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Abstract. The standard one-electron reduction potentials of halogen atoms, E°’(Χ•/–), and many 

other radical or unstable species, are not accessible through standard electrochemical methods. 

Here we report the use of two Ir(III) photoredox catalysts to initiate chloride, bromide, and iodide 

oxidation in organic solvents. The kinetic rate constants were critically analyzed through a derived 

diffusional model with Marcus theory to estimate E°’(Χ•/–) in propylene carbonate, acetonitrile, 

butyronitrile, and dichloromethane. The approximations commonly used to determine diffusional 

rate constants in water gave rise to serious disagreements with experiment, particularly in high 

ionic strength dichloromethane solutions, indicating the need to utilize the exact Debye 

expression. The Fuoss equation was adequate for determining photocatalyst-halide association 

constants with photocatalysts that possessed +2, +1, and 0 ionic charges. Similarly, the work term 

contribution in the classical Rehm-Weller expression, necessary for E°’(Χ•/–) determination, 

accounted remarkably well for the stabilization of the charged reactants as the solution ionic 

strength was increased. While a sensitivity analysis indicated that the extracted reduction 

potentials were all within experimental error the same, use of fixed parameters established for 

aqueous solution provided the periodic trend expected, E°’(I•/–) < E°’(Br•/–) < E°’(Cl•/–), in all the 

organic solvents investigated; however, the potentials were more closely spaced than what would 

have been predicted based on gas phase electron affinities or aqueous reduction potentials. The 

origin(s) of such behavior are discussed that provide new directions for future research.
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1

INTRODUCTION

The thermodynamic properties of halogen atoms in fluid solutions are of high relevance to 

applications in organic, inorganic, and materials chemistry.1–9 In particular, redox reactions 

involving halogen atoms are instrumental for C-H bond activation in photoredox catalysis10,11 and 

hydrohalic acid splitting for solar energy storage.12,13 The halogen atom formal reduction potential, 

E°(X•/−), represents a key starting point (Equation 1), yet standard electrochemical techniques do 

not provide the desired one-electron potentials. Instead, two-electron halide oxidation are observed 

at metal electrodes with such thermodynamically favored potentials that the one-electron potentials 

are obscured (Figure S1).14 Consider for example the case of aqueous iodide oxidation where ~ 

800 mV separates the one-electron E°(I•/−) = 1.33 V vs NHE from the two-electron E°(I3
−/3I−) = 

0.54 V vs NHE potential.9 The formal reduction potentials E°(X•/−) found in textbooks are obtained 

from kinetic measurements or determined indirectly through thermochemical cycles and/or 

computational methods.15–20 Experimental measurements require kinetic resolution of atom 

formation with an electron acceptor, whose E°’(A0/−) is known, and a model that relates the kinetic 

rate constant to the electron transfer driving force, –ΔGo (Equation 2).21 Pulse-radiolysis and 

stopped-flow techniques have been successfully utilized, however the vast majority of these 

studies have been restricted to aqueous solutions.15–20,22 Herein, we extend this kinetic approach to 

evaluate the use of transition metal photoredox catalysts, PC, with known excited-state reduction 

potentials E°’(PC*/−) to estimate E°’(X•/−), where X = Cl, Br, and I, in organic solvents (Equation 

3).

        (1)X + e X E°'(X / )

                      (2)X + A A + X -G°

            (3)X + PC* PC + X -G°

A well-established mechanism for bimolecular redox reactions in fluid solution includes 

formation of an ‘encounter complex’ by diffusional encounters of the electron donor and acceptor 

prior to electron transfer. The remarkable success of the Marcus cross-relation for predicting 

electron transfer rate constants from known self-exchange rate constants indicates that encounter 

complex formation can be accounted for, at least for aqueous reactions with small –ΔGo.21 

Deviations from behavior expected by the Marcus cross-relation are often indicative of alternative 

inner-sphere mechanisms.23 Nevertheless, the use of organic solvents and photoredox catalysts 
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2

raise new questions that require further analysis and remain largely untested. Since halide 

oxidation by a photocatalyst excited state occurs in kinetic competition with radiative and non-

radiative decay, the electron transfer event must be rapid, often nearing the diffusion limit. The 

observed kinetics contain information on the electron transfer event, but require corrections for 

diffusion.24 As many photocatalysts are cationic and halides are anionic, the charge of the reactants 

and the ionic strength of the solution must also be accounted for. In principle, Debye-Hückel theory 

can account for both, yet the utility in low-dielectric solvents deserves further exploration given 

that many photoredox reactions are studied in organic solutions.

Motivations for this research include a recent review article that summarizes E°’(X•/−) 

values in aqueous and nonaqueous solvents, the latter being largely absent.9,22 In addition, the well-

established and fundamentally sound diffusional model and theoretical framework described 

herein provide fundamental knowledge that will help identify alternative mechanisms that may (or 

may not) require as-of-yet undiscovered modifications from which new models can be developed. 

Finally, kinetic measurements provide the only means that we are aware of that allows halogen 

atom reduction potentials to be experimentally determined.12-16 The analysis described herein 

provides an opportunity to systematically test the assumptions inherent to this approach and is 

amenable to determination of a wider variety of formal reduction potentials that cannot be obtained 

through standard electrochemical techniques.

The field of photoredox catalysis has grown dramatically in recent years,8,25–27 as has the 

variety of photocatalysts available commercially and through synthetic methods. In this work, we 

focus on two Ir(III) photocatalysts that are capable of halide oxidation in organic solvents. A 

measure of the robustness of extracted E°’(X•/−) values is their insensitivity to the identity of the 

photocatalyst utilized to initiate halide oxidation and halogen-atom formation. Careful tuning of 

the photocatalyst excited-state reduction potential, charge, and molecular structure can provide 

insights into which assumptions are most valid and which are not. Some alternative (d)6 transition 

metal photocatalysts are reported herein with this goal in mind. Indeed, a wider variety of 

photocatalysts would certainly provide more reliable estimates of E°’(X•/−) and provide directions 

for future research.
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3

EXPERIMENTAL

Materials. n-Butyronitrile (BuCN, Acros Organics, 99 %), acetonitrile (Acros, 99.9%, 

Anhydrous), propylene carbonate (Acros, 99.8% Anhydrous) and dichloromethane (Acros, 99.8% 

Anhydrous) were used as received. Argon gas (Airgas, 99.998 %) was passed through a Drierite 

drying tube before use. Tetrabutylammonium iodide (TBAI, Sigma-Aldrich, ≥ 99.0 %), 

tetrabutylammonium bromide (TBABr, Sigma-Aldrich, ≥ 99.0 %), and tetrabutylammonium 

chloride (TBACl, Sigma-Aldrich, ≥ 99.0 %) were recrystallized from acetone and diethyl ether 

and stored in a vacuum desiccator. Tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma-

Aldrich, for electrochemical analysis, ≥ 99.9 %), lithium perchlorate (LiClO4, Sigma-Aldrich, for 

electrochemical analysis, ≥ 99.9 %), lithium iodide (Sigma-Aldrich), lithium bromide (Sigma-

Aldrich), and tri-p-tolylamine (TCI America, ≥ 98 %) were stored in a vacuum desiccator and used 

as received. 

Electrochemistry. Solutions were prepared with 0.1 M supporting electrolyte and sparged 

with argon for 30 minutes before electrochemical experiments. TBAPF6 was used as the 

supporting electrolyte for organic solvents and LiClO4 in water. Measurements were performed 

with a BASi Epsilon potentiostat in a standard three electrode cell with a platinum disk working 

electrode, platinum mesh counter electrode, and Ag/Ag+ pseudo reference that was externally 

referenced to ferrocene for organic solvents or SCE for water.

Sample Preparation for Photophysical and Photochemical Measurements. Samples 

were prepared in an argon glovebox using solvents that were previously deaerated by purging with 

argon for 45 minutes. Stock solutions of photocatalysts were prepared by dissolving the desired 

complex in ~20 mL of solvent such that the solution had an absorbance value near 0.1 at the 

excitation wavelength (~50 μM). A 3 mL aliquot of the iridium solution was transferred into a 

custom-made photometric quartz cuvette and sealed with a septum while in the glovebox 

Tetrabutylammonium halide or lithium halide salts were dissolved in 2 mL of the iridium stock 

solution (~20 mM halide concentration) and sealed with a septum while in the glovebox. 

Experiments performed at fixed ionic strengths were setup in an identical fashion with the 

exception of electrolyte added to the solutions. Similar sample preparation was used for transient 

absorption experiments with the exception that the concentration was adjusted to reach an 

absorbance value between 0.4 and 0.8 at 420 nm. 
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4

Transient Absorption. Nanosecond transient absorption measurements were acquired on 

a previously described apparatus.28 Briefly, a Q-switched, pulsed Nd:YAG laser (Quantel U.S.A. 

(BigSky) Brilliant B 5-6 ns full width at half-maximum (fwhm), 1 Hz, ∼10 mm in diameter) was 

utilized. The 355 nm laser was passed through an OPO and tuned to 420 nm. The laser irradiance 

at the sample was attenuated to 1.5-3 mJ/pulse. The probe lamp consisted of a 150 W xenon arc 

lamp that was pulsed at 1 Hz. Signal detection was achieved using a monochromator (SPEX 

1702/04) optically coupled to an R928 photomultiplier tube (Hamamatsu) at a right angle to the 

excitation laser. Transient data were acquired with a computer-interfaced digital oscilloscope 

(LeCroy 9450, Dual 330 MHz) with an overall instrument response time of ∼10 ns. An average of 

30 laser pulses were collected at each wavelength of interest over the 400-800 nm range. Intervals 

of 10 nm were used between 400 and 600 nm while intervals ranging from 10 to 40 nm were used 

between 600 and 800 nm.

UV−Vis Absorption. UV−vis absorption spectra were recorded on a Varian Cary 60 

UV−vis spectrophotometer with a resolution of 1 nm. 

Steady-State Photoluminescence. Steady-state PL spectra were recorded on a Horiba 

Fluorolog 3 fluorimeter and corrected by calibration with a standard tungsten-halogen lamp. 

Samples were excited at 420 nm. The intensity was integrated for 0.1 s at 1 nm resolution and 

averaged over 3 scans. 

Time-Resolved Photoluminescence. Time-resolved PL data were acquired on a nitrogen 

dye laser with excitation centered at 445 nm. Pulsed light excitation was achieved with a Photon 

Technology International (PTI) GL-301 dye laser that was pumped by a PTI GL-3300 nitrogen 

laser. The PL was detected by a Hamamatsu R928 PMT optically coupled to a ScienceTech Model 

9010 monochromator terminated into a LeCroy Waverunner LT322 oscilloscope. Decays were 

monitored at the PL maximum and averaged over 180 scans. 

Extinction Coefficient of Reduced Photocatalyst. The absorption spectrum of the singly 

reduced Iridium complex was determined using a procedure adapted from literature.29 A 10 µM 

solution of Ir with 10 mM tri-p-tolylamine (Me-TPA) was irradiated with 420 nm light (1.5 

mJ/cm2). Laser excitation of Ir resulted in electron transfer from the TPA to Ir*. Transient 

absorption spectra were recorded, normalized at the TPA+ maxima, and the normalized spectrum 

of the oxidized TPA was subtracted to give the difference spectrum between the reduced Ir and 
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5

the ground state. The concentration of reduced complex formed was calculated from the known 

extinction coefficient of the oxidized TPA.30

Stern-Volmer Experiments. An iridium solution with an absorbance of 0.1 at 420 nm was 

prepared in the argon-purged solvent of choice. Various quencher solutions with known 

concentrations were prepared in each solvent. The desired quencher was incrementally added to a 

solution of iridium photosensitizer and the excited-state quenching was monitored by steady-state 

and time-resolved photoluminescence. The decrease of excited-state lifetime and 

photoluminescence were directly related to the concentration of quencher. The corresponding 

Stern-Volmer plot can be obtained using the following equation: 
∑(𝑃𝐿𝐼0)
∑(𝑃𝐿𝐼) =

𝜏0

𝜏 = 1 + 𝐾𝑆𝑉[𝑄] = 1 + 𝑘𝑞𝜏0[𝑄]

For Ir-5,5’-CF3 in dichloromethane, a combination of static and dynamic excited-state 

quenching occurred. Upward curvature of the photoluminescence integral (PLI0/PLI) ratio was 

observed. The combination of these two processes was analyzed through a combined Stern-Volmer 

analysis that has a quadratic dependence on the concentration of the quencher:
∑(𝑃𝐿𝐼0)
∑(𝑃𝐿𝐼) = 1 + (𝐾𝐷 + 𝐾𝑆)[𝑄] + 𝐾𝐷𝐾𝑆[𝑄]2 

RESULTS AND DISCUSSION

N

F

CF3

N

F

CF3

IrIII

F

F

N
CF3

N
CF3

+

N

F

CF3

N

F

CF3

IrIII

F

F

N

N

+

CF3

CF3

Ir-4,4'-CF3 Ir-5,5'-CF3

(1) Excited State Quenching. The iridium photocatalysts, abbreviated Ir-4,4’-CF3 and Ir-

5,5’-CF3 (Figure 1), exhibited spectroscopic properties typical of charge-transfer excited states31 

Figure 1. [Ir(dF-CF3ppy)2(4,4’-(CF3)2bpy)]+, (Ir-4,4’-CF3), and [Ir(dF-CF3ppy)2(5,5’-(CF3)2bpy)]+, (Ir-5,5’-
CF3), were isolated as PF6

– or Cl– salts for experiments in organic solvents or water, respectively.
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6

with intense room temperature photoluminescence (PL) centered around 600 nm (Figure 2). These 

photocatalysts are commercially available members of a larger family of well characterized (d6 

inorganic transition metal complexes. The room temperature data reported here is fully consistent 

with expectations of PL from a single thermally equilibrated excited state that undergoes 

diffusional electron transfer in agreement with Kasha’s rule. The absorption and PL spectra 

displayed small, yet measurable, solvatochromism in propylene carbonate, acetonitrile, 

butyronitrile, dichloromethane, and water. Pulsed-light excitation yielded PL decays that were well 

described by a first-order kinetic model with excited state lifetimes, τo, that were more sensitive to 

the solvent identity than were the absorption or PL spectra, Table 1. The iridium photocatalysts 

displayed quasi-reversible E°’(Ir+/0) reductions with similar potentials in the four organic solvents 

(Table 1, Figure S2). Excited-state reduction potentials were determined from E°’(Ir+*/0) = 

E°’(Ir+/0) – ∆Ges, where ∆Ges is the Gibbs free energy stored in the excited state.32,33

Table 1. Solvent dependent excited-state lifetimes (το), ground-state reduction potentials (E°’(Ir+/0)), and excited-state 
reduction potentials (E°’(Ir*+/0)) of the iridium photocatalysts.

Solvent ο (ns)
Ir-4,4’-CF3

E°’(Ir+/0)a

Ir-4,4’-CF3

E°’(Ir+*/0)a,b

Ir-4,4’-CF3

Water 115 –0.61c 1.80c

Propylene 
Carbonate

345 –1.25 1.24

Acetonitrile 428 –1.24 1.19
Butyronitrile 487 –1.22 1.23

Dichloromethane 770 –1.16 1.27

Solvent ο (ns)
Ir-5,5’-CF3

E°’(Ir+/0)a

Ir-5,5’-CF3

E°’(Ir+*/0)a,b

Ir-5,5’-CF3

Propylene 
Carbonate

63 –1.11 1.28

Acetonitrile 83 –1.15 1.21
Butyronitrile 96 –1.12 1.25

Dichloromethane 286 –1.08 1.29
aV vs Fc+/0 unless otherwise specified. bEstimated by E°’(Ir+*/0) = E°’(Ir+/0) – ∆Ges. cV vs NHE.
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7

Chloride, bromide, and iodide ions quenched the steady-state PL intensity and the excited-

state lifetime of both iridium photocatalysts in all four organic solvents (Figure S3-S10). 

Importantly, there was no evidence for ligand-loss or other permanent photochemistry in any 

experiment reported herein.34–36 Representative quenching data in acetonitrile is shown in Figure 

2. Stern-Volmer plots of τo/ were indicative of dynamic quenching under all conditions except in 

dichloromethane, which showed evidence for an additional static quenching pathway manifest as 

a significant decrease in the initial PL amplitude (Figure S10) that is absent in Figure 2a. In 

contrast, within experimental error the initial amplitudes of the time-resolved PL decays were 

independent of the halide concentration in the other organic solvents investigated. Second-order 

quenching rate constants, kq, were extracted from Stern-Volmer analysis and ranged from 0.52 

x109 M−1s−1 to 32.2 x109 M−1s−1 depending on the solvent (propylene carbonate, acetonitrile, 

butyronitrile, and dichloromethane) and halide ion. In aqueous solutions, quenching was observed 

with iodide and bromide; chloride concentrations up to 100 mM did not impact excited-state 

relaxation (Figure S11).

Figure 2. Absorbance and steady-state photoluminescence data for the corresponding photocatalyst in acetonitrile 
(left), and time-resolved PL of Ir-4,4’-CF3 with increasing amounts of chloride in argon-purged acetonitrile at 
room temperature. The inset provides Stern-Volmer plots for iodide, bromide, and chloride (right).
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8

Table 2. Second-order quenching rate constants for both photocatalysts extracted from Stern-Volmer analysis.

Solvent kq Ia

Ir-4,4’-CF3

kq Bra

Ir-4,4’-CF3

kq Cla

Ir-4,4’-CF3

Water 10.6 0.00639 --
Propylene Carbonate 3.41 1.82 0.52
Acetonitrile 24.3 15.7 9.09
Butyronitrile 21.0 16.0 14.4
Dichloromethane 26.1 20.4 16.7

Solvent kq Ia

Ir-5,5’-CF3

kq Bra

Ir-5,5’-CF3

kq Cla

Ir-5,5’-CF3

Propylene Carbonate 4.04 1.72 0.53
Acetonitrile 29.9 14.6 8.39
Butyronitrile 28.0 19.0 14.1
Dichloromethane 32.2 25.9 23.3

a x109 M-1s-1

Nanosecond transient absorption spectroscopy provided evidence for a reductive 

quenching mechanism by bromide and iodide where features characteristic of the oxidized halide 

and reduced iridium catalyst were evident (Figure 3).37 It has been well established that the primary 

halogen photoproduct, X• (where X = Br or I), rapidly reacts with excess X– to form X2
• –.16,38 The 

absorption band centered near 520 nm is assigned to the reduced Ir catalyst and the broad 

absorption in the red region as well as the absorption onset in the blue region are assigned to X2
• –. 

The transient spectra, simulated by standard addition of the known spectra of the reduced catalyst 

and X2
• – are overlaid on the spectral data as solid lines. Excited-state electron transfer from 

chloride was evident only as a small amplitude feature attributed to the reduced catalysts without 

detection of the oxidized chloride product(s) (Figure S12).
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9

Figure 3. Transient absorption spectra recorded at 1 μs time delay following pulsed 420 nm light excitation of a 
solution containing 250 µM Ir-5,5-CF3 and 4 mM TBAX (X = Br or I) in argon-purged CH2Cl2. The solid lines are 
simulated spectra of equimolar concentrations of reduced [Ir-5,5’-CF3]0 and X2

• –.

A brief overview of the approach used to extract E°’(X•/−) is described in order to introduce 

the halogen reduction potentials, tabulated in Table 3, which are intended to be a starting place for 

comparison in future studies. We urge caution in the use of these potentials outside of this context. 

Nevertheless, we strongly encourage others to critically examine the values reported herein to help 

refine our knowledge of the redox properties of halogen atoms and other unstable radical species 

that are critically important to photocatalysis and energy applications.

Electron transfer rate constants, ket, were extracted from the measured kq with a diffusional 

model that requires a steady-state approximation and knowledge of bimolecular diffusional rate 

constants and association constants. The ket was then used to determine the driving force, –ΔGo, 

for electron transfer through Marcus theory. Within the Marcus expression, determination of the 

driving force for electron transfer from ket requires knowledge of the reorganization energy, λ, and 

the electronic coupling matrix element, HAB, which is incorporated into the pre-exponential factor, 

A, in the simplified expression (Equation 4).21 Typical values of λ = 1 eV and A = 1011 s–1 were 

assumed unless otherwise specified. The –ΔGo was then used in conjunction with E°’(Ir+*/0) to 

estimate the halogen atom reduction potentials through the Rehm-Weller equation (Equation 5), 

where Gw is the work required to bring the photoexcited catalyst and halide together in a so-called 

‘encounter complex’.39,40 The work term is small in polar solvents but becomes significant in 

nonpolar solvents and/or with highly charged reactants. 

        (4)𝑘𝑒𝑡 =
2𝜋
ħ |𝐻𝐴𝐵|2 1

4𝜋𝜆𝑘𝑏𝑇exp ( ―
(𝜆 + ∆𝐺𝑜)2

4𝜆𝑘𝑏𝑇 ) =  𝐴exp ( ―
(𝜆 + ∆𝐺𝑜)2

4𝜆𝑘𝑏𝑇 )
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10

        (5)       ∆𝐺𝑜 = {[𝐸°′(𝑋•/ ― ) ― 𝐸°′(𝐼𝑟 + ∗ /0)] ― 𝐺𝑤}

Table 3. Estimated formal reduction potentials of iodide, bromide, and chloride in the indicated solvents.a 

Solvent E°’(I•/–)b E°’(Br•/–)b E°’(Cl•/–)b

Water 1.27 ± 0.46c 1.84 ± 0.26c --
Prop. Carb. 0.85 ± 0.36 0.96 ± 0.34 1.06 ± 0.32
Acetonitrile 0.68 ± 0.38 0.77 ± 0.36 0.83 ± 0.35

Butyronitrile 0.80 ± 0.36 0.84 ± 0.35 0.86 ± 0.35
Dichloromethane 1.00 ± 0.30 1.02 ± 0.30 1.04 ± 0.29

aThe potentials are averaged values estimated through kinetic measurements of Ir-4,4’-CF3 and Ir-5,5’-CF3 that rely 
on key assumptions (see text) and thus should be considered carefully. Sensitivity analysis was performed on key 
assumptions, which is reflected by the designated uncertainty. bV vs Fc+/0 unless otherwise specified. cV vs NHE 
estimated from kinetic measurement with Ir-4,4’-CF3.

A sensitivity analysis was performed to estimate the uncertainty in the extracted reduction 

potentials given in Table 3 stemming from assumptions and approximations necessary in the 

kinetic analysis. The value for parameters that were identified as the most likely sources of 

uncertainty were varied one at a time over physically realistic ranges to determine their influence 

on the reduction potential for each halide in each solvent (vide infra, Section 8). Despite the 

magnitude of uncertainty stemming from parameters within the model, the estimated reduction 

potentials are reported to two decimal places to reflect the precision of the experimentally 

measured quenching rate constants. For instance, quenching rate constants for Ir-4,4’-CF3 in 

dichloromethane of 2.61x1010 M-1 s-1 and 1.67x1010 M-1 s-1 for iodide and chloride, respectively, 

are reproducible and reflect a measurable difference in rate constants for halide oxidation. Below, 

the details of the analysis are given with the introduction of additional experiments designed to 

test the validity of the key assumptions made. 

(2) Diffusional Electron Transfer Mechanism. The kinetic data indicate a diffusional 

electron transfer quenching mechanism wherein the excited state and the halide diffuse together to 

form an encounter complex, EC, prior to electron transfer (Scheme 1), with the overall rate law in 

Equation 6:

       (6)
𝑑[𝑃]

𝑑𝑡 = 𝑘𝑞[𝐼𝑟 + ∗ ][𝑋 ― ]

where  is the product pair after the moment of electron transfer in the composite mechanism. [𝑃]

Within the encounter complex, electron transfer occurs by a first-order reaction (Equation 7).

       (7)
𝑑[𝑃]

𝑑𝑡 = 𝑘𝑒𝑡[𝐸𝐶]
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11

Scheme 1. Composite mechanism for diffusional electron transfer
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Rate constants for electron transfer, ket, have typically been extracted from kq by application of a 

steady-state approximation. The EC concentration is assumed to be constant and negligibly small 

throughout the kinetic measurement:

       (8)0≅
𝑑[𝐸𝐶]

𝑑𝑡 = 𝑘𝑑𝑖𝑓𝑓[𝐼𝑟 + ∗ ][𝑋 ― ] ― 𝑘 ―𝑑𝑖𝑓𝑓[𝐸𝐶] ― 𝑘𝑒𝑡[𝐸𝐶]

       (9)[𝐸𝐶] =
𝑘𝑑𝑖𝑓𝑓[𝐼𝑟 + ∗ ][𝑋 ― ]

𝑘 ―𝑑𝑖𝑓𝑓 + 𝑘𝑒𝑡

Substitution of Equation 9 into Equation 7 yields:

     (10)
𝑑[𝑃]

𝑑𝑡 = 𝑘𝑒𝑡(𝑘𝑑𝑖𝑓𝑓[𝐼𝑟 + ∗ ][𝑋 ― ]
𝑘 ―𝑑𝑖𝑓𝑓 + 𝑘𝑒𝑡 )

And by inspection of Equation 10 and Equation 6:

     (11)𝑘𝑞 =
𝑘𝑒𝑡𝑘𝑑𝑖𝑓𝑓

𝑘 ―𝑑𝑖𝑓𝑓 + 𝑘𝑒𝑡

Which is conveniently rewritten as:

     (12)
1
𝑘𝑞

=
1

𝑘𝑑𝑖𝑓𝑓
+

1
𝐾𝑎𝑘𝑒𝑡

     (13)𝐾𝑎 =
𝑘𝑑𝑖𝑓𝑓

𝑘 ―𝑑𝑖𝑓𝑓

Thus, determination of ket requires knowledge of the diffusional rate constant, kdiff, and the 

association constant for EC formation, Ka. The opposite charges of the halides and photocatalysts 

described herein led to favorable Ka values and enhanced diffusional rate constants. These 

Page 12 of 35

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12

parameters are crucial to extracting ket and the following sections explicitly evaluate methods for 

estimating kdiff and Ka from a theoretical and experimental perspective.

(3) Diffusional Rate Constants. Assuming molecules of spherical symmetry, bimolecular 

diffusional rate constants have been estimated by Equation 1441:

     (14)𝑘𝑑𝑖𝑓𝑓 = 4𝜋𝑁𝐴(𝐷𝑎 + 𝐷𝑏)𝛽

where  is Avogadro’s number,  and  are the diffusion coefficients of the reactants and  is 𝑁𝐴 𝐷𝑎 𝐷𝑏 𝛽

the reaction radius. Diffusion coefficients may be measured experimentally or estimated through 

the Stokes-Einstein relationship (Equation 15), where  is the Boltzmann constant, T is 𝑘𝐵

temperature,  is the solvent viscosity, and  is the reactant radius where I– = 2.06 Å, Br– = 1.96 𝜂 𝑟𝑖

Å, Cl– = 1.84 Å,42 and the radii of the Ir complexes were estimated as 6.8 Å by DFT.

     (15)𝐷𝑖 =
𝑘𝐵𝑇

6𝜋𝑟𝑖𝜂

The reaction radius for neutral molecules is usually taken to be the sum of reactant radii, 

denoted R. When the reactants are charged,  represents an effective reaction radius that is related 𝛽

to the potential energy, U(r), of the two separated ions in solution integrated over distance from 

the sum of the reactant Van der Waals radii, R, to infinity:

       (16)𝛽 ―1 = ∫∞
𝑅

𝑒𝑥𝑝(𝑈(𝑟)
𝑘𝐵𝑇)

𝑟2 𝑑𝑟

The simplest expression for potential energy, also referred to as the work term, is a 

Coulomb’s law-type expression, shown in Equation 17, where  is the charge of the reactant,  is 𝑧𝑖 𝑒

the elementary charge of an electron,  is the solvent dielectric constant, and  is vacuum 𝜀𝑟 𝜀0

permittivity:

     (17)𝑈(𝑟) =
𝑧𝑎𝑧𝑏𝑒2

4𝜋𝜀𝑟𝜀0𝑟

While commonly used and recommended by IUPAC for calculating work terms in 

photochemistry,43 it is prudent to note that Equation 17 holds only at infinite dilution without 

consideration of screening due to other ions. Nevertheless, this expression is convenient and useful 

for analytical evaluation of the integral such that:

     (18)𝛽 =
𝑧𝑎𝑧𝑏𝑟0

𝑒𝑥𝑝(𝑧𝑎𝑧𝑏𝑟0
𝑅 ) ― 1
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13

where . To account for ion screening, an additional term is often included 𝑟0 =  𝑒2/(4𝜋𝜀𝑟𝜀0𝑘𝑏𝑇)

for the attenuated potential in an ionic atmosphere (Equation 19) where  is the Debye length 𝜅 ―1

(Equation 20) and  is the solution ionic strength44–48:𝜇

     (19)𝑈(𝑟) =
𝑧𝑎𝑧𝑏𝑒2

4𝜋𝜀𝑟𝜀0𝑟 ―
𝑧𝑎𝑧𝑏𝑒2

4𝜋𝜀𝑟𝜀0
𝜅

     (20)𝜅 ―1 =
𝜀𝑟𝜀0𝑘𝐵𝑇

2000𝑒2𝑁𝐴𝜇

Integration of Equation 16 using the modified expression for potential energy has been 

used to obtain a ‘corrected’ effective reaction radius and by extension, a corrected diffusional rate 

constant conveniently written as Equations 21 and 22, respectively, where  and  are those 𝛽0 𝑘0
𝑑𝑖𝑓𝑓

calculated at infinite dilution:

      (21)𝛽 = 𝛽0𝑒𝑥𝑝(𝑧𝑎𝑧𝑏𝑟0𝜅)

     (22)𝑘𝑑𝑖𝑓𝑓 = 𝑘0
𝑑𝑖𝑓𝑓𝑒𝑥𝑝(𝑧𝑎𝑧𝑏𝑟0𝜅)

While this approach has been utilized successfully,38,41,49–52 note that Equations 17 and 19 

are varying degrees of approximations of the ‘exact’ potential energy expression from Debye in 

Equation 2324,47,53:

     (23)𝑈(𝑟) =
𝑧𝑎𝑧𝑏𝑒2

4𝜋𝜀𝑟𝜀0𝑟(1
2(𝑒𝑥𝑝(𝜅𝜎𝑎)

1 + 𝜅𝜎𝑎
+

𝑒𝑥𝑝(𝜅𝜎𝑏)
1 + 𝜅𝜎𝑏 )𝑒𝑥𝑝( ―𝜅𝑟))

where  is the radius of the reactant plus the radius of the main counterion in the ion’s atmosphere. 𝜎

However, a limitation of the full expression is that substitution into Equation 16 gives rise to a 

double exponential in the integrand that requires numerical integration. A thorough comparison of 

these methods for estimating diffusional rate constants has been previously described by Chiorboli 

et al. in aqueous solutions.24 Here we demonstrate the often overlooked and sometimes profound 

shortcomings of using approximate formulations for potential energy within the Debye-Hückel 

framework to estimate bimolecular diffusion in nonaqueous electrolyte solutions.

In nonpolar solvents such as dichloromethane, electrolyte concentration has been shown to 

have a dramatic effect on measured reduction potentials.54,55 Thus, in our effort to estimate halogen 

reductions under conditions similar to those where halogen atoms may be generated in photoredox 

catalysis,7,56 quenching rate constants reported in Table 2 were determined from experiments 

performed in the absence of an added electrolyte. When charged photocatalysts and halides are 

used in the absence of a supporting electrolyte, substantial changes to the ionic strength, and 

therefore the diffusional rate constant, occur throughout the titration. Therefore, Stern-Volmer-
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14

type titrations are commonly performed in the presence of an inert supporting electrolyte that 

maintains a nearly constant ionic strength throughout the experiment. On the other hand, 

expressions to determine kdiff within the Debye-Hückel framework were derived with the 

assumption of very dilute ionic solutions with deviations expected even at modest ionic strengths 

(ca. 10–4 M).41

Thus, we sought to compare the experimentally measured quenching rate constants, the 

calculated diffusional rate constants (using the potential energy expressions from Equation 19 or 

23), and the extracted electron transfer rate constants from experiments performed with and 

without a 0.1 M TBAPF6 supporting electrolyte in both dichloromethane and acetonitrile. The data 

for Ir-4,4’-CF3 are tabulated in Table 4. An average ionic strength of 0.2 mM was assumed for 

experiments without supporting electrolyte.
Table 4. Quenching rate constants measured with and withouta a 0.1 M TBAPF6 electrolyte and the corresponding ket 
and kdiff values calculated from the method stated.

kq
b

(M–1 s–1)
kdiff (approx.)c

(M–1 s–1)
ket (approx.)c

(s–1)
kdiff (exact)d

(M–1 s–1)
ket (exact)d

(s–1)
CH2Cl2

Cl– 1.67 x1010 5.45 x1010 2.24 x107 8.08 x1010 1.96 x107

Br– 2.04 x1010 5.19 x1010 3.31 x107 7.69 x1010 2.73 x107

I– 2.61 x1010 5.00 x1010 5.63 x107 7.41 x1010 4.15 x107

CH2Cl2 + 0.1 M TBAPF6 electrolyte
Cl– 2.05 x109 508 –42.9 2.33 x1010 1.90 x108

Br– 3.44 x109 483 –41.1 2.23 x1010 3.46 x108

I– 6.28 x109 465 –39.7 2.16 x1010 7.55 x108

CH3CN
Cl– 9.09 x109 5.14 x1010 1.27 x109 5.23 x1010 1.27 x109

Br– 1.57 x1010 4.91 x1010 2.62 x109 5.00 x1010 2.59 x109

I– 2.43 x1010 4.75 x1010 5.56 x109 4.84 x1010 5.46 x109

CH3CN + 0.1 M TBAPF6 electrolyte
Cl– 2.45 x109 5.55 x109 1.25 x109 3.20 x1010 7.59 x108

Br– 5.42 x109 5.31 x109 –7.30 x1010 3.07 x1010 1.84 x109

I– 9.10 x109 5.13 x109 –3.21 x109 2.98 x1010 3.58 x109

aA 0.2 mM average ionic strength was assumed in calculations. bExperimentally measured. cThe diffusional rate 
constants calculated with the approximation given in Equation 19 and the corresponding electron transfer rate 
constants, ket. Note that the negative rate constants in 0.1 M electrolyte are reported to demonstrate the inadequacy of 
this level of theory.  dThe diffusional rate constants calculated with the exact expression given in Equation 23 and the 
corresponding electron transfer rate constants, ket.

In the presence of a 0.1 M supporting electrolyte, the measured kq values were attenuated 

by a factor of 2 to 4 in acetonitrile and 4 to 8 in dichloromethane relative to those measured in neat 

solvent (Figure S13 and S14). Because the opposite charges of the photocatalysts and halides lead 

to enhanced bimolecular diffusional rate constants, screening of this attractive force by a 
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supporting electrolyte was anticipated to yield a smaller kq. Indeed, the presence of electrolyte had 

the greatest impact with chloride and the smallest with iodide, consistent with the expectation that 

charge screening has a greater effect with a higher charge-to-size ratio anion.

Diffusional rate constants were determined using Equation 14, Equation 16, and either 

potential energy Equation 19 or 23. When no external electrolyte was present, the use of either 

potential energy expression yielded qualitatively ‘realistic’ values of kdiff. In the context of this 

discussion, a ‘realistic’ kdiff refers to a value larger than that for uncharged species i.e. where , 𝛽 = 𝑅

since kdiff for charged species should asymptotically approach the value for neutral molecules with 

increasing ionic strength.24 The kdiff for neutral species of the same size as iodide and the iridium 

photocatalyst are 1.67x1010 and 2.51x1010 M-1 s-1 in dichloromethane and acetonitrile, 

respectively. In acetonitrile, the two diffusional models were in good agreement with less than 4% 

discrepancy. However, in dichloromethane the approximate expression underestimated the exact 

expression by nearly a factor of 2. The impact of such discrepancy on ket is amplified as kq 

approaches the diffusional limit.

When 0.1 M TBAPF6 was present, diffusional rate constants calculated using the 

approximate potential energy expression led to unrealistic values of kdiff. Not only were these 

calculated kdiff smaller than what would be anticipated for neutral species (vide supra), the 

measured kq values were larger than the estimated kdiff for all experiments except chloride in 

acetonitrile. Moreover, it is noteworthy that these shortcomings are exacerbated in lower dielectric 

solvents and/or at higher ionic strengths where physically meaningless negative electron transfer 

rate constants were extracted. Thus, tremendous caution is advised when using approximate 

expressions (Equation 19) and should be avoided altogether in lower dielectric solvents and/or at 

higher ionic strengths. Subsequent discussion will rely on diffusional rate constants obtained 

exclusively from Equation 23.

(4) Ionic Strength Effects on Electron Transfer Rate Constants. Correction for diffusion 

enabled comparison of the intrinsic electron transfer rate constants with and without added 

electrolyte (Note that ket values were determined using values for Ka that are discussed in the 

subsequent section.) In dichloromethane, extracted ket values measured without electrolyte were 

approximately an order of magnitude smaller than in the presence of 0.1 M TBAPF6. This 

attenuation of ket implied that the oxidation of halides was more thermodynamically favored in the 

presence of a supporting electrolyte. This behavior is consistent with a smaller work term in the 
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Rehm-Weller expression (Equation 5) for associating charged species at higher ionic strength; 

indeed, halogen reduction potentials extracted from experiments with and without electrolyte are 

in remarkably close agreement when this necessary correction is included (vide infra, Section 7).

The impact of ionic strength is greatly diminished in the more polar CH3CN.54 Indeed, ket 

values measured with and without electrolyte varied by less than a factor of two, with larger values 

measured in neat acetonitrile. The slightly larger ket in the absence of electrolyte may be due to a 

smaller reorganization energy, λ, for a process with the same driving force, and thus, estimated 

halogen reduction potential. Dielectric continuum theory predicts an increase in  with a larger 

static dielectric constant, , which is a consequence of adding an electrolyte to a solvent. 𝜀𝑟

Alternatively, the larger ket may result from the assumptions made in estimating kdiff and/or Ka. The 

assumptions inherent to Ka estimations are discussed and probed experimentally in the next 

section.
Table 5. Encounter complex association equilibrium constants for Ir-4,4’-CF3 or Ir-5,5’-CF3 with halides in the 
indicated solvents.a 

Solvent Ka Cl (M–1) Ka Br (M–1) Ka I (M–1)
Water -- 3.67 3.81
Propylene Carbonate 4.17 4.28 4.39
Acetonitrile 8.67 8.82 8.95
Butyronitrile 18.7 18.8 18.9
Dichloromethane 1075 1016 971

aValues were obtained using Equations 24 and 25 using a photocatalyst radius of 6.8 Å.

(5) Association Constant for Encounter Complex Formation. A common method to 

estimate association constants, Ka, is to measure absorbance or initial PLI amplitude changes in 

titration experiments with the photocatalyst. These approaches are attractive because the Ka values 

are determined directly from experimental data, but report specifically on the ground-state 

association. While in some cases this may be a good approximation for the excited state, previous 

research has indicated substantially different ground-state and excited-state equilibria for 

polypyridyl complexes with halides.57 Moreover, in the quenching titrations reported herein, 

negligible absorbance or photoluminescence amplitude changes were observed in all solvents 

except CH2Cl2 thereby precluding this approach (Figure S3-S10).

We therefore instead chose to use a theoretical model to estimate the association constant 

between the excited-state photocatalysts and halides that was applicable to the full series of 

solvents studied. The Fuoss expression given in Equation 24 was used to estimate Ka values, which 
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are tabulated in Table 5. In this expression, the work term, Gw, is the potential energy, U(r), 

evaluated at the sum of the reactants’ Van der Waals radii (r = R, Equation 25) and all other terms 

have been previously defined.

     (24)𝐾𝑎 = 1000(4
3)𝜋𝑅3𝑁𝐴𝑒𝑥𝑝( ― 𝐺𝑤

𝑘𝑏𝑇 )
     (25)𝐺𝑤 = 𝑈(𝑟 = 𝑅) =

𝑧𝑎𝑧𝑏𝑒2

4𝜋𝜀𝑟𝜀0𝑟(1
2(𝑒𝑥𝑝(𝜅𝜎𝑎)

1 + 𝜅𝜎𝑎
+

𝑒𝑥𝑝(𝜅𝜎𝑏)
1 + 𝜅𝜎𝑏 )𝑒𝑥𝑝( ―𝜅𝑟))

Scheme 2. Additional photocatalysts with different overall charge

To probe the validity of the Fuoss expression for estimating Ka, Stern-Volmer titrations 

were performed with two additional photocatalysts (Scheme 2) in acetonitrile (Figure S16 and 

S17). Comparative studies with [Ir(F-ppy)3] and [Ru(bpz)3]2+ provided insights into how the 

photocatalyst charge, +2,+1, and 0, impacted the extracted potential (Table 6). Of note, Ir(F-ppy)3 

is a weaker photooxidant that only provided sufficient driving force for iodide oxidation.58 In 

addition, [Ru(bpz)3]2+ is known to undergo ligand-loss chemistry upon illumination in the presence 

of chloride and bromide; thus only quenching data with iodide is reported herein.34,35,59 The limited 

scope of photocatalyst excited states that are quenched by all three halides without deleterious 

reactivity underscores the novelty of the photocatalysts chosen and their use for estimating halogen 

reduction potentials through semiclassical Marcus theory. 

A review of the data in Table 6 shows that the Ka values for [Ir(F-ppy)3]and [Ru(bpz)3]2+ 

calculated with the Fuoss equation with iodide were about a factor of 5 lower and higher, 

respectively, than those calculated for the parent Ir photocatalysts. With these Ka values, E°’(I•/−) 

were determined to be 0.70 V vs Fc+/0 for [Ir(F-ppy)3] and 0.66 V vs Fc+/0 for [Ru(bpz)3]2+. Had 

the Ka values for the parent photocatalysts been used instead, the extracted E°’(I•/−) would have 

spanned a range of 0.43 – 0.78 V vs Fc+/0. The ±0.04 V variance between photocatalysts with 
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substantially different Ka values suggests that the Fuoss expression provides a suitable estimate 

for encounter complex formation under these conditions. 

Table 6. Association constants and formal reduction potentials determined with the indicated photocatalyst in CH3CN. 

Solvent Ka I (M–1)a E°’(I•/–)b

Ir-4,4’-CF3
+ 8.95 0.69

Ir-5,5’-CF3
+ 8.95 0.67

[Ir(F-ppy)3] 1.75 0.70
[Ru(bpz)3]2+ 49.7 0.66

aValues were obtained from Equation 24 and 25 using a photocatalyst radius of 6.8 Å. bV vs Fc+/0. 

(6) Marcus Theory for Electron Transfer. The rate constant for electron transfer, ket, 
reports on the free energy change for halide oxidation as described by Marcus theory (Equation 4) 

provided that the frequency factor, A, and the reorganization energy, λ, are known. For this study, 

a typical value of λ = 1 eV was assumed that arises from the outer-sphere solvent contributions 

and is consistent with negligibly small inner-sphere contributions60 from the halogen X•/− and the 

Ir+*/0.61–67 While dielectric continuum theory has been routinely employed to estimate λ in electron 

transfer reactions, the small size of un-solvated halides give rise to unrealistically large 

reorganization energies. Fortunately, halides display intense charge-transfer-to-solvent absorption 

bands in the ultraviolet region whose full width at half-maximum report on λ.68 Previous analysis 

of these charge-transfer bands have indicated that λ differs by only 0.04 eV between iodide and 

chloride in water.69 Reorganization energies are therefore expected to be near halide-independent, 

although some variance in λ across solvents is likely, which would change the absolute position of 

the halogen reduction potentials between solvents. Increasing λ to 1.2 eV resulted in E°’(X•/−) 

values that were decreased by 140 mV, whereas decreasing λ to 0.8 eV resulted in about a 140 mV 

increase in E°’(X•/−) (Figure S18). 

The pre-exponential factor, A—which contains the electronic coupling matrix element, 

|HAB|2 (Equation 4)—was assumed to be 1.0 x1011 s−1.37,46,70 An order of magnitude change in A 

resulted in about an 180 mV shift to E°’(X•/−) (Figure S19). The relatively small range of E°’(X•/−) 

potentials extracted for the halogens in nonpolar solvents may suggest that coupling between the 

photocatalyst and the halide ion within the encounter complex is halide dependent.71 This point is 

elaborated upon in Section 9.
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(7) Excited State Reduction Potentials and Work Term. Within the Rehm-Weller 

expression (Equation 5), the excited-state reduction potential of the photocatalyst, E°’(Ir*+/0), and 

work term, Gw, for associating the photocatalyst and halide are necessary to extract E°’(X•/−) from 

the -∆Go determined through Marcus theory. Excited-state reduction potentials were estimated 

using the ground state reduction potential and the free energy stored in the excited state, ∆Ges.32,33 

Franck-Condon line shape analysis of photoluminescence recorded at 77K have been used to 

precisely determine ∆Ges, but such measurements are limited to solvents that form a frozen glass 

and the rigid glass results in a significant blue shift. We therefore chose to use the more 

generalizable method of extrapolating a tangent line on the blue edge of the corrected PL spectrum 

to the emission baseline to estimate ∆Ges.72,73

The Gw used in the Rehm-Weller equation is identical to that used for Ka, once converted 

from SI units to eV (Equation 25). While the work term is routinely ignored in aqueous 

experiments, it is significant in nonpolar solvents especially at low ionic strengths. To test the 

impact of the work terms on this analysis, Stern-Volmer measurements were performed with Ir-

4,4’-CF3 and chloride in dichloromethane at 0.0, 0.005, and 0.1 M TBAPF6. Table 7 reveals that 

the work term was –167 meV without the external electrolyte and was attenuated to –117 meV and 

–51 meV at 0.005 M and 0.1 M ionic strengths, respectively. Remarkably good agreement was 

found in the work term corrected halogen reduction potentials at all three ionic strengths provided 

in Table 7. This demonstrates both the importance of the work term for electron transfers in 

nonpolar solvents and the ability of Equation 25 to account for ionic interactions at various 

electrolyte concentrations in the estimation of E°’(Cl•/−). 

Table 7. Work term (Gw), driving force for electron transfer (–ΔGo ), and E°’(Cl•/–) values extracted from quenching 
measurements in dichloromethane.

Gw
a

(meV)
–ΔGo b

(eV)
E°’(Cl•/–)c

(V vs Fc+/0)

No Electrolyte –167 0.0634 1.04
0.005 M –117 0.130 1.02

0.1 M –51 0.198 1.02
aValues determined from Equation 25. bValues extracted from Equation 4 using A = 1011 s–1 and λ = 1 eV. cValues 
estimated with Equation 5.

(8) Sensitivity Analysis to Estimate Uncertainty. A sensitivity analysis was performed to 

estimate the uncertainty in the extracted reduction potentials given in Table 3 resulting from 
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approximations for kdiff, Ka, λ, and A. The reorganization energy was varied from λ = 0.5 to 1.5 eV, 

the Marcus pre-exponential factor was varied from A = 1010 to 1012 s-1, the encounter complex 

association constants (Ka) were varied an order of magnitude smaller or larger than the values 

determined from the Fuoss equation (Equation 24), and the bimolecular diffusional rate constants 

(kdiff) were varied 25% from the value determined from Equation 14. The sensitivity to each 

parameter for E°’(Cl•/−), E°’(Br•/−), and E°’(I•/−) in acetonitrile is illustrated in Figure S20. The 

uncertainties given in Table 3 reflect the greatest deviation observed in the extracted reduction 

potentials from variation of the aforementioned parameters. In every case, the greatest deviation 

occurred when the reorganization energy was changed from λ = 1 eV to λ = 0.5 eV.

The sensitivity analysis revealed that the estimated reduction potentials for each halide and 

solvent are the same within uncertainty. This highlights the importance of sound assumptions for 

parameters whose values are unknown. Accordingly, a particularly large range for λ and A were 

evaluated in the sensitivity analysis since direct experimental measure of these values are absent 

in the literature for organic solvents. On the other hand, the assumptions of λ = 1 eV and A = 1011 

s–1 in water are supported by prior studies46,61–67,70  where reorganization energies have been shown 

to be invariant with halide identity69 and there is no evidence for strong coupling between halides 

and photocatalysts. Nonpolar solvents such as dichloromethane are likely to lead to stronger 

halide-photocatalyst coupling where solvation of charged species is poorly understood. 

Consequently, deviations from commonly assumed parameters are more likely and the uncertainty 

in E°’(X•/−) needs to be considered within this context.

 (9) Evaluation of Estimated Halogen Reduction Potentials. The E°’(X•/−) values 

determined kinetically are gathered in Table 3 and are evaluated here versus a common NHE 

reference (note that the nonaqueous potentials in Table 3 are reported vs Fc+/0, which is shifted by 

0.623 V vs NHE in CH3CN74). A previously reported E°’(I•/−) = 1.23 V vs NHE in CH3CN from 

stopped flow kinetic experiments22 is in fair agreement with the data reported herein of 1.30 V vs 

NHE. The kinetic data in water revealed E°’(I•/–) = 1.27 V vs NHE and E°’(Br•/–) = 1.84 V vs NHE 

that are in reasonable agreement with values from pulse radiolysis studies of 1.33 and 1.92 V vs 

NHE for iodide and bromide, respectively.16 No experimental evidence for chloride oxidation in 

water was evident with these photocatalysts. This is unfortunate as an unusually large range of 

aqueous E°’(Cl•/–) = 2.2 to 2.4 V vs NHE have been reported in the literature.9,16 Previously 

reported force field calculations reveal that 20% of the chloride electron density is transferred to 
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the coordinated water through H-bonds.75–77 Indeed, there is growing evidence for H-bonding of 

organic solvents to halides as revealed by x-ray crystallography78–82 and 1H NMR experiments.83 

Charge delocalization to solvent would result in a more positive E°’(Cl•/−) in water relative to those 

in weaker H-bonding solvents when the same number of interactions are present. This report of 

chloride quenching in propylene carbonate, acetonitrile, butyronitrile, and dichloromethane 

affirms that the E°’(Cl•/−) are significantly more thermodynamically favorable in organic solvents 

than water.

It is noteworthy that the expected periodic trend, E°’(I•/–) < E°’(Br•/–) < E°’(Cl•/–), is evident 

in each solvent.9 However, there is a relatively small positive shift in E°’(X•/−) as one proceeds 

toward the more electronegative halogens in organic solvents. The difference between E°’(I•/−) and 

E°’(Cl•/−) range from 210 mV in propylene carbonate to 40 mV in dichloromethane, which trend 

with the decrease in solvent dielectric constant. This is in stark contrast to water where an ~ 1 V 

separation has been reported.9,16,17 Likewise, the gas phase electron affinities span 0.55 eV from I 

(3.06 eV),84 Br (3.36 eV),85 and Cl (3.61 eV),86 with an interesting reversal for F (3.40 eV).85

The similarity of E°’(X•/−) between halogen congeners in nonpolar solvents is surprising 

and suggests that perhaps one or more of the underlying assumptions may be invalid. Previous 1H 

NMR studies of halide ion pairing with ruthenium polypyridyl photocatalysts have provided direct 

evidence for adduct formation with the most acidic 3 and 3’ H atoms of the bipyridine ligands87 

with measurable affinity differences between iodide, bromide, and chloride.29 The presence of 

ethyl ester functional groups in the 4 and 4’ positions inhibited this interaction, while quaternary 

amine substituents enhanced ion pairing.29,59,88–90 This prior ion-pairing data suggests that 

electronic coupling pathways through aromatic ligands may result in halide-specific coupling and 

hence A values that can be tuned by the incorporation of specific functional groups. Another 

consideration is halogen atom stabilization by aromatic ligands. Halogen-π complexes are well 

known and have been spectroscopically quantified.12,13,99–101,91–98 Computational studies indicate 

that the interaction of a halogen atom with benzene resulted in a stabilization of up to 225 meV for 

chloride and less than 90 meV for iodide.102 Taken together, these previous halide ion-pairing and 

halogen atom reports suggest that alternative ‘inner-sphere’ mechanistic pathways for halide 

oxidation may be accessed under some experimental conditions. The impact of such a putative 

inner-sphere pathway on electronic coupling and free energy is of great interest and provides new 

opportunities for future research.
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CONCLUSION

In conclusion, visible light generated excited states of (d)6 inorganic photocatalysts were 

quenched by halides in propylene carbonate, acetonitrile, butyronitrile, dichloromethane, and 

water. The quenching mechanism was attributed to dynamic electron transfer, and Stern-Volmer 

analysis was performed to extract kinetic information that reported on halogen-atom formation. 

This kinetic data was used to estimate the one-electron halogen reduction potentials that are 

inaccessible through traditional electrochemistry. Determination of E°’(X•/−) necessitated a 

number of approximations and assumptions, which warranted individual evaluation. A diffusional 

model was used to relate the observed quenching rate constant to the electron transfer rate constant, 

which required knowledge of diffusion and encounter complex association. Estimations of 

bimolecular diffusional rate constants of ionic species are difficult, particularly in low dielectric 

solvents and/or high ionic strengths. However, it was shown that diffusion of charged species can 

be adequately determined even in relatively nonpolar solvents such as dichloromethane when an 

appropriately sophisticated model is used. Photocatalysts with a 0, 1+, and 2+ charge had markedly 

different association constants with iodide, yet yielded self-consistent E°’(I•/−) values.

A sensitivity analysis was performed on the reported E°’(X•/−) values where large, yet 

physically reasonable, bounds were used for the kdiff, Ka, λ, and A. This analysis revealed that the 

estimated potentials were the same within the uncertainty of the model. However, when parameters 

commonly used in aqueous solutions were utilized, the extracted aqueous E°’(X•/−) values for X = 

Br and I were in remarkable agreement with the literature indicating that the kinetic approach is 

fundamentally sound.  Uncertainty in the estimated values of E°’(X•/−) most likely emanate from 

assumptions within the Marcus analysis. The assumptions that λ and A are invariant with solvent 

and halide may lead to systematic errors in E°’(X•/−); we therefore advise caution when considering 

the values reported herein. The remarkably small separation between halides in less polar solvents 

is indeed curious. Whether this is a real effect or perhaps due to enhanced electronic coupling with 

smaller halides, a stabilizing interaction of the photocatalyst with the halogen atom, or another yet-

to-be-identified contributor is not known and warrants future study. It seems prudent to note that 

this is the only study to report and compare experimentally determined E°’(X•/−) values in organic 

solvents. We therefore hope others will continue to critically examine and refine these estimates 

to further our understanding of fundamental properties of halogen atoms in organic solutions. 
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