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Abstract

We introduce an inspection game where one inspector has the role of

monitoring a group of inspectees. The inspector has the resources to visit

only a few of them. Visits are performed sequentially with no repetitions.

The inspectees report and share the sequence of inspections as they occur,

but otherwise, they do not cooperate. Our paper focuses on the mathe-

matical structure of the equilibria of this sequential inspection game, where

the inspector can perform exactly two visits. We formulate two Stackelberg

models, a static game where the inspector commits to play a sequence of

visits announced at the start of the game, and a dynamic game where the

second visit will depend on who was visited previously.

In the static game, we characterize the (randomized) inspection paths

in equilibrium using linear programs. In particular, these inspection paths

are solutions to a transportation problem. We use this equivalence to de-

termine an explicit solution to the game and to show that set of inspection

path probabilities in equilibrium, projected onto its first and second visit

marginals, is convex. In the dynamic game, we determine the inspection

paths in equilibrium using backward induction. We discuss how the static

and dynamic games relate to each other and how to use these models in

practical settings.
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1. Introduction

Inspecting a product or a service to ensure its quality is one of the fun-

damental tools to monitor the enforcement of an obligation. At the core,

an inspection involves two parties: one called the inspector verifies that

another, called the inspectee, adheres to specific rules. In a very common

scenario, the inspector controls at a given moment that the inspectee is

behaving legally in terms of an agreement, while the inspectee has an incen-

tive to not doing so. A concrete scenario, briefly described in this paper, is

the case of a restaurant franchising agreement, where the inspectee –a firm

with rights to the franchise–could be interested in not adhering to expensive

quality requirements of the franchise in order to increase output or to re-

duce costs. Besides quality control, inspections arise in contexts as diverse

as accounting and auditing [10], arms control [44] and the enforcement of

enviromental regulations [35].

An essential aspect of inspections is that they can be time-consuming,

especially when they are manually performed. The resources available for

inspections are limited and so are the opportunities to monitor that the

agreement is being followed. A high sanction on an inspectee that is caught

during an inspection, and an uncertainty on the time of the inspection are

common ways to increase the effectiveness of these inspections [4].

The case of a single inspector and multiples inspectees arises in several

contexts, such as police patrol and quality control. If inspections are time-

consuming, then the inspector might only be able to check some of the

inspectees. This leaves to the inspector not only the task to decide which

inspectees should be visited, but also in which order they should be visited,

in order to be as efficient as possible.

On the side of the inspectees, there is evidence that they can collaborate

sharing non-sensitive information to avoid the consequences of inspections,

even if they do not know each other. An example is the case of collaborative

maps of police locations made by car drivers via smartphone applications.

This information can be used by some drivers (the inspectees) to respect

speed driving limits whenever they are near a police checkpoint [23].
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The inspector and inspectees have objectives in conflict. If an inspection

is made, then the visited inspectee would prefer to abide by the agreement,

but in this case, the inspector would prefer not to do the inspection. There-

fore, no decision is simultaneously optimal for both parties and it is expected

for inspectees to react to the behavior of inspectors and viceversa. The gen-

eral framework of inspection games [4] has been designed to capture the

effects of these interactions and to determine a plausible outcome. A re-

current theme in inspection games is that because the inspector has limited

inspection resources, they randomize inspections so that the inspectee sees

no expected benefit in behaving illegally [29].

We propose and analyze a theoretical model of one inspector that has to

decide how to sequentially inspect two out of n inspectees. Inspectees should

perform a task that is costly for them. The task is short enough that it can be

executed any time before the inspector shows up at the inspectee’s door. The

sequence of visits is shared in real-time by the inspectees themselves, who

act strategically based on this information. No other information is shared

among inspectees, who act otherwise without any coordination. From the

perspective of the inspector, we aim to answer the following question: given

the visits already performed, who should be the next inspectee to visit?

From the perspective of each individual inspectee, we aim to answer the

following question: given the visits already performed, should the inspectee

make the effort and comply with the agreement? We formulate a game

theoretical model to provide analytical answers to these questions.

Several characteristics of our game model mark a difference from classical

inspection games. First, inspections are always be carried out but not every

inspectee can be controlled. Thus, it is scarcity and not cost what limits

inspecting resources. Second, inspectees share information about the route

of the inspector, but act otherwise in their own interest. Third, the inspector

cannot visit any inspectee twice. All of these features capture even further

the asymmetry of the different parties involved in the inspection process.

We also consider the authority or reputation of the inspector and its im-

pact on the game dynamics. More precisely, the inspector acts as the player

leader who announces a credible (and randomized) strategy of sequential

inspections. In response, each inspectee acts as a follower, best reacting

to the strategy announced by the inspector. We propose two Stackelberg

game models that differ in how the sequential aspect of the game is tackled
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by the players; we call them the backward induction model and the linear

programming model. In the backward induction model it is assumed that

every potential future situation is played with rational strategies and any

equilibrium is subgame perfect. In the linear programming model, players

are rational only on paths that are realizable and any equilibrium is of the

Nash type. As it is often observed in real life inspections, the inspector will

randomize visits in order to induce the desired behavior on the inspectees

as efficiently as possible.

Two characteristics of our game and study were shaped by the challenges

posed by the problem. The game can be easily defined and extended for

more than two stages, but new ideas are needed in order to generalize our

results accordingly. The game could also be extended to more general profit

functions, but the case we consider here seems to be much more tractable.

We work on the fine collector variant, where the most profitable scenario

for the inspector is to visit inspectees that are not prepared, so that a fine

is collected.

2. Literature Review

The origins of the theoretical game models of inspection trace back to

the 1960s [18, 7, 8]. Early on, most studies focused on arms control and

disarmament [38]. Other applications include economics [45, 9, 42], envi-

ronmental regulations [25, 43, 55, 24] and crime control [48, 5, 19, 21]. For

an extended summary on the variety of applications of inspection games, we

refer the reader to [3].

It is natural for inspector to realize multiple inspections over a time

horizon. The seminal paper of Dresher [18] is one of the earliest examples

of a n-stage, sequential inspection game. The inspector can perform m

inspections in n stages, with m < n; the game is zero-sum, and it is solved

recursively. Mascheler [36] generalized this model to the non-constant sum

case. Several extensions followed [48, 5, 20].

The concept of leadership, where one player has the authority to an-

nounce a strategy, and then commit to it, was introduced by von Stackel-

berg [51]. Leadership in inspection games (inspector Stackelberg leadership)

was first considered by Mascheler [36], and has been the subject of signif-

icant research [2, 52, 15, 53]. The leadership of a patrolling unit has also

been studied in the closely related field of network security games [54, 49,
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47, 56, 12, 11, 26, 17, 14], were practical implementations of these game-

theoretical methods exist (inspection patrolling at Los Angeles International

airport [41], inspection patrolling at port infrastructure [46], assignment of

Federal Air Marshals to flights [28, 40, 27]).

Our paper focuses on sequential inspection games with leadership. Luh

et al. [34] formalized sequential Stackelberg models, pointing out to the issue

of temporal consistency in the play of the leader. They propose the notion of

robust Stackelberg equilibrium as a solution for the game, emphasizing that

other solutions are possible. The Strong Stackelberg Equilibrium SSE [32], is

one of the most commonly adopted solution concepts in the literature of non

zero-sum inspection games [13, 52, 31]. In the context of inspection games,

a SSE is built when the inspector selects an optimal mixed strategy under

the assumption that inspectees will choose an optimal response, breaking

ties in favor of the inspector. Compared to other solution methods, the SSE

has shown desirable properties, regarding existence (a SSE always exists,

while robust Stackelberg equilibrium may not [6]) and computability (in two-

player normal-form games, computing the Nash equilibrium that maximizes

the utility of a player is NP-hard [22, 16], but a SSE can be computed in

polynomial time [15]).

Several papers consider fines or punishment in their models. Katiskas et

al. [30] analyzed a two-player inspection game. The matrix payoff considers

different profits for the inspector, depending of the action of the inspectee,

together with punishment fines and inspection costs; in their model inspec-

tion always coincides with detection. Nosenzo et al. [37] studied the Nash

equilibria of a simplified inspection game with bonuses and fines, conclud-

ing that bonuses are more effective that fines to induce the desired behavior.

Other models with punishment have been considered in [1, 50]. Our work

exhibits several differences with respect to these models, in particular: (i)

we consider SSE; (ii) we study a dynamic game; and, (iii) in equilibrium no

inspectee is prepared.

Another interesting work motivated by security games is Letchford and

Conitzer [33], who investigated static combinatorial security games, where

multiple inspectors are simultaneously assigned to multiples spots with the

goal of finding an attacker. This problem is modeled as a combinatorial

Stackelberg game for which compact linear program formulations are pro-

vided; these results are extensions of the Birkhoff-von Neumann Theorem.
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Their model and techniques are quite different from ours.

3. The sequential inspection game

3.1. Preliminaries

From now on, we will use the term operator to denote an inspectee. We

define a sequential, two-stage inspection game with one inspector I and a

set V of n > 2 operators. The inspector I visits a pair of different targets

and has a set of pure strategies {(u, v) ∈ V 2 : u 6= v}.
We assume that each operator v ∈ V may decide at any stage of the

game to prepare. If and when the operator prepares at some stage, then he

or she complies with the inspection criteria and remains prepared for the

rest of the game. The set of pure strategies of operator v is {0, 1} × {0, 1},
where the pair of binary values indicates preparation —at value 1 —at each

stage. Despite the notation, an operator who prepares at the first stage

remains prepared; in this respect, we may assume the game ends for the

operator.

An operator v ∈ V who is inspected suffers a fine fv if v is not prepared

by the time of inspection. If the operator prepares at any stage, he or she

incurs a cost dv, with 0 < dv < fv. Both events, the inspection of v and

the preparation of v end the game for the operator immediately; therefore,

the total cost for an operator can only take the values 0 (neither inspection

nor preparation occurs by the second stage) dv (preparation ended the game

for v) and fv (inspection ended the game for v). On the other hand, the

inspector is a fine collector. Her total utility is the sum of the fines fv

collected from unprepared operators, during the two inspections.

These payoffs (utilities for the inspector, costs for the operators) induce

a dynamics common to inspection games. At any given stage when an

operator v is still in the game, the following occurs: if v is inspected, then

v strictly prefers to prepare (since dv < fv); if v is not inspected, then v

strictly prefers not to prepare (since dv > 0). Conversely, if an operator v

is prepared, then the inspector prefers not to inspect v (this is strictly, if at

least one operator is not prepared); if v is not prepared, the inspector can

inspect v for positive profit. Operator v will be the optimal choice of the

inspector only when v gives the highest payoff fv among those who have not

yet prepared and have not been inspected. However, since the inspector and

followers act simultaneously, the inspector must randomize in equilibrium.
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3.1.1. Randomized strategies

We introduce some notation regarding mixed strategies. Mixed strate-

gies for the inspector are random variables of the form X = (X(1), X(2)).

Mixed strategies for an operator v are random variables of the form Qv =

(Q
(1)
v , Q

(2)
v ).

Let pu,v = P(X(1) = u,X(2) = v) be the probability of the pure strategy

(u, v) for the inspector. Let pv|u = pu,v/
∑

w 6=u pu,w be the conditional prob-

ability of inspecting v in the second stage given a visit to u in the first stage.

Finally, let pu· =
∑

w 6=u pu,w and p·u :=
∑

w 6=u pw,u, be the marginal proba-

bilities of visiting u ∈ V at the first and second stage, respectively. For an

arbitrary operator v, let qv· = P(Q
(1)
v = 1) be the probability of preparation

in the first stage. For v 6= u let qv|u = P(Q
(2)
v = 1 | X(1) = u,Q

(1)
v = 0) be

the conditional probability of preparation in the second stage, given that v

did not prepare earlier and that u was inspected in the first stage.

The expected utility function for the inspector and the expected cost

function for operator v are denoted by E(UI) and E(Cv), respectively.

3.1.2. Commitment power and information

All players have complete information and perfect recall. The game is

Stackelberg. As the leader, the inspector anticipates the best response of the

operators and announces her mixed strategy. The operators are followers

who decide their strategies based on this announcement.

A subtle, but important, consideration is the issue of temporal consis-

tency in this game. All players decide strategies, whose random actions are

partially realized at the end of the first stage, but whether they need to

respect their announced strategy after the first stage realization depends

on the game model. We will say that the game is static if the inspector

follows the conditional second stage strategy, even if it does not lead to a

subgame equilibrium. On the other hand, if we require the inspector to play

a subgame equilibrium then we will call the game dynamic. In either case,

operators are always sequentially rational.

The solution concept used in this game is the Strong Stackelberg Equi-

librium (SSE). The inspector will play a utility-maximizing strategy while

operators will play the best response that maximizes the utility of the in-

spector. The latter is equivalent to say that operators will not prepare if

they are indifferent on whether preparing or not.
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The actions made by players at each stage are simultaneous. The game

is of imperfect information, with one exception. In the second stage, all

operators know the identity of the operator u visited on the first stage.

Actions taken by the players at second stage are independent, conditionally

on their previous (private) actions and u.

Remark 1. Our choice of payoffs in this paper was chosen because it pro-
motes that the inspector makes sequence patrols only when operators do not
prepare. On the other hand, notice that despite the fine transfer between
operator and inspector, this game is not zero-sum, given the preparation
costs for operators. This model better represents an “inspection agency,”
which does not directly profit from the operators preparations.

3.2. Equilibrium conditions in the static and dynamic models

Before we proceed to the analysis, we comment on certain simplifying

assumptions and on certain aspects of the model. For convenience, we ex-

pand the set of operators to include a “dummy node” v′, thus the set of

operators in what follows is V ′ := V ∪ {v′}. It is understood that visiting

the dummy v′ is equivalent to a no-inspection. For the dummy node, we let

fv′ = 0 and dv′ = ε > 0 suitably small. In particular, the dummy node has

the (strictly) lowest fine. The role of the dummy is to allow for the inspector

to skip visits to induce some desired behavior on the operators. However,

this is mostly an artifact: we will show at the end of this section that the

dummy node is never used in equilibrium.

We will exclusively concentrate on the case
∑

v∈V dv/fv ≥ 2. It turns out

that this case corresponds to the situation where the inspection resources

do not suffice to inspect all the operators within the two stages of the game

effectively. Finally, unless it is explicitly indicated, we assume without loss

of generality that operators in V ′ are sorted in decreasing order of (fv)v∈V .

In defining the equilibrium conditions, the side of the inspector plays

a major role. Let us first compute the expected utility of the inspector.

Conditioning on X(1) = u, the expected fines collected by the inspector are

fu(1− qu·) in the first stage and
∑

v 6=u fv pv|u(1− qv|u)(1− qv·) in the second

stage. Recalling that for the dummy node, fv′ = 0, we have

E(UI) =
∑
u∈V

pu·

fu(1− qu·) +
∑
v 6=u

fv pv|u(1− qv|u)(1− qv·)

 . (1)
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Let us also compute the expected cost of an operator v ∈ V (the dummy

node can be ignored, as it does not affect the utility of the inspector).

Charges due to preparation or inspection of v can occur at either stage.

In the first stage, the expected charge is dvqv· + fvpv·(1 − qv·). In second

stage a charge can only occur when v does not prepare in the first stage and

some other operator u is inspected in the first stage. Conditional on these

two events (for a fixed u), the expected cost incurred by v in the second

stage is dvqv|u + fv(1− qv|u)pv|u. We obtain

E(Cv) = dvqv· + fvpv(1− qv·) + (1− qv·)
∑
u6=v

pu·
(
dv qv|u + fv(1− qv|u)pv|u

)
.

(2)

Let us now focus on determining the actions of the inspector and operator

in the second stage of a SSE. Suppose that operator u is inspected in the

first stage. For v 6= u with pu· > 0 and qv· < 1, the inspector anticipates that

if pv|u is announced, then v will optimize the second stage charge dvqv|u +

fv(1− qv|u)pv|u by setting qv|u = 1{pv|u>dv/fv}.

Playing pv|u > dv/fv to induce the response qv|u = 1 is always subopti-

mal for the inspector. Indeed, any strategy S such that pv|u > dv/fv can be

changed into a strategy identical to S, except that it sets pv|u = dv/fv and

allocates the remaining probability to the dummy node. From Equation (1),

the expected utility E(UI) can only increase: changes to qv|u can only in-

crease E(UI); and pv|u decreased only in terms that used to contribute 0

(since 1− qv|u used to be 0).

Therefore, in a SSE we have that pv|u ≤ dv/fv and qv|u = 0 for all v 6= u

with pu· > 0 and qv· < 1. A careful use of this property in the second stage

charge for operator v (the summation in (2)), simplifies this expression to:

E(Cv) = dvqv· + fv(1− qv·)

pv· +∑
u6=v

pv|upu·

 . (3)

With the relevant second stage probabilities determined, we proceed to

compute the first stage probabilities. Suppose that v satisfies pv· > 0.

In a SSE each operator v optimizes Equation (3) while minimizing qv·

if indifferent, in order to maximize the utility of the inspector. This is,

qv· = 1{pv·+
∑

u6=v pv|upu·>dv/fv}. This means that v will prepare in the first
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stage when the total probability of being inspected is greater than dv/fv.

Once again, inducing the response qv· = 1 is always suboptimal for the in-

spector, since the total probability of inspection for v can be reduced by

reallocation, increasing her expected utility.

Finally in the case of dynamic SSE, notice that the optimization per-

formed by the inspector in the second stage applies to any operator v (and

not only to those with pv· > 0). This follows from the subgame equilibrium

property. In summary, we conclude the following.

Proposition 3.1. In a SSE, the inspection probabilities satisfy

pv|u ≤ dv
fv

(∀u 6= v ∈ V : pu· > 0)

pv· +
∑
u6=v

pv|upu· ≤
dv
fv

(∀v ∈ V ).

Moreover, in a dynamic SSE the first set of conditions can be strengthened
to

pv|u ≤ dv
fv

(∀u 6= v ∈ V ). (4)

Remark 2. Let us note that from a static SSE equilibrium S we can con-
struct an alternative equilibrium that also satisfies (4), and gives the same
utility for the inspector as S. Just note that the utility of the inspector (1)
is unaffected by modifying pv|u when pu· = 0.

Remark 3. Note that the constraints obtained in Proposition 3.1 are ex-
tendable to the dummy node, having in mind that due to our choice of
parameters, dv′/fv′ = +∞.

We are now ready to introduce the two game models we consider in the

paper.

3.3. The Linear Programming (LP) model

Proposition 3.1 provides necessary conditions for inducing no prepara-

tions from the operators, which by Remark 2 can be strengthened to (4).

Given that these strategies are the only potential profit maximizers for the

inspector, we have the following consequence.
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Proposition 3.2. Consider the linear program

(LP) max
∑
u∈V

∑
v 6=u

(
pu,v + pv,u

)
· fu

s.t∑
v 6=u

(pu,v + pv,u) ≤ du
fu

(∀u ∈ V ′) (5)

pu,v ≤
dv
fv

∑
v 6=u

pu,v

 (∀u, v : u 6= v ∈ V ′) (6)

∑
u∈V ′

∑
v 6=u

pu,v = 1 (7)

pu,v ≥ 0 (∀u, v : u 6= v ∈ V ′).

Any optimal solution for (LP) is a static SSE.

3.3.1. Backward Induction model

Static models like (LP) may suffer problems of temporal consistency.

Namely, after the first stage visit, the inspector may be incentivized to

deviate from the conditional strategy announced at the beginning of the

game. Depending on the commitment ability of the inspector, this may

result in a non-credible strategy.

To resolve the problem of temporal consistency, we propose to compute

a dynamic SSE, which can be computed by backward induction (BI). A

subproblem (BI(2)(u)) arises when the inspector visited u in the first stage,

and the second stage is about to be played. Unlike the (LP) model, an

equilibrium must be played on (BI(2)(u)) even if pu· = 0, and this will

incentivize the inspector to visit operators with a certain order preference.

Let k ∈ [n] be such that
∑

m≤k dm/fm ≤ 1 and
∑

m≤k+1 dm/fm > 1. For

u ∈ V ′, let κ(u) ∈ [n] \ {u} be such that
∑

m≤κ(u),m 6=u dm/fm ≤ 1 and∑
m≤κ(u)+1,m 6=u dm/fm > 1.

To solve (BI(2)(u)), we use the strengthened characterization of dynamic

SSE from Proposition 3.1. In particular, if qv· 6= 1 (i.e., if operator v par-

ticipates in the subgame) for all v, then the expected fines collected by the

inspector in the second stage reduces to
∑

v 6=u fv pv|u(1 − qv|u)(1 − qv·) =

11



(1− qv·)
∑

v 6=u fv pv|u, and pv|u ≤ dv
fv

must hold.

(BI(2)(u)) max
∑
v∈V

pv|ufv

s.t pv|u ≤
dv
fv

(∀v 6= u ∈ V ′)∑
v∈V ′

pv|u = 1

pv|u ≥ 0 (∀v 6= u ∈ V ′).

Model (BI(2)(u)) can be optimized by a simple greedy procedure, which

leads to the inspector to visit the most profitable operators in the sec-

ond stage. Let
(
p∗u|v

)
u6=v

be the optimal solution to (BI(2)(u)). The

proof of Proposition 3.3 and the discussion of the greedy procedure to solve

(BI(2)(u)) are deferred to Appendix A.1.

Proposition 3.3. The solution of (BI(2)(u)) satisfies

p∗v|u =



dv
fv

if v ≤ κ(u), v 6= u

1−
∑

m≤κ(u),m 6=u

dm
fm

if v = κ(u) + 1, v 6= u

0 otherwise

The probabilities of inspection in the first stage of the backward induc-

tion model can be obtained by solving

(BI(1)) max
∑
u∈V ′

pu·

fu +
∑
v 6=u

p∗v|ufv


s.t pu· ≤

du
fu
−
∑
v 6=u

p∗u|vpv· (∀u ∈ V ′) (8)

∑
u∈V ′

pu· = 1 (9)

pu· ≥ 0 (∀u ∈ V ′).

One could naively hope that this problem can be solved by another fractional

knapsack (greedy) solution, unfortunately this is not the case: constraints

(8) comprise a packing linear program, with nontrivial interactions between

the optimization variables. However, the packing linear program (BI(1)) is

still solvable with a closed form solution. The proof of this result is deferred
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to Appendix A.2.

Proposition 3.4. Suppose
∑

v∈V dv/fv = 2, and let γ := 1 −
∑k

j=1 dj/fj.

Let (p∗v|u)v be an optimal solution of program (BI(2)(u)) for each u, then the

following is an optimal solution for program (BI(1)).

pu· =


0 if u ≤ k
dk+1/fk+1 − γ

1− γ
if u = k + 1

du
fu
− p∗u|k+1

dk+1/fk+1 − γ
1− γ

if u ≥ k + 2.

Notice in the result above that in the case γ = 0, the optimal solution of

the dynamic SSE splits into two fractional knapsack problems: one for the

second stage, involving the most profitable nodes 1, . . . , k; followed by the

subsequent most profitable nodes k+ 1, . . . , n, which are used in first stage.

Remark 4. If
∑

v∈V
dv
fv

> 2, then some operators may not be inspected.

Let h be the integer such that:
∑

v<h
dv
fv
< 2 ∧

∑
v≤h

dv
fv
≥ 2. The proba-

bilities of inspection given in Proposition 3.4 hold provided that we redefine
V = [h] and dh/fh ←

(
2−

∑
m<h dm/fm

)
. Every operator v > h is not

inspected.

3.4. Simple numerical example

In order to illustrate the differences between both models, consider an

example with a set V = [4] of four operators having dv/fv = 1/2 for each

v ∈ V and f1 > f2 > f3 > f4 > 0.

For (BI), the optimal equilibrium using backward induction can be ob-

tained as follows. Conditioned on a visit to u in the first stage, the inspector

solves (BI(2)(u)) by randomizing equally among the two operators v 6= u

with the highest values of fv. In the first stage, the inspector randomizes

equally among the operators 3 and 4, as they have the lowest fines f . This

is, pu· = (1/2)1{3≤u≤4}. The (BI) solution is unique.

On the other hand, one optimal solution to the (LP) model chooses the

sequences (1, 3), (1, 4), (2, 1) and (2, 4) with equal probability. This strat-

egy satisfies that in the first stage the inspector randomizes equally among

operators 1 and 2.

In this example, the solution to (BI) is also a solution to (LP), but

not vice-versa. The (LP) solution suffers from temporal inconsistency: if

operator u = 1 is selected in the first stage, then the inspector would be
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Table 1: Conditionals in the (BI) model.

1

2

3

4

1 2 3 4

0.0

0.5

0.5

0.5

0.5

0.0

0.5

0.5

0.5

0.5

0.0

0.0

0.0

0.0

0.0

0.0

u
v

Table 2: Conditionals in the (LP) model.

1

2

3

4

1 2 3 4

0.0

0.0

0.0

0.0

0.5

0.5

0.5

0.5

u
v

Note: The (u, v)-entry of the table corresponds to pv|u in a solution for each model.
Empty entries correspond to undefined probabilities.

better off by visiting v = 2 in the second stage, however, she is not allowed

to.

3.5. Reduced formulation

The (LP) model for the inspection problem involve O(n2) variables. One

can naturally consider a relaxation of the (LP) model, with only 2n variables

corresponding to the marginal probabilities of inspection at each stage.

(LP′) max
∑
u∈V

(pu· + p·u)fu

s.t
∑
u∈V ′

pu· =
∑
u∈V ′

p·u = 1

pu· + p·u ≤
du
fu

(∀u ∈ V ′)

pu·, p·u ≥ 0 (∀u ∈ V ′).

Any solution (pu,v){u,v∈V :u6=v} to (LP) can be converted into a solution to

(LP′) with the same objective value by computing their marginals. Further,

any dynamic SSE solution, such as those obtained by (BI), are feasible

solutions for (LP), and thus their marginals are feasible for (LP′).

We now show that under certain conditions it is possible to construct

optimal strategies for the (BI) and (LP) models, only starting from an op-

timal solution for (LP′). In practice, this allows for a decoupling of the

problem in two steps: first, solving the small (LP′) model (whose solution

can be computed in linear time by a greedy algorithm), and then using a

flow algorithm to quickly build an optimal strategy.

The reduced formulation allows us to find explicit solutions which are
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needed in the remaining of the section. Note that we can further relax (LP′)

using variables ru = pu· + p·u, obtaining

(RedLP) max

{∑
u∈V

rufu :
∑
u

ru ≤ 2, 0 ≤ ru ≤
du
fu

(∀u ∈ V ′)

}
. (10)

This fractional knapsack problem has an explicit optimal solution. For

instance, if
∑

u∈V du/fu = 2, then the optimum is
∑

u∈V du. In gen-

eral, the optimal solution to (RedLP) can be turned into a explicit feasi-

ble solution (pu·, p·u) for (LP′) in different ways. For example, one can set

pu· = p·u = ru/2, for all u ∈ V ′. This solution turns out to be consistent

with (LP), i.e. we will show there exists an (LP) solution whose marginals

coincide with the ones above. A second example is to set pu·, p·u as in

Proposition 3.4

Remark 5. From Proposition 3.2 and 3.4 we conclude that both the static
and dynamic models are such that the set of inspected operators, V+ :=
{v ∈ V ′ : pv· + p·v > 0}, is given by V+ = {1, . . . , n}, with

∑
v<n dv/fv < 2

and
∑

v≤n dv/fv ≥ 2. Since we assumed that
∑

v∈V dv/fv ≥ 2, we conclude
that the dummy node v′ is never used in an equilibrium.

Remark 6. The case
∑

v∈V dv/fv < 2 is not analyzed in the paper for the
sake of the exposition. To extend the results in this paper to this case we
need to allow the inspector to skip one or both inspections. Up to two
dummies may be needed to achieve this goal, and the inspector will visit at
least one dummy with positive probability.

4. Results

Next we show how to construct mixed strategies from marginals, by

two different constructions, which are both inspired by interpreting mixed

strategies as flows satisfying supply and demand constraints, given by the

marginals.

4.1. Constructing strategies from total probability of inspection via flows

In this section we introduce a transportation problem, whose feasible

flows encode assignments of joint probabilities (pu,v)u6=v whose marginals

coincide with given probabilities (pu·)u∈V and (p·u)u∈V . This construction

will provide a flow algorithm to convert solutions of (RedLP) into solutions

of (LP) or (BI).
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We start by providing a general description of the transportation model

T = (G(U1 ∪ U2), c, g). Let G(U1 ∪ U2) be a complete bipartite network

on the set of nodes U1 ∪ U2. Each u ∈ U1 is a source node with gu units

of supply. Each v ∈ U2 is a demand node with gv units of demand. The

capacity of each arc (u, v) in U1 × U2 is cu,v. A flow on T is feasible if it

satisfies supply and demands and respects the capacities on the arcs.

For S ⊆ U1∪U2, let N(S) denote the set of neighbors of S in G(U1∪U2).

From a theorem of Ore [39] on the existence of f−factors on bipartite multi-

graphs one can derive3 the following condition for the existence feasible flows

T has a feasible flow ⇐⇒ ∀S ⊆ U1 :
∑
u∈S

gu ≤
∑

v∈N(S)

min

{
gv,
∑
w∈S

cw,v

}
.

(11)

Let us use this transportation model to find solutions to the inspection

game. We consider the set of inspected operators V+ = {1, . . . , n}, as in

Remark 5 (notice other operators may be ignored, as they are never con-

sidered in an equilibrium). In this case, we have
∑

v∈V+ dv/fv ≥ 2: it is

convenient for now to think of this sum to be exactly 2, but for the proof

this assumption will not be necessary.

With the assumption
∑

v∈V+ dv/fv ≥ 2, the optimal solution for (RedLP)

satisfies rv = dv/fv, for all v ∈ V+. Given a set of marginals p·u, pu· with p·u+

pu· = ru, we define a transportation model T on a bipartition U1∪U2, where

U1 and U2 are two distinguishable copies of V+. The marginals of each stage

will be used as the supply/demand on the nodes, this is, gu = pu· for each

u ∈ U1, and gv = p·v for each v ∈ U2. We write T = T ({pu·}u∈V+ , {p·u}u∈V+),

to emphasize the dependency on the chosen marginals. The nodes in U1 and

U2 represent potential inspections in the first and second stage, respectively.

The capacity cu,v on arcs u 6= v are set to (dv/fv)pu·, otherwise they are set

to zero. Figure 1 illustrates the construction.

A feasible flow (pu,v)u∈V+,v∈V+ in T ({pu·}u∈V+ , {p·u}u∈V+) is a set of val-

ues that can be interpreted as probabilities of pairs of inspections, whose

marginals coincide with given probabilities (pu·)u∈V+ and (p·u)u∈V+ . More-

3Technically, the Equation (11) follows directly from [39] when c and g are integer (or
rational) valued. However, the proof in [39] is based on duality and does not depend on
integrality.

16



Figure 1: Capacitated graph.
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over, the capacity constraints ensure that constraint (6) is satisfied and that

repeated visits do not occur. Thus, this defines a feasible and optimal solu-

tion for (LP).

The following is a structural property regarding the existence of solutions

to (LP), written in terms of the equivalent transportation model.

Theorem 4.1. Fix an instance of the sequential inspection game. Let
(rv)v∈V+ be the optimal solution of (RedLP), given in (10). Then, the set
M =

{
{pu·, p·u}u∈V+ : the problem T

(
{pu·}u∈V+ , {p·u}u∈V+

)
has a solution

}
is convex.

Proof. For i = 0, 1, let
{
piu·, p

i
·u
}
u∈V+ be two marginals in M . For λ ∈ [0, 1],

let {pλu·, pλ·u}u∈V+ be the convex combination defined by pλu· = (1−λ)p0u·+λp
1
u·

and pλ·u = λ(1− λ)p0·u + p1·u, for u ∈ V+.
Equation (11) implies

∀i ∈ {0, 1},∀S ⊆ U1 :
∑
u∈S

piu· ≤
∑

v∈N(S)

min

pi·v, rv ∑
w∈S,w 6=v

piw·

 .

For fixed S ⊆ U1, we now combine these two inequalities (for i = 0, 1)
to derive the same property for any i = λ ∈ [0, 1], and this will conclude the
proof (by (11)). For all S ⊆ U1 we bound

∑
u∈S λp

1
u· + (1− λ)p0u· by

∑
v∈N(S)

min

λp1·v, rv ∑
w∈S,w 6=v

λp1w·

+ min

(1− λ)p0·v, rv
∑

w∈S,w 6=v
(1− λ)p0w·




which in turn it is upper bounded by
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∑
v∈N(S)

min

λp1·v + (1− λ)p0·v, rv
∑

w∈S,w 6=v

(
λp1w· + (1− λ)p0w·

) ,

as desired.

Theorem 4.1 implies that the set of marginals for which we can build

a solution to (LP) is convex. A more constructive proof of Theorem 4.1

exists: the convex combination of the solutions to T
(
{piu·}u∈V+ , {pi·u}u∈V+

)
,

i ∈ {0, 1} can be shown to be a solution of T
(
{pλu·}u∈V+ , {pλ·u}u∈V+

)
on the

corresponding convex combination of the marginals.

In the following result, we show at least two different marginals for which

a solution to (LP) can be constructed. One of them can be seen as a non-

constructive proof of Theorem 4.4 that will be described in Section 4.3.

Theorem 4.2. Fix an instance of the sequential inspection game. Let
(rv)v∈V+ be the optimal solution of (RedLP), given in (10), and consider
the following choices of marginal probabilities:

(i) pu· = p·u = ru/2, for all u ∈ V+.

(ii) {pu·, p·u}u∈V+ as in Proposition 3.4.

Then there exists a joint probability distribution (pu,v)u6=v whose marginals
coincide with {pu·, p·u}u∈V+. Moreover, one such solution can be computed
from the capacitated transportation model T = T ({pu·}u∈V+ , {p·u}u∈V+).

Proof. Case (ii) follows from the fact that problem (BI) has a solution, and
it is given explicitly by Proposition 3.4. We should note, however, that T
has other solutions which may not be compatible with backward induction.

For Case (i), we will show that the condition for the existence of solutions
stated in (11) is satisfied in T . Before doing this, we slightly modify the
capacities in the transportation graph. Notice that by assumption rv =
dv/fv for all v ∈ V+ \ {n}, and that rn ≤ dn/fn. If rn < dn/fn, then we will
reduce the capacities of arcs cu,n = (dn/fn)pu· → rnpu·. If we show that this
modified instance has a feasible flow, then clearly the starting instance has
one as well. Finally, recall that by the optimality conditions of (RedLP),∑

v∈V+ rv = 2.
We now proceed to verify that the condition on the right side of (11)

holds. First, we consider S = {u} ⊆ U1. Then, N(S) = U2 \ {u} and
therefore∑

v∈N(S)

min{g(v),
∑
w∈S

cw,v} =
∑
v 6=u

min{p·v, pu·rv} =
1

2

∑
v 6=u

rv min{1, ru}.
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Since ru ≤ 1, the last term is equal to ru
2

∑
v 6=u rv = ru

2

(
2−ru

)
≥ ru

2 = g(u).
Next we consider the case |S| > 1. Then, N(S) = U2, so re-arranging

terms, we have that (11) is equivalent to

∑
v∈V+

rv min

1,
∑

w∈S\{v}

rw

−∑
u∈S

ru ≥ 0. (12)

Let B = {v ∈ V+ :
∑

w∈S\{v} rw < 1}. Let also b =
∑

v∈B rv and
s =

∑
v∈S rv. We can decompose the expression on the left-hand side of

(12), depending on whether v ∈ B, obtaining:

∑
v∈V+

rv min

1,
∑

w∈S\{v}

rw

−∑
u∈S

ru =
∑

v∈V+\B

rv +
∑
v∈B

rv
(
s− rv1{v∈S}

)
− s

(13)

= 2− b− s+ sb−
∑

v∈S∩B
r2v . (14)

To conclude we will prove that (14) is non-negative:

• If s ≤ 1 or b ≤ 1: Using that r2v ≤ rv for all v ∈ V+, we obtain∑
v∈B∩S r

2
v ≤ min{s, b}. Therefore,

2− b− s+ sb−
∑

v∈S∩B
r2v ≥ max {(2− b)(1− s), (1− b)(2− s)} ≥ 0,

where we used that both b and s are no larger than 2.

• If s > 1 and b > 1 then B ⊆ S, by definition of B (if there is v ∈ B \S
then s < 1) and therefore b ≤ s. Moreover, by minimizing (14) with
respect to s we obtain:

2− b− s+ sb−
∑
v∈B

r2v ≥ 2− 2b+ b2 −
∑
v∈B

r2v = 1 + (b− 1)2 −
∑
v∈B

r2v .

To conclude, note that if
∑

v∈B rv = b is constant in the right hand
side, then

∑
v∈B r

2
v is maximum when r1 = 1, r2 = b− 1 and the other

terms are zero. In this case, 1 + (b− 1)2 −
∑

v∈B r
2
v = 0, as needed.

Combining Theorem 4.2 with Theorem 4.1 we obtain an infinite set of

marginals for which we can build a solution to (LP). On the other hand, it
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is easy to build marginals for which (LP) has no solution (see example in

Appendix B).

4.2. Comparing (BI) and (LP)

To solve the SSE we have proposed two different models, (BI) and (LP),

based on different principles. On the one hand, (LP) addresses a static model

for inspections, given by profit maximization over pairs of visits, however it

ignores issues of temporal consistency that may be faced by the inspector at

the second stage; this results in a linear program in dimension O(n2). On

the other hand, (BI) addresses temporal consistency (the inspector is not

incentivized to deviate from her strategy after the first stage), at the cost of

solving n linear programs of dimension O(n).

We will now compare both models in terms of their resulting profit. Let

zLP (resp. zBI) be the optimal value of the (LP) (resp. (BI)) model.

Theorem 4.3. The (BI) and (LP) models have the same optimal value.

Proof. Suppose
∑

v∈V dv/fv = 2. From Proposition 3.4, the values of

the marginals in the optimal (BI) solution satisfy pu· + p·u = du
fu

for all
u ≤ j. Otherwise, they take value 0. Therefore, zBI =

∑
u∈V ′(pu·+p·u)fu =∑

u:u∈V du =: z.
We prove that zLP is both lower and upper bounded by z. Since feasible

solutions for (BI) are feasible for (LP), z ≤ zLP . On the other hand, we
showed in Section 3.5 that the reduced and relaxed model (RedLP) in Equa-
tion (10) has optimal value z and it is an upper bound on zLP . Therefore
zLP ≤ z.

If
∑

v∈V
dv
fv
> 2, then some operators may not be inspected. Let h be

the integer such that:
∑

v<h
dv
fv
< 2 ∧

∑
v≤h

dv
fv
≥ 2. Let us redefine V = [h]

and

(dh, fh)←

((
2−

∑
m<h

dm/fm

)
fh, fh

)
.

The greedy solution to (RedLP) does not change, except that rh = 2 −∑
m<h dm/fm and rv = 0 for v > h. Therefore rhfh = dh, the contribution

of h to the objective value in (RedLP), is correctly captured by z.

4.3. An explicit equilibrium

In this section we go one step further and provide one explicit solution

(pu,v){u,v∈V :u6=v} for model (LP). With these explicit probabilities, the in-

spector only needs to compute the solution along the sequence which is effec-

tively played. Some of the terms pu,v will require the computation of a series.
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However, the rate of convergence is at least exponential, in practice reaching

computer precision quite quickly. Operators will not prepare in equilibrium.

Throughout this section we focus on the especial case
∑

u αu = 1, where

αu = du
2fu

< 1/2. The construction of the explicit solution can be reduced

to this especial case and this is discussed in Appendix C.

We first provide some intuition behind the construction of this explicit

solution. The choice of independent inspection visits with probabilities

pu,v = αuαv for all u, v ∈ V “almost” works as a solution to (LP), fulfilling

all the restrictions if repeated visits (u, u) were allowed. A nice feature of

this “solution” is that it has significant slack in the second-stage probability

constraints (6), but we failed to find a method to distribute the probabil-

ity of repeated visits pu,u = α2
u to valid inspection paths without violating

other constraints. Instead, our construction emulates the properties of this

independent solution, avoiding the repetition of visits altogether using an

elaborated recursive procedure.

We anticipate several key aspects behind the construction of the solution.

The probabilities will be constructed to be symmetric, satisfying pu,v = pv,u

for all u 6= v. It is convenient to think of pu,v as flow variables on a bipartite

graph, imitating what we did in Section 3.5, Figure 1. We set from the start

pu· = αu for all u; this will be the supply amount of node u on one side of

the bipartition. It follows that p·u = αu after symmetry is checked; this will

be the demand amount of node u on the other side of the bipartition.

The procedure will build the flow pu,v incrementally, starting from pu,v ≡
0, and eventually satisfying supply and demands at every node. Whenever

the flow pu,v is incremented, the flow pv,u will be incremented by the same

amount. Therefore the procedure creates partial flows that drain the supply

and demand nodes symmetrically. The relative order of the values αu is

important, it is assumed that α1 ≥ α2 ≥ . . . ≥ αn are ordered decreasingly.

The procedure has two major steps. In the first step, called the correcting

step, some flow will be routed in very specific quantities. For the moment,

what is relevant is that the supply and demand not yet served by this flow

will decrease from the original values α1 ≥ α2 ≥ . . . ≥ αn to new values α′1 =

α′2 ≥ α′3 ≥ . . . ≥ α′n, where not only the relative order is preserved, but also

the two largest supply values α′1 = α′2 will be equal. In the second step, called

the recursive step, we imitate the characteristics of the independent solution,

routing flow proportional to α′uα
′
v on every arc (u, v) with u 6= v. The supply
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and demand that remains to be sent at the nodes will reduce to their squares

α′21 = α′22 ≥ α′23 ≥ . . . ≥ α′2n , and this is then sent recursively. A careful

analysis is needed to show that the aggregated flows obtained through these

two steps satisfy the second stage conditional probability constraints (6).

Correcting step. We assume that α1 > α2 as otherwise we proceed directly

to the recursive step. The correction consists in sending for some β ≥ 0 to

be defined, f cor1v = f corv1 = βα1αv units of flow in the arcs (1, v) and (v, 1),

this for every other node v 6= 1. The supply yet to be served by node

v 6= 1 reduces to αv(1 − βα1), while the the supply yet to be served by

node 1 reduces to α1(1 − β(1 − α1)). As β increases, note that all nodes

v 6= 1 decrease at the same rate, while node 1 decreases at a higher rate,

since 1 − α1 > 1/2 > α1. In particular, the relative order of the remaining

supplies will be preserved until β is large enough for nodes 1 and 2 to have

the same remaining supply.

Equating α1(1− β(1− α1)) = α2(1− βα1) we determine the value

β =
α1 − α2

α1(1− α1 − α2)

at which the remaining supply at nodes 1 and 2 coincide. It is easy to check

that β ∈ (0, 1/(1− α1)] when α2 ranges in [0, α1). At this value of β, the

remaining supply is α′1 = α′2 ≥ α′3 ≥ . . . ≥ α′n. Proceed to the next step.

Recursive step. Misusing the notation, we now assume that α1 = α2 ≥
α3 ≥ . . . ≥ αn is the supply to satisfy, with

∑
w αw not necessarily equal

to 1. In this step we send fuv = fvu = αuαv∑
w αw

units of flow on the arcs

(u, v) and (v, u), this for every pair u 6= v of nodes. Node u sends a total

of
(∑

v 6=u αuαv

)
/
∑

w αw units of flow. We will then send the remaining

supply at node u recursively.

The remaining supply at node u by the end of the first step of the

recursion is just
α2
i∑

k αk
. At the end of the t-th step of the recursion it is

α2t
u∑

w αw
∑

w α
2
w . . .

∑
w α

2t−1

w

.

When α1 = α2, we can twice bound this quantity by
α2t

i

2α1·2α2
1·...·2α2t−1

1

≤ αi
2t−1 ,

bounds that converge to 0 for large t.
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The total flow f recuv sent in the arc (u, v) throughout the recursion is.

f recuv =
αuαv∑
w αw

+
α2
uα

2
v∑

w αw
∑

w α
2
w

+
α4
uα

4
v∑

w αw
∑

w α
2
w

∑
w α

4
w

+
α8
uα

8
v∑

w αw
∑

w α
2
w

∑
w α

4
w

∑
w α

8
w

+ . . . (15)

These flows exhaust the supply at every node u.

Let us bound f recuv compared to αuαv. Let rt be the t-th term in the

series (15). We have that

rt+1 =
α2t
u α

2t
v∑

w αw
∑

w α
2
w . . .

∑
w α

2t
w

= rt
α2t−1

u α2t−1

v∑
w α

2t
w

≤ rt
α2t−1

u α2t−1

v

(α2t−1

u )2 + (α2t−1

v )2
≤ rt

2

From this, it follows that f recuv ≤ r1(1 + 1/2 + 1/4 + . . .) = 2αuαv/
∑

w αw.

Analysis of the combined procedure. Let us call fuv = f coruv + f recuv the total

flow sent on the arc (u, v) using the correction and recursive step. It is easy

to show that all the constraints in (LP), except the second-stage conditional

probability constraints (6), are satisfied by pu,v = fuv. To complete the

validity of the construction we want to prove the bound fuv ≤ 2αuαv in

order to satisfy (6).

Note that the correction step induces a flow only when u = 1 or v = 1,

and we focus on this case first. Suppose u = 1 (the case v = 1 follows by

symmetry). We have that f cor1v = βα1αv and also f rec1v ≤ 2α′1α
′
v/
∑

w α
′
w,

where we denote by α′ the remaining supply post-correction. Substituting

the values α′ we obtain

f cor1v +f rec1v ≤ α1αv

(
β +

2(1− β(1− α1))(1− βα1)

1− 2βα1(1− α1)

)
=

2− β
1− 2βα1(1− α1)

α1αv.

Recall that β lies in the interval (0, 1/(1− α1)]. In this range, it is easy

to show that the fraction multiplying α1αv is between 1/(1 − α1) and 2.

Thus f1v ≤ 2α1αv as desired.

Now we focus on the case where u, v 6= 1. Although f coruv = 0 in this case,

the supply of the nodes is still modified. We have that f recuv ≤ 2α′1α
′
v/
∑

w α
′
w,

where we denote by α′ the supply remaining post-correction. Substituting

the values α′ we obtain

f recuv ≤ 2αuαv
(1− βα1)

2

1− 2βα1(1− α1)
.
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In the range β ∈ (0, 1/(1 − α1)], the fraction multiplying 2αuαv on the

right term lies in the range
[
1− α2

1
(1−α1)2

, 1
)

. Thus fuv ≤ 2αuαv as desired.

Algorithm 1 Explicit solution algorithm from Section 4.3

procedure ExplicitSolution(α1 ≥ α2 ≥ . . . ,≥ αn)
β ← α1−α2

α1(1−α1−α2)

f coruv ← 0, u, v ∈ {1, . . . , n}
f cor1v ← f corv1 ← βα1αv, v ∈ {1, . . . , n}
αv ← αv − f corv· , v ∈ {1, . . . , n}
f rec = Recursive(0, α1, α2, . . . , αn)
return f cor + f rec

end procedure
procedure Recursive(f , α1 = α2 ≥ . . . ,≥ αn)

f recuv ← αuαv∑
w αw

, u, v ∈ {1, . . . , n}
if |f rec| ≤ ε then

return f + f rec

else
return Recursive(f + f rec, 1∑

w αw

(
α2
1, α

2
2 . . . , α

2
n

)
)

end if
end procedure

Theorem 4.4. Algorithm 1 converges (if ε → 0) to an optimal solution to
the (LP) model.

Remark 7. Both steps are needed in the proof. The recursive step does
not work when α1 > α2 because the remaining supply at node 1 does not
converge to 0. Intuitively, the powers of α1 become the dominant terms in
the denominator way too quickly. Thus the correcting step is needed. On
the other hand, the correcting step alone does not work in isolation. If n = 3
and α1 = α2 = 0.45, α3 = 0.1, it is not possible to send flow from nodes 1
and 2 in order to equate the remaining flow α′1 = α′2 = α′3, because α3 is
not big enough to receive the incoming flow from the nodes 1 and 2.

5. A more practical example

In this section, we describe one example to expose our model from a more

practical point of view. We focus on how a decision-maker can calibrate the

model in practice. Our example is based on real data from a restaurant

chain, where preparation costs are fines are not easy to quantify. We focus

mostly on the methodology, as the source data is confidential. In particular,

we look at the outcomes of the (LP) and (BI) model.
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The chain had eight stores V = {1, . . . , 8}, and we will assume that

the inspector can only visit two stores on a given day. One difficulty for

the decision-maker is to estimate the preparation costs of each store. We

propose the use of Key Performance Indicators (KPIs) to estimate them.

The decision-maker had access to KPIHv and KPISv, two percentages

related to the hygiene evaluation at the store and the variability in sales.

In both indicators, the higher the percentage, the better the performance.

These indicators are linked to organization and order and can be loosely

correlated with preparation costs.

One possible estimate for dv uses a linear combination of these KPIs:

dv = βKPIH · (1−KPIHv) + βKPIS · (1−KPISv),

where the weights βKPIH, βKPIS ≥ 0 represent the relative importance of the

different indicators.

The decision-maker can set fines based on the indicators related to the

purpose of the inspection (the chain did not apply monetary fines). One pro-

posal is to use KPICv and KPILv, two percentages related to customer eval-

uation and variability on budget, respectively. In both indicators, the higher

the percentage, the better the performance. If the decision-maker needs to

prioritize some stores, an additional term XPv can reflect the strategic im-

portance of store v for the chain, according to some objective measure. To

guarantee that dv < fv, the fines can be built starting from the preparation

costs:

fv = dv + βXP ·XPv + βKPIC · (1−KPICv) + βKPIL ·KPILv

Details on the construction of each KPI are specific to this chain. For

instance, the opinions of clients captured via surveys were the base to com-

pute KPIC. The KPIs value evolved over time, and so did the inspection

routes in equilibrium. The appendix describes one inspection game that had

to be solved, and the solution with the (BI) and (LP) models.

This methodology has several practical advantages. First, the inspection

routes do not generate obvious patterns and can be repeated safely. Second,

the use of these randomized routes and KPIs significantly reduces the in-

spector bias. Finally, a problem with a few inspections and a decent number

of inspectees can be solved in any computer.
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Appendix A. Omitted details and proofs for Section 3

We first recall that in Propositions 3.3 and 3.4 we are assuming that∑
u∈V

du
fu

= 2 and we consider the following indices:

(i) Let k ∈ [n] be such that:
∑

m≤k dm/fm ≤ 1 ∧
∑

m≤k+1 dm/fm > 1;

(ii) Let κ(u) ∈ [n] \ {u} be such that:∑
m≤κ(u),m 6=u

dm/fm ≤ 1 ∧
∑

m≤κ(u)+1,m6=u

dm/fm > 1

.

Appendix A.1. Proof of Proposition 3.3

Proof. Given u ∈ V ′, we claim that (BI(2)(u)) model can be solved by
the greedy algorithm. Let define xv|u as xv|u := fv

dv
pv|u (∀u, v ∈ V ) then

(BI(2)(u)) can be written as follows.

max

∑
v 6=u

xv|u dv : xv|u ≤ 1,
∑
v 6=u

xv|u
dv
fv
≤ 1, xv|u ≥ 0 (∀v 6= u ∈ V ′)

 .

The previous model has a fractional knapsack structure so its solution
is given by

p∗v|u =



dv
fv

if v ≤ κ(u), v 6= u (A.1)

1−
∑

m≤κ(u),m 6=u

dm
fm

if v = κ(u) + 1, v 6= u (A.2)

0 otherwise. (A.3)

Appendix A.2. Proof of Proposition 3.4

Proof. Let us proceed by cases:

• u ≤ k: We start by noticing that by Proposition 3.3, for any node
u ≤ k and v 6= u, p∗u|v = du/fu. In particular, by constraint (8),

pu· ≤
du
fu
−
∑
v 6=u

p∗u|vpv· =
du
fu

(
1−

∑
v 6=u

pv·

)
= 0.

In conclusion, pu· = 0.

31



• u = k+ 1: Using the property proved in the previous case, we have by
imposing equality in constraint (8),

p(k+1)· +
∑

v≥k+2 p
∗
(k+1)|vpv· =

dk+1

fk+1

=⇒ p(k+1)· + γ(1− p(k+1)·) =
dk+1

fk+1
,

where at the last implication we used the characterization p∗(k+1)|v = γ,

from Proposition 3.3. Hence, p(k+1)· = (dk+1/fk+1 − γ)/(1− γ).

• u ≥ k + 2: In this case, we also impose constraint (8) with equality,
obtaining

pu· +
∑

v≥(k+1),v 6=u

p∗u|vpv· =
du
fu
.

Notice further, by Proposition 3.3 that since u ≥ k + 2, if v > k + 1
then p∗u|v = 0; that, together with the formula above for p(k+1)·, leads
to

pu· + p∗u|(k+1)

dk+1/fk+1 − γ
1− γ

=
du
fu
,

which implies the claimed formula for pu·.

We now verify that other constraints of the problem are satisfied:

• Constraint (9). Substituting pu·, we obtain∑
u

pu· =
dk+1/fk+1 − γ

1− γ
+
∑

u>k+1

(
du
fu
− p∗u|k+1

(
dk+1/fk+1 − γ

1− γ

))
By Proposition 3.3,

∑
u>k+1 p

∗
u|k+1 = 1 −

∑
u≤k p

∗
u|k+1 = γ. The ex-

pression on the right-hand side simplifies to

∑
u

pu· =
∑

u≥k+1

du
fu
− γ =

∑
u≥k+1

du
fu

+
∑
u≤k

du
fu
− 1 = 1.

• Non-negativity of variables. First of all, notice that 1 ≥ dk+1/fk+1 ≥ γ
by definition, therefore by inspection pu· ≤ du/fu for all u. Non-
negativity for u = k+1 is obtained by the same considerations, whereas
for u > k + 1 it is proved as follows: since p∗u|k+1 ≤ du/fu

pu· ≥
du
fu

(
1− dk+1/fk+1 − γ

1− γ

)
=
du
fu

1− dk+1/fk+1

1− γ
≥ 0.

Finally, since (BI(1)) is a packing linear program, and we are satisfying all
packing constraints with equality, the optimality follows.
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Appendix B. About the generalization of Theorem 4.2 to other
marginals

Theorem 4.2 cannot be generalized to every possible set of marginals

satisfying pv·+p·v = rv, where (rv)v∈V is a solution to (RedLP). Consider a

set V = [3] of three operators having d1/f1 = 0.8, d2/f2 = 0.5, d3/f3 = 0.7,

with f1 > f2 > f3 > 0. In this example, rv = dv/fv for all v ∈ V . Consider

the following marginals p1· = 0, p·1 = 0.8, p2· = 0.5, p·2 = 0, p3· = 0.5, p·3 =

0.2. We will show that the transportation model T has no feasible solutions.

Indeed, there is only one solution in T that satisfies supply, demand,

non-repetition (puu = 0, ∀u) and non-negativity. This solution is shown in

Figure B.2. However, this solution does not satisfy the capacity constraint

p3,1 ≤ (d1/f1) p3· in the model T . Hence, T is infeasible.

Figure B.2: Unfeasible flow.
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Appendix C. Addressing the case
∑

u αu > 1 in Section 4.3.

Algorithm 1 is an explicit solution for model (LP), under the assumption

that
∑

u αu = 1.

The construction of the explicit solution when
∑

u αu > 1 can be reduced

to this especial case. Assuming that the values fu are sorted decreasingly,

we can limit the support of the inspections in this solution to the first j

nodes, where j is the smallest index for which
∑

u≤j αu > 1.

If
∑

u≤j αu > 1, we can define ᾱ so that ᾱu = αu for u < j, and ᾱj is

set so that
∑

u≤j ᾱu = 1. We can use Algorithm 1 on ᾱ to build an explicit

solution, understanding that puv = 0 if u > j or v > j. Using the fact that

ᾱu ≤ ᾱu for all u, it is easy to check that all constraints in the original

model will also be satisfied by this solution. And it is optimal since it gives

the same objective value as the optimum of (RedLP).

Appendix D. Supplementary tables for Section 5

Table D.3 gives the parameters (fu)u∈V and (du/fu)u∈V .
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Table D.3: Parameters fu and du/fu for each store u.

u fu du/fu
1 4.23 0.83
2 3.60 0.95
3 4.60 0.76
4 5.43 0.81
5 3.00 0.82
6 5.17 0.86
7 7.77 0.89
8 2.20 0.82

Tables D.4 - D.5 shows the linear probabilities. The inspector gives

positive probabilities for store 4, 6 and 7 with the highest value f .

Table D.4: Probabilities of inspection paths puv for the (BI) model.

Stores 4 6 7
4 0.000 0.087 0.700
6 0.023 0.000 0.190
7 0.000 0.000 0.000

Table D.5: Probabilities of inspection paths puv for the (LP) model.

Stores 4 6 7
4 0.000 0.065 0.340
6 0.045 0.000 0.105
7 0.360 0.085 0.000
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