)

≤ 2 exp
(
− π

4 t
2m
)

(6.4)

by considering γ = (γ<,γ=) as a 2m Gaussian random vector, with the
function F (γ) := ‖(γ<,γ=)‖2,1 whose Lipschitz constant is characterized
in Lemma 6.6. Therefore, given x and t > 0, we have

∣∣‖Φx‖1 − ‖x‖2
∣∣ ≤ t‖x‖2,

with probability exceeding 1− p ≥ 1− 2 exp
(
− π

4 t
2m
)
.

We now extend this result to all vectors of Σ̃Ns by first determining when
this concentration holds for all the vectors of a ρ-covering of this domain
defined in Lemma 6.4 — that is a set such that all elements of Σ̃Ns are no
more than ρ > 0 far apart from an element of this covering — and by finally
extending this property to Σ̃Ns by continuity.

Using (6.4), by union bound over all the vectors of Jρ, the event

Eρ,t :
∣∣‖Φu‖1 − ‖u‖2| ≤ t, ∀u ∈ Jρ, (6.5)
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holds with failure probability pρ,t := P(Ecρ,t) at most

pρ,t ≤ 2
(eN
s

)s(1 + 2
ρ

)2s exp
(
− π

4 t
2m
)
.

Let us assume Eρ,t holds and pick an arbitrary x ∈ Σ̃Ns . As explained
above in Remark 6.1, we can write x = u + r with u ∈ Jρ, r ∈ ρΣ̃Ns , and
suppx = suppu = supp r.

Using (6.5), and the properties of the covering, we get

|‖Φx‖1 − ‖x‖2| = |‖Φ(u+ r)‖1 − ‖(u+ r)‖2|
≤ |‖Φu‖1 − ‖u‖2|+ |‖Φ(u+ r)‖1 − ‖Φu‖1|
+ |‖u+ r‖2 − ‖u‖2| ≤ t+ ρ+ ρ‖Φ(ρ−1r)‖1,

where we used multiple times the triangular inequality. However, ρ−1r ∈
Σ̃Ns and we can recursively apply the same development to ‖Φ(ρ−1r)‖1, so
that

|‖Φx‖1 − ‖x‖2| ≤ (t+ ρ)
+∞∑

k=0
ρk = t+ ρ

1− ρ .

Setting t = ρ = δ/3 for some 0 < δ < 1, we get t+ρ
1−ρ ≤ δ. From the

analysis of Eρ,t above, we finally obtain that |‖Φx‖1−‖x‖2| ≤ δ holds true
for all x ∈ Σ̃Ns — i.e., the (`1, `2)-RIP is verified — with failure probability
at most

p δ
3 ,
δ
3
≤ 2
(eN
s

)s(1 + 6
δ

)2s exp
(
− π

36δ
2m
)
.

We conclude the proof by observing that p δ
3 ,
δ
3
≤ η for 0 < η < 1 if m ≥

36
π δ
−2[s log

(
eN
s (1 + 6

δ )2)+ log( 2
η )
]
.

6.6 Simulations

We now assess the tightness of our theoretical analysis through Monte Carlo
simulations. We do not aim to demonstrate the superiority of (PBP) over
other methods but to study the potentialities of such a simple algorithm in
PO-CS.

As a first experiment, we have tested the estimation of complex sparse
signals x in CN with N = 256 for different sparsity levels s ∈ [N ] and
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Figure 6.1: (Best viewed in color) Reconstruction error of (PBP) for different measure-
ment models. (dashed lines) compressive sensing; (solid lines) phase-only measurements.
The colors represent the sparsity, namely s = 2 in red, s = 4 in blue, s = 10 in green,
s = 20 in yellow, and s = 50 in black. The dotted lines represent the rates of m−

1
2 in

gray and m−
1
4 in black.

measurement number m. Two acquisition strategies were compared: the
phase-only acquisition fixed by the model (6.1), and classical compressive
sensing where we directly acquire the measurement vector y := Φx without
alteration. For each combination of s and m, the performances of both
strategies have been tested over 100 000 generations of the sparse signal
x and the complex Gaussian random matrix Φ ∼ CN (0, σ2), with σ2 set
to 2/(πm2) and 1/m for the phase-only and the CS scenario, respectively.
Each sparse signal x was created by picking a s-sparse support uniformly
at random amongst the

(
N
s

)
possible supports, inserting in this support s

i.i.d. complex values picked uniformly at random before normalizing. We
analyzed the reconstruction error of the signal direction with the metric
E(x, x̂) := ‖x − ‖x̂‖−1

2 x̂‖2, where x̂ is the (PBP) estimate. Comparing
the two schemes in Fig. 6.1 for different sparsity levels, we observe that
the reconstruction error achieved from phase-only measurements exhibits
good performances given the absence of the amplitude information. The
experimental convergence rate is also matching the one of the CS scheme;
it scales as m− 1

2 when m increases instead of the pessimistic rate in m− 1
4

predicted by the theory in (6.3). The phase-only scheme seems to only suffer
from a constant loss (in dB) when compared to the classic model.

In a second experiment, we have studied the performances of PBP in the
presence of phase noise. In this new test, we kept the same parameters as
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Figure 6.2: Reconstruction error of (PBP) for noiseless (dashed lines) and noisy mea-
surements (solid lines) for different τ with s = 10 and m = 64.

above, restricting only the sparsity level and the number of measurements to
s = 10 and m = 64, respectively. The phase noise ξ in (6.1) was generated
according to a uniform distribution between −τ and τ , with τ ∈ [0, 4π]. As
established (6.2), the reconstruction error E(x, x̂) increases almost linearly
when τ increases from 0 to π, before saturating at

√
2 from τ > π. In other

words, from that noise level, phase-only measurements are too noisy and
〈x, x̂〉 ≈ 0. Furthermore, the additive nature of the degradation in (6.2)
is clearly visible when comparing the noiseless in dashed gray and noisy
reconstruction in solid blue.

6.7 Discussion

In this chapter, we have studied how to estimate the direction of complex
sparse vectors from noisy phase-only measurements. We proved theoreti-
cally that the estimate yielded by the projected back projection of noisy
phase-only measurement has bounded and stable reconstruction error pro-
vided that the sensing matrix satisfies an extension of the (`1, `2)-RIP in the
complex field. Moreover, we showed that m×N complex Gaussian random
matrices respect w.h.p. this property with distortion δ > 0 provided that m
is large compared to the signal sparsity level s, i.e., m = O(δ−2s log(Nδs )).
The proof of this result leverages the tools of measure concentration since
the `1-norm prevents a simple recasting of the complex (`1, `2)-RIP to a real
domain of larger dimension. We finally analyzed the tightness of our the-
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oretical developments through Monte Carlo simulations. They confirmed
that, despite the lack of amplitude information, we can reach arbitrary high
accuracy on the estimation of sparse signal direction provided m/s is large,
with an experimental error rate decaying as 1/

√
m when m increases, thus

faster than our theoretical error rate in 1/m1/4. The discrepancy between
this two rates will be studied in future work, as well as the impact of phase
quantization and additive noise on the phase-only sensing model.

The results introduced in this chapter show that, even basic algorithm
like PBP can have strong theoretical guarantees. In [JF21] these results
were extended to the use of instance optimal algorithms like BPDN (see
Theorem 3.2) and showed that perfect recovery is possible for models relying
on complex Gaussian matrices.
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Chapter 7

Multiplicative Dithering
for 1-bit CS Radar

In this chapter, we tackle the issue of implementing a dithering proce-
dure for the 1-bit quantization of radar signals that is able to generate
high quality estimates while remaining a low complexity and cost effi-

cient solution. Specifically, we stray away from the additive dithering that
induces, as will be made clear, a complex and high cost implementation.
Instead, we propose the use of a multiplicative dithering. This process can
leverage already existing radar architecture of Frequency Modulated Con-
tinuous Wave (FMCW) radars and can be thus efficiently implemented.
The efficiency of this multiplicative dithering is first studied theoretically
and its link to another coarse quantization scheme, namely the Phase-Only
acquisition, is highlighted. The performances of this novel dithering scheme
is then extensively tested using Monte Carlo simulations and is then thor-
oughly compared to its additive counter-part. A hardware relaxed version
of the random phase dithering is also introduced and compared to the other
1-bit schemes. The observations made in simulations are then validated us-
ing actual radar measurements at 24GHz. These measurements, combined
with the simulations, show that the multiplicative dithering is a good alter-
native to the additive random dithering in a low number of measurements
setting. Specifically, we show that this procedure is a good trade-off between
strong theoretical guarantees and reconstruction quality for low complexity
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hardware.

7.1 Problem Statement

In applications where the aim of 1-bit quantization is to lower the require-
ment on the hardware by either lowering the cost or the power consumption,
the design of the dithering process is capital. Indeed, if no dithering is ap-
plied, the implementation is extremely simplified but at a cost in terms of
performances as shown in the previous chapters of this thesis (Chapter 4
and 5) and in [Feu+18b; JC17; PV12; Feu+18a]. In [PV12] for Bernoulli
matrices and in [Feu+18a; Feu+18b] for Fourier matrices, authors showed
that applying this extremely low resolution quantizer on noiseless data can
results in ambiguous scenarios preventing high quality reconstruction. One
such scenario arises when two different sparse vectors, once quantized, are
sent exactly to the same bits. This removes any possibility to distinguish
them after quantization. For example

Qε(Φx0) = Qε(Φx1),

with x0 6= x1. This is one of the reasons that motivated the use of additive
dithering in highly quantized applications. This can be modeled by a vector
ξ ∈ Cm that is added to the signal before the quantization. As seen in
Part II and Sec. 3.3.2, the quantizer then becomes :

Q+
ε (y) := Qε(y + ξ).

There exist different ways of generating this dither. Authors in [Kam+12;
Dir19; Bar+17] proposed to generate these varying thresholds according to
the previous measurements in order to extract the most information possi-
ble out of those coarse 1-bit measurements. While this process of generating
tailored thresholds in a iterative fashion induces a steep performance gain
in the reconstruction, this process implies a feedback loop between the re-
construction and the 1-bit acquisition that can be quite expensive, be it in
cost or power to implement. Indeed, it requires a generation of the varying
thresholds that can be entirely controlled by the processing unit and of high
resolution.
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Authors in [XJ19], proposed to use a dither that is generated randomly
according to a uniform distribution ξ ∼ Um(− ε

2 ,
ε
2 ). They were able to show

that by leveraging the effect of this dither on the quantized data, one can
upperbound the `2-reconstruction of the Projected-Back Projection (PBP)
algorithm (Remark 3.3 from [XJ19]). This way of dithering only requires
a generation of the dither but no control or influence by the reconstruction
algorithm, it is purely random.

In Fig. 7.1, the hardware introduced in Fig. 2.5 is modified for the 1-
bit and additively dithered acquisition. It is clear that adding a uniform
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Figure 7.1: Example of FMCW radar architecture with additive dithering and 1-bit
quantization

random variable gives interesting recovery guarantees [XJ19] and as seen
in Part II. Actually implementing this dither in practice, however, comes
with numerous challenges. Indeed, and as stated before, the added dither
must follow a uniform distribution that spans the dynamic of the measured
signal, i.e., ‖y‖∞. The problems associated to this constraint are twofold.
First, one must find a way of generating this uniform random variable in
hardware at a cost or power consumption that is still attractive compared
to high resolution ADCs. This means either finding a hardware component
that is able to generate this dither or using high resolution DACs. One can
already notice that trading high resolution ADCs for high resolutions DACs
does not really simplify the acquisition process. Second, having this random
variable span the dynamic of the signal implies that this dynamic is partially
known. This assumption is a rather strong one given the high variability
of received powers that can be encountered in radar signals. Indeed, for a
constant RCS (radar cross section), the received power varies as O(R−4)
in a monostatic radar (see the radar’s equation (2) in Chapter 2.1). This
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means that there is more than a 10dB loss of amplitude every time the range
of a target doubles. The simulations in Section 6.6 will highlight further
the impact of an imperfect estimate or knowledge of this dynamic. The
last issue with this architecture is the fact that certain algorithms, such as
QIHT introduced in this thesis in (4.10), require the exact knowledge of the
dithering that was used in order to impose a consistency condition between
the measurement and the estimated signal. This means that the dither must
be controlled or measured before or during the acquisition, which imposes
further constraint on the hardware.

Given the issues associated with this additive dithering but the need
of going beyond the simple deterministic quantization, we set out to find
another way of dithering signals coming from FMCW radars. We introduce
the multiplicative dither that modifies the phases of the measured signals
before the 1-bit quantization according to unitary vector with a random
phase.

The contributions of the chapter are the following: (i) we show that using
a multiplicative dither in the context of 1-bit quantization is a viable trade-
off between reconstruction performances and complexity of implementation
in hardware; (ii) we further show that one can relax the random nature of
the phase used in this dither to a structured one without sacrificing too much
performances while simplifying even more the hardware implementation of
the dithering process; (iii) this structured dither is shown to enable the use
of consistency based algorithm (like QIHT) without any added complexity
that is commonly found in the additive procedure; (iv) we show that this
multiplicative scheme has reconstruction performances bounded by what
is achievable by Phase-Only acquisition; (v) similarly to Part II, we show
that PO measurement for Fourier based measurements are subject to am-
biguities. (vi) finally, all of those results are confirmed using Monte Carlo
simulations and real radar measurements.

This chapter is structured as follows. Section 7.1 introduces the issue of
implementing an efficient dithering procedure. Sec. 7.2 introduces the mul-
tiplicative dithering studied in this paper and highlights its advantages com-
pared to the additive dither in terms of practical implementation. Sec. 7.3
links the multiplicative dithering to the PO acquisition and studies its lim-
its in terms of uniform recovery guarantees of Fourier based measurements.
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Sec. 7.4 studies a non-uniform `2-bound on the discrepancy between the
reconstruction obtained with this multiplicative dither and the PO-CS ac-
quisition. The results of Monte-Carlo simulations are presented in Sec. 7.5.
These performances are then asserted in Section 7.6, where real radar mea-
surements are used. Finally, conclusions and future works are presented in
Section 7.7.

7.2 Multiplicative Dithering

In this chapter, instead of dithering the amplitudes of the received signal
in the real and imaginary domain, we propose to dither their phases by
multiplying the signal with a unitary signal with a random phase. The
proposed quantization process can be represented as :

Q�(y) = c�Q(y � ξ)� ξ∗,

with c� = π
4 . A complete study of the performance of this scheme is

presented is Section 7.4.
This way of dithering solves the first issue brought up by the previous

section regarding the additive scheme. It is indeed amplitude independent
and can be thus applied without the knowledge of the dynamic of the signal
‖y‖∞. Furthermore, dithering the phase can be achieved using different
and already existing architectures. Using a non zero-if demodulation ar-
chitecture [MSM17] such as in Fig. 7.2. One needs to generate the dither
ξ∗(t), the radar transmits the original signal s(t) and then the received RF
signal rRF (t)is demodulated by s(t)ξ∗(t). The coherent demodulation in
(2.4) then becomes

rn0(t) = rRF (t)
(
s(t)ξ∗(t)

)∗ = r(t)ξ(t).

Sampling the time signal rn0(t), similarly to Part II, finally gives r� ξ.

Another way of randomly modifying the phase of the received signal is
to modify the signal after its coherent demodulation. In Fig. 7.3, the base-
band signals are multiplied by the real and imaginary parts of the dither
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Figure 7.2: Example of FMCW radar architecture with non zero IF demodulation and
1-bit quantization

ξ∗(t) = ξR(t) + i ξI(t) and combined in the following way,

r(t)× ξ(t) =rR(t)× ξR(t)− rI(t)× ξI(t)
+ i
(
rR(t)× ξI(t) + rI(t)× ξR(t)

)
.

This process can be easily implemented with off-the-shelf components. In-
deed, it only requires base-band components operating thus at low frequen-
cies. These are both inexpensive and require low power compared to their
RF counterparts. A future publication will study an actual 1-bit radar
prototype based on this architecture.

Tx

Rx

×

×
−π
2

RADAR RF Hardware

Analog

LP F

LP F

1-Bit

1-Bit

Acquisition
& Processing

Digital

DSPξR

ξI

×
×
×

ξI

×

+
−

+

+
+

+

Figure 7.3: Example of FMCW radar architecture with multiplicative dithering and 1-bit
quantization

While the application of the dither has been simplified in the architecture
found in Fig. 7.2 and Fig. 7.3, there is still some complexity involved in the
generation of the dither ξ itself. Indeed, in both dithering methods, be it
additive or multiplicative, the dither needs to follow a specific distribution
that one must generate before applying it to the radar signals. Although
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the multiplicative dither does not require the knowledge of the dynamic of
the signal, its random phase still requires the use of high resolution DACs
for its generation.

We now propose to relax this constraint on the randomness of the phase
of the dither by replacing it by a deterministic function that can be eas-
ily implemented in hardware. The unitary dither with a random phase is
replaced by

ξ∗(t) := exp (i ∆f t+ χ). (7.1)

This tremendously simplifies the hardware implementation. In the con-
text of Fig. 7.3, one only needs to create two signals, namely cos(∆f t) and
sin(∆f t) using a known frequency ∆f . Sine and cosine functions are eas-
ily generated using based-band components without using high resolution
DACs [GTH71].

Aside from the obvious hardware simplification that this structured
dither provides, it can also be leveraged in algorithms that enforce a consis-
tency between the measurements and the estimate such as QIHT [JDD13;
Feu+18b]. Indeed, only the knowledge of ∆f and of the sampling times
(e.g., ti in Sec. 4.2) are needed to recreate this dither and use it in the re-
construction. The reconstructed sparse signal will just be phase-shifted by
the unknown phase χ, which is inconsequential in most radar applications.
This also means that there is no need for a synchronisation or feedback
between the dither and the radar and the processing. The multiplicative
dithering and its generation act as a completely separate system, simpli-
fying its implementation even further compared to system that requires
the control or knowledge of the dither to enforce consistency [Kam+12;
Feu+18b]. It is also interesting to note that although this multiplication
by a single tone dither might increase the frequency content of acquired
signal, its total bandwidth remains unchanged which means the sampling
frequency remains constant. This deterministic dithering only works for
models where increasing the number of measurements corresponds to ac-
quiring (before the quantization) repetitions of the signals, like in ranging
applications with FMCW radars.

While being advantageous in its implementation, using a multiplicative
dither, as we will see in the next sections, does not provide as strong theo-
retical guarantees as the one provided by the additive dithering. While the
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performances of the additive dithering are upper-bounded by what can be
obtained by classic high resolution measurements as E(Q+

ε (y)) = y [XJ19]
(see also Lem. 3.6) . Acquiring the measurements using Q�(·) does not
capture all of the information about the signal of interest. This is best
exhibited by

Lemma 7.1. For Q�(·), any a ∈ C, we have

Eξ{Q�(a)} = signC(a).

Proof. For a = eiφc, with c ∈ R+, a dither ξ = eiψ, with ψ ∼ U(0, 2π), and
defining α := φ+ ψ, one can show

Eξ[Q�(a)] = c�
2π

∫ 2π

0
Q(aeiψ)e−iψdψ

= 1
2e

iφ
∫ π

2

0
Q(eiα)e− iαdα

=
√

2
2 eiφ+i π4

∫ π
2

0
e− iαdα

= eiφ = signC (a).

Here lies the big difference with the additive scheme: the multiplicative
dither loses information from the signal in expectation. One of its strength,
being independent of the amplitude, induces a weaker reconstruction guar-
antees as part of the information about Φx is lost and cannot be retrieved
regardless the number of measurements m used.

7.3 Limitations of Phase-Only acquisition
Because the multiplicative dither is linked to the Phase-Only acquisition,
we now focus in this section on the limitations that this acquisition process
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might encounter with Fourier based measurements. For any algorithms to
be able to reconstruct all sparse vectors from their measurements, be it
quantized or other acquisition modality, these measurements need to be
different from one another. This statement is obvious in the case of classic
linear measurements where, if Φ ∈ Cm×N follows the (`2, `2)-RIP(δ, 2s),
two different sparse vectors x0 6= x1 ∈ Σ̄Ns once measured can be said to
follow

(1− δ)‖x0 − x1‖22 ≤ 1
m‖Φx0 −Φx1‖22 ≤ (1 + δ)‖x0 − x1‖22,

which simply implies that Φx0 6= Φx1.

This simple observation cannot be assumed to be true when using harsh
deterministic quantizer (e.g., Qε(·)) [Jac+13]. Although the Phase-Only
operator can be seen has having an infinite resolution in the phase domain
where the other quantizers are limited to a fixed set of values (e.g., number
of quadrants), this acquisition can also suffer from ambiguous measurements
similar to the one experienced by Qε in Chapter 4 and 5.

For example, one can find 2 vectors x0,x1 ∈ CN , with x0 6= x1, such
that

signC(Φx0) = signC(Φx1), (7.2)

which simply means that ∠(Φx0) = ∠(Φx1). One obvious case is when the
two signals are the same but with different amplitude e.g., x0 = ax1, with
a ∈ R+. These ambiguous scenarios are, however, inconsequential in the
setting of radar estimation as the absolute amplitude of reconstructed radar
scene is rarely of interest compared to the relative power between elements
of x. Other pairs x0, x1 that satisfy (7.2) can be found using the properties
of the Fourier transform. For two measured signals to have the same phase,
there exists a vector H ∈ Rm+ , such that

signC(Φx) = signC(H �Φx),

for a given vector x ∈ CN . Given the properties of Fourier transforms, it
means that this filter H ∈ Rm+ can be expressed from the measurements
domain to the signal domain as H �Φx = Φ(h ∗ x), with h ∈ CN being
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the Fourier transform of H. In words, any pairs of vectors x0,x1 will give
ambiguous measurements if one vector can be expressed as the convolution
of the other with a vector whose Fourier transform is strictly positive.

Fig. 7.4 illustrates this ambiguous scenario for a 1-sparse vector x and a
filter H(t) = 1 +α cos(2π t

3Ts ), with |α| ≤ 1 and 1
Ts

the sampling frequency.
Because all components of the resulting H are positive, the phase of the
measured signals, r0 = Φx and r1 = HΦx, are identical. The ambiguous

r0[m]

r1[m]

<

=

Figure 7.4: Example of an ambiguous scenario where the PO measurements from the
blue and red signals are identical

scenario presented in the measurements domain in Fig. 7.4 is also repre-
sented in the signal domain in Fig. 7.5. The convolution between the vector
x and h is represented in red, where the sparsity of the resulting vector
has increased.

0 f

Figure 7.5: Example, in the frequency domain, of an ambiguous scenario where the PO
measurements from the x and h ∗ x signals are identical, the filter h is represented in
green

The mere existence of these ambiguous scenarios for Fourier based model
has a dire impact on the maximum theoretical guarantees that the PO ac-
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quisition, and consequently the Q�(·) acquisition scheme, can have. Indeed,
theoretical guarantees of the type obtained for PO-CS in [JF21; Feu+19]
and in Chapter 6 for complex Gaussian matrices are out of reach for Fourier
measurements as some vectors fall in these ambiguous scenarios. But this
fact should not disqualify completely the PO acquisition, and its quantized
counter-part Q�(·), in the context of radar signal processing.

Given the conditions to have sparse vectors whose PO measurements are
ambiguous, one can observe that one vector, because of the convolution with
h, has a smaller support than the other (as depicted in Fig. 7.5). This has
several consequences in the context of the estimation of sparse radar scene.
One the one hand, if the lower sparsity level signal is the one observed by
the radar, then sparsity promoting procedures, e.g., hard-thresholding, will
favour this vector over the larger sparsity one during the reconstruction.
On the other hand, for a sparse radar scene to be ambiguous with another
one once measured is fairly unlikely. Indeed, the power reflected by each
target depends on different factors and their phases are often modelled as
random [Sko80]. But the factorization of the scene as x0 = h∗x1 requires a
specific structure on both the support and the actual complex values of x0

with respect to the individual values of x1 to be valid. All of this makes us
confident that using 1-bit sensing with multiplicative dithering can provide
a good trade-off between performances and cost of implementation.

7.4 Reconstruction Guarantee

We now study the reconstruction guarantees of the proposed quantization
scheme using the PBP algorithm. To that end, we compare the reconstruc-
tion of the multiplicatively dithered phase quantizer Q�(·) to the Phase
Only acquisition signC(·). Indeed, as indicated by Lemma 7.1, the proposed
1-bit scheme will be lower bounded by the performances of this acquisition
scheme.

For a support S defined as the index set given by the hard thresholding
of the back-projection algorithm from multiplicatively dithered 1-bit data,
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the reconstruction can be expressed as:

‖x− x̂‖2 =‖x− 1
m

(
ΦHQ�(Φx)

)
S‖2

≤2‖x− 1
m

(
ΦHQ�(Φx)

)
T ‖2

≤2‖x− 1
m

(
ΦH signC(Φx)

)
T ‖2

+ 2
m
‖
(
ΦH(signC(Φx)−Q�(Φx))

)
T ‖2 (7.3)

with T := supp (x) ∪ S. The triangle inequality highlights two terms in
(7.3), first the reconstruction using Phase-Only measurements and then a
degradation term between the 1-bit measurements and the PO measure-
ments.

A parallel can be drawn between (7.3) and the interplay between the
1-bit acquisition with additive dithering and the classic acquisition with-
out quantization. As the former tends to the latter for high number of
measurements [XJ19].

As highlighted in the previous section, the Phase-Only acquisition, us-
ing Fourier based measurements, cannot guarantee uniform reconstruction
results. Consequently, we only focus on a non-uniform guarantes for the dif-
ference between the Phase-Only and 1-bit quantization with multiplicative
dithering.

While there is no bound on the reconstruction of PBP using Phase-
Only measurement, reconstructing signals from the phase of their Fourier
measurements has been a subject of interest for decades. Oppenheim in
various publications [OL81; OHL82] tackled this issue for images. They
proposed a reconstruction algorithm that can reconstruct images from the
phases of their Fourier transform. This algorithm however relies on the
fact that considered images are real. More recently, authors in [Feu+19;
JF21] studied the recovery guarantees that one can expect from Phase-
Only measurement using the framework of Compressive Sensing. Their
results applied to complex sparse vectors but assumed a linear model where
the measurement matrix follows the (`1, `2)-RIP which cannot be directly
applied to Fourier based measurements. The reconstruction of complex
sparse vector from PO Fourier measurements is still an open and interesting
question. However and as will be highlighted in the simulations in Section
7.5, the theoretical limitations of Phase-Only acquisition does not mean
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that the reconstruction from these measurements are of poor quality.
Let us now study a non-uniform bound on the `2-degradation between

the PO and 1-bit with multiplicative dithering. For the coming proof, we
consider the canonic multiplicative dither whose phase follows a uniform
distribution i.e., ∠ξ ∼ Um(0, 2π). The difference between this unstructured
random dither and the structured single tone dithering introduced in Sec. 7.2
will be thoroughly studied in the simulations in Section 7.5.

Theorem 7.2. For a given complex s-sparse vector x ∈ Σ̃Ns , and a mea-
surement matrix Φ ∈ Cm×N that follows the (`2, `2)-RIP(2s, δ) and with
the PO (signC(·)) and the 1-bit quantization with multiplicative dithering
(Q�(·)), and for all support set T of size 2s. One can bound, with a prob-
ability of failure upper-bounded by exp

(
−mγ2

4c2
�

)
,

‖
(
ΦT (signC(y)−Q�(y))

)
T ‖2 < 2mγ (7.4)

provided m ≥ 8γ−2s(log( eN2s ) + 2(1 + π
γ
√

2 )).

The bound in (7.4) combined with the condition imposed on the number
of measurement m shows that the discrepancy between the reconstruction
using quantized and PO measurements follows O(m− 1

2 ). In other words, the
`2 degradation between the PO and multiplicative dithered measurements
can be made arbitrary small given a sufficiently high number of measure-
ments.

7.5 Simulations
We now assess the developed multiplicative scheme by carrying out Monte-
Carlo simulations. 100 runs are performed for each set of parameters. At
each run, a s-sparse vector is generated. The support is set according to a
uniform distribution, the amplitudes of each non zero component are then
generated as random uniform variables and given a random phase. The
resulting s-sparse vector is then normalized. The linear measurements are
generated by the multiplication of these sparse vectors by a matrices made
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of elements of a Fourier transform. We define the dimensions of the sparse
vector x ∈ CN with N = 256 and we vary the number of measurements
as m = µN with µ ∈ [2−6, 24]. When µ ≤ 1 we sub-sample the Fourier
transform, which, in the FMCW radar model amounts to sub-sampling the
elements of one demodulated chirp (see Chap. 4). When µ > 1 then whole
repetitions of the Fourier matrix are taken corresponding thus to multiple
consecutive chirps. Five different acquisitions are compared: the classic
linear acquisition ( ), the one bit-acquisition with additive dithering Q+

ε

( ), the phase only acquisition signC ( ), and 1-bit acquisition with
multiplicative dithering Q� ( ). These 1-bit schemes with dithering are
also compared with the deterministic 1-bit acquisition Qε ( ). Those
quantized data are then processed with the two different algorithms that
were introduced in Chapter 3, namely PBP and QIHT.

7.5.1 `2 reconstruction

Fig. 7.6 compares the different acquisition schemes using the PBP algo-
rithm. One can first see that the additive dithering behaves as expected
by the theory and has a `2 error that decreases as O(m− 1

2 ) (see Part II
and [XJ19]). While this behaviour guarantees an arbitrary low reconstruc-
tion error for a number of measurements m high enough, for low number of
measurements (e.g., m ≤ 4N) it is clearly outperformed by the other low
resolution schemes. The random multiplicative dithering achieves a recon-
struction quality that is better than the additive dithering for any number of
measurements presented in Fig. 7.6. Indeed, for µ ≤ 1 it follows closely the
non-dithered curve (Qε) before outperforming it and resolving to the perfor-
mances of the Phase-Only acquisition. This is consistent with the Lemma
7.1 and the non-uniform bound developed in Theorem 7.2. The only caveat
to these performances is that for higher values of m, the additive scheme
reaches the performances of the linear classic acquisition without quantiza-
tion, thus possibly reaching a perfect reconstruction while the multiplicative
scheme will still be bounded by the PO performances. It is important to
note that, increasing the number of measurements has also a price in terms
of data transfer, thus, the quality of the reconstruction of the multiplicative
scheme combined with the relative low values of m required for its success
makes it an appealing alternative.
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Figure 7.6: Comparison of different reconstructions using PBP between different quan-
tization schemes for s = 10, 1-bit with additive dither in red; 1-bit without dither in
yellow; 1-bit with multiplicative dither in blue; Phase-Only acquisition in green; with-
out quantization in gray; the dotted curve in gray represent O(m−

1
2 ).

In Fig. 7.7, we now study the performances of an iterative algorithm,
namely QIHT. One can observe that the PO acquisition used in conjunc-
tion with QIHT algorithm yield high quality reconstructions. Consequently
the multiplicative dithering that has its performances bounded by the PO
reconstruction, outperforms the additive dither for any number of measure-
ments below 24N . Indeed, it follows the deterministic quantization and
then continues to exhibits a rate of O(m−1) while the deterministic quan-
tization plateaus at µ ≥ 1. It is interesting to see that his rate of O(m−1)
has also been observed in other 1-bit setting but with stronger theoretical
guarantees [Jac+13]. We clearly see that, while the multiplicative case does
not have as strong guarantees as the additive dither, it still has impressive
performances and allows good reconstruction while keeping the number of
measurements low, especially given the fact that it requires less complex
hardware to apply the dither.

The simulations in Fig. 7.6 and Fig. 7.7 showcase the performances of an
ideal multiplicative dithering that has a random phase distributed uniformly
in the complex domain. In Fig. 7.8, we compare this random dithering with
the proposed structured single tone complex exponential defined in (7.1). At
each run, the frequency of this complex exponential ∆f is chosen at random
as U([− 1

2Ts ,
1

2Ts ]). This known ∆f is then used to enforce the consistency
between the estimated and received radar signal, as only this value is needed
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Figure 7.7: Comparison of different reconstructions using QIHT between different quan-
tization schemes for s = 10, 1-bit with additive dither in red; 1-bit without dither in
yellow; 1-bit with multiplicative dither in blue; Phase-Only acquisition in green; with-
out quantization in gray; the dotted curve in gray represent O(m−

1
2 ), the black dotted

curve O(m−1).

to reconstruct the dither used in the quantization. The curves in Fig. 7.8
are almost identical. This shows that the hardware implementation can
be further simplified by removing the randomness of the phase and simply
using off-the-shelf sine and cosine generator at a known frequency. One can
now use consistency promoting algorithms without actually measuring or
controlling exactly the dither that is applied to the measurements before
the quantization.
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Figure 7.8: Comparison between the random dithering in blue and the deterministic and
structured dither in red for s = 10; for the PBP algorithm in solid; and QIHT in dashed;
the dotted curve in gray represent O(m−

1
2 ), the black dotted curve O(m−1).
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In Fig. 7.9, the resilience of the different 1-bit quantization schemes are
tested against the imperfect knowledge of the dynamic of the signal Φx.
As mentioned in Section 7.2, an estimate of the signal’s dynamic is needed
for the additive dithering process and thus impacts its performances, while
the multiplicative dither does not depend on the dynamic as it only af-
fects the phase. To mimick the effect of this imperfect knowledge of the
signal’s dynamic, the size of the additive dither is changed randomly fol-
lowing ε

2 = ‖Φx‖∞10β , with β ∼ U(−1, 1). One can see that this small

−2 −1 0 1 2 3 4

−10

−5

0
+++ +++ +++ +++

+++

+++

+++

+++

+++

+++

+++

+++

+++

+++ +++
+++ +++

+++
+++

+++ +++

+++
+++

+++ +++

+++

+++

+++

•

•

•

•
• • • •

•

•

•

•

log2( m
N )

10
lo

g 1
0
(‖

x
0
−

x̂ ‖x̂
‖
‖ 2

)

Figure 7.9: Comparison for s = 10 of different 1-bit scheme; using, in solid, PBP, QIHT in
dashed, 1-bit with additive dither in red with perfect dynamic estimation; 1-bit additive
dithering with imperfect dynamic estimation in green, and the 1-bit with multiplicative
dither in blue.

unknown on the dynamic induces a deterioration of almost 5dB on the
additive scheme for both the PBP and QIHT algorithm. This highlights
clearly the robustness provided by the multiplicative dither. As only the
phase is impacted, the scheme does not require nor suppose anything on the
measured signals amplitude, simplifying again the implementation of this
scheme in an actual acquisition board.

7.5.2 Support Recovery Performances

The previous simulations focused on the reconstruction error using the `2-
norm. In some application however, recovering the position of the different
targets is the only focus, not the actual value of the RCS of the different
targets. To that end, one can study the TPR (True Positive Rate), as a way
of assessing the support recovery, similarly to Chap. 4. The TPR is defined
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as
TPR = |{i ∈ [N ] s.t. |x̂i| > 0 and |xi| > 0}|

K
.

In Fig. 7.10 and Fig. 7.11, we compare the TPR for the different algorithms
and 1-bit acquisition processes for s = 4 and s = 20. As seen in [Feu+18b]
and in Part II, the additive scheme is not robust to an increase of the sparsity
for low number of measurements. For both algorithms, the multiplicative
dither, again, either follows the deterministic quantization before outper-
forming it for higher number of measurements. Using this multiplicative
dither, according to the simulations, ensures that the reconstruction cannot
be worse than the deterministic quantization and can see up to a 10− 15%
increases in TPR, especially using QIHT in Fig. 7.11.
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Figure 7.10: Comparison of PBP in terms of TPR for s = 4 solid, s = 20 in dashed; 1-bit
with additive dither in red; 1-bit without dither in yellow; 1-bit with multiplicative
structured dither in blue.

7.6 Radar Measurements

To assess the quality of the proposed scheme, we used the dataset featured
in [Feu+18b] and in Part II. In this paper, the authors used a 24GHz radar
made by RFBEAM [RFB] to measure the signals reflected by 2 target sim-
ulators developed by [AMG]. These devices are able to reflect the signal
transmitted by the radar back to itself with a specific delay and gain, thus
simulating targets at a specific ranges.

A complete explanation of the set-up can be found in [Feu+18b] and in
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Figure 7.11: Comparison of QIHT in terms of TPR for s = 4 solid, s = 20 in dashed,
1-bit with additive dither in red; 1-bit without dither in yellow; 1-bit with multiplicative
structured dither in blue.

(a)

L1

L0

(b)

Figure 7.12: Radar measurements set-up: (a) the KMD2 radar in front of the target
simulator; (b) its functional representation.

Chapter 4. To study the effect of a high number of targets, these 2-sparse
measurements are combined to generate realistic high sparsity measure-
ments by assuming a simple additive model. For each sparsity level, a 100
Monte-Carlo runs are performed. Where, in order to simulate a s-sparse
vector, s2 experiments with disjoint supports are combined.

In Fig. 7.13, we recreated the setting of Fig. 7.6 using the same param-
eters and reconstruction algorithm i.e., PBP. To estimate the `2 error, the
vector x is defined as the back-projection of the mean of the linear mea-
surements to which an oracle hard-thresholding using the set support by
the target simulators is applied. The observations made in the simulations
are confirmed using real measurements. There is a stark degradation of
the additive scheme for high sparsity level (s = 10) with respect to the
multiplicative dithering for low number of measurements (e.g., m ≤ 4N).
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Although done in a lab using target simulators, these measurements are not
exactly noiseless, as seen by the `2-reconstruction reached by the classical
linear measurements which saturates around −7dB, giving thus an approxi-
mation of the SNR during the acquisition. This value bounds the rest of the
different schemes and also explains why the non-dithered scheme also varies
with the number of measurements. Indeed, the noise still acts as an imper-
fect dither and thus impacts the reconstruction. One can observe, although
admittedly small, the beneficial effect of the multiplicative dither on the
reconstruction. Similarly to the previous section, in Fig. 7.14, the different
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Figure 7.13: `2 reconstruction for s = 10 with PBP using actual radar measurements, 1-
bit with additive dither in red; 1-bit without dither in yellow; 1-bit with multiplicative
structured dither in blue ; without quantization in gray; the dotted curve in gray
represent O(m−

1
2 ).

acquisitions are compared using the TPR. Again the observations made in
Fig. 7.10 are again confirmed here. For low sparsity level, the multiplicative
dither outperforms the deterministic quantization. Increasing the sparsity
level to s = 20, one can also observe a drop in performances of the additive
scheme that is not experienced by the multiplicative one that only resolves
— as also observed in Fig. 7.13 — to the deterministic 1-bit quantizer.

The results showcased in this section clearly show that using a multi-
plicative dither provides the best trade-off between hardware requirements
and performances between the robustness of the deterministic scheme for
high sparsity level and the high quality reconstruction provided by the ad-
ditive dithering.
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Figure 7.14: Comparison of different TPR using actual radar measurements, for s = 4
solid, s = 20 in dashed, 1-bit with additive dither in red; 1-bit without dither in yellow;
1-bit with multiplicative structured dither in blue.

7.7 Discussion

In this chapter, we showed that using a multiplicative dithering with radar
measurements is a viable trade-off between performances, hardware com-
plexity and theoretical guarantees. Indeed, this work stems from the fact
that using an additive dither increases dramatically the complexity of the
hardware, negating the gains of the low resolution 1-bit acquisition. The
multiplicative dithering of radar signal can be implemented efficiently and
relies on already existing hardware architectures. Although the theory uses
a dither with random phase, we showed that this condition can be relaxed to
a single tone complex exponential, simplifying the architecture even further
and relaxing the conditions on reconstruction algorithms that uses the con-
sistency. The developed theory showed that the reconstruction error of this
scheme is linked to the one of the Phase-Only acquisition process. More-
over, a non-uniform bound on the discrepancy between these two modalities
was also studied and shown to behave as O(m− 1

2 ). Next, the simulations
showed that the proposed multiplicative dithering 1-bit scheme provides a
good trade-off between the number of measurements needed and the sensi-
tivity to the sparsity level of the signal. These results were then confirmed
using real radar measurements.

Future works will focus on the two main aspects of this chapter: the
practicality of the proposed scheme and theoretical guarantees and limita-
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tions of the PO acquisition. The architecture for the multiplicative dither-
ing presented in Fig. 7.3 will be implemented in a radar prototype and is
effectiveness demonstrated. The extension of the model to the angle of
arrival will also be studied. This chapter also showed that uniform recon-
struction guarantees for Fourier based measurements using the Phase-Only
acquisition cannot be developed. This was shown by highlighting that PO
measurements can be ambiguous for pairs of sparse vectors. It would be,
however, interesting to study this problem further by developing guarantees
that can properly deal with these ambiguities.

7.8 Proofs

We first develop a lemma that along with Lemma 7.1 will be used in the
main proof.

Lemma 7.3 (Bound related to phase error). For Q�(·) and signC(·) for
any a ∈ C, one can bound

|Q�(a)− signC (a)| ≤ π

4 .

Proof. Let us define, without loss of generality, a = ejφ and ξ = ejψ, one
can first bound

|∠Q�(a)− ∠ signC (a)| = |∠Q(ejφ+jψ)e−jψ − ∠ejφ|

= |∠Q(ejφ
′
)− ∠ejφ

′ | ≤ π

4 ,

with φ′ := φ+ ψ.
Considering now a phase difference of β such that ∠Q�(a)−∠signC (a) =

β, one can bound

|Q�(a)− signC a| = |
√

2π4 e
iβ − 1| = 1 + 2

(π
4

)2
− 2
√

2π4 cosβ.
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Setting β = π
4 finally gives the desired bound

|Q�(a)− signC (a)| = 1− (1− π

4 )π2 ≤
π

4 . (7.5)

Upper bounding (7.5) by π
4 is made out of convenience and to highlight

the fact that Q�(·) effectively quantizes the phase of the signal, not its
amplitude.

Lemma 7.3 and Lemma 7.1 combined with Hoeffding’s inequality, are
used in the following theorem to upper-bound the `2 discrepancy between
the multiplicative and PO reconstruction using PBP.

Theorem 7.2. For a given complex s-sparse vector x ∈ Σ̃Ns , and a mea-
surement matrix Φ ∈ Cm×N that follows the (`2, `2)-RIP(2s, δ) and with
the PO (signC(·)) and the 1-bit quantization with multiplicative dithering
(Q�(·)), and for all support set T of size 2s. One can bound, with a prob-
ability of failure upper-bounded by exp

(
−mγ2

4c2
�

)
,

‖
(
ΦT (signC(y)−Q�(y))

)
T ‖2 < 2mγ

provided m ≥ 8γ−2s(log( eN2s ) + 2(1 + π
γ
√

2 )).

Proof. Starting with

‖
(
ΦT (signC(y)−Q�(y))

)
T ‖2 =

sup
u∈BN

supp(u)∈T

〈Φu, signC(y)−Q�(y)〉. (7.6)

Using Lemma 7.1 one can leverage Hoeffding’s inequality to upper-bound
(7.6). Each quantized ith element of the scalar product are bounded by
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|ΦiuQ�(yi)| ≤ |Φiu|c�
√

2. For a given u, (7.6) becomes

P(‖(ΦT (signC(y)−Q�(y)))S‖2 > mγ) ≤

2 exp
(
− m2γ2

‖Φu‖22c2�

)
.

Leveraging the (`2,`2)-RIP(2s, δ) defined in Def 3.1 we have that ‖Φu‖22 ≤
m(1 + δ), the expression then becomes

P{‖
(
ΦT (signC(y)−Q�(y))

)
T ‖2 > mγ}

≤2 exp
(
−mγ

2

2c2�

)
. (7.7)

This relationship is only valid for one given u, one needs thus to extend it
to all possible u using a covering and a union bound argument. One can
define a ρ-covering Jρ of the 2s-sparse space in Σ̃N2s as defined in Lemma 6.4.
Using this covering, one can express any u as u = a+r, with a ∈ Jρ ∈ ρΣ̃N2s
and r ∈ Σ̃N2s with ‖r‖2 ≤ ρ. The inequality is then extended as follows

‖(ΦT (signC(y)−Q�(y)))S‖2
= 〈Φ(a+ r), signC(y)−Q�(y)〉
≤ mγ + 〈Φr, signC(y)−Q�(y)〉,

where (7.7) is extended to all the elements of Jρ, thanks to a union bound
argument. This holds with a probability of failure upper bounded by
2( eN2s )2s(1 + 2

ρ )4s exp
(
−mγ2

c�

)
using the bound of |Jρ| in Lemma 6.4. One

just needs to bound the last term depending on r to conclude the proof.
Given its norm and the fact that Φ follows the (`2, `2)-RIP(2s, δ), one can
bound the second term using Lemma 7.3 and Cauchy-Schwarz inequality

‖(ΦT (signC(y)−Q�(y)))S‖2 ≤ mγ + ‖Φr‖2
π

4
√
m

≤ mγ +
√

2ρπ4m.

Setting ρ = 4√
2πγ, finally gives

‖(ΦT (signC(y)−Q�(y)))S‖2 ≤ 2mγ,
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with a probability of failure upper-bounded by

pγ ≤ 2(eN2s )2s(1 + π

γ
√

2
)4s exp

(
−mγ

2

2c2�

)
. (7.8)

Finally, provided that m ≥ 8γ−2s(log( eN2s ) + 2(1 + π
γ
√

2 )), one can upper-
bound the probability in (7.8) by

(eN2s )2s(1 + π

γ
√

2
)4s exp

(
−mγ

2

2c2�

)
≤ exp

(
−mγ

2

4c2�

)
.
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Quantizing the
Reconstruction





Chapter 8

Binarizing the
Reconstruction in 1-bit CS

In this chapter we demonstrate a uniform upper-bound on the `2 recon-
struction of sparse vectors from their (possibly low resolution) mea-
surements using a modified version of the Projected Back-Projection

(PBP) algorithm referred to as Quantized PBP (QPBP). Lowering the res-
olution directly in the processing can yield more cost or power efficient
architectures [CA04] as the arithmetical operations used to perform the re-
construction are simplified. More specifically, we study two different types
of 1-bit back-projection operators. The first being the direct quantization of
the full matrix used for the back-projection, lowering thus its resolution to
1-bit. The application of this modified back-projection is still done through
a classic matrix-vector multiplication of known complexity O(mN). The
second quantization process takes advantage of back-projection operators
that can be factorized in multiple matrices with fewer non-zero elements
than the mN of the full matrix ΦH , which results in faster matrix-vector
multiplications. The Discrete Fourier transform matrix, for example, can be
factorized into log2(N) matrices of size N ×N with 2N non-zero elements
on each sub-matrices. This ubiquitous fast matrix vector multiplication
representation of the Fourier transform is known as the Fast Fourier Trans-
form (FFT) [CT65]. In the context of QPBP, each non-zero element of
the sub-matrices is quantized in order to benefit both from the simplified
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operations and to keep the computation complexity unchanged. For both
those quantized reconstruction schemes, we show that the `2 error obtained
using these modified QPBP algorithm decay as O(m− 1

2 ) when applied to
both linear and 1-bit measurements. Those theoretical bounds are then
confirmed using extensive Monte-Carlo simulations.

8.1 Problem Statement

In order to recover a signal x from its measurements z = A(Φx) (e.g., (·) or
Q+
ε (·)), most algorithms use in their estimation process the back-projection

of vectors from the measurements domain Cm to the signal domain CN . For
example the Back-Projection of the measurements z ∈ Cm is

x̃ = ΦHz.

Depending on the considered application, applying this back-projection can
be seen as the Maximum Likelihood Estimator (MLE) of x given Φ and z
[Kay93]. Adding a hard thresholding Hs on x̃ corresponds to the well known
Back-Projection algorithm that has been extensively studied throughout
this thesis. But other algorithms such as IHT and its quantized variant
QIHT as well as others [FR13; Fou17] depend on the back-projection to
estimate this vector x.

For these algorithms to be attractive, it is thus capital, to have a Back-
Projection that can be computed efficiently. To that end, we study in the
first part of this chapter Back-Projection operators ΦH that are quantized
to 1-bit, e.g., ΨH = Q+

ν (ΦH), with ‖Φ‖∞,∞ ≤ ν
2 .

High resolution back-projection implemented on dedicated hardware,
such as Field Progammable Gate Array (FPGA), are usually computed
using high resolution multipliers. The back-projection is simply a weighted
sum expressed as

x̃i =
N∑

j

φ∗ijzj .

TheseN multiplications between the measurements and the different weights
φ∗ij must be computed at high resolutions, requiring high cost or power
[EL04; Bha+11].
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In the 1-bit case, the weights φ∗ij are now sent, thanks to the quantizer
Q+
ν to 4 points in the complex plane, e.g., ψ∗ij ∈ [1,−1, i,− i].
This means that the estimate x̃i which is computed as x̃i =

∑N
j ψ

∗
ijzj ,

amounts simply to summing the different measurements zj with a changed
sign or by multiplying by ± i.

zi

+1sign(zRi ) |zRi |
+ i

−1sign(zIi) |zIi|
×

Q(Φ∗
ji) = − i

=
−1 |zIi|

+ i
−1 |zRi |

Figure 8.1: Representation of the multiplication of a complex measurement zi, repre-
sented in complex binary form, by Q(Φ∗ji) = − i.

After the quantization, each complex measurement is represented using
2 arrays of b-bits with 1-bit each for the sign of the real and imaginary part
and the b − 1 bits devoted to the quantized measurements of resolution ε

(see Fig. 8.1). Taking the negative value of zi amounts to simply changing
the bits that are allocated to the sign of the real and imaginary part while
multiplying by ± i amounts to simply swapping the real and imaginary part
of zi with the correct signs as shown in Fig. 8.1. Part of the complexity
related to the multiplication has been drammatically lowered.

This work is also partly connected to the study of mixed operator in
CS [HN10], and on sensing matrix corruption [HS10; PCS11]. In [HN10;
HS10] the authors considered performing the reconstruction using a sensing
operator deviating from the original one, in this context the mismatch be-
tween the two operators is seen as multiplicative noise. The main difference
with our work (apart from the use of highly quantized measurements) is
that, in [HN10], no assumption is made on the structure of the mismatch
which results in quite stringent conditions for the reconstruction of signals.
The developed theory in [HN10] only allows for ≈ 5% (in a `2 sense) dis-
crepancy between the two operators. Whereas our proposed scheme creates
a mismatch that is as big (in amplitude) as the maximum component of
the matrix, but leverages the added dither to obtain reconstruction error
that scales down with an increasing number of measurements. In [PCS11],
the authors adapted the Message Passing Approach to solve this challenge.
Their studies however only revolved around perturbations that can be linked
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to a Gaussian distribution.
The claims of this chapter are the following: in the first part, (i) we

prove a uniform bound on the degradation between PBP and QPBP ap-
plied as a simple matrix vector multiplication, and show that it decays as
O(m− 1

2 ), provided Φ follows the RIP and for both linear and 1-bit quantized
measurements; (ii) we extend this uniform bound to matrices that have ef-
ficient matrix-vector multiplication through a factorized model, where we
only quantized the non-zero elements of this representation. This model is
shown to also decays as O(m− 1

2 ) for both linear and 1-bit quantized mea-
surements; (iii) we validate these results through Monte-Carlo simulations
for Fourier and Gaussian complex matrices, which also highlight the neces-
sity of adding the dither before the quantization.

The chapter is organized as follow: in Sec. 8.2 the signal and pertubed
reconstruction models are presented, Sec. 8.3 introduces the different nota-
tions that are used in the proofs, Sec. 8.4 studies the direct quantization of
the matrix used for the Back-Projection, these results are then extended in
Sec 8.5 to matrices that have an efficient matrix-vector representation using
a factorized model, all of these guarantees are studied using Monte-Carlo
simulations in Sec. 8.6, the details of the different proofs are in Sec. 8.8.
Finally, we conclude and propose future works in Sec. 8.7.

8.2 Signal and Quantized Reconstruction Model
We focus on the following linear model

y = Φx,

where y ∈ Cm are the linear measurements, Φ ∈ Cm×N is the measurement
matrix and x ∈ Σ̃Ns is an s-sparse vector. As in Part II, we also consider the
quantization of y to 1-bit using the 1-bit quantizer with additive dithering
(Q+

ε ). We furthermore consider, as is usual in compressive sensing, that
the matrix Φ follows the (`2, `2)-RIP(δ, 2s) defined in Def. 3.1. The last
assumption on the model is that the measurements are `∞-bounded, which
is an inherent requirement of 1-bit quantization with an additive dither that
is scaled according the dynamic of the linear measurements. Having `∞-
bounded measurements also means that the elements of Φ are also bounded,
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8.2. Signal and Quantized Reconstruction Model

with ‖Φ‖∞,∞ ≤ ν
2 .

For the reconstruction, we focus on the Projected Back-Projection algo-
rithm [FR13], namely the signal estimate

x̂ = 1
mHs(AHb),

where Hs(u) is the hard thresholding operator that zeroes all but the s
biggest components of u in amplitude. Depending on the combination of A
and b, we obtain different schemes. In classical PBP, A = Φ and b = Φx
[FR13] with the reconstruction bound presented in Theorem 3.4, and in
PBPQ A = Φ and b = Q+

ε (Φx), where the authors in [XJ19] showed
that the reconstruction behaves as O(m− 1

2 ). In this chapter, we first study
what happens when we quantize Φ, and set A = Q+

ν (Φ), what we refer as
the QPBP and QPBPQ algorithms, with the Q added at the end of QPBP
depending on the resolution of the measurements. In the rest of this chapter
we consider the 1-bit quantizer defined in (3.5) that sends the measurements
to [±1±i] (up to some constant related to the resolution) which is equivalent
to [1,−1, i,− i] up to a phase-shift. The conclusion regarding the hardware
simplification in Sec. 8.2 still stands.

We refer to the perturbed back-projection operator as ΨH ∈ CN×m.
Our study focuses on Back-Projection operators that are the 1-bit equiv-
alent of the classic back-projection with an added dither, where first, the
quantization is applied component wise directly on ΦH (as studied in Sec-
tion. 8.4), and second, where it is applied on each non-zero elements of a
factorized matrix as will be introduced in Section 8.5.

To study the reconstruction using a perturbed back-projection operator
ΨH , it is sufficient to study the degradation between the classic reconstruc-
tion ΦH and the modified one, i.e., for any ΨH one can bound

‖x− x̂‖2 = ‖x− 1
m

(
ΨHz

)
S‖2 ≤ 2‖x− 1

m

(
ΨHz

)
T ‖2

≤ 2‖x− 1
m

(
ΦHz

)
T
‖2 + 2

m‖
(

(ΦH −ΨH)z
)
T
‖2 (8.1)

where S is the support obtained using the hard-thresholding on ΨHz, T :=
S ∪ supp(x) with |T | ≤ 2s and z ∈ Cm are the measurements (quantized or
not). Depending on the type of measurement z, one can easily upper-bound
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the first term of (8.1). If z = Φx, then the first terms is upper-bounded by
the reconstruction of PBP for linear measurements as in Theorem 3.4. In
that case, the first term decays as O(m− 1

2 ). For quantized measurements,
the first term is simply bounded by O((1 + ε)m− 1

2 ), as shown in [XJ19] as
it corresponds to PBPQ (see Thm. 3.3). Only the degradation between the
PBP(Q) and QPBP(Q) remains to be bounded. This is the focus of the
next sections.

8.3 Notations

The operator diagk(A) creates the block diagonal matrix consisting of k
repetition of the square matrix A ∈ Cd×d, so diagk(A) ∈ Ckd×kd. The
identity matrix is written as Id = diagd(1) ∈ Rd×d. Tr(·) is the trace
operator such that Tr(A) =

∑d
i Ai,i, ‖A‖ is the spectral norm of A ∈

Cm×N . ‖A‖2 = (
∑
i,j |Ai,j |2) 1

2 is the Frobenius norm. For a matrix A, we
define the Schatten p-norm written as ‖A‖p as applying the `p-norm on the
singular value of A, as such ‖A‖∞ = ‖A‖ is the spectral norm of A, ‖A‖2
is the Frobenius norm of A and |||A|||p,q := (E{‖A‖qp})

1
q .

8.4 Matrix Multiplication

Let us now study the case where ΨH = Q+
ν (ΦH) ∈ CN×m, i.e., where the

back-projection operator is quantized directly to 1-bit with an appropriately
scaled dither. Each component of the back-projection matrix ΦH is dithered
with an independent random uniform variable that is also independent from
the possible dither used for quantizing the measurements. We will first study
a non uniform upper-bound for a fixed measurement vector z which is `∞-
bounded by ε

2 . This allows us to cover both classic linear and low resolution
measurements by upper-bounding them by ε√

2 . We then extend it to all
s-sparse vectors with and without quantization through a union bound and
covering argument.

Before dwelving into the different theorems, let us study a toy example
that highlights the gain provided by the addition of a dither to the quantized
back-projection.

Considering ΨH = Qν(ΦH), i.e., the direct one-bit equivalent of the
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measurement matrix without any dither, with ‖Φ‖∞,∞ ≤ ν
2 . In that case

and with no further assumption on Φ and z, the second term in (8.1) can
be bounded by

2
m
‖
(

(ΦH −ΨH)z
)
T
‖2 ≤

2
√

2s
m

max
i
|〈(ΦH −ΨH)i, z〉|. (8.2)

Because of the deterministic 1-bit quantization of resolution ν, one can
bound |Φ∗ij − Ψ∗ij | ≤ ν√

2 . Combining this bound with the `∞-bound on z,
the scalar product in (8.2) finally gives

2
m
‖
(

(ΦH −ΨH)z
)
T
‖2 ≤ 2

√
sεν. (8.3)

The bound in (8.3) clearly highlights the multiplicative nature of the per-
tubation Ψ from Φ [HN10; HS10]. If this direct quantization approach is
used, then the `2-reconstruction remains constant regardless of the number
of measurements m used in the acquisition. It is possible that some linear
systems with specific measurements matrix might be able to exhibit better
reconstruction guarantees using this deterministic quantization on the back-
projection. In this work however, we target a more general reconstruction
bound that can be applied to all systems provided that they follow the RIP
property and that the measurements are a `∞-bounded. To that end, we
depart from the simple 1-bit quantization of the back-projection Qν(ΦH) to
its dithered counterpart Q+

ν (ΦH). Where the fact that E{Q+
ν (ΦH)} = ΦH

will be leveraged to obtain tighter bounds than the one in (8.3).
Let us first look at a non-uniform result on the degration between

PBP(Q) and QPBP(Q):

Lemma 8.1. For a measurement vector z ∈ Cm, with ‖z‖∞ ≤ ε√
2 , a

measurement matrix Φ ∈ Cm×N that follows the (`2, `2)-RIP(δ, 2s) that is,
furthermore, `∞-bounded ‖Φ‖∞,∞ ≤ ν

2 , for any support set T of size 2s,
one can upper-bound the PBP degradation using a modified back-projection
operator defined as ΨH := Q+

ν (ΦH) by

‖((Ψ−Φ)Hz)T ‖2 ≤ mγ,
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with a probability exceeding 1− 2N exp
( −mγ2

16sε2ν2

)
.

Proof. For a fixed measurement vector z ∈ Cm, let us start by studying one
element i ∈ T that makes up the desired `2-norm. Given that EΨ{ΨH

i z} =
ΦH
i z, and using Hoeffding’s lemma [Ver18, Theorem 2.2.6], one can bound

|ΨH
i z −ΦH

i z| >
mγ√

2s
(8.4)

with a probability upper-bounded by 2 exp
(
− mγ2

16sε2ν2

)
, where we upper-

bounded maxj∈[N ] |(ΨH
ij −ΦH

ij )zj | ≤ εν.
Extending this to all elements of the `2-norm using a union bound on

all i ∈ [N ] ⊃ T finally gives us :

P
(
‖(ΨTz −ΦTz)T ‖2 > mγ

)
≤ 2N exp

( −mγ2

16sε2ν2
)
.

Lemma 8.1 applies to any support sets T , such that |T | ≤ 2s, as (8.4) is
extended to ∀i ∈ [N ], which covers all possible supports T . This lemma can
now be extended to all s-sparse vectors. This extension, through a covering
and union bound argument, will be done for both types of measurements
separately, i.e., classic linear measurements and 1-bit ones with additive
dithering. Let us start with the linear measurements.

Theorem 8.2. For all s-sparse vector x ∈ Σ̃Ns , a measurement matrix
Φ ∈ Cm×N that follows the (`2, `2)-RIP(δ, 2s), considering furthermore that
‖Φx‖∞ ≤ ε

2 and that ‖Φ‖∞,∞ ≤ ν
2 , for all support sets T of size 2s and

using a modified back-projection operator defined as ΨH := Q+
ν (ΦH), one

can upper-bound, with a probability exceeding 1− 2N exp
( −mγ2

32sε2ν2

)
,

‖((Ψ−Φ)HΦx)T ‖2 ≤ 3mγ,

provided m ≥ 16s2ε2ν2γ−2( log( eNs ) + 2 log(1 + 2
√

2sν
γ )

)
.
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Theorem 8.2 shows that the discrepancy term will behave as O( s√
m

)
while the classic PBP estimate follows O(

√
s
m ) (see Rem. 3.3). We conjec-

ture that this mismatch with respect to the sparsity level is an artefact of
the proof and can be tightened to O(

√
s
m ). The steps in the proof where,

for some vector w ∈ CN , we use the bound ‖(w)T ‖2 ≤
√
|T |‖w‖∞ could

be refined in order to avoid this extra
√
s. This improved proof would then

match the behaviour of the bound on classic high resolution PBP estimate.
Lemma 8.1 can also be extended to the case of quantized measurements.

The discrepancy between PBPQ and QPBPQ can be upper-bounded using
the following theorem.

Theorem 8.3. For all s-sparse vector x ∈ Σ̃Ns , a measurement matrix
Φ ∈ Cm×N that follows the (`2, `2)-RIP(δ, 2s), considering furthermore that
‖Φx‖∞ ≤ ε

2 and that ‖Φ‖∞,∞ ≤ ν
2 , for all support set T of size 2s and

using a modified back-projection operator defined as ΨH := Q+
ν (ΦH), one

can upper-bound with a probability exceeding 1− 2N exp
( −mγ2

32sε2ν2

)
,

‖((Ψ−Φ)HQ+
λ (Φx))T ‖2 ≤ 3mγ,

provided m ≥ 32ε2ν2γ−2s2( log( eNs ) + 2 log(1 + 24 εν2√2m
γ2 )

)
.

Theorem 8.3 shows that the upper-bound on the discrepancy between
PBPQ and QPBPQ will also follow O(sm− 1

2 ). This behaviour is exactly
the same as the one obtained in Theorem 8.2 for the linear measurements.
As the proof of Theorem 8.3 follows the same steps as its high resolution
counter-part, the bound exhibits the same linear dependency for the sparsity
with respect to the number of measurement m. We also conjecture that this
bound could be refined to O(

√
s
m ).

The previous two theorems show that directly quantizing the back-
projection to 1-bit to be used for the reconstruction yields performances
that are similar to their high-resolution counterparts as their reconstruc-
tions all follow, up to a multiplicative constant, O(m− 1

2 ). The switch from
a high to a low resolution BP only requires an increase of the number of
measurements to compensate for this constant (see the simultions results in
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Sec.8.6).

8.5 1-bit Factorizable Back-Projection

The previous section showed that it is possible to dramatically lower the
resolution of the back-projection operator and still be able to upper-bound
the reconstruction obtained by this modified PBP and for it to decay as
O(m− 1

2 ). This quantization can provide interesting gains in the hardware
implementation but applying the quantized back-projection as a simple ma-
trix multiplication still has a known complexity of O(mN). However, there
exist matrices whose product with another vector can be computed more
efficiently. One example is the ubiquitous Fast Fourier Transform [CT65]
which has a complexity of O(m log2(N)).

In this section, we focus on matrices that exhibit a structure similar to
the matrix representation of the FFT, i.e., matrices that can be factorized
into a multiplication of sub-matrices that have few non-zero coefficients
each. For example, when m = N , the Fourier transform can be factorized in
log2 (N) sub-matrices of dimensions CN×N . Following the Cooley-Tukey (or
radix-2) algorithm [CT65], each line has only two non-zero elements. This
gives only N log2(N) operations, or 2N log2(N) non-zero elements across
the log2(N) matrices compared to N2 in the classic matrix multiplication
case.

The factorization of the matrix ΦH ∈ CN×N used for the back-projection
can be represented as :

ΦH =
J∏

i=1
Υi (8.5)

where J is the number of sub-matrices (e.g., for Fourier transform J =
log2 (N)). Υi ∈ CN×N is the ith ∈ [J ] matrix of the factorized model, with
an implicit ordering of the form

∏J
i=1 Υi = ΥJΥJ−1...Υ1. We consider sub-

matrices Υi with only κ non-zero elements on each rows. So ‖Υi
j‖0 ≤ κ for

j ∈ [N ] and ‖Υi‖0,1 ≤ κN .
In this section, we are interested in studying the reconstruction per-

formances of this factorized scheme when the non-zero coefficients of the
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matrices Υi are quantized to 1-bit. The system can then be represented as

ΨH =
J∏

i=1
Q+
νi(Υ

i), (8.6)

where Q+
νi(·) only quantizes the non-zero elements of each sub-matrix in

order to keep the structure and thus the complexity of the computation.
The constant ν represents the quantization step size for all sub-matrices,
i.e., maxi∈[J] ‖Υi‖∞,∞ ≤ ν

2 . Furthermore, the subscript i on Q+
νi(·) signifies

explicitly that each sub-matrices and its associated κNJ non-zero elements
are dithered with different and thus independent random variables following
a uniform distribution U(−ν2 , ν2 ) + iU(−ν2 , ν2 ). This work tackles an issue
similar to [CA04], but goes further by developing a reconstruction bound
whereas [CA04] only relies on the expected value of the quantized operator.

The model in (8.6) is only valid for m = N , we now introduce how this
model can be extended to a case where m > N . This is motivated by recent
publications in the domain of Quantized Compressive Sensing where the
authors showed that although the quantity of data was overall reduced, i.e.,
its bit-rate defined by B = m× b (with b being the resolution of the ADCs),
inducing repetitions and thus oversampling of the data can be beneficial for
extremely quantized scebarios [Feu+18a; Feu+18b; Feu+19; Bou+15]. We
focus on physical models where taking more than m = N measurements
amounts to sampling repetitions of the signal of interests. This is the case,
for example, in FMCW radars where one can sample multiple consecutive
received chirps (see Chap. 2).

In order to represent the signal model for m > N , we introduce the
effect of the added repetition on the possible random sub-sampling of each
repetitions from Φx by expressing the number of measurement asm = ρµN

with ρ ∈ N+ being the number of repetitions and 0 < µ ≤ 1 being the rate of
sub-sampling. The Quantized Back-Projection model can then be expressed
as

x̃ = P ρ
J∏

i=1
Q+
νi(diagρ(Υi))S̃z̃ (8.7)

with P ρ := (IN , . . . , IN ) ∈ CN×ρN is the matrix that sums the ρ repetitions
of the estimated back-projection. The sub-sampling matrix S̃ ∈ RρN×ρN
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can be expressed as

S̃ =




S1 0
. . .

0 Sρ


 , (8.8)

with Sr ∈ CN×N being the sub-sampling of each repetition for r ∈ [ρ] , such
that

∑ρ
r Tr(Sr) = m = Nµρ. The model in (8.7) amounts to performing ρ

acquisitions of µN measurements and performing ρ Quantized-BP. z̃ ∈ CρN

are the ρ repetitions of the (possibly quantized) measurements.

8.5.1 Reconstruction Bound

Results in Theorems 8.2 and 8.3 are based on Hoeffding’s inequality [Ver18,
Theorem 2.2.6] that revolves around the fact that each element of the results
of the Back-Projection is made of a sum ofm independent random variables.
Bounding the reconstruction obtained with the quantized and factorized
BP cannot yield satisfactory bounds using the same methodology. Indeed,
although in model (8.6) the κNJ different coefficients are each quantized
with random and independent dithers, each component of the estimated
vector x̃ is only made up of κ random variables

x̃i = QνJ (ΥJ
i )

J−1∏

j

Qνj (Υj)z =
∑

k∈K
QνJ (ΥJ

i,k)(
J−1∏

j

Qνj (Υj)z)k,

with i ∈ [N ] and with K being the support of ΥJ
i with |K| = ‖ΥJ

i ‖0 = κ.
This severely limits the performances of the bound that one can obtain using
Hoeffding’s inequality, as it entirely ignores the dimension N of the problem
and also any possible sub-sampling as well as the fact that the model is based
on the multiplication of multiple matrices. The bound would only leverage
the over-sampling factor ρ and as it extends this sum of κ independent
variables to ρκ.

The problem of finding a tight bound on the reconstruction based on
the estimate obtained by the modified back-projection defined in (8.7) must
fully leverage the factorized structured and the independence of the different
quantized coefficients.
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Recent advances in concentration of measures have shown that one can
bound the spectral norm of the multiplication of random matrices. More
specifically, the authors in [Hua+20] showed that for a independent sequence
{Y 1, . . . ,Y J} ⊂ CN×N of random matrices, with ‖Y i‖2 ≤ bi and |||Y i −
E[Y i]|||p,2 ≤ σibi, one can prove that

Theorem 8.4 (Remark 5.7 (Uniform Bounds on Factors) from [Hua+20]).
Let v =

∑J
i σ

2
i and B =

∏J
i bi. Then we have an unconditional variant of

the concentration bound:

P{‖
J∏

i

Y i − E[
J∏

i

Y i]‖ ≥ tB} ≤ max(N, e) exp (− t2

2ev )

for all t > 0.

The parallel between Theorem 8.4 and the search for an upper-bound on
the difference between the classical factorized BP in (8.5) and its quantized
and randomly dithered counterpart presented in (8.6) is clear.

In order to leverage the results of Theorem 8.4 and to apply it to the
model introduced in (8.7), we need the following quantities

Lemma 8.5. Considering a back-projection model ΦH :=
∏J
i Υi with

maxi ‖Υi‖∞,∞ ≤ ν
2 where each Υi ∈ CN×N is κ-line sparse, i.e., ∀i ∈

[J ], ‖Υi
j‖0 ≤ κ. Using the 1-bit dithered quantizer Q+

ν (·), one can then
show that :

‖Q+
νi(Υ

i)‖ ≤ ν
√
Nκ

2 , |||Q+
νi(Υ

i)−Υi|||22,2 ≤ κN
ν2

8 .

Proof. Let us start with the spectral norm of Q+
ν (Υi). Given the κ-sparse

structure of the matrices and the fact that the matrices are quantized at a
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resolution of 1-bit, we can easily show that :

‖Q+
νi(Υ

i)‖ = max
‖u‖=1

‖Q+
ν (Υi)u‖2

≤ ν√
2

max
‖u‖=1

√√√√
N∑

n

‖uSin‖21, (8.9)

where Sin := supp(Υi
n), with n ∈ [N ], is the support set of the nth row

of Υi. As such |Sin| ≤ κ. Here, one can use the pessimistic upper-bound
on (8.9), that assumes that all support set Sn are identical for all i ∈ [J ]
and all n ∈ [N ], which in turns means that the vector u that maximizes
this expression is ui = 1√

κ
for i ∈ Sin, 0 elsewhere. This approximation

effectively assumes that the submatrices Υi have no particular structure in
their supports. (8.9) then becomes :

‖Q+
ν (Υi)‖ ≤ ν

√
Nκ

2 .

Dealing now with the second term, given the definition of the Schatten
p-norm with p = 2, one can bound:

|||Q+
νi(Υ

i)−Υi|||22,2 = E{‖Q+
νi(Υ

i)−Υi‖22} ≤ κNE{‖Q+
νi(Υ

i)−Υi‖2∞,∞}

≤ κN max
j,k

var(Q+
νi(Υ

i)j,k).

Given that Q+
νi(·) ∈ [±ν2 ± ν

2 i], the variance can be upper-bounded by

var(Q+
νi(Υ

i)j,k) ≤ ν2

8 ,

by upper-bounding the variance of 1-bit quantized factor of Υi of resolution
ν by Bernoulli random variables. Which finally gives :

|||Q+
νi(Υ

i)−Υi|||22,2 ≤ κN
ν2

8 .
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We will also need the following quantity

Lemma 8.6. Given J matrices Υi, with i ∈ [J ] and ‖Υi‖∞,∞ ≤ ν
2 , whose

lines are κ-sparse. One can bound,

‖
J∏

i=1
Q+
νi(Υ

i)‖∞,∞ ≤ κ−1(κ ν√
2
)J
.

Proof. Leveraging the κ-sparse structure of each lines of the submatrices
Υi, one can bound for a unitary vector 1d and for a given i ∈ [J ]

‖Q+
νi(Υ

i)1N‖∞ ≤ max
l
‖Q+

νi(Υ
i)l‖1 ≤ κ

ν√
2

We can now re-express the desired bound as :

‖
J∏

i=1
Q+
νi(Υ

i)‖∞,∞ = ‖
( J∏

i=2
Q+
νi(Υ

i)
)
Q+
νi(Υ

1)‖∞,∞

≤ max
i∈[2,...,J]

‖Q+
νi(Υ

i)1N‖J−1
∞ ‖Q+

ν1(Υ1)‖∞,∞

= κ−1(κ ν√
2
)J
,

where `∞,∞-bound of the multiplication of matrices is recasted as mutlipli-
cation of the individual `∞,∞ bound.

It is important to note that both these Lemmas introduce bounds on
the matrix that are extremely general. In that sense, because they consider
a worst-case upper-bound that ignores the structure that makes up these
factorized model, they are extremely loose. The next results will highlight
their impact and show how, for specific models (e.g., the FFT) how their
developed bounds can be tightened.

The bound on the discrepancy between the high-resolution back-projection
and the QPBP reconstruction, using the factorized model, is first studied
in a non-uniform setting.

We first developed a non uniform bound for a given vector x ∈ Σ̃Ns ,
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Chapter 8. Binarizing the Reconstruction in 1-bit CS

we then extend this property to all s-sparse vector using a union bound
argument and a covering.

Theorem 8.7. Given `∞-bounded, ρ-repeated, and possibly quantized mea-
surement S̃z̃ ∈ CρN such that ‖z‖∞ ≤ ε√

2 , a sub-sampling matrix S̃ ∈
RρN×ρN as in (8.8) such that Tr (S̃) = ρµN = m , given the quantization
and the factorized model defined in (8.7), one can bound, for all support sets
T such that |T | ≤ 2s, the following expression :

P{ 1
m
‖(P ρ(

J∏

i=1
diagρ(Υi)−

J∏

i=1
Q+
ν (diagρ(Υi)))S̃z̃)T ‖2 ≥

√
2seJγεB}

≤N exp (−2cmγ2)

with B =
(
ν
√

Nκ
2
)J , and P ρ := (IN , . . . , IN ) ∈ CN×ρN .

This non-uniform bound highlights the benefits of using Theorem 8.4
that is able to leverage the factorized model compared to the classical Ho-
effding inequality directly. Indeed, the degradation term is here shown to
behave as O(m− 1

2 ) in the non-uniform setting. This bound clearly outper-
forms the naive bound that used only the κρ random variables coming from
the last sub-matrices Q+

νJ (ΥJ).
The term B in the upper-bound in Theorem 8.7 might seem to explode

as the number of sub-matrices J increases. One must, however, note that
the upper-bound on B developped in Lemma 8.5 is extremely pessimistic as
it ignores any structure that Υi might have. Indeed, for specific factorizable
model such as the FFT, the bound on the spectral norm of the quantized
version of Υi can be dramatically lower. The spectral norm of the non-
quantized sub-matrices for the FFT is ‖Υi‖ =

√
κ, which in turns gives

B ≤ √κJ . Given that for the radix-2 algorithm [CT65] κ = 2 and J =
log2(N), B it then equals to

√
N . While the sub-matrices are quantized

to 1-bit with an additive dither, they can be expected to partly retain the
structure of the original matrices and thus not systematically reach the
pessimistic bounds in Lemma 8.5 and Lemma 8.6.

The results established in Theorem 8.7 are only valid for one vector in
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8.5. 1-bit Factorizable Back-Projection

Σ̃Ns , the rest of this section focuses on extending this non-uniform bound
to all complex s-sparse vectors. For the sake of conciseness, we now omit
the explicit factorized representation of the back-projection and of the over-
sampling that samples ρ repetition of the measurements. The (possibly
repeated and sub-sampled) measurements are denoted by z̃ ∈ Cm which
are associated to a measurement matrix Φ̃ := [Φ1, . . . ,Φρ] ∈ Cm×N , with
the super-script on the different Φ representing the ρ different possible sub-
sampling applied to each measurement matrix. The quantized and factor-
ized back-projection is represented as Ψ̃H ∈ CN×m, where the ρ repeated
and factorized BP (with the appropriate sub-sampling) are quantized with
indepedent dithers.

Theorem 8.8. For all unit s-sparse vectors x ∈ Σ̃Ns , given a measurement
matrix Φ̃ ∈ Cm×N , with ‖Φ̃x‖∞ ≤ ε

2 , whose back-projection can be fac-
torized by J submatrices whose line are κ-sparse, where all components of
these sub-matrices are bounded by ν

2 . Furthermore, the matrix Φ̃ follows the
(`2, `2)-RIP; the 1-bit quantized version of this factorized back-projection,
following the structure defined in (8.7), is denoted by Ψ̃H . For all support
set T such that |T | ≤ 2s. It can be shown that, with a probability of failure
exceeding N exp (− c

2γ
2m),

1
m‖((Φ̃

H − Ψ̃H)Φ̃x)T ‖ ≤
√

8seJεBγ,

Provided m ≥ 2s
c γ
−2( log( eNs )+2 log(1+ 2

α )
)
and with α = η κ

4
√
s( κν√

2
)J being

a constant dependent on the problem.

This last condition on m also gives the behaviour of the reconstruction
algorithm, i.e., γ = O(sm− 1

2 ). We observe again an extra
√
s factor. We

finish this section with the bound when reconstructing from quantized and
dithered measurements.

Theorem 8.9. For all unit s-sparse vectors x ∈ Σ̃Ns , given a measurement
matrix Φ̃ ∈ Cm×N , with ‖Φ̃x‖∞ ≤ ε

2 , whose back-projection can be fac-
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Chapter 8. Binarizing the Reconstruction in 1-bit CS

torized by J submatrices whose line are κ-sparse, where all components of
these sub-matrices are bounded by ν

2 . Furthermore, the matrix Φ̃ follows the
(`2, `2)-RIP; the 1-bit quantized version of this factorized back-projection,
following the structure defined in (8.7), is denoted by Ψ̃H . For all support
set T such that |T | ≤ 2s. With probability exceeding 2N exp

(
− c

2mγ
2) with

it can be shown that :

1
m‖((Φ̃

H − Ψ̃H)Q+
ε (Φ̃x))T ‖ ≤

√
2sεγ(

√
eJB + 8

3κc(
νκ√

2
)J)

provided m ≥ 2s
c γ
−2(log( eNs ) + 2(1 + 2

α )), with α =
√

2
9mcγ

2ε.

This last bound also provides the same behaviour for the discrepancy
between the PBPQ and QPBPQ of O( s√

m
).

These theorems show that quantizing the individual elements of a fac-
torized back-projection can still provides a bounded reconstruction error
while maintaining their structure that allow for fast reconstructions.

8.6 Simulation and Discussion

We assess the quality of the developed schemes by performing Monte-Carlo
simulations. We carried out 100 runs for different numbers of measurements
and sparsity levels. The sparse vectors as well as the measurement matrix
are generated similarly to Part II.

We use the following convention to represent the different quantization
scheme : the classic PBP with linear measurements ( ); classic PBP with
Quantized measurements ( ); Quantized PBP with linear measurements
( ); and finally Quantized PBP with Quantized measurements ( ).

In Fig. 8.2, we compare the proposed QPBPQ scheme in terms of `2-
reconstruction error against PBP and PBPQ for two sparsity level, s = 2
and s = 10, with a measurement matrix corresponding to a randomly
(sub/over)-sampled Fourier transform applied simply as a matrix multi-
plication. As indicated by the developed proofs in Theorems 8.2 and 8.3,
the error of QPBPQ does scale as O(m− 1

2 ) and only suffers from a con-
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8.6. Simulation and Discussion

stant loss in dB compared to PBPQ. Interestingly, it seems that the loss
of resolution in the measured signal has more impact on the performances
than lowering the resolution of the back-projection, as shown by the shift
between PBP, PBPQ and QPBPQ.
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Figure 8.2: ‖x − x̂
‖x̂‖2

‖2 in dB, for different numbers of measurements (log2(m
N

)), the
dotted curves are the classic PBP; the dashed, PBPQ and the solid, QPBPQ. The colours
represent the sparsity, s = 2 for red and s = 10 for blue. The dashed grey line represents
the decrease rate of O(m−

1
2 ).

In Fig. 8.3, we also see that using complex Gaussian matrices yields
similar results, albeit requiring a larger number of measurements to reach
the same performances compared to Fourier transforms. This, intuitively
makes sense; the Fourier matrix is highly structured and each component
has the same amplitude, the 1-bit quantization is able to partly retain these
properties, whereas, complex Gaussian elements have no structure and vary
greatly in amplitude.

We now examine the behaviour of the factorized back-projection studied
in Section 8.5. In this simulations, we only focus on the Fourier transform
and its factorized representation into log2 (N) sub-matrices [CT65] as it is
one of most ubiquitous factorized back-projection used in modern signal
processing.

The model in (8.7) decouples the number of measurements m into two
terms, the sub-sampling coefficient µ and the number of repeated acquisi-
tions ρ. In Fig. 8.4, the number of repetitions is varied from ρ = 1 to ρ = 32
and µ is set to 1 to remove the effect of the sub-sampling. One can observe
that QPBP and QPBPQ have the same slope as the curve of PBPQ, which
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Figure 8.3: ‖x − x̂
‖x̂‖2

‖2 in dB, for different number of measurements (log2(m
N

)), for
different schemes with a sparsity of s = 4, namely QPBPQ with dithering in red for
Fourier matrices and the QPBPQ with dithering for complex Gaussian matrices in blue.

follows O(m− 1
2 ). As predicted by the theory in Theorems 8.8 and 8.9, the

degradation imparted by the quantization of the factorized back-projection
follows the behaviour of the reconstruction error of the high resolution pro-
cessing, thus only shifting the curves in Fig. 8.4.
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Figure 8.4: ‖x− x̂
‖x̂‖2

‖2 in dB for the BP performed as a factorized model, for different
values of repetition ρ (log2(ρ)), for different schemes with a sparsity of s = 4 and µ = 1,
namely QPBPQ in red; PBP in yellow; QPBP in blue; PBPQ in green; the dashed
gray line represents O(ρ−

1
2 ).

Let us now study the behaviour of the quantized scheme when the mea-
surements are sub-sampled, i.e., for µ ≤ 1. In Fig. 8.5, one can observe that
although each element of x̂ is a sum of at most κ random variables coming
from the last sub-matrix Q+

νJ (ΨJ), `2-reconstruction of QPBPQ and QPBP
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Figure 8.5: ‖x− x̂
‖x̂‖2

‖2 in dB for the BP performed as a factorized model, for different
values of sub-sampling µ (log2(µ)), for different schemes with a sparsity of s = 4 and
ρ = 32, namely QPBPQ in red; PBP in yellow; QPBP in blue; PBPQ in green; the
dashed gray line represents O(µ−

1
2 ).

behaves as O(µ− 1
2 ) instead of O(κ− 1

2 ). This highlights the tightness of the
estimate provided by Remarks 5.5 & 5.7 (Uniform Bounds on Factors) from
[Hua+20] and consequently the non-uniform results in Lemma 8.11.

The results presented in Fig. 8.4 and Fig. 8.5 show clearly that the fac-
torized scheme indeed behaves as O(m− 1

2 ), with m = ρµN . This means
that these factorized and quantized schemes are able to be computed effi-
ciently in O(Jκ) computations while maintaining a reconstruction bound
that scales as O(m− 1

2 ).
In Fig. 8.6 and Fig. 8.7, we compare different schemes with the same

sparsity level of s = 4, with and without a random dither added before
the quantization of the elements of the BP. Similarly to what was shown
in [XJ19; Feu+18a; Feu+18b], we see the dither plays in capital role in the
obtained performances. Indeed, while the dithered scheme continues to scale
down when m increases, the scheme with the deterministic back-projection
seems to slowly saturates. In these figures, the coefficient µ is varied when
log2(mN ) ≤ 0 with ρ = 1, beyond this point, µ is fixed to one and the number
of repetitions ρ is varied. In Fig. 8.6, using a deterministic and quantized
back-projection operator, is tantamount in the context of Fourier transform
to reconstructing Fourier based measurements with complex Walsh matrices
that are their 1-bit equivalent, i.e., W = Qν(F ). In this context, it is
clear for the case of matrix multiplication in Fig. 8.6 that the dithering is
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Figure 8.6: Comparison using ‖x− x̂
‖x̂‖2

‖2 in dB between the Quantized BP performed as
a matrix multiplication with additive dithering (solid) and without (dashed), for different
number of measurements (log2(m

N
)), with a sparsity of s = 4, namely QPBPQ in red;

QPBP in yellow.

necessary to achieve the best performances.
For the Factorized BP in Fig. 8.7, we also observe that the non dithered

schemes saturates. In fact, they saturates at a value that is extremely
high (≈ 1dB), to the point where one could say that the reconstruction
fails. Theorems 8.8 and 8.9 rely heavily on the added dither as it provides
E{∏J

i Q+
ν (Υi)} =

∏J
i Υi. Without the dither, this does not hold and the

resulting Ψ̃H cannot be linked to its high resolution counter-part.
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Figure 8.7: Comparison using ‖x− x̂
‖x̂‖2

‖2 in dB between the Quantized BP performed
as a factorized model with additive dithering (solid) and without (dashed), for different
number of measurements (log2(m

N
)), with a sparsity of s = 4, namely QPBPQ in blue;

QPBP in green.
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8.7. Discussion

We finish this section by comparing the two studied quantized recon-
struction processes, namely the application of the back-projection as a
matrix-vector multiplication and the use of an efficient factorized repre-
sentation. Instead of comparing their `2-reconstruction with respect to the
number of measurement m, we chose to compare them using an estimate of
the complexity in terms of number of operation required by the estimation
process. On the one hand, the number of computations required to multiply
a N ×m matrix to a m vectors is O(mN), on the other hand, in the case of
the FFT, the complexity is O(m log2(N)). In Fig. 8.8, the different schemes
are compared. We see that the two quantization procedures for the BP give
similar reconstruction for the same number of operations. Given the speci-
ficity of implementing algorithms and arithmetical functions on a processing
unit like an FGPA, developing a more refined metric that would highlight
the difference between these scheme is out of the scope of this work. The
complexity still provides a glimpse of the gain that the factorized model
could provide with a dedicated hardware implementation.
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Figure 8.8: Comparison using ‖x− x̂
‖x̂‖2

‖2 in dB between the BP performed as a matrix
multiplication (solid) and factorized model (dashed), for different computational com-
plexity #op (log2(#op)), for different schemes with a sparsity of s = 4, namely QPBPQ
in red; PBP in yellow; QPBP in blue.

8.7 Discussion

In this chapter, we showed that quantizing the matrix used for the back-
projection in the PBP algorithm can still provide interesting reconstruction
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guarantees. We showed, both theoretically and through Monte-Carlo simu-
lations, that directly quantizing the back-projection operator to 1-bit with
an additive dither provides only a constant degradation that can be com-
pensated by slightly increasing the number of measurements. These results
were then extended to the special case of back-projection operators that
have a fast matrix-vector multiplication thanks to a factorized representa-
tion. We developed uniform bounds that apply to all matrices that have
both a factorized representation and follow the RIP property. We showed
that, regardless of the acquisition procedure (e.g., linear or quantized), the
reconstruction obtained by this extremely coarse processing behave simi-
larly to its high resolution counterpart (i.e., O(m− 1

2 )) up to a constant, but
required more measurements than the simple matrix quantization.

Future works regarding this area of compressive sensing are numerous.
The bound could be tightened in order to change the dependency on the
sparsity from O(s) to O(

√
s). The results in the second part for the fac-

torizable BP are introduced in a general setting. The results could thus be
focused on specific applications and matrices, and yield tighter bounds. The
developed theory as well as the simulations only considered a noiseless case,
while the extension to noisy measurements before the 1-bit quantization
with additive dithering is still an open question in the classic PBP, result
for linear measurements could be easily obtained. One could also extend
this scheme beyond the PBP algorithm. Indeed, the factorized model stud-
ied in Sec.8.5 can also be seen as a connected network of nodes where the
weights are quantized to one bit. So the extension to neural networks and
deep unfolding could be of interest [MLE21; Mer+16]. Finally, the objective
of this chapter was to study reconstruction schemes that could be efficiently
implemented in hardware. Now that the first theoretical guarantees have
been established, a more in-depth study on the actual implementation and
potential gain of the simplified 1-bit BP must be performed.

8.8 Proofs

This contains the different proofs of the theorems and lemmas that were
developed in this chapter.

For any bounded s-sparse vector x whose closest point in Jρ is u, one can
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leverage Lemma 6.1 in [XJ19] to bound the number of non-zero components
in the vector Q+

ε (Φx) − Q+
ε (Φu) (where they are both dithered with the

same random dither) to a small fraction of m. Because this lemma is used
multiple times in the different proofs, we state this Lemma and adapt it to
the considered complex 1-bit dithered measurements.

Lemma 8.10 (Lemma 6.1 [XJ19]). Given a ∈ Rm, ε > 0, 0 < ρ < δ
2 ,

ξ ∼ Um([0, δ]), we denote by Ai(·) := Q(· + ξ) (i ∈ [m]), and define the
discrete random variable (associated with the randomness of ξ)

Z = Z(a+ ρBm`∞) := |{i : Ai(·) /∈ C0(a) + ρBm`∞)}| ∈ {0, . . . ,m}

i.e., Z counts the components of A that are discontinuous over a+ρBm`∞ ( i.e.,
having at least two distinct values over this set). The random variable Z has
a binomial distribution with m trials and a probability of success p := 2ρ

δ ,
i.e., ZsimBin(m, p). Therefore, EZ = mp = m 2ρ

δ ,
1
m (EZ2 − (EZ)2 =

p(1− p) =: σ2 < p and

P[Z ≥ m2ρ
δ

+ ε] ≤ exp (−1
2

3mε2
3σ2 + ε

)

In particular, setting ε = p > σ2 provides

P[Z ≥ m4ρ
δ

] ≤ exp (−m3ρ
4δ ).

In the following remark, we adapt Lemma 8.10 from its general setting
of any vector a ∈ Rm to the specific setting of Φx ∈ Cm complex measure-
ments.

Remark 8.1 (Adaptation of Lemma 6.1 [XJ19]). Considering the complex
quantization, one can count the number of differing bits in the complex
domain of two different measurements vectors in Cm by recasting in the real
domain, i.e., R2m. Furthermore, the ρ-covering on defined in Lemma 6.4
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and the RIP property, Φ which upper-bounds ‖Φx‖∞ ≤ ‖Φx‖2 ≤
√

2mρ,
allows to restate Lemma 8.10 as

‖Q+
ε (Φu)−Q+

ε (QΦ(u+ r))‖0 ≤ 8
√

2m 3
2
ρ

ε
,

with a probability of failure upper-bounded by exp(− 3√
2m

3
2 ρ
ε ).

Theorem 8.2. For all s-sparse vector x, with ‖x‖2 ≤ 1, a measurement
matrix Φ ∈ Cm×N that follows the (`2, `2)-RIP(δ, 2s), considering further-
more that ‖Φx‖∞ ≤ ε

2 and that ‖Φ‖∞,∞ ≤ ν
2 , for all support sets T of size

2s and using a modified back-projection operator defined as ΨH := Q+
ν (ΦH),

one can upper-bound, with a probability exceeding 1− 2N exp
( −mγ2

32sε2ν2

)
,

‖((Ψ−Φ)HΦx)T ‖2 ≤ 3mγ,

provided m ≥ 16s2ε2ν2γ−2( log( eNs ) + 2 log(1 + 2
√

2sν
γ )

)
.

Proof. Lemma 8.1 is only valid for one fixed vector x ∈ Σ̃Ns . We use a ρ-
covering Jρ to extend it to all complex s-sparse vectors in Σ̃Ns . Similarly to
Theorem 6.7 in Chapter 6, by union bound, Lemma 8.1 holds for all u ∈ Jρ
with probability exceeding 1 − 2N exp(log |Jρ| − mγ2

16sε2ν2 ). We then extend
this inequality from all vectors in the covering (i.e., u ∈ Jρ) to all s-sparse
vectors x ∈ Σ̃NS by leveraging the RIP and the properties of the covering
found in Remark 6.1 and Lemma 6.4.

‖
(
(Ψ−Φ)HΦx

)
T ‖2 ≤ ‖

(
(Ψ−Φ)HΦu

)
T ‖2 + ‖

(
(Ψ−Φ)HΦr

)
T ‖2

≤ mγ + ‖
(
(Ψ−Φ)HΦr

)
T ‖2,

with a probability of failure upper-bounded by |Jρ|2N exp(− mγ2

16sε2ν2 ). One
can bound the second term, using the fact that ∀i ∈ [N ] |ΦH

ij −ΨH
ij | ≤

√
2ν,
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which gives us,

≤ mγ +
√
|T |‖(ΨH −ΦH)Φr‖∞

≤ mγ +
√
|T |
√

2ν‖Φr‖1
≤ mγ + 2

√
msν‖Φr‖2

Using the property of the ρ-covering and the RIP of Φ one can finally bound,

‖
(
(Ψ−Φ)HΦx

)
T ‖2 ≤ mγ + 2

√
2sνmρ,

with probability of failure upper-bounded by 2N exp(log |Jρ| − mγ2

16sε2ν2 ).
Setting ρ = γ

ν
√

2s , the inequality becomes

‖((Ψ−Φ)HΦx)T ‖2 ≤ 3mγ.

Finally, the probability of failure can be upper-bounded by

2N exp(log |J γ

ν
√

2s
| − mγ2

16sε2ν2 ) ≤ 2N exp(− mγ2

32sε2ν2 )

Provided, using the bounded size of |Jρ| in Lemma 6.4, that

16s2ε2ν2γ−2( log(eN
s

) + 2 log(1 + 2
√

2s
γ

)
)
≤ m.

Theorem 8.3. For all s-sparse vector x ∈ Σ̃Ns , with ‖x‖2 ≤ 1, a mea-
surement matrix Φ ∈ Cm×N that follows the (`2, `2)-RIP(δ, 2s), consid-
ering furthermore that ‖Φx‖∞ ≤ ε

2 and that ‖Φ‖∞,∞ ≤ ν
2 , for all sup-

port set T of size 2s and using a modified back-projection operator de-
fined as ΨH := Q+

ν (ΦH), one can upper-bound with a probability exceeding
1− 2N exp

( −mγ2

32sε2ν2

)
,

‖((Ψ−Φ)HQ+
λ (Φx))T ‖2 ≤ 3mγ,

provided m ≥ 32ε2ν2γ−2s2( log( eNs ) + 2 log(1 + 24 εν2√2m
γ2 )

)
.
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Proof. We follow the same steps as in Theorem 8.2, by defining a ρ-covering
Jρ such that x = u + r, with x ∈ Σ̃Ns , u ∈ Jρ and ‖r‖2 ≤ ρ, and extend-
ing the non-uniform result by a union bound on u. One can bound the
discrepancy between QPBPQ and PBPQ as follows

‖((Ψ−Φ)HQ+
ε (Φx))T ‖2 ≤‖((Ψ−Φ)HQ+

ε (Φu))T ‖2
+ ‖
(
(Ψ−Φ)H(Q+

ε (Φx)−Q+
ε (Φu))

)
T ‖2

≤mγ + ‖
(
(Ψ−Φ)H(Q+

ε (Φx)−Q+
ε (Φu))

)
T ‖2

(8.10)

with a probability of failure upper-bounded by |Jρ|2N exp
( −mγ2

16sε2ν2

)
.

Focusing on the second term of (8.10), one can subsequently bound the
following

‖((Ψ−Φ)H(Q+
ε (Φx)−Q+

ε (Φu)))T ‖2
≤
√
|T |max

i
|(Ψ−Φ)Hi (Q+

ε (Φx)−Qε(Φu))|

≤
√
|T |
√

2ν‖Q+
ε (Φx)−Q+

ε (Φu))‖1
≤
√
|T |2νε|D|, (8.11)

where D is the support set of index where the two quantized signals lie in
different quadrants. Using Remark 8.1, thanks to the results in [XJ19], for
an element of the covering Jρ, we finally obtain

P[|D| ≥ 2m
√

2mρ

ε
] ≤ exp

(
− 2m

√
2m3ρ
4ε

)
.

Combining this bound with (8.11) by extending the previous inequality to
all element of the covering Jρ, the discrepancy between the reconstruction
process is upper-bounded by

‖((Ψ−Φ)HQ+
ε (Φx))T ‖2 ≤mγ + 2νε(2m) 3

2
ρ

ε

with a probability of failure P ≤ |Jρ|
(
2N exp

( −mγ2

16sε2ν2

)
+ exp (−(2m) 3

2 3ρ
4ε )
)
.
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By setting, ρ = γ2

24sεν2
√

2m , we obtain

‖((Ψ−Φ)HQ+
ε (Φx))T ‖2 ≤mγ(1 + 1

3εν ), (8.12)

with a probability of failure P ≤ |Jρ|(2N + 1) exp
(−mγ2

8ε2ν2

)
. Where (8.12) is

obtained thanks to the fact that γ2 ≤ γ ≤ 1.
Finally, if

m ≥ 32ε2ν2s2γ−2( log(eN
s

) + 2 log(1 + 24εν
2√2m
γ2 )

)
,

then the probability of failure can be upper-bounded by (2N+1) exp
( −mγ2

32ε2ν2

)
.

Lemma 8.11. Given possibly subsampled measurements Sz, with z ∈ CN ,
‖z‖∞ ≤ ε√

2 , S ∈ NN×N such that tr(S) = µN = m, the `2-degradation
between the PBP and QPBP for a factorizable back-projection model ΦH :=∏J
i Υi with maxi ‖Υi‖∞,∞ ≤ ν

2 where each Υi ∈ CN×N is κ-line sparse,
i.e., ∀i ∈ [J ], ‖Υi

j‖0 ≤ κ, one can bound

P{‖(
J∏

i=1
Υi −

J∏

i=1
Q+
ν (Υi))Sz‖2 ≥

ε√
2
√
µN

(
ν

√
Nκ

2

)J
t}

≤ N exp
(
− t2

eJ

)
.

Proof. We start by upper-bounding the `2 norm of the matrix vector prod-
uct by the spectral norm of the difference between the back-projection and
the `2 norm of z, then using the `∞ bound of z, we can show that

‖(
J∏

i=1
Υi −

J∏

i=1
Q+
ν (Υi))Sz‖2 ≤ ‖

J∏

i=1
Υi −

J∏

i=1
Q+
ν (Υi)‖‖Sz‖2

≤ ‖
J∏

i=1
Υi −

J∏

i=1
Q+
ν (Υi)‖ ε√

2
√
µN. (8.13)
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The 1√
2 factor in (8.13) is used for the `∞-bound on z to put the emphasis

on the fact that the result applies for both the linear and one-bit quantized
measurements. Indeed, if ‖Φx‖∞ ≤ ε

2 , then ‖Φx‖∞ ≤ ‖Q+
ε (Φx)‖∞ ≤ ε√

2 .

Using Lemma 8.5, the quantity B and v2 required by Theorem 8.4 can
be upperbounded by

B ≤
(
ν

√
Nκ

2

)J
, v2 ≤ J

2 .

These bounds allow us to directly bound the sprectral norm in (8.13) by

‖(
J∏

i=1
Υi −

J∏

i=1
Q+
ν (Υi))Sz‖2 ≤ t

(
ν

√
Nκ

2

)J ε√
2
√
µN,

with a probability of failure pt ≤ N exp
(
− t2

eJ

)
.

Theorem 8.7. Given `∞-bounded, ρ-repeated, and possibly quantized mea-
surement S̃z ∈ CρN such that ‖z‖∞ ≤ ε√

2 , a sub-sampling matrix S̃ :=
(S1, . . . ,Sρ)T ∈ RρN×N such that Tr (S̃) = ρµN = m which contains all the
sub-sampling matrices Sh, given the quantization and the factorized model
defined in (8.7), one can bound, for all support sets T such that |T | ≤ 2s,
the following expression :

P{ 1
m
‖(P ρ(

J∏

i=1
diagρ(Υi)−

J∏

i=1
Q+
ν (diagρ(Υi)))S̃z)T ‖2 ≥

√
2seJγεB}

≤N exp (−2cmγ2)

with B =
(
ν
√

Nκ
2
)J , and the matrix P ρ := (IN , . . . , IN ) ∈ CN×ρN .

Proof. Starting from the `2-degradation, we can write, thanks to the defi-
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nition of P ρ, the following

1
m
‖(P ρ(

J∏

i=1
diagρ(Υi)−

J∏

i=1
Q+
νi(diagρ(Υi)))S̃z)T ‖2

= 1
m

(
∑

l∈T
|
ρ∑

h

(
J∏

i=1
Υi −

J∏

i=1
Q+
νih

(Υi))lShz|2) 1
2

≤
√
|T |
m

max
l

∣∣
ρ∑

h

(
J∏

i=1
Υi −

J∏

i=1
Q+
νih

(Υi))lShz
∣∣ (8.14)

To upperbound the `2-degradation, one needs to find a bound on the sum of
the ρ back-projections in (8.14). We first notice that ∀h ∈ [ρ] and ∀l ∈ [N ],
(
∏J
i=1 Υi −∏J

i=1Q+
νih

(Υi))lShz is zero-mean and that

∣∣
ρ∑

h

(
J∏

i=1
Υi −

J∏

i=1
Q+
νih

(Υi))lShz
∣∣ ≤

∥∥(
J∏

i=1
Υi −

J∏

i=1
Q+
νih

(Υi))lShz
∥∥

2.(8.15)

Furthermore, Lemma 8.11 shows that the second term in (8.15) is sub-
gaussian. Consequently, the ρ terms in (8.14) are also sub-gaussians and
mean-zero. Upperbounding a sum of ρ sub-gaussian random variables can
be achieved using the General Hoeffding’s inequality in [Ver18, Theorem
2.6.2]. The degradation is then upper-bounded by :

1
m
‖(P ρ(

J∏

i=1
diagρ(Υi)−

J∏

i=1
Q+
νi(diagρ(Υi)))S̃z)T ‖2 ≤

√
|T |
m

t,

with a probability of failure pt ≤ N exp
(
− 2ct2

µρNeJε2
(
ν
√

Nκ
2

)2J

)
, with c being

an absolute constant c ∈ R+.

A change of variable γ = t

mε
(
ν
√

Nκ
2

)J√
eJ

, finally gives the desired re-

sults. The `2-discrepancy is bounded by

1
m
‖(P ρ(

J∏

i=1
diagρ(Υi)−

J∏

i=1
Q+
ν (diagρ(Υi)))S̃z)T ‖2

≤
√
|T |γε

(
ν

√
Nκ

2
)J√

eJ,
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with a probability of failure pγ ≤ N exp (−2cγ2m).

Theorem 8.8. For all unit s-sparse vectors x ∈ Σ̃Ns , given a measurement
matrix Φ̃ ∈ Cm×N , with ‖Φ̃x‖∞ ≤ ε

2 , whose back-projection can be fac-
torized by J submatrices whose line are κ-sparse, where all components of
these sub-matrices are bounded by ν

2 . Furthermore, the matrix Φ̃ follows the
(`2, `2)-RIP; the 1-bit quantized version of this factorized back-projection,
following the structure defined in (8.7), is denoted by Ψ̃H . For all support
set T such that |T | ≤ 2s. It can be shown that, with a probability of failure
exceeding N exp (− c

2γ
2m),

1
m
‖((Φ̃H − Ψ̃H)Φ̃x)T ‖ ≤

√
8seJεBγ,

Provided m ≥ 2s
c γ
−2( log( eNs )+2 log(1+ 2

α )
)
and with α = η κ

4
√
s( κν√

2
)J being

a constant dependent on the problem.

Proof. To extend Theorem 8.7 to the set of all sparse vectors x ∈ Σ̃Ns , we
follow the same step as in Section 8.4 by defining a α-covering Jα. For
linear measurements, we extend Theorem 8.7 to all u ∈ Jα with a union
bound. This gives us the following upper-bound on the `2 degration

1
m
‖((Φ̃H − Ψ̃H)Φ̃x)T ‖ ≤

1
m
‖((Φ̃H − Ψ̃H)Φ̃u)T ‖+ 1

m
‖((Φ̃H − Ψ̃H)Φ̃r)T ‖

≤
√

2seJγεB + 1
m
‖((Φ̃H − Ψ̃H)Φ̃r)T ‖, (8.16)

with a probability of failure P ≤ |Jα|pγ .

The second term of (8.16), which thanks to the RIP property of Φ̃ and
the properties of the α-covering see Chapter 7, can be upperbounded, for

170



8.8. Proofs

all x, by:

1
m
‖((Φ̃H − Ψ̃H)Φ̃r)T ‖ ≤

√
|T |
m

max
i
|〈(Φ̃H − Ψ̃H)i, Φ̃r〉|

≤
√
|T |
m

max
i
‖(Φ̃H − Ψ̃H)i‖‖Φ̃r‖2

≤ 2
√
s‖Φ̃H − Ψ̃H‖∞,∞α,

where ‖Φ̃r‖2 is upperbounded by
√

2mα, and ‖(ΦH −ΨH)i‖ ≤
√
m‖ΦH −

ΨH‖∞,∞. The `∞ norm remains to be estimated, using the fact that ∀i ∈
[N ],∀j ∈ [m], then |Φi,j | < |Ψi,j | and Lemma 8.6, one can directly show
that

‖Φ̃H − Ψ̃H‖∞,∞ ≤ 2‖Ψ̃H‖∞,∞ ≤ 2‖ΨH‖∞,∞ ≤ 2κ−1( νκ√
2

)J .

The second term in (8.16) then becomes:

1
m
‖((Φ̃H − Ψ̃H)Φ̃r)T ‖ ≤ 4

√
s( κν√

2
)Jκ−1α.

Setting the radius of the covering as α = γ
√

eJ
8 εN

J
2 κ−

J
2−1, finally:

1
m
‖((Φ̃H − Ψ̃H)Φ̃x)T ‖ ≤

√
8seJεBγ,

with a probability of failure upper-bounded by

pγ ≤ (eN
s

)s(1 + 2
α

)2sN exp (−cγ2m).

Which can be upper-bounded by N exp (− c
2γ

2m), provided that

m ≥ 2s
c
γ−2( log(eN

s
) + 2 log(1 + 2

α
)
)
.

Theorem 8.9. For all unit s-sparse vectors x ∈ Σ̃Ns , given a measurement
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matrix Φ̃ ∈ Cm×N , with ‖Φ̃x‖∞ ≤ ε
2 , whose back-projection can be fac-

torized by J submatrices whose line are κ-sparse, where all components of
these sub-matrices are bounded by ν

2 . Furthermore, the matrix Φ̃ follows the
(`2, `2)-RIP; the 1-bit quantized version of this factorized back-projection,
following the structure defined in (8.7), is denoted by Ψ̃H . For all support
set T such that |T | ≤ 2s. With probability exceeding 2N exp

(
− c

2mγ
2) with

it can be shown that :

1
m
‖((Φ̃H − Ψ̃H)Q+

ε (Φ̃x))T ‖ ≤
√

2sεγ(
√
eJB + 8

3κc(
νκ√

2
)J)

provided m ≥ 2s
c γ
−2(log( eNs ) + 2(1 + 2

α )), with α =
√

2
9mcγ

2ε.

Proof. To extend Theorem 8.7 to the set of all sparse vectors x ∈ Σ̃Ns , we
follow the same step as in Section 8.4 by defining a α-covering Jα. We
again extend the non-uniform bound to all element of the covering Jα with
a union-bound.

For linear measurements, we extend Theorem 8.7 to all u ∈ Jα with a
union bound. This gives us the following upper-bound on the `2 degration

1
m
‖((Φ̃H − Ψ̃H)Q+

ε (Φ̃x))T ‖

≤η + 1
m
‖((Φ̃H − Ψ̃H)(Q+

ε (Φ̃u)−Q+
ε (Φ̃x))T ‖ (8.17)

with a probability of failure P ≤ |Jα|pγ .
Similarly to Theorem 8.3, we use Lemma 8.10 and 8.1 to bound the

second term

1
m
‖((Φ̃H − Ψ̃H)(Q+

ε (Φ̃u)−Q+
ε (Φ̃x))T ‖

≤ 1
m

√
2s‖Φ̃H − Ψ̃H‖∞,∞‖(Q+

ε (Φ̃u)−Q+
ε (Φ̃x)‖1

≤ 1
m

√
2s|D|ε( ν√

2
κ)Jκ−1,

where we upper-bounded the `∞-norm thanks to Lemma 8.6. Leveraging
again lemma 6.1 from [XJ19] as was done in the simple matrix mutiplication
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case, one can upper-bound for one u ∈ Jρ

P

(
|D| ≥

√
32m 3

2α

ε

)
≤ |Jα| exp

(
−
√

18
16
m

3
2α

ε

)
. (8.18)

Extending (8.18) to all elements of the Jρ covering gives the desired upper-
bound on the second term of (8.17). We finally obtain

1
m
‖((Φ̃H − Ψ̃H)Qε(Φ̃x)T ‖ ≤

√
2seJBγε+

√
|T |
√

32mα( ν√
2
κ)Jκ−1,

with probability of failure : P ≤ |Jα|N exp
(
− cmγ2)+|Jα| exp

(
−
√

18
16
m

3
2 α
ε

)
.

Setting α =
√

2
9mcγ

2ε and upper-bounding the probability finally gives
the desired results

1
m
‖((Φ̃H − Ψ̃H)Q+

ε (Φ̃x)T ‖ ≤
√

2sεγ(
√
eJB + 8

3κc(
νκ√

2
)J),

with a probability of failure upper-bounded by :

P ≤ |Jα|2N exp
(
− cmγ2) ≤ 2N exp

(
− c

2mγ
2),

provided m ≥ 2s
c γ
−2(log( eNs ) + 2(1 + 2

α )).
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Chapter 9

Conclusions and
Perspectives

In this dissertation, we studied and proposed different 1-bit acquisition and
processing schemes aimed at lowering the hardware requirements or the
data transfer of sensors. We particularly focused on one sensing modality,
namely the FMCW radar as its mathematical representation allowed for
an in-depth study of the effects of the quantization and its practicality en-
abled straightforward confirmations of the developed theory through actual
experiments.

One of the conclusions of this thesis is not that 1-bit quantization should
be the new default solution for FMCW radar signal processing but it is
rather to show that Quantized Compressive Sensing theory can be applied
in practical settings and that the issues it raises and the limitations that it
attempts to solve are indeed relevant. Indeed, we saw in various chapters of
this thesis that dithering the quantization operator, be it for the acquisition
or the processing, provided a noticeable gain in the reconstruction as well
as in the theoretical guarantees.

Furthermore, because FMCW radars can be represented as sensors that
perform a Fourier transform of the scene they measure, the conclusions of
this thesis can be partially translated to other sensing methods that relies
on the Fourier transform (e.g., Lidar, MRI, Sonar, ...).

The conclusions of the different chapters presented in this thesis as well
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Part 2 : Q+
ε Part 3

XHigh quality reconstruction signC
XDithering solves artifacts XReconstruction PBP with PO meas
XTheory, Simulations, measurements Xl1l2 RIP for complex gaussian
? Reconstruction bound for QIHT with RIP ? Application with signC
? How to implement the add dither ? ? Other model with (`1, `2)-RIP
? More complex model, SAR ? ? Tighter bound ?
? Noise, and other effects Q�

XEfficient implementation
Part 4 : Q+

ν (ΦH) XNon random dither
XReconstruction bound for QPBP(Q) for XLimitations of PO CS with Fourier
direct and factorized model XTheory, simulations, measurements

XTheory and simulations (QFFT) ? Prototype
? Better dependency on s, noise, metric ? ? More complex model
? Extension: network, Unfolding,... ? Stronger guarantees/algo for POCS

Table 9.1: Table summarizing the contributions and perspectives of this thesis; The cells
in blue are the contributions; red cells are the perspectives and possible future works.

as possible perspectives are discussed hereafter and summarized in Table
9.1.

Part II studied the coarse quantization of radar signals using a dithered
acquisition. In Chapter 4 and 5 we showed that in a noiseless case, radar
measurements, when quantized to 1-bit, must be dithered in order to guar-
antee a successful reconstruction. Indeed, we showed in Chapter 4 that the
absence of dithering before the acquisition can create ambiguous scenarios
where the quantization of different sparse vectors (or range profiles) results
in the identical measured bits. The extension of the model in Chapter 5
from the simple range estimation to the joint range and angle-of-arrival
estimation showed that a similar issue can render the estimation of the an-
gle of arrival impossible, even when only measuring one target. Adding a
random dithering that is carefully linked to the dynamic range of the mea-
sured signal solves this issue and the performances it enables was shown
through simulations and actual radar measurements. The theory developed
for PBP in [XJ19] for the 1D ranging was extended in Chapter 5 for the 2D
estimation. Possible perspectives are listed below

• The developed bound in Chapter 5 and in [XJ19] only applies to the
PBP algorithm. A potential future work would be the extension of
these bounds to the iterative QIHT algorithm for RIP matrices. The
simulations showed that the reconstructions followed O(m−1), this
was also proved for Gaussian matrices in [Fri+20].

• How to implement efficiently this additive dither efficiently is still an
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open question. Indeed, the conditions attached to this process for
it to be successful, i.e., generating a random variable that follows a
uniform distribution and that is scaled according to the dynamic of
the measured are quite stringent. Chapter 7 tries to answer this by
proposing an alternative to the additive dither.

• All the work presented in this thesis, apart from Chapter 6, assumes
a noiseless settings. It is still an open question as to what is the best
methodology regarding noisy 1-bit measurements. Indeed, Chapter 5
showed in Section 5.6 that in the presence of noise, using a uniform
dither at full dynamic does not yield the best results. How to scale
this dither with respect to the power of the already present noise
is a challenge. In fact it mirrors another challenge of the additive
dithering which is that the 1-bit quantization removes the information
about the amplitude which makes the estimation of the power of the
noise, as well as the dynamic of the signal complicated. A possibility
would be to switch from a uniform distribution to a Gaussian one,
as to better control the distribution of the dither in case of noisy
measurement, as it will remain Gaussian. This method however is also
limited as the behaviour of the quantizer will depart from Lemma 3.6
from E{Qε(y+ξ)} = y with ξ ∼ U [− ε

2 ,
ε
2 ] to E{Qε(y+n)} = erf( y

σ
√

2 )
with n ∼ N (0, σ2), i.e., the level of the noise with respect to the signal
will determine to which extent the signal can be recovered. This has
been partially covered in [PV16] but only applied to measurement
matrix that are Gaussian, which is of limited practical interest for
more applied sensing scenarios.

• Chapter 4 and 5 only considered fairly basic model in order to clearly
highlight the gain provided by the dithered acquisition. It would be of
interest to now extend this study to more complex model, e.g., MIMO
radars, SAR, or other sensing methods like LIDARs.

Part III was dedicated to the study of the Phase-Only acquisition in
Chapter 6 and another 1-bit acquisition strategy in Chapter 7, namely the
1-bit quantization with multiplicative dithering which can be seen as a quan-
tized extension of the signC acquisition.

In Chapter 6, we showed that the Phase Only acquisition is an extension
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of the well-known 1-bit CS setting to the complex domain. The reconstruc-
tion bound of the PBP algorithm that was proven for real matrices that fol-
low the (`1, `2)-RIP in was shown to also hold in the complex case. We also
demonstrated that complex Gaussian matrices can also exhibit this prop-
erty. Extensions and future work regarding this chapter are listed hereafter.

• The bound developed in Theorem 6.2 could be refined from O(m− 1
4 )

to O(m− 1
2 ) to match the behaviour observed in the simulations in

Sec 6.6.

• Since the first publication of the results of this chapter in [Feu+19], the
results were extended in [JF21] to instance-optimal algorithms. This
work showed that the problem of recovering real sparse vector from
complex phase-only measurements, can be recasted as a linear problem
that can be solved by instance-optimal algorithms if this new model
respect the RIP. This was shown for complex Gaussian measurement
matrices.

• This chapter was dedicated to the special case of complex measure-
ments matrix that follows the (`1, `2)-RIP, it could be interesting to
extend it to other models.

Part II introduced the use of dithering the 1-bit measurements coming
from radar signals but did not consider how to implement it. Chapter 7 first
highlighted the constraints associated to the use of an additive dithering in
a radar context and in response proposed the used of a multiplicative one.
This acquisition method was linked to the PO-CS setting and shown to
have, compared to the additive dither, less constraints on the actual imple-
mentation of the dithering process. The link with the PO-CS was studied
further by showing that, similarly to the 1-bit acquisition, PO measure-
ments can also be ambiguous for the special case of Fourier based models.
We also demonstrated that the performances of the reconstruction of the
multiplicative scheme can be upper-bound by the reconstruction of the PO-
CS measurements to which a discrepancy term is added. This terms has
been shown, through a non uniform bound, to behave as O(m− 1

2 ), i.e., it
can be made arbitrary small for a sufficient number of measurements. We
also introduced a relaxed version of the proposed multiplicative dithering
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that only relied on a deterministic function that can be efficiently imple-
mented. These results were then confirmed using extensive Monte-Carlo
simulations and real radar measurements, highlighting the fact that the
proposed multiplicative 1-bit acquisition is a interesting trade-off between
theoretical guarantees, performances and ease of implementations. Some
perspective regarding this work are provided hereafter.

• The big advantage of the proposed multiplicative dithering procedure
is its ease of implementation. The next logical step is thus to imple-
ment it in an actual radar prototype. A future publications will study
the performances of an actual FMCW radar that is multiplicatively
dithering using the architecture in Fig. 7.3. The use of the structured
and deterministic dither will also be investigated.

• The radar model considered was only the estimation of the range. A
possible perspective is to extend this model to more than the range
estimation by adding the angle of arrival of the velocity using the
Doppler Effect.

• Lastly, this work showed that PO measurements with Fourier based
model were ambiguous for complex sparse signal. While in this specific
settings, this fact limits the ability to uniformly-bound the reconstruc-
tion but it could be worthwhile to study alternative properties of these
coarse measurements in order to infer more about the possible recon-
struction. For example, in [Jac+13], the authors departed from the
`2-norm between sparse vector to use instead the angle between them
to develop the Binary-ε-Stable-Embedding properties for 1-bit CS. A
similar methodology could be interesting.

The last part of this thesis (Part IV) focused on the quantization of
the matrices used for the back-projection. We studied two quantization
schemes, namely the direct quantization of the back-projection operator
(Q+

ν (ΦH)) and the quantization of the coefficients of the sparse and fac-
torized representation of matrices like the FFT. Lowering the resolution of
these operators can simplify the hardware implementation of the arithmeti-
cal function used by the processing. For both quantization procedure, we
showed a uniform reconstruction guarantee using this modified PBP (i.e.,
QPBP) and proved that it follows the classic bound of PBP O(m− 1

2 ) up to
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a constant. The quality of the developed bounds were then evaluated using
extensive Monte Carlo simulations. Perspectives on this topic are provided
below.

• The reconstruction bounds developed in this work (i.e., Theorem 8.3,
Theorem 8.2, Theorem 8.8 and Theorem 8.9) all exhibit an increased
in the dependency on the sparsity of the vector. Indeed, classic recon-
struction bound in compressive sensing follow O(

√
s) instead of the

O(s). It could be interesting to investigate if this bound be tightened
to match the high-resolution bound (up to a constant).

• It is interesting to note that Theorem 8.7 and 8.8 can be used to extend
the reconstruction results from the noiseless case (i.e., z = Φx) to
a noisy one (i.e., z = Φx + n) where n ∈ Cm is `∞-bounded noise.
Indeed, the Quantized BP of noisy linear measurements can be upper-
bound by

‖x− Hs(Ψ̃
H
z)‖2 ≤ ‖x− (Φ̃H

z)T ‖2
+ ‖
(
(Ψ̃H − Φ̃H)Φ̃x

)
T ‖2 + ‖

(
(Ψ̃H − Φ̃H)n

)
T ‖2, (9.1)

where T = supp(x) ∪ supp(Hs(Ψ̃
H
z)). From (9.1) it is clear that in

order to bound the reconstruction, one needs to add to the bound
developed in Theorem 8.8 the non-uniform bound on the discrepancy
(i.e., Theorem 8.7) but not on the measurements but on the bounded
noise n. From this simple fact, it is clear that extending the analysis
presented in Chapter 8 from the noiseless to a noisy case should be
investigated.

• The simulations results presented in Section 8.6 finished with a com-
parison between the direct quantization and the factorized one. The
metric used to compare their reconstruction performances was the
complexity attached to the application of these operators (i.e., O(mN)
and O(m log(N))). This metric however is imperfect and this com-
parison should be furthered using a more in-depth measure of the
complexity of these scheme using, for example as a benchmark, a spe-
cific platform on which signal processing method can be implemented.

• The second part focused on back-projection that can be factorized
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as multiplication of different sub-matrices. It could be interesting
to extend this to other algorithms whose estimation process can be
expressed as the application of matrices, for example Neural Networks
[Mer+16] and other algorithms related to Unfolding [MLE21].
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