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Abstract

We propose a fractional self-exciting model for the risk of corporate default. We study the properties of

a time-changed version of an intensity based model. As a time-change, we use the inverse of an α-stable

subordinator. Performing such a time-change allows to incorporate two particular features in the survival

probability curves implied by the model. Firstly, it introduces random periods of time where the survival

probability is frozen, thereby modeling periods of time where the viability of the company is not threatened.

Secondly, the time-change implies possible sharp drops in the survival probability. This feature corresponds to

the occurence of one-time events that threaten the creditworthiness of the company. We show that the joint

probability density function and Laplace transform of the time-changed intensity and associate compensator

are solutions of fractional Fokker-Planck equations. After a discussion regarding approximation of Caputo

fractional derivatives, we describe a simple and fast numerical method to solve the Fokker-Planck equation

of the Laplace transform. This Laplace transform is used to obtain the survival probabilities implied by our

model. Finally, we use our results to calibrate the model to real market data and show that it leads to an

improvement of the fit.

Keywords: Finance, Credit risk, Caputo derivatives, Self-exciting processes.

Introduction

The most common paradigms for credit risk modeling are structural and intensity based models. The first

approach is called firm value model, or structural default model. In this approach, the balance sheet of the

firm is explicitly modeled and the default is triggered when assets fall below liabilities. For example of such

models, we refer the reader to Merton (1974), Black and Cox (1976), Geske (1977), Longstaff and Schwartz

(1995), Hainaut and Colwell (2016), Ayadi et al. (2016) and Ballota et al. (2019). The second approach,

the one that is used in this paper, is called the reduced-form or intensity-based credit model. This second

∗Corresponding author.
Email addresses: john-john.ketelbuters@uclouvain.be (John-John Ketelbuters), donatien.hainaut@uclouvain.be

(Donatien Hainaut)
1LIDAM, UCLouvain.

Preprint submitted to The European Journal of Operational Research March 3, 2021



approach was initiated by the work of Duffie and Singleton (1999) and is for example used in Mari and Renò

(2005), Hainaut and Le Courtois (2014) and Brigo and Vrins (2018). Textbooks concerning this second kind of

models are Bielecki and Rutkowski (2002), Duffie and Singleton (2003), Lando (2004), Jeanblanc et al. (2009)

and Schoutens and Cariboni (2009). This article deals with a new type of time-changed intensity-based credit

model.

The intensity of our model is a mean-reverting process, a kind of process that is often used in finance, for

example in Ekvall et al. (1997) or Wong and Lo (2009). The type of credit model used in this paper has an

additional feature: it takes into account the spillover between defaults, also called contagion. The importance

of this phenomenon has been emphasized by the financial crisis of 2008. A recent endogenous way to model

contagion is provided by self-exciting point processes. For these processes, the default arrival intensity at a

given point in time (that is also the instantaneous probability to observe a jump) depends on the number of

past defaults, as well as on the elapsed time since the occurence of these defaults. This approach finds its

origin in Hawkes (1971a, b) and Hawkes and Oakes (1974). More recently, Errais et al. (2010) develop a self-

exciting approach for modeling defaults in a credit portfolio. In the most common and simplest specification,

the default arrival intensity process is persistent and suddenly increases when a default occurs in the portfolio.

Ait-Sahalia et al. (2015) use a similar approach for modeling contagion between different markets. In Hainaut

(2016 a,b), self-exciting jump-diffusions are used for modeling the term structure of interest rates.

This article deals with the modeling of two phenomena within an intensity based model. The first phe-

nomenon is the presence of periods of time during which the survival of a company is not threathened. In order

to properly model such periods of time, the survival probability of the company should remain constant. This

contrasts with the usual intensity based model, where the survival probability strictly decreases as time passes.

The second phenomenon we aim to model is the random occurrences of one-time events that threaten the short

term viability of the company. The proper modeling of this second phenomena would imply the possibility to

observe very sharp drops in the survival probability of a company. This is again a feature that is not observed

in classic intensity-based credit models. Obtaining those two features involves a non-Markov time-change built

with the inverse of an α-stable subordinator. This time-change approach is applied to diffusions in physics for

describing the movement of heavy particles that can get immobilized (see, e.g. Metzler and Klafter 2004 or

Eliazar, Klafter 2004). This type of time-changed Brownian motions, called sub-diffusions, are also popular in

econophysics (see Scalas 2006) and applied to financial derivatives by Magdziarz (2009, a) for illiquid markets.

As shown in, e.g. Magdziarz (2009, b), the probability density function (PDF) of sub-diffusions is solution

of a fractional Fokker-Planck equation. This equation is proposed in Barkai et al. (2000) and Metzler et al.

(1999). Articles of Leonenko et al. (2013, a) Leonenko et al. (2013, b) go a step further and explore fractional

Pearson diffusions and their correlation.
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This article is organized in 3 sections. The first section introduces our framework, without dealing with

the time-change. It is also concerned with the derivation of some useful results regarding this framework.

The second section deals with the first main contribution of this paper: a model that incorporates the two

aforementioned features and a study of its properties. To build such a model, a non-Markov time-change is

added to the setting introduced in Section 1. Results of Section 1 are extended to this new setting with the

help of fractional calculus. The third section deals with our second main contribution: a very simple numerical

method to compute probability of survival that works in both settings, with or without time-changing by the

inverse of an α-stable subordinator. Finally, our last main contribution is to show that our numerical method

can be used to calibrate the model to real data and obtain a better fit.

1. Non-Fractional Setting

In the intensity approach to credit risk, defaults of companies are modelled by jumps of point processes. A

jump of a point process corresponds to the default of a company. In this paper, we are interested in the time

of default of a single company. The time of default is the time of the first jump of the point process (Dt)t>0,

that is the positive random variable inf{t > 0 : Dt > 1}. We start by describing precisely how the process

(Dt)t>0 is built.

Let (Nt)t>0 be a point process on a filtered probability space (Ω,F, P ) where F = (Ft)t>0 is a filtration

to be defined more precisely later on. We denote the intensity of (Nt)t>0 by (λt)t>0, another stochastic

process. The intensity represents the instantaneous probability to observe a jump in the process (Nt)t>0. Let

ξ1, ξ2, . . . be independent identically distributed (i.i.d.) exponential random variables with parameter ρ > 0.

Consequently, if the distribution of ξ1, ξ2, . . . is given by the measure ν on (R+,B(R+)), we have

dν(x) = ρe−ρxdx, ρ > 0

for all x ∈ R+, and E[ξi] = ρ−1 for all i. We also define the process (Pt)t>0 as

Pt =

Nt∑
k=1

ξk.

It is a pure positive jump process whose jump intensity is the stochastic process (λt)t>0. The dynamics of this

intensity process is assumed to satisfy the stochastic differential equation (SDE)

dλt = κ(θ − λt)dt+ ηdPt (1)

where κ, θ, η > 0 and λ0 ∈ [θ,+∞[. As a consequence of SDE (1), the intensity depends upon the history of

the process (Pt)t>0. This allows the process (Pt)t>0 to exhibit a self-exciting behaviour: a jump of the process

(Pt)t>0 induces a jump in the intensity (λt)t>0, which in turn implies an increase of the probability to observe
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another jump in (Pt)t>0. This is illustrated in Figure 1, where each jump of (λt)t>0 correspond to a jump of

(Pt)t>0 (that is not represented here). This figure is obtained with the parameters of Table 1 (fractional case),

with λ0 fixed to θ. The parameter θ represents a minimum level of instantaneous jump probability, as well
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Figure 1: 5 Simulated Paths of (λt)t>0

as a level to which this instantaneous probability tends to revert. The fact that λt > θ almost surely for all t

plays a role throughout this paper in the derivation of formulas, because it ensures that the PDF of λt equals

0 at the point 0. More precisely, if we denote by

p(t, x|s, y) =
∂

∂x
P (λt 6 x|λs = y)

the PDF of λt given λs, t > s, we always have p(t, 0|s, y) = 0. The parameter κ in Equation (1) represents

the speed of the reversion towards θ.

From an economic point of view, (λt)t>0 represents the systemic risk in the economy. Large values of

this process represent bad times for companies, increasing the odds to observe defaults. A jump of (Pt)t>0

represents a bad economic event and induces an increase of the default intensity. The self exciting behavior of

(λt, Pt)t>0 aims to model the clustering of defaults observed in practice, see, e.g. Ait-Sahalia et al. (2015).

The time of default of the company is modeled as the first jump of the point process (Dt)t>0, whose

intensity is assumed to be (λt)t>0. Despite the processes (Dt)t>0 and (Pt)t>0 both share the same intensity

(λt)t>0, there is a very important difference between them. In order to clarify this difference, let us say a few

words about how we decompose the filtration F. We denote by N = (Nt)t>0 the natural filtration of (Nt)t>0.

The filtration H = (Ht)t>0 is the one generated by the triplet (Nt, Pt, λt)t>0. A first important assumption
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is that the sigma-algebra generated by all the random jump sizes ξ1, ξ2, . . . is independent of Nt, for all t.

Finally, the filtration D = (Dt)t>0 is the natural filtration of (Dt)t>0. The filtration F is then defined as

F = H ∨ N ∨ D. We end this discussion about filtrations with a second important assumption: conditional on

H, (Dt)t>0 is a non-homogeneous Poisson process, in particular for any 0 6 s 6 t and k ∈ N,

P (Ds = k|Ht) =
Λks
k!
e−Λs

where (Λt)t>0 := (
∫ t

0
λudu)t>0 is the compensator of (Dt)t>0. From this last assumption follows the funda-

mental difference between the processes (Dt)t>0 and (Nt)t>0: by definition of (λt)t>0, the jumps of (Nt)t>0

exactly correspond to the jumps of (λt)t>0, whereas it is absolutely not the case for (Dt)t>0. In other words,

the jumps of (Nt)t>0 are observed in (λt)t>0, while the jumps of (Dt)t>0 are not. From an economic point of

view, this means that the company whose default is modeled by the first jump of (Dt)t>0 is not systemic, but

it is sensitive to defaults of systemic companies.

The first proposition is about the expectation and variance of the intensity (λt)t>0. It allows to derive

some conditions on the parameters to ensure that the intensity process does not explode. The proof is in

Appendix 1.

Proposition 1. Assume that κ > η
ρ . For any t > 0, we have

E[λt] = e−a1tλ0 −
κθ

a1
(e−a1t − 1) (2)

and

Var(λt) =
(1− e−a1t) (2a2λ0e

−a1t + a3(1− e−a1t))
2a1

(3)

where a1 := κ− η
ρ , a2 := 2

(
η
ρ

)2

and a3 := κθ a2a1 .

From this result, we observe that the condition that ensures the stability of the model is κ > η
ρ . That is,

the speed of the mean reversion must be sufficient to prevent the process from exploding. If this condition is

satisfied, we have the following long-term values for the expected value and variance

lim
t→+∞

E[λt] =
κθ

κ− η
ρ

lim
t→+∞

Var(λt) = κθ

(
η

η − ρκ

)2

.

In the following, we denote

p(t, x1, x2|s, y1, y2) =
∂2P (λt 6 x1,Λt 6 x2|λs = y1,Λs = y2)

∂x1∂x2

(4)

and

φ(t, z1, z2|s, y1, y2) = E [exp {−z1λt − z2Λt} |λs = y1,Λs = y2]
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where t > s > 0, y1 > θ, y2 > 0 and Λt :=
∫ t

0
λudu. Note that p corresponds to the conditional PDF of (λt,Λt)

given (λs,Λs) whereas φ is the corresponding Laplace transform. The conditional PDF p satisfies a partial

differential equation (PDE).

Proposition 2. The joint PDF p(t, x1, x2|s, y1, y2) of (λt,Λt) is solution of the Fokker-Planck equation

∂p(t, x1, x2|s, y1, y2)

∂t
= κp(t, x1, x2|s, y1, y2)− ∂p(t, x1, x2|s, y1, y2)

∂x2
x1

− ∂p(t, x1, x2|s, y1, y2)

∂x1
κ(θ − x1)− ηE[ξp(t, x1 − ηξ, x2|s, y1, y2)]

+ x1E[p(t, x1 − ηξ, x2|s, y1, y2)− p(t, x1, x2|s, y1, y2)]

(5)

with boundary condition p(s, x1, x2|s, y1, y2) = δ{x1−y1,x2−y2}, where δ stands for the Dirac measure located at

(0, 0) ∈ R2.

The proof can be found in Appendix 1. The next result is the fact that the Laplace transform of

p(t, z1, z2|s, y1, y2) also satisfies a PDE. The proof has also been relegated to Appendix 1 and relies essen-

tially on PDE (5).

Proposition 3. The Laplace transform φ(t, z1, z2|s, y1, y2) of the joint PDF p(t, x1, x2|s, y1, y2) is solution of

the following forward Kolmogorov equation

∂φ(t, z1, z2|s, y1, y2)

∂t
= −z1κθφ(t, z1, z2|s, y1, y2) +

∂φ(t, z1, z2|s, y1, y2)

∂z1
γ(z1, z2)

where γ(z1, z2) := 1−κz1−E[e−z1ηξ]+z2. Moreover, the boundary conditions φ(s, z1, z2|s, y1, y2) = exp {−z1y1 − z2y2}

and φ(t, 0, 0|s, y1, y2) = 1 hold.

The next section aims to extend the previous results to the time-changed framework.

2. Fractional Setting

This second section extends the model to the fractional case with the help of a change of time. This

allows to obtain fractional Hawkes processes, as introduced in Hainaut (2020). We start this second section

by describing the subordinator and some of its properties.

2.1. The Subordinator

We use a time-change with a subordinator that is the inverse of an α-stable Lévy process. Such processes

are discussed in, e.g. the Chapter 3 of Sato (1999) and in Janicki and Weron (1994) We briefly introduce this

class of processes and derive some properties of their inverses.

Definition 1. Let (Ut)t>0 be a stochastic process and α ∈ (0, 1). We say that the process (Ut)t>0 is an

α-stable subordinator if it is an increasing Lévy process that satisfies

E
[
e−uUt

]
= e−tu

α

for all t > 0.
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Figure 2: 5 Paths of (Ut)t>0 and Corresponding Paths of (St)t>0

Throughout all the upcoming developments, we assume that (Ut)t>0 is an α-stable subordinator. The

inverse of (Ut)t>0 will be denoted by (St)t>0, and defined as

St := inf{s > 0 : Us > t}.

Figure 2 shows five simulated paths of (Ut)t>0 and the corresponding paths of (St)t>0. The algorithm used to

obtain such simulations is from Magdziarz (2009, b) and is described in details in Appendix 2. The graphs are

obtained with the fractional order α = 0.94151 of Table 1 (fractional case). A property of interest in the paths

of the process (St)t>0 is the presence of periods of time where these paths remain constant, as we can observe

in Figure 2. The motionless periods correspond to the jumps of (Ut)t>0, which follows from the definition of

(St)t>0. Figure 3 shows 50 simulations of survival probability curves2. The paths in the time-changed model

are much more heterogeneous. In particular, the time-changed setting allows to model companies that do

not encounter troubles during long periods of time, therefore having survival probabilities remaining constant

during these periods. That property is absolutely not mimicable by a usual credit model, as we can see on

the left graph of Figure 2. Indeed, the striclty positive intensity of these models necessarily imply decreasing

survival probability curves. The PDF of Ut will be denoted by pU (t, τ) = ∂
∂τ P (Ut 6 τ) whereas the PDF of

St will be denoted by g(t, τ) = ∂
∂τ P (St 6 τ). The relations between the functions pU and g are described in

the following result. Proofs can be found in Hainaut (2020).

Proposition 4. The following relations hold for all t, τ

2We call these processes survival probability because in an intensity model, the probability of survival until time t is

E[exp{−Λt}].
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Figure 3: 50 Paths of (exp{−Λt})t>0 and (exp{−ΛSt})t>0

(1) St =d
(
t
U1

)α
, i.e. both random variables share the same probability distribution;

(2) pU (τ, t) = τ−
1
α pU (1, τ−

1
α t);

(3) τg(t, τ) = t
αpU (τ, t);

(4) g(t, τ) = − ∂
∂τ

∫ t
0
pU (τ, u)du.

We now state a result about the Laplace transform of (St)t>0. It will be used later as a boundary condition.

Proposition 5. The Laplace transform of (St)t>0 is given by

E[e−ωSt ] :=

∫ +∞

0

e−ωτg(t, τ)dτ

= Eα(−ωtα)

where Eα denotes the Mittag-Leffler function

Eα(z) :=
+∞∑
k=0

zk

Γ(kα+ 1)
.

Moreover, by differentiation of the Laplace transform of St, we have for any n ∈ N

E[Snt ] =
n!tnα

Γ(nα+ 1)
.

The reader is refered to Piryatinska et al. (2005) for a proof.
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2.2. Caputo Derivatives

The main difference between the results obtained in the fractional setting (i.e. time-changed setting)

compared to the non-fractional one is the replacement of the partial derivative with respect to time by a

fractional derivative in the PDE’s, turning them into fractional PDE’s (FPDE). In the following, we present the

needed material about Caputo fractional derivatives. Textbooks about fractional calculus are, e.g. Podlubny

(1999) and Diethelm (2010). We start with the definition of Caputo derivative.

Definition 2. For a function h : R→ R, the Caputo derivative of h of order α ∈ (0, 1) is defined as

dαh

dtα
(t) :=

1

Γ(1− α)

∫ t

0

(t− s)−α d

ds
h(s)ds. (6)

Caputo derivatives are also defined for any non-integer order α > 1. We give the definition for the α ∈ (0, 1)

case since it is the only one we need here. The interested reader may find a more geneal definition in the

textbooks mentionned above. Note that all the values of the derivatives at times s ∈ (0, t) are needed to

compute the Caputo derivative at time t. The interpretation is that if we are interested in the change rate

at time t, we need to take into account all the change rates at s ∈ (0, t). From a modeling point of view,

this introduces a memory effect. The following result will be useful regarding Caputo derivatives and Laplace

transforms.

Proposition 6. For any function h : R→ R, it holds that

d̃αh

dtα
(ω) = ωαh̃(ω)− ωα−1h(0), (7)

where
d̃αh

dtα
(ω) :=

∫ +∞

0

dαh

dtα
(t)e−tωdt and h̃(ω) :=

∫ +∞

0

h(s)e−sωds.

This is a well known result in fractional calculus. A proof can be found in the chapter 2 of Podlubny

(1999). We can now turn to the main results regarding the fractional setting. Those are exposed in the next

subsection.

2.3. Fractional Fokker-Planck Equation for the Time-Changed Process

This subsection is concerned with the main theoretical results of this paper, namely the FPDE for the

joint PDF and joint Laplace transform of the time changed process (λSt ,ΛSt)t>0. Before proving that the

joint PDF and Laplace transform satisfy FPDE’s, we need a preliminary result about Laplace transforms. We

denote

pα(t, x1, x2|y) :=
∂2P (λSt 6 x1,ΛSt 6 x2|λ0 = y)

∂x1∂x2
,

the joint PDF of (λSt ,ΛSt)t>0. Also, recall that p is the joint PDF of (λt,Λt)t>0, as defined at Equation (4).

The Laplace transform of this function satisfies the next lemma.
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Lemma 7. It holds that

p̃α(ω, x1, x2|y) = ωα−1p̃(ωα, x1, x2|y),

where

p̃α(ω, x1, x2|y) :=

∫ +∞

0

e−ωtpα(t, x1, x2|y)dt.

Proof. First note that

pα(t, x1, x2|y) =

∫ +∞

0

p(τ, x1, x2|0, y, 0)g(t, τ)dτ,

where g(t, ·) is the PDF of St. Therefore it follows that p̃α satisfies

p̃α(ω, x1, x2|y) :=

∫ +∞

0

e−ωtpα(t, x1, x2|y)dt

=

∫ +∞

0

e−tω
∫ +∞

0

p(τ, x1, x2|0, y, 0)g(t, τ)dτdt

=

∫ +∞

0

p(τ, x1, x2|0, y, 0)

∫ +∞

0

e−tωg(t, τ)dtdτ

= ωα−1

∫ +∞

0

e−τω
α

p(τ, x1, x2|0, y, 0)dτ = ωα−1p̃(ωα, x1, x2|0, y, 0),

as announced.

We now have the tools to prove the first main theoretical result of this paper, namely that the joint PDF

pα satisfies a FPDE.

Proposition 8. The joint PDF pα satisfies the FPDE

∂αpα(t, x1, x2|y)

∂tα
= κpα(t, x1, x2|y)− x1

∂

∂x2
pα(t, x1, x2|y)− κ(θ − x1)

∂

∂x1
pα(t, x1, x2|y)

− ηE[ξpα(t, x1 − ηξ, x2|y)] + x1E[pα(t, x1 − ηξ, x2|y)− pα(t, x1, x2|y)]

with boundary condition pα(s, x1, x2|y) = δ{x1−y,x2}, where δ stands for the Dirac measure located at (0, 0) ∈

R2.

Proof. In the following, p(t, x1, x2|y) is used as a shorthand for p(t, x1, x2|0, y, 0). Firstly let us look at the

integral ∫ +∞

0

∂

∂t

(
e−ωtp(t, x1, x2|y)

)
dt. (8)

From the fundamental theorem of calculus, it is clearly equal to −p(0, x1, x2|y). However, by computing the

derivative inside the integral, we obtain that the integral at Equation (8) is also equal to

−ωp̃(ω, x1, x2|y) +

∫ +∞

0

e−ωt
∂

∂t
p(t, x1, x2|y)dt

so that we infer

ωp̃(ω, x1, x2|y)− p(0, x1, x2|y) =

∫ +∞

0

e−ωt
∂

∂t
p(t, x1, x2|y)dt. (9)
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Secondly we use Proposition 2, i.e. the Fokker-Planck equation for p, on the right-hand side of Equation (9).

After some simplifications, this gives

ωp̃(ω, x1, x2|y)− p(0, x1, x2|y)

=− x1
∂

∂x2
p̃(ω, x1, x2|y)− κ(θ − x1)

∂

∂x1
p̃(ω, x1, x2|y) + κp̃(ω, x1, x2|y)

− ηE [ξp̃(ω, x1 − ηξ, x2|y)] + x1E [p̃(ω, x1 − ηξ, x2|y)− p̃(ω, x1, x2|y)] .

(10)

Since this is valid for any ω, we can replace ω by ωα in Equation (10). Doing this, multiplying each side by

ωα−1, and using the fact that pα(0, x1, x2|y) = p(0, x1, x2|y) = 0 provides us with

ωα(ωα−1p̃(ωα, x1, x2|y))− ωα−1pα(0, x1, x2|y)

=− x1
∂

∂x2

(
ωα−1p̃(ωα, x1, x2|y)

)
− κ(θ − x1)

∂

∂x1

(
ωα−1p̃(ωα, x1, x2|y)

)
+ κωα−1p̃(ωα, x1, x2|y)− ηE

[
ξωα−1p̃(ωα, x1 − ηξ, x2|y)

]
+ x1E

[
ωα−1p̃(ωα, x1 − ηξ, x2|y)− ωα−1p̃(ωα, x1, x2|y)

]
.

(11)

Using Lemma 7, we can rewrite Equation (11) as

ωαp̃α(ω, x1, x2|y)− ωα−1pα(0, x1, x2|y)

=− x1
∂

∂x2
p̃α(ω, x1, x2|y) +−κ(θ − x1)

∂

∂x1
p̃α(ω, x1, x2|y)

+ κp̃α(ω, x1, x2|y)− ηE [ξp̃α(ω, x1 − ηξ, x2|y)dt]

+ x1E
[
ωα−1p̃α(ω, x1 − ηξ, x2|y)− p̃α(ω, x1, x2|y)

]
.

(12)

An application of Proposition 6 to the function t ∈ (0,+∞) 7→ p(t, x1, x2|y) allows to conclude that the

left-hand side of Equation (12) equals ∂̃αp
∂tα (ω, x1, x2|y).

We also obtained a FPDE for the Laplace transform, that is the second main theoretical result of this

paper. In the following, the Laplace transform of (St, λSt ,ΛSt)t>0 is denoted by

φα(t, z1, z2, z3|y) := E [exp {−z1St − z2λSt − z3ΛSt} |λ0 = y] .

Proposition 9. The function φα satisfies the FPDE

∂αφα
∂tα

(t, z1, z2, z3|y) =− z1φα(t, z1, z2, z3|y)− z2κθφα(t, z1, z2, z3|y) + γ(z2, z3)
∂φα
∂z2

(t, z1, z2, z3|y) (13)

where γ(z2, z3) := 1− κz2 − E[e−z2ηξ] + z3. Moreover, the following boundary conditions hold:

φα(t, z1, 0, 0|y) = Eα(−z1t
α)

φα(0, z1, z2, z3|y)− e−z2y = φα(t, 0, 0, 0|y)− 1 = 0.

11



Proof. The first boundary condition follows from Proposition 5, the second and the third are straightforward

given the definition of φα. In order to derive Equation (13), we start by observing the joint PDF pα of the

triple (St, λSt ,ΛSt), that is

pα(t, x1, x2, x3|y) :=
∂3

∂x1∂x2∂x3
P (St 6 x1, λSt 6 x2,ΛSt 6 x3|λ0 = y) .

From the definition of conditional PDF, we have

pα(t, x1, x2, x3|y) = g(t, x1)p(x1, x2, x3|y). (14)

See Equation (4) for the definition of p. From Equation (14), it follows that

p̃α(ω, x1, x2, x3|y) :=

∫ +∞

0

e−ωtpα(t, x1, x2, x3|y)dt

= p(x1, x2, x3|y)

∫ +∞

0

e−ωtg(t, x1)dt

= ωα−1e−x1ω
α

p(x1, x2, x3|y).

Thanks to this result we can obtain

φ̃α(ω, z1, z2, z3|y)

:=

∫ +∞

0

∫ +∞

0

∫ +∞

0

∫ +∞

0

e−ωt−z1x1−z2x2−z3x3pα(t, x1, x2, x3|y)dtdx1dx2dx3

= ωα−1

∫ +∞

0

∫ +∞

0

∫ +∞

0

e−z1x1−z2x2−z3x3e−x1ω
α

p(x1, x2, x3|y)dx1dx2dx3

= ωα−1

∫ +∞

0

e−(z1+ωα)x1φ(x1, z2, z2|y)dx1,

(15)

where φ(x1, z2, z3|y) =
∫ +∞

0

∫ +∞
0

e−x2z2−x3z3p(x1, x2, x3|y)dx2dx3. Next, an integration by parts yields

φ̃α(ω, z1, z2, z3|y) =
ωα−1

z1 + ωα

[
φ(0, z2, z3|y) +

∫ +∞

0

e−(z1+ωα)t ∂φ

∂t
(t, z1, z2|y)dt

]
. (16)

Proposition 3 gives an expression of ∂φ
∂t (t, z1, z2|y) that we can use to obtain∫ +∞

0

e−(z1+ωα)t ∂φ

∂t
(t, z1, z2|y)dt =− z2κθ

∫ +∞

0

e−(z1+ωα)tφ(t, z2, z3|y)dt

+ γ(z2, z3)

∫ +∞

0

e−(z1+ωα)t ∂φ

∂z2
(t, z2, z3|y)dt.

(17)

By this last equation, as well as Equation (15), Equation (16) is equivalent to

(z1 + ωα)φ̃α(ω, z1, z2, z3|y) = ωα−1φ(0, z1, z2|y)− z2κθφ̃α(ω, z1, z2, z3|y)

+ γ(z2, z3)
∂φ̃α
∂z2

(ω, z1, z2, z3|y).
(18)

Observe that φ(0, z2, z3|y) = e−z2y = φα(0, z1, z2, z3|y), so that we obtain

ωαφ̃α(ω, z1, z2, z3|y)− ωα−1φα(0, z1, z2, z3|y)

=− z1φ̃α(ω, z1, z2, z3|y)− z2κθφ̃α(ω, z1, z2, z3|y) + γ(z2, z3)
∂

∂z2
φ̃α(ω, z1, z2, z3|y).

The announced result then follows from Proposition 6.

12



Corollary 10. If we denote

φα(t, z1, z2|y) := E
[
e−z1λSt−z2

∫ St
0 λudu

∣∣λ0 = y
]
,

then it holds that

∂αφα
∂tα

(t, z1, z2|y) = φα(t, z1, z2|y)β(z1) +
∂

∂z1
φα(t, z1, z2|y)γ(z1, z2). (19)

Moreover, the boundary conditions φα(t, 0, 0|y) = 1 and φα(0, z1, z2|y) = e−z1y are satisfied.

Proof. Apply Proposition 9 with z1 = 0.

Note that this last PDE is nearly the same as in the non-frational case, see Proposition 3. The only

difference is that the partial derivative with respect to time is replaced by a fractional Caputo derivative.

3. Numerical Illustration

This section shows how we can use the FPDE of the Laplace transform φα to compute survival probabilities.

Several methods have been developped recently to solve FPDE’s numerically. We can cite, e.g. the variational

iteration method in Odibat and Momani (2009), the homotopy perturbation method in Golbabai and Sayevand

(2011), the Laplace transform method in Jafari et al. (2013), the Haar-wavelet method in Wang et al. (2014),

the Adomian decomposition method in Jafari and Daftardar-Gejji (2006) and El-Sayed et al. (2010) and the

spectral regularization method in Zheng and Wei (2010). In our case, the FPDE is solved numerically with the

help of a finite difference method. Finite difference methods are of common use in finance for solving PDE’s,

see Zvan et al. (2000) and Junseok et al. (2016) for examples and Duffy (2006) for a textbook. They have

also been successfully used to solve FPDE’s in, e.g. Murio (2008), Ding and Zhang (2011) and in Song and

Wang (2013), where it is used to price European and American options in a fractional version of the Black

and Scholes model. The finite difference approximation we use for the Caputo derivative is the same as in

Murio (2008) and Ding and Zhang (2011). However, our numerical method differs in two aspects. Firstly the

equation we solve is not the same as in the mentioned references. Secondly our method is adapted to solve a

FPDE with very few boundary conditions, as explained later.

In our model, the time of default τ is the first jump of the time changed point process (DSt)t>0, i.e.

τ := inf{t > 0|DSt > 0}.

The process (Dt)t>0 is assumed to have intensity (λt)t>0. It follows that

P (τ > t|F0) = E [exp {−ΛSt} |F0] = φα(t, 0, 1|y).

From Corollary 10, we know that the function (t, z) 7→ φα(t, z, 1|y) satisfies the FPDE

∂αφα
∂tα

(t, z, 1|y) = −zκθφα(t, z, 1|y) +
∂

∂z
φα(t, z, 1|y)γ(z, 1)
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with the boundary condition φα(0, z, 1|y) = e−zy. We start by solving the simple non-fractional case (α = 1)

and then extend the method to the fractional case with α ∈ (0, 1).

3.1. Non-Fractional Case

Recall that

φ(t, z1, z2|s, y1, y2) = E [exp {−z1λt − z2Λt} |λs = y1,Λs = y2] .

For the sake of shorter notations, we will denote φ(t, z1, z2) = φ(t, z1, z2|0, y, 0), for a fixed y > θ. Recall that

γ(z1, z2) = 1− κz1 − E[e−z1ηξ] + z2. The goal is to solve the PDE

∂φ

∂t
(t, z1, z2) = −z1κθφ(t, z1, z2) +

∂φ

∂z1
γ(z1, z2) (20)

for a fixed z2. Then, setting z2 = 1 allows to find the survival probabilities implied by the model. In or-

der to solve numerically this equation, we will work on two grids. The first one is {t0, t1, . . . , tnt}, where

tk = k∆t. The second one is {z−nz , z−nz+1, . . . , z−1, z0, z1, . . . , znz}, where zj = j∆z. We write respec-

tively φ̂(k, j; z2), ∂φ̂
∂z1

(k, j; z2) and ∂φ̂
∂z1

(k, j; z2) for our approximations of φ(k∆t, j∆z, z2), ∂φ∂t (k∆t, j∆z, z2) and

∂φ
∂z1

(k∆t, j∆z, z2). The partial derivatives are approximated as

∂φ̂

∂t
(k, j; z2) :=

φ̂(k, j; z2)− φ̂(k − 1, j; z2)

∆t

(21)

∂φ̂

∂z1
(k, j; z2) :=


φ̂(k,−nz+1;z2)−φ̂(k,−nz ;z2)

∆z
j = −nz

φ̂(k,nz ;z2)−φ̂(k,nz−1;z2)
∆z

j = nz

φ̂(k,j+1;z2)−φ̂(k,j−1;z2)
2∆z

otherwise.

(22)

The special aspect of our method lies in Equation (22). Approximating the partial derivative with respect to

z1 in such a way, i.e. changing the approximation when j ∈ {−nz, nz}, allows us to obtain a solution even

if the only boundary condition we know is φ(0, z1, z2|y) = e−z1y. Using these notations, PDE (20) translates

into

∂φ̂

∂t
(k, j; z2) = φ̂(k, j; z2)βj +

∂φ̂

∂z1
(k, j; z2)γj(z2), (23)

where βj = −j∆zκθ and γj(z2) = γ(j∆z, z2). Using Equations (21) and (22), we find

φ̂(k − 1, j; z2) =



[
1−∆tβ−nz +

∆t

∆z
γ−nz (z2)

]
φ̂(k,−nz; z2)

− ∆t

∆z
γ−nz (z2)φ̂(k,−nz + 1)

}
j = −nz

[
1−∆tβnz −

∆t

∆z
γnz (z2)

]
φ̂(k, nz; z2)

+
∆t

∆z
γnz (z2)φ̂(k, nz − 1 + 1)

}
j = nz

∆t

2∆z
γj(z2)(φ̂(k, j − 1; z2)− φ̂(k, j + 1; z2))

+ [1−∆tβj ] φ̂(k, j; z2)

}
j /∈ {−nz, nz}

(24)
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Equation (24) is then nothing more than a linear system of equations. Let us denote

Φ̂k(z2) :=


φ̂(k,−nz; z2)

φ̂(k,−nz + 1; z2)
...

φ̂(k, nz; z2)

 ∈ R2nz+1

and

A :=



b−nz + a−nz −a−nz 0 0 0 · · · 0 0 0
a−nz+1

2
b−nz+1

−a−nz+1

2
0 0 . . . 0 0 0

0
a−nz+2

2
b−nz+2

−a−nz+2

2
0 . . . 0 0 0

0 0
a−nz+3

2
b−nz+3

−a−nz+3

2
. . . 0 0 0

...
...

. . .
. . .

. . .
. . .

. . .
...

...

0 0 0 0 0 . . .
a−nz−1

2
bnz−1

−anz−1

2

0 0 0 0 0 . . . 0 anz bnz − anz


where3 aj := (∆t/∆z)γj(z2) and bj := 1 − ∆tβj . Note that A(z2) ∈ R(2nz+1)×(2nz+1) for any z2. Equation

(24) then becomes

Φ̂k−1(z2) = A(z2)Φ̂k(z2),

so that given the (approximated) values Φ̂k−1(z2) of the function φ at time (k − 1)∆t, our problem reduces

to inverting the matrix A(z2).

From the boundary conditions of the PDE in Proposition 3, we know that for any z1, z2, φ(0, z1, z2|0, y1, 0) =

exp{−z1y1}. It follows that, starting from the initial condition φ̂(0, j; z2) = exp{−j∆zy1}, i.e. the values in

the vector Φ̂0(z2), we can determine all the vectors Φ̂k(z2) recursively using Φ̂k(z2) = (A(z2))−1Φ̂k−1(z2).

3.2. Approximating Caputo Fractional Derivatives

This subsection discusses the numerical approximation of the Caputo derivative of a function. Let us

consider the grid {t0, t1, . . . , tnt} of the previous section, that is tk = k∆t for all k. The approximation

formula is based on Equation (6) and the following development

dαh

dtα
(tk) =

1

Γ(1− α)

∫ tk

0

(tk − s)−α
d

ds
h(s)ds

=
1

Γ(1− α)

k−1∑
i=0

∫ ti+1

ti

(tk − s)−α
d

ds
h(s)ds

≈ 1

Γ(1− α)

k−1∑
i=0

(
h(ti+1)− h(ti)

∆t

)∫ ti+1

ti

(tk − s)−αds

=
−∆−αt

Γ(2− α)

k−1∑
i=0

(h(ti+1)− h(ti))
[
(k − i− 1)1−α − (k − i)1−α] .

3Obviously we should write aj(z2) and A(z2) but the notations needed to be shortened here.
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Therefore the approximation formula for the Caputo fractional derivative is

dαh

dtα
(tk) ≈ −∆−αt

Γ(2− α)

k−1∑
i=0

(h(ti+1)− h(ti))
[
(k − i− 1)1−α − (k − i)1−α] . (25)

In the next subsection, we use this approximation to solve numerically the FPDE (19) of Corollary 10.

3.3. Fractional Case

We describe a numerical scheme to solve the FPDE of Corollary 10. The method is basically the same as

in the non-fractional case, although it is a bit complicated by the fractional derivative with respect to time.

We work with the same grids as in Section 3.1. Our approximations of φα(k∆t, j∆z, z2), ∂φα
∂z1

(k∆t, j∆z, z2),

and ∂αφα
∂tα (k∆t, j∆z, z2) are respectively denoted by φ̂α(k, j; z2), ∂φ̂α

∂z1
(k, j; z2) and ∂αφ̂α

∂tα (k, j; z2). The partial

derivative with respect to z1 is approximated as in Section 3.1, that is

∂φ̂α
∂z1

(k, j; z2) :=


φ̂α(k,−nz+1;z2)−φ̂α(k,−nz ;z2)

∆z
j = −nz

φ̂α(k,nz ;z2)−φ̂α(k,nz−1;z2)
∆z

j = nz

φ̂α(k,j+1;z2)−φ̂α(k,j−1;z2)
2∆z

otherwise.

(26)

As discussed in Section 3.2, the Caputo derivative is approximated by

∂αφ̂α
∂tα

(k, j; z2)

:=
−∆−αt

Γ(2− α)

k−1∑
i=0

[(k − i− 1)1−α − (k − i)1−α](φ̂α(i+ 1, j; z2)− φ̂α(i, j; z2)).

(27)

Having introduced these notations, the FPDE in Corollary 10 translates into

∂αφ̂α
∂tα

(k, j; z2) = φ̂α(k, j; z2)βj +
∂φ̂α
∂z1

(k, j; z2)γj(z2) (28)

where βj and γj are the same as in Equation (23). Starting from Equation (28), we can use approximations

of Equations (27) and (26) to obtain

∆−αt
Γ(2− α)

[ (
(k − 1)1−α − k1−α) φ̂α(0, j; z2)

−
k−1∑
i=1

φ̂α(i, j; z2)
(
2(k − i)1−α − (k − i+ 1)1−α − (k − i− 1)1−α) ]

=



φ̂α(k,−nz + 1; z2)
γ−nz (z2)

∆z

+ φ̂α(k,−nz; z2)

[
−∆−αt

Γ(2− α)
+ β−nz −

γ−nz (z2)

∆z

] }
j = −nz

φ̂α(k, nz − 1; z2)
−γnz (z2)

∆z

+ φ̂α(k, nz; z2)

[
−∆−αt

Γ(2− α)
+ βnz +

γnz (z2)

∆z

] }
j = nz

φ̂α(k, j − 1; z2)
−γj(z2)

2∆z
+ φ̂α(k, j + 1; z2)

γj(z2)

2∆z

+ φ̂α(k, j; z2)

[
−∆−αt

Γ(2− α)
+ βj

] }
otherwise.
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This is again a linear system of equations. Using vector and matrix notations as in Section 3.1, we have

∆−αt
Γ(2− α)

[ (
(k − 1)1−α − k1−α) Φ̂α(0; z2)

−
k−1∑
i=1

Φ̂α(i; z2)
(
2(k − i)1−α − (k − i+ 1)1−α − (k − i− 1)1−α) ]

= Aα(z2)Φ̂α(k; z2)

where4

Aα :=



b−nz − a−nz a−nz 0 0 0 · · · 0 0 0
−a−nz+1

2
b−nz+1

a−nz+1

2
0 0 . . . 0 0 0

0
−a−nz+2

2
b−nz+2

a−nz+2

2
0 . . . 0 0 0

0 0
−a−nz+3

2
b−nz+3

a−nz+3

2
. . . 0 0 0

...
...

. . .
. . .

. . .
. . .

. . .
...

...

0 0 0 0 0 . . .
−a−nz−1

2
bnz−1

anz−1

2

0 0 0 0 0 . . . 0 −anz bnz + anz


and

aj(z2) :=
γj(z2)

∆z
bj :=

−∆−αt
Γ(2− α)

+ βj .

As in the non-fractional case of Section 3.1, starting from the boundary condition φ̂α(0, j; z2) = exp{−j∆zy1},

we can obtain all the values on the grid using the recursion

Φ̂α(k; z2) = (Aα(z2))
−1 ∆−αt

Γ(2− α)

[ (
(k − 1)1−α − k1−α) Φ̂α(0; z2)

−
k−1∑
i=1

Φ̂α(i; z2)
(
2(k − i)1−α − (k − i+ 1)1−α − (k − i− 1)1−α) ].

In the next section, we find lower and upper bounds on the survival probabilities. This allows us to ensure

the precision of our numerical procedure.

3.4. Bounds on the Survival Probabilities

The bounds on the probabilities in the non-fractional model are given in the next proposition.

Proposition 11. Let q : R+ → [0, 1], t 7→ q(t) := φ(t, 0, 1|0, y, 0) be the survival probability function implied

by the non-fractional model (see Proposition 3) and f1, f2 : R+ → [0, 1] be defined as

f1(t) := exp

{
−

((
y − κθ

κ− ηρ−1

)
1− e−(κ−ηρ−1)t

κ− ηρ−1
+

κθt

κ− ηρ−1

)}

and f2(t) := e−θt. Then it holds that f1 6 q 6 f2.

4Again we should write aj(z2) and Aα(z2) but shorter notations are needed.
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Proof. The inequality q 6 f2 follows from λt > θ. For the other inequality, note that the convexity of the

function x 7→ e−x implies, by Jensen’s inequality

q(t) = E[exp{−Λt}|λ0 = y] > exp{−E[Λt|λ0 = y]}.

The expression of f1 is then obtained by integrating the expected value of λt, see Equation (2).

We also have bounds in the fractional case.

Proposition 12. Let qα : R+ → [0, 1], t 7→ qα(t) := φα(t, 0, 1|y) be the survival probability function implied by

the fractional model (see Corollary 10) and fα,1, fα,2 : R+ → [0, 1] be defined as

fα,1(t) := exp

{
−
((

y − κθ

κ− ηρ−1

)
1− Eα(−(κ− ηρ−1)tα)

κ− ηρ−1
+

κθtα

(κ− ηρ−1)Γ(α+ 1)

)}
and fα,2(t) := Eα(−θtα), where Eα is the Mittag-Leffler function. Then it holds that fα,1 6 qα 6 fα,2.

Proof. The inequality qα 6 fα,2 follows from ΛSt > θSt and Proposition 5. The other inequality follows from

Jensen’s inequality

qα(t) > exp{−E[ΛSt |λ0 = y]}

= exp

{
−E

[(
y − κθ

κ− ηρ−1

)
1− e−(κ−ηρ−1)St

κ− ηρ−1
+

κθSt
κ− ηρ−1

]}

where we used Equation 2. The proof is then easily completed with the help of Proposition 5.

These two Propositions will be useful in the next section to show the accuracy of the numerical method.

3.5. Numerical Results

This section is devoted to the calibrations of both models (fractional and non-fractional) to real market

data. The data have been taken on the 25th of January 2021 from Bloomberg. They consist of survival

probabilities for American Airlines. These data are displayed in the Market column of Table 2. The model is

calibrated by choosing the set of parameters that minimizes the quantity

10∑
T=1

(ProbModel
T − ProbMarket

T )2

where ProbMarket
T denotes the market survival up to time T probability from Bloomberg and ProbModel

T denotes

the corresponding survival probability implied by the model. Refering to the notations from above, the

computations are made with ∆t = 2 × 10−3, nt = 5000, ∆z = 10−2, nz = 10 and λ0 was fixed at the target

level θ. The parameters from the calibration are shown in Table 1. The graphical results of the calibrations

are shown at Figure 4 and the numerical results are given in Table 2. In this table, we compare the market

data to the survival probabilities implied by the model and computed by solving the (F)PDE with the method

described above. As we can observe on Figure 4, the non-fractional model is unable to properly fit the market
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Figure 4: Market Survival Probabilities and Calibrated Survival Probabilities

data. Moving to the fractional model allows to introduce a greater degree of convexity and thus a better

fit. To illustrate numerically the improvement of the fit, the absolute differences with respect to the market

survival probabilities can also be found in Table 2. These differences between probabilities sum to 0.200165 in

the non-fractional case whereas they sum to only 0.105476 in the fractional case. Thus the fractional model

performs almost twice better according to the sum of absolute values criterion. Table 2 displays the lower

Parameter θ κ η ρ α

Non-fractional 0.2381828 37.6009 1.728399 2.5861 1

Fractional 0.2489265 6.683165 1.728354 2.58613 0.9415109

Table 1: Parameters of the Calibrated Model

and upper bounds on the survival probabilities given at Propositions 11 and 12. Recall that f1 and f2 are

respectively the lower and upper bounds in the non-fractional case and fα,1 and fα,2 are respectively the lower

and upper bounds in the fractional case. Since the numerical method converges to values that are always

between the lower and the upper bounds, we can deduce bounds on the error of the numerical results.

Table 3 shows that the results obtained from our numerical method are congruent with Monte-Carlo

simulations of the process (exp{−ΛSt})t>0. The algorithm we use to obtain such simulations is described in

details in Appendix 2. Table 3 is based on 1000 Monte-Carlo simulations and displays the market survival
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Non-fractional Fractional

Time Market f1 q f2 |Market− q| fα,1 qα fα,2 |Market− qα|

1 0.7954 0.784761 0.784938 0.788059 0.010462 0.756789 0.760422 0.776569 0.034978

2 0.5673 0.615778 0.616056 0.621036 0.048756 0.583148 0.591944 0.617624 0.024644

3 0.4576 0.483182 0.483510 0.489413 0.025910 0.452881 0.466446 0.496494 0.008846

4 0.3633 0.379138 0.379481 0.385686 0.016181 0.353467 0.371079 0.402421 0.007779

5 0.3011 0.297498 0.297834 0.303943 0.003266 0.276881 0.297728 0.328537 0.003372

6 0.2492 0.233437 0.233754 0.239525 0.015446 0.217509 0.240802 0.270032 0.008398

7 0.2032 0.183171 0.183461 0.188760 0.019739 0.171271 0.196293 0.223397 0.006907

8 0.1661 0.143729 0.143989 0.148754 0.022111 0.135132 0.161266 0.186008 0.004834

9 0.1339 0.112780 0.113009 0.117227 0.020891 0.106803 0.133534 0.155875 0.000366

10 0.1061 0.088495 0.088695 0.092382 0.017405 0.084541 0.111452 0.131472 0.005352

Total 0.200165 0.105476

Table 2: Numerical Results of the Calibration and Bounds on the Computed Probabilities

probabilities (Market), the survival probabilities obtained from solving the FPDE numerically (FPDE), a

99% confidence interval based on the standard deviation (CI 99% and St. Dev.) of the simulations and the

survival probabilities computed from the simulations (Average). The survival probabilities and their standard

deviations are respectively computed as the empirical means and standard deviations of the generated paths of

(exp{−ΛSt})t>0. Note that the numerical results from the FPDE are very close to the Monte-Carlo simulations

and always lie in the 99% confidence interval.

Figure 5 shows an example of the different shapes we can obtain through the choice of the fractional order

α. To obtain the survival probabilities of Figure 5, we used the parameters of the calibrated fractional model

(see Table 1), with the exception of α that ranges between 0.1 and 1 by steps of 0.1. The main observable

feature is the degree of convexity of the curves. With a low fractional order α, the survival probability drops

sharply at the beginning, but decreases much slower afterwards. This provides a good tool for modeling

companies that have financial troubles in the short term, but have a good long term viability if they overcome

their troubles.

Conclusions

This article proposes an application of fractional Hawkes jump processes to credit risk modeling. These

processes present several interesting properties. Firstly, the intensity may be seen as a systematic factor

driving the probability of failure of firms. The mechanism of self-excitation in this intensity ensures that the
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Monte-Carlo

Time Market FPDE CI 99% Average CI 99% St. Dev.

1 0.7954 0.760422 0.755463 0.761501 0.767539 0.074130

2 0.5673 0.591944 0.584553 0.592788 0.601023 0.101101

3 0.4576 0.466446 0.455680 0.465248 0.474817 0.117471

4 0.3633 0.371079 0.359527 0.369701 0.379876 0.124911

5 0.3011 0.297728 0.285911 0.296311 0.306710 0.127669

6 0.2492 0.240802 0.229599 0.240198 0.250797 0.130120

7 0.2032 0.196293 0.186093 0.196737 0.207380 0.130668

8 0.1661 0.161266 0.152117 0.162516 0.172914 0.127660

9 0.1339 0.133534 0.124725 0.134715 0.144706 0.122647

10 0.1061 0.111452 0.103153 0.112737 0.122320 0.117655

Table 3: Numerical Solving of the FPDE and Monte-Carlo Simulations

model explains periods during which we observe a persistent increase of default probabilities. Secondly, the

fractional model allows to obtain desirable features that differ from usual intensity models. Indeed, we have

seen that obtaining survival probability curves that are constant during long periods of time is not possible

with classical intensity models. Thirdly, the model is numerically tractable as it is possible to perform a

calibration on real market data. As shown by this calibration, the fractional model fits better. We have seen

that survival probabilities can be obtained by solving a fractional Fokker-Planck Equation. In this equation,

the derivative with respect to time is replaced by the Caputo derivative. After a discussion about the proper

approximation of Caputo derivatives, we have seen that the fractional model can explain a wide variety of

term structures of survival probabilities.
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Appendices

Appendix 1: Proofs of the Results of Section 1

Proof of Proposition 1. First note that SDE (1) implies that

λt = θ + e−κt(λ0 − θ) + η

∫ t

0

e−κ(t−s)dPs. (29)

By taking the expectation and deriving with respect to t, we obtain the ordinary differential equation (ODE)

∂E[λt]

∂t
= κ(θ − E[λt]) +

η

ρ
E[λt] (30)

whose solution is well given by Equation (2). For the variance, noting that E[ξ2] = ρ−2 and using Ito’s lemma

yields

∂E[λ2
t ]

∂t
= E[λt]

(
2κθ + 2

(
η

ρ

)2
)

+ 2E[λ2
t ]

(
η

ρ
− κ
)
. (31)

By the chain rule, we find
∂

∂t
(E[λt])

2 = 2κθE[λt] + 2(E[λt])
2

(
−κ+

η

ρ

)
. (32)

Putting together Equations (31) and (32), we obtain ∂
∂tVar(λt). Then, replacing E[λt] by its expression at

Equation (2) and performing some simplifications leads an ODE for the variance. The solution of this ODE

is well given by Equation (3)

Proof of Proposition 2. We use the bivariate Kramers-Moyal expansion on the function p. This expansion says

that the bivariate PDF p of (λt,Λt) satisfies

p(t+ ∆,x1, x2|s, y1, y2)− p(t, x1, x2|s, y1, y2)

=
+∞∑
n=1

n∑
j=0

(−1)n

j!(n− j)!
∂j

∂xj1

∂n−j

∂xn−j2

(M(j, n− j,∆|t, x1, x2)p(t, x1, x2|s, y1, y2))
(33)

where M(j, n− j,∆|t, x1, x2) = E[(λt+∆−λt)j(Λt+∆−Λt)
n−j |λt = x1,Λt = x2]. A proof of this result can be

found in Hainaut (2019). We need to determine the values of

M(j, n− j,∆|x1, x2) = E[(λt+∆ − λt)j(Λt+∆ − Λt)
n−j |λt = x1,Λt = x2]. (34)

From Ito’s Lemma applied to the function h(x, y) = xjyn−j we find

h(λt+∆ − λt,Λt+∆ − Λt)

= j

∫ ∆

s=0

(λt+s − λt)j−1(Λt+s − Λt)
n−jκ(θ − λt+s)ds

+ (n− j)
∫ ∆

s=0

(λt+s − λt)j(Λt+s − Λt)
n−j−1λt+sds

+

∫ ∆

s=0

(Λt+s − Λt)
n−j
(

(λt+s − λt)j − (λt+s− − λt)j
)

dNt+s.

(35)
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Now looking at the expectation of each term in Equation (35), we get

jE

[∫ ∆

s=0

(λt+s − λt)j−1(Λt+s − Λt)
n−jκ(θ − λt+s)ds

]

=

κ(θ − λt)∆ +O(∆2) if j = 1 and n = 1

O(∆2) otherwise,

(36)

(n− j)E

[∫ ∆

s=0

(λt+s − λt)j(Λt+s − Λt)
n−j−1λt+sds

]

=

λt∆ +O(∆2) if j = 0 and n = 1

O(∆2) otherwise,

(37)

E

[∫ ∆

s=0

(Λt+s − Λt)
n−j
(

(λt+s − λt)j − (λt+s− − λt)j
)

dNt+s

]

=

η
jE[ξj ]∆λt +O(∆2) if n = j

O(∆2) otherwise.

(38)

Then dividing Equation (33) by ∆ and replacing the terms by what we just found leads to

p(t+ ∆, x1, x2|s, y1, y2)− p(t, x1, x2|s, y1, y2)

∆

= −κ
(
− p(t, x1, x2|s, y1, y2) + (θ − x1)

∂p(t, x1, x2|s, y1, y2)

∂x1

)

+ E

+∞∑
j=1

(−ηξ)j

j!

∂j

∂xj1
(x1p(t, x1, x2|s, y1, y2))

− x1
∂p(t, x1, x2|s, y1, y2)

∂x2
+O(∆).

(39)

Recall that

∂j

∂xj1
(x1p(t, x1, x2|s, y1, y2)) = j

∂j−1p(t, x1, x2|s, y1, y2)

∂xj−1
1

+ x1
∂jp(t, x1, x2|s, y1, y2)

∂xj1
(40)

which we can use to write

E

+∞∑
j=1

(−ηξ)j

j!

∂j

∂xj1
(x1p(t, x1, x2|s, y1, y2))


= E

−ηξ +∞∑
j=0

(−ηξ)j

j!

(
∂j

∂xj1
p(t, x1, x2|s, y1, y2)

)
+ E

+∞∑
j=1

(−ηξ)j

j!
x1
∂jp(t, x1, x2|s, y1, y2)

∂xj1


= x1E[p(t, x1 − ηξ, x2|s, y1, y2)− p(t, x1, x2|s, y1, y2)]

− ηE[p(t, x1 − ηξ, x2|s, y1, y2)].

(41)

It follows that letting ∆ tend to zero in Equation (39) leads to the announced result.
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Proof of Proposition 3. We start by writing

∂φ(t, z1, z2|s, y1, y2)

∂t
= lim

∆→0

φ(t+ ∆, z1, z2|s, y1, y2)− φ(t, z1, z2|s, y1, y2)

∆

=

∫ +∞

0

∫ +∞

0

e−z1x1−z2x2
∂p(t, x1, x2|s, y1, y2)

∂t
dx1dx2.

(42)

This allows us to use the Fokker-Planck Equation (5), which leads to

∂φ(t, z1, z2|s, y1, y2)

∂t
= κ

∫ +∞

0

∫ +∞

0

e−z1x1−z2x2p(t, x1, x2|s, y1, y2)dx1dx2

−
∫ +∞

0

∫ +∞

0

e−z1x1−z2x2κ(θ − x1)
∂p(t, x1, x2|s, y1, y2)

∂x1
dx1dx1

−
∫ +∞

0

∫ +∞

0

e−z1x1−z2x2x1
∂p(t, x1, x2|s, y1, y2)

∂x2
dx1dx2

− η
∫ +∞

0

∫ +∞

0

e−z1x1−z2x2E[ξp(t, x1 − ηξ, x1|s, y1, y2)]dx1dx2

+

∫ +∞

0

∫ +∞

0

x1e
−z1x1−z2x2E[p(t, x1 − ηξ, x2|s, y1, y2)]dx1dx2

−
∫ +∞

0

∫ +∞

0

x1e
−z1x1−z2x2E[p(t, x1, x2|s, y1, y2)]dx1dx2.

(43)

The proof is then completed by computing all the terms in Equation (43). This can be done with integrations

by parts.

Appendix 2: Monte-Carlo Simulations

The Monte-Carlo simulations of the processes (λt)t>0 are performed with a classic Euler discretization

scheme. Let δ > 0 be the discretization step size. This step size was set to 10−3 in our computations. In order

to simulate a discretized path (λδnδ)n>0 of (λt)t>0, we set λδ0 := λ0 ∈ R with λ0 > θ and for n > 0, we set

λδ(n+1)δ := λδnδ + κ(θ − λδnδ)δ + ηξnBn

where ξn is exponentially distributed with mean ρ−1 and Bn is Poisson distributed with parameter δλδnδ. All

the random variables ξn and Bn are independent. The integral (Λt)t>0 of (λt)t>0 is approximated by (Λδnδ)n>0.

The latter is computed with Riemann sums, that is Λδ0 := 0 and

Λδ(n+1)δ := Λδnδ + δλδnδ.

Simulating the inverse α-stable process (St)t>0 is done with the algorithm proposed in Magdziarz (2009, b)

which we describe now. We still work with the same discretization step δ = 10−3. In order to simulate the

discretized process (Sδnδ)n>0, we start by simulating the discretized α-stable process (Uδnδ)n>0. To do so, we

set Uδ0 := 0 and

Uδ(n+1)δ := Uδnδ + δ1/αXn
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where Xn are i.i.d. totally skewed positive α-stable random variables. Realizations of such random variables

are obtained with

Xn :=
sin(α(Vn + π

2 ))

(cos(Vn))1/α

(
cos(Vn − α(Vn + π

2 )

Wn

) 1−α
α

where Vn are i.i.d. random variables uniformly distributed on (−π/2, π/2) and Wn are i.i.d. exponentially

distributed random variables with mean 1. For more about simulations of α-stable random variables, see the

Chapter 3 of Janicki and Weron (1994). It is then possible to approximate (St)t>0 with

Sδt := (min{n ∈ N : Uδnδ > t} − 1)δ.

By Theorem 2 in Magdziarz (2009, b), sup06s6T |Ss − Sδs | 6 δ a.s. for all T > 0, so that the error in the

approximation of (St)t>0 is always bounded by δ = 10−3. Given that Sδt ∈ {δn : n ∈ N} ∪ {0} for all t > 0, it

is easy to combine (Λδnδ)n>0 and (Sδt )t>0 to obtain a simulated path of (ΛSt)t>0 by setting ΛδSt := Λδ
Sδt

.
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