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Abstract

A game merging the lot-sizing problem with a Cournot competition model is for the first time theoret-
ically studied. Each player is a producer with her own production facility, modeled as an uncapacitated
lot-sizing problem (i.e., production incurs set-up and variable costs and inventories are allowed). A
Cournot competition is played in each time period (market) with each player deciding the quantity of
product to place on it. The market price of that product in each time period depends on the total quantity
placed in the market.

We show that this game is potential with possibly multiple pure Nash equilibria. If the game has a
single period, we prove that an equilibrium can be found in polynomial time, but it is weakly NP-hard to
find an optimal pure Nash equilibrium (with respect to a given equilibrium refinement). If the game has
no constant production and no inventory costs, we prove that a pure Nash equilibrium can be computed
in polynomial time.

Keywords: Cournot competition; Lot-sizing problem; Nash equilibria; Potential game.

1 Introduction

The lot-sizing problem. Production planning is a classical studied problem in operations research, given its
practical applications and the related challenging models in mixed integer optimization (see, e.g. [17]). The
simplest case considers a firm with only one machine, planning the production of a single item. The lot-sizing

problem (LSP) can be described as follows. There is a finite planning horizon. For each period there is a
demand, a unit production cost (also known as variable cost) and a fixed set-up cost if production occurs.
The goal is to find a production plan such that the demand of each period is satisfied and the total cost is
minimized.

The Cournot competition. Cournot [3] developed one of the earliest examples of game analysis, now called
the Cournot duopoly. In this setting, the players are two firms that produce a homogeneous good. They
simultaneously choose their respective quantities to place in the market. Once the quantities in the market
are known, the associated market price is determined. In this way, the profit of each firm depends on the
strategy of the opponents. A profile of strategies for which both players simultaneously maximize their profits
is called a Cournot equilibrium (later, this concept was generalized for any game and called Nash equilibrium
[15]). The model can be extended to more than two firms, in a setting generally called Cournot competition
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(or Cournot oligopoly). In practice, the Cournot competition is a model mainly used to measure the market
power of the participant firms.

Our game model. We build on the Cournot competition model of Pedroso and Smeers [16], where several
producers compete for a single-product market over time. Our goal is to understand what is the likely
behaviour of these producers (how much and when they will produce, how much and when they will place
in the market) and what will be the resulting market prices. The natural conceptual framework for such a
study is game theory under the key concept of Nash equilibrium.

Our model is a single-product market over a discrete and finite time horizon. At the beginning of the
game, players simultaneously decide the quantities to introduce in the market of each period, taking into
account both the Cournot competition taking place on each period and the production structure of each
producer which is represented by an uncapacitated lot-sizing model.

Contributions and organization of the paper. We start with a literature review in Section 2. Section 3
provides some essential game theory background and formalizes the competitive uncapacitated lot-sizing
game (ULSG) which is studied throughout the paper. Section 4 determines the best response functions of

this game and a dynamic programming method to evaluate them in polynomial time. In Section 5 a result of
Ui [22] is used to imply ULSG must have at least one pure Nash equilibrium (pNE), because it is a potential
game. Section 6 and Section 7 describe polynomial time algorithms to find one such pNE in the single-period

case and the no variable cost case, respectively. In addition, in Section 6 we show that finding the best pNE
with respect to a given equilibrium refinement is weakly NP-hard, but one can compute such an optimal
equilibrium in pseudo-polynomial time. In Section 8 extensions to our approach are considered: Section 8.1

remarks that our results can be easily extended if inventory costs exist, and Section 8.2 distinguishes other
equilibria concepts. Section 9 summarizes the conclusions and open questions.

2 Literature Review

Most of the literature about lot-sizing games focuses on cooperative scenarios where, instead of searching for
a Nash equilibrium, the goal is to find coalitions between the players such that they do not have incentive

to leave them (as it would mean a utility decrease). See for example Wilco et al. [9]. Thain and Vetta [21]
analyze predatory strategies, i.e., where a firm with sufficient power plays to make the opponents’ profit
negative.

To the best of our knowledge, the literature on non-cooperative (competitive) lot-sizing games significantly
differs from our setting. Typically, Cournot competitions models assume that the players profit functions

are concave and that their restrictions (e.g., production capacity) are linear. Therefore, Karush-Kuhn-
Tucker (KKT) conditions (see Karush [10] and Kuhn and Tucker [11]) are enough to establish each player’s
optimization as a single system of inequalities and thus, computing a Nash equilibrium is simplified.

Maskin and Tirole [13] analyze an oligopoly, where set-up costs are considered and firms are committed to
a particular action in the short-run. In opposition to the model that we present in this section, in [13], firms
take decisions sequentially (period-by-period) and set-up costs are considered to be sufficiently large so that
no two firms can operate profitably. Federgruen and Meissner [4] analyze a Bertrand (price) competition.
In their model, each player decides a market price which is maintained throughout the game. Given these
market prices, the demands in each time period for each player are determined. The authors are able to
get sufficient conditions for the existence of an unique Nash equilibrium and an algorithm that efficiently
computes a player best reaction if the set-up costs are constant during the whole time horizon for each player.
It is also mentioned the Cournot competition associated with this model, where a player’s strategy reduces

to deciding an initial constant quantity which completely determines this player’s demand market in each
period of the market (basically, these demands vary by a multiplicative factor on that initial decision). Li
and Meissner [12] consider a capacitated lot-sizing game in which the only strategic decision of each player is
a production capacity which is to remain constant throughout the game. The capacity is purchased on a spot
market before production decisions are made; its price depends on the total capacity acquired by the players.
The authors prove the existence of a capacity equilibrium under modest assumptions. In the models of these
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two papers ([4] and [12]) the producers take their strategic decisions upfront (market price and production
capacities, respectively) and commit to them during the entire planning horizon; we also focus on this static
setting for determining equilibria on our model.

Recently, Gabriel et al. [6] built a methodology to solve Cournot competitions models when part of the
players’ decision variables are discrete, making the KKT-conditions unusable (which will be the case of our
game). The authors propose a new approach that provides a compromise between complementarity and
integrality, showing that a Nash equilibrium satisfying the integrality requirement can be found for a specific
example. However, there is neither theoretical nor computational evidence showing the applicability of these
ideas to the general case.

Pedroso and Smeers [16] apply a tâtonnement process in order to compute an equilibrium to the com-
petitive lot-sizing game, i.e., from an initial strategy for each player, iteratively, players deviate to a new
strategy that improves their individual utility. In their computational experiments, this process successfully
computes an equilibrium, opening the questions of what are sufficient conditions of convergence towards an
equilibrium, how efficient this convergence would be and how it would vary according to the initialization
strategies.

3 Preliminaries

The game model. We start by establishing the connection between the classical uncapacitated lot-sizing

model (ULS) and the Cournot competition.

The model we build has a discretized finite time horizon with T > 0 periods. In each period t there
is a market for a homogeneous product. We assume that for each period t, the market unit price is Pt,

represented by the demand function Pt = (at − btqt)+ where α+ = max(α, 0), qt is the total quantity placed
in the market, and at , bt are given parameters modeling the market size and the level of players interaction,
respectively. The set of firms (players) competing in this multi-period market is M = {1, 2, . . . ,m}. The

production structure of each firm is represented by an uncapacitated lot-sizing model. That is, each firm p
has to decide how much to produce in each time period t (production variable xpt ) and how much to place
in the market (variable qpt ). For each firm p and period t, there are set-up and variable (linear) production
costs, denoted by F p

t and Cp
t , respectively, there is no upper limit on production quantities, and a producer

can build inventory by producing in advance (the inventory variable for period t is hpt ). We assume that
there are no inventory costs (in Section 8.1 this assumption is removed). In this way, we obtain the following
model for each player (firm) p = 1, 2, . . . ,m:

max
yp,xp,qp,hp

Πp(yp, xp, hp, qp, q−p) =
T∑

t=1

Pt(qt)q
p
t −

T∑

t=1

Cp
t x

p
t −

T∑

t=1

F p
t y

p
t (1a)

s. t. xpt + hpt−1 = hpt + qpt for t = 1, . . . , T (1b)

0 ≤ xpt ≤ By
p
t for t = 1, . . . , T (1c)

hp0 = hpT = 0 (1d)

hpt , q
p
t ≥ 0 for t = 1, . . . , T (1e)

ypt ∈ {0, 1} for t = 1, . . . , T, (1f)

where B is a sufficient large number such that Constraint (1c) is not bidding when ypt = 1, and qt =
∑m

i=1 q
i
t

(total quantity introduced in the market of period t). The total quantity introduced in the market of period t
is the responsible for the optimization program (1) to induce a game. The goal of player p is to maximize the
utility (1a), which is simply the sum of her profit minus the production costs in each period t. Constraints (1b)

represent the conservation of product. Constraints (1c) ensure that the quantities produced are non-negative
and that whenever there is production (xpt > 0), the binary variable ypt is set to 1, implying the payment
of the set-up cost F p

t . We assume that the initial and final inventory quantities are zero, which is captured

by equations (1d). Inventory quantities and output quantities must be non-negative, constraints (1e). The
variables ypt are restricted to be binary through constraint (1f). We denote Xp as the set of feasible solutions
for player p and by X =

∏m
p=1X

p the set of all feasible players’ strategies.
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Let yp, xp, hp be T dimensional vectors of player p’s decision variables for each time period t. Finally,
for the sake of simplicity, let us assume that variable and set-up costs are positive integers, define producing
in period T + 1 as not participating in the game and/or F p

T+1 = cpT+1 = 0.

Game theory background. Let the operator (·)−p for some p ∈ M denote (·) for all players except player
p. A player p best reaction (or best response) to a (fixed) strategy q−p of the opponents is a solution to
Problem (1).

The concept of Nash equilibrium is widely accepted as solution for a game since it defines the most rational
moves that the players can follow under a non-cooperative game. A pure Nash equilibrium for ULSG is a
profile of strategies (y, x, h, q) ∈

∏m
p=1X

p such that no player has incentive to deviate, this is, for each player
p

Πp(yp, xp, h
p
, qp, q−p) ≥ Πp(yp, xp, hp, qp, q−p) ∀(yp, xp, hp, qp) ∈ Xp. (2)

In other words, a pure Nash equilibrium (pNE in short) is an assignment to the variables (y, x, h, q) which
is optimal for all the parametric programs 1. In a mixed Nash equilibrium, players choose a probability

distribution over their set of strategies, which is computationally unsuitable when the description involves
an exponential or infinite number of players’ strategies. Moreover, as pointed out in Simon [20] and Rubin-
stein [19], players tend to prefer simple strategies. This reason together with the fact that ULSG has always

a pure equilibrium (as we prove in Section 5), motivate us to concentrate our investigation only in pure
Nash equilibria, assuming that players stay committed to the equilibrium strategy; in practice, however, each
player may change her strategy in each period. In the beginning of Section 5, we will discuss the advantages
and disadvantages of making such assumption.

The concept of potential game, as defined in Monderer and Shapley [14], is very useful when considering
pure equilibria. The ULSG is a potential game if there is real-valued function Φ over the set of players feasible
strategies

∏m
p=1X

p such that its value increases strictly when a player switches to a strategy that strictly
increases her profit. This function is called potential. We will use to this property in Section 5.

4 Basic Properties

In the ULS problem the demand is fixed and the problem is reduced to minimizing the costs. A well-known
and fundamental property of ULS is that it has an optimal solution with no stock at the begin of a period
with positive production (see Pochet and Wolsey [17]). The same property holds for a player p’s optimal
solution to Problem (1): once qpt is determined, her problem reduces to solving an ULS.

Proposition 1 Let q−p ∈ X−p be fixed. There exists an optimal solution to (1) (a best response to q−p) in
which hpt−1x

p
t = 0 for t = 1, 2, . . . , T .

Proposition 1 is the essential ingredient to determine the optimal output quantities for player p.

Proposition 2 Let q−p ∈ X−p and player p’s positive production periods t1 < t2 < . . . < tr be fixed. There is
an optimal solution to problem (1) satisfying

qpt (q−p) = 0, for t = 1, 2, . . . , t1 − 1

qpt (q−p) =
(at − bt

∑
i6=p q

i
t − C

p
tj )+

2bt
, for t = t1, . . . , T

with j = max{u : 1 ≤ u ≤ r, tu ≤ t}.

Proof. Let T p = {t1, t2, . . . , tr} be as stated in the proposition. By Proposition 1, in period t ≥ t1, the
optimal output quantity qpt is produced in the latest production period tj prior to t with positive production.

Thus, the production variable can be simply replaced by xptj =
∑min(tj+1−1,T )

t=tj
qpt . The optimal value for
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qpt in (1) can be determined by optimizing an univariate concave quadratic function (the part of the utility
function associated with qpt ), that is,

(at − btqpt − bt
∑

i6=p

qit)q
p
t − C

p
tjq

p
t

leading to the formulas of this proposition.

The ULS can be solved in polynomial time through dynamic programming. If q−p ∈ X−p is fixed, a
similar idea extends to efficiently compute an optimal production plan for player p.

Lemma 1 Solving player p’s best reaction (1) for q−p can be done in polynomial time.

Proof. Let Gp(t, q−p) be the maximum utility of player p over the first t periods, given the opponents’
strategies q−p. Then, Gp(t, q−p) can be written as player p’s maximum utility when the last production
period was k

Gp(t, q−p) = max
k:k≤t

{Gp(k − 1, q−p) +
t∑

u=k

(au − bu(qpu +
m∑

j 6=p

qju))qpu − F
p
k − C

p
k

t∑

u=k

qpu},

where qpu is computed according with Proposition 2. Thus, computing Gp(T, q−p), which is equivalent to
solve the best reaction problem (1) for q−p, can be done in O(T 2) time.

In an equilibrium each player is selecting her best reaction (optimal solution of problem (1)) to the
opponents’ strategies on that equilibrium. Thus, once the players’ production periods are fixed, we can apply

Proposition 2 simultaneously for all the players, obtaining a system of equations in the output variables q
which can be simplified and solved, resulting in the following proposition.

Proposition 3 Let T p be the set of periods with positive production for each player p for an ULSG. Then, an
optimal output quantity for player p is1

qpt = 0, for t = 1, 2, . . . ,min{T p} − 1

qpt =
(Pt(St)− Cp

ūp)+

bt
, for t = min{T p}, . . . , T,

where ūp = max{u : u ∈ T p, u ≤ t} (last production period prior to t for player p), St = {i : t ∈ T i for i =

1, 2, . . . ,m} (players with positive production in period t) and Pt(St) =
at+

∑
i∈St

Ci
ūi

|St|+1 (market price of period

t). In particular, player p’s utility is

Πp(T 1, . . . , Tm) =
∑

t∈Tp

−F p
t +

T∑

t=min{Tp}

(Pt(St)− Cp
ūp)+

bt
(Pt(St)− Cp

ūp). (5)

In conclusion, the sets of periods with positive production for all the players are sufficient to describe a
pNE. This fact significantly simplifies the game analysis in Section 6 and Section 7. In what follows, we use
the notation of Proposition 3: St is the set of players participating in the market of period t and Pt(St) is
the unit market price of period t for the set of players St.

Proposition 3 leads to a natural variant of ULSG: restrict each player p’s strategy to her set T p ⊆
{1, . . . , T, T + 1} of production periods and compute her utility according to utility (5); call this modified
game by ULSG-sim. Proposition 3 associates output quantities to each profile of strategies in ULSG-sim.
Because these output quantities are optimal for the fixed sets of production in ULSG-sim, the set of pNE of
ULSG-sim propagates to the original ULSG:

1By optimal output quantities it must be understood the quantities of an pNE for the game in which production periods are
fixed beforehand.
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Proposition 4 Any pNE of an ULSG-sim is a pNE of the associated ULSG.

Therefore, ULSG can have a larger set of pNEthan ULSG-sim. In fact, there are pNE for ULSG that are
not pNE of ULSG-sim. Example 1 shows this situation.

Example 1 Consider the following instance with m = 2, T = 2, a1 = 12, a2 = 9, b1 = b2 = 1, F 1
1 = 15, F 1

2 =
5, F 2

1 = 7, F 2
2 = 19 and C1

1 = C1
2 = C2

1 = C2
2 = 0. Note that the absence of variable costs implies that it is a

dominant strategy to produce only once.

In the original game, x1 = q1 = (0, a2

3b2
) = (0, 3) and x2 = ( a1

2b1
+ a2

3b2
, 0), q2 = ( a1

2b1
, a2

3b2
) = (6, 3) represents

a profile of strategies that is a Nash equilibrium of ULSG with player 1’s utility equal to 4 and player 2’s
utility equal to 38; if player 1 (player 2) does not participate in the game her utility decreases to zero, thus
player 1 (player 2) does not have incentive to unilaterally deviate from the equilibrium and not produce; if
player 1 decides to produce in period 1, then, by Proposition 2, she would produce x1 = ( a1

4b1
+ a2

3b2
, 0) and

introduce in the market q1 = ( a1

4b1
, a2

3b2
), decreasing her utility to 3; if player 2 decides to produce in period 2,

then, by Proposition 2, she would produce x2 = (0, a2

3b2
) and place on the market q2 = (0, a2

3b2
), decreasing her

utility to -10.

Let us verify if the profile of strategies in ULSG-sim associated with the pNE to ULSG described above,
T 1 = {2} and T 2 = {1}, is a pNE for ULSG-sim. Player 1’s utility for the profile of strategies under
consideration is 4. Since player 1’s utility is positive, the player has incentive to participate in the game. It

remains to check if player 1 has incentive to produce in period 1. If player 1 deviates to T 1 = {1} then the

associated utility is −F 1
1 +

a2
1

9b2
1

+
a2

2

9b2
2

= −15 + 16 + 9 = 10 which is greater than when player 1 produces in

period 2. Thus, T 1 = {2} and T 2 = {1} is not an equilibrium of ULSG-sim.

In Section 7, we compute a pNE for a special case of the ULSG-sim (and hence for the ULSG), using a
potential function argument. The ULSG-sim, however, is not always a potential game like the ULSG (as we
will show in the next section); this is illustrated by Example 2.

Example 2 Consider the instance of ULSG-sim with m = 2, T = 2, a1 = 20, a2 = 40, b1 = b2 = 1,
F 1

1 = 17, F 1
2 = 10, F 2

1 = 18, F 2
2 = 10, C1

1 = 7, C1
2 = 5, C2

1 = 17 and C2
2 = 1. The following relations for the

players’ utilities imply that a potential function Φ must satisfy Φ({1}, {1}) < Φ({1}, {1}) which is impossible:

Π1({1}, {1}) =
8305

36
< Π1({2}, {1}) =

2119

9

Π2({2}, {1}) = −83

36
< Π2({2}, {3}) = 0

Π1({2}, {3}) =
1185

4
< Π1({1}, {3}) =

595

2

Π2({1}, {3}) = 0 < Π2({1}, {1}) =
7

9
.

The discussion above clarifies the advantages and disadvantages of investigating ULSG through ULSG-
sim.

5 Existence and Computation of Equilibria

Nash [15] proved the existence of a Nash equilibrium (pure or not) for any game with a finite number of players
and finitely many strategies. However, in the ULSG the players’ strategies are not finite and, therefore, Nash’s
result does not hold. In the literature that extends the discrete sets of strategies to continuous ones, there
are results about the Nash equilibria existence. However, these results typically assume either well-behaved
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conditions on the players’ profit functions, which do not hold for our model, or conditions in the game that
are hard to verify. See for example the famous existence result by Arrow and Debreu [2].

If there were no set-up costs and T = 1, we would be under the classical Cournot competition where,
clearly, the players with smallest variable costs will be the ones sharing the market; this will be treated in
detail in Section 6. If we relax T to be arbitrary but keep the restriction of only variable costs, the problem
is equivalent to solving the Cournot competition for each period t separately and considering the player p’s
variable cost in period t equal to minu=1,...,t C

p
u, this is, each player participates in market t by producing in

advance in the least expensive period. In summary:

Theorem 1 When F p
t = 0 for p = 1, 2, . . . ,m and t = 1, 2, . . . , T , then the set of pNE for ULSG, projected

onto the variables (x, h, q) is contained in a polytope and the market price is equal for all the pNE. Further-
more, unless the problem is degenerate ( i.e.., there are at least two players for which the production costs
coincide with the market price in an equilibrium), there is only one pNE, and it can be computed in polynomial
time.

Next, we investigate the effect on the equilibria search when set-up costs are introduced in the game.

In what follows we show that our game possesses at least one pNE through the concept of potential game.

Proposition 5 The ULSG is a potential game that contains pNE, one of them being a maximizer in X of the
game potential function

Φ(y, x, h, q) =

m∑

p=1

T∑

t=1


−F p

t y
p
t − C

p
t x

p
t +


at −

bt
2

(2qpt +
∑

i6=p

qit)


 qpt


 (7a)

=
m∑

p=1


Πp

(
yp, xp, qp, q−p

)
+

T∑

t=1


q

p
t bt
2

∑

i6=p

qit




 . (7b)

Proof. The fact that ULSG is a potential game with the exact potential function (7) is a direct result from
Ui [22]. Ui explicitly gives the potential function for any Cournot competition where the profit functions u

on the strategies x have the form up(xp) =
∑

j 6=p w
j,p(xj , xp) − hp(xp), for functions wj,p, hp satisfying the

symmetry condition wj,p(xj , xp) = wp,j(xp, xj) for all xj , xp, j 6= p.

It is also well known that a strategy maximizing the potential function of a potential game is a pure
Nash equilibrium (Monderer and Shapley [14]). More generally, if we define the neighborhood of a point
(y, x, h, q) ∈ X to be any point in X such that only one player modifies her strategy then, any local maximum
of the potential function Φ(y, x, h, q) is a pNE. It only remains to check that the potential function Φ
has indeed a maximum in the domain of feasible strategies. This follows from the fact that Φ is a linear
combination of binary variables (and hence, bounded) plus a concave function (see Appendix A).

Given that ULSG is potential and its potential function has an optimum, a pNE can be found: assign
a profile of strategies for the players; while there is a player with incentive to unilaterally deviate from the
current profile of strategies, replace her strategy by one that improves that player’s utility; when no player
can improve, an equilibrium was found. This is called a tatônnement process or adjustment process, which
for ULSG is guaranteed to converge to a pNE, since in each iteration the value of the potential function
strictly increases. Although each iteration of the process can be performed in polynomial time (Lemma 1),
we could not prove that the number of iterations is polynomial in the size of the input, which would imply
that the tatônnement process runs in polynomial time.

Alternatively, in order to find an equilibrium, one could compute a maximum of the potential function
Φ(y, x, h, q) in X which amounts to solve a concave mixed integer quadratic programming probme (MIQP),
see the proof in Appendix A. Once the binary variables y are fixed, i.e., production periods have been
decided, maximizing the potential function amounts to solve a concave quadratic problem and therefore, a
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maximum can be computed efficiently. In particular, recall from Theorem 1, that if there are no set-up costs
(which is equivalent to say that the binary variables ypt are set to zero and constraints (1c) are removed)
there is (in general) a unique equilibrium which can be found in polynomial time. Once set-up costs are
considered, the analyses seems to complicate as indicated by the fact that a player’s advantage in the game
is not anymore a mirror of her variable cost alone. Since computing an equilibrium through the potential
function maximization implies solving an MIQP which in general is hard, we will restrict our study to simpler
cases (single period and only set-up costs) in an attempt to get insight in the understanding of the game’s
equilibria.

6 Single Period Case

In all this section we restrict our attention exclusively to the case with a single period (T = 1). For simplicity,
we drop the subscript t from our notation. Note that in this setting the quantities produced are exactly those
placed in the market (x = q). Also, by Proposition 3, the problem of computing equilibria reduces to
deciding the set of players producing strictly positive quantities. We show that characterizing the set of
pNE is a weakly NP-complete problem (in a sense to be defined), that admits a pseudopolynomial time

algorithm. Moreover, we can find one such pNE in polynomial time. All these results follow from a simpler
characterization of the equilibrium conditions that we now describe.

In a pNE, a subset of producers S ⊆ {1, 2, . . . ,m} play a strictly positive quantity. By the definition of
pNE, no player in S has incentive to stop producing (leave S) and a player not in S has no incentive to start

producing (enter in S). Therefore, applying Proposition 3, a player p in S must have non-negative utility

− F p +
(P (S)− Cp)+

b
(P (S)− Cp) ≥ 0 ⇔ P (S) ≥

√
F pb+ Cp, (8)

while a player p not in S must have non-positive utility if she enters S, even if producing the optimal quantity
(P (S)−Cp)+

2b given by Proposition 2

− F p +
(P (S)− Cp)+

2b

(P (S)− Cp)

2
≤ 0 ⇔ P (S) ≤ 2

√
F pb+ Cp. (9)

To find one pNE efficiently, we propose Algorithm 6.0.1. In a nutshell, this algorithm uses the lower
bounds to P (S) given by conditions 8 to order the players in step 1. Starting from S = ∅, it adds a player

to S whenever she has advantage in joining the current S (step 4). Since a player p will only join S if her
variable cost Cp is no larger than the market price, it is easy to see that P (S) decreases whenever a player
is added to S (note that according with Section 4 P (S) is simply the average of the variable costs together
with the parameter a). Thus, once in iteration k, if player p did not had incentive to enter S then, she will
never have it in the future updates of S. On the other hand, taking into account the order of the players,
whenever player p has incentive to be added to S, we have P (S ∪ {p}) >

√
F pb + Cp ≥

√
F ib + Ci for all

i ∈ S, ensuring condition (8). This shows that the algorithm outputs correctly a pNE.

In Algorithm 6.0.1, step 1 involves ordering a set of m numbers, which can be done in O(m logm) time.
Then, a cycle which can cost O(m) time follows. In this way, it is easy to conclude that the algorithm runs
in time O(m logm).

Theorem 2 Algorithm 6.0.1 outputs a pNE and runs in O(m logm) time.

In particular, the last theorem implies that there is always at least one pNE. To see that there can be
more than one, consider an instance where all players have Cp = 0 and F p = F . Then Algorithm 6.0.1 will
stop adding elements when P (S) = a/(|S| + 1) < 2

√
Fb. But since the order is arbitrary, this means that

any set S of cardinality da/(2
√
Fb)e − 1 is a pNE. Therefore, an alternative to overcome the multiplicity of

equilibria would be to search for the best pNE according to a given criteria. In other words, the goal would
be to determine the pNE that maximizes

∑
i∈S v

i, where S is the set of players producing in the pNE. The
decision version of this problem is the following:

Problem: Optimize 1-Period Uncapacitated Lot Sizing Game
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Algorithm 6.0.1

Require: A single period ULSG instance.
Ensure: A subset S of players producing strictly positive quantities in a pNE.

1: Assume that the players are ordered according with
√
F 1b+ C1 ≤

√
F 2b+ C2 ≤ . . . ≤

√
Fmb+ Cm.

2: Initialize S ← ∅
3: for 1 ≤ p ≤ m do
4: if Cp + 2

√
F pb < P (S) then

5: S S ∪ {p}
6: else
7: if P (S ∪ {p}) ≥

√
F pb+ Cp then

8: Arbitrarily decide to set p in S.
9: end if

10: end if
11: end for
12: return S

Instance: Positive reals a, b, B, vectors C,F ∈ Zm
+ and v ∈ Zm. (1P-LSG-OPT)

Question: Is there a subset S of {1, 2, . . . ,m} such that
∑

i∈S
vi ≥ B (10a)

Cp +
√
F pb ≤ P (S) ∀k ∈ S (10b)

Cp + 2
√
F pb ≥ P (S) ∀k /∈ S ? (10c)

It turns out that 1P-LSG-OPT is NP-complete and thus, likely to be an intractable problem. We prove

this through a reduction from Partition (given a set of n positive integers, find if they can be split into two
groups with identical sum), which is weakly NP-complete [7].

Theorem 3 1P-LSG-OPT is NP-complete.

Proof. Given a set S ⊆ {1, 2, . . . ,m}, constraints (10a), (10b) and (10c) can be verified in polynomial time
in the size of the instance. Therefore, 1P-LSG-OPT is in NP.

We show that 1P-LSG-OPT is NP-complete by a reduction from Partition. Let {ai}i=1..m be an
instance of Partition. Set A = 1

2

∑m
i=1 ai and M = 1 + 2A. We construct the following instance of

1P-LSG-OPT.

• Set b = 1, a = Am, and B = M −A.

• I = {1, 2, . . . ,m} is a set of m players such that for each element i = 1, 2, . . . ,m − 1 set Ci = ai,
F i = (A− Ci)2 and vi = −ai, and Cm = am, Fm = (A− Cm)2 and vm = −am +M .

• D = {m + 1,m + 2, . . . , 2m − 1} is a set of m − 1 dummy players such that for each element i =

m+ 1,m+ 2, . . . , 2m− 1 set Ci = 0, F i =
(
A
2

)2
and vi = 0.

• Set an upper bound player UB with CUB = A, FUB = 0 and vUB = −3M .

(Proof of if). For a YES instance of Partition, there is Z ⊆ {1, 2, . . . ,m} so that
∑

i∈Z ai = A and

m ∈ Z. Note that S = Z ∪ {m+ 1,m+ 2, . . . , 2m− |Z|} is a solution to 1P-LSG-OPT, with |S| = m, and
whose market price P (S) equals

a+
∑

i∈S C
i

|S|+ 1
=
Am+

∑
i∈Z ai

m+ 1
=
Am+A

m+ 1
= A.

Let us verify that the S is indeed a YES instance for 1P-LSG-OPT.
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Inequality (10a) is satisfied: since m ∈ Z ⊆ S, then

∑

i∈S
vi = M −

∑

i∈Z
ai = M −A = B.

Inequalities (10b) hold for S:

Cp +
√
F pb = ap +

√
(A− ap)2 = A = P (S), ∀p ∈ S ∩ I = Z

Cp +
√
F pb = 0 +

√(
A

2

)2

=
A

2
≤ P (S), ∀p ∈ S ∩ D.

Inequalities (10c) hold: using ap < A for p = 1, 2, . . . ,m, it follows that

Cp + 2
√
F pb = 2A− ap ≥ A = P (S), ∀p ∈ I \ S

Cp + 2
√
F pb = A = P (S), ∀p ∈ D \ S

CUB + 2
√
FUBb = A = P (S).

(Proof of only if). It is easy to check that the vi values and B are set in such a way that any YES instance
S of 1P-LSG-OPT must contain player m, but cannot contain the upper bound player UB.

Using inequalities (10b) and (10c) for players m and UB, respectively, it follows that P (S) must be equal

to A. In particular

P (S) = A⇒
Am+

∑
i∈S∩I ai

|S|+ 1
= A⇒

∑

i∈S∩I
ai = A(|S|+ 1−m).

Since m ∈ S,
∑

i∈S∩I ai > 0 and thus, the right-hand-side above is positive, leading to |S| > m−1. Moreover,
since this is a YES instance

∑
i∈S∩I ai ≤ A and thus |S| ≤ m. Therefore, |S| = m and

∑
i∈S∩I ai = A.

Theorem 3 shows that maximizing a linear function over the set of pNE is hard, assuming P 6= NP . Yet,
we can build a pseudo-polynomial time algorithm to solve this problem if Ci are integer: let Lp = Cp +

√
F pb

and Up = Cp + 2
√
F pb for p = 1, 2, . . . ,m. We propose to solve this problem using Algorithm 6.0.2, where

H(k, l, r, s, C) is the optimal value of the problem limited to players {1, 2, . . . , k}, where |S| = l, the tightest

lower bound is Lr, the tightest upper bound is Us and C =
∑

i∈S C
i.

From each (k, l, r, s, C), we can choose to either add k + 1 or not to the set S, leading to the updates of
lines 3 and 4, respectively. At the end, the optimal objective function value is given by the maximum entry
H(m, l, r, s, C) leading to a feasible solution. It is easy to build the optimal S by a standard backward pass
of the underlying recursion.

Algorithm 6.0.2

Require: A single period ULSG instance and a vector v ∈ Zm.
Ensure: The optimal value of the input function associated with p over the set of pNE.

1: Initialize H(·)← −∞ but H(0, 0, 0, 0, 0) 0.

2: for k = 0 to m− 1; l, r, s = 0 to k; C = 0 to
∑k

i=0 C
i do

3: H(k + 1, l + 1, arg maxi=k+1,r Li, s, C + Ck)
max(H(k + 1, l + 1, arg maxi=k+1,r Li, s, C + Ck), H(k, l, r, s, C) + vk+1)

4: H(k + 1, l, r, arg mini=k+1,s Ui, C)←
max(H(k + 1, l, r, arg mini=k+1,s Ui, C), H(k, l, r, s, C))

5: end for
6: return arg maxl,r,s,C{H(m, l, r, s, C)|Lr ≤ a+C

l+1 ≤ Us}.

Therefore we have established the following result.
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Theorem 4 If Ci integer for i = 1, . . . ,m, finding the optimal pNE in the 1-period lot-sizing game can be
solved in O(m4

∑m
k=1 C

k) time.

The potential function (7) restricted to this case, i.e., T = 1 and domain 2m (power set of {1, 2, . . . ,m}),
is submodular. Thus, an alternative could be to solve to maximize this submodular function. It is well-known
that submodular functions are hard to maximize. This is the reason why we built an algorithm to compute
a pNE which is not based on this function.

7 Congestion Game Equivalence

Throughout this section, we approach the ULSG with only set-up costs, i.e., Ck
t = 0 for all k = 1, 2, . . . ,m

and t = 1, 2, . . . , T . There are two immediate important observations valid in this special case. One is that
it is always optimal for a player to produce only once in order to minimize the set-up costs. Another is that
the strategies in a pNE depend only on the number of players sharing the market in each period. From

Proposition 3, if St are the players participating in period t, then their revenue is
a2
t

bt(|St|+1)2 , with a market

price of Pt(St) = at

|St|+1 .

These observations lead to a connection with congestion games. A congestion game is one where a
collection of players has to go from a (source) vertex in a digraph to another (sink) and the cost of using an
arc of the graph depends on the number of players also selecting it in their paths; each player’s goal is to

minimize the cost of her path; see Rosenthal [18]. We can easily reformulate ULSG-sim as a congestion game:
consider a digraph G = (N ,A), where N = S ∪T with S = {s1, s2, . . . , sm} and T = {1, 2, . . . , T, T +1}, and
A = F ∪ P with F = {(sk, t) : k = 1, 2, . . . ,m and t = 1, 2, . . . , T + 1} and P = {(t, t+ 1) : t = 1, 2, . . . , T}.
The cost of arcs (sk, t) ∈ F equals F k

t ; the cost of arcs (t, t + 1) ∈ P equals − a2
t

bt(1+n)2 , where n is the
number of players selecting this arc. Finally, for each player k the source vertex is sk and the sink is T + 1.
Figure 1 illustrates this transformation. This reformulation has polynomial size since, the number of vertices

is m+ T + 1 and the number of arcs is m(T + 1) + T (note that the size of ULSG is O(mT ) since mT set-up
costs are given).

1 2 T T + 1

− a2
1

b1(1+|S1|)2
− a2

2
b2(1+|S1|+|S2|)2

−
a2
T−1

bT−1(1+
∑T−1

u=1 |Su|)2
− a2

T
bT (1+

∑T
u=1 |Su|)2

s1

F 1
1 F 1

2

s2

0
F 1

T

F 2
1 F 2

2
F 2

T 0

. . .

Figure 1: Congestion game for ULSG-sim with m = 2.

Any congestion game is a potential game, as proved by Rosenthal [18] (the converse is also true, see
Monderer and Shapley [14]). Rosenthal [18] provides a potential function which in our case is

Φ(t1, . . . , tm) =
m∑

k=1

−F k
tk +

T∑

t=1

nt∑

k=1

a2
t

(k + 1)2bt
, (14)

where tk ∈ {1, 2, . . . , T+1} is the period in which player k produces and nt is the number of players producing
before or at period t (i.e., the cardinality of the set {k : tk ≤ t, k = 1, . . . ,m}). Using the same argument
as in proof of Proposition 7, one can prove that a maximizer of 14 is a pNE for ULSG-sim and thus, by
Proposition 4, for ULSG.
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s1 s2 sm

T + 1

s

F 1
1 F 1

2

Fm
1

Fm
2

Fm
T+1

0 00

{
a2
1

b1(1+k)2

}
k=1..m

{
a2
T

bT (1+k)2

}
k=1..m

F 1
T+1

1

supply m

demand m
2

- -

Figure 2: Minimum cost flow approach to optimize (14). All arcs have unit capacity.

For this specific problem, maximizing the potential function (14) is equivalent to solving the minimum
cost flow problem in the following network (see Figure 2):

• consider a digraph G = (N ′,A′) where N ′ = {s} ∪ S ∪ T with S = {s1, s2, . . . , sm} and T =
{1, 2, . . . , T, T + 1}, and A′ = I ∪ F ∪ P ′ with I = {(s, sk) : k = 1, 2, . . . ,m}, F = {(sk, t) : k =
1, 2, . . . ,m and t = 1, 2, . . . , T + 1} and P ′ = {(t, t + 1) : t = 1, 2, . . . , T and k = 1, . . . ,m} (m parallel

arcs).

• for (s, sk) ∈ I the cost is 0 and capacity is 1;

• for (sk, t) ∈ F the cost is F k
t and capacity is 1; set F k

T+1 = 0;

• for (t, t+ 1) ∈ P ′ and k = 1, . . . ,m, the cost is − a2
t

bt(1+k)2 and capacity is 1;

• the supply is m in vertex s and the demand at T + 1 is m.

Observe that this reformulation is polynomial in the size of an ULSG instance: the network has 1+m+T+1
vertices and m + m(T + 1) + mT arcs. The advantage of this reformulation is that solving a min-cost flow

problem can be done in polynomial time (see Goldberg and Tarjan [8]). The solution of this minimum cost
flow problem is the optimal flow in each arc of the graph 2. From this solution, we extract the players’
production periods in an equilibrium of ULSG-sim: the arcs in F with positive flow (in particular, the flow

is 1 since the solution is integer and respects the arcs capacity) give the periods for each player to produce.

There is an alternative approach to compute a, possibly distinct, pNE. A maximum of the potential
function (7) is a pNE and it is in the subset of strategies in which the players decide the production period
and choose the optimal quantities according to Proposition 3. Therefore, restricting function (7) to this
subset of strategies, it simplifies to

Φ(t1, t2, . . . , tm) =
m∑

p=1


−F p

tp +
T∑

t=tp

a2
t

bt(nt + 1)2
+

T∑

t=tp

a2
t

2(nt + 1)
(nt − 1)

a2
t

(nt + 1)bt




=
m∑

p=1

−F p
tp +

T∑

t=1

a2
t

2bt(nt + 1)
nt (15a)

=
m∑

p=1

−F p
tp +

T∑

t=1

nt∑

i=1

a2
t

2i(i+ 1)bt
. (15b)

Once again, computing the maximum of (15b) is equivalent to solving a minimum cost flow problem similar

to the one in Figure 2 (the difference is in the cost of the arcs (t, t + 1) which are { a2
t

2k(k+1)bt
}k=1,...,m for

t = 1, . . . , T ).
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We remark that there are instances for which the optimal solutions for the maximums of 14 and 15b do
not coincide and thus, two possibly distinct pNE can be computed in polynomial time.

The results of this section are summarized in the following theorem.

Theorem 5 When Ck
t = 0 for k = 1, 2, . . . ,m and t = 1, 2, . . . , T , a pNE for an ULSG can be computed in

polynomial time by solving a minimum-cost network flow problem.

8 Extensions

8.1 Inventory costs

In the lot-sizing problem, inventory costs must in general, be taken into account. It is a natural aspect in
real-world applications that influences the optimal production plans. However, if inventory costs for each
period are considered in the objective function, using the flow conservation constraints, an uncapacitated
LSP can be transformed in an equivalent one without inventory costs, which are included in the updated

variable production costs. In ULSG, if each player p’s objective (1a) considers inventory costs Hp
t for each

period t, an analogous replacement of the inventory variables hpt (through constraint (1b)) results in updated
variable production costs, but also in new market prices; these market prices now depend on each player’s

inventory costs; therefore, since in the results previously presented we consider equal market prices for each
player, the inclusion of inventory costs requires their adaption.

Proposition 6 Consider an ULSG with each player p’s utility function equal to

Πp(yp, xp, hp, qp, q−p) =

T∑

t=1

Pt(qt)q
p
t −

T∑

t=1

Cp
t x

p
t −

T−1∑

t=1

Hp
t h

p
t −

T∑

t=1

F p
t y

p
t . (16)

The results presented in Section 4 and Section 5 for each player p hold if the market size parameter at is
replaced by apt = at +

∑T−1
u=t H

p
u, variable cost Cp

t is replaced by Ĉp
t = Cp

t +
∑T−1

u=t H
p
u and the market price

Pt(St) is replaced by P p
t (St) = apt +

∑
i∈St

(
Ĉi

ti
j
−ai

t

)
|St|+1 .

Proof. One can use constraints (1b) to eliminate the inventory variables in player p’s objective function (16).

Thus, using hpt =
∑t

u=1(xpt − q
p
t ) in the objective function (16), leads to

Πp(yp, xp, hp, qp, q−p) =
T∑

t=1

(apt − btqt)+qpt −
T∑

t=1

Ĉp
t x

p
t −

T∑

t=1

F p
t y

p
t .

and the proof follows.

8.2 Other equilibria

According with Section 3, the players stay committed to a strategy from the beginning of the game, the
firms play simultaneous their quantities in each period and their objective is to maximize their own profit.
However, these assumptions might not hold: (i) firms can change their strategies in each time period or (ii)
there can be a firm (leader) that selects her quantity in the market before the other participants (followers).
Thus, other equilibria can arise in the game. We will illustrate these alternative equilibria through examples.

8.2.1 Subgame-perfect equilibrium

Strategies can incorporate dynamic decisions which are dependent of what has been observed in past periods.
This dynamic allows firms to reach equilibrium strategies that can be substantially different with respect to
those observed on static games.

We will restrict to symmetric lot-sizing games with 2 players and 2 periods. If a, b, c and F defines one of
these periods, a static equilibrium could arise when one of the players plays:
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• the monopoly quantity to place in the market is a−c
2b with profit (a−c)2

4b − F

• the duopoly quantity to place in the market is a−c
3b with profit (a−c)2

9b − F

On the other hand, if the firms cooperate in order to maximize their total profit in each period, each of them

plays (a−c)
4b for a profit (a−c)2

8b −F . Achieving cooperation even at one period is not possible on static games.

With dynamic strategies, the firms can achieve cooperation. Let us consider an instance of ULSG with
market a2 = a1 = a2M = 24M , b1 = b2M

2 = M2 and production costs F 1
1 = F 1

2 = 0, F 2
1 = F 2

2 = 49,
C1

1 = C1
2 = 20M and C2

1 = C2
2 = 0. The constant M = 10 is not substituted for convenience. The game

proceeds in two rounds. First, firms decide simultaneously their production and market placing in period 1.
After these decisions are revealed, firms decide simultaneously their production and market placing in period
2.

In period 2 the monopoly and duopoly quantities are 12 and 8 respectively, leading to profits of 144−49 > 0
and 64 − 49 > 0. It can be easily checked that both cases lead to a Nash Equilibrium. Consider now the
following “dynamic” strategy:

• Play the cooperative quantity in period t = 1. This means, to produce and place in the market
q = (a1−c1)

4b1
= 1/M .

• If in period t = 1 both players cooperated, play the duopoly quantity (q = 8) in period two. Otherwise,

– If you cooperated, play to reach the Nash equilibrium of the subgame in the second period that
minimizes the profit of the other player.

– If the other player cooperated, play to reach the Nash equilibrium of the subgame in the second

period that minimizes your own profit.

– If neither player cooperated, play to reach any predefined Nash equilibrium, e.g., the one that
minimizes the difference of profits of the combined game.

If both players follow this strategy, they will cooperate in period 1 and then play the duopoly quantity in
period 2. Note that this is strictly better than playing the duopoly quantities in both periods (which is the
closest equilibrium you can obtain in the static case). The strategy relies on multiple equilibria to establish

a threat: a firm offers to cooperate in period 1; however, if the other does not cooperate, the firm will select
in period 2 the Nash equilibrium that will minimize the profit of the deviating firm.

We will show that this strategy leads to a subgame perfect equilibrium [5]. This is a refinement of the
Nash equilibrium concept that enforces the credibility of the threats that are or could be played at every

period. It implies that no matter what players do in period 1, they must play to reach a Nash Equilibrium
in period 2. We did not explicitly specify the equilibria to be played in period 2 because Proposition 2 does
not necessarily apply to dynamic games, since a player could have incentive to hold inventory from period 1
to period 2 for strategic reasons (e.g., to prevent an equilibrium from happening).

We will prove that this strategy induces a subgame perfect equilibrium by using the one shot deviation
principle [5], which basically allows us to look at deviations from the equilibrium strategy that only change
in one period. Because the game is symmetric, we will assume that player 2 sticks to the strategy, while
player 1 attempts to deviate in order to increase her profit:

• Deviations in period 2: if player 1 follows the strategy in period 1, then cooperation is achieved. In
period 2, the player 1 has no incentive to deviate from their strategy, since they are playing the duopoly
equilibrium.

• Deviations in period 1: Because player 1 is deviating in period 1, she may want to build some inventory
q̄ in period 1 to place in the market of period 2. We claim that in any profitable deviation, q̄ is bounded
by a constant. Indeed, each unit held costs 20M to produce, which is then sold by at most 24 per
unit. So there is at least a loss of 20M − 24 = 176 per unit held. Even as a monopoly, the most that

player 1 can get in both periods is upper bounded by 4+144 =148, so holding q̄ cannot be convenient
for q̄ ≥ 148/174.
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Because player 1 follows the strategy in period 2, but does not cooperate in period 1, then in period
2 the Nash equilibrium that minimizes the profit of player 1 will be played. The worst possible Nash
equilibrium for player 1 is one in which she does not produce: player 2 will try to maximize (24−(q̄+q))q,
so q = 12 − q̄/2. Since player 1 places q̄ < 148/174 < 2, the profit of player 2 in period 2 is at least
(12− q̄/2)2−49 > 112−49 > 0, so it is profitable for player 2 to enter the market in period 2. It is easy
to check that the best response to this quantity is actually not produce (even with q̄ = 0 the profit is
upper bounded by 36− 49 < 0), so indeed this leads to a Nash equilibrium in which player 1 does not
produce in period 2.

Therefore, from the perspective of player 1, deviating in period 1:

– It can give an increased profit in period 1. This profit can increase from 2 (playing cooperatively)
to 9/4 playing the best response to the cooperative quantity. So the increase is upper bounded by
1/4.

– Leads to player 1 not to produce in period 2. This causes a loss of the entire duopoly profit of
64− 49 = 15.

– Holding inventory only leads to further losses.

It follows that deviating in period 1 is not profitable.

8.2.2 Stackelberg equilibrium

Consider the instance of ULSG with m = 3, T = 1, a1 = a, b1 = b, F 1
1 = F 2

1 = F 3
1 = 0, C1

1 = C2
1 = C3

1 = c.
Let firm 1 be the leader (plays first) and firm 2 and 3 are the followers. Firms 2 and 3 play simultaneously,

thus, according with 2, they produce q2 = a−b(q1+q3)−c
2b and q3 = a−b(q1+q2)−c

2b , respectively. Therefore,

q2(q1) = a−bq1−c
3b and q3(q1) = a−bq1−c

3b . Since firm 1 plays first and knows the optimal strategies for firm 2

and 3 according with her quantity q1, her optimal strategy is q1 = a−c
2b which leads firm 2 and 3 to play a−c

6b .

This example shows the advantage of the leader of influencing the equilibrium strategies of the followers.

9 Conclusions and open problems

In the uncapacitated lot-sizing game, the production cost of player p in period t depends on two parameters:
the variable cost Cp

t and the set-up cost F p
t . When we consider production costs with only one of these

parameters or a single period, the problem of computing a pure equilibrium becomes tractable, although
characterizing the set of pure equilibria is NP-complete. The question of whether finding an optimal pNE

Problem Compute one pNE Characterize the set of pNE
ULSG with T = 1 P NP-complete
ULSG with F = 0 P P
ULSG with C = 0 P ?

ULSG ? NP-complete

Table 1: Computational complexity of ULSG.

is a tractable problem when there are no variable costs remains open. Another open question is whether a
pNE can be efficiently computed for the general case (i.e., more than one period and no restriction on the
costs). Table 1 summarizes our findings.

A typical constraint in the lot-sizing problem is the presence of positive initial and final inventory quan-

tities, which for the uncapacitated case can be assumed to be 0, without loss of generality, by modifying the
demands (see Pochet and Wolsey [17]). In one hand, considering positive initial and final inventory quantities
in ULSG for each player does not interfere with the fact that the game is potential, since the the objective
function does not change. On the other hand, this is problematic when characterizing each player’s best
response, since in the game there is no fixed demand to satisfy. Therefore, it is interesting to study the
influence of relaxing the assumption that initial and final inventories are zero in future research.
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When production capacities are introduced in LSP, it becomes NP-complete (see [17]). Thus, if there
are players’ production capacities for each period in our game, solving each player’s best response becomes
NP-complete. Note that this does not interfere in the formulation of a player’s utility function, and thus the
game remains potential with only the potential function domain reduced by the limitations imposed buy the
production capacity.

Therefore, including more restrictions (e.g. positive initial and/or final inventory quantities, production
capacities) on the lot-sizing model of each player will not change the fact that the game is potential and
thus, that it possesses a pure pNE. It remains to understand the computational complexity of maximizing
the potential function (and thus, computing a pNE).

A promising line for future research is the consideration of equilibria which allow players to change
strategies in each period of the game, instead of being committed to a decision from the beginning of it.
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A Concavity of the Potential Function for ULSG

The canonical form in MIQP for the potential function 7 is:

T∑

t=1

m∑

p=1

[−F p
t y

p
t − C

p
t x

p
t + atq

p
t ]− 1

2
qᵀQq

where:

Q =




2b1 b1 b1 . . . b1 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
b1 2b1 b1 . . . b1 0 0 0 . . . 0 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...
b1 b1 b1 . . . 2b1 0 0 0 . . . 0 0 0 . . . 0 0 . . . 0
0 0 0 . . . 0 2b2 b2 b2 . . . b2 0 . . . 0 0 0 . . . 0
0 0 0 . . . 0 b2 2b2 b2 . . . b2 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...
0 0 0 . . . 0 b2 b2 b2 . . . 2b2 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...
0 0 0 . . . 0 0 0 0 . . . 0 0 . . . 2bT bT bT . . . bT
0 0 0 . . . 0 0 0 0 . . . 0 0 . . . bT 2bT bT . . . bT
...

...
...

. . .
...

...
...

...
. . .

...
...

...
. . .

...
... . . .

...
0 0 0 . . . 0 0 0 0 . . . 0 0 . . . bT bT bT . . . 2bT




and:
q =

(
q1
1 q2

1 . . . qm1 q1
2 q2

2 . . . qm2 . . . q1
T q2

T . . . qmT
)
.

If the matrix Q is positive semi-definite, then the problem of maximizing the potential function 7’s

continuous relaxation over X becomes concave (concave quadratic programming optimizations can be solved
in polynomial time). If the eigenvalues of Q are all positive, then Q is positive definite (in particular, semi-
definite). Matrix Q is a block matrix, thus the eigenvalues of Q are the eigenvalues of each of its blocks; see
Anton and Rorres [1] for details in linear algebra. The eigenvalues for each of the diagonal blocks of Q are
given in the following lemma.

Lemma 2 A matrix with dimension m×m and the form:

B =




2b b . . . b
b 2b . . . b
...

...
. . .

...
b b . . . 2b




has exactly two distinct eigenvalues: (m+ 1)b and b.
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Proof. Suppose that (x1, x2, . . . , xm) is an eigenvector for B corresponding to an eigenvalue λ. Then by
definition:




2b b b . . . b
b 2b b . . . b
... · · ·

. . . . . .
...

b b b . . . 2b







x1

x2

...
xm


 = λ




x1

x2

...
xm


⇔




bx1 + bx2 + . . . bxm
bx1 + bx2 + . . . bxm

...
bx1 + bx2 + . . . bxm


 =




x1(λ− b)
x2(λ− b)

...
xm(λ− b)


 .

One solution for the system above is the eigenspace associated with the eigenvalue b:

Eb = {(x1, x2, . . . , xm) : x1 + x2 + . . .+ xm = 0},

which has dimension m − 1 (number of linear independent vectors). Another solution is the eigenspace
associated with the eigenvalue (m+ 1)b:

E(m+1)b = {(x1, x2, . . . , xm) : x1 = x2 = . . . = xm},

which has dimension 1.

Note that Eb∩E(m+1)b = {(0, 0, . . . , 0)}, and thus the dimension of Eb∪E(m+1)b is m, which cannot exceed
the dimension of B. Therefore, (m+ 1)b and b are all distinct eigenvalues.

Corollary 1 For an ULSG with m players, the eigenvalues associated with Q are:

{(m+ 1)b1, (m+ 1)b2, . . . , (m+ 1)bT , b1, b2, . . . , bT }.

Corollary 2 For an ULSG with m players, the associated Q is symmetric positive definite.

Proof. All eigenvalues of Q are positive, since bt > 0 for t = 1, . . . , T .

Corollary 3 Maximizing function 7 over the set of feasible strategies X is a concave MIQP.
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