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Abstract—Convex hull pricing is a well-documented method
for coping with the non-existence of uniform clearing prices in
electricity markets with non-convex costs and constraints. We
revisit primal and dual methods for computing convex hull prices,
and discuss the positioning of existing approximation methods
in this taxonomy. We propose a dual decomposition algorithm
known as the Level Method and we adapt the basic algorithm
to the specificities of convex hull pricing. We benchmark its
performance against a column generation algorithm that has
recently been proposed in the literature. We provide empirical
evidence about the favorable performance of our algorithm on
large test instances based on PJM and Central Europe.

Index Terms—Convex hull pricing, Non-uniform pricing, Level
method, Bundle methods.

I. INTRODUCTION

A. Pricing non-convexities

THE classical analysis of an economic dispatch problem,
together with its dual, provides a fundamental argument

for uniform pricing in electricity markets [1] — an optimal
dispatch can be supported by a set of competitive equilibrium
prices. In other words, even if a central authority cannot
effectively control the dispatch of the assets itself, it can
provide prices that align the behaviour of selfish profit maxi-
mizing agents with social welfare maximization. However, as
the argument assumes convexity of the dispatch problem, a
fundamental challenge for market efficiency is non-convexity,
as the latter implies that it is not guaranteed that a competitive
market equilibrium exists.

Non-convexities are at the heart of power system operations
[2], in terms of both the network model as well as in the
market orders: (i) they are present in the alternating current
(AC) power flow equations which characterize the physics of
the grid and (ii) in the mixed integer programming (MIP)
constraints that describe the market offers. As the day-ahead
(DA) markets in Europe and in the US rely on a linear direct
current (DC) power flow model of the grid, point (i) is not
encountered in these markets1. On the other hand, point (ii)
is a reality in both US markets that rely on solving a unit
commitment (UC) problem, as well as in the EU market which
includes integer market orders — the so-called “block orders”.
Throughout this paper, we neglect (i) and rather focus on (ii).

The inexistence of equilibrium prices in electricity auctions
has triggered a long-lasting debate on the choice of an ap-
propriate pricing scheme in the presence of non-convexities.

1Note, nevertheless, that the debate on TSO/ISO-DSO integration has
recently motivated the consideration of more advanced models for the repre-
sentation of network constraints in market-clearing platforms [3].

Convex hull pricing (CHP) has arisen as one promising
alternative: while being so far mainly debated in the US, it has
also recently emerged as a possible option for the EU market
[4]. A practical concern of CHP is that its computation can
be challenging (e.g. see Issue 7 in [5]). Our paper aims at
addressing these computational challenges by putting forward
a workable algorithm (the Level Method) for realistic instances
subject to network constraints. In the remainder of this section,
we sketch the main concepts related to CHP and we discuss the
context of non-uniform pricing discussions in the EU. Insofar
as the EU market is concerned, we discuss institutional aspects
as well as computational issues, which motivate our choice of
test instances.

B. Non-uniform pricing schemes

The most widely debated “non-uniform pricing schemes”
in the literature include integer programming (IP) pricing
proposed by O’Neill [6], convex hull pricing proposed by
Gribik and Hogan [7], [8], and “extended LMP” pricing which
has been applied early on in the PJM market [9], [10]. They all
amount to a convex relaxation of the market clearing problem.
These strategies consist of combining a uniform electricity
price with discriminatory payments, called uplift payments,
which aim at restoring the incentives of market participants for
following the market matches. In this framework, the overall
market clearing procedure can be described in three steps,
which are also followed by our simulations:

1) Solve the primal problem, in order to establish the
dispatch and commitment instructions ;

2) Solve a pricing problem in order to compute uniform
electricity prices ;

3) Solve the independent profit maximization problems of
all market agents (generators and the network operator)
in order to establish uplift payments.

Regarding step 3, it is worth noting that uplift payments are
often categorized as follows in the literature:
• Potential Congestion Revenue Shortfall are uplifts asso-

ciated with the network congestion revenue [3].
• Generator side-payments are defined as the difference

between the maximum profit achieved by self-scheduling
given the market prices and the as-cleared profit.

The pricing strategy proposed by O’Neill is a common
choice in non-convex settings. We also use it as a benchmark
for our simulations. However, it does not attempt to minimize
uplift payments, and can therefore possibly lead to high side
payments. Uplifts are undesirable, as they can distort the
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incentives of bidders or create revenue adequacy problems for
the market operator that needs to finance them [11].

These concerns motivate Convex Hull Pricing (CHP), the
main property of which is to minimize uplifts. Because it is
computationally challenging, PJM (and other US ISOs) has
recently implemented a new pricing scheme, referred to as
“extended LMP” which is more tractable computationally than
CHP. For certain forms of simple market orders, it can also
be shown to be a reasonable approximation of CHP [9]. We
expand on how it relates to the computation of CHP in section
II.

C. Uniform pricing in the EU

The EU market landscape presents a number of major
institutional differences compared to US markets [12]. One
such notable difference is that day-ahead energy auctions are
operated by for-profit Nominated Electricity Market Operators
(NEMOs) while, in the US, it is the (typically non-profit)
ISO that operates both the market and the network. One
implication of this difference relates to the ability of the market
operator to socialize uplift payments. This difference may, in
part, justify the currently employed “uniform” pricing scheme
that is adopted in Europe, as implemented in Euphemia, the
algorithm that clears the pan-European day-ahead auction [13].

In Euphemia parlance, the aforementioned generator side
payments can be related to: (i) paradoxically accepted blocks
(PAB) — cleared bids actually facing losses, i.e. requiring
make-whole payments (as defined in [5]) — and (ii) paradox-
ically rejected blocks (PRB) — a rejected bid that would have
been profitable, i.e. facing a lost opportunity cost. The EU day-
ahead market “avoids” uplift payments by (i) constraining the
problem by not allowing the acceptance of PABs while (ii)
allowing PRBs, but not paying their lost opportunity costs.
Ultimately, it does not effectively reduce the uplifts to zero,
but it guarantees zero make-whole payments, while increasing
the total lost opportunity cost and not paying it. Consequently,
this pricing scheme only outputs uniform prices while it does
not provide the market participants with any discriminatory
payments. This justifies why, in EU NEMO parlance, it is
referred to as uniform, in contrast to the three non-uniform
pricing schemes that are discussed previously.

This uniform pricing scheme involves “primal-dual” con-
straints that implicate dispatch and price decisions in a single
market clearing model. The solution implemented in Euphemia
amounts to an iterative algorithm that matches market orders
while aiming to find a feasible price (without PAB). If this is
not possible, the algorithm generates a cut in the primal model
and repeats the process. In contrast to the non-uniform pricing
schemes that work in three steps (dispatch, price, uplifts), the
EU uniform pricing scheme works as a single — but iterative
— step, and couples dispatch and price problems together.

This makes the problem that Euphemia is called to solve (a
mixed integer quadratic program subject to complementarity
constraints) computationally challenging. Moreover, the ap-
proach deteriorates market welfare, since welfare-enhancing
orders can be discarded if no market clearing price can be
found to support the aforementioned clearing rule. For these

reasons, non-uniform pricing schemes, and in particular convex
hull pricing, have recently received consideration by the Euro-
pean NEMOs as a possible option for the European DA energy
auction [4]. Considering the aforementioned institutional EU
structure, as well as the algorithm implemented in Euphemia,
this would constitute a disruptive market design evolution.

Computationally speaking, implementing CHP in Europe
comes with three paramount requirements [4], [13]:
• Euphemia is afforded 12 minutes of run time.
• The market model includes a network of ∼ 40 bidding

zones, and its geographic footprint is expected to be
further enlarged.

• The market model is expected to move towards 15-minute
granularity in the near future (a horizon of 96 periods).

Forty bidding zones for ninety-six periods implies a 3,840-
dimensional price space. These requirements motivate the
considered use cases in section IV.

D. Contributions and Structure of the paper

The contribution of the paper is twofold:
1) We propose the Level Method [14] for computing CHP

and adapting it to the specificities of our problem. We
specifically adapt the algorithm in order to exploit the
convexity of the network model. We further introduce
a “multi-cut” variant of the Level Method in order to
leverage the separability of the sub-problems. Note that
two types of approaches have been envisioned in the
literature for solving CHP: dual approaches and the
primal approaches (we define these in section II). The
Level Method belongs to the former. Primal approaches,
and their drawbacks which motivate our choice for a
dual approach, are presented in section II. The review
of alternative (tested) dual approaches comes in section
III and motivates our choice of the Level Method.

2) We efficiently solve CHP, using the Level Method, for
large instances including a network and a horizon of 96
periods, which anticipates the evolution of the EU mar-
ket. We conduct a critical comparison of our approach
against both primal and dual decomposition approaches.
In particular, we compare it to a notable recent pub-
lication by [15], which proposes a Dantzig-Wolfe (D-
W) algorithm for computing CHP. The D-W algorithm
exhibits favorable performance on a test case without a
network and with 24 time periods, as considered in [15].
Given our preoccupation with a market clearing model
at the scale of the EU market, the question becomes how
the method scales when moving from a 24-dimensional
to a 3,840-dimensional price space. When increasing the
dimension, the Level Method is empirically shown to
attain favorable performance relative to [15].

Our paper is inspired by an older unpublished work [16],
and is further motivated by [15]. We describe the mathematical
formulation of CHP in section II. We then introduce the Level
Method in section III. In section IV, we test the algorithm on
multiple large instances and compare the results with D-W.
Section V concludes and discusses areas of further research.
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II. MATHEMATICAL FORMULATION

A. Convex hull pricing program

We define the dispatch problem subject to network con-
straints as follows:

min
c,p,u,f

∑
g∈G

cg (1a)

(πit)
∑
g∈Gi

pg,t −Di
t =

∑
l∈

from(i)

fl,t −
∑
l∈
to(i)

fl,t ∀i, t (1b)

(cg, pg,t, ug,t) ∈ Xg ∀g ∈ G (1c)
f ∈ F (1d)

Here, Gi denotes the set of generators (or market offers) at
node i. Each offer is modelled with a total cost cg , a power
output pg,t at time t and a set of non-convex constraints Xg .
The generic variables ug stand for all the binary variables
encountered in the generator model. The demand at time t and
node i, Di

t, appears in the market clearing (MC) constraints
(1b). Regarding the network, fl,t stands for the flow on line l,
while from(i) is the set of lines originating from i and to(i)
the ones directed towards i. No assumption is made on the
network constraints F , except that it is a convex set.

Each generator g is assumed to be a selfish agent that
maximizes profit, i.e. solves the following program:

max
c,p,u

∑
t

pg,tπ
i(g)
t − cg (2a)

(cg, pg,t, ug,t) ∈ Xg (2b)

Here, i(g) stands for the node of generator g, while π
i(g)
t

represents the market price of node i(g) at time t.
A fundamental result [7], [8] on CHP establishes that

minimizing uplifts amounts to solving the following problem:

πCHP = arg max
π

L(π) (3)

Here, L(π) denotes the Lagrangian dual function, obtained by
relaxing constraints (1b) of problem (1):

L(π) =
∑
i,t

πitD
i
t (4a)

−
∑
g∈G

max
(c,p,u)g∈Xg

{∑
t

pg,tπ
i(g)
t − cg

}
(4b)

+ min
f∈F


∑
i,t

πit

 ∑
l∈

from(i)

fl,t −
∑
l∈to(i)

fl,t


 (4c)

We recognize in (4b) the profit maximization problems (2)
of the generators. As established in [8], using the optimal
primal dispatch solution of (1) and injecting it into (4) clarifies
why the previous Lagrangian problem does indeed minimize
the uplifts. As also pointed out in the literature, the definition
(3) of CHP also indicates that the uplifts can be interpreted as
the duality gap between (1) and (4).

B. US versus EU models

In addition to institutional differences between US and EU
markets, another major difference relates to the definition of
market products. The US markets follow a unit-bidding model,
where each unit is represented explicitly in the market, along
with its technical characteristics. On the other hand, the EU
day-ahead market follows a portfolio-bidding model (which
cannot be subsumed in the unit commitment formulation),
where each agent submits multiple generic market orders that
represent the portfolio of its assets in an aggregated way. These
market orders [13] include convex hourly orders — stepwise
and interpolated curves — as well as non-convex orders2 —
mainly the family of block orders. The latter is a financial
order spanning over multiple periods and involving a binary
acceptance variable.

Model (1) remains general regarding the bid (generator)
constraints (1c), which are simply represented as the non-
convex set Xg . This implies that the approach outlined in this
paper can accommodate all the flavours of unit commitment
models as well as the EU-like auctions. This exceeds what a
“primal CHP approach” can model.

Finally, model (1) considers a general (but convex) set of
network constraints F . Our approach can in fact accommodate
any convex representation of the network. In both the US and
EU market, F would amount to a set of linear constraints, the
main difference being that certain US markets are nodal (larger
number of nodes) while the EU market is zonal (roughly one
zone per country). We remark in section III on the specific
treatment of the network in our proposed Level Method.

C. Primal and dual approaches for computing CHP

In this section, (i) we locate the Level Method in the
perspective of the landscape of all the alternative of approaches
for solving CHP and (ii) we motivate the choice of a dual ap-
proach in the light of the limitations of the primal approaches.

As noted in section I, there are two main approaches
envisioned for computing convex hull prices — i.e. solving
problem (3): (i) the Lagrangian dual approaches, which
directly attempt to maximize function L(π) using an iterative
algorithm, and (ii) the primal approaches, understood as
methods that seek to describe the CH of the non-relaxed
constraints (1c)-(1d) by developing tight formulations. Figure
1 outlines the landscape of approaches for computing convex
hull prices. The top problem (A) corresponds to the dispatch
problem (1). Below, on the left, we find primal relaxations
of (A) while, on the right, we find Lagrangian relaxations of
(A) — Lagrangians are indeed a widely employed method
for deriving convex relaxations of non-convex programs [17].
The problem (Γ) corresponds to the CHP definition (3), which
can be solved by dual decomposition approaches such as the
Level Method. Problem (Γ) maps to its primal equivalent in
(C). The underlying idea of the primal formulation is that
computing the CHP as the Lagrangian multipliers of (3) is

2Note that other non-convex (and less standard) products in Euphemia
such as the Italian unique national price (PUN) or complex orders [13], are
not directly compatible with CHP, because they implicate primal and dual
variables in their definition.
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Fig. 1. Landscape of problems for computing / estimating convex hull prices.

equivalent to computing the dual variable π associated to the
market clearing constraint (1b) in the primal problem (1), if
the latter is expressed on the convex hull of its domain —
i.e. conv(Xg) ∀g ∈ G (see [18],[17] for the general result
in Lagrangian relaxation theory or [19] for the specific result
related to CHP).

Although (C) is the tightest primal relaxation of (A), there
exist looser relaxations, such as (D), which amounts to relax-
ing the integrality constraints ug,t ∈ {0, 1} to ug,t ∈ [0, 1].
This corresponds to PJM pricing, discussed in the introduc-
tion. PJM pricing can be interpreted as a computationally
efficient approximation of CHP [9]. In certain cases, relaxing
the integrality constraints in Xg may provide conv(Xg). In this
case, problems (C) and (D) are equivalent and PJM pricing
effectively corresponds to convex hull pricing. The fact that
relaxation (D) is looser than (C) implies that the duality gap
between (A)–(D) will be greater than or equal to the one
between (A)–(C).

Interestingly (and to the best of our knowledge, unnoticed in
the literature), one can also relate the primal relaxed problem
(D) to its Lagrangian dual counterpart (∆). While CHP is
solving the partial Lagrangian dual relaxation (Γ), PJM pric-
ing corresponds to solving the full (looser) Lagrangian dual
relaxation (∆), where all the constraints — and not only the
market clearing constraints — are dualized3.

Regarding the primal CHP problem (C), a way to approach
it is to develop a tight — but custom — formulation, spe-
cific to the targeted problem (A). Recent researches have
embraced this idea: [19] proposes an explicit formulation for
the primal model of CHP for classical UC constraints. Madani
[24] analyses primal CHP formulations for the constraints

3Taylor [2], which inspired Fig. 1, proposes an interesting interpretation
of CHP by relating it to the semi-definite programming (SDP) relaxation of
problem (1). The proposition is motivated by the well-known SDP relaxation
of a non-convex quadratically constrained program (QCP) [20]–[22] and the
fact that a MIP can be expressed as a QCP. However, the above taxonomy
reveals an innacuracy in the reasonning: it mixes (∆) and (Γ), as it omits the
fact that CHP relies on a partial (and not complete) Lagrangian relaxation,
where only the market clearing constraints are relaxed (i.e. dualizing fewer
constraints can only improve the duality gap [23]).

of the European day-ahead market clearing model4. More
recent research further elaborates on the idea, developing
tight (custom) formulations for MISO [25] or proposing a
network flow model of unit commitment, in order to compute
CHP for a broader set of constraints [26]. One value of the
primal CHP approaches is to establish the link between CHP
theory and the literature dedicated to tight formulations of UC
polytopes such as [27]–[35] (see chapter 2 in [16]). Similarly,
when including a non-convex network model, the primal CHP
approach [3] also establishes the connection between CHP
theory and SDP/SOCP relaxations of AC power flow [2].

Nevertheless, as also voiced in [15], there are certain
constraints for which the convex hull is not tractable in the
sense that it may not be possible to characterize the convex
hull with a scalable number of constraints. This already holds
for simple ramp constraints [19]. This is also acknowledged
by [26], where the authors do not account for them in their
network flow model. Instead, [25] needs to combine the
proposed tight formulation with an iterative algorithm in order
to account for the ramp constraints in a scalable way. It goes
without saying that these modelling limitations also hold for
more advanced constraints such as multimode CCGT units,
detailed battery models, and so on. Thus, since the pricing
mechanism becomes dependent on the quality of the primal
formulation, the primal approach can be ruined by adding
a new constraint — which is particularly concerning, since
electricity market models are constantly subject to changes
(e.g. triggered by regulatory requirements such as article 40
of EGBL guidelines). These modelling limitations imply that,
if the representation of the convex hull is not tractable, the
primal approaches are irremediably left with an approximation
of convex hull prices, such as the PJM pricing model (D). This
is illustrated in our numerical results of section IV, where a
primal method benchmark [19] is included. This motivates our
choice for a dual approach.

III. THE LEVEL METHOD

A. Review of existing algorithms

The appropriate algorithmic scheme for solving (3) is re-
lated to the type of function L(π).

Property 1 (Concave). Function L(π) is concave in π.

Property 2 (Non-smooth). Function L(π) is a non-smooth
(piecewise linear) function, i.e. each facet can be seen as
corresponding to a set of binary (commitment) decisions ug .

Property 3 (First-order oracle). A first-order oracle is avail-
able, i.e. given a price π, both the function value L(π) as well
as its supergradient s ∈ ∂̂L(π) can be evaluated.

Property 4 (Supergradient). Let (c∗, p∗, u∗, f∗) be the optimal
reactions to π (solving respectively (4b) and (4c)). Then

s = Di
t −

∑
g∈G

p∗g,t +
∑

l∈from(i)

f∗l,t −
∑
l∈to(i)

f∗l,t

is a supergradient of L in π; i.e. s ∈ ∂̂L(π).

4Note however that [24] focuses on a subset of the market constraints,
ignoring e.g. linked blocks and exclusive groups [13].
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Each call to the oracle implies solving MIP profit maxi-
mization programs (2) for each generator as well as for the
network program (4c) — these are thus slave problems. We
propose later a special treatment of the network and leverage
the separability of the profit maximization problems in order to
substantially improve the formulation. Any algorithm tackling
this problem would work in three steps:

1) Given a price πk, evaluate L(πk) and ∂̂L(πk) ;
2) Given this information, generate a new price πk+1 ;
3) If the stopping criterion is met, stop. Else, go to step 1.
The main difference between dual decomposition algorithms

is in the way that they construct the sequence of iterates
{πk}∞k=0: (i) some algorithms simply update the prices based
on the latest supergradient information — they are memoryless
—; (ii) while other algorithms will keep memory of the
sequence of iterates. We briefly summarize three approaches,
which were tested (and compared to the Level Method) by the
authors in previous work [16].

A well-known scheme belonging to category (i) is the
subgradient scheme. Perhaps surprisingly, it is proven to be
optimal for general convex non-smooth optimization with
arbitrarily high dimension [14]. However, when dealing with
problems of “moderate” dimension such as the one presented
in our context, there exists more optimistic alternatives.

Indeed, the subgradient scheme for piecewise-linear func-
tions, such as our problem (3), tends to oscillate between
the facets of the Lagrangian dual function, around an edge.
Therefore, one idea is to “catch the edge” and follow it until
the optimum, instead of oscillating from one facet to another,
as the subgradient method does. This intuitive reasoning leads
to the Extreme-Point Subdifferential (EPSD) algorithm, which
is specifically applied in [36], [37] to the CHP problem.
However, our experiments in [16] reveal that each iterate of the
algorithm is costly, as it requires not only to solve the problems
(2) for each generator to optimality, but to enumerate all the
optimal solutions.

Unlike these two memoryless schemes, the Analytic Center
Cutting Plane Method (ACCPM, see [14], [38] for the theory
and [37], [39] for its application to CHPs) is based on the
principle of iteratively reducing the search domain: the price
domain is initially limited to a box and, at each iterate, the
supergradient is used for generating a cut, which shrinks
the search domain. The next testing point is chosen as the
analytical center of the updated domain.

Our original investigation of these alternative dual ap-
proaches (subgradient, EPSD and ACCPM) in [16] concluded
that none of them were competitive with the Level Method for
computing CHPs.

B. Kelley’s approach

The Kelley algorithm [14] forms the basis for the proposed
Level Method. It is based on the idea of iteratively constructing
a model (upper approximation) of the Lagrangian function
L(π), using its supergradients.

Definition 1 (model function). Let Q be the initial domain
of our problem (i.e. a box limiting the prices, which can be

economically interpreted as price caps) and let {πk}∞k=0 be a
sequence in Q. Let sk be the supergradient at iterate πk. Then

L̂(π, k) = min
j=0..k

{〈sj , π − πj〉+ L(πj)} (5)

is a model for the Lagrangian function L(π), such that
L̂(π, k) ≥ L(π).

In order words, the piecewise linear function L(π) is upper-
approximated at each iterate by a model function L̂(π, k)
consisting of supporting hyperplanes. At iteration 0, this is
a single hyperplane. Then, as the iterate count k is increasing,
the model function L̂(π, k) is becoming increasingly accurate.

Definition 2 (master program). The maximization of the model
function yields the master program at iterate k:

max
π∈Q,θ

θ

s.t. θ ≤ 〈sj , π〉+ bj ∀j = 0..k
(6)

Here, sj are the “cut coefficients” (as defined in Property 4)
and bj = L(πj)− 〈sj , πj〉 are the “cut constants”. This is a
computationally tractable linear program.

Having the upper-approximation function L̂(π, k) at hand,
one needs to decide the rule for building the sequence of
iterates {πk}∞k=0. The more intuitive way to pick the next
iterate is:

πk+1 = arg max
π

L̂(π, k). (7)

i.e. the solution of the master program (6). This defines Kel-
ley’s cutting plane method. One of its benefits is that it explic-
itly provides an upper bound as well as a lower bound at each
iterate k: a lower bound is defined as LBk = maxj=0..k L(πj),
while an upper bound is UBk = maxπ L̂(π, k). Note that the
sequence of upper bounds {UBj}kj=0 is decreasing, as the
definition of the model function implies that L̂(π, k + 1) ≤
L̂(π, k). The upper and lower bounds can be combined to
define the relative gap, which is used as a stopping criterion
for the Kelley (and Level) Method:

UBk − LBk
|UBk|

≤ ε (8)

C. Level stabilization

Kelley’s algorithm is finite, because each iterate adds a
new hyperplane and the number of hyperplanes supporting
the function is finite. Nevertheless, despite its simplicity and
its good behaviour in low dimension, it tends to be unstable in
higher dimension. This is due to the unstable nature of piece-
wise linear functions: adding a new supporting hyperplane can
move the optimum far from the previous point (i.e. to a corner
of the box Q). This well-known drawback [40] justifies why
multiple stabilization approaches have been proposed in the
literature, including the Level Method [14], [40].

The underlying idea of the Level Method is to update prices
more smoothly: instead of using the optimum of the model
function as the next iterate, the algorithm chooses πk+1 such
that it is “better” than πk (as evaluated by the model function
L̂(πk+1, k)) without being optimal at all costs. We observe in
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section IV that this stabilization has a major influence on the
practical performance of the algorithm.

A graphical illustration in 1-D is presented in Fig. 2. The
cuts, the LB and the UB are obtained as in Kelley’s method,
by solving the master program (6). However, unlike in Kelley’s
method, the next price candidate is selected by solving a
projection program.

Definition 3 (projection program). The iterate πk+1 is chosen
as the projection of πk on the “level set” L̂(π, k) ≥ αUBk +
(1− α)LBk, which amounts to solving:

min
π∈Q

||π − πk||22

s.t. 〈sj , π〉+ bj ≥ αUBk + (1− α)LBk ∀j = 0..k
(9)

Here, α ∈ [0, 1] is the projection parameter. This is a
computationally tractable quadratic program.

Regarding the calibration of α, α = 1 corresponds to the
classic Kelley method, while α = 0 implies that the iterate
simply does not move. We note that a theoretically optimal α
exists [14] for general convex non-smooth functions, but that a
calibration to the specific problem can still be meaningful. Our
empirical tests on the CHP problem reveal that, for the high-
dimensional instances that we are interested in, the approach
is largely insensitive to the choice of α. This is shown later in
Table III, where any value of α between 0.2 and 0.7 exhibits
similar performances. Following [16], the value α = 0.2 is
chosen for all of our experiments in the present work.

Regarding the choice of the box Q, experimental evidences
show that the Level Method is not too sensitive to its exact
value, despite it impacts the quality of the UB estimate. In
all of our experiments, Q is initially set to ±300$/MWh and
is then progressively shrunk after 10, 20 and 30 iterates to
±25$/MWh around the latest price candidate. This is justified
by an analysis of the volatility of the price iterates, which
rapidly reach a price close to the CHP.

D. Refinements of the Level Method in the context of CHP

We now propose adjustments to the basic algorithm which
exploit the structure of our problem. We specifically leverage
the fact that: (i) the network model is convex and (ii) the profit
maximization programs of the generators are separable.

In our development so far, we have been treating the convex
network term (4c) identically to the non-convex generators,
i.e. by solving the network profit maximization given a price
π, and generating a supergradient. We illustrate below the
treatment of the convex parts of the primal program by
focusing our discussion on the network. The idea applies
identically to convex generators (e.g. the convex orders in
Euphemia, which are numerous), a convex pumped-storage
model, etc. (see section 3.6 and appendix A in [16] for a
treatment of these cases).

For the sake of illustration, let us assume that the network
constraints F correspond to the DC (voltage angle) power
flow. Term (4c) then reads as follows:

min
f,ψ

∑
i,t

πit

 ∑
l∈from(i)

fl,t −
∑
l∈to(i)

fl,t

 (10a)

(µl,t) fl,t ≤ F l ∀l, t (10b)
(νl,t) fl,t ≥ F l ∀l, t (10c)
(λl,t) fl,t = Bl(ψor(l),t − ψdest(l),t) ∀l, t (10d)

Here, Bl stands for the susceptance of line l, and F l and F l
are its max and min capacity, while or(l) and dest(l) denote
the origin and destination nodes of line l. The dual of (10)
can be expressed as:

max
µ≥0,ν≥0,λ

∑
l,t

νl,tF l − µl,tF l (11a)

π
or(l)
t − πdest(l)t + µl,t − νl,t + λl,t = 0 ∀l, t (11b)∑
l∈to(i)

λl,tBl −
∑

l∈from(i)

λl,tBl = 0 ∀i, t (11c)

Problem (11) can now be injected into (4) as a substitute for
(4c), meaning that the network dual variables (µ, ν, λ) would
explicitly be variables of the master (and projection) program.

Secondly, the classical Kelley and Level Methods add a
single cut at each iterate, namely one single cut for all
the generators. Nevertheless, the dual function is separa-
ble with respect to the generators. We therefore propose a
multi-cut Level Method, whereby we compute one cut (one
lower approximation) for each generator profit maximization
subproblem. Our experiments reveal that this adaptation can
deliver substantial computational benefits. Generating more
cuts makes the model function more accurate, which enables
the algorithm to converge faster. Note that multi-cut versions
of other approaches have been applied successfully in different
contexts, such as for two-stages stochastic programs [41], [42].

To summarise, after the inclusion of both the network dual
and the multi-cut approach, the master program (6) at iterate
k becomes:

max
µ≥0,ν≥0,
λ,π∈Q,θ

∑
i,t

πitD
i
t +
∑
l,t

(
νl,tF l − µl,tF l

)
−
∑
g∈G

θg (12a)

θg ≥ 〈pjg,·, πi(g)〉 − cjg ∀g, j = 0..k (12b)

π
or(l)
t − πdest(l)t + µl,t − νl,t + λl,t = 0 ∀l, t (12c)∑
l∈to(i)

λl,tBl −
∑

l∈from(i)

λl,tBl = 0 ∀i, t (12d)
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Fig. 3. Our implementation of the Level Method for the computation of CHP.

Here, {pjg}kj=0, corresponds to the sequence of generator g
power output for iterates j = 0..k. These parameters are also
cut coefficients for generator g. On the other hand, {cjg}kj=0,
which corresponds to the sequence of generator g cost for
iterates j = 0..k, are the cut constants. The translation of the
projection program (9) is applied as discussed previously.

In the classical Kelley/Level Methods, estimating the lower
bound (evaluating (4) at a given π) follows directly from
the resolution of the slave subproblems. The inclusion of the
network into the master program, as described above, compli-
cates the process. Indeed, the network contribution in the dual
function (4c) is not solved explicitly anymore, but now comes
in the master objective (12a), together with constraints (12c)
and (12d) that should not be violated. Therefore, estimating
the value of L(π) after having retrieved the cuts from the
slaves (for the same π) amounts to solving the master (linear)
program (12) with the variables π fixed. The overall procedure
is described schematically in Fig. 3. Note that the resolution
of the two master programs (with π fixed and variable) can
be parallelized.

IV. SIMULATION RESULTS

This section presents the numerical results of the (multi-
cut) Level Method on instances of realistic scale. The Level
Method has been benchmarked against other dual approaches
in earlier work by the authors [16]. It is chosen as the
most promising method for computing CHPs among all tested
alternatives. In the present section, we therefore focus on its
comparison with a recent work [15] which employs a D-W
column generation algorithm [43] (i.e. the dual of Kelley) for
iteratively building the convex hull of the dispatch problem,
i.e. D-W gradually discovers the corners of the primal formu-
lation. As in the case of the Level Method, it can be applied to
any UC formulation. We use it as a performance benchmark
in our analysis, due to its favourable empirical performance.
We also include O’Neill pricing, discussed in the introduction,
as another benchmark in our analysis, as well as PJM pricing
(discussed in section II-C) as a primal method benchmark.

Unlike other computational researches on CHP [15], [37]
which are mainly concerned about the number of generators
in the problem, we rather focus our investigations on the
sensitivity of the algorithms with respect to the dimension of
the price space. Indeed, although the number of generators is

TABLE I
RESULTS OF THE LEVEL METHOD AND THE DANTZIG-WOLFE

ALGORITHM ON FERC DATASETS (AVERAGE OVER 11 INSTANCES).

Dispatch Cost [$] 29,791,214 Level iter 19
O’Neill Uplifts [$] 652,263 Level av. time/itera[s] 8.2 (0.36)
Primal Uplifts [$] 11,400 D-W iter 29

CHP Uplifts [$] 9,746 D-W av. time/itera[s] 8.9 (0.34)
a (·) denotes the average time per iterate for solving the “master programs”
(i.e. master plus projection in the case of the Level Method).

surely relevant, since the ultimate goal is to compute prices
by optimizing L(π), the price-space dimension is expected to
have a significant impact on the performance of any tested
method. Therefore, we first present results without a network,
with a horizon of 24 periods, and then introduce network
constraints and extend the time horizon to 96 periods.

For all our test cases, the comprehensive market procedure
for computing the prices and measuring uplifts follows the
steps that are described in section I. Concretely, there are
three steps: dispatch, price, and uplift computation. The Level
Method and D-W differ with respect to the second step. Both
approaches have been implemented in Julia (JuMP) and all the
tests are run on a personal computer (Intel Core i5, 2.6 GHz
with 8 GB of RAM) using Gurobi 9.1.1.

A. FERC (US) test cases

The first test cases in our analysis are based on FERC
datasets [34], [44]. The test sets are publicly available, together
with the associated UC model, and are also used by [15]. These
test cases consist of a detailed UC model. The only adaptations
in our work are the removal of reserve and the netting out of re-
newable supply from the load. The UC model includes, among
others, min up and down time constraints, ramp constraints
(including start-up and shut-down ramp rates), variable start-up
costs which depend on how long a unit has been off, no-load
costs, and piecewise linear production costs. The model has
no network, but gathers > 930 generators. This corresponds
to an instance of realistic size, barring for the absence of the
network. As in [15], we conduct our analysis on a 24-period
horizon with hourly time step.

Table I presents the average results over 11 FERC instances,
while Fig. 4 illustrates the convergence behaviour of both ap-
proaches on one of the instances. The 11 instances essentially
correspond to 11 different load profiles, with slight changes in
the production fleet, which varies from 934 to 978 generators.
The stopping criterion of the Level Method (equation (8)) is set
to 0.01%. The number of iterates reported in Table I for D-W
corresponds to the iterations that are required for reaching the
same amount of uplifts as the Level Method. Both algorithms
are initialized at a uniform price of 20$/MWh.

The results already show the attractive performance of the
Level Method, both (i) in terms of iteration count and (ii) in
terms of robustness. Indeed, there is an average improvement
of 34% compared to D-W in terms of number of iterates
(Table I). It should be noted that this number of iterates
is a reasonable measure for comparing the performance of
both approaches. Concretely, both methods have to solve the
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Fig. 4. Convergence of the Level Method and D-W algorithm, measured by
the uplifts (O’Neill pricing and the primal method are used as benchmark
thresholds), on the “FERC 2015-07-01 high wind” instance. Both axes are in
logarithmic scale.

Fig. 5. Size of the Level Method and D-W master programs on the
“FERC 2015-07-01 high wind” instance. The Level Method adds cuts, which
implies that the number of constraints is growing. On the other hand, D-W
adds columns, which implies that the number of variables is growing. The
robustness of the Level Method translates in a master program that grows less
rapidly than D-W.

same subproblems and mainly differ in the other computations
that they are required to perform. Whereas the Level Method
has to solve both a linear master and a quadratic projection,
D-W is only required to solve the linear (master) extended
formulation. On the other hand, the extended formulation
solved by D-W is larger than the Level master program, as
illustrated in Fig. 5. Overall, this results in a similar run
time per iterate, as reported in Table I which shows both the
average run time per iterate as well as, between parentheses,
the average run time spent in the master programs (master
plus projection programs for the Level Method). This implies
that the number of iterations (the analytical complexity: the
number of calls of the oracle to reach a reliability target) is
a reasonable measure for comparing performance. It also has
the benefit of being less dependent on the specific machine or
on the implementation details. Note that, for both approaches,
the slave subproblems can be parallelized.

Furthermore, there is a gain in robustness: the Level Method
exhibits a more stable performance, as observed in Fig. 4.

Indeed, Fig. 4 suggests that it does not seem possible to
stop the D-W algorithm long before its termination, since
uplifts remain high for a large number of iterations (we also
refer the reader to Fig. 7 of the next use case, which shows
how the convergence of uplift over iterates translates to the
distance of prices from CHPs). Instead, the Level Method
reaches near-optimal prices in fewer iterations. This is an
inherent advantage of the Level Method, which is by design
a stabilization approach.

Finally, we comment on the primal method benchmark. The
FERC model exceeds what a primal CHP approach such as
[19] can model, since it includes ramp constraints and time-
dependent startup costs. The integer relaxation is therefore
expected to lead to an approximation of CHP. The quality
of the primal method largely depends on the tightness of the
formulation. In this respect, the FERC model is derived from a
careful review of the literature dedicated to tight formulations
of the unit commitment model [27], [35]. The quality of
the model is discussed in [34], where it is accompanied
by computational experiments of its tightness. As observed
in Table I, the primal method turns out to provide a close
approximation of CHP on these FERC instances. Nonetheless,
this is not always guaranteed, as we observe in the next test
case (Table IV), where the primal method leads to an average
uplift which is ∼ 60, 000e higher than CHP, for a market of
comparable dispatch cost.

The test cases analysed so far suggest a promising perfor-
mance for the Level Method. Nevertheless, even if these FERC
instances are of realistic scale insofar as the number of power
plants are concerned, we are interested in computing prices.
This suggests that it is the dimension of the price space that
matters the most. There are essentially two ways5 to increase
the price dimension: (i) augmenting the time horizon — the
horizon of future EU markets will be 96 periods of 15 minutes
— and (ii) adding a network — which is unavoidable in both
the EU and the US markets. This motivates the next test cases.

B. EU test cases

We now extend our analysis to use cases with a network.
The EU dataset that we utilize is the one used in [45]. The
network data is based on [46], and is constructed among
others from an ENTSO-E database. The market suppliers are
modelled as a slightly simpler version of the UC model than
the FERC test case, essentially simplifying the cost structure:
there is a single start-up cost, instead of the variable start-up
costs of FERC, and the marginal production cost is constant.
All the cases are simulated over 6 different load profiles. As we
are interested in studying the scalability of the Level Method
and D-W algorithm with respect to the network and the time
horizon, the data has been aggregated into two test cases:
BE and BE-NL, which are described in Table II. As detailed
in section I, Euphemia, the EU market clearing algorithm,
currently computes prices for ∼ 40 bidding zones, and is

5A third way would be the introduction of reserve. The current EU DA
market does not co-optimize energy and reserve, which is why it is not
considered in our analysis. Nevertheless, art. 40 of EGBL guidelines indicates
that this could constitute a future evolution of the EU market.
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TABLE II
DESCRIPTION OF THE SIZE OF THE EU INSTANCES.

Test case Bidding Zones Lines Generators

BE 30 30 74
BE-NL 59 63 145

TABLE III
SENSITIVITY OF THE LEVEL METHOD WITH RESPECT TO PARAMETER α

ON THE BE 96-PERIOD CASE (AVERAGE OVER 6 INSTANCES).

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Level iter 54 44 45 43 41 43 45 48 60

expected to move to 15-minute granularity (96 time periods)
in the near future. This makes our two tests cases with 96
periods very relevant proxies of the evolving EU context with
respect to price dimensionality.

The final results are obtained with the stopping criterion
set to 0.01%, as for the FERC cases. Table III shows the
sensitivity of the Level Method towards parameter α, previ-
ously discussed in section III-C. Table IV presents results for
the BE test case with multiple time horizons. Figs. 6 and 7
illustrate the convergence of the BE test case with 96 periods.
Table V presents a comparison for different network sizes. It
is worth noting that, in all the test cases (except the 12-period
BE test case, which is however less relevant for practical
applications), the Level Method turns out to be superior to D-
W in terms of iteration count. Furthermore, we observe that the
benefits of the Level Method are magnified when increasing
the dimension of the price space.

More specifically, insofar as sensitivity with respect to the
time horizon is concerned, Table IV demonstrates that the
Level Method scales well with respect to the horizon of
the problem as it increases from 19 to 44 iterates as the
horizon grows from 12 to 96 periods. On the other hand, the
performance of D-W is seriously harmed by the increase of
the horizon: the number of iterates increases from 19 to 236.
The stable behavior of the Level Method is corroborated by
Fig. 6. We observe that, within 6 iterates, it already reaches a
price that achieves lower uplifts than those of O’Neill pricing.

TABLE IV
RESULTS OF THE LEVEL METHOD AND THE DANTZIG-WOLFE

ALGORITHM ON THE BE TEST CASE (AVERAGE OVER 6 INSTANCES).

horizon 12 24 48 96

Dispatch Cost [e] 2,759,706 4,956,513 11,328,351 24,097,373
O’Neill Uplifts [e] 377,528 146,167 281,649 2,617,852

Primal Meth. Uplifts [e] 50,871 64,323 83,172 98,391
CHP Uplifts [e] 7,237 11,905 21,745 31,403

Level iter 19 26 32 44
Level av. time/itera[s] 0.5 (0.05) 0.8 (0.1) 2.0 (0.4) 5.8 (1.6)

Level total run time [s] 10 21 65 255

D-W iter 19 40 77 236
D-W av. time/itera[s] 0.4 (0.02) 0.7 (0.1) 1.9 (0.3) 6.9 (2.1)

D-W total run time [s] 7 27 146 1622
a (·) denotes the average time per iterate for solving the “master programs”
(i.e. master plus projection in the case of the Level Method).

TABLE V
RESULTS OF LEVEL METHOD AND THE DANTZIG-WOLFE ALGORITHM

FOR DIFFERENT NETWORK SIZES (AVERAGE OVER 6 INSTANCES).

horizon 24 96
test case BE BE-NL BE BE-NL

Level iter 26 21 44 42
Level av. time/itera[s] 0.8 (0.1) 1.5 (0.3) 5.8 (1.6) 12.3 (4.8)

Level total run time [s] 21 31 255 514

D-W iter 40 32 236 156
D-W av. time/itera[s] 0.7 (0.1) 1.3 (0.2) 6.9 (2.1) 12.7 (3.7)

D-W total run time [s] 27 42 1622 1976
a (·) denotes the average time per iterate for solving the “master programs”
(i.e. master plus projection in the case of the Level Method).

Fig. 6. Convergence of the Level and D-W approaches, measured by
the uplifts (O’Neill pricing and the primal method are used as benchmark
thresholds), on the BE summer weekday 96-periods instance. Both axes are
in logarithmic scale.

Fig. 7. Convergence of the Level and D-W approaches, measured by the price
relative distance to CHP, on the BE summer weekday 96-periods instance.
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Fig. 7 also presents the convergence of both algorithms on the
same instance in terms of price distance to the optimum. Being
capable to reach quickly decent price candidates is an attractive
feature for EU implementation of CHP, recalling from section
I that Euphemia is currently granted 12 minutes for computing
the EU day-ahead market matchings and prices.

As far as the network size is concerned, Table V presents
the sensitivity with respect to the two use cases. Perhaps
surprisingly, neither of the methods is strongly affected by
the size of the network, rather the contrary. On the instance
with 24 periods, the benefits of the Level Method are similar
as in the FERC cases. On the 96-period instances, the Level
Method moves from five to four times faster than D-W on
the BE and BE-NL cases, in terms of iteration count. Overall,
D-W seems much more affected by the increase in the time
horizon rather than the presence of a network, to which the test
cases suggest D-W is rather robust. This is possibly due to the
fact that D-W is required to explore in the space of promising
power plant schedules — and these schedules become more
and more numerous when increasing the horizon — while
the network size does not affect immediately the number of
schedules.

It should be stressed that the aforementioned computational
gains can make a difference for the practical implementation
of CHP, keeping in mind the 12-minute run time limit of
Euphemia. From Table IV, we observe that the Level Method
requires less than 5 minutes on average for solving a 96-period
instance. The D-W algorithm requires 27 minutes.

The computational times reported in our results may of
course not be representative of the implementation of the EU
NEMOs, as solving the slaves in parallel and increasing the
computational power would reduce the run time. Assuming
an idealized parallelization of the slaves — which is very
optimistic considering the NEMOs currently run Euphemia
on 8 threads [47] —, the run time per iterate would be
lower-bounded by the time for solving the master programs
(master plus projection programs for the Level Method, as
reported between brackets in the tables). As an example,
the “most difficult” BE-instance was solved in 266 iterates
by D-W, with 2.3 sec/iter for solving the master program.
This implies a lower bound of more than 10 minutes for
obtaining the CHP. On the same instance, the Level Method
required 37 iterates, with 1.4 sec/iter for solving the masters,
which amounts to a total of less than 1 minute. Furthermore,
whereas the price dimension of our test cases has been selected
so as to be comparable to the EU market, the number of
generators (or market bids) is well below the value that occurs
in practice. As an order of magnitude, Euphemia currently
solves instances with around 160,000 hourly orders (convex)
and 4,000 block orders (non-convex) [4]. This suggests that the
time for solving the master programs would likely be higher
on the real instances of Euphemia.

V. CONCLUSION

Our paper proposes a (known) bundle stabilization approach
for efficiently solving convex hull pricing. We demonstrate that
the Level Method is able to converge within few iterations to

a certain target gap, while exhibiting a stable behaviour, on
large instances which, in terms of price space dimension, are
comparable to the size of the EU day-ahead auction.

It is likely that the choice of the best algorithm for solving
CHP will depend on the specific use-case: the dimension of
the network, the time horizon, the complexity of the unit
commitment / market orders, the run time that is afforded to
the algorithm, etc. Although no method can conceivably pro-
vide an ultimate solution for computing CHP in an arbitrarily
complex setting, the Level Method indicates the promising
behaviour of a family of “bundle approaches”. This suggests
areas of future research on alternative bundle approaches, such
as the Proximal Stabilization method, the Doubly-Stabilized
Bundle Method [40] or the Boxstep method [48], which appear
to be well suited for solving the CHP Lagrangian relaxation.

Another question for future research relates to how the
proposed approach can be adapted in case one of the following
assumptions is relaxed: the convexity of the grid model and the
separability of the generators profit maximization problems.

Having scalable algorithms capable to compute CHP on
large instances also enables more extensive quantitative anal-
ysis of its economical behaviour. As far as the EU market is
concerned, we are interested in (i) expanding tests on realistic
instances of Euphemia — our preliminary tests show that the
Level Method can solve the 4MMC run of Euphemia [13]
in ∼ 1 minute —, (ii) examining the effects of non-uniform
pricing on enhancing welfare in the EU day-ahead market,
and (iii) understanding distributional effects of non-uniform
pricing as well as gaming effects.
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