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Abstract. We study the effect of Markov moves on L2-Burau maps of braids,
in order to construct link invariants from these maps with a process mirroring
the well-known Alexander-Burau formula.

We prove such a Markov invariance for the L2-Burau maps which descend
to the groups of the braid closures or lower, and for these maps we establish
that the associated link invariants are twisted L2-Alexander torsions. This
last point generalizes a previous result of A. Conway and the author.

Furthermore, we find two counter-examples to Markov invariance, meaning
two families of L2-Burau maps that cannot yield link invariants with the pro-
cess described in our paper. The proofs use relations between Fuglede-Kadison
determinants, Mahler measures, and random walks on Cayley graphs, as well
as works of Boyd, Bartholdi and Dasbach-Lalin.

Along the way, we compute new values for Fuglede-Kadison determinants
over non-cyclic free groups. As a consequence, we partially answer a question of
Lück, as we provide new upper bounds for Lehmer’s constants for all torsionfree
groups which have non-cyclic free subgroups.

Our results suggest that twisted L2-Alexander torsions are the only link in-
variants we can hope to build from L2-Burau maps with the present approach.
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1. Introduction

The L2-Burau maps and reduced L2-Burau maps of braids were introduced in
2016 in [5] by A. Conway and the author. These maps generalise the Burau rep-
resentation of braid groups (introduced in [7]) and are indexed by a positive real
number t and a group epimorphism γ starting at a free group Fn of finite rank.
In a sense, all the L2-Burau maps are contained between the Burau representation
and the Artin injection of the braid group Bn in the automorpishm group Aut(Fn)
of the free group Fn. Moreover, A. Conway and the author proved in [5] that for
a braid β ∈ Bn, its image by the reduced L2-Burau map B

(2)
t,γβ

associated to the
epimorphism γβ : Fn → Gβ ∼= π1

(
S3 \ β̂

)
yields the L2-Alexander torsion of the

braid closure β̂. The L2-Alexander torsion is an invariant of links introduced by
Li-Zhang and Dubois-Friedl-Lück [12, 9], whose construction can be compared with
those of the twisted Alexander polynomials, and which detects various topological
information. As a consequence of the main result of [5], the reduced L2-Burau map
B

(2)
t,γβ

thus contains deep topological information about β such as the hyperbolic
volume or the genus of the link β̂.

It is then natural to wonder whether L2-Burau maps associated to other epimor-
phisms can similarly provide link invariants and detect topological information of
the braid, and this article provides a partial positive answer to this question.

We first introduce the notion of Markov-admissibility of a family Q of group
epimorphisms Qβ : Fn(β) � GQβ indexed by braids β ∈ tn>1Bn, in Section 4.
Roughly speaking, we say that such a family is Markov-admissible when for any
two braids α, β that have isotopic closures (and thus are related by Markov moves),
the associated epimorphisms Qα and Qβ descend “to the same depth” and are
related by a sequence of commutative diagrams. Markov admissibility appears to
be a necessary condition in order to construct Markov functions and link invariants
from general families of epimorphisms indexed by braids.

In this paper we focus on a specific candidate for being a Markov function,
namely the function

FQ :=


tn>1Bn → F(R>0,R>0)/{t 7→ tm,m ∈ Z}

β 7→

t 7→ detrGQβ
(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)

max(1, t)n


 ,

where Q is a Markov-admissible family of epimorphisms and detrG is the regular
Fuglede-Kadison determinant for the group G, a version of the determinant for
infinite-dimensional G-equivariant operators on `2(G) such as the L2-Burau maps
(see Section 2 for a definition).

The first main result of this article is the following theorem (stated here without
technical details for readability):

Theorem 1.1 (Theorem 5.1). Let Q be a Markov-admissible family of epimor-
phisms that descends to the groups of the braid closures or deeper. Then FQ is
a Markov function, and thus defines an invariant of links. Moreover, this link
invariant is a twisted L2-Alexander torsion.

As detailed in Section 5, to prove Theorem 1.1 we study how Markov moves
on braids modify reduced L2-Burau maps and we use properties of the Fuglede-
Kadison determinant.

Part of Theorem 1.1 was already proven in [5], without discussing Markov in-
variance. Indeed, when Q is the family that descends to the groups of the braid
closures Gβ , [5, Theorem 4.9] directly linked FQ to the L2-Alexander torsions of
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the braid closures, as a variant of the well-known Alexander-Burau formula [7];
and since the L2-Alexander torsions were already known link invariants, Markov
invariance was thus reciprocally guaranteed, and carefully studying Markov moves
was unnecessary.

However, as stated in Theorem 1.1, the methods of the current article pro-
vide several new link invariants, which (unsurprisingly) happen to be twisted L2-
Alexander torsions of links.

Theorem 1.1 is not an equivalence in the sense that FQ could theoretically be a
Markov function for other families Q, but the specific convenient cancellations that
occur in matrix coefficients in the proof of Theorem 1.1 make this seem unlikely. As
further evidence, we establish two families Q such that FQ is not a Markov function,
in the second main result of this article:

Theorem 1.2 (Theorems 6.1 and 6.2). Let Q be either the family of identities of
the free groups or the family of abelianizations of the free groups. Then FQ is not
a Markov function.

Our main tools to prove Theorem 1.2 are relations between Fuglede-Kadison
determinants (which are technical to define and difficult to compute), Mahler mea-
sures of polynomials (notably studied by Boyd [6]) and combinatorics on Cayley
graphs of free groups (specifically works of Bartholdi and Dasbach-Lalin [2, 8]).
Connections between Fuglede-Kadison determinants and random walks on Cayley
graphs were surveyed and studied in [11]. On the way to the proof of Theorem 1.2,
we compute new values for Fuglede-Kadison determinants of operators over the free
groups, which are interesting in their own right:

Theorem 1.3 (Theorem 7.3). Let d > 3. Let x1, . . . , xd−1 be d − 1 generators of
the free group Fd−1. Let ζ1, . . . , ζd−1 ∈ C such that |ζ1| = . . . = |ζd−1| = 1. Then:

det Fd−1(Id + ζ1Rx1 + . . .+ ζd−1Rxd−1) = (d− 1) d−1
2

d
d−2

2
.

Theorem 1.3 has a consequence which is independent of the rest of the themes
of this paper, in that it yields new upper bounds for Lehmer’s constants Λw1 (Fd)
of free groups (see [14] for a survey of Lehmer’s constants and Corollary 8.5 for
more details). Hence the non-cyclic free groups Fd (as well as any torsionfree group
having non-cyclic free subgroups, such as groups of hyperbolic 3-manifolds) are now
the first torsionfree groups G for which Lehmer’s constant Λw1 (G) is known to be
lesser than 1.176. This was known to be satisfied for the smaller Lehmer’s constant
Λw(G), for G the fundamental group of the Weeks manifold (see Example 8.4).

As the reader will probably agree, the initial question (how to build link invari-
ants from L2-Burau maps) is still far from answered. We restricted ourselves to
studying the most intuitive form of a potential Markov function, namely FQ, and
we found that twisted L2-Alexander torsions appeared to be the best link invariants
we could obtain with it. This last point is unsurprising considering the form of FQ

and its natural connection with the Alexander polynomial and its variations.
However, there may well be new link invariants to discover via other functions of

the L2-Burau maps, and we hope that our computations of how these maps change
under Markov moves can be of use for future research in this vein.

The present article arose as a part of a wider project in collaboration with C.
Anghel aiming to construct new knot invariants from L2-versions of the Burau and
Lawrence representations of braid groups. To attain this end, studying the influence
of Markov moves on L2-Burau maps appears to be a natural step.
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The article is organised as follows: in Section 2 we recall preliminaries on braid
groups and L2-invariants; in Section 3, we cover some improvements of classi-
cal properties of L2-torsions; in Section 4 we introduce the notion of a Markov-
admissible family of group epimorphisms and we study several examples; in Section
5 we state and prove Theorem 5.1 on Markov invariance; in Section 6 we present
counter-examples to Markov invariance; in Section 7 we compute new values of
Fuglede-Kadison determinants over free groups; finally, in Section 8, we present
new upper bounds on Lehmer’s constants for a large class of torsionfree groups.

Sections 7 and 8 can be read independently from Sections 3 to 6 (the only relation
lies in Theorem 7.3 being used in the proof of Theorem 6.2).

2. Preliminaries

In this section, we will set some notation and recall some fundamental properties.
We will mostly follow the conventions of [5] and [13].

2.1. Braid groups. The braid group Bn can be seen as the set of isotopy classes of
orientation-preserving homeomorphisms of the punctured diskDn := D2\{p1, ..., pn}
which fix the boundary pointwise. Recall that Bn admits a presentation with n− 1
generators σ1, σ2, . . . , σn−1 following the relations σiσi+1σi = σi+1σiσi+1 for each i,
and σiσj = σjσi if |i−j| > 2. Topologically, the generator σi is the braid whose i-th
component passes over the (i+ 1)-th component.

x1 x2 x3

z

Figure 1. The punctured disk D3.

Fix a base point z of Dn and denote by xi the simple loop based at z turning once
around pi counterclockwise for i = 1, 2, . . . , n (see Figure 1). The group π1(Dn, z)
can then be identified with the free group Fn on the xi. If Hβ is a homeomor-
phism of Dn representing a braid β, then the induced automorphism hβ of the
free group Fn depends only on β. It follows from the way we compose braids
that hαβ = hβ ◦ hα, and the resulting right action of Bn on Fn (named the Artin
action) can be explicitly described by

hσi(xj) =


xixi+1x

−1
i if j = i,

xi if j = i+ 1,
xj otherwise,

hσ−1
i

(xj) =


xi+1 if j = i,

x−1
i+1xixi+1 if j = i+ 1,
xj otherwise.

In this paper we will also use a second set of generators of Fn, namely
g1 := x1, g2 := x1x2, . . . , gn := x1 . . . xn.

Looking at Figure 1, gi represents the class of the loop that circles the first i
punctures. On these generators, Bn acts in the following way:

hσi(gj) =
{
gi+1g

−1
i gi−1 if j = i,

gj otherwise,
hσ−1

i
(gj) =

{
gi−1g

−1
i gi+1 if j = i,

gj otherwise,

where we use the convention g0 := 1.
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2.2. Fox calculus. Denoting by Fn the free group on x1, x2, . . . , xn, and for i ∈
{1, . . . , n}, the i-th Fox derivative ∂

∂xi
: Z[Fn]→ Z[Fn] (first introduced in [10]) is

the linear extension of the map defined on Fn by: ∀i, j ∈ {1, . . . , n},∀u, v ∈ Fn,

∂xj
∂xi

= δi,j ,
∂x−1

j

∂xi
= −δi,jx−1

j ,
∂(uv)
∂xi

= ∂u

∂xi
+ u

∂v

∂xi
.

The following formula is often called the fundamental formula of Fox calculus:

Proposition 2.1. Let u ∈ ZFn and ε : ZFn → Z the ring epimorphism defined by
ε : xi 7→ 1 for all i ∈ {1, . . . , n}. Then:

u− ε(u) · 1 =
n∑
i=1

∂u

∂xi
· (xi − 1).

2.3. Mahler measure of a polynomial. Let P ∈ C[X1, . . . , Xd] denote a d-
variable polynomial. Then its Mahler measure M(P ) is the nonnegative real number

M(P ) := exp
(

1
(2π)d

∫ 2π

0
. . .

∫ 2π

0
ln
(∣∣P (eiθ1 , . . . , eiθd)

∣∣) dθ1 . . . dθd

)
∈ R>0.

Remark that this definition immediately extends to d-variable Laurent polynomials
P ∈ C

[
X±1

1 , . . . , X±1
d

]
. This will be useful in the next section, where the group

algebra C[Zd] will be naturally identified with the algebra of Laurent polynomials
C
[
X±1

1 , . . . , X±1
d

]
. We refer to [6] (among others) for a survey on Mahler measures.

Example 2.2. For d = 1, and P (X) = C · X−l ·
∏r
j=1(X − αj) ∈ C[X±1] (where

C,α1, . . . , αr ∈ C and l ∈ N), there is a closed formula

M(P ) = |C| ·
r∏
j=1

max{1, |αj |}.

When P has two or more variables, the Mahler measure is known for several
classes of examples, such as the following one:

Example 2.3 ([6], Section 4). The two-variable polynomial 1 + X + Y ∈ C[X,Y ]
has Mahler measure M(1 +X + Y ) = e

1
π=Li2(eiπ/3) = 1.38135...

Example 2.3 will be used later in the proof of Theorem 6.1.

2.4. Fuglede-Kadison determinant. In this section we will give short definitions
of the von Neumann trace and the Fuglede-Kadison determinant. More details can
be found in [13] and [5].

Let G be a finitely generated group. The Hilbert space `2(G) is the completion
of the group algebra CG, and the space of bounded operators on it is denoted
B(`2(G)). We will focus on right-multiplication operators Rw ∈ B(`2(G)), where
R· denotes the right regular action of G on `2(G) extended to the group ring CG
(and further extended to the rings of matrices Mp,q(CG)).

For any element w = a0 · 1G + a1g1 . . .+ argr ∈ CG, the von Neumann trace trG
of the associated right multiplication operator is defined as

trG(Rw) = trG
(
a0Id`2(G) + a1Rg1 . . .+ arRgr

)
:= a0,

and the von Neumann trace for a finite square matrix over CG is given as the sum
of the traces of the diagonal coefficients.

Now the most concise definition of the Fuglede-Kadison determinant detG(A) of
a right-multiplication operator A is probably

detG(A) := lim
ε→0+

(
exp ◦

(
1
2trG

)
◦ ln
)

((A⊥)∗(A⊥) + εId) > 0,
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where A⊥ is the restriction of A to a supplementary of its kernel, ∗ is the adjunction
and ln the logarithm of an operator in the sense of the holomorphic functional
calculus. Compare with [13, Theorem 3.14] and Proposition 2.4 below. We call the
operator A of determinant class if detG(A) 6= 0.

The following properties concern the classical Fuglede-Kadison determinant detG
described in [14, Chapter 3], which is not always multiplicative if one deals with
non injective operators. Moreover, this determinant forgets about the influence
of the spectral value 0, which surprisingly makes it take the value 1 for the zero
operator. More recent articles have used the regular Fuglede-Kadison determinant
detrG instead, which is defined for square injective operators, is zero for non injective
operators, and is always multiplicative. In this paper we will work with both types
of determinants, but the reader should be reassured that most of the statements we
will make remain unchanged while replacing one determinant with the other (up
to assumptions on injectivity usually). Similarly, the statements of the following
Proposition 2.4 admit immediate variants with detrG. All statements of Proposition
2.4 follow from [14][Section 3], except for (6), which directly follows from the others.

Proposition 2.4 ([14]). Let G be a countable discrete group and let
A,B,C,D ∈ tp,q∈NRMp,q(CG)

be general right multiplication operators. The Fuglede-Kadison determinant satisfies
the following properties:

(1) (multiplicativity) If A,B are injective, square and of the same size, then
detG(A ◦B) = detG(A) detG(B).

(2) (block triangular case) If A,B are injective and square, then

detG
(
A C
0 B

)
= detG(A) detG(B),

where C has the appropriate dimensions.
(3) (induction) If ι : G ↪→ H is a group monomorphism, then

detH(ι(A)) = detG(A).
(4) (relation with the von Neumann trace) If A is a positive operator, then

detG(A) = (exp ◦trG ◦ ln) (A).
(5) (simple case) If g ∈ G is of infinite order, then for all t ∈ C the operator

Id− tRg is injective and
detG(Id− tRg) = max(1, |t|).

(6) (2× 2 trick) For all A,B,C,D ∈ N(G) such that B is invertible,
(
A B
C D

)
is injective if and only if DB−1A−C is injective, and in this case one has:

detG
(
A B
C D

)
= detG(B) detG(DB−1A− C).

(7) (relation with Mahler measure) Let G = Zd, and P ∈ C[X±1
1 , . . . , X±1

d ]
denote the Laurent polynomial associated to the operator A ∈ RCZd . Then

detZd(A) = M(P ) = exp
(

1
(2π)d

∫ 2π

0
. . .

∫ 2π

0
ln
(∣∣P (eiθ1 , . . . , eiθd)

∣∣) dθ1 . . . dθd

)
,

where M is the Mahler measure.
(8) (limit of positive operators) If A is injective, then

detG(A) = lim
ε→0+

√
detG(A∗A+ εId).
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(9) (dilations) Let λ ∈ C∗. Then:

detG
(
λ Id⊕n

)
= |λ|n.

Remark 2.5. If the group G satisfies the strong Atiyah conjecture (see [13, Chap-
ter 10]), then the right multiplication operator by any non-zero element of CG is
injective, which makes it convenient to apply some parts of Proposition 2.4. Note
that free groups and free abelian groups satisfy the strong Atiyah conjecture.

2.5. L2-Burau maps on braids. Let n ∈ N∗, t > 0, let Φn : Fn � Z denote
the projection that sends all free generators to 1, and let γ : Fn � G denote an
epimorphism such that Φn factors through γ. Let κ(t,Φn, γ) : ZFn → RG denote
the ring homomorphism that sends g ∈ Fn to tΦn(g)γ(g) ∈ RG.

Then, following [5], the associated L2-Burau map on Bn is

B
(2)
t,γ : Bn 3 β 7→ Rκ(t,Φn,γ)(J) ∈ B

(
`2(G)⊕n

)
,

where J =
(
∂hβ(xj)
∂xi

)
16i,j6n

is the Fox jacobian of hβ for the base of the xi.

The reduced L2-Burau map on Bn (associated to the same parameters t, γ) is

B
(2)
t,γ : Bn 3 β 7→ Rκ(t,Φn,γ)(J′) ∈ B

(
`2(G)⊕(n−1)

)
,

where J ′ =
(
∂hβ(gj)
∂gi

)
16i,j6n−1

is the Fox jacobian of hβ for the base of the gi.

In the remainder of this article we will focus on reduced L2-Burau maps.
Observe that L2-Burau maps (reduced or not) can also be defined as maps over

a certain homology of a cover of the punctured disk (see [5] for details). Although
these homological definitions may be more natural and useful for further general-
izations, the current article will only use the previous definitions via Fox jacobians.

Let us now state an (anti-)multiplication formula for the reduced L2-Burau maps.

Proposition 2.6 ([5]). For any n, t, γ as above and any two braids α, β ∈ Bn, we
have:

B
(2)
t,γ(αβ) = B

(2)
t,γ(β) ◦B(2)

t,γ◦hβ (α).

Note that the unreduced L2-Burau maps satisfy an identical formula.
It follows from Proposition 2.6 that a reduced L2-Burau map can be computed

for any braid via knowing the values on the generators σi of the braid group. For
the reader’s convenience and since they will be used in the remainder of this article,
we now provide the image of the generators σi:

B
(2)
t,γ(σ1) =

(
−tRγ(g2g

−1
1 ) 0

Id Id

)
⊕ Id⊕(n−3),

B
(2)
t,γ(σi) = Id⊕(i−2) ⊕

Id tRγ(gi+1g
−1
i

) 0
0 −tRγ(gi+1g

−1
i

) 0
0 Id Id

⊕ Id⊕(n−i−2) for 1 < i < n− 1,

B
(2)
t,γ(σn−1) = Id⊕(n−3) ⊕

(
Id tRγ(gng−1

n−1)
0 −tRγ(gng−1

n−1)

)
,
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and the images of the inverses σ−1
i of the generators:

B
(2)
t,γ(σ−1

1 ) =
(
− 1
tRγ(g−1

1 ) 0
1
tRγ(g−1

1 ) Id

)
⊕ Id⊕(n−3),

B
(2)
t,γ(σ−1

i ) = Id⊕(i−2) ⊕

Id Id 0
0 − 1

tRγ(gi−1g
−1
i

) 0
0 1

tRγ(gi−1g
−1
i

) Id

⊕ Id⊕(n−i−2) for 1 < i < n− 1,

B
(2)
t,γ(σ−1

n−1) = Id⊕(n−3) ⊕

(
Id Id
0 − 1

tRγ(gn−2g
−1
n−1)

)
.

Remark 2.7. It follows from what precedes and from Proposition 2.4 that for all
t > 0, we have detG

(
B

(2)
t,γ(σ±1

i )
)

= t±1.

2.6. L2-torsions. This section covers some necessary definitions to state the results
in Section 3, which in turn will be used to prove Theorem 5.1 (2) in Section 5. We
refer to [13] and [4] for more details.

A finitely generated Hilbert N(G)-module is an Hilbert space V on which there
is a left G-action by isometries, and such that there exists a positive integer m and
an embedding φ of V into

⊕m
i=1 `

2(G) (in this paper, such spaces V will always be
of the form `2(G)⊕n for n ∈ N).

For U and V two finitely generated Hilbert N(G)-modules, we will call f : U → V
a morphism of finitely generated Hilbert N(G)-modules if f is a linear G-equivariant
map, bounded for the respective scalar products of U and V (in this paper, these
morphisms will simply be right multiplication operators).

A finite Hilbert N(G)-chain complex C∗ is a sequence of morphisms of finitely
generated Hilbert N(G)-modules

C∗ = 0→ Cn
∂n−→ Cn−1

∂n−1−→ . . .
∂2−→ C1

∂1−→ C0 → 0

such that ∂p ◦ ∂p+1 = 0 for all p (in this paper, n will be at most 3).
The p-th L2-homology of C∗ H(2)

p (C∗) := Ker(∂p)/Im(∂p+1) is a finitely gen-
erated Hilbert N(G)-module. We say that C∗ is weakly acyclic if its L2-homology
is trivial. We say that C∗ is of determinant class if all the operators ∂p are of
determinant class.

Let C∗ be a finite Hilbert N(G)-chain complex as above. Its L2-torsion is

T (2)(C∗) :=
n∏
i=1

det N(G)(∂i)(−1)i ∈ R>0

if C∗ is weakly acyclic and of determinant class, and is T (2)(C∗) := 0 otherwise.
Let π be a group and φ : π → Z, γ : π → G two group homomorphisms. We say

that (π, φ, γ) forms an admissible triple if φ : π → Z factors through γ. ForX a CW-
complex, we say that (X,φ : π1(X)→ Z, γ : π1(X)→ G) forms an admissible triple
if (π1(X), φ, γ) forms one. Let (X,φ, γ) be such an admissible triple, π = π1(X)
and t > 0. We define a ring homomorphism

κ(π, φ, γ, t) :
(

Z[π] −→ R[G]∑r
j=1mjgj 7−→

∑r
j=1mjt

φ(gj)γ(gj)

)
and we also denote κ(π, φ, γ, t) its induction over the Mp,q(Z[π]).

Assume X is compact. The cellular chain complex of X̃ denoted C∗(X̃,Z) =(
. . .→

⊕
i Z[π]ẽki → . . .

)
is a chain complex of left Z[π]-modules. Here the ẽki are

lifts of the cells eki ofX. The group π acts on the right on `2(G) by g 7→ Rκ(π,φ,γ,t)(g),
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an action which induces a structure of right Z[π]-module on `2(G). Let

C
(2)
∗ (X,φ, γ, t) = `2(G)⊗Z[π] C∗(X̃,Z)

denote the finite Hilbert N(G)-chain complex obtained by tensor product via these
left- and right-actions; we call C(2)

∗ (X,φ, γ, t) a N(G)-cellular chain complex of X.
If C(2)

∗ (X,φ, γ, t) is a N(G)-cellular chain complex of X, then denote

T (2)(X,φ, γ)(t) = T (2)
(
C

(2)
∗ (X,φ, γ, t)

)
the L2-Alexander torsion of (X,φ, γ) at t > 0. It is non-zero if and only if
C

(2)
∗ (X,φ, γ, t) is weakly acyclic and of determinant class.
Let L = L1∪. . .∪Lc be a link in S3, ML its exterior and αL : GL = π1(ML)→ Zc

the abelianization of its group. Any homomorphism φ : GL → Z factors through
αL and thus is written φ = (n1, . . . , nc) ◦ αL where n1, . . . , nc ∈ Z. Any admissible
triple (ML, φ, γ) can thus be written (ML, (n1, . . . , nc) ◦ αL, γ), and we will denote

T
(2)
L,(n1,...,nc)(γ)(t) := T (2)(ML, (n1, . . . , nc) ◦ αL, γ)(t)

the twisted L2-Alexander torsion associated to L, the coefficients (n1, . . . , nc), the
morphism γ (the twist), at the value t. We sometimes omit the twisted when γ = id.

3. Some useful properties of L2-torsions

In this section we recall and generalize several natural properties of L2-torsions,
that are used in the proof of Theorem 5.1 (2).

The following Proposition 3.1 is a rephrasing of several results in [13], which
concern short exact sequences of finite Hilbert N(G)-chain complexes. Recall that
0 → C∗

η∗→ D∗
ρ∗→ E∗ → 0 is a short exact sequence of finite Hilbert N(G)-chain

complexes if 0 → Cp
ηp→ Dp

ρp→ Ep → 0 is exact for every p and if η∗, ρ∗ commute
with the boundary operators of C∗, D∗, E∗.

Proposition 3.1 ([13]). Let 0 → C∗
η∗→ D∗

ρ∗→ E∗ → 0 be a short exact sequence
of finite Hilbert N(G)-chain complexes, such that for every p ∈ Z, ηp and ρp are of
determinant class. Then the following hold:

(1) If two among C∗, D∗, E∗ are weakly acyclic, then the third one is as well.
(2) If C∗, D∗, E∗ are all weakly acyclic, and if two of them are of determinant

class, then the third one is as well.
(3) If either C∗, D∗, E∗ are all weakly acyclic and of determinant class, or if

D∗ is not, then the L2-torsions satisfy

T (2)(D∗) ·

∏
p∈Z

(
detG(ρp)
detG(ηp)

)(−1)p
 = T (2)(C∗) · T (2)(E∗).

Proof. Let us prove (1). If two among C∗, D∗, E∗ are weakly acyclic, then the long
weakly exact homology sequence of finite Hilbert N(G)-modules

LHS∗ = . . .→ H
(2)
n+1(E∗)→ H(2)

n (C∗)→ H(2)
n (D∗)→ H(2)

n (E∗)→ . . .

of [13, Theorem 1.21] is trivial, and thus C∗, D∗, E∗ are all weakly acyclic.
Now, (2) and (3) follow from [13, Theorem 3.35 (1)], the assumptions on ι∗, ρ∗,

and the fact that LHS∗ is trivial (which implies that LHS∗ is of determinant class
and that its L2-torsion is equal to 1). �

The following proposition is a slight generalization of [3, Theorem 2.12], and
concerns the invariance under simple homotopy equivalence.
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Proposition 3.2. Let f : X → Y be a simple homotopy equivalence between two
finite CW-complexes inducing the group isomorphism f] : π1(X) → π1(Y ). The
triple (Y, φ, γ) is an admissible triple if and only if (X,φ◦f], γ◦f]) is one. Moreover,
for all t > 0:

(1) C
(2)
∗ (X,φ ◦ f], γ ◦ f], t) is weakly acyclic if and only if C(2)

∗ (Y, φ, γ, t) is,
(2) C

(2)
∗ (X,φ ◦ f], γ ◦ f], t) is weakly acyclic and of determinant class if and

only if C(2)
∗ (Y, φ, γ, t) is,

(3) T (2)(X,φ ◦ f], γ ◦ f])(t)
.= T (2)(Y, φ, γ)(t).

Proof. The proof is almost exactly as the one of [3, Theorem 2.12]: we study the
case where f is an elementary expansion, and we relate C(2)

∗ (X,φ ◦ f], γ ◦ f], t) and
C

(2)
∗ (Y, φ, γ, t) through an exact sequence. Then we apply Proposition 3.1. �

The following Proposition 3.3 is a slight generalization of the gluing formula of
[3, Theorem 3.1] and [4, Proposition 3.5] for L2-Alexander torsions (which only
stated that (1) and (2) together imply (3)).

Proposition 3.3. Let X,A,B, V be finite CW-complexes such that X = A∪B and
V = A ∩ B. We denote the various inclusions (which are assumed to be cellular)
and their inductions on fundamental groups as in the following diagrams:

A

V X

B
IB

IA JA

JB

I

π1(A)

π1(V ) π1(X) G

π1(B) Z
iB

iA jA

jB

i γ

φ

Let (π1(X), φ : π1(X) → Z, γ : π1(X) → G) be an admissible triple, and t > 0.
If any two of the following properties are satisfied,

(1) C
(2)
∗ (V, φ ◦ i, γ ◦ i, t) is weakly acyclic (resp. weakly acyclic and of determi-

nant class),
(2) C

(2)
∗ (A, φ◦jA, γ◦jA, t) and C(2)

∗ (B,φ◦jB , γ◦jB , t) are weakly acyclic (resp.
weakly acyclic and of determinant class),

(3) C
(2)
∗ (X,φ, γ, t) is weakly acyclic (resp. weakly acyclic and of determinant

class),
then the third property is satisfied as well, and we have

T (2)(X,φ, γ)(t) =̇ T (2)(A, φ ◦ jA, γ ◦ jA)(t) · T (2)(B,φ ◦ jB , γ ◦ jB)(t)
T (2)(V, φ ◦ i, γ ◦ i)(t)

.

Proof. The proof works similarly as the one of [3, Theorem 3.1]. Let us now sketch
the modified arguments. Let V∗, X∗ denote the finite Hilbert N(G)-chain complexes
of properties (1) and (3), and C∗ the direct sum of the two finite Hilbert N(G)-chain
complexes in property (2). Observe that property (2) can be rephrased as C∗ being
weakly acyclic (resp. weakly acyclic and of determinant class). As explained in [3,
Theorem 3.1] (via classical arguments), we have an exact sequence of finite Hilbert
N(G)-chain complexes 0 → V∗ → C∗ → X∗ → 0, where the horizontal operators
are of determinant class. The result then follows from Proposition 3.1 and the
computation of Fuglede-Kadison determinants of the horizontal operators. �

The following Proposition 3.4 is a slight generalization of the L2-Torres formula of
[4, Theorem 4.4] (which only stated that (1) implies (2) instead of their equivalence).
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Proposition 3.4. Let L = L1 ∪ . . .∪Lc be a c-component link, and L′ = L∪Lc+1
a (c + 1)-component link link admitting L as a sublink. Let ML,ML′ denote the
exteriors of L and L′. Let Q : π1(ML′) � π1(ML) denote the group epimorphism
induced by removing the component Lc+1. Let λ ∈ π1(ML′) denote the class of a
preferred longitude of Lc+1.

Let φ : π1(ML) → Z and γ : π1(ML) → G be group homomorphisms such that
(π1(ML), φ, γ) forms an admissible triple. We can write φ = (n1, . . . , nc) ◦ αL and
thus φ ◦Q = (n1, . . . , nc, 0) ◦ αL′ for some non zero vector (n1, . . . , nc) ∈ Zc.

Assume that (γ ◦Q)(λ) is of infinite order in G. Then for all t > 0, the following
are equivalent:

(1) C
(2)
∗ (ML′ , (n1, . . . , nc, 0) ◦ αL′ , γ ◦ Q)(t) is weakly acyclic (resp. weakly

acyclic and of determinant class),
(2) C

(2)
∗ (ML, (n1, . . . , nc) ◦αL, γ)(t) is weakly acyclic (resp. weakly acyclic and

of determinant class).
Moreover, we have

T
(2)
L,(n1,...,nc)(γ)(t) =̇

T
(2)
L′,(n1,...,nc,0)(γ ◦Q)(t)

max(1, t)|lk(L1,Lc+1)n1+...+lk(Lc,Lc+1)nc|
.

Proof. The proof is similar to [4, Section 4]. Here we use the generalized gluing
formula of Proposition 3.3 instead of the weaker version of [4, Proposition 3.5]. �

4. Markov admissibility of a family of epimorphisms

In this section we introduce the notion of Markov-admissibility for a family of
epimorphisms indexed by braids, and we discuss several examples of such families.

For each n > 1 and each braid β ∈ Bn, let us denote
• n(β) := n the number of strands,
• hβ the (Artin) group automorphism on Fn(β) (recall that β 7→ hβ is anti-

multiplicative),
• γβ : Fn(β) � Gβ the quotient by all relations of the form ? = hβ(?),
• β̂ the closure of β, a link in S3,
• Gβ̂ = π1

(
S3 \ β̂

)
the group of the link β̂,

• Φn : Fn � Z the epimorphism which sends the n generators to 1,
• ιn : Fn ↪→ Fn+1 the group inclusion sending the n generators of Fn to the

first n generators of Fn+1.

Definition 4.1. A family Q of group epimorphisms of the form
Q =

{
Qβ : Fn(β) � GQβ | β ∈ tn>1Bn

}
will be called Markov-admissible if it satisfies the following conditions:

(1) For all n > 1 and all α, β ∈ Bn, there exists a group homomorphism
χQ
β,α : GQβ → GQα−1βα

such that Qα−1βα ◦ hα = χQ
β,α ◦ Qβ . Observe that

this implies that each χQ
β,α is uniquely defined and is an isomorphism.

(2) For all n > 1, β ∈ Bn and ε ∈ {±1}, there exists a group monomorphism
σQ
β,ε : GQβ ↪→ GQσεnβ such that Qσεnβ ◦ ιn = σQ

β,ε ◦ Qβ . Observe that each
Qσεnβ is uniquely defined.

These two conditions are illustrated in Figure 2.

Roughly speaking, the epimorphisms in a Markov-admissible family will be com-
patible in a way that lets us hope to compute (L2-)knot invariants by using them.
Note that less restrictive definitions may be preferred in the future if we find better
ways of computing L2-objects such as Fuglede-Kadison determinants.
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GQβ
χQ
β,α

∼ GQα−1βα

Fn

Qβ

hα
∼ Fn

Qα−1βα

GQβ ↪
σQ
β,ε GQσεnβ

Fn

Qβ

↪
ιn

Fn+1

Qσεnβ

Figure 2. Conditions for Q to be Markov-admissible

We will now present several examples of Markov-admissible families, which are
all displayed in Figure 4 for clarity. Moreover, Figure 4 summarizes the results of
Sections 5 and 6 concerning Markov invariance (3 standing for yes and 7 for no).

Fn
7

Φn

Z 3

γβ

Gβ
3 Ψβ

∼ Gβ̂ 3

ψβ
Γψβ 3

ϕn

Zn7

Figure 3. When does B
(2)
t,γ yield a map on braids which is invari-

ant under Markov moves, for γ : Fn � G ?

Example 4.2. The family of identity morphisms Q =
{

idFn(β)

}
is Markov-admissible,

with χQ
β,α = idFn(β) and σQ

β,ε = ιn(β).

Example 4.3. The family Q =
{

Φn(β)
}

is Markov-admissible, with χQ
β,α = σQ

β,ε = idZ.

Example 4.4. The family of abelianizations Q =
{
ϕn(β) : Fn(β) � Zn(β)} is Markov-

admissible, with σQ
β,ε the inclusion Zn(β) ↪→ Zn(β)+1 induced by ιn(β), and χQ

β,α the
permutation on the canonical generators of Zn corresponding to the permutation
of n(α) strands induced by α ∈ Bn.

The following proposition is an elementary result in group theory, but is stated
for the reader’s convenience.

Proposition 4.5. Let f : G → H be a group homomorphism, and N a normal
subgroup of G. If f is surjective and Ker(f) ⊂ N (in particular if f is an isomor-
phism), then f induces an isomorphism between G/N and H/f(N).

Let us now consider epimorphisms that descend to the fundamental groups of
the braid closure complements.

Proposition 4.6. The family Q = {γβ : Fn(β) � Gβ} is Markov-admissible. More-
over the monomorphisms σQ

β,ε are isomorphisms.
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Proof. First step: Markov 1:
Take n > 1 and α, β ∈ Bn. Note that

hα(Ker(γβ)) = hα
(
〈〈hβ(x)x−1;x ∈ Fn〉〉

)
= 〈〈hβα(x)hα(x)−1;x ∈ Fn〉〉

= 〈〈hα−1βα(y)y−1; y ∈ Fn〉〉 = Ker(γα−1βα),

thus it follows from Proposition 4.5 that the isomorphism hα : Fn
∼→ Fn induces the

required isomorphism χQ
β,α : Gβ

∼→ Gα−1βα.

Second step: Markov 2:
Take n > 1 and β ∈ Bn. Let β+ = σ−1

n ι(β) ∈ Bn+1. First notice that

hβ+(xj)x−1
j = hι(β)(hσ−1

n
(xj))x−1

j = hι(β)(xj)x−1
j for 1 6 j 6 n− 1,

hβ+(xn)x−1
n = hι(β)(hσ−1

n
(xn))x−1

n = hι(β)(xn+1)x−1
n = xn+1x

−1
n ,

hβ+(xn+1)x−1
n+1 = hι(β)(hσ−1

n
(xn+1))x−1

n+1 = hι(β)(x−1
n+1xnxn+1)x−1

n+1 = x−1
n+1hι(β)(xn).

Hence Ker(γβ+) = 〈〈 xn+1x
−1
n ; ιn(Ker(γβ)) 〉〉.

We can now define σQ
β,−1 :=

(
Gβ 3 [x]Gβ 7→ [ιn(x)]Gβ+

∈ Gβ+

)
, where x ∈ Fn

and [·]G is the quotient class in G. Since ιn(Ker(γβ)) ⊂ Ker(γβ+), then σQ
β,−1 is a

well-defined group homomorphism.
Let us prove that σQ

β,−1 is surjective. Let [y]Gβ+
∈ Gβ+ , with y ∈ Fn+1. Let

y′ ∈ ιn(Fn) be the word constructed from y by replacing all letters xn+1 with xn.
Hence [y]Gβ+

= [y′]Gβ+
∈ Im(σQ

β,−1) and σQ
β,−1 is surjective.

Let us prove that σQ
β,−1 is injective. Let [ιn(x)]Gβ+

∈ Gβ+ (with x ∈ Fn) be
trivial. Then ιn(x) ∈ Ker(γβ+) = 〈〈 xn+1x

−1
n ; ιn(Ker(γβ)) 〉〉. Thus ιn(x) is a

product of conjugates (in Fn+1) of terms (xn+1x
−1
n )±1 and/or terms in ιn(Ker(γβ)).

But since ιn(x) is a free word without the letter xn+1, we conclude that the conju-
gates of terms (xn+1x

−1
n )±1 in ιn(x) cancel each other. Thus ιn(x) ∈ ιn(Ker(γβ))

and [x]Gβ = 1. Hence σQ
β,−1 is injective.

Third step: Markov 2 again:
Take n > 1, β ∈ Bn, and let β+ = σnι(β) ∈ Bn+1. The proof is similar as in the
Second step, with the following differences:

hβ+(xn)x−1
n = hι(β)(xn)xn+1

(
hι(β)(xn)

)−1
x−1
n ,

hβ+(xn+1)x−1
n+1 = hι(β)(xn)x−1

n+1,

Ker(γβ+) = 〈〈 hι(β)(xn)x−1
n+1 ; ιn(Ker(γβ)) 〉〉,

and we replace the xn+1 with hι(β)(xn) in the proof of the surjectivity of σQ
β,1. �

Remark 4.7. In the second step of the previous proof, one can alternatively prove
that σQ

β,−1 is an isomorphism by observing that it corresponds to the sequence of
Tietze transformations going from the presentation

〈x1, . . . , xn|hβ(x1)x−1
1 , . . . , hβ(xn−1)x−1

n−1, hβ(xn)x−1
n 〉

of Gβ to the presentation

〈x1, . . . , xn, xn+1|hι(β)(x1)x−1
1 , . . . , hι(β)(xn−1)x−1

n−1, xn+1x
−1
n , x−1

n+1hι(β)(xn)〉 =
〈x1, . . . , xn, xn+1|hβ+(x1)x−1

1 , . . . , hβ+(xn−1)x−1
n−1, hβ+(xn)x−1

n , hβ+(xn+1)x−1
n+1〉

of Gβ+ .

Finally, let us fix notations for epimorphisms that go lower than the groups of
the braid closures.
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Example 4.8. Let
{
ψβ : Gβ � Γψβ

}
β∈tn>1Bn

be a family of epimorphisms such that

• Φn(β) factors through ψβ ◦ γβ ,
• χQ

β,α (Ker(ψβ)) = Ker(ψα−1βα),
• σQ

β,ε (Ker(ψβ)) = Ker(ψσεnι(β)).
Then it follows from Propositions 4.5 and 4.6 that the family

Q =
{
ψβ ◦ γβ : Fn(β) � Γψβ

}
is Markov-admissible.

Note that the first assumption (that Φn(β) factors through ψβ ◦ γβ) is not neces-
sary for Q to be Markov-admissible, but is relevant in order to compare the function
FQ of the next section with L2-Alexander torsions (for which such a factoring prop-
erty is assumed, see [5]).

5. A sufficient condition for Markov invariance

In this section, we state and prove Theorem 5.1. For Q = {Qβ} a Markov-
admissible family, we define the function

FQ :=


tn>1Bn → F(R>0,R>0)/{t 7→ tm,m ∈ Z}

β 7→

t 7→ detrGQβ
(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)

max(1, t)n


 ,

taking values in equivalence classes [t 7→ f(t)] of selfmaps of R>0, up to multiplica-
tion by monomials with integer exponents.

The following theorem gives a sufficient condition on Q for FQ to be a Markov
function and thus yield a invariant of links.

Theorem 5.1. Let Q = {ψβ ◦ γβ : Fn(β) � Γψβ} be as in Example 4.8. Then:
(1) FQ is a Markov function, and thus defines an invariant of links, that we

will denote TQ.
(2) For all n > 1, t > 0, and β ∈ Bn, we have

FQ(β)(t) .= T
(2)
β̂,(1,...,1)

(ψβ ◦ (Ψβ)−1)(t).

In particular, given a link L, then for any braid β such that β̂ = L, the invariant
TQ(L) of L is equal to the equivalence class of selfmaps of R>0[

t 7→ T
(2)
L,(1,...,1)(ψβ ◦ (Ψβ)−1)(t)

]
of twisted L2-Alexander torsions of the exterior of L, where the twist is the epimor-
phism ψβ ◦ (Ψβ)−1 : GL � Γψβ .

Remark that for Q = {Ψβ ◦ γβ : Fn(β) � Gβ̂}, where Ψβ : Gβ
∼→ Gβ̂ is an

isomorphism, it follows from [5] that the link invariant TQ is the L2-Alexander
torsion. Hence, Theorem 5.1 (2) is a generalization of the main result of [5].

To prove Theorem 5.1 (1), we will use two lemmas, one for each Markov move.

Lemma 5.2. Let Q = {ψβ ◦ γβ : Fn(β) � Γψβ} be as in Example 4.8. Then FQ is
invariant under the first Markov move.

Proof. Let Q = {Qβ := ψβ ◦ γβ : Fn(β) � Γψβ}. Let n > 1 be an integer, t > 0, and
α, β ∈ Bn. We will prove that

det rΓψ
α−1βα

(
B

(2)
t,Qα−1βα

(α−1βα)− Id⊕(n−1)
)

= det rΓψβ
(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)
.
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Observe that for any epimorphism γ : Fn → G, Proposition 2.6 implies that:

Id⊕(n−1) = B
(2)
t,γ(1) = B

(2)
t,γ(αα−1) = B

(2)
t,γ(α−1) ◦B(2)

t,γ◦hα−1 (α),

thus B
(2)
t,γ(α−1) =

(
B

(2)
t,γ◦hα−1 (α)

)−1
.

Consequently, we have for any epimorphism γ : Fn → G:

B
(2)
t,γ(α−1βα) = B

(2)
t,γ(α) ◦B(2)

t,γ◦hα(β) ◦B(2)
t,γ◦hβα(α−1)

= B
(2)
t,γ(α) ◦B(2)

t,γ◦hα(β) ◦
(
B

(2)
t,γ◦hα−1βα

(α)
)−1

.

Hence, for any epimorphism γ : Fn → G:

det rG
(
B

(2)
t,γ(α−1βα)− Id⊕(n−1)

)
= det rG

(
B

(2)
t,γ(α) ◦B(2)

t,γ◦hα(β) ◦
(
B

(2)
t,γ◦hα−1βα

(α)
)−1
− Id⊕(n−1)

)
= det rG

(
B

(2)
t,γ◦hα(β)−

(
B

(2)
t,γ(α)

)−1
◦B(2)

t,γ◦hα−1βα
(α)
)
,

where the second equality follows from Remark 2.7 and Proposition 2.4 (1).
For γ = Qα−1βα, we thus have:

det rΓψ
α−1βα

(
B

(2)
t,Qα−1βα

(α−1βα)− Id⊕(n−1)
)

= det rΓψ
α−1βα

(
B

(2)
t,Qα−1βα◦hα

(β)−
(
B

(2)
t,Qα−1βα

(α)
)−1
◦B(2)

t,Qα−1βα◦hα−1βα
(α)
)

= det rΓψ
α−1βα

(
B

(2)
t,χQ

β,α
◦Qβ (β)−

(
B

(2)
t,Qα−1βα

(α)
)−1
◦B(2)

t,Qα−1βα◦hα−1βα
(α)
)
.

Now, since for every braid σ ∈ Bn, γσ ◦ hσ = γσ and Qσ = ψσ ◦ γσ, we obtain:

det rΓψ
α−1βα

(
B

(2)
t,Qα−1βα

(α−1βα)− Id⊕(n−1)
)

= det rΓψ
α−1βα

(
B

(2)
t,χQ

β,α
◦Qβ (β)−

(
B

(2)
t,Qα−1βα

(α)
)−1
◦B(2)

t,Qα−1βα◦hα−1βα
(α)
)

= det rΓψ
α−1βα

(
B

(2)
t,χQ

β,α
◦Qβ (β)−

(
B

(2)
t,Qα−1βα

(α)
)−1
◦B(2)

t,Qα−1βα
(α)
)

= det rΓψ
α−1βα

(
B

(2)
t,χQ

β,α
◦Qβ (β)− Id⊕(n−1)

)
= det rΓψβ

(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)
,

where the last equality follows from Proposition 2.4 (3). �

Lemma 5.3. Let Q = {ψβ ◦ γβ : Fn(β) � Γψβ} be as in Example 4.8. Then FQ is
invariant under the second Markov move.

Proof. For any braid β let us denote Qβ := ψβ ◦ γβ : Fn(β) � Γψβ .

First step: negative crossing:
Let n ∈ N>1, β ∈ Bn and β− = σ−1

n ι(β) ∈ Bn+1. Let t > 0. We will prove that

detrΓψβ−

(
B

(2)
t,Qβ−

(β−)− Id⊕n
)

max(1, t)n+1 = 1
t
·

detrΓψβ
(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)

max(1, t)n .
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In order to do this, we will compose B
(2)
t,Qβ−

(β−) − Id⊕n with two operators (one
named G on the left, one named D on the right) so that we obtain a block triangular
operator with the upper left block “mostly” equal to B

(2)
t,Qβ

(β)− Id⊕(n−1).
First, it follows from Proposition 2.6 that

B
(2)
t,Qβ−

(β−) = B
(2)
t,Qβ−

(
σ−1
n ι(β)

)
= B

(2)
t,Qβ−

(ι(β))B(2)
t,Qβ−◦hι(β)

(
σ−1
n

)
.

Recall that B
(2)
t,id

(
σ−1
n

)
=


Id 0

. . .
...

Id 0
Id Id

0 . . . 0 0 − 1
tRgn−1g

−1
n

, thus the operator

defined as D :=
(
B

(2)
t,Qβ−◦hι(β)

(
σ−1
n

))−1
is equal to:

D :=
(
B

(2)
t,Qβ−◦hι(β)

(
σ−1
n

))−1
=


Id 0

. . .
...

Id 0
Id tR(Qβ−◦hι(β))(gng−1

n−1)
0 . . . 0 0 −tR(Qβ−◦hι(β))(gng−1

n−1)

 .

We therefore compute:

B
(2)
t,Qβ−

(β−) ◦D = B
(2)
t,Qβ−

(ι(β)) ◦B(2)
t,Qβ−◦hι(β)

(
σ−1
n

)
◦D

= B
(2)
t,Qβ−

(ι(β))

=


0

B
(2)
t,Qβ−◦ιFn

(β)
...
0

R Id

 ,

where the row R is the right multiplication operator by the row(
κ(t,Φn+1, Qβ−)

(
∂hι(β)(gj)

∂gn

))
=
(
κ(t,Φn+1 ◦ ιFn , Qβ− ◦ ιFn)

(
∂hβ(gj)
∂gn

))
,

that has n− 1 coefficients in RΓψβ− .
Now, the fundamental formula of Fox calculus (Proposition 2.1) implies that:

(
Rg1−1 . . . Rgn−1

)
·

(
R∂hι(β)(gj)

∂gi

)
16i,j6n

=
(
Rhι(β)(g1)−1 . . . Rhι(β)(gn)−1

)
,

thus, by applying κ(t,Φn+1, Qβ−) and by definition of B(2)
t,Qβ−

(ι(β)), we obtain:(
tRQβ− (g1) − Id . . . tnRQβ− (gn) − Id

)
·B(2)

t,Qβ−
(ι(β))

=
(
tR(Qβ−◦hι(β))(g1) − Id . . . tnR(Qβ−◦hι(β))(gn) − Id

)
=
(
tR(Qβ−◦hι(β))(g1) − Id . . . tn−1R(Qβ−◦hι(β))(gn−1) − Id tnRQβ− (gn) − Id

)
,
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where the second equality follows from the fact that β ∈ Bn leaves gn unchanged
in the Artin action. Let us thus define the following block triangular operator G:

G :=


Id 0

. . .
...

Id 0
tRQβ− (g1) − Id . . . tn−1RQβ− (gn−1) − Id tnRQβ− (gn) − Id

 .

It immediately follows from what precedes that

G ◦
(
B

(2)
t,Qβ−

(β−)
)
◦D = G ◦

(
B

(2)
t,Qβ−

(ι(β))
)

=
0

B
(2)
t,Qβ−◦ιFn

(β)
...
0

tR(Qβ−◦hι(β))(g1) − Id . . . tn−1R(Qβ−◦hι(β))(gn−1) − Id tnRQβ− (gn) − Id

 .

On the other hand, we compute G ◦
(
Id⊕n

)
◦D =

Id 0
. . .

...
0

Id tR(Qβ−◦hι(β))(gng−1
n−1)

tRQβ− (g1) − Id . . . tn−1RQβ− (gn−1) − Id ?

 ,

with ? = tnRQβ−(gnhι(β)(g−1
n−1)gn−1) − t

n+1RQβ−(gnhι(β)(g−1
n−1)gn).

Hence

G ◦
(
B

(2)
t,Qβ−

(β−)− Id⊕n
)
◦D =

0

B
(2)
t,Qβ−◦ιFn

(β)− Id⊕(n−1) ...
0

−tR(Qβ−◦hι(β))(gng−1
n−1)

. . . tjR(Qβ−◦hι(β))(gj) − t
jRQβ− (gj) . . . �

 ,

where j ∈ {1, . . . , n− 1} and

� = tnRQβ− (gn) − Id− tnRQβ−(gnhι(β)(g−1
n−1)gn−1) + tn+1RQβ−(gnhι(β)(g−1

n−1)gn).

Now we use the fact that our epimorphism Qβ− descends deeper than the braid
closure group: indeed, for every j ∈ {1, . . . , n− 1}, we have:

Qβ−(gj) =
(
Qβ− ◦ hβ−

)
(gj) =

(
Qβ− ◦ hι(β) ◦ hσ−1

n

)
(gj) =

(
Qβ− ◦ hι(β)

)
(gj).

Thus G◦
(
B

(2)
t,Qβ−

(β−)− Id⊕n
)
◦D is actually upper block triangular and equal to:

0

B
(2)
t,Qβ−◦ιFn

(β)− Id⊕(n−1) ...
0

−tR(Qβ−◦hι(β))(gng−1
n−1)

0 −Id + tn+1RQβ−(gnhι(β)(g−1
n−1)gn)

 .
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By applying detrΓψβ−
to the previous equality, it therefore follows from Proposition

2.4 and Remark 2.7 that

max(1, t)n · det rΓψβ−

(
B

(2)
t,Qβ−

(β−)− Id⊕n
)
· t

= det rΓψβ−

(
B

(2)
t,Qβ−◦ιFn

(β)− Id⊕(n−1)
)
·max(1, t)n+1.

We conclude by using the fact that Qβ− ◦ιFn = σQ
β,−1◦Qβ (by Markov-admissibility

of Q) and Proposition 2.4 (3).

Second step: positive crossing:
Let β+ = σnι(β) ∈ Bn+1. We will proceed almost exactly as in the first step,

except for the following differences:
• We now aim to prove that

det rΓψβ+

(
B

(2)
t,Qβ+

(β+)− Id⊕n
)

max(1, t)n+1 =
det rΓψβ

(
B

(2)
t,Qβ

(β)− Id⊕(n−1)
)

max(1, t)n .

• The operator D becomes:

D :=
(
B

(2)
t,Qβ+◦hι(β)

(σn)
)−1

=


Id 0

. . .
...

Id 0
Id Id

0 . . . 0 0 − 1
tRQβ+ (gng−1

n+1)

 .

• The final lower right coefficient ? of G ◦D becomes

? = tn−1RQβ+ (gn−1) − Id− tn−1RQβ+(gng−1
n+1gn) + 1

t
RQβ+(gng−1

n+1).

• The final lower right coefficient � of G◦
(
B

(2)
t,Qβ+

(β+)− Id⊕n
)
◦D becomes

� = −tn−1RQβ+ (gn−1) + tnRQβ+ (gn) + tn−1RQβ+(gng−1
n+1gn) −

1
t
RQβ+(gng−1

n+1).

• The simplification

� = tnRQβ+ (gn) −
1
t
RQβ+(gng−1

n+1)

comes from the fact that in the ring ZFn+1 we have the equalities:

gn−1 − gng−1
n+1gn = gn

(
g−1
n − g−1

n+1gng
−1
n−1
)
gn−1

= gn
(
g−1
n − h−1

σn

(
g−1
n

))
gn−1

= gn

(
g−1
n − h−1

σn

(
h−1
ι(β)(g

−1
n )
))

gn−1

= gn

(
g−1
n − h−1

β+

(
g−1
n

))
gn−1

= gn

(
hβ+

(
h−1
β+

(
g−1
n

))
− h−1

β+

(
g−1
n

))
gn−1.

Hence, by composing with γβ+ : Z[Fn] → Z[Gβ+ ], the quotient by all rela-
tions hβ+(∗) = ∗, we get γβ+

(
gn−1 − gng−1

n+1gn
)

= 0. The previous equality
to 0 remains true through any deeper epimorphism Qβ+ = ψβ+ ◦ γβ+ .
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• Applying detrΓψβ+
to the final equality now yields (as expected):

max(1, t)n · det rΓψβ+

(
B

(2)
t,Qβ+

(β+)− Id⊕n
)
· 1
t

= det rΓψβ+

(
B

(2)
t,Qβ+◦ιFn

(β)− Id⊕(n−1)
)
· 1
t

max(1, t)n+1.

�

We now have all the tools to prove Theorem 5.1.

Proof of Theorem 5.1. Part (1) follows immediately from Lemmas 5.2 and 5.3. The
last part follows immediately from parts (1) and (2). Let us prove part (2).

Let L be a link in S3, of exterior ML = S3 \ νL. Let n > 1 and β ∈ Bn such
that L = β̂. We will mostly follow the way of the proof of [5, Theorem 4.9], except
for the fact that ψβ is now a general epimorphism and not the identity. This is
why we need the generalized properties of Section 3. We will skip over some details
already covered in [5].

Recall that

P = 〈g1, . . . , gn|r1 := hβ(g1)g−1
1 , . . . , rn−1 := hβ(gn−1)g−1

n−1〉

is a presentation of Gβ , and also of GL, through the isomorphism Ψβ : Gβ
∼→ GL.

Let WP be the 2-dimensional CW-complex constructed from P . Recall that WP

has a single 0-cell, one 1-cell for each generator of P , and one 2-cell for each relator
of P , each 2-cell being glued on the wedge of circles that is the 1-skeleton following
the word in the generators formed by the relator in question.

Now denote L′ = L ∪ Cβ , where Cβ is the boundary circle of Dn not coming
from one of the punctures, when drawing L as the closure of β. Then

P ′ = 〈g1, . . . , gn, y|r′1 := hβ(g1)yg−1
1 y−1, . . . , r′n := hβ(gn)yg−1

n y−1〉

is a presentation of GL′ , with y a meridian of Cβ . Let WP ′ be the 2-dimensional
CW-complex constructed from P ′. Since L′ is not split, WP ′ and ML′ are therefore
K(GL′ , 1) spaces, and since the Whitehead group of GL′ is trivial, we have that
WP ′ is simple homotopy equivalent to ML′ .

To simplify notations, let us denote G := Γψβ , ψ := ψβ ◦ (Ψβ)−1 : GL � G and
φL := (1, . . . , 1) ◦ αL : GL � Z. Let t > 0. Let Q : π1(ML′) � π1(ML) denote the
group epimorphism induced by removing the component Cβ . Let us also denote as
follows the five finite Hilbert N(G)-chain complexes we will use in the proof:

• E∗ := C
(2)
∗ (ML, φL, ψ, t),

• E′∗ := C
(2)
∗ (ML′ , φL ◦Q,ψ ◦Q, t),

• W∗ := C
(2)
∗ (WP , φL, ψ, t) =⊕n−1

j=1 `
2(G)r̃j

∂2
−−−−−−−−−−−−−→(
B

(2)
t,ψ(β)− Idn−1

∗

)⊕n
i=1 `

2(G)g̃i
∂1

−−−−−−−−−−−−−→
R(tψ(g1)−1,...,tnψ(gn)−1)

`2(G),

• W ′∗ := C
(2)
∗ (WP ′ , φL ◦Q,ψ ◦Q, t) =⊕n

j=1 `
2(G)r̃′j

∂2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B

(2)
t,ψ(β)− Idn−1 0

∗ 0
tRψ(hβ(g1)) − Id . . . tnRψ(gn) − Id


⊕n

i=1 `
2(G)g̃i ⊕ `2(G)ỹ

∂1
−−−−−−−−−−−−−→

R(tψ(g1)−1,...,tnψ(gn)−1,0)
`2(G),
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• D∗ := 0→ `2(G)r̃′n
∂2

−−−−−−−−−−→
Id−tnRψ(gn)

`2(G)ỹ ∂1−→
0

0→ 0.

The forms of W∗ and W ′∗ follow from the fact that we can use Fox calculus to
describe the boundary operators in celullar chain complexes associated to the uni-
versal covers W̃P and W̃ ′P .

Observe that we have T (2)(W∗) = FQ(β)(t). Moreover, we have T (2)(E∗) =
T

(2)
L,(1,...,1)(ψ)(t) by definition. Thus we only need to prove that T (2)(W∗) = T (2)(E∗).

Let us state the two following facts.
Fact 1: For λ the class of a preferred longitude of Cβ in GL′ , ψ(Q(λ)) has infinite

order in G. This is a consequence of φL factoring through ψ and φ(Q(λ)) = n 6= 0.
Fact 2: There exists

0→W∗
η∗−→W ′∗

ρ∗−→ D∗ → 0,

a short exact sequence of finite Hilbert N(G)-chain complexes, with η2, η1 the ob-
vious inclusions, η0 = 0, ρ2, ρ1 the obvious projections, and ρ0 = Id. This Fact
follows from comparing the cells of WP and WP ′ , and from the definitions of L2-
Burau maps with Fox calculus.

We can now establish the following equalities of L2-torsions:

T (2)(E∗) =̇ T (2)(E′∗)
max(1, t)n =̇ T (2)(W ′∗)

max(1, t)n =̇ T (2)(W∗),

where the first equality follows from Proposition 3.4 and Fact 1, the second one
follows from Proposition 3.2, and the third one follows from Proposition 3.1, Fact
2 and Proposition 2.4 (5) and (8).

Observe that if any one of E∗, E′∗,W ′∗,W∗ is not weakly acyclic (resp. is weakly
acyclic but not of determinant class), then no one is (resp. they all are), and in
this case their L2-torsions are all 0 (and the previous equalities still stand). �

Remark 5.4. In the previous proof, the exact sequence in Fact 2 is reversed from
the one in the proof of [5, Theorem 4.9], and the latter is incorrect. Our proof
of Theorem 5.1 (2), which generalizes the one of [5, Theorem 4.9], can thus be
considered as an erratum of this mistake.

Remark 5.5. The proof of Theorem 5.1 (2) can be shortened if L is non split,
directly by using the simple homotopy equivalence between ML and WP , like in
the proof of [5, Theorem 4.9].

6. Counter-examples to Markov invariance

Theorem 5.1 (1) established that FQ is a Markov function when the Markov-
admissible family of epimorphisms Q descends to the link groups or lower. It is
now natural to ask if those families Q are the only ones for which FQ is a Markov
function. We do not have an answer to this question at the time of writing.

However, by looking at the details of the proof of Theorem 5.1 (more precisely
those of Lemmas 5.2 and 5.3), it appears that applying the epimorphism γβ (or
a strictly deeper epimorphism) is necessary in order to obtain the cancellations in
the matrices that yield Markov invariance for FQ. As additional evidence for this
hypothesis, we discovered two families Q such that FQ is not a Markov function:
one family (the identities of the free group) lives strictly higher than the γβ , and
the other one (the abelianizations of the free groups) is not comparable to the γβ
(Figure 4 can help visualizing this). See the following Theorems 6.1 and 6.2.

These two counter-examples illustrate some of the difficulties in computing gen-
eral Fuglede-Kadison determinants, and some transversal techniques one might need
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to use in order to do so (techniques such as computation of Mahler measures of poly-
nomials, or combinatorics of closed paths on Cayley graphs). Notably, the proof of
Theorem 6.2 uses the new values for Fuglede-Kadison determinants over free groups
computed in Theorem 7.3 via combinatorial and analytical techniques. These new
values have separate interesting consequences which are listed in Section 8.

Of course, appeareances might still deceive, and it could happen that unex-
pected identities of Fuglede-Kadison determinants occur even with families of epi-
morphisms not encompassed by Theorem 5.1, especially since computing such de-
terminants remains a daunting task today.

This section is split into two parts, which cover Theorems 6.1 and 6.2 respectively.

6.1. Descending to the free abelian group. In the following theorem, we prove
that when the family Q descends to the free abelian groups, FQ is not a Markov
function and thus cannot yield link invariants. The proof uses properties of the
Fuglede-Kadison determinant and a value of the Mahler measure due to Boyd [6].

Theorem 6.1. For the family of abelianizations Q =
{
ϕn(β) : Fn(β) � Zn(β)}, the

value at t = 1 of the function FQ is not invariant under Markov moves. In particular
FQ is not a Markov function.
Proof. Let t > 0, n = 2, β = σ−1

1 ∈ B2, and β+ = σ−1
1 σ2 ∈ B3. Following Section

2.1, we compute that β+ acts on F3 by{
g1
g2

hβ+7→
{

g−1
1 g2

g3g
−1
2 g−1

1 g2
,

where g1, g2, g3 denote the generators as in Section 2.1. Thus Fox calculus gives:

B
(2)
t,id(β+)− Id⊕2 =

(
− 1
tRg−1

1
− Id −Rg3g

−1
2 g−1

11
tRg−1

1
−Id− tRg3g

−1
2

+Rg3g
−1
2 g−1

1

)
.

Hence, from Remark 2.5 and Proposition 2.4 (6), we have:

det F3

(
B

(2)
t,id(β+)− Id⊕2

)
= det F3

((
−Id− tRg3g

−1
2

+Rg3g
−1
2 g−1

1

)(
−Rg1g2g

−1
3

)(
−1
t
Rg−1

1
− Id

)
− 1
t
Rg−1

1

)
= det F3

(
−
(
tRg1 +Rg1g2g

−1
3

+ 1
t
Rg2g

−1
3

))
= 1
t

det F3

(
Id + tRg1 + t2Rg1g3g

−1
2

)
.

Let z1, z2, z3 denote the canonical generators of Z3. Then it follows from the
same arguments as in the previous computation that:

det F3

(
B

(2)
t,ϕ3

(β+)− Id⊕2
)

= 1
t

det Z3
(
Id + tRz1 + t2Rz1z3

)
.

Let H be the subgroup of Z3 isomorphic to Z2 and generated by λ = z1 and
µ = z1z3. Recall that FQ(β+) is an equivalence class of functions of t > 0 up to
multiplication by a monomial, thus the value at t = 1 is always the same regardless
of the representant of the equivalence class. Let us denote this value FQ(β+)(1).
We then have:

FQ(β+)(1) = det Z3 (Id +Rz1 +Rz1z3)
= detH (Id +Rλ +Rµ)
= M(1 +X + Y ) = 1.38135... 6= 1.

where M is the Mahler measure, the second equality follows from Proposition 2.4
(3), the third one from Proposition 2.4 (7) and the fourth one from Example 2.3.
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Now, since by Proposition 2.4 (5) we have:

FQ(β)(1) = det Z

(
−Rϕ2(g−1

1 g2) − Id
)

= 1,

we conclude that β 7→ FQ(β)(1) is not invariant under Markov moves. �

6.2. Remaining at the free group. We cannot expect Markov invariance by
remaining at the level of the free group either, as the following theorem shows:

Theorem 6.2. For the family of identities Q = {idFn(β)}, the function FQ is not
invariant under Markov moves.

The proof will use part of Theorem 7.3, which will be proved in the next section.

Proof. Let us take t = 1, n = 2, β = σ−1
1 ∈ B2, β+ = σ−1

1 σ2 ∈ B3. Then, as in
the proof of Theorem 6.1, we obtain

FQ(β+)(1) = det F3

(
B

(2)
1,id(β+)− Id⊕2

)
= det F3

(
Id +Rg1 +Rg1g3g

−1
2

)
= det F (Id +Rx +Ry) ,

where F is the free group on two generators x, y that embeds in F3 via x 7→ g1, y 7→
g1g3g

−1
2 , and the last equality follows from Proposition 2.4 (3). Now, since

FQ(β)(1) = det F2

(
−Rg−1

1 g2
− Id

)
= 1,

it remains to prove that detF (Id +Rx +Ry) 6= 1. This follows from Theorem 7.3,
which establishes that

det F (Id +Rx +Ry) = 2√
3
6= 1.

�

7. Fuglede-Kadison determinants over free groups

In this section, we present a general method to compute Fuglede-Kadison de-
terminants via counting paths on Cayley graphs, and we apply this method to
symmetric operators over free groups (studied by Bartholdi and Dasbach-Lalin).

7.1. Computing Fuglede-Kadison determinants from Cayley graphs. The
following lemma gives a method to compute the Fuglede-Kadison determinant
detG(A) using the generating series uA∗A(t) associated to the number of closed
paths on a Cayley graph associated to G and A∗A. This method was studied
by Dasbach-Lalin in [8] and by Lück in [13, Section 3.7] with slight differences in
notation, and we provide a complete proof here for the reader’s convenience.

Lemma 7.1. Let G be a finitely presented group and let A ∈ RCG denote an
injective right multiplication operator on `2(G) by a non-zero element of the group
algebra. Then for any λ ∈

(
0, ‖A‖−2), we have:

detG(A) = lim
ε→0+

1√
λ

exp
(
−1

2

∫ 1

0

wλ,ε(t)− 1
t

dt

)

= lim
ε→0+

1√
λ

exp

−1
2

∫ 1

0

1
1−(1−λε)t uA∗A

(
−λt

1− (1− λε)t

)
− 1

t
dt

 ,
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where

uA∗A(t) :=
∞∑
k=0

trG
(
(A∗A)k

)
tk

is a well-defined power series for t small enough, and

wλ,ε(t) =
∞∑
n=0

trG (((1− λε)Id− λA∗A)n) tn = 1
1− (1− λε)t uA

∗A

(
−λt

1− (1− λε)t

)
is a well-defined power series for ε small enough and |t| < 1 .

Proof. First equality: Let λ ∈
(
0, ‖A‖−2). Since A is injective, Proposition 2.4 (8)

implies that
detG(A) = lim

ε→0+

√
detG(A∗A+ εId).

Let ε > 0 such that λ < 1
‖A‖2 + ε

<
1
‖A‖2

. Since A∗A+ εId is positive, we obtain:

detG(A∗A+ εId) = (exp ◦trG ◦ ln) (A∗A+ εId)

= 1
λ

(exp ◦trG ◦ ln) (λA∗A+ λεId)

= 1
λ

(exp ◦trG ◦ ln) (Id− (Id− (λA∗A+ λεId)))

= 1
λ

(exp ◦trG)
(
−
∞∑
n=1

1
n

(Id− (λA∗A+ λεId))n
)

= 1
λ

exp
(
−
∞∑
n=1

1
n

trG (((1− λε)Id− λA∗A)n)
)
,

where the first equality follows from Proposition 2.4 (4), the fourth one from holo-
morphic functional calculus and the fact that the spectrum of the positive operator
λA∗A+ λεId is inside (0, 1) (since λ < 1

‖A‖2 + ε
).

Now, since the series
∑∞
n=1

1
n trG (((1− λε)Id− λA∗A)n) converges, then

wλ,ε(t) :=
∞∑
n=0

trG (((1− λε)Id− λA∗A)n) tn

is a well-defined power series for |t| < 1, and moreover that for all T ∈ (0, 1),
∞∑
n=1

1
n

trG (((1− λε)Id− λA∗A)n)Tn =
∫ T

0

wλ,ε(t)− 1
t

dt.

Finally, once again since
∑∞
n=1

1
n trG (((1− λε)Id− λA∗A)n) converges, we can ap-

ply Abel’s theorem and make T → 1− in the previous equality. Hence:

detG(A) = lim
ε→0+

√
detG(A∗A+ εId)

= lim
ε→0+

√√√√ 1
λ

exp
(
−
∞∑
n=1

1
n

trG (((1− λε)Id− λA∗A)n)
)

= lim
ε→0+

√
1
λ

exp
(
−
∫ 1

0

wλ,ε(t)− 1
t

dt

)
,

and the first equality follows.
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Second equality: Now we compute, for ε > 0 small enough and t ∈ [0, 1):

wλ,ε(t) =
∞∑
n=0

trG (((1− λε)Id− λA∗A)n) tn

=
∞∑
n=0

trG

(
n∑
k=0

(
n

k

)
(1− λε)n−k(−λ)k(A∗A)k

)
tn

=
∞∑
n=0

n∑
k=0

(
n

k

)
(1− λε)n−k(−λ)ktrG

(
(A∗A)k

)
tn

=
∞∑
k=0

(
−λ

1− λε

)k
trG

(
(A∗A)k

) ∞∑
n=k

(
n

k

)
(1− λε)ntn

=
∞∑
k=0

(
−λ

1− λε

)k
trG

(
(A∗A)k

) ((1− λε)t)k

(1− (1− λε)t)k+1

= 1
1− (1− λε)t

∞∑
k=0

(
−λt

1− (1− λε)t

)k
trG

(
(A∗A)k

)
,

where the fifth equality follows from the binomial formula. Thus, by denoting
u(t) :=

∑∞
k=0 trG

(
(A∗A)k

)
tk, we have

wλ,ε(t) = 1
1− (1− λε)t u

(
−λt

1− (1− λε)t

)
and the second equality follows. �

7.2. The non-cyclic free groups. The following proposition follows from works
of Bartholdi and Dasbach-Lalin [2, 8] on counting paths on regular trees.
Proposition 7.2. Let d > 3, let x1, . . . , xd−1 be d− 1 generators of the free group
Fd−1, and let ζ1, . . . , ζd−1 ∈ C such that |ζ1| = . . . = |ζd−1| = 1.

For G = Fd−1, A = Id + ζ1Rx1 + . . . + ζd−1Rxd−1 , and t small enough, the
following generating series is equal to:

uA∗A(t) =
∞∑
k=0

trG
(
(A∗A)k

)
tk = 2d− 2

d− 2 + d
√

1− 4(d− 1)t
.

Proof. The case where ζ1 = . . . = ζd−1 = 1 is proven in [2, 8]. The main idea
is the fact that trG

(
(A∗A)k

)
counts the number of closed paths on the Cayley

graph associated to G and A∗A, which is a d-regular tree in the present case. The
generating series uA∗A(t) is then determined as the solution of a functional equation,
which is found by listing every possible form of a closed path on the graph.

Let us consider the general case. For k ∈ N, the coefficient trG
(
(A∗A)k

)
is equal

to the sum of all terms ζj1ζ
∗
j2
. . . ζj2k−1ζ

∗
j2k

(where j1, . . . , j2k ∈ {0, 1, . . . , d− 1} and
ζ0 := 1) such that xj1x

−1
j2
. . . xj2k−1x

−1
j2k
∈ Fd−1 is trivial (with the convention x0 :=

1). Now, if xj1x
−1
j2
. . . xj2k−1x

−1
j2k

is trivial, then each non-zero index ji is paired with
another index ji′ with i′ 6= i, ji′ = ji. Hence the associated term ζj1ζ

∗
j2
. . . ζj2k−1ζ

∗
j2k

is equal to 1, like in the first case, and the result follows similarly. �

In the following theorem, we compute Fuglede-Kadison determinants of basic
operators on the free groups, using the explicit generating series of Proposition 7.2.
Theorem 7.3. Let d > 3, and let x1, . . . , xd−1 be d−1 generators of the free group
Fd−1. Let ζ1, . . . , ζd−1 ∈ C such that |ζ1| = . . . = |ζd−1| = 1. Then we have:

det Fd−1(Id + ζ1Rx1 + . . .+ ζd−1Rxd−1) = (d− 1) d−1
2

d
d−2

2
.
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In particular, for any two generators x, y of the free group F2, we have:

det F2(Id +Rx +Ry) = 2√
3

= 1.15...

Proof. Let d > 3 and ζ1, . . . , ζd−1 in the unit circle. First we use Lemma 7.1, by
taking G = Fd−1, A = Id + ζ1Rx1 + . . .+ ζd−1Rxd−1 , λ ∈ (0, 1

d2 ), and we obtain:

det Fd−1(Id + ζ1Rx1 + . . .+ ζd−1Rxd−1) = detG(A)

= lim
ε→0+

1√
λ

exp
(
−1

2

∫ 1

0

wλ,ε(t)− 1
t

dt

)
,

where

wλ,ε(t) =
∞∑
n=0

trG (((1− λε)Id− λA∗A)n) tn

for ε > 0 small enough and t ∈ [0, 1).
From Lemma 7.1, by denoting uA∗A(t) :=

∑∞
k=0 trG

(
(A∗A)k

)
tk, we have

wλ,ε(t) = 1
1− (1− λε)t uA

∗A

(
−λt

1− (1− λε)t

)
.

Since it suffices to prove that

lim
ε→0+

∫ 1

0

wλ,ε(t)− 1
t

dt = ln
(

dd−2

(d− 1)d−1λ

)
,

let us denote Iλ,ε :=
∫ 1

0
wλ,ε(t)−1

t dt and prove that Iλ,ε →
ε→0+

ln
(

dd−2

(d−1)d−1λ

)
.

It follows from Proposition 7.2 that

uA∗A(t) = 2d− 2
d− 2 + d

√
1− 4(d− 1)t

,

thus

Iλ,ε =
∫ 1

0

1
1−(1−λε)t

2d−2

d−2+d
√

1+ 4(d−1)λt
1−(1−λε)t

− 1

t
dt.

With the change of variables x = (1 − λε)t and by denoting a = 4(d−1)λ
1−λε , we find

Iλ,ε =
∫ 1−λε

0
(
2(d− 1)R(x)− 1

x

)
dx, where

R(x) := 1
x(1− x)

(
d− 2 + d

√
1 + ax

1−x

) =
d
√

1 + ax
1−x − (d− 2)

x ((d2a− 4d+ 4)x+ 4d− 4) .

To find an antiderivative of R(x), we first split it into a sum of partial fractions:

R(x) = 1
4(d− 1)

−d− 2
x

+ d− 2
x+ 4d−4

d2a−4d+4
+ d

√
1 + ax

1−x

x
− d

√
1 + ax

1−x

x+ 4d−4
d2a−4d+4

 .

For any generic constant C, an antiderivative of x 7→

√
1 + ax

1−x

x+ 4C−4
C2a−4C+4

is given by

x 7→ 2
√

1− a ·arsinh
(√

(1− x)(1− a)
a

)
−2C − 2

C
artanh

(
C − 2
C

√
1− x

ax− x+ 1

)
,
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hence the cases C = 1 and C = d provide the antiderivatives of the third and fourth
terms in the previous expression of R(x). The arsinh terms cancel, and we find the
following antiderivative F (x) for the function

(
2(d− 1)R(x)− 1

x

)
:

F (x) =− d

2 ln(x) + d− 2
2 ln

∣∣∣∣x+ 4d− 4
d2a− 4d+ 4

∣∣∣∣
− d artanh

(√
1− x

ax− x+ 1

)
+ (d− 2) artanh

(
d− 2
d

√
1− x

ax− x+ 1

)
.

From what precedes, we therefore have Iλ,ε = F (1− λε)− F (0).
Recall that a,R, F all depend on ε, although it is not apparent in the notation.
Since limε→0+(a) = 4(d− 1)λ, we can compute

lim
ε→0+

F (1− λε) = d− 2
2 ln

∣∣∣∣ d24(d− 1)λ
d24(d− 1)λ− 4d+ 4

∣∣∣∣ .
To compute F (0), we first need to remark that

artanh
(√

1− x
ax− x+ 1

)
= 1

2 ln

1 +
√

1− x
ax− x+ 1

1−
√

1− x
ax− x+ 1


= ln

(
1 +

√
1− x

ax− x+ 1

)
− 1

2 ln
(

1− 1− x
ax− x+ 1

)

= ln
(

1 +
√

1− x
ax− x+ 1

)
+ 1

2 ln (ax− x+ 1)− 1
2 ln (ax) .

The only terms in F (x) that diverge in x = 0 are −d2 ln(x) and (−d)
(
− 1

2 ln (ax)
)
,

which cancel (leaving the term d
2 ln(a)). Hence we have:

F (0) = d− 2
2 ln

∣∣∣∣ 4d− 4
d2a− 4d+ 4

∣∣∣∣− d ln(2) + d

2 ln(a) + (d− 2) artanh
(
d− 2
d

)
.

Since artanh
(
d−2
d

)
= 1

2 ln(d− 1), we find in the limit ε→ 0+:

F (0) →
ε→0+

d− 2
2 ln

∣∣∣∣ 4d− 4
d24(d− 1)λ− 4d+ 4

∣∣∣∣−d ln(2)+d

2 ln(4(d−1)λ)+d− 2
2 ln(d−1),

and thus limε→0+ Iλ,ε = limε→0+ F (1− λε)− F (0) is equal to

lim
ε→0+

= ln

 (
d24(d− 1)λ

) d−2
2

(4d− 4)
d−2

2 2−d (4(d− 1)λ)
d
2 (d− 1)

d−2
2

 = ln
(

dd−2

(d− 1)d−1λ

)
,

which concludes the proof. �

The methods used in Proposition 7.2 and Theorem 7.3 can be generalised to
other operators and Cayley graphs, as in the following corollary.

Corollary 7.4. Let d > 2, and let x1, . . . , xd be d generators of the free group
Fd. Let ζ1, ξ1, . . . , ζd, ξd ∈ C such that |ζ1| = |ξ1| = . . . = |ζd| = |ξd| = 1. Let
A = ζ1Rx1 + ξ1Rx−1

1
+ . . .+ ζdRxd + ξdRx−1

d
. Then we have:

(1) For t small enough, the following generating series is equal to:

uA∗A(t) =
∞∑
k=0

trFd
(
(A∗A)k

)
tk = 4d− 2

2d− 2 + 2d
√

1− 4(2d− 1)t
.
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(2) The Fugelede-Kadison determinant of A is equal to

det Fd

(
ζ1Rx1 + ξ1Rx−1

1
+ . . .+ ζdRxd + ξdRx−1

d

)
= (2d− 1) 2d−1

2

(2d)d−1 .

Proof. (1) The case where ζ1 = ξ1 = . . . = ζd = ξd = 1 follows from [2, 8] (this
time the circuits are considered in a (2d)-regular tree).

The general case follows from a similar argument as in the proof of Proposition
7.2, with a slight difference: this time no letter is trivial, thus any trivial word must
be of even length, and therefore any coefficient ζi (resp. ξi) is necessarily multiplied
with a coefficient equal to ζ∗i (resp. ξ∗i ), and vice-versa.

(2) The result follows from (1) (i.e. the value of uA∗A(t)) as in the proof of
Theorem 7.3, except that each d is replaced with 2d. �

8. New upper bounds for Lehmer’s constants

In this section, we establish new upper bounds for Lehmer’s constants for a large
class of torsionfree groups, as a consequence of Theorem 7.3.

Given a group G, its Lehmer’s constants, as defined by Lück in [14], are:
• Λ(G) := inf

{
detG(A) | A ∈ tp,q∈NRMp,q(ZG), detG(A) > 1

}
,

• Λw(G) := inf
{

detG(A) | A ∈ tn∈NRMn(ZG), A injective, detG(A) > 1
}

,
• Λ1(G) := inf {detG(A) | A ∈ RZG, detG(A) > 1},
• Λw1 (G) := inf {detG(A) | A ∈ RZG, A injective, detG(A) > 1}.

Observe that 1 6 Λ(G) 6 Λw(G) 6 Λw1 (G) and 1 6 Λ(G) 6 Λ1(G) 6 Λw1 (G).

Remark 8.1. If H is a subgroup of G, it follows from Proposition 2.4 (3) that
λ(G) 6 λ(H) for any λ ∈ {Λ,Λ1,Λw,Λw1 }.

Lehmer’s constants are inspired by the well-known Lehmer problem, that we
re-state as a conjecture as follows:

Conjecture 8.2 (Lehmer’s problem, [14] Problem 1.3). Λw1 (Z) is equal to the
Mahler measure of Lehmer’s polynomial L(z) = z10+z9−z7−z6−z5−z4−z3+z+1:

Λw1 (Z) = M(L) = M(z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1) = 1.176...

As explained in [14], Lehmer’s constants are especially interesting to study for
torsionfree groups. For this class of groups, Lück proposed the following question:

Question 8.3 ([14], Introduction). For which torsionfree groups G do we have
Λ(G) = Λw(G) = Λ1(G) = Λw1 (G) = M(L) = 1.176... ?

Example 8.4 ([14], Example 13.2). Lück provided a partial negative answer to Ques-
tion 8.3 by proving that Λ(G) = Λw(G) 6 1.06 < M(L) for G the fundamental
group of the hyperbolic Weeks manifold. It follows from Remark 8.1 that the same
is true for any group G′ containing G as a subgroup.

Now, as a consequence of Theorem 7.3, we obtain new upper bounds on Lehmer’s
constants and a negative answer to Question 8.3 for a large class of groups:

Corollary 8.5. For every d > 2, Lehmer’s constants Λ(Fd),Λ1(Fd),Λw(Fd) and
Λw1 (Fd) do not depend on d. Moreover, for every d > 2, we have

Λ(Fd) 6 Λw(Fd) 6 Λw1 (Fd) = Λ1(Fd) 6
2√
3

= 1.15... <M(L) = 1.176...

In particular, any torsionfree group G containing a subgroup Fd for d > 2 (such
as the fundamental group of a hyperbolic 3-manifold, see [1, C.3, C.26]) also satisfies

Λ(G),Λ1(G),Λw(G),Λw1 (G) ∈
[
1, 2√

3

]
.
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Proof. The first statement follows from Remark 8.1 and the fact every free group
Fd (for d > 2) injects in F2 and vice-versa.

In the second statement, the first two inequalities follow immediately from the
definitions, and the first equality from the fact that free groups satisfy the Strong
Atiyah Conjecture (see Remark 2.5 and [13, Theorem 10.19]). The third inequality

follows from Theorem 7.3 and the first statement (observe that d 7→ (d− 1) d−1
2

d
d−2

2
is

increasing for d > 3, thus 2√
3

is the best upper bound available).
The third statement follows from the second one and Remark 8.1: for any torsion-

free group G with Fd < G, we have λ(G) 6 λ(Fd) for any λ ∈ {Λ,Λ1,Λw,Λw1 }. �

Remark 8.6. The fundamental group of the Weeks manifold contains free subgroups
(see [1, C.3, C.26]). In this sense, Corollary 8.5 can be seen as a generalization of
the class of counterexamples to Question 8.3 mentioned in Example 8.4. However,
for this same class, the upper bound 1.06... in Example 8.4 is better than the bound
2√
3

of Corollary 8.5, for the constants Λ(G),Λw(G).

From what precedes, we find that the combinatorial and analytical techniques
used in Theorem 7.3 show promise for solving problems such as Question 8.3.
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